当前位置: 仪器信息网 > 行业主题 > >

化妆品包装用塑料瓶

仪器信息网化妆品包装用塑料瓶专题为您整合化妆品包装用塑料瓶相关的最新文章,在化妆品包装用塑料瓶专题,您不仅可以免费浏览化妆品包装用塑料瓶的资讯, 同时您还可以浏览化妆品包装用塑料瓶的相关资料、解决方案,参与社区化妆品包装用塑料瓶话题讨论。

化妆品包装用塑料瓶相关的资讯

  • 药品塑料瓶包装密封性能检测方案解析
    在药品包装领域,塑料瓶因其轻便、耐腐蚀、成本低等优点而被广泛使用。然而,塑料瓶的密封性能直接关系到药品的保存质量和安全性。因此,对药品塑料瓶包装的密封性进行检测是确保药品安全的关键环节。本文将解析药品塑料瓶包装密封性的检测方案。首先,药品塑料瓶包装密封性检测的基本原理是通过检测瓶内外压力差或真空度变化来判断瓶体的密封性能。常用的检测方法包括水检法、压力差法、真空衰减法等。这些方法各有优缺点,选择合适的检测方法需要根据实际需求和生产条件来确定。水检法是一种简便易行的检测方法,通过将塑料瓶完全浸入水中,观察是否有气泡产生来判断瓶体的密封性。这种方法适用于初步筛选和现场检测,但无法定量分析密封性能。压力差法是通过在塑料瓶内外施加不同的压力,检测瓶体是否漏气来判断密封性。这种方法可以定量分析密封性能,但需要专门的设备和技术人员操作。真空衰减法是通过在塑料瓶内部形成真空,检测真空度的变化来判断密封性。这种方法具有较高的灵敏度和准确性,但需要专门的真空衰减仪和熟练的操作技巧。在实际应用中,可以根据生产规模和检测要求选择合适的检测方法。对于小规模生产或现场检测,可以选择水检法;对于大规模生产或要求较高的检测,可以选择压力差法或真空衰减法。其次,药品塑料瓶包装密封性检测的设备选择也非常重要。不同的检测方法需要不同的检测设备,如LEAK-01负压法密封性测试仪,LSST-01泄漏与密封强度测试仪等。在选择设备时,需要考虑设备的精度、稳定性、操作简便性等因素。最后,药品塑料瓶包装密封性检测的操作流程也需要严格控制。无论是哪种检测方法,都需要进行标准化操作,以确保检测结果的准确性和可重复性。同时,还需要定期对检测设备进行校准和维护,以保证设备的正常运行和检测结果的准确性。综上所述,药品塑料瓶包装密封性检测是确保药品安全的关键环节。选择合适的检测方法和设备,严格控制操作流程,才能确保检测结果的准确性和可靠性。
  • 塑料微珠被禁用,化妆品微珠检测出新规!——化妆品中塑料微珠的测定
    导 读 塑料微珠广泛用于洗面奶、按摩霜、去角质霜、牙膏、沐浴露等化妆品和个人护理品中,是一种直径小于5mm的塑料合成颗粒,常用原料有PE(聚乙烯),PP(聚丙烯),PMMA(聚甲基丙烯酸甲酯)等等。这种在化妆品界红极一时的塑料微珠,却对海洋及整个生态系统有着强大的破坏力。近年来,各国相继出台相关法规,禁止塑料微珠在化妆品中使用。国家发改委编制的《产业结构调整指导目录》(2019)要求,含塑料微珠的日化产品,到2020年12月31日禁止生产,到2022年12月31日禁止销售。目前我国发布最新的国标《化妆品中塑料微珠的测定》征求意见稿;该标准由深圳计量质量研究院负责制定,岛津作为验证单位参与了标准的验证。 应对细小塑料微珠的分析检测需求,您能否即刻满足?岛津公司助您从容应对。 仪器配置 岛津IRTracer-100, ATR(金刚石晶体), 岛津分析天平:感量0.1 mg,抽滤装置,烘箱,玻璃器皿等。 图1. 岛津IRTracer-100红外光谱仪 图2. 衰减全反射附件(ATR) 前处理及定性、定量方法 参考《化妆品中塑料微珠的定性定量分析》征求意见稿,用乙醇及乙醇水溶液将塑料微珠从化妆品样品中分离,烘干后使用岛津高性能红外IRTracer-100配置衰减全反射附件ATR测试化妆品中塑料微珠的种类,重量法定量。 结果考察 结合上述前处理方法,使用岛津红外IRTracer-100、ATR(金刚石晶体)对洁面膏、磨砂膏以及去角质啫喱进行了定性及定量分析。下图为三种样品的红外叠加谱图。从叠加谱图可以看到,三种样品中的塑料微珠红外光谱一致,可以判断,塑料微珠为同一物质。 图3 三种样品红外叠加谱图 对去角质啫喱中的塑料微珠进行光谱检索,结果如下图,图中红色谱图为去角质啫喱样品的红外光谱图,绿色谱图为聚乙烯PE的标准光谱图,两谱图出峰位置一致,峰强度比值一致,可以判断该去角质啫喱中的塑料微粒成分为PE。图4去角质啫喱样品光谱检索结果 结合重量法对塑料微珠进行了定量测试,从而实现了塑料微珠的定性定量分析。塑料微珠测试结果见下表: 结 语 应对化妆品行业中微珠的管控需求,岛津公司建立了快速分析化妆品中微珠成分及含量的分析方法。分析方法准确、可靠。且具有快速,易于操作的特点,适用于化妆品中塑料微珠的定性、定量分析。 识别二维码下载应用报告
  • 研究发现矿泉水塑料瓶含雌激素成分
    研究发现矿泉水塑料瓶含雌激素成分 不利于健康  据美国每日科学网报道,目前塑料包装方兴未艾,塑料瓶装矿泉水更是琳琅满目,如果你认为瓶装矿泉水是干净的话,那么现在就该重新考虑了。据德国歌德大学的水中生态毒物学系的马丁瓦格勒和乔格奥尔曼研究发现,塑料瓶装饮用水含有雌激素化学成分,不利健康。  科学家通过分析市场上正在销售的矿泉水,发现有雌激素化学成分从塑料包装中渗透到饮用水中。而且,这些化学成分在活的生物体内确实能发挥作用,能加快新西兰田螺晶胚的发育。  此发现首次证实从塑料包装中渗透出来的化学成分具有雌激素的实际功能。此研究发现发表在世界第二大学术出版巨头Springe最新出版的《环境科学与污染研究》(Environmental Science and Pollution Research)杂志上。  为了查明包装材料中的化学成分是否渗透到了食品中,科学家检测了德国在售的20个品牌的矿泉水,其中9种为玻璃瓶装的,9种是塑料瓶装的,另外二种为纸和塑料膜的复合材料包装的。科学家从这些产品中抽取水样品,之后用这些样品水做新西兰田螺的繁育实验,以确定此外源雌激素的来源和功能,结果发现有60%的样品包含有雌激素化学成分,其中33%的玻璃瓶装水包含有雌激素,而包含有雌激素的塑料瓶装水则高达78%。而且,玻璃瓶装水所含雌激素成分比塑料瓶装水少。此外,二种复合包装的饮用水品牌也都含有相当多的雌激素成分。  通过新西兰田螺繁育实验,科学家发现放在塑料瓶中繁育的田螺数量是玻璃瓶中的二倍。这些结果证明矿泉水中所含的人工合成的雌激素污染来自塑料包装所渗透的化学物质。
  • 保护海洋生态,不使用含塑料微珠的化妆品
    国家市场局发布的“GB/T 40146-2021化妆品中塑料微珠的测定”推荐国标,即将于2021年9月1日实施,该标准对化妆品中的塑料微珠所用的主体材料进行测定,香皂、洗衣液等也可参照使用,按新规定牙膏也属于化妆品。 在了解标准之前,我们先来了解一下什么是塑料微珠。 塑料微珠是指:尺寸小于等于5mm且不溶水的固体塑料颗粒。 由于塑料微珠有去角质、去死皮的作用,近年来在洗面奶、磨砂膏、肥皂、洗发水、牙膏等日化用品中广泛使用。一支磨砂洗面奶中所含的微珠就超过30万颗。在我们使用含塑料微珠的洗面奶、牙膏、沐浴露等时,其中的塑料微珠通过下水道输送到污水处理厂。因其体积太小无法过滤,最终流入海洋。塑料微珠进入海洋后,可能被海洋生物摄食,并在海洋生物体内释放,进而对海洋生物产生毒害,进一步可能通过食物摄入方式进入人体。 塑料微粒本身及其含有或吸附的有毒物质污染了海洋生态,并且威胁到人类和地球的健康! 鉴于塑料微珠的危害,各国在行动。目前,美国、英国、加拿大、欧盟和澳大利亚等国家和地区组织,都已经禁止或在逐步减少塑料微珠在个人护理产品中的使用。 我们国家发展改革委、生态环境部联合发布《关于进一步加强塑料污染治理的意见》(发改环资〔2020〕80 号),确定了目标:到2020 年底,禁止生产含塑料微珠的日化产品。到2022 年底,禁止销售含塑料微珠的日化产品的要求。 国家发改委进而发布《禁止、限制生产、销售和使用的塑料制品目录》(征求意见稿)。该目录包括了“含塑料微珠的日化产品”,具体包括:为起到磨砂、去角质、清洁等作用,有意添加粒径小于5毫米的固体塑料颗粒的淋洗类化妆品(包括沐浴剂、洁面乳、洗手液、香皂、剃须泡沫、磨砂膏、洗发水、护发素、卸妆水/油)和牙膏、牙粉。 有鉴于此,我们呼吁,不使用含塑料微珠的化妆品和洗护用品! 塑料微珠的替代品:核桃壳、椰子壳、咖啡粉、燕麦、玉米等可生物降解的材料。 那么如何确定化妆品中是否使用了塑料微珠呢?为此国家市场局发布了由深圳市计量质量检测研究院等主持起草的检测标准“GB/T 40146-2021化妆品中塑料微珠的测定”。该标准对不同基体的化妆品采用不同的前处理方法,然后用傅立叶变换红外光谱法(FTIR)进行定性测定。 基本配置:傅里叶变换红外光谱仪+ATR附件精致小巧的红外光谱仪IRSpirit搭配一体式ATR附件QATR-S 高级配置:傅里叶变换红外光谱仪+ATR附件+红外显微镜(金刚石池)红外光谱仪IRTracer-100搭配红外显微镜AIM-9000 应用案例使用岛津红外光谱仪和ATR(金刚石晶体)对洁面膏、磨砂膏以及去角质啫喱进行检测。下图为三种样品中塑料微珠的红外叠加谱图,从叠加谱图可以看到,三种样品中的塑料微珠的红外光谱一致,可以判定为同一物质。 对去角质啫喱中的塑料微珠进行光谱检索,结果如下图,图中红色谱图为去角质啫喱样品的红外光谱图,绿色谱图为聚乙烯PE的标准光谱图,两谱图出峰位置一致,峰强度比值一致,可以判断该去角质啫喱中的塑料微粒成分为PE。 关于化妆品中塑料微珠的测定,我们可以为客户提供从样品前处理到检测到数据分析的全面解决方案。如果您想详细了解仪器具体配置和应用,欢迎咨询岛津工作人员!
  • 被扔掉的塑料瓶可以回收再利用么
    分析塑料瓶循环利用产品中的环状低聚物海洋塑料污染是当前全球亟待解决的难题之一,为构建塑料资源循环体制,全球大力推进塑料的3R、可再生资源的利用等。日本塑料瓶的循环利用率达84.6%,高于欧美水平,经回收的塑料瓶被重复用于塑料瓶(瓶to瓶)、薄片、纤维等(※1)的生产中。聚对苯二甲酸乙二酯(PET)是以对苯二甲酸和乙二醇为原料反应制成。原料单体熔融聚合,熔融纺丝形成聚酯纤维产品,熔融聚合后,固相聚合成型,形成塑料瓶(图1)。环状低聚物是PET的副产物,它会引起透明度、光亮度等外观瑕疵,因此实验过程中需要进行浓度管理。塑料瓶在固相聚合过程中环状低聚物减少,因此,塑料瓶比纤维产品中的环状低聚物浓度低(※2)。塑料瓶循环利用分为化学循环和机械循环两种。化学循环(图2)是指将塑料瓶粉碎、分离、清洗、去异物,经化学分解成原料单体,将重新缩聚产生的缩聚物作为再生PET树脂使用。机械(原料)循环(图3)是指将塑料球化物作为再生PET树脂使用。循环利用的纤维产品在化学循环中恢复成原料单体,因此它与纯纤维产品中的环状低聚物浓度并无区别,而采用机械循环,它的环状低聚物浓度会变低。此实验参考日本环境省制定的“关于确保指定采购产品等的显示可靠性的指导方针”(※3),利用溶解再沉淀法,提取使用塑料中回收的聚酯纤维的衣物、使用纯聚酯纤维的衣物、以及机械循环中塑料瓶中含有的PET环状低聚物,然后通过日立HPLC进行分析。高效液相色谱仪Chromaster方法及HPLC测定条件环状低聚物的前处理方法及HPLC测定条件塑料瓶循环利用产品中的环状低聚物测定实例参考文献1) PET瓶循环利用年度报告2019, PET瓶循环利用推进协议会.2) 塑料瓶循环利用产品中的环状低聚物浓度评价, Tri News 2010, vol.050.3) 关于确保指定采购产品等的显示可靠性的指导方针(2014年3月版) 日本环境省.公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 化妆品pH值测定技术规范解读+实验,值得您仔细品读!
    随着经济的高速发展,物质水平也得到极大提升,化妆品已步入生活的方方面面,在干燥寒冷的冬季,我们使用保湿霜、保湿乳液保持皮肤角质层有适度水分,在烈日炎炎的夏季使用防晒霜来屏蔽或吸收紫外线,减轻日晒引起的皮肤损伤。化妆品行业飞速发展,化妆品使用越来越广泛的同时,其安全事件也频繁发生,爽身粉含致癌物质石棉、婴儿沐浴液检出甲醛等事件一次次刺痛消费者的心,2017年国家化妆品不良反应监测系统收集到仅特殊类化妆品不良反应高达12790份。 面对化妆品安全事件频发现状,政府对化妆品安全的监管日益严苛,监管体系日趋完善,先后颁布实施了《化妆品卫生监督条例》、《化妆品行政许可检验管理办法》、《化妆品安全技术规范》。其中,2015版《化妆品安全技术规范》由国家食品药品监督管理总局批准颁布,于2016年12月1日起实施,规范不仅规定了禁用限用组分清单,也收载了多达77个理化检验方法。 今天,小编为大家解读的是《化妆品安全技术规范》中pH值测定的技术规范,将以化妆水pH值测定为例,通过解读实验的步骤,让更多用户熟悉合规的pH值测定方法和步骤。 《化妆品安全技术规范》pH值测定方法的适用范围本方法规定了酸度计测定化妆品pH值。本方法适用于化妆品pH值的测定。 pH值检验方法提要 以玻璃电极为指示电极,饱和甘汞电极为参比电极,同时插入被测溶液中组成一个电池。此电池产生的电位差与被测溶液的pH有关,它们之间的关系符合能斯特方程式: E = E0 +0.059 lg [H+] (25℃) E = E0 -0.059 pH 式中E0为常数。 在25℃时,每单位pH相当于59.1mV电位差。即电位差每改变59.1mV,溶液中的pH相应改变1个单位。可在仪器上直接读出pH值。 试剂和材料: 本方法所用试剂除另有说明外,均为优级纯试剂。所用水指不含CO2的去离子水。 3.1苯二甲酸氢钾标准缓冲溶液:称取在105℃烘干2h的苯二甲酸氢钾(KHC8H4O4)10.12g溶于水中,并稀释至1L,储存于塑料瓶中。此溶液20℃时,pH为4.00。 3.2磷酸盐标准缓冲溶液:称取在105℃烘干2h的磷酸二氢钾(KH2PO4)3.40g和磷酸氢二钠(Na2HPO4)3.55g,溶于水中,并稀释至1L,储存于塑料瓶中。此溶液20℃时,pH为6.88。 3.3 硼酸钠标准缓冲溶液:称取四硼酸钠(NaB4O710H2O)3.81g,溶于水中,稀释至1L,储存于塑料瓶中。此溶液20℃时,pH为9.22。 以上三种标准缓冲溶液的pH值随温度变化而稍有差异,见下表。 奥豪斯提供符合《化妆品安全技术规范》的三种pH缓冲液,免除用户购买试剂材料、制备pH缓冲液的烦恼。瓶装pH=4.01标准缓冲溶液,250ml,25℃瓶装pH=6.86标准缓冲溶液,250ml,25℃瓶装pH=9.18标准缓冲溶液,250ml,25℃技术规范规定使用的仪器设备: 4.1精密酸度计(精度0.02) 4.2复合电极或玻璃电极和甘汞电极4.3磁力搅拌器(附有加温控制功能)4.4烧杯,50mL4.5天平 作为具有111年悠久历史的实验室设备供应商,奥豪斯可为用户提供高精度pH计、电极及稳定可靠的天平等产品。 分析步骤 5.1.1 稀释法 称取样品1份(精确到0.1g),加不含CO2的去离子水9份,加热至40℃,并不断搅拌至均匀,冷却至室温,作为待测溶液。 如为含油量较高的产品,可加热至70℃—80℃,冷却后去油块待用;粉状产品可沉淀过滤后待用。 5.1.2 直测法(不适用于粉类、油基类及油包水型乳化体化妆品) 将适量包装容器中的样品放入烧杯中待用或将小包装去盖后直接将电极插入其中。 5.2 测定 5.2.1 电极活化 复合电极或玻璃电极(4.2)在使用前应放入水中浸泡24h以上。 5.2.2 校准仪器 按仪器(4.1)出厂说明书,选用与样品pH相接近的两种标准缓冲溶液在所规定的温度下进行校准或在温度补偿条件下进行校准。 5.2.3 样品测定 用水洗涤电极,用滤纸吸干后,将电极插入被测样品中,启动搅拌器,待酸度计读数稳定1min后,停搅拌器,直接从仪器上读出pH值。测试两次,误差范围±0.1,取其平均读数值。测定完毕后,将电极用水冲洗干净,其中玻璃电极浸在水中备用。 精密度 多家实验室对19种市售化妆品样品,用稀释法进行6 - 22次平行测定,其相对标准偏差为0.16%—1.94%。 奥豪斯ST5000pH计可存储1000个测量数据及10个电极各10个校准数据,测量数据可通过U盘保存至电脑或经RS232接口打印输出,满足用户数据统计和分析的需求。 市面常见化妆水pH值测定步骤: 本实验选用市面常见化妆水为样品、高精度ST5000pH计和易用的复合玻璃电极STMICRO5(pH玻璃电极和参比电极组合在一起)为pH值测定仪器。奥豪斯ST5000是一款0.001pH级别、彩色触摸屏实验室台式pH计,仪表无任何按键,操作直观便捷。 (ST5000pH计)STMICRO5是可充式pH复合电极,参比溶液有较高的渗透速率,液接界电位稳定重现,测量精度较高,当参比电极减少或受污染后可以补充或更换KCl溶液。(STMICRO5二合一电极)pH值测定:第一步,样品制备:因本实验测量的样品是化妆水,适用于《化妆品安全技术规范》5.1.2直测法测量化妆水pH值。第二步,取样:取样前剧烈振摇容器,使样品混合均匀,打开容器,取出5ml待分析样品,取样后密封容器。(STMICRO5电极应用图片) ST5000pH计校准步骤:i) 接通电源,点亮仪表屏幕。在开机屏幕中选择语言,点击右下角开机按键进入主界面。ii) 点击缓冲液组,把缓冲液组设置为中国组(pH1.68、4.01、6.86、9.18、12 .46 25℃)。iii) 将电极用纯水清洗,并吸干水珠,避免纸巾摩擦电极头部。放入第一个缓冲液中,点击"Cal"开始校准,等待约30s数值稳定,完成第一个pH点的校准操作。iv) 从第一个校准液中取出电极用去离子水清洗后,拭干置于第二个校准液中,点击 "Next",等待约30s数值稳定,完成第二个pH点的校准操作。v) 重复(iv)步骤进行第三个pH点的校准,校准完成后仪表会显示校准斜率值(slope)和零点电位(offset)。第四步,将校准后的STMICRO5电极用纯水冲洗干净,放入化妆水样品中测试两次,取均值,测量完毕后,将电极冲洗干净。若需测量多组平行样品的pH值,重复pH值测定的第四步即可,无需再次校准仪表,方便快捷,且测试数据通过RS232接口打印输出或经U盘保存至电脑,便于用户进行数据统计和分析。(化妆水pH值测定实验) 怎么样,通过阅读本文,对《化妆品安全技术规范》pH值测定的技术规范有更清晰、直观的认识吧,也熟悉了使用ST5000pH计和STMICRO5微量电极测定化妆水pH值的实验步骤,具有111年历史的美国奥豪斯不仅提供pH值检测仪器,也提供功能强大的离心机、涡旋振荡器及天平等产品。小编将继续推出更多应用化妆品相关的安全应用类文章,欢迎围观~~
  • 用Sievers M9总有机碳TOC分析仪进行USP 661.1塑料包装结构材料筛选
    简介药品生产商需要用包装系统将他们生产的药品包装后投放到市场上。包装系统通常含有塑料和塑料组件,塑料组件包括静脉输液袋、泡罩包装袋、塑料瓶、预填充注射器等等。包装系统使用的塑料不仅含有聚合物,还含有抗氧化剂、稳定剂、润滑剂、增塑剂、着色剂等多种添加剂。当药品直接接触到塑料包装系统及其组件时,药品和塑料之间就会互相影响。为了确保药品的完整性、有效性、以及对患者的安全性,美国药典(USP)颁布了有关应用于药品的塑料包装系统及其组件的监管要求。USP 661总章颁布于2016年5月,对各种塑料材料和完整包装系统的稳定性进行了表征1。总章于2017年5月1日经过修订2,更改了以下两点。第一,允许为期三年的实施期,总章的最终生效日期为2020年5月1日2。第二,取缔了之前批准的市场上“特许的老式”包装系统。无论是现在还是将来,市场上所有的制药商都在监管范围之中。USP 661USP 661阐述了塑料包装系统及其结构材料。USP 661分为以下两章:USP 661.1结构材料3和USP 661.2药用塑料包装系统4。本文着重介绍USP 661.1,说明规则所要求的材料和方法。USP 661.1规定了一系列测试来表征和筛选塑料材料,以保证其适用性。描述的特征包括材料的特性、生物反应性、一般物理化学性质、可提取物和可浸出物的成分测试3。在物理化学测试中,总有机碳(TOC,Total Organic Carbon)分析是必不可少的药典测试之一。对所用的TOC仪器和方法的要求如下3:...用于进行TOC分析的方法必须有0.2 mg/L(ppm)的检测限,以及0.2至20 mg/L的线性动态范围...此外,USP 661.1还规定了TOC测试的材料筛选接受标准3(见表1)。表1列出了USP 661.1规定的各组塑料材料的提取和测试方法。该方法代表了最坏情况下的可控研究,以判断可提取物变成潜在可浸出物的程度。USP 661.1测试方法第1组:聚乙烯、环烯烃、聚丙烯3:将25 g的测试材料倒入带毛玻璃瓶颈的硼硅酸盐玻璃烧瓶中。加入500 mL纯净水(PW),在回流条件下保持煮沸5小时。让溶液冷却,然后用烧结玻璃过滤器过滤提取液。将滤液收集在500 mL容量瓶中,用纯净水稀释至刻度。应在4小时内使用稀释液。第2组:聚对苯二甲酸乙二醇酯(PET)和聚对苯二甲酸乙二醇酯G(PETG)3:将10 g的测试材料倒入带毛玻璃瓶颈的硼硅酸盐玻璃烧瓶中。加入200 mL纯净水,加热到50°C,保持温度5小时。让溶液冷却,将溶液倒入200 mL容量瓶中,用纯净水稀释至刻度。应在4小时内使用稀释液。第3组:增塑聚氯乙烯(PVC)3:将25 g的测试材料倒入硼硅酸盐玻璃烧瓶中。加入500 mL纯净水,用铝箔或硼硅酸盐烧杯盖住瓶口,在高压锅中加热到121±2°C,保持温度20分钟。让溶液冷却,使固体沉淀。将溶液倒入500 mL容量瓶中,用纯净水稀释至刻度。结果对USP 661.1中规定的各塑料类别标样的测试,证明了Sievers M9 TOC分析仪适用于USP 661.1结构材料筛选。在测试中采用了USP 661.1规定的测试方法,并且准备和分析了各组的空白。表2和图1显示了所测试塑料的扣除空白后的TOC结果。讨论USP 661.1中规定的TOC分析仪和方法标准必须具有0.2 mg/L(ppm)的检测限和0.2至20 mg/L(ppm)的线性动态范围3。Sievers M9 TOC分析仪的检测限为0.03 μg/mL(ppb),线性范围为0.03 μg/mL(ppb)至50 mg/L(ppm)。Sievers M9符合甚至超过USP 661.1的要求,完全适用于USP 661.1要求的塑料中TOC的药典筛选。USP 661.1筛选结果表明,即便是控制的标准塑料,也含有多种可浸出物和可提取物,测量出的具体含量取决于塑料种类。结果表明了通过稳固可靠的材料筛选和测试来正确选择包装材料的重要性。结论Sievers M9 TOC分析仪适用于USP 661.1规定的塑料包装结构材料测试。此外,Sievers还通过特有的标样和文档来提供额外的USP 661.1应用支持。Sievers提供以下认证的参照材料(获ISO 17034和ISO/IEC 17025认证),以支持Sievers M9分析仪在USP 661.1规则达标中的应用1:- 准确度/精确度标准品,8 ppm(STD 77013)- 准确度/精确度标准品组,5 ppm(STD 99011)- USP 661线性标准品组(STD 99012)Sievers还按照用户要求提供线性任务和电子表格以供参考。上述标样和Sievers的调查性事件分析报告(FAR,Failure Analysis Report)一起,提供了事件的可追溯性,加快了对“检验结果偏差(Out of Specification)”的调查。本文用数据证明,Sievers M9 TOC分析仪可以用来测量USP 661.1规定的塑料中的各种浓度的TOC。有了可追溯性标样和事件分析报告,Sievers能够为USP 661.1合规性提供全面的应用支持。参考文献1.USP 661 Compliance for TOC Analysis, 300 00347, 2017. Retrieved Dec. 20, 2017, from https://geinstruments.com/downmedia?f_id=39418.2.661 Plastic Packaging Systems and Their Materials of Construction, 2017. Retrieved Dec. 20, 2017, from http://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisio ns/661_rb_notice.pdf.3.661.1 Plastic Materials of Construction Revision Bulletin, Postponement, 2017. Retrieved Dec. 20, 2017, from http://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisio ns/661.1_rb_notice.pdf.4.661.2 Plastic Packaging Systems for Pharmaceutical Use, 2017. Retrieved Dec. 20, 2017, from http://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisio ns/661.2_rb_notice.pdf.◆ ◆ ◆联系我们,了解更多!
  • 从原料到包装:2024年1-8月化妆品执行标准盘点
    化妆品行业正面临消费者对安全、有效性和质量的日益关注,这带来了挑战也蕴藏着机遇。化妆品标准是保障产品质量和消费者安全的关键,涵盖原料、检测方法、功效测定、包装和口腔清洁等多个方面。本文将对2024年1-8月发布的化妆品执行标准进行盘点。化妆品标准化是保障产品质量和消费者安全的根本手段。中国现行的化妆品技术标准包括《化妆品安全技术规范》(以下简称“《技术规范》”)、国家标准、行业标准、地方标准、团体标准和其他标准。通过对2024年发布的标准盘点(见文末附录)发现,化妆品通则及检测方法类占据主导地位。化妆品检测方法是确保产品安全性和有效性的关键环节。标准化的检测方法不仅能够提供可靠的数据支持,并确保不同实验室之间数据的可比性。目前,化妆品检测方法标准涵盖了微生物检测、重金属含量检测、防腐剂效能测试等多个方面。随着检测技术的进步,新的检测方法如高效液相色谱(HPLC)、质谱(MS)等高灵敏度、高选择性的技术逐渐应用于化妆品检测中。在整理中有9条明确指出了高效液相色谱串联质谱法、高效液相色谱法用于对化妆品中功效组分虾青素、牙膏中丙烯酰胺的测定、化妆品中限用组分等的检测分析中。其次,对于化妆品原料的的安全性是保证化妆品产品质量的基础。全球各国和地区对化妆品原料的监管各有不同。在欧盟,《化妆品法规》明确规定了允许使用的化妆品原料清单,并对某些成分设定了使用限制。例如,某些防腐剂、染发剂和紫外线吸收剂在使用量上有严格的限制。中国的《化妆品监督管理条例》同样对化妆品原料有严格规定,尤其对新原料的安全性要求进行了详细描述。今年发布的标准中一共有23条标准对化妆品原料进行了要求,包括有表面活性剂、天然提取物等等,以确保源头的安全性。日常我们所说的具有抗皱、美白、保湿、祛斑等作为宣传的产品,其都需要依据化妆品功效测定标准进行功效检测。目前,欧盟、中国、美国等地区都有相关的化妆品功效测定指导原则。常见的测定方法包括有体外实验、人体试验、皮肤生理指标测试等等。今年发布的标准中多条对口服美容产品、特殊食品和化妆品的功效进行了标准化制定,以确保产品在使用过程中不会对消费者健康产生不良影响。口腔清洁护理用品如牙膏、漱口水等,作为化妆品的一个特殊类别,近年来在标准的发布上也相对来说较多,上半年在牙膏类标准就新增了12条。其标准制定既要考虑口腔健康安全,又要兼顾产品的清洁和护理效果。经了解在许多国家,口腔清洁产品的成分如氟化物、抗菌剂等有明确的使用限制,确保长期使用对人体健康无害。随着消费者对口腔健康的重视,未来口腔清洁产品的标准将更加细化和严格,特别是在功能性成分和产品安全性方面。除上述之外,对于化妆品包装的标准涉及包装材料的安全性、包装的密封性、防污染能力等方面。在欧盟,包装材料必须符合《欧盟食品接触材料法规》的要求,确保包装材料不释放有害物质。中国的《化妆品监督管理条例》也对化妆品包装提出了明确的要求,上半年共发布两条标准,分别为《T/BDCA 0001-2024 北京市国产普通化妆品包装和标签设计指南》和《T/GDCA 039-2024 化妆品包装相容性评估方法》,进一步规范了化妆品包装。化妆品标准化是保障产品质量和消费者安全的根本手段。无论是化妆品原料、检测方法、包装,还是口腔清洁产品的标准,都需要在保障安全和效果的基础上,更多地考虑可持续性和环境友好性。通过持续完善和更新标准,化妆品行业将能更好地满足消费者需求,推动整个行业的健康发展。附录:(以下“2024年1-8月发布的化妆品相关标准”的整理为编辑个人梳理,如有遗漏,欢迎大家留言补充。联系邮箱:wugq@instrument.com.cn)2024年1-8月发布的化妆品相关标准国家标准标准代号标准名称标准代号 标准名称GB/T 43718-2024免洗洗手液GB/T 44365-2024牙膏中6-甲基香豆素、二氢香豆素、7-甲基香豆素、7-甲氧基香豆素、7-乙氧基-4-甲基香豆素的测定 高效液相色谱法GB/T 43777-2024化妆品中功效组分虾青素的测定 高效液相色谱法GB/T 44366-2024化妆品中限用组分月桂醇聚醚-9的测定 液相色谱-串联质谱法GB/T 43855-2024衣物洗涤质量要求 GB/T 44367-2024化妆品中限用组分二氨基嘧啶氧化物的测定 高效液相色谱法GB/T 43954-2024重瓣红玫瑰精油GB/T 44428-2024化妆品中大麻二酚和四氢大麻酚的测定 液相色谱-串联质谱法 GB/T 44364-2024牙膏中丙烯酰胺的测定 高效液相色谱串联质谱法行业标准标准代号 标准名称标准代号标准名称QB/T 5994-2024除味喷雾剂QB/T 8056-2024氨基酸表面活性剂 谷氨酸型QB/T 5995-2024菊酯防蛀剂QB/T 8055-2024氨基酸表面活性剂 甘氨酸型QB/T 5997-2024干湿两用纸巾QB/T 8057-2024氨基酸表面活性剂 肌氨酸型QB/T 2548-2024空气清新气雾剂QB/T 8058-2024非离子表面活性剂 椰油酰胺MEAQB/T 2761-2024室内空气净化产品净化效果测定方法地方标准 标准代号标准名称标准代号标准名称DB31/T 1472-2024普通化妆品备案资料要求团体标准标准代号标准名称标准代号标准名称T/GDICST 003-2023化妆品舒缓功效评价 脂多糖诱导巨噬细胞炎症因子IL-6测定方法T/GDCA 040-2024化妆品原料 重组可溶性胶原蛋白T/GDICST 002-2023粉类防晒化妆品SPF值体外测试方法T/UNP 69-2024化妆品用原料 山茶籽油T/CAFFCI 73-2024化妆品用原料 铁皮石斛茎提取物 T/GDC 9-2024洗脸扑T/CAFFCI 72-2024化妆品用原料 乙酰基二肽-1鲸蜡酯T/GDC 8-2024化妆棉 T/CAFFCI 71-2024化妆品用原料 六肽-11T/GDC 7-2024化妆分装瓶T/CASME 1248-2024化妆品用原料 纤连蛋白T/QGCML 4196-2024化妆品用金属瓶盖T/GDICST 001-2023化妆品稳定性测试指南T/CIET 465-2024复合酸祛痘类化妆品质量要求T/SGLYCYX 001-2024化妆品用原料 茶油T/GDCA 041-2024防晒化妆品清水可洗测试评价方法T/ZHCA 032-2024驻留类化妆品温和性评价 重建表皮模型组织活力法T/ZJDAIR 009-2024化妆品用原料 酸橙(常山胡柚)果皮提取物T/ZHCA 031-2024淋洗类化妆品温和性评价 重建表皮模型组织活力法T/QGCML 4193-2024有效祛除牙斑牙垢的增白牙膏T/ZHCA 030-2024化妆品舒缓功效测试 重建表皮模型白介素-8生成抑制法T/GDCA 044-2024化妆品用原料 羟丙基四氢吡喃三醇 (β,S构型)T/ZHCA 029-2024 化妆品舒缓功效测试 角质形成细胞白介素-8生成抑制法T/COCIA 31-2024数字化牙刷T/CIET 360-2024美白祛斑功效护肤品通用要求T/CGDF 00041-2024植物性化妆品标准T/CIET 361-2024适合中国人肤质的美白护肤品开发指南T/CHCIA 030-2024活氧泡洗粉T/QGCML 2951-2024海藻酸钠面膜T/CHCIA 027-2024鼠李糖脂表面活性剂含量的测定 蒽酮-硫酸法T/QGCML 3028-2024无胶环保口红管T/SHRH 60-2024精准养肤化妆品研发指南T/GDCA 035-2024极简配方化妆品通则T/SHRH 061-2024底妆持妆效果评价指南T/CIET 355-2024家用射频美容仪T/SHRH 062-2024纯净彩妆通用要求指南T/GDCA 011-2024化妆品 纯净美妆通则T/TIC 031-2024洁颜粉T/CITS 0006-2024实验室质量控制规范 化妆品理化检测T/WHHLW 138-2024化妆品用超氧化物歧化酶 T/CITS 0005-2024实验室质量控制规范 化妆品功效评价T/CIET 544-2024化妆品行业绿色工厂评价规范T/CASME 1326-2024化妆品 保湿功效的测定 鱼胚法T/CIET 543-2024护肤品产品碳足迹评价导则T/GDCA 038-2024化妆品舒缓功效人体评价方法T/CITS 0117-2024化妆品中β-烟酰胺单核苷酸(NMN)含量测定高效液相色谱法T/QGCML 3906-2024全面均匀搅拌洗发水生产用匀质乳化机T/CHCIA 032-2024除菌型洗涤剂 通用技术要求T/QGCML 3905-2024混合均匀洗液加工装置T/WHHLW 143-2024婴幼儿用维E保湿霜T/PPZL 022-2024化妆品用羊尾油原料T/JSSKSLXH 02-2024可溶性微晶护理膜T/LNBHXH 004-2024化妆品舒缓功效评价 体外人皮肤模型测试方法T/JSSKSLXH 03-2024手持式可溶性微晶美容仪T/FCA 01-2024 化妆品生产企业原料管理规范T/JSQA 184-2024化妆品用寡聚透明质酸钠T/GDCQMA 005-2024化妆品舒缓功效测试—体外皮肤角质形成细胞炎症因子测试法T/CASME 1563-2024美妆产品原料 文冠果油T/BDCA 0001-2024北京市国产普通化妆品包装和标签设计指南T/GDCQMA 006-2024化妆品生产工艺验证指南T/CIET 415-2024口服美容产品抗皱功效测试方法T/UNP 144-2024化妆品安全技术要求T/CIET 414-2024质量分级及“领跑者”评价要求 眼霜T/UNP 145-2024绿色低碳产品评价规范 化妆品T/CIET 411-2024口服美容产品保湿功效测试方法T/UNP 146-2024化妆品舒缓功效评价技术规范T/CIET 410-2024口服美容产品改善皮肤老化功效评价方法T/UNP 147-2024化妆品修复功效评价技术规范T/CIET 406-2024口服美容产品祛斑美白功效测试方法 T/GDCA 045-2024儿童天然化妆品指南T/CIET 409-2024适老营养食品通用要求T/GDCA 046-2024化妆品用原料 牡丹枝/花/叶提取物 T/FJCA 003-2024特殊食品和化妆品 减脂功效测试 秀丽隐杆线虫法T/GDCA 047-2024化妆品用原料 松口蘑提取物T/QLMZ 12-2024化妆品用原料 羟丙基四氢吡喃三醇T/GDCA 048-2024头皮修护功效人体评价方法T/QLMZ 13-2024化妆品用山东特色植物资源原料目录T/GDCA 049-2024浓缩型护肤产品评价指南T/QLMZ 14-2024化妆品用原料 聚谷氨酸钠T/HZGY 003-2024化妆品CMF设计与评价规范T/QLMZ 15-2024化妆品用原料 四氢甲基嘧啶羧酸T/COCIA 41-2024口腔用品(牙膏、漱口水、口喷等)纸质 包装盒产品评价方法T/SHRH 058-2024化妆品稳定性试验指南T/COCIA 39-2024口腔清洁护理用品 牙膏中黄连生物碱含量的测定方法 高效液相色谱法T/SHRH 057-2024化妆品修护功效评估方法T/COCIA 38-2024绿色生产质量管理规范 牙膏用复合管T/STHZP 0031-2024 沐浴油T/COCIA 37-2024口腔清洁护理用品 牙膏用龙血竭T/STHZP 0033-2024眉毛定型液T/COCIA 36-2024 口腔清洁护理用品 牙膏功效评价 清除牙菌斑功效实验室评价方法T/STHZP 0032-2024儿童沐浴慕斯T/COCIA 35-2024口腔清洁护理用品 牙膏用右旋糖酐酶T/CHCIA 029-2024化妆品风险物质调查和特定检出值安全评估指南T/CI 447-2024热塑性聚氨酯(TPU)薄膜日用品卫生安全等级评价T/BYXT 025.3-2024稀土抗菌日用品 第3部分:洗涤剂T/COCIA 32-2024口腔清洁护理用品 牙膏用凝血酸T/SHRH 059-2024护肤精华油T/COCIA 20-2024口腔清洁护理用品 牙擦T/GDCA 039-2024化妆品包装相容性评估方法T/ACCEM 024-2024透皮吸收类化妆品通用要求T/GDAQI 141-2024化妆品中椰油酰甘氨酸钾的测定 高效液相色谱法 其他标准标准代号标准名称标准代号标准名称BJH 202402化妆品中双氟拉松丙酸酯的测定BJH 202401化妆品中非那雄胺等10种组分的测定
  • 日本用塑料瓶研制辐射探测仪
    日本研究人员利用回收饮料瓶的塑料制成能够测知辐射的传感器,可用于辐射探测仪,有望让成本下降90%。  京都大学助理教授中村秀人(音译)与帝人公司合作研究,设计出一种以PET材料制成的传感器,可用于制造小型辐射探测仪和较大型号的辐射值读数测量仪。  PET,即聚对苯二甲酸乙二醇酯,广泛用于塑料饮料瓶。研究人员利用饮料瓶制成一种塑料树脂,发现这种材料遭到辐射时会发出荧光,且强度好、柔韧、成本低,可用作辐射探测仪中的传感器。  当前,日本市场上传感器原材料大多从法国圣戈班公司进口,价格较贵。  帝人公司公关部估计,传感器售价大约1万日元(约合130美元),比市场现有产品便宜九成,最早会在下个月供应一些政府部门和企业。  帝人公司销售主管石井彻(音译)告诉路透社记者,“我们的目标是在9月底制成最终成品”、即辐射探测仪,9月、10月供政府部门和企业试用,随后逐渐供应公众。  日本东北部3月地震和海啸后,福岛第一核电站泄漏,不少民众争相购买辐射探测装置。
  • 兰光发布C610H智能包装拉力机 塑料拉力机新品
    C610H智能包装拉力机 塑料拉力机C610H智能电子拉力试验机,专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、离型纸、保护膜、组合盖、金属箔、隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、穿刺力、开启力、低速解卷力、拔开力等性能测试。产品特点:1、专业程序,满足多样化需求:仪器集成拉伸、剥离、撕裂、热封、定伸抗拉、下压等专业独立的测试程序,为用户提供了多种试验项目支持拉压双向试验模式,试验速度可自由设定限位保护、过载保护、自动回位等智能设计,保证操作安全2、卓越的测试机构,精度全面升级:配置全球知名品牌的力值测试系统,提供优于0.5级的力值精度,重复性更佳,多量程选择,测试更灵活配置全球知名品牌的伺服运行系统,搭配精密滚珠丝杠多轴定位技术,提供优于0.5级的位移精度,无极调速,使用便利,运行更平稳配置全球知名品牌的气动夹持系统,防止试样打滑,保证测试数据的准确性3、高端嵌入式计算机系统平台,安全易用:大尺寸触控平板,视图清晰, 触控灵敏,易于操作全新软件系统,流程精练,操控流畅,简单易学支持成组试验数据比对分析,具有多单位转换功能内嵌USB接口和网口,方便系统的外部接入和数据传输兰光独有的数据安全性设计,测试数据与电脑分离,避免由计算机病毒等引起的系统故障造成数据丢失符合中国GMP对数据可追溯性的要求,满足医药行业需要(可选)兰光独有的DataShieldTM数据盾系统,方便数据集中管理和对接信息系统(可选) 参照标准:GB 8808、GB/T 1040.1-2006、GB/T 1040.2-2006、GB/T 1040.3-2006、GB/T 1040. 4-2006、GB/T 1040.5-2008、GB/T 4850-2002、GB/T 12914-2008、GB/T 17200、GB/T 16578.1-2008、GB/T 7122、GB/T 2790、 GB/T 2791、GB/T 2792、GB/T 17590、ISO 37、ASTM E4、ASTM D882、ASTM D1938、ASTM D3330、ASTM F88、ASTM F904、JIS P8113、QB/T 2358, QB/T 1130测试应用:C610H拥有丰富的应用,配置了100种以上不同的试样夹具供用户选择,可满足超过1000种材料的测试要求;针对用户材料的不同,Labthink还提供定制服务,满足不同用户的测试需求。部分应用举例:基础应用——抗拉强度与变形率、拉断力、热封强度性能、抗撕裂性能、180度剥离、90度剥离、定伸抗拉测试、下压试验扩展应用(需特殊附件或改制)——安瓿折断力、薄膜穿刺力、带袋输液袋盖穿刺力、软橡胶瓶塞穿刺/拔拉力、组合盖开启力、ZD型瓶盖撕开力、口服液盖撕开力、口服液盖穿刺/拔拉力、 倾斜90度输液袋盖拉拔力 带袋输液袋盖拉拔力、倾斜23度瓶盖拉拔力、带瓶瓶盖和胶塞穿刺/拉拔力、胶带90度剥离力、胶订书页撕开力、90度水性膏药剥离力、胶粘物撕开力、黏附强度测试(软)、黏附强度测试(硬)、软管盖剥开力、导管和导管接头脱离力、化妆刷刷毛拉拔力、牙刷刷毛拉拔力、绳类拉断力、果冻杯和酸奶杯开启力、奶杯杯膜剥离力、胶塞拔出力、瓶膜45度剥离力、自封袋袋口拉力、磁卡磁心剥离力、磁卡90度剥离力、热封膜撕开力、保护膜分离力、离型纸分离力、裤型撕裂力、胶带解卷力、塑料瓶抗压力、20度斜面剥离力、135度插销剥离力、浮辊剥离夹具、偏心夹具、宽试样夹具、日式夹具、英式夹具、隐形眼镜拉断力、果冻杯耐压力测试 容器抗压缩力、海绵抗压缩力、模拟皮肤抗穿刺力技术参数:传感器规格:500 N(标配);50 N 、100 N 、 250 N 、1000 N(可选)力值精度:示值±0.5%(传感器规格的2%-100%);±0.01%FS(传感器规格的0%-2%)显示分辨率:0.001N试验速度:0.05~500mm/min 速度精度:示值±0.5%(最大速度的 1% 到 100%)试样数量:1件试样宽度:30 mm(标配夹具);50 mm(可选夹具)试样夹持:气动气源:空气(气源用户自备)气源压力:0.5 MPa~0.7 MPa (72.5psi~101.5psi)行程:1000 mm外形尺寸:365mm(L) × 472mm(W) × 1740mm(H)电源:220VAC±10% 50Hz / 120VAC±10% 60Hz二选一净重:约110kg产品配置:标准配置:主机、专业软件、平板电脑、薄膜气动夹具选购:标准压辊、试验板、取样刀、打印机(激光)、空压机GMP计算机系统要求、DataShieldTM数据盾备注:本机气源接口系Ф4mm聚氨酯管;气源用户自备创新点:C610H智能电子拉力试验机是Labthink兰光公司2019年7月上市的一款新型号拉力试验机,专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、离型纸、保护膜、组合盖、金属箔、隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、穿刺力、开启力、低速解卷力、拔开力等性能测试。(1)卓越的测试机构,精度全面升级——配置全球知名品牌的力值测试系统、伺服运行系统、气动夹持系统,确保测试的精度、稳定性和数据的准确性;(2)一体机多功能化设计——仪器集成拉伸、剥离、撕裂、热封、定伸抗拉、下压等专业独立的测试程序,为用户提供了多种试验项目;(3)高端嵌入式计算机系统平台,安全易用——大尺寸触控平板,视图清晰, 触控灵敏,易于操作;全新软件系统,流程精练,操控流畅,简单易学;C610H智能包装拉力机 塑料拉力机
  • 化妆品行业或被彻底改变:纤维素制成闪光材料无毒可降解
    生活中有很多闪闪发光的包装,化妆瓶、水果盘等等,但它们很多是由有毒和不可持续的材料制成的,会造成塑料污染。最近,英国剑桥大学的研究人员找到了一种方法,可以从纤维素(植物、水果和蔬菜的细胞壁的主要组成部分)中制造出可持续、无毒、且可生物降解的闪光剂。相关论文发表在11日的《自然材料》杂志上。  这种闪光剂由纤维素纳米晶体制成,是通过结构色来改变光线,从而焕发出鲜艳的颜色。在自然界中,譬如蝴蝶翅膀和孔雀羽毛的闪光,都是结构色的杰作,这种色彩经历一个世纪也不会褪色。  研究人员称,利用自组装技术,纤维素可以产生色彩鲜艳的薄膜。通过优化纤维素溶液和涂层参数,研究小组能够完全控制自组装过程,从而使材料可以成卷地大规模制造。他们的工艺与现有的工业规模机器兼容。使用商业上可获得的纤维素材料,只需几个步骤就能转化为含有这种闪光剂的悬浮液。  在大规模地生产出纤维素薄膜后,研究人员将它们研磨成用于制造闪光或效果颜料的大小的颗粒。这种颗粒可生物降解,不含塑料,无毒。此外,与传统方法相比,该过程的能源密集度要低得多。  他们的材料可用来替代化妆品中广泛使用的塑料闪光颗粒和微小的矿物颜料。传统颜料,如日常使用的闪光粉,属于不可持续材料,而且会污染土壤和海洋。一般的颜料矿物必须在800℃的高温下加热才能形成颜料颗粒,这也不利于自然环境。  该团队制备的纤维素纳米晶体薄膜可以用“卷到卷”工艺大规模制造,就像用木浆造纸一样,首次将这种材料工业化制造。  在欧洲,化妆品行业每年使用约5500吨微塑料。该论文资深作者、剑桥大学优素福哈米德化学系的西尔维亚维格诺里尼教授表示,他们相信这种产品可以彻底改变化妆品行业。  将来,研究人员还将进一步优化生产过程,并使该种闪光剂商业化。
  • 微塑料污染进入人体 专家说是否威胁人类健康尚不明确
    p  短短60秒内,全球就能卖出100万个塑料瓶,200万个塑料袋。/pp  人类平均每年制造800万吨塑料废物,然而,这些急速增加的塑料要等1000多年才能降解。等不及降解,它们很快就会碎裂成被称为“微塑料”的微小碎片,无处不在:海平面以下四五公里,极圈的海冰里,瑞士的高山上,水龙头里,鱼类体内,甚至你桌上的啤酒和盐罐里??/pp  现在,它还出现在了人体内。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201810/uepic/40dd7986-7878-483a-944b-afebdd54e8fb.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "  科学家观察海水中的微塑料 图据纽约时报/pp  据《纽约时报》报道,正在维也纳举行的欧洲联合胃肠病学周10月22日的学会上发布了一项新研究,该研究首次确认,人体内发现了多达9中不同种类的微塑料。/pp  微塑料对海洋的污染,对动物的危害已经说得不少,但它们对人体有什么危害,又是从哪里来的呢?/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201810/uepic/361c2bd5-6190-4800-930c-995d846a6c6c.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "  遭到塑料污染的海洋 图据每日邮报/pp  strong研究首次确认微塑料进入人体/strong/pp  “塑料在日常生活中无处不在,人类以太多方式暴露在塑料中,但我个人根本没有想到每个样本都能检测出微塑料。”该研究的第一作者,维也纳医药大学胃肠病学家菲利普· 施沃布尔表示,“研究结果令人震惊。”/pp  过去十多年来,微塑料——长度小于0.5毫米的碎片,已经成为环境研究学者的主要忧虑之一。海洋生物学家一直警告海洋微塑料污染的危害,海洋生物体内已检测出高含量微塑料。不只是海洋,陆地水源也被严重污染。去年,全球83%的水龙头样本中检测到微塑料。其中最为严重的是美国,94%的水龙头水样本都被污染。/pp  研究人员早就怀疑,微塑料终会进入人体。/pp  “这是第一个关于人体内微塑料的研究。”施沃布尔及其团队研究人员想确认人体内是否存在任何微塑料。他们从芬兰、意大利、日本、波兰、俄罗斯、英国、奥地利和荷兰8个国家分别选择了一名志愿者。这些年龄33到65岁的志愿者,进行了为期一周的饮食控制,最终提供粪便样本供研究。/pp  结果,8个样本均发现了微塑料,而且多达9种不同种类的微塑料,大小从0.05~0.5毫米不等,比头发丝还小几倍。其中最常见的为聚丙烯(PP)和聚对苯二甲酸乙二醇酯(PET)——两者皆为塑料瓶和瓶盖的主要成分。/pp  根据这个研究,施沃布尔估计,全球50%的人口体内都有微塑料,不过,这还需要进一步做更大样本的研究进行确认。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201810/uepic/facd36e5-4a7b-4e6f-8d8c-f0ba4f613dc0.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center "  随处可见的塑料污染 图据美国新闻周刊/pp  strong微塑料对人体的危害暂未明确 微塑料进入人体,到底有什么危害呢?/strong/pp  海洋里,多达114种水生物种的体内发现了微塑料。研究表明,它们和塑料的遭遇结果往往是致命的。小至浮游生物,大到鲸鱼,都不可避免地吃进了各种塑料。微塑料能进入动物血液,淋巴系统,甚至肝脏,造成肠道甚至生殖系统的损害。/pp  但微塑料是否对人类造成健康威胁,到底造成什么程度的威胁目前尚不明确。/pp  研究人员指出,肠道内的微塑料可能影响消化系统的免疫反应,或帮助有毒化学物和病原体的传播。但鉴于此次研究的样本量小,很难做太多结论。这次实验中发现的微塑料因为体积够大而不太可能造成严重威胁,同时,平均每10克粪便中含20个微塑料颗粒,这种污染浓度相对算低。/pp  不过,据CNN报道,当微塑料进一步分解为更小的微粒后,很可能被人体循环系统吸收,进而进入人体器官。此外,这些塑料在制造过程中可能有一些化学物。“当浓度足够的时候,这些化学物质能伤害甚至杀死细胞。细胞可能会被成功替代,也可能不会,蛋白质及DNA都可能受到伤害。”伦敦国王学院教授弗兰克· 凯里称。/pp  伦敦国王学院环境健康科学家斯蒂芬妮· 怀特也指出,“这些大体积微塑料的更大威胁是,它们是否在人体内留下相关化学污染,并且在人体组织内逐渐累计起来。”/ppstrong  微塑料污染的来源相当广泛 人体内的这些微塑料到底从哪来的?/strong/pp  人类每年平均制造800万吨塑料废物,这些废物从海岸地区进入海洋。在阳光和海浪的共同作用下,这些塑料废物变成小颗粒,污染海洋,进入海洋生物体内。陆地上,微塑料也无处不在。合成纤维衣服上的纤维,尤其是聚酯和丙烯酸,会通过洗衣机排水进入淡水系统。/pp  “绝大多数实验参与者都喝瓶装水,鱼类和海产品的食用也比较普遍。”施沃布尔称,“很可能食物在加工和包装的各个步骤都受到了微塑料污染。”/pp  不管是食用已经受了污染的食物,或者无意识吃下食品包装上的微小塑料都可能造成人体内的微塑料污染。一份研究曾预测,经常吃贝类的人每年可吃进1.1万片微塑料。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201810/uepic/a7bd0afb-8949-435a-acd1-de9ec53e5675.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "  微塑料被发现进入人体 图据Getty Images/pp  “在人体内发现那么多种不同的聚合物,这说明污染来源非常广泛。”伦敦国王学院环境健康科学家斯蒂芬妮· 怀特也表示。此次实验有两名参与者并没有吃海产品,依然检测出微塑料。/pp  “如果人类不改变现状,塑料污染程度会进一步恶化。”施沃布尔强调,人类需要减少塑料制品的使用,提高回收再利用。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201810/uepic/d73036b6-c761-4b9c-b207-8e85ee9e09e6.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "  塑料污染问题严重 图据美国新闻周刊/pp  关于塑料的危害强调已久,全球范围的禁塑行动已经在陆续开展,很多国家已经完全禁止使用塑料袋。美国很多城市计划禁止使用塑料吸管及其他一次性塑料制品。今年,欧洲议会还投票禁止在化妆品中使用微塑料。到2025年,欧盟国家一次性塑料瓶的回收率将达到90%。但这种程度的努力,被质疑为杯水车薪。/ppbr//p
  • 鉴知1064nm手持拉曼穿透不透明包装的系列测试报告之:塑料包装篇
    普通拉曼可以穿过透明及半透明包装进行检测,但对纸包装、深色玻璃及有色塑料等不透明包装中的样品普通拉曼无法进行直接检测。鉴知RS1500手持式物质识别仪采用1064nm激光光源,结合特殊的光路设计和智能识别算法,有效提高了包装穿透能力,可以对上述不透明包装中的样品进行有效检测。 本系列测试使用RS1500手持式物质识别仪对多种不透明包装中的样品进行测试,并与普通785nm拉曼的测试进行比较。本篇为系列二:塑料包装篇 回顾:系列一 纸包装篇 【塑料包装测试篇】塑料是一种很常见的包装材料,本测试使用包装为常用的白色PE塑料瓶、彩色HDPE塑料瓶及编织袋。 白色PE塑料瓶透光性较差,会干扰普通拉曼的检测。彩色HDPE塑料瓶的颜色会带来荧光干扰,同时瓶壁一般较厚,穿透难度更大。编织袋厚度较薄但有颜色且完全不透明,普通拉曼透过编织袋直接检测时往往受到荧光干扰。这些因素给普通拉曼的直接检测带来诸多难题。 检测设备及方法检测设备1064nm手持拉曼:RS1500手持式物质识别仪785nm手持拉曼:RS1000手持式物质识别仪检测样品不透明PE塑料瓶内的乙醇彩色HDPE塑料瓶内的乙醇编织袋内的蔗糖测试方法使用RS1500及RS1000分别隔着3种塑料包装,对塑料包装内的乙醇、蔗糖进行直接检测,观察并分析检测结果。检测结果1、不透明PE塑料瓶RS1500:报出乙醇,谱图见下方红色曲线,与乙醇标准谱图(蓝色曲线)一致。RS1000:未报出,谱图见黑色曲线,混合物分析结果显示为聚乙烯和乙醇。图1.不透明PE塑料瓶测试结果 2、彩色HDPE塑料瓶RS1500:报出乙醇,谱图见下方红色曲线,与乙醇标准谱图(蓝色曲线)一致。RS1000:未报出,谱图见黑色曲线。图2.彩色HDPE塑料瓶测试结果 3、编织袋RS1500:报出蔗糖,谱图见下方红色曲线,与蔗糖标准谱图(蓝色曲线)一致。RS1000:报出蔗糖,谱图见黑色曲线,特征峰强较弱。图3.编织袋测试结果结果分析 RS1500可检测到3种塑料包装内的不同样品并正确报出,RS1000可穿透编织袋测到包装内的蔗糖。RS1000直接检测白色塑料瓶时,由于采集乙醇信号的同时采集到了塑料包装的信号,导致没有直接报出,但通过混合物分析可正确识别出聚乙烯材料和包装内的乙醇。测试彩色HDPE塑料瓶时,由于瓶壁厚且颜色鲜艳,具有较强荧光,仅RS1500可穿透该包装获得乙醇的拉曼信号(图2红色曲线)。编织袋是化工制药企业原辅料的一种常见包装,RS1000能正确报出包装内蔗糖,但由于其有颜色且不透光,导致荧光信号强,获取到的谱图信息不如RS1500清晰丰富。但总的来说二者都可帮助制药企业在不打开编织袋包装的情况下,实现原辅料的快速无损鉴别。
  • 水蒸气透过率测试仪适用于哪些方面的包装材料
    水蒸气透过率测试仪,作为一种精密的实验设备,在包装材料的评估与质量控制中发挥着不可或缺的作用。其应用范围广泛,涵盖了从食品包装到医药包装,再到日用品包装等多个领域。本文将深入探讨水蒸气透过率测试仪在这些方面的具体应用及其重要性。一、食品包装在食品包装领域,水蒸气透过率测试仪的应用尤为关键。食品在储存和运输过程中,若包装材料的水蒸气透过率过高,则容易导致食品受潮、发霉甚至变质,严重影响食品的安全性和保质期。因此,准确测量包装材料的水蒸气透过率,对于确保食品品质至关重要。通过水蒸气透过率测试仪,我们可以对各类食品包装材料(如塑料膜、纸袋、铝箔等)进行精确测量,评估其防潮性能。这有助于生产厂家选择适合的包装材料,确保食品在储存和运输过程中保持干燥,延长保质期。同时,对于已经上市的食品包装,定期进行水蒸气透过率测试,也有助于及时发现潜在问题,保障消费者的权益。二、医药包装在医药包装领域,水蒸气透过率测试仪同样具有重要应用价值。药品作为一种特殊商品,对包装材料的防潮性能要求极高。若药品包装材料的水蒸气透过率过高,容易导致药品受潮、变质,从而影响药效和安全性。因此,对医药包装材料进行水蒸气透过率测试,是确保药品品质的必要手段。通过水蒸气透过率测试仪,我们可以对各类医药包装材料(如玻璃瓶、塑料瓶、铝箔袋等)进行精确测量,评估其防潮性能。这有助于药品生产厂家选择符合要求的包装材料,确保药品在储存和运输过程中保持干燥、稳定。同时,对于已经上市的药品包装,定期进行水蒸气透过率测试,也有助于及时发现潜在问题,保障患者的用药安全。三、日用品包装除了食品和医药领域外,水蒸气透过率测试仪在日用品包装领域也有广泛应用。日用品如化妆品、洗涤剂、清洁用品等,在储存和使用过程中同样需要良好的防潮性能。若包装材料的水蒸气透过率过高,容易导致产品变质、失效,从而影响使用效果。因此,对日用品包装材料进行水蒸气透过率测试,也是确保产品品质的重要手段。通过水蒸气透过率测试仪,我们可以对各类日用品包装材料(如塑料瓶、玻璃瓶、软管等)进行精确测量,评估其防潮性能。这有助于生产厂家选择适合的包装材料,确保产品在储存和使用过程中保持干燥、稳定。同时,对于已经上市的日用品包装,定期进行水蒸气透过率测试,也有助于及时发现潜在问题,提升产品质量和消费者满意度。四、结论综上所述,水蒸气透过率测试仪在包装材料的评估与质量控制中发挥着重要作用。无论是食品包装、医药包装还是日用品包装领域,都需要对包装材料的水蒸气透过率进行精确测量和评估。通过水蒸气透过率测试仪的应用,我们可以选择适合的包装材料、确保产品品质、延长保质期并保障消费者权益。因此,在未来的发展中,水蒸气透过率测试仪将继续发挥重要作用,为包装行业的发展提供有力支持。
  • 全自动瓶盖扭矩仪在食品、药品、化妆品行业的应用
    在现代制造业中,产品质量与安全性的保障至关重要,特别是在食品、药品和化妆品这些直接关系到消费者健康的行业中,每一个生产环节都需经过严格的质量控制。全自动瓶盖扭矩仪作为一种先进的检测设备,正逐步成为这些行业不可或缺的重要工具。本文将详细探讨全自动瓶盖扭矩仪在食品、药品、化妆品行业中的具体应用及其重要性。一、食品行业:守护每一份美味与安全1.1 确保包装密封性,防止食品变质在食品行业中,包装的密封性直接关系到产品的保质期和安全性。全自动瓶盖扭矩仪通过精确测量瓶盖的扭矩值,确保瓶盖与瓶身之间的密封性达到标准,有效防止食品在运输和储存过程中因漏气而氧化变质。无论是矿泉水、果汁还是酱料罐头,全自动瓶盖扭矩仪都能提供准确的测量数据,为食品企业的质量控制提供有力支持。1.2 提高生产效率,降低人力成本传统的手动拧紧瓶盖方式不仅效率低下,而且容易出现误差,影响产品质量。全自动瓶盖扭矩仪的引入,实现了瓶盖拧紧的自动化操作,大大提高了生产效率,降低了人力成本。同时,其高精度测量能力确保了每个瓶盖扭矩的一致性,提升了产品的整体品质。1.3 建立质量追溯体系,保障消费者权益全自动瓶盖扭矩仪能够记录每个瓶盖的扭矩数据,为食品企业建立起完善的质量追溯体系。一旦产品出现质量问题,企业可以迅速通过扭矩数据追溯到具体的生产批次和生产环节,及时采取措施进行整改,有效保障消费者的权益。二、药品行业:守护生命健康的每一道防线2.1 确保药品包装密封性,防止污染药品作为特殊商品,其包装密封性要求极高。全自动瓶盖扭矩仪能够精确测量药品包装瓶盖的扭矩值,确保瓶盖紧密贴合瓶身,防止药品在运输和储存过程中受到污染或受潮。这对于保证药品的有效性和安全性具有重要意义。2.2 提高生产效率,保障药品供应在药品生产过程中,高效率的包装环节是保障药品供应的关键。全自动瓶盖扭矩仪的自动化操作不仅提高了包装效率,还减少了人为错误,确保了药品包装的准确性和一致性。这对于药品生产企业来说,是提升产能、保障市场供应的重要手段。2.3 满足严格监管要求,提升企业形象药品行业受到严格的监管,企业需要严格遵守相关法律法规,确保产品质量和安全。全自动瓶盖扭矩仪的应用,使得药品包装的质量控制更加科学和规范,有助于企业满足监管要求,提升企业形象和信誉。三、化妆品行业:守护美丽与安全的双重承诺3.1 保障化妆品密封性,延长保质期化妆品的密封性直接关系到产品的保质期和效果。全自动瓶盖扭矩仪通过精确测量化妆品瓶盖的扭矩值,确保瓶盖紧密贴合瓶身,防止化妆品在储存过程中挥发或变质。这对于维护化妆品的品质和延长保质期具有重要意义。3.2 提升用户体验,增强品牌忠诚度良好的瓶盖开启体验是提升用户满意度的关键。全自动瓶盖扭矩仪的应用,使得化妆品瓶盖的开启力度适中、顺畅,提升了用户的使用体验。这有助于增强消费者对品牌的信任和忠诚度,为企业赢得更多市场份额。3.3 满足多样化需求,推动产品创新随着消费者对化妆品需求的日益多样化,化妆品包装也需不断创新以满足市场需求。全自动瓶盖扭矩仪具备适应性强、测量范围广的特点,能够满足不同规格和类型化妆品瓶盖的扭矩测量需求。这为企业开发新产品、拓展市场提供了有力支持。结语全自动瓶盖扭矩仪在食品、药品、化妆品行业中的广泛应用,不仅提升了产品的质量和安全性,还提高了生产效率和市场竞争力。随着技术的不断进步和完善,相信全自动瓶盖扭矩仪将在更多领域发挥重要作用,为制造业的转型升级和高质量发展贡献更多力量。在未来的发展中,我们期待看到更多创新技术的应用和推广,共同守护消费者的健康和权益。
  • 食品与化妆品包装标准4月1日开始实施
    由国家质检总局和国家标准委批准发布的《限制商品过度包装要求——食品和化妆品》国家标准(以下简称“标准”),将于2010年4月1日起实施。   据了解,该标准对食品和化妆品销售包装的空隙率、层数和成本等指标作出了强制性规定。同时,针对饮料酒、糕点、保健食品、化妆品等过度包装现象较为严重的商品,标准指标要求进行了相应调整。其中过度包装涉及到层数、包装空隙率、成本、材质、设计等问题。  “标准”规定了限制商品过度包装——食品和化妆品部分的基本要求、限量要求和限量指标计算方法,对食品和化妆品销售包装的空隙率、层数和成本等三个指标做出了强制性规定,分别是包装层数3层以下、包装空隙率不得大于60%、初始包装之外的所有包装成本总和不得超过商品销售价格的20%。
  • 孕妇胎盘中首次发现微塑料
    p  据最新一期《环境国际》杂志报道,意大利科学家首次在孕妇胎盘中发现了微塑料颗粒。研究小组在妇女生完孩子后捐赠的6个胎盘中的4个发现了12个微塑料碎片。有3种被确定为被污染的热塑性聚合物聚丙烯,而其他9种被鉴别出的颜料,则来自于人造涂料、油漆、粘合剂、手指画颜料、化妆品和个人护理用品等。/pp  据报道,国外科学家们尚不清楚人体中的微塑料对健康有何具体影响。但是,微塑料中可能含有某些化学物质,这对胎儿可能造成长期的身体损害,甚至使胎儿的免疫系统崩溃。/pp  据称,胎儿体内的微塑料颗粒很可能是母亲吸入,或通过饮食带入体内的。/pp  据报道,研究者们对四名怀孕和分娩过程都正常的健康妇女进行了检查。结果,科学家们在胎盘的胎儿和母体两侧,以及胎儿发育的薄膜中都检测到了微塑料。据悉,十几个微塑料颗粒被检测出来。然而事实上,科学家们仅分析了每个胎盘约4%的部分,这表明微塑料的总数要多得多。/pp  微塑料颗粒大多为10微米(0.01毫米)左右,这意味着它们足够小,可以进入血液中。这些微塑料颗粒可能已经进入了婴儿的体内,但研究人员目前无法进行分析。br//pp  罗马圣乔瓦尼· 卡利比塔医院的妇产科主任安东尼奥· 拉古萨(Antonio Ragusa)表示:“他们就像半机械婴儿似的,不再单纯由人类细胞组成,而是掺杂着无机物。”/pp  研究人员称:“我们仍需进行进一步研究,以评估微塑料的存在是否会触发胎儿的免疫反应,或导致有毒污染物在体内的释放,从而对人体造成危害。”br//pp  不过,参与该研究的另外两名女性的胎盘中并未查出微塑料颗粒,这可能是由于不同的生理状况、饮食或生活方式造成的。/pp  从珠穆朗玛峰的山顶到漆黑无边的深海,微塑料污染已遍及地球的每个角落。/pp  本网相关报道:/pp  a href="https://www.instrument.com.cn/news/20200824/557449.shtml" target="_blank"警惕!人体47处被检出微塑料,或成健康研究下一个热点/a/pp  a href="https://www.instrument.com.cn/news/20200522/539229.shtml" target="_blank"除了海洋里,空气中也有浮游微塑料 你呼吸了吗?/a/pp  a href="https://www.instrument.com.cn/news/20190829/492232.shtml" target="_blank"洗涤衣物可能是未被充分认识的微塑料污染源/a/pp  a href="https://www.instrument.com.cn/news/20190820/491533.shtml" target="_blank"北极微塑料从哪儿来?科学家又发现新证据/a/pp  a href="https://www.instrument.com.cn/news/20180904/470662.shtml" target="_blank"美研究:13国水管及食盐和啤酒中存在“微塑料”/a/pp  今年十月,科学家们发现婴儿使用塑料瓶饮用配方奶粉时,每天要吞咽数百万个微塑料颗粒。2019年,研究人员在胎盘一侧发现空气颗粒污染物,这表明未出生的婴儿也暴露于交通和化石燃料燃烧产生的污染物中。/pp  显然,如何避免这些微型颗粒对人体造成潜在的危害,将在未来成为一项重要的课题。/p
  • 行业提示:谨防塑料产品变身“危险品”
    近日,宁波鄞州1家企业报检了1批塑料洗手液瓶,宁波鄞州检验检疫局工作人员在现场检验时发现塑料瓶壁内部的填充物是一种油状液体,经核查证实该液体不是普通溶剂,而是危险化学品——无味煤油。  无味煤油是一种高闪点易燃液体,属于第三类危险化学品,并且具有一定毒性。该类煤油如在封闭的坏境内燃烧,甚至会引起爆炸,长期小剂量接触无味煤油,可出现神经系统损害,眼及呼吸道刺激症状等。企业为满足客户对产品的美观要求,在不了解无味煤油相关性能的前提下,为防止瓶壁内部颜色褪色而采用无味煤油填充,使产品在运输和储存中存在着易燃等严重的安全隐患。根据国家危险化学品安全管理条例规定,危险化学品的包装和运输必须符合相关规定,无味煤油的包装必须符合III类包装。  塑料卫浴类生产企业在设计生产产品时,为了色彩、造型美观,往往会在产品内部填充水、白油等液体。对此,检验检疫部门提醒相关生产企业:要加强学习,注重产品安全,企业负责人在更改产品原材料和生产工艺之前,必须掌握相关原材料的物理、化学性能,了解其相关要求,如不能确定,可以找相关实验室进行鉴定 要加强合同评审,不能唯客户要求是从,在与客户签订合同时,要理解并吃透具体条款的适用范围和附加说明,不能盲目听从客户要求,谨防产品“变身” 塑料卫浴产品在生产、使用、废弃和回收过程中会对环境造成较大的影响,是世界各国特别是发达国家的监管重点。因此,企业要加强对国外技术性贸易措施信息的收集,在选择原材料时,充分考虑环保要求,不断加强应对技术壁垒的能力,提升自身竞争力。
  • 10月1日起化妆品包装须标明所有成分
    化妆品包装上必须标明所有成分,所标注的名称应该按照加入量降序排列,同时,所标明的成分名称将按照国际标准标注。  今年10月1日国家标准委将出台新规,要求化妆品包装上必须标明所有成分,所标注的名称应该按照加入量降序排列,同时,所标明的成分名称将按照国际标准标注。这意味着,类似“保湿因子”、“天然萃取物”这样的名称将不能出现。进口化妆品也必须在其加贴的中文标签上标明。  广东省化妆品标准检测中心主任郑伟东告诉记者,目前省内的化妆品企业都已经准备“换装”,具体到化妆品成分表的更换可延迟至明年6月17日执行。  然而,也有消费者担心,专业成分名称很难看得懂,更不知道具体的功效是什么。记者看到,一些化妆品成分,如氨甲基丙醇、三乙醇胺等,对普通消费者而言还真难弄懂有些什么作用。  部分专业术语解释:  水杨酸:能去除老化角质堆积,改善皮肤纹理 能渗透毛囊,有效地干燥面疱的化脓部位,对皮肤有抗痘美白的效果。有许多抗痘产品都含有水杨酸。相较于果酸,水杨酸对皮肤的刺激性较低。但用于敏感皮肤时仍可能会造成过敏 。  高岭土:有抑制皮脂及吸汗的性能,在化妆品中与滑石粉配合使用,有缓解消除滑石粉光泽的作用,主要用作粉条、眼影、爽身粉、香粉、粉饼、胭脂等各种粉类的化妆品的重要原料。
  • 济南兰光参与编制的《包装材料 塑料薄膜、片材和容器的有机气体透过率试验方法》正式
    济南兰光机电技术有限公司作为主要起草单位,与国家包装产品质量监督检验中心(济南)、山东质量检验协会共同编制的《包装材料 塑料薄膜、片材和容器的有机气体透过率试验方法》(GB/T 28765-2012)国家推荐性标准近日由国家质量监督检验检疫总局发布,并于2013年5月1日正式实施。 常见有机气体如苯、酯、醇、酮、醛、醚等在渗透过程中会与多数薄膜材料发生反应,出现溶胀现象,导致材料的结构特性发生改变,进而影响其阻隔性,这也是当 前全球尚无有机气体透过率检测的方法标准的缘由之一。在该领域的研究中,一种定量测试方法&mdash &mdash 均衡法应用最广,对此,负责本标准起草的研究团队对该种方法 的仪器化可行性进行为期两年的全面分析及数据验证工作,肯定了该方法在实现检测及量化该测试指标上均可满足要求,同时提出了同样具有科学性和应用性的全新 测试方法&mdash &mdash 真空法。这在一方面有助于对当前实验室已在使用的均衡法测试给予使用指导,另一方面通过两种试验方法可进一步验证测试数据有效性。 当前包装容器的整体检测技术发展很快,由于容器测试与薄膜测试仅在测试腔的结构存在差异,其他测方面并无改动,因此容器有机气体透过率测试技术也被引入此标准中,进而拓宽了本标准的检测对象种类。 《包装材料 塑料薄膜、片材和容器的有机气体透过率试验方法》涵盖了均衡法和真空法两种试验方法,是国际上首项有机气体透过率测试方法标准,为科学的评价食品、药品、 化妆品包装材料的有机气体透过率(即保香性能)提供了一种可量化的检测手段,同样也标志着济南兰光机电技术有限公司在包装材料有机气体渗透研究领域的学术 水平处于全国领先地位。
  • “可食用”化妆品的正确打开方式
    “橘子汽水妆”、“夏日甜心妆”、某明星防妆等噱头让化妆品行业火爆一时。李佳琪经典“OMG买它”让众多消费者抑制不住兴奋,转身投入到化妆品海洋中。当下美妆经济盛行,“女生的钱最好赚”让一批急切创业的人挤入美妆红海。想要在美妆圈占据一席之地,不少商家宣传时使用“可食用”的暗号,迎合消费者对于美妆的健康追求,以此获利。然而,可食用化妆品真的可以吃吗?多个法规、检测数据告诉你:“可食用”的概念并不靠谱。   “伪概念”层出不穷 理性逐渐丧失   如今“可食用”已不再专属于食品领域,多个电商平台均可搜到“可食用”化妆品的标签。然而细究号称“可食用”化妆品成分,其中多个成分均属于化学用品范畴,和食品毫无关系。据商家介绍,吃只是形容产品的安全系数较高,没有化学添加剂,虽可以放心购买,但推荐食用。   实际上,“可食用”化妆品是商家为了进行产品包装宣传、吸引消费者购买的营销概念。依据我国相关法规及标准,不存在“食品级”化妆品概念。   检测数据爆表 损害健康得不偿失   然而,仍有大量消费者被“可食用”吸引,为“伪概念”买单。这些化妆品虽然“可食用”,但吃不得。   首先,解释“可食用”根本还要回到相关规定。 《化妆品监督管理条例》明确指出,化妆品是指以涂擦、喷洒或者其他类似方法,施用于皮肤、毛发、指甲、口唇等人体表面,以清洁、保护、美化、修饰为目的的日用化学工业产品。   而食品则是经口摄入,并通过消化系统的各个器官协调完成食品的消化和吸收。纵观二者,食品和化妆品的概念、使用方法、作用机理等都不同。因此,食品和化妆品二者大相径庭。   其次,食品和化妆品成分全然不同,包括所用原料及指标、添加剂、禁用品、检验标准、执行规范等等。二者并不能通用。例如,直接将食物当作护肤品涂抹,皮肤很难吸收。皮肤的真皮层和表皮层之间还有一层基底膜,它隔开表皮和真皮层,具有护肤功效的物质鲜少发挥作用。此外,还要避免将食品直接作为护肤品使用。直接将食物敷在脸上护肤,微生物极大可能会刺激皮肤,导致油脂分泌过度、面部红肿等多个问题。况且,据专业研究人员检测后发现,化学成分并不是直接加到妆品里,而是以提取物形式加入,只用纯天然食物无法制成护肤品。   更令人大跌眼镜的是,号称“可食用”化妆品在专业检测仪器下,多个成分指数超标,无处遁形。化妆品抽测中,一款可食用防晒乳的成分表显示,其主要成分为氧化锌、二氧化钛、甘油、丁二醇等,然而在专业仪器检测到该成分中含有矿物油、色素、香精等物质,严重损害人体健康。   可以明确的是,“可食用”名号下必须有食字准号,而化妆品只有妆字号。因此,可食用级别的化妆品并不存在,“可食用”化妆品吃不得。   政府监管任重道远 消费者还需理性看待   控制市场,还需政府来把关。当下,对于违法广告法、夸大效果的化妆品企业,当地市场监管部门要加大打击、处罚力度。从长远来看,市场监管部门要进一步完善相关法规,将“食品级”“可食用”纳入化妆品广告禁用语,从而规范营销秩序,维护消费者权益。   其次,化妆品企业自身要以身作则,遵守相关规定,明确食品和化妆品范围,避免陷入利益漩涡。   最重要的是,消费者应摆正心态,正确看待可食用化妆品。化妆品永远是化妆品,切不可将其作为食物看待。面对大肆宣传的广告,要保持理性态度,对夸大宣传的化妆品谨慎看待,切莫盲目跟风。   爱美之心人皆有之,化妆无错,但要保持理性,将完全不对付的二者混为一谈,不仅没有起到本来的额作用,还损害了个人健康。“种草”日记是时候该“拔草”了。
  • 化妆品安全白皮书:向短暂的美丽开战
    爱美是女人的天性,俗话说&ldquo 三分长相,七分打扮&rdquo 。美女们仿佛越来越热衷于往自己的脸上堆砌化妆品,努力让自己可以不断再美些&hellip &hellip 殊不知,其实化妆品正在偷偷伤害你本来无暇的脸庞,为了美的化妆可能最后结局令你很受伤。在美丽面前,你的选择代表了你的品位和眼光,但是在健康和短暂的美丽面前你选择哪个?  仅以此文献给那些天天奋战在美容护肤战线上前仆后继的女士们&hellip &hellip   仅以此文献给那些已经被各类有毒有害化妆品搞得面目全非的女士们&hellip &hellip   仅以此文献给那些为了女性的美丽而一掷千金、义无反顾的大老爷们&hellip &hellip   一、&ldquo 南京大屠杀&rdquo 天天在上演?!  公元2005年,美好而又恐怖的一年,中国的消费者经历了一场超越&ldquo 麦莎&rdquo 的危机狂暴,以往大家心目中的超级品牌和企业巨无霸轰然倒地,露出了本来面目,联合利华高露洁牙膏含有致癌的&ldquo 氯仿&rdquo 事件,光明牛奶的&ldquo 回锅奶事件&rdquo ,雀巢婴儿奶粉&ldquo 碘超标&rdquo 事件,在化妆品美容界,宝洁的夸大宣传的SKⅡ事件,强生的婴儿润肤露含有&ldquo 矿物油&rdquo 事件&hellip &hellip   接踵而来的危机,为消费者敲响了警钟,中国化妆品领域也在发生一场血与泪的风暴:  据不完全统计,每年因为化妆品的有毒有害成分造成毁容和过敏事件不下20万起!  2003年卫生部日前发布的一份公告称,根据在北京、上海、天津、重庆、广州等5家定点医院的监测,截至2003年11月,共发现化妆品皮肤病565例,化妆品所致皮肤病正在逐年增多,成为皮肤科常见疾病之一。同时,化妆品造成的难以恢复或不可逆皮肤损害的严重病例也在增多。  公告表明,发病年龄主要集中在20岁至40岁,以化妆品接触性皮炎最为常见,其它依次是化妆品皮肤色素异常、化妆品痤疮、化妆品毛发损害、化妆品光感性皮炎和化妆品甲损害。  引起上述皮肤病的化妆品共12类合计693种。其中由普通化妆品引起的皮肤病共327例,占57.9% 由特殊用途化妆品引起的皮肤病共177例,占31.3% 由美容院自制产品和&ldquo 三无&rdquo 产品(指标签标识无卫生许可批件或卫生许可证、无生产企业名称地址和无有效期标识)引起的皮肤病61例,占10.8%。  2005年3月24日,FDA美国食品药品管理局要求美国境内的化妆品生产商在在产品包装上应注明&ldquo 警告&mdash &mdash 该产品未经安全鉴定&rdquo 字样,否则将受到查处。此次遭到美国FDA警告的九大品牌分别是:欧莱雅、伊丽莎白&bull 雅顿、妮维雅、美宝莲、多芬、联合利华、宝洁、圣伊芙、杰根斯。  据报道,2003年5月,黑龙江大庆工商部门在当地查获了一个将已变质的肠油、板油、内脏及肥肉片熬制成垃圾油的黑加工点。据加工人员交待,这些油是准备运往南方用作生产化妆品的原料。  来自《东方卫报》的报道,南京平均每年因美容引起的投诉有近5000起。今年3月3日,浦口区甚至发生了因对美容不满意而用硫酸报复的恶性案件,除美容店女店主许某被灼伤外,飞溅的硫酸还危及3名无辜路人,包括一名放学的女童。目前,嫌疑人杨某已被警方缉拿归案。化妆品背后到底还有多少陷阱?  一场针对女性,针对美丽的&ldquo 南京大屠杀&rdquo 正在我们身边上演!  二、化妆品为何变成大规模杀伤性武器?  目前,很多的化妆品的原料均含有对人体产生危害或构成潜在伤害的恐怖成分:香料、防腐剂、乳化剂、色素、避光剂、染发剂和一些重金属。  它们有的具有直接刺激性 有的是致敏源,能引起接触过敏性皮炎 有的接触皮肤后可能出现过敏反应或光毒反应 有的内含类固醇激素导致皮肤色素改变 有的内含重金属(如铅、砷、汞等),会引起皮肤黏膜慢性中毒或阻塞毛孔产生痤疮。  更恐怖的是以下几种成分对肌肤和健康带来难以想象的毁灭性打击:  1、油:矿物油(即石油提取物),对皮肤的刺激最大,浓妆或使用大量的油脂化妆,实际相当于往脸上涂很多石油提取物,人为地污染肌肤、刺激肌肤,当然影响皮肤的正常呼吸和新陈代谢,一量停止化妆,皮肤就会粗糙、无光,不得不持续化妆,皮肤也就不得不承受外来的刺激、侵入。当超过某一限度时,皮肤即出现痤疮、褐斑、斑疹,而且还可能出现黑皮和皱纹。  2、表面活性剂:也是一种化学合成物质,如乳化剂、可溶化剂和湿润剂。它们都含有重金属钛,使用时间过长会污染皮肤、刺激皮肤,使皮肤变粗糙。清洁剂中的表活性剂不仅会损伤皮脂膜和表皮层,甚至基底细胞也会受到损伤。含有离子型表面活性剂的洗涤剂会使皮肤粗糙。乳化剂是肯有破坏皮肤表面张力的性质。  3、香料:现在采用的多为化学合成香料,它具有杀菌作用,但也会对皮肤产生较少强烈的刺激性与致敏性。大多数香料都能引起皮肤炎,香水在阳光照射下常常会引起皮肤炎,在面部出现褐斑。  4、焦油系列色素:现代化妆品中的颜色是利用石油化学产品焦油系列色素制成(口红、眼影等)。一般情况下它作为食品添加剂,可致癌。口红的30多种原料中,就有15种色素,其中焦油色素达60%,并包含有引起癌变的色素。  以上有毒有害成分在化妆品当中屡见不鲜,可以想象如果您的皮肤使用了诸如含有矿物油的强生婴儿露会是怎样的结局?当然,令人遗憾的事,更多的人竟然跟着广告走,选择所谓大牌厂家的护肤品,意外这样就等于买了保险,从此可以高枕无忧,其实恰恰重了看不见的圈套。  三、化妆品到底是不是毒品?  美国的一份调查报告显示:CD、美宝莲、露华浓等国际知名品牌的化妆品居然含有对人体造成伤害的化学成分&mdash &mdash 酞酸盐。这一结果把&ldquo 要美丽还是要健康&rdquo 这道难题摆在了消费者面前,美国市场上3/4的化妆品中含有会导致婴儿先天缺陷并对人体造成严重伤害的化学成分&mdash &mdash &mdash 酞酸盐。在这份调查报告中,被列入&ldquo 有毒化妆品&rdquo 黑名单的竟然也包括CD、美宝莲、露华浓等国际知名品牌。  什么是酞酸盐?  通常说来,酞酸盐无味或带有轻微气味,看上去像是菜油。酞酸盐已经广泛进入到人们的日常生活中。目前80%的酞酸盐被用作&ldquo 增塑剂&rdquo ,也就是说,酞酸盐可以使塑料更加柔韧,又不会发生变形而影响使用寿命。  酞酸盐不仅仅能够作为增塑剂,不同的酞酸盐还能作为化妆品和护肤品中的软化剂和溶解剂。酞酸盐能够使指甲油更均匀耐用,使香水气味更加持久,使美容美发工具更坚固不易碎。酞酸盐还能使粘合剂、色素等其他成分发挥更大的功效。  酞酸盐让化妆品&ldquo 并非很美&rdquo   由&ldquo 环境工作组&rdquo 、&ldquo 未来清洁行动&rdquo 、&ldquo 无害保健&rdquo 等三家美国卫生机构联合公布的这份名为&ldquo 并非很美&rdquo 的调查报告显示,在对市场上包括洗发水、指甲油、除臭剂在内的72种流行化妆品进行成分检验后,这三家卫生机构发现,其中52种产品含有酞酸盐,占抽样调查产品的72%,其中11种产品含有不止一种酞酸盐。  调查报告称,调查者们对这一结果深感震惊。已经同酞酸盐斗争了多年的卫生、宗教、劳工和环境组织&ldquo 无害保健&rdquo 称,动物实验显示,酞酸盐对动物机体,特别是雄性生殖器能够造成损害,导致下一代先天性缺陷,还会对肝脏、肾脏和肺也造成严重伤害。  而且过去认为是安全的原料成分,今天发现确是另外一个情形,如说上世纪90年代流行的果酸美白,由于浓度过高,可能造成皮肤受损,引起红疹、溃烂。张明还举例说,曾被各大化妆品公司广泛采用的&ldquo 熊果苷&rdquo 在日本厚生省获得通过并被资生堂率先采用后,一度被认为安全性比较高。但后来的研究发现,该成分累积到一定时间后,反而可能引起细胞类黑色素的增加。此外,曲酸这一成分也曾被看好,但医学发现,该成分可能会引起细胞毒化、染色体变异,甚至引发肝癌,也是比较危险的成分。  一系列惊人的&ldquo 发现&rdquo ,让爱美的女性同胞们不得不顾虑重重,难道我用的就是毒品吗?难道就没有相应的措施给予监管吗?  据一位业内资深人士介绍:相关管理部门对原料使用做过严格要求,并制定出了行业标准。但是,标准毕竟是针对整个行业而言的,它只可能给你提供一个&lsquo 度&rsquo ,譬如铅、砷等一些有害重金属的含量不能超过总量的多少&hellip &hellip 言外之意,这个标准在一定程度上靠的是行业企业的&ldquo 自律&rdquo 。道理很简单,这个&ldquo 度&rdquo 包括上限和下限,原料的安全程度自然也要看生产企业遵循的尺度&mdash &mdash 至于最大还是最小,控制权显然不在管理部门手上。  事实上,无论多么昂贵的化妆品,只要有人工的化学成分在里面,就会对人的皮肤产生看不见的破坏作用。有些产品像膏霜、乳液类几乎不可能是纯天然的,许多基础油、醇、蜡及乳化剂虽然是很安全的,但也还是人工合成的。现代含有天然添加剂的化妆品科技含量更高,对天然物进行了分解和去粗取精,但所谓100%&lsquo 纯天然&rsquo 化妆品,至今市面上还不存在。  比如在祛斑类化妆品中,有一半以上的配方中含有白芷,而白芷中含有化妆品禁用物质欧前胡内酯。这种物质是一种光敏性物质,在阳光中紫外线的照射下会引起皮肤产生光毒性或光敏性皮炎。又如麻黄根中含有麻黄碱,槟榔中含有槟榔碱,香加皮中含有强心贰等。这些都具有化妆品中不允许存在的强烈生物活性,在化妆品中是禁止使用的。  四、健康和短暂的美丽你选择哪个?  目前,很多成分连美国的FDA都监管不了,对广达的消费者来说你是选择健康,还是短暂的美丽呢?  如何正确和安全地选择化妆品,以下内容仅供参考:  仅根据目前掌握的信息显示:化妆品中容易引起过敏的成分通常是色素、动物成分、香精、防腐成分,他们引起人体过敏几率高达75%,少数高纯度、高工艺、密封包装的化妆品不需添加,也只能说引起过敏的可能性小。  1、化妆品的质量  首先,选择化妆品最重要的是看质量是否有保证。名厂、名牌是个参考因素,但关键看他的产品成分是否含有香精、防腐剂、色素、动物成分,是否经过皮肤科测试,同时要注意产品有无检验合格证和生产许可证,以防假冒。其次,学会识别化妆品的质量。  ①从外观上识别:好的化妆品应该颜色鲜明、清雅柔和。如果发现颜色灰暗污浊、深浅不一,则说明质量有问题。如果外观浑浊、油水分离或出现絮状物,膏体干缩有裂纹,则不能使用。  ②从气味上识别:化妆品的气味有的淡雅,有的浓烈,但都很纯正。如果闻起来有刺鼻的怪味,则说明是伪劣或变质产品。  ③从感觉上识别:取少许化妆品轻轻地涂抹在皮肤上,如果能均匀紧致地附着于肌肤且有滑润舒适的感觉,就是质地细腻的化妆品。如果涂抹后有粗糙、发粘感,甚至皮肤刺痒、干涩,则是劣质化妆品。  2、购买场合的选择  目前国内的消费者购买化妆品一般选择超市或百货公司等化妆品专柜购买,欧美等发达国家32%的消费者选择去药店购买化妆品,因为能够进入药店销售的化妆品对产品的安全性和有效性等指标上要求十分严格苛刻,只要把化妆品当作药物一样进行分析研究,确定它的安全性和疗效才能在药店销售,所以对在百货公司购买化妆品,一直遇到皮肤过敏问题的消费者可以去药店选择合适自己的化妆品。  3、个人和环境因素选择化妆品,除化妆品的质量外,还要考虑到使用者和环境因素。  ①依据皮肤类型:油性皮肤的人,要用爽净型的乳液类护肤品 干性肌肤的人,应使用富有营养的润泽性的护肤品 中性肌肤的人,应使用性质温和的护肤品。  ②依据年龄和性别:儿童皮肤幼嫩,皮脂分泌少,须用儿童专用的护肤品 老年人皮肤萎缩,又干又薄,应选用含油分、保湿因子及维生素E等成分的护肤品 男性宜选用男士专用的护肤品。  ③依据肤色:选用口红、眼影、粉底、指甲油等化妆品时,须与自己的肤色深浅相协调。肤色较白的人,应选用具有防晒作用的化妆品。  ④依据季节:季节不同,使用的化妆品也有所不同。在寒冷季节,宜选用滋润、保湿性能强的化妆品,而在夏季,宜选用乳液或粉类化妆品。  妥善保管化妆品&mdash &mdash 保管化妆品时,须谨记化妆品有&ldquo 五怕&rdquo 。  怕晒:阳光或灯光直射处不宜存放化妆品。因为光线照射会造成化妆品水分蒸发,某些成分会失去活力,以致引起变质。阳光中的紫外线还能使化妆品中的一些物质发生化学变化,影响使用效果,甚至发生不良反应。  怕冻:化妆品可放在冰箱的保鲜冷藏室保存,不能放在冷冻室保存。寒冷季节,不宜将化妆品放在室外或长时间随身携带到室外。因为冷冻会使化妆品发生冻裂现象,而且解冻后还会出现油水分离、质地变粗,对皮肤产生刺激作用。  怕潮:有些化妆品含有蛋白质,受潮后容易发生霉变。有的化妆品使用铁盖,受潮后容易生锈腐蚀化妆品,使化妆品变质。  怕久放:一般化妆品的有效期限为1-2年,开封后存放的期限更短些。因此,化妆品最好在有效期限内用完,不可停停用用直到过期。再好的化妆品,再精心的保管,如果过了保质期,便会一文不值。  怕污:化妆品使用后一定要及时旋紧瓶盖,以免细菌侵入繁殖。使用时最好避免直接用手取用,可以用干净的棉棒等工具取用。如果一次取用过多,可涂抹在身体其他部位,不可再放回瓶中。绝代佳人之前,先考虑一下,是否会败化妆品,尤其是所谓的大品牌所暗害。  总而言之,在美丽面前,你的选择代表了你的品位和眼光。在健康和短暂的美丽面前你选择哪个?  让宣战就从今夜开始吧&hellip &hellip
  • 美媒:中国超市出售食盐含多种塑料微粒
    据《科学美国人》近日的报道,那些用海盐调味的中国人可能不知不觉中就吃下了塑料污染微粒。不过,欧洲人吃贝类摄入的塑料微粒可能更多。该报道称,研究人员从中国各地的超市中购买了15个不同品牌的普通食盐,从食盐颗粒中发现了用于生产普通塑料水瓶的聚对苯二甲酸乙二醇酯,还有聚乙烯、玻璃纸,以及多种其他塑料。其中塑料含量水平最高的是海盐,研究人员经过测量,得出每一磅(约合0.45千克)的海盐中存在1200多粒塑料微粒。这个由华东师范大学施华宏博士领导的研究团队还发现,从盐湖、盐井和盐矿中生产出的食盐虽然塑料微粒含量相对较低,但也在每磅15~800粒左右。研究人员认为,塑料污染微粒源自于获取海盐的海洋环境中漂浮着的大量塑料污染物,例如,扔进水中的塑料水瓶,或者使用塑料微珠作为去角质成分的洗面奶等化妆品。同时,研究人员还表示塑料微粒也有可能由其他途径进入食盐,包括加工、干燥以及包装等生产过程中。
  • 食品安全对塑料包装提出高要求
    食品塑料包装的主要功能是保护食品,使之便于携带、运输和保存,它与人们的生命健康息息相关。因此,为防止食品污染、变质,不仅要求食品包装外形美观、实用性强,更重要的是要提高质量,以确保食品安全,这无疑对食品塑料包装制品提出了更高的要求。  用于食品的塑料包装必须有适当的阻隔性,如油脂食品要求高阻氧性和阻油性,干燥食品要求高阻湿性,芳香食品要求高阻异味性 果品、蔬菜类鲜活食品又要求包装有一定的氧气、二氧化碳和水蒸气的透气性。  与此同时,食品塑料包装还要有良好的机械性能,主要包括材料的抗拉伸强度,耐撕裂、耐冲击程度等 有良好的化学稳定性,不应与内装食品发生任何化学反应,确保食品安全。另外,塑料食品包装还要有较高的耐温性,适合食品的高温消毒和低温储藏等特点。  目前,在众多的食品包装材料中,塑料制品及复合包装材料占有举足轻重的地位,但因塑料材料自身存在的缺陷,如对环境的污染等问题,其耐温性和阻隔性总体还不如金属和玻璃等容器。  因此,快速发展的食品工业已向化工,尤其是塑料制品产业提出新的课题——这就是改善已有的塑料性能,开发新型品种,提高其强度和阻隔性,并减少用量(厚壁) 同时还要便于重复使用,分类回收,以保护环境。  据我国高分子材料领域的权威专家雷景新教授介绍,目前我国九成以上PVC软制品仍使用传统邻苯二甲酸酯类增塑剂,如果不彻底改变PVC塑料制品的现状,白酒“增塑剂事件”的出现,乃至啤酒、饮料、月饼、各类食品佐料如酱油、食醋和医用输液器、输血袋等有毒增塑剂超标的事件的出现,就不是偶然,而是必然。  正是因为邻苯增塑剂的滥用,已经让我们在生活中几乎无法找到“洁净无毒”的塑料制品,这决非危言耸听。  雷景新教授说,其实生产无毒的PVC塑料制品其实并不难。无毒的PVC树脂配以无毒的环保增塑剂、钙锌稳定剂及其他无毒的加工助剂,就完全可以制备出无毒的PVC塑料制品。  食品业是21世纪的朝阳产业,但随着人们生活质量的不断提高和对健康消费的日益重视,对食品的质量和安全将有更高的要求,与之相适应,食品包装材料领域也将迎来巨大的发展空间和开发潜力。
  • 2010年5月实施的食品及化妆品国家标准
    2010年5月实施的食品及化妆品国家标准   序号标准名称1  GB/T 9106.1-2009包装容器 铝易开盖铝两片罐2  GB/T 24691-2009果蔬清洗剂3  GB/T 24692-2009表面活性剂 家庭机洗餐具用洗涤剂 性能比较试验导则4  GB/T 24693-2009聚丙烯饮用吸管5  GB/T 24694-2009玻璃容器 白酒瓶6  GB/T 24695-2009食品包装用玻璃纸7  GB/T 24696-2009食品包装用羊皮纸8  GB/T 24800.10-2009化妆品中十九种香料的测定 气相色谱-质谱法9  GB/T 24800.1-2009化妆品中九种四环素类抗生素的测定 高效液相色谱法10  GB/T 24800.11-2009化妆品中防腐剂苯甲醇的测定 气相色谱法11  GB/T 24800.12-2009化妆品中对苯二胺、邻苯二胺和间苯二胺的测定12  GB/T 24800.13-2009化妆品中亚硝酸盐的测定 离子色谱法13  GB/T 24800.2-2009化妆品中四十一种糖皮质激素的测定 液相色谱/串联质谱法和薄层层析法14  GB/T 24800.3-2009化妆品中螺内酯、过氧苯甲酰和维甲酸的测定 高效液相色谱法15  GB/T 24800.4-2009化妆品中氯噻酮和吩噻嗪的测定 高效液相色谱法16  GB/T 24800.5-2009化妆品中呋喃妥因和呋喃唑酮的测定 高效液相色谱法17  GB/T 24800.6-2009化妆品中二十一种磺胺的测定 高效液相色谱法18  GB/T 24800.7-2009化妆品中马钱子碱和士的宁的测定 高效液相色谱法19  GB/T 24800.8-2009化妆品中甲氨嘌呤的测定 高效液相色谱法20  GB/T 24800.9-2009化妆品中柠檬醛、肉桂醇、茴香醇、肉桂醛和香豆素的测定 气相色谱法
  • 你的化妆品安全吗?——化妆品原料安全评估指南
    随着化妆品行业的蓬勃发展,人们越来越关注产品的安全性。作为化妆品的“灵魂”,原料的安全性更是重中之重。那么,化妆品原料安全评估究竟是如何进行的?哪些方法可以用来评估原料的安全性?哪些因素会影响评估结果?本文将为您解答,揭开化妆品安全评估的神秘面纱。问题1:化妆品原料安全评估如何使用国际权威化妆品安全评估机构的结论?答:根据中检院发布的《化妆品原料数据使用指南》,选择欧盟消费者委员会(SCCS)、美国化妆品原料评价委员会(CIR)以及其他国际权威化妆品安全评估机构已公布安全评估结论的原料,需对相关评估资料进行分析,在符合我国化妆品相关法规及使用条件下,可采用相关评估结论,对有限制使用条件的原料,应在满足限制条件的情况下采用其评估结论。不同的权威机构评估结果不一致时,根据数据的可靠性和相关性,科学合理地采用相关评估结论。问题2:具有安全食用历史的原料,可以豁免哪些毒性?答:根据中检院发布的《化妆品原料数据使用指南》,有安全食用历史类原料,应对其食用历史、生产工艺等进行全面充分研究,确保原料或制备该原料的原材料有可安全食用的特性。此类原料在安全评估时可豁免系统毒性,结合产品使用部位和使用方式等,对局部毒性进行评估。问题3:毒理学关注阈值(TTC)方法应用的基本条件是什么?答:根据中检院发布的《毒理学关注阈值(TTC)方法应用技术指南》,TTC方法适用于化学结构明确,含量较低且缺乏系统毒理学研究数据的化妆品原料或风险物质。以下原料或风险物质不适用于本指南,包括:金属或金属化合物、强致癌物(如黄曲霉毒素、亚硝基化合物和联苯胺类等)、蛋白质、类固醇、高分子质量的物质、有很强生物蓄积性物质以及放射性化学物质等;纳米原料、无机物、具有吸入风险的原料在评估其吸入暴露途径的安全风险性时;具有防腐、防晒、着色、染发和祛斑美白功能的原料。问题4:植物提取物是否可以用TTC法进行评估?答:按照中检院培训解读,植物提取物由于组分复杂且批次间存在变化,鉴定和分析技术上存在困难,因此在满足一定条件下,对原料中的部分未知成分可以使用TTC方法进行评估。根据中检院发布的《毒理学关注阈值(TTC)方法应用技术指南》,对于混合物如植物提取物,需确定待评估物质是否为DNA反应性致突变物/致癌物,尽可能多的识别出单一或大类成分,除生产过程中添加的必要溶剂或稳定剂、防腐剂、抗氧化剂等外,需确定成分含量不低于50 %。对于已知成分,分别采用适宜的评估方法进行安全评估,以确保使用安全,若含有结构类似的成分,应进行剂量叠加评估。对于属于非DNA反应性致突变物/致癌物的未知成分,若无法确定Cramer类别,其整体的Cramer类别按Cramer III类进行评估。对不能排除DNA反应性致突变物/致癌物的未知成分,采用DNA反应性致突变物/致癌物的TTC阈值进行评估。问题5:什么是交叉参照?交叉参照的适用范围是什么?答:根据中检院发布的《交叉参照(Read-across)方法应用技术指南》,交叉参照(Read-across)指基于化学结构或生物学活性的相似性,通过利用一种或多种类似化学物质(类似物)的毒理学终点数据来预测另一种或一类结构相似的特定化学物质(目标化学物质)的相同毒理学终点信息的方法。交叉参照适用于结构明确,缺乏系统毒理学数据的非功效成分或风险物质。不适用于具有防腐、防晒、着色、染发和祛斑美白功能的原料。写到最后:毒理学关注阈值(TTC)方法是一种毒理学风险评价工具,&zwnj 用于评估化学品对人体健康的影响。&zwnj 该方法基于一个原则:&zwnj 当人体暴露剂量低于化学品的毒理学关注阈值时,&zwnj 该化学品对人体健康造成负面影响的可能性很低。&zwnj TTC方法最早应用于食品包装材料的风险评估,&zwnj 现已扩展到食品包装物、&zwnj 食用香料、&zwnj 药物、&zwnj 工业化学品、&zwnj 化妆品等领域的安全性评价。&zwnj 使用TTC方法进行评估的基本条件包括化学结构明确、&zwnj 含量较低且缺乏系统毒理学研究数据。&zwnj 对于待评估物质是否为DNA反应性致突变物/致癌物,&zwnj 除了通过遗传毒性/DNA反应性终点试验测试外,&zwnj 还可采用(定量)构效关系预测方法学进行预测。美国FDA在1993年提出可以使用0.5ppb食物作为对食品接触材料的管理阈值,&zwnj 这表明TTC方法在实际应用中具有一定的参考价值。&zwnj 化妆品检定所也制定了《&zwnj 毒理学关注阈值(TTC)方法应用技术指南(征求意见稿)》&zwnj 等2个技术指南,&zwnj 并向社会公开征求意见,&zwnj 这进一步说明了TTC方法在化妆品安全评估中的应用和重要性。交叉参照和TTC方法的共同点在于:1. 只适用于化学结构明确、缺乏系统毒理学数据的化妆品原料或风险物质;2. 不适用于具有防腐、防晒、着色、染发和祛斑美白功能的原料;3. 通过计算机软件预测,能够替代毒理学中的部分动物试验。
  • 化妆品备案秘籍:完整版安评,一步到位
    根据国家药监局《关于发布优化化妆品安全评估管理若干措施的公告》(2024年第50号),化妆品完整版安全评估已有序开展。为了帮助化妆品备案人顺利开展相关工作,让我们从头开始,一步一步地走进化妆品完整版安全评估。问题1:化妆品安全评估相关的法规和技术文件主要包括哪些?答:主要法规:《化妆品监督管理条例》《化妆品注册备案管理办法》《化妆品注册备案资料管理规定》《化妆品安全评估技术导则》《化妆品安全技术规范》《化妆品分类规则和分类目录》《化妆品标签管理办法》技术文件:《化妆品原料数据使用指南》——明确了安全评估中主要的七种原料数据类型、使用要求和需要提供的证明资料《国际权威化妆品安全评估数据索引》——对我国化妆品中已使用、未收录在《化妆品安全技术规范》中,SCCS和CIR已公布化妆品安全评估报告原料的客观收集《已上市产品原料使用信息》——对批件有效期内特殊化妆品中已使用、未收录在《化妆品安全技术规范》中、且无权威机构评估报告的原料使用量的客观收录《毒理学关注阈值(TTC)方法应用技术指南》——该方法适用于化学结构明确、且不包含严重致突变警告结构的原料或风险物质,含量较低且缺乏系统毒理学研究数据时,可参考使用《交叉参照(Read-across)方法应用技术指南》——该方法适用于缺乏系统毒理学研究数据的非功效成分或风险物质,可参考使用《皮肤致敏性整合测试与评估策略应用技术指南》——适用于化妆品原料皮肤致敏性评价《化妆品稳定性测试评估技术指南》、《化妆品防腐挑战测试评估技术指南》、《化妆品与包材相容性测试评估技术指南》——适用于化妆品稳定性评价、化妆品防腐体系效能评价、与化妆品内容物直接接触的容器或载体与产品相容性评价《化妆品风险物质识别与评估技术指导原则》——根据《化妆品安全技术规范》中规定,参考国内外权威机构风险评估结论等方法对化妆品中可能存在的风险物质进行识别与评估《化妆品安全评估资料提交指南》——细化了化妆品安全评估资料分类提交要求,指引备案人准确规范提交安全评估资料。问题2:如何全面了解化妆品安全评估——《化妆品安全评估技术导则》(简称《导则》)?答:《导则》正文共十部分,包括适用范围、基本原则与要求、安全评估人员的要求、风险评估程序、毒理学试验、原料的安全评估、化妆品产品的安全评估、安全评估报告、说明和释义,主要对安全评估的原则、人员等进行了明确,规定了评估程序、原料和产品的安全评估要求以及评估报告内容、简化版安全评估报告要求等。《导则》共四个附录,附录1和附录2分别规定了原料和化妆品产品安全评估报告应包含的内容,附录3和附录4分别给出了完整版和简化版产品安全评估报告的示例。问题3:完整版安评报告包括哪些内容? 答:根据《化妆品安全评估技术导则》,完整版化妆品安全评估内容应包括:摘要、产品简介、产品配方、配方设计原则(仅针对儿童化妆品)、配方中各成分的安全评估、可能存在的风险物质评估、风险控制措施或建议、安全评估结论、安全评估人员签名、安全评估人员简历、参考文献、附录。与简化版安全评估内容相比较,完整版安评内容还应体现防腐剂挑战结果、稳定性检测结果和产品与包装材料的相容性评估结果,以及相应的检测报告。问题4:风险评估四步法是什么?答:即对化妆品原料和风险物质进行风险评估的四个步骤:危害识别、剂量反应关系、暴露评估、风险特征描述。问题5:常用的毒理学数据库及登陆网址?答:(1)美国CIR化妆品成分数据库http://www.cir-safety.org/(2)欧盟CosIng数据库https://ec.europa.eu/growth/tools-databases/cosing/OECD数据库http://www.echemportal.org/echemportal/欧盟ECHA数据库 http://echa.europa.eu/home写到最后:化妆品安全评估的必要性:①确保产品安全: 通过系统评估原料和产品潜在的风险,可以更好地保障消费者的安全,避免化妆品引发的皮肤问题或其他健康风险。②提高备案效率: 完整版安全评估指南能够提供更全面、更详尽的产品安全性信息,有助于监管部门快速审核,提高备案效率。③提升品牌形象: 重视产品安全的企业更容易获得消费者的信任,从而提升品牌形象和竞争力。
  • 我国化妆品功效标准起草中
    现状:名词混乱 功效标准缺位  众所周知,目前对化妆品划分为普通化妆品和特殊用途化妆品两类,管理方式各有不同,其中育发、染发、烫发、脱毛、美乳、健美、除臭、祛斑、防晒类为特殊化妆品,实施审批制,取得批准文号后方可生产、销售 其他普通化妆品则在各省(区、市)化妆品卫生监管部门做好备案即可。而在《化妆品卫生规范》中,详细规定了化妆品中禁用和限用物质 限用防腐剂、防晒剂和着色剂 规定了化妆品包装的基本要求:规定了最终产品必须使用安全,不得对使用部位产生明显刺激和损伤,且无感染性等众多内容。  “但没有一项规定是针对化妆品的功效的。”北京工商大学化工学院副教授赵华表示,他是皮肤用化妆品功效性评价标准(由全国香料香精化妆品标准化技术委员会归口)的起草人之一。赵华介绍说:“化妆品行业其实已存在若干标准:有针对重金属含量的,有针对原材料的,有针对膏、霜、粉、乳液这些基本形态做出规定的,有针对外包装的……但是,一瓶标注着‘美白霜’的化妆品,是否真的能美白、美白功效如何?谁也不知道。消费者购买之后,即使觉得毫无效果,也没有办法。”  赵华表示,目前惟一一个功效评价标准做得比较好的就是防晒类化妆品,这类产品有个通用的标准:SPF值。所谓SPF值,即防晒系数,表明防晒用品所能发挥的防晒效能的高低。它是根据皮肤的最低红斑剂量来确定的。SPF防晒系数的数值适用于每一个人,其计算方法是:假设紫外线的强度不会因时间改变,一个没有任何防晒措施的人如果待在阳光下20分钟后皮肤会变红,当他采用SPF15的防晒品时,表示可延长15倍的时间,也就是在300分钟后皮肤才会被晒红。另外还有一个指数是PA。PA是1996年日本化妆品工业联合会公布的“UVA防止效果测定法标准”,是目前日系商品中广被采用的标准,防御效果被区分为三级,即PA+、PA++、PA+++,PA+表示有效、PA++表示相当有效、PA+++表示非常有效。  但除此之外,其他化妆品的功效标准都是一片空白。在广告中经常使用的“深度锁水保湿”、“享受时光、点亮青春”、“肌肤寸寸嫩滑”、“28天让你草地变森林”等语句,用含混不清的表述和暗示,刻意地夸大了产品功效。  完善:制定太难 推广尚待时日  “我们联合了中国检验检疫科学院、空军总医院,还有上海家化、欧莱雅等知名企业,研究了4年,目前也只有一项‘保湿化妆品标准’基本成型。”赵华表示,制定化妆品功效标准是一件太复杂的事。  赵华拿出起草的“保湿标准”向记者介绍,保湿功效的检测方法应该是最简单的一种:电容法测定皮肤角质层水分含量。它的原理是基于水和其他物质的介电常数差异显著,按照皮肤含水量的不同,测得的皮肤的电容值不同,其观测参数可代表皮肤水分值。检测时,环境温度应保持22±1℃,湿度保持在50±5%,需选用30名以上的志愿者,受试部位前2~3天不能使用任何产品(化妆品或外用药品)。试验前,受试者需要统一清洁双手前臂内侧,用干的面巾纸擦拭干净。清洁后在受试者双手前臂内侧做好测量区域标记。实验中左右手前臂内侧标记4×4cm2试验区域,同一手臂可同时标记多个区域,区域间隔1cm。测试产品和空白对照均随机分布在左右手臂上。涂抹后分别测量1小时、2小时、4小时受试区域和空白对照区域的皮肤含水量。  “但是,这样的检测方法也受到了各种局限:首先是地域,比如上海和北京,温湿度差距太大,即使是同一个试验者在不同的地点,得出的数据也会相差很大。其次是人体变化,即使是同一个人、同一地点,不同时间段也会测出不同的结果。”赵华介绍,结果的随机性是标准迟迟难以出炉的主要原因。而化妆品的功效其实并不难判定,比如美白产品,可以检测使用前后皮肤的色度和黑色素值是否有变化 抗皱产品,可检测皮肤的纹理度是否变化 育发产品则更简单……  “我们现在只能做这样的事:同类产品比对结果。即同时使用测试品和对照品,进行功效比对,最后出具检测报告。”赵华表示,相关的功效标准正在制定中,最快明年就可以出台。“届时无论是厂家还是消费者,只要有硬件设备,都可以自己利用标准来对化妆品做出评测。”那么,今后的化妆品能否如防晒指数那样,直接标以“保湿指数”、“美白指数”、“抗皱指数”呢?“这是一个理想的结果,意味着对化妆品的产品说明、广告用语做出了严格规范,让消费者对功效一目了然。但是让标准实际用于产品中并得到大众的承认,还需要很长的时间。”赵华说。
  • 三管齐下解决塑料污染危机
    世界经济合作与发展组织(OECD)的数据显示,2019年,全球生产了3.53亿吨塑料废物,超过2/3被送往垃圾填埋场或焚烧;1/5的废物管理不善,被随意倾倒在陆地或水中。OECD预测,到2060年,塑料废物将增至每年10亿多吨,必须采取有效政策阻止这一趋势。  nature 杂志最近发表的一篇文章认为,改变可能就在眼前。去年3月,联合国环境大会批准了一个历史性协议:在2024年底前制定一项全球塑料条约。科学家正在调查减少塑料生产、使用和处置的最佳政策;也有研究人员专注于利用技术来改善塑料的回收利用,或创造出新型塑料。英国朴茨茅斯大学政策中心主任史蒂夫弗莱彻说,上述三大解决方案缺一不可。  评估最佳政策  朴茨茅斯团队根据科学论文、行业报告、新闻文章和专家意见等,审查了全球130多项与解决塑料污染有关的政策,发现在大多数情况下,“对政策的监督几乎为零”。弗莱彻表示,如果没有太多关于什么政策有效的证据,怎么能制定一项致力于减少全球塑料污染的全球条约?  全球塑料政策中心研究员安塔娅玛奇指出,一个有效政策的例子是,2016年安提瓜和巴布达禁止销售或使用塑料购物袋,一年后垃圾填埋场丢弃的塑料数量减少了15%。有几个因素促成了这一成功,包括明确的实施计划、公众支持、严厉的惩罚措施——罚款1100美元以及最高6个月的监禁等。  皮尤慈善信托基金会预防海洋塑料项目2020年的一项分析显示,实施良好的干预措施可能会产生实质性影响。他们发现,如果不采取行动,到2040年,每年将产生约2.4亿吨管理不善的塑料垃圾(高于经合组织给出的数据)。如果减少塑料生产、打击塑料废物的国际出口、用纸张等材料代替塑料,以及扩大各种回收方法的规模等8种干预措施都能发挥其最大潜力,到2040年,管理不善的塑料废物将降至每年4400万吨,与不采取行动相比减少约80%。  竞逐回收新技术  在法国克莱蒙费朗的一家工厂内,Carbios公司正在测试一项技术——使用转基因酶来分解常见的PET塑料。公司计划在此基础上创建世界上首个酶回收塑料工厂,预计今年开始建设,并于2025年竣工。  美国得克萨斯大学哈尔阿伯尔团队创造了一种分解塑料瓶的蛋白质,这是一种特殊的酶变体,能够将PET塑料在一周内分解,某些情况下,分解时间仅为24小时。  根据Carbios首席科学官阿兰马蒂的说法,使用该公司的酶,一个20立方米的生物反应器可在100小时内降解10万个塑料瓶,他们计划于2025年竣工的工厂每年将分解5万吨PET塑料。  但基于酶的回收仍有局限性。首先这项技术仍然很昂贵,美国国家可再生能源实验室今年开展的一项研究估计,目前酶回收PET的成本可能是传统回收的4倍左右;其次,酶回收方法目前似乎仅限于PET和聚氨酯,并不适用于聚烯烃等其他塑料。  设计下一代塑料  瑞士洛桑联邦理工学院杰里米鲁特巴彻认为,解决危机的一种方案是设计出全新的塑料。2022年,鲁特巴彻领导的国际研究小组利用植物不可食用的部分,研制出了一种类似PET的新型可回收塑料,其制作工艺简单且坚固耐热,潜在用途广泛——从包装材料和纺织品,到制药与电子产品。  新一代塑料通常被统称为生物塑料,它们的原材料来自植物、可降解生物材料,降解后也不会产生有毒残留物。目前市面上主要有两大类生物塑料:聚羟基链烷酸酯(PHA)和聚乳酸(PLA),主要用于食品包装、餐具和纺织品等领域。  据估计,生物塑料目前仅占每年生产的4亿多吨塑料的1%,尽管生产生物塑料产生的碳排放低于生产原始塑料,但大规模生产生物塑料也很昂贵。
  • 国标委发布47项材料、化妆品检测新标准
    近日,国家质量监督检验检疫总局、国家标准化管理委员会批准发布了《 金属材料 薄板和薄带 反复弯曲试验方法》、《化妆品中苏丹红Ⅰ、Ⅱ、Ⅲ、Ⅳ的测定 高效液相色谱法》等83项国家标准。  其中47项标准涉及金属材料、染料、塑料、橡胶、化妆品等的检测方法。有关化妆品检测的标准均为初次制定,主要的检测方法为高效液相色谱法、气相色谱-质谱法等。 序号标准号标准名称代替标准号实施日期 1 GB/T 235-2013 金属材料 薄板和薄带 反复弯曲试验方法 GB/T 235-1999 2014-05-01 2 GB/T 238-2013 金属材料 线材 反复弯曲试验方法 GB/T 238-2002 2014-05-01 3 GB/T 2061-2013 散热器散热片专用铜及铜合金箔材 GB/T 2061-2004 2014-05-01 4 GB/T 2376-2013 硫化染料 染色色光和强度的测定 GB/T 2376-2003 2014-01-31 5 GB/T 2377-2013 还原染料 色光和强度的测定 GB/T 2377-2006 2014-01-31 6 GB/T 2387-2013 反应染料 色光和强度的测定 GB/T 2387-2006 2014-01-31 7 GB/T 2915-2013 聚氯乙烯树脂 水萃取液电导率的测定 GB/T 2915-1999 2014-01-31 8 GB/T 3994-2013 粘土质隔热耐火砖 GB/T 3994-2005 2014-05-01 9 GB/T 4348.1-2013 工业用氢氧化钠 氢氧化钠和碳酸钠含量的测定 GB/T 4348.1-2000 2014-01-31 10 GB/T 5071-2013 耐火材料 真密度试验方法 GB/T 5071-1997 2014-05-01 11 GB/T 5126-2013 铝及铝合金冷拉薄壁管材涡流探伤方法 GB/T 5126-2001 2014-05-01 12 GB/T 5249-2013 可渗透性烧结金属材料 气泡试验孔径的测定 GB/T 5249-1985 2014-05-01 13 GB/T 5475-2013 离子交换树脂取样方法 GB/T 5475-1985 2014-01-31 14 GB/T 5476-2013 离子交换树脂预处理方法 GB/T 5476-1996 2014-01-31 15 GB/T 10120-2013 金属材料 拉伸应力松弛试验方法 GB/T 10120-1996 2014-05-01 16 GB/T 11064.1-2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第1部分:碳酸锂量的测定 酸碱滴定法 GB/T 11064.1-1989 2014-05-01 17 GB/T 11064.2-2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第2部分:氢氧化锂量的测定 酸碱滴定法 GB/T 11064.2-1989 2014-05-01 18 GB/T 11064.3-2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第3部分:氯化锂量的测定 电位滴定法 GB/T 11064.3-1989 2014-05-01 19 GB/T 11064.4-2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第4部分:钾量和钠量的测定 火焰原子吸收光谱法 GB/T 11064.4-1989, GB/T 11064.16-1989 2014-05-01 20 GB/T 11075-2013 碳酸锂 GB/T 11075-2003 2014-05-01 21 GB/T 11212-2013 化纤用氢氧化钠 GB/T 11212-2003 2014-01-31 22 GB/T 12652-2013 亚洲薄荷素油 GB/T 12652-2002 2014-02-15 23 GB/T 13531.4-2013 化妆品通用检验方法 相对密度的测定 GB/T 13531.4-1995 2014-02-15 24 GB/T 13748.1-2013 镁及镁合金化学分析方法 第1部分:铝含量的测定 GB/T 13748.1-2005 2014-05-01 25 GB/T 13748.4-2013 镁及镁合金化学分析方法 第4部分:锰含量的测定 高碘酸盐分光光度法 GB/T 13748.4-2005 2014-05-01 26 GB/T 13748.7-2013 镁及镁合金化学分析方法 第7部分:锆含量的测定 GB/T 13748.7-2005 2014-05-01 27 GB/T 13748.8-2013 镁及镁合金化学分析方法 第8部分:稀土含量的测定 重量法 GB/T 13748.8-2005 2014-05-01 28 GB/T 13748.9-2013 镁及镁合金化学分析方法 第9部分:铁含量测定 邻二氮杂菲分光光度法 GB/T 13748.9-2005 2014-05-01 29 GB/T 13748.10-2013 镁及镁合金化学分析方法 第10部分:硅含量的测定 钼蓝分光光度法 GB/T 13748.10-2005 2014-05-01 30 GB/T 14457.2-2013 香料 沸程测定法 GB/T 14457.2-1993 2014-02-15 31 GB/T 14458-2013 香花浸膏检验方法 GB/T 14458-1993 2014-02-15 32 GB/T 16579-2013 D001大孔强酸性苯乙烯系阳离子交换树脂 GB/T 16579-1996 2014-01-31 33 GB/T 16580-2013 D201大孔强碱性苯乙烯系阴离子交换树脂 GB/T 16580-1996 2014-01-31 34 GB/T 16598-2013 钛及钛合金饼和环 GB/T 16598-1996 2014-05-01 35 GB/T 16865-2013 变形铝、镁及其合金加工制品拉伸试验用试样及方法 GB/T 16865-1997 2014-05-01 36 GB/T 17519-2013 化学品安全技术说明书编写指南 GB/T 17519.2-2003 2014-01-31 37 GB/T 19277.2-2013 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第2部分: 用重量分析法测定实验室条件下二氧化碳的释放量 2014-01-31 38 GB 19601-2013 染料产品中23种有害芳香胺的限量及测定 GB 19601-2004 2014-10-01 39 GB/T 20020-2013 气相二氧化硅 GB/T 20020-2005 2014-01-31 40 GB/T 27201-2013 认证机构信用评价准则 2013-12-01 41 GB/T 27202-2013 认证执业人员信用评价准则 2013-12-01 42 GB/T 27415-2013 分析方法检出限和定量限的评估 2013-12-01 43 GB/T 29640-2013 塑料 玻璃纤维增强聚对苯二甲酰癸二胺 2014-01-31 44 GB/T 29641-2013 浇铸型聚甲基丙烯酸甲酯声屏板 2014-01-31 45 GB/T 29642-2013 橡胶密封制品 水浸出液的制备方法 2014-01-31 46 GB/T 29643-2013 工业用氢氧化钠 实验室样品和进行项目测定用主溶液的制备 2014-01-31 47 GB/T 29644-2013 硫化橡胶 N-苯基-&beta -萘胺含量的测定 高效液相色谱法 2014-01-31 48 GB/T 29645-2013 塑料 聚苯乙烯再生改性专用料 2014-01-31 49 GB/T 29646-2013 吹塑薄膜用改性聚酯类生物降解塑料 2014-01-31 50 GB/T 29647-2013 坚果与籽类炒货食品良好生产规范 2014-02-01 51 GB/T 29648-2013 全自动旋转式PET瓶吹瓶机 2014-04-01 52 GB/T 29649-2013 生物基材料中生物基含量测定 液闪计数器法 2014-01-31 53 GB/T 29650-2013 耐火材料 抗一氧化碳性试验方法 2014-05-01 54 GB/T 29651-2013 锰矿石和锰精矿 全铁含量的测定 火焰原子吸收光谱法 2014-05-01 55 GB/T 29652-2013 直接还原铁 碳和硫含量的测定 高频燃烧红外吸收法 2014-05-01 56 GB/T 29653-2013 锰矿石 粒度分布的测定 筛分法 2014-05-01 57 GB/T 29654-2013 冷弯钢板桩 2014-05-01 58 GB/T 29655-2013 钕铁硼速凝薄片合金 2014-05-01 59 GB/T 29656-2013 镨钕镝合金化学分析方法 2014-05-01 60 GB/T 29657-2013 钇镁合金 2014-05-01 61 GB/T 29658-2013 电子薄膜用高纯铝及铝合金溅射靶材 2014-05-01 62 GB/T 29659-2013 化妆品中丙烯酰胺的测定 2014-02-15 63 GB/T 29660-2013 化妆品中总铬含量的测定 2014-02-15 64 GB/T 29661-2013 化妆品中尿素含量的测定 酶催化法 2014-02-15 65 GB/T 29662-2013 化妆品中曲酸、曲酸二棕榈酸酯的测定 高效液相色谱法 2014-02-15 66 GB/T 29663-2013 化妆品中苏丹红Ⅰ、Ⅱ、Ⅲ、Ⅳ的测定 高效液相色谱法 2014-02-15 67 GB/T 29664-2013 化妆品中维生素B3(烟酸、烟酰胺)的测定 高效液相色谱法和高效液相色谱串联质谱法 2014-02-15 68 GB/T 29665-2013 护肤乳液 2014-08-01 69 GB/T 29666-2013 化妆品用防腐剂 甲基氯异噻唑啉酮和甲基异噻唑啉酮与氯化镁及硝酸镁的混合物 2014-02-15 70 GB/T 29667-2013 化妆品用防腐剂 咪唑烷基脲 2014-02-15 71 GB/T 29668-2013 化妆品用防腐剂 双(羟甲基)咪唑烷基脲 2014-02-15 72 GB/T 29669-2013 化妆品中N-亚硝基二甲基胺等10种挥发性亚硝胺的测定 气相色谱-质谱/质谱法 2014-02-15 73 GB/T 29670-2013 化妆品中萘、苯并[a]蒽等9种多环芳烃的测定 气相色谱-质谱法 2014-02-15 74 GB/T 29671-2013 化妆品中苯酚磺酸锌的测定 高效液相色谱法 2014-02-15 75 GB/T 29672-2013 化妆品中丙烯腈的测定 气相色谱-质谱法 2014-02-15 76 GB/T 29673-2013 化妆品中六氯酚的测定 高效液相色谱法 2014-02-15 77 GB/T 29674-2013 化妆品中氯胺T的测定 高效液相色谱法 2014-02-15 78 GB/T 29675-2013 化妆品中壬基苯酚的测定 液相色谱-质谱/质谱法 2014-02-15 79 GB/T 29676-2013 化妆品中三氯叔丁醇的测定 气相色谱-质谱法 2014-02-15 80 GB/T 29677-2013 化妆品中硝甲烷的测定 气相色谱-质谱法 2014-02-15 81 GB/T 29678-2013 烫发剂 2014-08-01 82 GB/T 29679-2013 洗发液、洗发膏 2014-08-01 83 GB/T 29680-2013 洗面奶、洗面膏 2014-08-01
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制