当前位置: 仪器信息网 > 行业主题 > >

合成与表征

仪器信息网合成与表征专题为您整合合成与表征相关的最新文章,在合成与表征专题,您不仅可以免费浏览合成与表征的资讯, 同时您还可以浏览合成与表征的相关资料、解决方案,参与社区合成与表征话题讨论。

合成与表征相关的资讯

  • 【Q&A】手性药物合成、纯化与表征技术进展
    p style=" text-align: justify text-indent: 2em " 首届“ span style=" color: rgb(0, 112, 192) " strong 手性药物合成、纯化及表征技术进展 /strong /span ”主题网络研讨会圆满落幕。会议上共有4位专家老师为大家带来了精彩的报告。针对报告中的内容,大家展开了积极的讨论。本会汇总了网友的相关问题以及专家的权威解答。 /p p label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 155, 155) " Questions & amp Answers /span br/ /p p 1,网友- m3190541 (14:51:39) /p p strong span style=" color: rgb(255, 0, 0) " 安东帕多波长旋光仪都可以设哪些波长? /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 胡伟 (15:04:32): /strong /span 365 nm,405 nm,436 nm,546 nm,578 nm,589 nm,633 nm等波长。 /p p style=" margin-top: 15px " 2,网友- Insm_d8fd8220 (14:52:06) /p p strong span style=" color: rgb(255, 0, 0) " 请问老师,是否可以结合显微技术一起做? /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 胡伟 (15:06:50): /strong /span 这个需要有探头伸进腔体,所以显微不太合适。 /p p style=" margin-top: 15px " 3,网友- m3010836 (14:59:57) /p p span style=" color: rgb(255, 0, 0) " strong 微波合成仪无法回流吧? /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 胡伟 (15:06:11): /strong /span 拉曼探头是可以隔着玻璃管进行检测的。 /p p style=" margin-top: 15px " 4,网友- Insm_0dbf3a70 (15:00:27) /p p span style=" color: rgb(255, 0, 0) " strong 旋光仪检测什么物质呢? /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 杨金囤 (15:53:54): /strong /span 测量有旋光性质的溶液的旋光度,可以计算样品浓度、纯度等。 br/ /p p style=" margin-top: 15px " 5,网友- 186****3862 (15:18:03) /p p span style=" color: rgb(255, 0, 0) " strong 帕尔贴控温还有其他应用吗? /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 杨金囤 (16:00:24): /strong /span 我知道的一个例子是,北方室外安装的仪表,在仪表箱里可以安装帕尔贴控温装置,夏天致冷,冬天加热,保证仪表在正常操作温度下工作。比安装空调要简单省事,费用也低。 /p p style=" margin-top: 15px " 6,网友- 186****3862 (15:27:31) /p p span style=" color: rgb(255, 0, 0) " strong 玻璃旋光管有什么优势?不锈钢的有什么好处? /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 杨金囤 (16:09:15): /strong /span 两种旋光管都有不同的适用样品。另外,玻璃旋光管透明,可以看到内部样品,不锈钢旋光管导热性更好。 /p p style=" margin-top: 15px " 7,网友- p3307088 (16:11:16) /p p style=" text-align: justify " span style=" color: rgb(255, 0, 0) " strong 王老师,我们做分析,对于手性化合物的分离,尤其是色谱柱的筛选一直很头疼,对于色谱柱填料的筛选有没有什么常识性的建议? /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 王玉记(16:32:18 /strong /span span style=" color: rgb(0, 112, 192) " strong ): /strong /span 如果是非对映异构体的分离,可以自己摸索+结合文献类似的结构;但如果是对映异构体,一定要看文献。还要补充的就是,可以试试手性柱子,我们有ADH的手性柱,但是分离成功率不高,经常因为溶解度和流动相不合适,没法分离。 /p p style=" margin-top: 15px " 8,网友- v3240216 (16:11:09) /p p span style=" color: rgb(255, 0, 0) " strong 请问老师,旋光测试与EE值测试,哪个更能准确反映手性纯度? /strong /span strong span style=" color: rgb(255, 0, 0) " ee值和旋光度能互相代替吗? /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 王玉记 (16:31:31): /strong /span ee值的计算主要基于测量数据,特别是LC-UV-MS的数据;旋光值的准确性主要看仪器。一般来说ee值比较关键,旋光仪参差不齐,数据飘得厉害,我主要是参考一下。 /p p style=" line-height: 16px margin-top: 20px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_rar.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202008/attachment/03ccc889-2ebd-475f-9ac6-475fcdf5fb93.rar" title=" 20-0821手性药物会议-王玉记老师资料.rar" 20-0821手性药物会议-王玉记老师资料.rar /a /p p style=" margin-top: 15px " 相关资料请关注 strong 会议主页 /strong : /p p style=" margin-top: 5px " a href=" https://www.instrument.com.cn/webinar/meetings/chiraldrug2020/" target=" _blank" https://www.instrument.com.cn/webinar/meetings/chiraldrug2020/ /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/chiraldrug2020/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 553px height: 184px " src=" https://img1.17img.cn/17img/images/202008/uepic/f5d7db4a-de88-49b9-8a4d-c8b20eaf0598.jpg" title=" 1035_345fenzi.jpg" alt=" 1035_345fenzi.jpg" width=" 553" height=" 184" / /a /p
  • 大昌华嘉将于天津举办亚基介孔分子筛的合成表征及催化研讨会
    大昌华嘉商业(中国)有限公司将于2011年11月2日上午在联合研究大厦材料化学系四楼会议室与南开大学天津大学联合举办 &ldquo &beta 亚基介孔分子筛的合成,表征及催化学术讲座&rdquo 。 此次会议分为两个部分,第一部分:日本Pro. Yoshihiro SUGI讲解&beta 亚基介孔分子筛的合成,表征及催化,后一部分是郝昌德经理介绍美国麦奇克公司的动态激光在纳米技术上的最新应用,欢迎您届时光临。 大昌华嘉商业(中国)有限公司科技事业部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。大昌华嘉在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 日本拜尔有限公司(Bel Japan,Inc.)是一家研究生产容量法和重量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。 Yoshihiro SUGI教授简介: Yoshihiro SUGI, Faculty of Engineering, Gifu University Awards: 1994 Prize for Distinguished Patent Applications, Agency of Science and Technology 1995 JPI Prize for Distinguished Papers. 1996 Prize for Distinguished Patent Applications, Agency of Science and Technology 2003 The Best Article of the Month, BCSJ #5, 2003. 2009 The Japan Petroleum Institute Award Major Interest: Catalysis (Homogenous and Heterogenous), Zeolite Synthesis, Ecomaterials. SEMINAR ARRANGEMENTS CHECK LIST 本次会议初步议程如下:联合研究大厦材料化学系四楼会议室 Conference 会场一 (8:30-12:20) Time / 时间 Content / 内容 CIP / 主持人 8:30-8:45 Registration / 会议注册 8:45-9:00DKSH Presentation / 大昌华嘉公司介绍 樊润 经理 9:00-10:10 Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis,&beta 亚基介孔分子筛的合成,表征及催化 Yoshihiro SUGI 教授 Keita Tsuji博士 10:10-10:30 Discusssion,Coffee Break讨论,茶歇 10:30-11:30 Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis,&beta 亚基介孔分子筛的合成,表征及催化 Yoshihiro SUGI 教授 Keita Tsuji博士 11:30-12:30 Laser Diffraction and Image Analysis 光散射与图像分析原理及应用;Dynamic Light Scattering &ndash latest advances with probe technology 动态激光散射在纳米上的应用 郝昌德 经理 12:30- Lunch午餐 本次会议内容丰富多彩,主办单位将向与会者赠送精美礼品。为便于会务安排,请将参会回执于10月25日前传真或发送电子邮件至大昌华嘉公司。 联系方式: 地 址: 北京市光华路7号汉威大厦西区26层 电 话: 010- 6561 3988 联系人: 樊润 13901255059 张媛 13301217002 传 真: 010- 6561 0278 电子邮件: Rain.fan@dksh.com Helen.zhang@dksh.com 大昌华嘉商业(中国)有限公司 2011年9月23日 回 执 姓名 单位 地址 电话 手机 E-mail 邮编 参加人数 我希望参加以下会议: 会场
  • 大昌华嘉将于北京举办亚基介孔分子筛的合成表征及催化研讨会
    大昌华嘉商业(中国)有限公司将于2011年11月1日在清华大学化学馆301报告厅与清华大学化学系徐柏庆教授课题组联合举办 &ldquo &beta 亚基介孔分子筛的合成,表征及催化学术讲座&rdquo 。 此次会议分为上下午两场,上午是大昌华嘉公司特邀请美国麦奇克公司副总裁Mr. Paul Cloake介绍动态激光在纳米技术上的最新应用,下午是日本Pro. Yoshihiro SUGI讲解&beta 亚基介孔分子筛的合成,表征及催化,欢迎您届时光临。 大昌华嘉商业(中国)有限公司科技事业部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。大昌华嘉在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 日本拜尔有限公司(Bel Japan,Inc.)是一家研究生产容量法和重量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 Yoshihiro SUGI教授简介: Yoshihiro SUGI, Faculty of Engineering, Gifu University Awards: 1994 Prize for Distinguished Patent Applications, Agency of Science and Technology 1995 JPI Prize for Distinguished Papers. 1996 Prize for Distinguished Patent Applications, Agency of Science and Technology 2003 The Best Article of the Month, BCSJ #5, 2003. 2009 The Japan Petroleum Institute Award Major Interest: Catalysis (Homogenous and Heterogenous), Zeolite Synthesis, Ecomaterials. SEMINAR ARRANGEMENTS CHECK LIST 本次会议初步议程如下:清华大学化学馆301报告厅 Conference 1 会场一 (8:30-12:20) Time / 时间 Content / 内容 CIP / 主持人 8:45-9:00 Registration / 会议注册 9:00-9:20 DKSH Presentation / 大昌华嘉公司介绍 Sinndy Yan严秀英 经理 9:20-10:30 Laser Diffraction and Image Analysis 光散射与图像分析原理及应用 Paul Cloake 副总裁 10:30-10:50 Coffee Break茶歇 10:50-11:50 Dynamic Light Scattering &ndash latest advances with probe technology 动态激光散射在纳米上的应用 Paul Cloake 副总裁 11:50-12:20 Question / 仪器展示及问题讨论 Sinndy Yan严秀英 经理 12:20-13:20 Lunch午餐 Conference 2 会场二 (13:30-17:30) 13:30-14:00 DKSH Presentation / 大昌华嘉公司介绍 Rain Fan樊润 经理 14:00-15:10 Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis, &beta 亚基介孔分子筛的合成,表征及催化 Yoshihiro SUGI 教授 Keita Tsuji博士 15:10-15:30 Coffee Break茶歇 15:30-16:30 Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis &beta 亚基介孔分子筛的合成,表征及催化 Pro.Yoshihiro SUGI Dr.Keita Tsuji 16:30-17:30 Discussion /问题讨论 Rain Fan樊润 经理 17:30 End / 结束 本次会议内容丰富多彩,主办单位将向与会者赠送精美礼品。为便于会务安排,请将参会回执于10月25日前传真或发送电子邮件至大昌华嘉公司。 联系方式: 地 址: 北京市光华路7号汉威大厦西区26层 电 话: 010- 6561 3988 联系人: 张媛 13301217002 王卫华13810747749 樊润 13901255059 传 真: 010- 6561 0278 电子邮件: Helen.zhang@dksh.com 备注:化学馆的具体地点在清华大学西北部理学院的正北面(从清华西北门进入往东200-300米路北即到)。西北门禁止没有清华车证的私家车出入,开车的客户可以从西门或者南门进入。 回 执 姓名 单位 地址 电话 手机 E-mail 邮编 参加人数 我希望参加以下会议: 会场1 会场2
  • 仪器表征,科学家首次揭示微应变对钠分层氧化物正极材料合成的影响!
    【科学背景】随着高能量密度和长寿命电池的需求不断增加,研究人员越来越关注电池材料的微应变及其对电池性能的影响。微应变是由结构缺陷(如位错和堆垛层错)引起的,这对能源材料的机械强度和循环稳定性产生了重大影响。尤其在钠分层氧化物正极材料中,微应变被认为是导致容量衰退和结构破坏的关键因素。然而,微应变在电池材料合成过程中的起源和影响仍未完全明确,这成为了当前研究的一个挑战。为了解决这一问题,布鲁克海文国家实验室(美国能源部的实验室) Xianghui Xiao, 美国阿贡国家实验室Gui-Liang Xu & Khalil Amine教授合作进行了一系列原位和实时的多尺度表征,包括同步辐射X射线衍射和显微镜观察,来探讨过渡金属在前体颗粒中的空间分布对微应变的影响。研究发现,过渡金属的空间分布对纳米尺度的相变、局部电荷异质性以及微应变的积累有着强烈的调控作用。这一意外发现揭示了缺陷从核心向外壳的反直观传播模式,并为优化合成策略提供了新方向。通过这些研究,科学家们提出了基于微应变筛选的合成策略,以减少晶格中的微应变和结构缺陷,从而显著提升了电池材料的结构稳定性。这些成果标志着向设计无缺陷电池材料的合成方法迈出了关键一步。【科学亮点】1. 实验首次在钠分层氧化物正极的实际合成过程中,系统地进行微应变筛选,并应用了多尺度原位同步辐射X射线衍射(SXRD)和显微镜表征技术。2. 实验通过结合原位SXRD和全场X射线显微镜的观察,揭示了过渡金属在前体颗粒中的空间分布对纳米尺度相变、局部电荷异质性和微应变积累的强烈影响。3. 实验结果:&bull 过渡金属的空间分布:发现过渡金属的空间分布在钠分层氧化物正极的合成过程中扮演了关键角色,主导了相变机制。&bull 微应变的积累:在合成过程中,微应变在颗粒内部积累,导致了缺陷的形成和增长,其传播方式呈现出反直观的外向模式。&bull 结构稳定性的改善:通过对微应变的深入分析,提出了一种更为合理的合成路线,能够显著减少晶格中的微应变和晶体缺陷,从而提升结构稳定性。【科学图文】图1: 前驱体的形貌和化学性质。图2:固态合成过程中的结构演变。图3:合成过程中的结构缺陷和化学演变。。图4:颗粒裂纹及其消除。图5:电化学性能。图6:测试分析。【科学结论】本文揭示了过渡金属在钠分层氧化物正极合成过程中对微应变的显著影响。通过原位同步辐射X射线衍射和显微镜技术的多尺度表征,研究发现,过渡金属在前体颗粒中的空间分布对纳米尺度的相变、局部电荷异质性以及微应变的积累有着关键的调控作用。这一发现颠覆了传统观念,揭示了缺陷的成核和生长在颗粒内部向外传播的反直观现象。这种对微应变的深刻理解指导了更加合理的合成策略,即通过优化合成条件来减轻微应变和晶体缺陷,从而显著提高电池材料的结构稳定性。这一研究成果不仅提供了新思路来改善电池材料的性能,还为无缺陷电池材料的设计合成奠定了重要基础,为未来高能量密度和长寿命电池的研发提供了有力支持。参考文献:Zuo, W., Gim, J., Li, T. et al. Microstrain screening towards defect-less layered transition metal oxide cathodes. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01734-x
  • 电镜大咖齐聚|材料界面/表面分析与表征会议在深圳召开
    仪器信息网讯 2023年7月8日,中国材料大会2022-2023在深圳国际会展中心开幕。本届中国材料大会系首次在深圳举办,大会聚焦前沿新材料科学与技术,设置77个关键战略材料及相关领域分会场,三天会期预计超1.9万名全国新材料行业产学研企代表将齐聚鹏城,出席大会。作为分会场之一,材料界面/表面分析与表征分会于7月8日下午开启两天半的专家报告日程。中国材料大会2022-2023开幕式暨大会报现场材料界面/表面分析与表征分会由香港城市大学陈福荣教授、太原理工大学许并社教授、北京工业大学/南方科技大学韩晓东教授、中科院金属研究所马秀良研究员、北京工业大学隋曼龄教授、太原理工大学郭俊杰教授等担任分会主席。分会采用主题报告、邀请报告、口头报告、快闪报告等形式,围绕材料界面/表面先进表征方法、功能材料调控与表征、结构材料界面/相变/位错与变形、纳米催化材料、半导体材料、能源电池材料、铁电功能材料等七大主题专场邀请60余位业界专家进行了逐一分享。以下是“材料界面/表面先进表征方法”主题专场报告花絮与摘要简介,以飨读者。“材料界面/表面先进表征方法”主题专场现场报告人:香港城市大学 陈福荣报告题目:脉冲电子显微镜对螺旋材料三维原子动态的研究 像差校正电子光学和数据采集方案的进步使TEM能够提供亚埃分辨率和单原子灵敏度的图像。然而, 辐射损伤、静态成像和二维几何投影三个瓶颈仍然挑战者原子级软材料的TEM成像。对于辐射损伤,电子束不仅可以在原子水平上改变形状和表面结构,而且还可以在纳米尺度的 化学反应中诱发辐射分解伪影。陈福荣在报告中分享了如何由脉冲电子控制低剂量到量子电子显微镜的零作用。并介绍了脉冲电子光源提供可控制的低剂量电子光源, 在高时间分辨率下探测3D原子分辨率动力学 方面的研究进展。报告人:南方科技大学 林君浩报告题目:新型二维材料的原子尺度精细缺陷表征与物性关联研究二维材料是目前研究的热点。由于层间耦合效应和量子效应的减弱,大量新奇的物理现象在二维材料中被发现。其中,二维材料中的缺陷对其性能有直接的影响。理解缺陷的原子结构和动态其演变过程对二维材料功能器件的改进与性能提供具有重要意义。然而,只有少数几种二维材料在单层极限下在大气环境中是稳定,大部分新型二维材料,如铁电性,铁磁性或超导的单层材料在大气环境下会迅速劣化,无法表征其缺陷的精细结构。林君浩分享了定量衬度分析技术在二维材料缺陷表征中的应用,以及其课题组在克服二维材料水氧敏感性的一些尝试。报告人:北京大学 赵晓续报告题目:旋转低维材料的原子结构解析与皮米尺度应力场分析理论预测旋转二维材料的超导机制及其他物理学特性与层间电子强关联效应息息相关,然而迄今为止旋转二维材料的摩尔原子结构及其应力场至今未被实验在原子尺度精确测量。鉴于此,赵晓续团队利用低压球差扫描透射电子显微镜对一系列旋转二维材料的原子摩尔结构及其应力场做了深入研究和分析,通过大量实验对比和验证,系统解析出了由于层间滑移所产生的五种不同相。相关工作第一次系统分析了旋转二维材料的精细结构及应力场,对进一步探索和挖 掘旋转材料体系奇异物性有着重要指导意义。 报告人:香港理工大学 朱叶报告题目:Resolving exotic superstructure ordering in emerging materials using advanced STEM新型功能材料的特点通常是在传统晶胞之外呈现有序性。这种复杂的排序,即使是集体发生的,通常也会遭受纳米级的波动,破坏传统的基于衍射的结构分析所需的长期周期性,对精确的结构确定提出了巨大的挑战。另一方面,成熟的像差校正TEM/STEM提供了一种替代的实空间方法,通过直接成像原子结构以皮米级精度来探测局部复杂有序。报告中,朱叶通过系列案例展示了先进的STEM在解决钙钛矿氧化物和二维材料中复杂的原子有序方面的能力。STEM中的iDPC技术帮助课题组能够解开复杂钙钛矿中与调制八面体倾斜相关的奇异极性结构。工作中的表征策略和能力为在原子尺度上探索新兴功能材料的结构-性能相互作用提供了有力的工具。报告人:中国科学院物理研究所 王立芬报告题目:晶体合成的原位电镜研究发展原位表征手段对决定晶核形成的初期进行高分辨探测表征是研究材料形核结晶微观动力学的关键。王立芬在报告中,分享了利用原位透射电子显微学方法,通过设计原位电镜液态池,实时观察了氯化钠这一经典成核结晶理论模型在石墨烯囊泡中的原子级分辨动力学结晶行为,实验发现了有别于传统认知的氯化钠以新型六角结构为暂稳相的非经典成核结晶路径,该原位实验数据为异相成核结晶理论的发展提供了新思路,也为通过衬底调控寻找新结构相提供了新的启发。通过发展原位冷冻电镜技术,研究了水在不同衬底表面的异质结晶过程,发现了单晶纯相的立方冰相较于六角冰的形核生长,展示水的气象异质形核的动力学特性。通过观察到的一系列新现象、新材料和新机制,展示了原位透射电子显微学技术在材料合成研究中的重要应用,因而为材料物理化学领域的研究和发展提供新的实验技术支持和储备。 报告人:北京工业大学材料与制造学部 隋曼龄报告题目:锂/钠离子电池层状正极材料的构效关系和抑制衰退策略 层状结构的碱金属过渡金属氧化物是多种二次电池中重要的一族正极材料体系,具有相近的晶体结构,且普遍具有能量密度高和可开发潜力大的优点,其在锂离子电池中已有广泛的应用,在钠离子电池等新兴储能领域也占据了重要地位。开发层状正极材料需要深入理解材料的构效关系和演变规律,以实现更精准的材料调控和性能优化。从原子角度去解析材料的性能结构关系、演变规律以及表界面物理化学过程,是透射电子显微学的突出优势,并且随着成像技术的发展以及越来越多的新原位表征技术的开发应用,已经实现了对电池材料进行高时空分辨的原子动态表征。隋曼龄报告中,研究内容以电子显微学的表征技术为特色,以锂 /钠离子电池材料层状正极材料为研究对象,揭示正极材料在循环过程中发生的体相衰退机制和表界面演变机理,并在此基础上提出抑制正极材料循环性能衰退的应对策略,展示先进电子显微学技术在电池材料的 基础科学研究和应用开发中可以发挥的重要作用。 报告人:浙江大学 王勇报告题目:环境电子显微学助力催化活性位点的原位设计多相催化剂被广泛用于能源、环境、化工等重要的工业领域。在实际应用中,催化剂上起到关键作用的通常是催化剂表/界面上的小部分位点,即催化剂的活性位点。自从上世纪20年代Hugh Taylor提出"活 性位点"的概念以来,在原子水平确定催化剂活性位点以及理解发生在活性位点上的分子反应机制已成为催化研究的重中之重;研究人员尝试用不同的方法来获取与表界面活性位点有关的各种信息,以实现从原 子水平上对催化剂进行合理设计。然而到目前为止,由于缺乏真实反应环境下活性位点原子尺度的直接信 息以及对其原子水平调控有效的手段,对表界面活性位点的原子水平原位设计仍然具有很大挑战。王勇报告介绍了其课题组利用环境透射电子显微学对催化剂表界面活性位点原位设计的初步探索进展。报告人:吉林大学 张伟报告题目:基于优化Fe-N交互作用的超稳定储能的探索 具有高安全性、低成本和环境友好性的水系电池是先进储能技术未来发展方向之一。然而,在电极材料中进行可逆嵌入/脱出,引发较大的体积膨胀仍然是一个严峻的挑战。六氰化铁(FeHCF)具 有制备简单,成本低,环境友好等特点,是水系电池中常用的正极材料之一。对于传统金属离子,嵌入晶格时引Fe离子价态降低,金属离子向Fe离子方向移动,两者相互排斥,引发晶体内氰键进一步弯曲, 长期循环中造成晶格坍塌。有别于传统的形貌和结构的控制,受工业合成氨和金属铁渗氮中前期Fe-N弱 相互作用的启发,基于电荷载体(NH4+)和电极材料间的相互作用。张伟报告中研究设计了一种与电荷载体相反作用力的Fe-N弱的交互作用,有效解决了体积膨胀问题。报告人:香港城市大学 薛又峻报告题目:高时空分辨零作用电子显微镜设计透射电镜能够以亚埃级的空间分辨率提供单原子灵敏度的图像,原子级的观测需要强烈的电子照射,这通常会造成材料的纳米结构产生改变,辐射损伤仍然是最重要的瓶颈问题。目前主要的手段是利用冷冻电镜在低温环境下降低电子辐射损伤,但样品在急速冷冻的过程中可能会发生形貌结构的改变,冷冻后无法观察到反应过程的动态信息。制造可实现探测电子和材料间无作用量测的量子电子显微镜,可以用来克服辐射损伤的瓶颈问题。薛又峻报告表示,香港城市大学深圳福田研究院在深圳市福田区的支持下,已开发了具有脉冲电子光源的紧凑型电子显微镜的关键零部件。团队在这个基础上,设计了搭配脉冲电子光源使用的量子谐振器,作为达成量子电子显微镜的关键部件。也设计了基于多极子场的电子谐振腔、配合量子谐振腔的其他关键部件等。基于脉冲电子光源的量子电子显微镜设计开发,可望解决辐射损伤的关键问题,成为纳米尺度下 研究软物质材料的新一代利器。 报告人:南京航空航天大学分析测试中心 王毅报告题目:基于直接电子探测成像的4D-STEM在功能材料的应用传统的扫描透射(STEM)成像,采用环形探头在每一个扫描点,记录一个单一数值/信号强度,构成 2维的强度信号。直接电子探测相机的高帧率使得在每一个扫描点,完整记录电子束斑穿透样品后的衍射 花样(CBED)成为可能,由此构成四维数据 (2维实空间和2维倒易空间),被称为4D-STEM (亦被称为扫描电子衍射成像)。通过四维数据的后期处理,不仅可以实现任意常规STEM图像的重构,比如明场像,环形明场像,环形暗场像等,不再受限于一次试验中可使用的STEM探头和相对收集角度的限制;而且也可以提取更多材料的信息,比如材料的结构、晶体的取向、应力、电场或磁场分布等, 而随着4D-STEM而产生的电子叠层衍射成像技术已被证明可进一步提高电镜的分辩率,能更有效利用电子束剂量,在对电子束敏感材料有着广大的应用空间。王毅在报告中以几种典型的功能材料为例,介绍了基于直接电子探测成像的4D-STEM和电子能量损失谱在实现原子分辨像和原子分辨元素分布研究方面的进展。 报告人:南方科技大学 王戊报告题目:DPC-STEM成像技术研究轻元素原子占位和电荷分布 新兴成像技术的发展和应用促进着材料微观结构的表征和解析,差分相位衬度-扫描透射电子显微成像技术(DPC-STEM)不仅能实现轻重原子同时成像,也能获取材料的电场和电荷分布信息。王戊分享了使用DPC-STEM成像技术,在低电子束剂量下,研究有机半导体氮化碳材料的轻元素原子占位。实现三嗪基氮化碳晶体的原子结构清晰成像,揭示三嗪基氮化碳晶体的蜂窝状结构、三嗪环的六元特征及插层Cl离子的位置所在,并发现框架腔内的三种Li/H构 型。进一步通过实验和模拟DPC-STEM图像相互印证,明确氮化碳材料中轻元素Li和H原子的占位。基于DPC-STEM的分段探头,计算由样品势场引起的电子束偏移,获得材料的本征电场和电荷信息。 基于DPC-STEM技术获得的原子尺度电场和电荷分布信息,进一步揭示原子之间电场的解耦效应,以及电子的转移和重新分布。报告人:上海微纳国际贸易有限公司 赵颉报告题目:Dectris混合像素直接电子探测器及其在4D-STEM中的应用由于提供了从样品中获取信息的新方式,4D-STEM技术在电子显微镜表征方法中越来越受到重视。在混合像素直接电子探测技术不断发展的情况下,混合像素直接电子探测器能够实现与传统STEM成像类似的采集速率进行4D-STEM数据采集,特别是能够事现驻留时间小于10µs。除了在给定的实验时间内扩展4D-STEM表征视场和数据收集,使用混合像素直接电子探测器可以更全面地记录相同电子剂量下的散射花样信息。赵颉介绍了Dectris混合像素直接电子探测器技术的最新发展,该技术现在允许4D-STEM实验,其设置与传统STEM成像类似,同时单像素采集时间低于10µs。同时介绍了虚拟STEM探测器成像和晶体相取向面分布分析的应用实例。
  • 仪器表征,科学家制备表征新型高效催化剂!
    【科学背景】单原子催化剂(SACs)由于其高效的原子利用率和可调节的化学微环境,在电催化、热催化、光催化以及仿生酶催化等领域展示了卓越的活性和选择性。然而,由于潜在活性位点结构在材料表面上的分布不均,精确控制或识别其配位位点成为了一个挑战。X射线吸收精细结构(XAFS)表征和密度泛函理论(DFT)计算通常被用来探索SACs中活性位点的结构,但这些方法往往无法提供关于单个原子详细信息和三维结构,存在着实验与理论研究之间的差距。为了解决这一问题,清华大学王铁峰教授团队利用一锅法成功合成了Pt(0)单原子嵌入在基于苯-1,4-二甲酸(BDC)的MOFs中。具体地,作者选择了包括UiO-66–X(Zr)、MOF-5–X(Zn)、MIL-101–X(Fe)、NiBDC–X和CuBDC–X在内的MOFs作为载体,并重点研究了Pt1@UiO-66–X(-X&thinsp =-Br、-NH2、-I和-H)系统。作者发现,不同功能基团对Pt加氢活性和烧结抗性具有显著影响,表现出不同的催化活性和稳定性。特别是,Pt1@UiO-66-Br表现出优异的催化性能,其在硝基苯加氢和苯乙烯加氢反应中分别显示出高达37倍和68倍的TOF增益,相较于Pt1@UiO-66-I。此外,作者通过DFT计算揭示了Pt1@UiO-66–Br在300°C钙化时比Pt1@UiO-66–NH2更稳定的原因,这归因于其不同的H2化学吸附中间态配置。【科学亮点】(1)实验首次采用一锅法将Pt(0)单原子稳定地固定在基于苯-1,4-二甲酸(BDC)的金属-有机框架(MOFs)上,包括UiO-66-X(Zr)、MOF-5-X(Zn)、MIL-101-X(Fe)、NiBDC-X和CuBDC-X。(2)实验通过研究不同功能基团(-X&thinsp =&thinsp –Br、–NH2、–I和–H)对Pt1@UiO-66 MOFs中Pt单原子催化活性的影响,得出以下结果:&bull Pt1@UiO-66-Br展现出显著的加氢活性,其转化频率(TOF)比Pt1@UiO-66-I高出37倍(对硝基苯加氢)和68倍(对苯乙烯加氢)。&bull 结果显示,不同配位配体通过调节Pt中心的电子状态和中间体在Pt位点上的吸附行为,影响其催化性能。&bull 在H2气氛中的烧结抗性测试中,Pt1@UiO-66–Br在300°C的钙化条件下表现出比Pt1@UiO-66–NH2更高的稳定性,这一差异与不同的H2化学吸附亚稳态配置有关。【科学图文】图1:Pt1@UiO-66–X的合成与可视化。图2. Pt1@UiO-66–X的光谱表征与合成机理研究。图3. Pt1@IRMOF-3和Pt1@Fe-MIL-101–NH2的表征。图 4:Pt1@UiO-66–X的催化性能。图5. Pt1@UiO-66–X的电子性质。图6. Pt1@UiO-66–NH2和Pt1@UiO-66–Br的热稳定性。【科学结论】本文通过一锅法成功合成了一类新型的单原子催化剂(SACs),其中零价Pt原子被稳定地嵌入到UiO-66–X(–X&thinsp =&thinsp –H、-NH2、-Br和-I)的金属-有机框架中。这一成就不仅在催化领域展示了如何通过有机功能基团调控金属活性位点的方法,也在材料科学中探索了MOFs作为催化剂载体的潜力。首先,作者展示了通过有机配位基团对Pt中心的电子结构和活性具有显著影响。Pt1@UiO-66–Br表现出显著的加氢催化活性,远超过其他配体类型的Pt1@UiO-66。这不仅加深了对Pt在不同环境中电子态的理解,还为设计高效催化剂提供了新思路。其次,作者发现配位配体对单原子Pt在高温下的稳定性具有重要影响。UiO-66–Br和UiO-66-I中的Pt原子能在300°C下保持原子分散状态,而在UiO-66和UiO-66–NH2中则容易发生聚集。这一发现揭示了在设计稳定和持久的单原子催化剂时,配位环境的选择至关重要。最后,作者展望了将此合成策略推广到其他金属和MOFs的可能性,以拓展单原子催化剂在更广泛催化转化中的应用。通过结合实验和理论方法,作者期待未来能深入探索和优化这些设计的催化剂,为解决能源和环境挑战提供新的有效解决方案。原文详情:Liu, S., Wang, Y., Lyu, K.F. et al. A one-pot strategy for anchoring single Pt atoms in MOFs with diverse coordination environments. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00585-7
  • 高分子表征技术专题——基于原子力显微镜的单分子力谱技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!基于原子力显微镜的单分子力谱技术在高分子表征中的应用Application of Atomic Force Microscopy (AFM)-based Single-molecule Force Spectroscopy (SMFS) in Polymer Characterization作者:张薇,侯矍,李楠,张文科作者机构:吉林大学超分子结构与材料国家重点实验室,长春,130012作者简介:张文科,男,1973年生. 分别于1997、2002年在吉林大学化学系(学院)获得学士、博士学位,导师为张希教授;2001~2002年于德国慕尼黑大学(LMU)博士联合培养,导师为Hermann E. Gaub教授;2003~2007年于英国诺丁汉大学从事博士后研究. 2007年6月至今,吉林大学超分子结构与材料国家重点实验室教授. 2011年入选教育部“新世纪优秀人才支持计划”;2015年获得国家杰出青年基金资助. 以原子力显微镜及磁镊等技术,从单个分子水平开展超分子作用力及大分子组装结构与组装过程研究,主要研究方向包括:单分子力谱与超分子组装、高分子结晶及力致熔融、核酸-蛋白相互作用、聚合物力化学等.摘要基于原子力显微镜(atomic force microscopy, AFM)的单分子力谱技术以其操作简便、适用面广等优势,成为了单分子领域应用最为广泛的技术之一. 本文阐述了该技术的基础原理与实验技巧,包括仪器构造、工作原理、探针与基底的选择、样品固定、实验操作、单分子信号的获得以及数据处理. 介绍了基于AFM的单分子力谱技术在合成高分子及生物大分子表征中的典型应用及前沿进展. AFM单分子力谱技术将有助于建立合成高分子的链结构、链组成与单链弹性以及链间相互作用与其宏观力学性能间的关联,帮助理解生物大分子的结构、相互作用与其生物功能之间的联系.AbstractAtomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) has been used widely in the investigation of molecular forces because of its friendly user interface (e.g., easy to operate and canwork in liquid, air and high vacuum phase) and worldwide commercialization. This review is aimed to introduce the principle and protocol of AFM-based SMFS including the setup, the working principle, typicalcurves, the choice of AFM tip and substrate, immobilization of samples, manipulation of the device, empirical criteria for single-molecule stretching and data analysis. Recent progresses on the application of AFM-based SMFS in the characterization of synthetic polymers and biopolymers were reviewed. For synthetic polymers, the effects of primary chemical compositions, side groups, tacticity and solvents on the single chain elasticities were discussed. The applications of AFM-SMFS in disclosing the structure of unknown molecule, polymer-interface interactions and polymer interactions in polymer assemblies (e.g., polymer single crystal) were introduced. In addition, the nature of mechanochemical reactions and characterization of supramolecular polymers were realizedvia this technic. For biopolymers, the effects of base-pair number, the force-loading mode (unzipping or shearing) on the stability of short double-stranded DNA (dsDNA) were reviewed. According to this knowledge, the single-molecule cut-and-paste based DNA assembly was then discussed. The typical force fingerprints of long dsDNA, proteins and polysaccharides as well as the force-fingerprint-based investigation of molecular interactions were illustrated. Finally, the application of AFM-SMFS in revealing the intermolecular interactions and the mechanism of virus disassembly as well as the antivirus mechanism of tannin in tobacco mosaic virus were reviewed.Therefore, AFM-based SMFS is essential for revealing the relationship between the conformation/composition of polymer chains and micro/macro-mechanical properties of polymer materials as well as correlating the molecular structure/interaction of biopolymers with their biofunctions. 关键词AFM单分子力谱  合成高分子  生物大分子KeywordsAtomic force microscopy-based single-molecule force spectroscopy  Synthetic polymers  Biopolymers 合成高分子材料自诞生以来,迅速地以其优良的物理、化学及力学性能等在军事、航空航天、医疗及其他民用领域得到了广泛应用. 其力学性能是最基本、最重要的性质之一,同时受到高分子的单链弹性及链间相互作用的影响[1,2]. 因此,建立高分子链一级结构、单链弹性及链间相互作用与材料宏观力学性能间的联系, 对高分子材料的理性设计至关重要. 然而,传统的材料学研究方法,如宏观拉伸实验、X射线晶体衍射、固体核磁及拉曼等技术无论从样品制备到检测均涉及大量分子,体现平均效应,表征宏观力学性能,无法获得单个链或键的性质及行为的相关信息. 此外,传统研究方法也无法连续、动态及精确地体现出单个事件的不同步骤(例如高分子在不良溶剂中的塌缩行为),导致很多重要信息无法获取. 因此,可在纳米尺度精确操纵与测量的单分子技术,例如基于AFM的单分子力谱,被广泛应用于单个分子的结构、功能及其动态行为的研究中[1~5]. 利用该技术,人们获得了溶剂、取代基以及立构规整度等因素对高分子单链弹性的影响,验证并改进了一些经典高分子理论模型[1,6~9]. 该技术还可以研究高分子的构象变化及其在界面的吸附行为,揭示外力诱导下高分子链中化学键类型的变化规律(力化学)[1,10~12]. 同时,该技术还被用于凝聚态(晶体、层层组装薄膜等)中高分子间相互作用的相关研究[13,14].生物大分子(核酸、蛋白质及多糖等)结构与功能的研究对于认识复杂生命过程的本质,了解疾病的发生发展机制以及开发新型药物与生物医用材料至关重要. 因此,AFM单分子力谱技术也被广泛用来研究生物大分子,例如DNA的解链及动态结构变化、蛋白质的折叠与解折叠、生物大分子间的相互作用(病毒的遗传物质与蛋白质外壳的相互作用)等[9,15~20]. 相关研究深化了人们对这些生物分子所参与的生命过程的认识,并为其功能调控奠定了坚实基础.本文将重点评述AFM单分子力谱技术的基础原理、实验技巧以及该技术在合成高分子及天然高分子领域的典型应用及前沿进展.1单分子力谱的基础原理1.1几种典型的单分子力谱技术迄今为止,诞生了许多单分子操纵技术,例如生物膜力学探测技术、玻璃纤维技术、光学镊子(光镊)、磁性珠技术(磁镊)以及AFM单分子力谱技术[9,21~25]. 后3种技术的应用较为广泛. 光镊利用聚焦激光束产生辐射压力形成的光学陷阱来捕获修饰有样品分子的小球,通过移动激光光束控制小球的移动,实现对样品分子的三维操纵,其时间分辨力能够达到10-4 s,被广泛应用于蛋白质折叠及解折叠等研究. 但光镊系统构造复杂,对环境要求极高,有效样品捕获率低以及激光束容易对样品造成光和热损伤等不足亟待解决. 磁镊技术将样品固定在基底与超顺磁性小球之间,利用外加磁场控制磁球,操纵样品分子,例如旋转等 [22]. 因此,磁镊被广泛用于DNA缠绕及解缠绕等研究中. 该技术可以检测低至10-3 pN的力值,也被应用于一些极微小力的测量. 该技术还能同时对多个磁球进行操纵,实现高通量测试. 由于需要通过成像观测磁珠,因而相机的拍摄速度决定了磁镊的时间分辨率,通常在10 -2 s以上. 在众多的单分子力谱技术中,AFM单分子力谱技术的应用最广,理论发展更为成熟 [1~5,9,26,27]. 该技术将样品分子固定在AFM探针与基底之间,通过控制AFM探针的位移来操纵样品分子. 该技术具有较高的时间和空间分辨率,较宽的力学测量范围,可以在真空、水相以及有机相等多种环境下工作,因此被广泛地应用于合成与天然高分子等众多体系中的分子内及分子间相互作用的研究. 综上所述,光镊及磁镊的力学精度稍高,适用于由弱相互作用及熵弹性所控制的力学性质的研究;AFM单分子力谱更适合较强相互作用或者由焓控制的弹性性质的研究. 为了更全面地认识聚合物的结构与力学性质,可以将上述3种单分子力谱技术联合使用.1.2AFM单分子力谱1.2.1仪器构造基于AFM的单分子力谱是AFM的工作模式之一. 因此,其基本构造与AFM相同,主要由位置控制系统(压电陶瓷管)、力学传感系统(AFM探针的微悬臂及其顶端针尖)以及光学检测系统(激光二极管、棱镜、反射镜与四象限光电检测器)三部分组成(图1)[9,21,28,29]. 对压电陶瓷管两端施加电压,可以控制其驱动样品台或AFM探针进行亚纳米精度的位移.z方向的移动用于调整探针与样品间的距离;x,y方向的移动用以调整探针在样品表面的探测位置及范围. 光学检测组件中的激光器将激光照射在微悬臂靠近针尖的一端,再反射到四象限光电检测器上. 当AFM探针受到样品分子的牵拉发生弯曲时,其反射的激光的位置也会随之变化. 据此,可以计算出微悬臂的偏转量,结合微悬臂的弹性系数,可以获得待测样品分子的相关力学信息[3~5].Fig. 1The schematic diagram of AFM-SMFS.1.2.2工作原理实验前,样品分子的一端通过物理吸附、特异性相互作用或化学偶联等方法被固定在基底. 随后,驱动压电陶瓷管使AFM探针逼近待测样品(图2(a)). 如果基底对探针没有长程的吸引或排斥作用,微悬臂将处于松弛状态. 探针与基底接触后,受力向微悬臂上表面方向弯曲,引起二极管的2个象限间的差分信号(pha-b)的变化(图2(a)与2(b),状态2→3). 在此过程中,样品分子会通过化学、物理或特异性作用吸附在探针上,在探针与基底之间形成桥联结构. 随后,探针远离基底并恢复松弛状态(图2(a),4),pha-b也恢复初始数值. 探针继续远离基底,桥联于探针与基底间的样品分子受到拉伸,导致微悬臂向针尖方向偏转(图2(a),5),引起pha-b的增加(图2(b),5). 最后,桥联结构中稳定性最薄弱的部分发生断裂,微悬臂迅速恢复为不受力的松弛状态(图2(a),6),表现为pha-b的突然回落(图2(b),6)[1,9,21,29]. 每个完整的逼近-回缩过程都会产生pha-b对应压电陶瓷管位移的原始曲线(图2(b))[29].Fig. 2(a) Schematic illustration of the basic working principle of AFM-SMFS (b) Original volt-piezo displacement curves (c) Typical force-extension curves.Fig. 3Electron microscopy images of a commercial Si3N4 AFM probe. Fig. 4Molecular immobilization based on (I) physical absorption, (‍Ⅱ) specific binding, (‍Ⅲ) gold-thiol chemistry, (‍Ⅳ) silanization and enzymatic biosynthesis.Fig. 5Immobilization of thiol-labeled DNA based on silanization and bifunctional PEG.Fig. 6Typical curves obtained in constant velocity (a) and force-clamp mode (b), respectively.原始曲线经过校正才能正成为最终的力-拉伸长度曲线(图2(c))[1,2,4,9,21,29]. 将具有弹性的微悬臂看成弹簧,根据胡克定律F=kcΔx(kc为微悬臂弹性系数,Δx为微悬臂偏转量)可以计算出微悬臂受到的作用力,即样品分子内或分子间的作用力.kc通过对微悬臂在远离基底时热振动所获得的能量谱的积分即可获得;Δx利用图2(b)中斜线部分(状态2→3)的斜率(s),即Δx=s-1pha-b就可以计算出. 样品分子的拉伸长度通过从原始数据横坐标记录的压电陶瓷管的位移中扣除Δx获得. 至此,pha-b对应压电陶瓷管位移的原始曲线被成功地转化为样品分子的力-拉伸长度曲线.1.2.3力曲线及其含义AFM针尖逼近和远离样品表面的一个循环中可以获得2条力曲线,称为逼近力曲线与回缩力曲线(图2(c))[1,2,4,9,21]. 逼近力曲线上B区域的形状可以给出样品模量等信息. 例如:当AFM探针接触较软的样品时,受到的排斥力随位移缓慢增加;而接触硬度较大的样品时,受到的排斥力快速增加,B区域的力信号与水平基线之间形成近90°的直角. 对于回缩力曲线,C-D区域可以给出单分子弹性性质、链结构信息以及分子内、分子间相互作用强度等定量信息.2AFM单分子力谱实验技巧2.1探针与基底的选择AFM探针直接影响力学探测的稳定性、精确度及测量范围[1,2,4,9,21,29]. 其材质通常是硅或氮化硅,由针尖、微悬臂及承载微悬臂的基片组成(图3). 针尖通常是四面体形状,最尖端的曲率半径(tip radius)为几个到几十纳米,高度(tip height)通长为3~28 µm. 微悬臂有矩形和三角形2种,长度为7~500 µm,厚度为0.5~7 µm. 其材质及几何尺寸均对共振频率和弹性系数有重要影响,需要根据实验体系来选择探针. 对于弱相互作用体系(例如双链DNA的解拉链)[30],应选择相对柔软,即弹性系数小的探针;而强相互作用体系(例如:共价键强度的测量)[31],则需选择相对坚硬,即弹性系数较大的探针. 值得注意的是,刚性较大的探针在应力松弛时其内部储存的能量释放速度更快,更适于研究多重键的连续打开与形成的动态过程,例如聚酰胺(PA66)单晶中聚合物链在受力熔融过程中的黏滑运动(stick-slip)[32]. 此外,一些公司也生产了许多功能化的AFM探针. 例如:满足基于巯基-金的化学分子偶联的镀金AFM探针;为了增加激光束在微悬臂上表面的反射率,只在上表面蒸镀金属涂层(铝或金等)的探针等. 然而,只存在于微悬臂上表面的镀层,往往导致其上下表面的膨胀系数产生差异,引起热漂移[33]. 为了减小该热漂移,有些探针只在其微悬臂的尖端进行有限的金属蒸镀(例如MLCT-BioDC型号探针). 如需增加时间分辨率,可以选用超短探针[34]. 但超短探针的弹性系数通常较大. 科研人员曾利用离子束刻蚀的方法将微悬臂做成镂空结构,同时保证了时间分辨率和弹性系数[35]. 然而,使用较小尺寸微悬臂时,激光容易“漏射”到样品表面,发生反射,与微悬臂表面的反射光产生干涉,导致力曲线出现大幅度波动. 为了减少这种干涉效应,通常可以采取以下几种策略:(1)减小汇聚到微悬臂表面的激光光点的大小,从而减小漏光;(2)选用横向尺寸较大的微悬臂,增大反射面积;(3)选择透明基片(例如玻璃片)固定样品,降低基片的反射率;(4)适当增加样品平面相对于微悬臂平面的角度,降低反射光的相干性.AFM探针需要被牢固地固定在夹具上,以减少系统漂移. 为了提高微悬臂检测的灵敏度,将激光光斑尽可能地照射在微悬臂的最前端. 仪器调试完毕,让整个系统平衡10~30 min,使微悬臂上下表面材质差异所引起的界面张力达到平衡,减小系统漂移. 如在同一个样品上进行力谱探测的时间较长,且实验前期及后期羧甲基化淀粉以及多聚蛋白质的力学指纹谱是被经常采用的单分子拉伸指示剂. 为此,可以将待测分子与已知指纹图谱的分子进行串联(图7)[49]. 需要注意的是待测体系的力学稳定性要大于内标分子产生力学指纹谱所需的力值.Fig. 7Basic strategy to isolate/identify single chain/molecule pair stretching.2.5力谱数据的分析处理单分子力谱数据可以给出的信息包括长度及力值的定量信息. 为了更精确地描述这些定量信息,通常需要对大量力学信号进行统计分析[1]. 常用的统计方法是将所得数据以柱状图形式呈现,进行高斯拟合,得出最可几值.此外,还可以利用自由连接链模型及蠕虫链模型对数据拟合,获得库恩长度、相关长度或者链段弹性系数等信息[1]. 近年来,这些经典模型不断被修正,应用范围逐渐被拓展[56]. 例如:FJC模型中了增加参数Ksegment,表征高分子链中每一个链段的弹性,被修正为可伸长的FJC模型(eFJC). 该模型中,每一个链段类似弹簧,受力过程中伸长,可以更加精确地描述高分子受力时的弹性行为. 为了更好地描述高分子主链的固有弹性,即本征弹性,由量子力学(QM)计算得到的非线性单链焓弹性模量被整合到WLC、FJC及FRC模型中,得到了QM-WLC、QM-FJC与QM-FRC模型[57]. 在特定情况下,如水环境或真空条件,侧基和环境的非共价相互作用会对高分子链弹性产生影响. 为了得到上述情况下高分子主链的弹性,基于两态(two-states)系统的非共价作用动力学被引入,创建了TSQM-WLC、TSQM-FJC及TSQM-FRC模型. 上述修正模型能够更加精确地定量高分子链的结构及性质[57].一些非平衡态体系,例如受体配体的解离、力诱导下的转变等,力加载速率会影响力-拉伸长度曲线的形状. 因此,可以在较大力加载速率范围内,观察上
  • 仪器表征,科学家先进表征揭示电催化CO₂还原新突破!
    【科学背景】电化学还原一氧化碳(CORR)作为一种无碳酸盐的潜在方法,利用可再生电力生产乙烯引起了广泛关注。乙烯作为重要的化工中间体,其制备过程一直受到选择性和能效的限制。传统的碳-碳偶联反应在碱性条件下虽然有效,但同时也伴随着碳酸盐形成导致的CO2利用效率低问题。而在酸性电解质中进行CO2RR虽然能一定程度上解决了碳酸盐生成问题,但却面临能量效率不高的挑战,特别是在乙烯选择性方面表现不佳。为了解决这些问题,科学家们致力于减弱水解离过程,目的是抑制竞争的氢析出反应,进而提高CO2RR的选择性和能效。然而,初步的实验结果表明,减缓水解离过程并非一劳永逸的解决方案,因为使用重水代替普通水反而导致对乙烯的选择性进一步降低,这引发了新的思考和探索方向。有鉴于此,悉尼大学化学与生物分子工程学院李逢旺教授, 中国科学技术大学,合肥微尺度物质科学国家研究中心及化学物理系曾杰教授(国家杰青)联合多伦多大学David Sinton 和 Edward H. Sargent院士合作探索了促进水吸附并降低水解离能量壁垒的新方法。通过将强电子受体7,7,8,8-四氰基喹啉二甲烷(TCNQ)引入铜催化剂表面进行分子修饰,研究团队实现了显著的乙烯产率提升。修饰后的催化剂表现出75%的乙烯法拉第效率,比未修饰的铜催化剂高出1.3倍。在膜电极组件系统中,实现了32%的全电池能量效率,对应乙烯电合成的能量成本为154 GJ t-1。关键的创新在于,TCNQ修饰不仅增强了铜与水分子的相互作用,促进了水解离过程,还降低了CO到乙烯途径中关键中间体的氢化能量壁垒,从而显著提高了乙烯的选择性。通过一系列原位表征和密度泛函理论(DFT)计算,研究进一步揭示了修饰催化剂的作用机制。【科学亮点】(1)实验首次探索了使用7,7,8,8-四氰基喹啉二甲烷(TCNQ)对铜催化剂进行分子修饰,以提高CO电还原产乙烯的效率和选择性。(2)实验通过在流动电池中测试修饰后的催化剂,发现其乙烯法拉第效率达到75%,比未修饰的铜催化剂高出1.3倍。此外,在膜电极组件(MEA)系统中,实现了32%的全电池能量效率,对应的乙烯电合成能量成本为154 GJ t-1。(3)通过一系列原位表征和密度泛函理论(DFT)计算,揭示了TCNQ修饰如何增强铜与水分子的相互作用,降低了关键中间体*CHCOH到*CCH的氢化能垒,从而提高了CO到C2H4的选择性。【科学图文】图1:水解离对CORR产品分布的影响。图2. Cu-100TCNQ催化剂的表征。图3. TCNQ修饰铜电催化剂的CORR性能。图 4:TCNQ修饰铜催化剂促进C2H4形成的机理研究。【科学结论】本文探索利用强电子受体修饰铜催化剂以激活水解离过程,从而提升CO到C2H4途径的效率和选择性。通过这一设计原则,研究展示了铜与7,7,8,8-四氰基喹啉二甲烷(TCNQ)的相互作用如何增强水分子的吸附和解离能力,进而降低了关键中间体*CHCOH到*CCH的氢化反应能垒。这些发现不仅在实验层面证实了修饰催化剂在电化学还原反应中的潜力,而且通过密度泛函理论(DFT)计算提供了理论支持。此外,通过流动电池和膜电极组件系统的实际性能评估,显示出高达75%的C2H4法拉第效率和32%的能量效率,这为碳中和和可持续化学品生产提供了有前景的路径。这项工作不仅拓展了催化剂设计的思路,还为实现高选择性和能效的多碳产品生产提供了新的理论和实验基础。原文详情:Liang, Y., Li, F., Miao, R.K. et al. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00568-8
  • 天美公司参加第二届全国纳米材料与结构、检测与表征研讨会
    2010年5月10日至12日,第二届全国纳米材料与结构、检测与表征研讨会今天在厦门大学开幕。天美(中国)科学仪器有限公司作为特约赞助商参加了此次盛会。本届研讨会由中国微米纳米技术学会纳米科学技术分会主办,中科院、国家纳米科学中心、各大高校的纳米研究领域的知名专家学者,围绕纳米材料与纳米结构材料的制备技术、纳米材料与纳米结构性能与机理研究、纳米材料应用与纳米器件、低成本纳米材料和器件的开发和产业化、纳米检测技术标准化等内容做专题报告。     谢思深、薛其坤、江雷和田中群等多位院士参加了会议,其中薛其坤院士和江雷院士先后作了专题报告。     薛其坤院士作“拓扑绝缘体薄膜的MBE生长与奇特性质”的报告   科技部从2006年开始的国家重大研究计划(973) “纳米标准物质和检测用纳米标准样品的可控合成、量产及微加工标准化研究”,由国家纳米中心、中科院物理所和微电子所联合负责,目前已取得了多项科研成果,国家纳米科学中心和中科院微电子所的多位专家作了报告。     国家纳米科学中心的吴晓春研究员作“中国纳米标准物质/样品研究进展”的报告     中科院微电子所陈宝钦教授作“应用于电镜倍率校准的纳米尺度标准物质制造技术的研究”的报告   中国计量科学研究院李红梅研究员作了“纳米检测技术标准化对计量技术的需求”的报告   中国的扫描电镜的倍率校准标样和计量方法的推出已为期不远,这将改变电镜倍率校准只有行业标准、标准样品只能进口的现状,这对国内纳米尺度的检测有重要意义。      多个报告中引用了日立S-4800场发射扫描电镜的图片,可见日立S-4800电镜在纳米界的应用十分广泛。
  • 国庆公益大放送!材料表征与评价专家授课视频全集
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 2019年9月27日,由仪器信息网主办的材料表征与评价主题网络研讨会成功召开,8位材料检测领域的知名专家从各个维度就热点材料表征、各行业材料评价、热点检测方法等主题做了精彩的报告分享,并与260余位听课的网友朋友们进行了积极的交流互动。国庆佳节将至,为共庆华诞,仪器信息网特将全部专家报告汇总于一,免费放送给小伙伴们永久学习。 /span /p p style=" text-align: center text-indent: 0em " strong 点击下方图片获得完整版视频链接合集 /strong /p p style=" text-align:center" a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/220" target=" _self" strong img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/201909/uepic/6241965d-d902-4d0b-977f-56c92617c9f2.jpg" title=" 国庆公益大放送!材料表征与评价专家授课视频全集3.jpg" alt=" 国庆公益大放送!材料表征与评价专家授课视频全集3.jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" / /strong /a /p p style=" text-align: justify text-indent: 2em " 北京高压科学研究中心高翔研究员通过《原子尺度先进功能与能源材料界面结构分析》的报告,介绍了自己团队的三大科研成果:首先,实现了尖晶石型锂电正极材料LiMn2O4在金属电极上外延生长,在原子尺度阐释了其外延生长机制、氧空位对LiMn2O4表面结构及其化学循环稳定性的重要影响;其次,首次报道了钙钛矿型固态锂离子电解质La-Li-Ti-O的畴界结构及其对锂离子传导的影响;再次,成功合成一种具有“1D+2D”全新结构的CeO2-Y2O3快离子导体,并揭示了其快离子导电的界面起源。( a href=" https://www.instrument.com.cn/webinar/video_105765.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 完整报告视频链接 /span /strong /a )。 /p p style=" text-align: justify text-indent: 2em " 高分子材料行业的工作流程极为复杂,从起始原材料的评价,到聚合物的合成与制造,到产品的改善和工艺增值。多需要分析技术的大力支持,其中常用的手段有GPC、APC、FITR、GC、Py-GC/MS、元素分析、UPC2、电镜、光学分析、理化测试等,沃特世高级应用工程师蔡麒通过《利用化学分析新技术从多方面表征材料案例分享PI表征为例》的报告,为我们带来了高分子材料行业的一些化学分析创新技术解决方案。( a href=" https://www.instrument.com.cn//webinar/video_105763.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 完整报告视频链接 /span /strong /a )。 /p p style=" text-align: justify text-indent: 2em " 激光衍射是一项被广泛应用于颗粒大小表征的技术,样品的分散是该表征方法重要的前处理步骤,对于获得可靠性的粒度结果尤为重要。按照分散介质的不同,样品的分散可大致分为湿法和干法分散。马尔文帕纳科产品经理孙正亮分享了这两种分散的方法和经验,并对不同样品在分散过程中可能带来的误差和解决方法进行了分析。( a href=" https://www.instrument.com.cn//webinar/video_105762.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 完整报告视频链接 /span /strong /a )。 /p p style=" text-align: justify text-indent: 2em " 任凯亮研究员做了《压电聚合物及其纳米复合物的表征及其在能量收集方面的应用》的报告,他分享了EAP(电活性聚合物)进行能量收集实验的研究,该材料能表现出比电磁马达在低频下更高的效率,包括压电聚合物、驻极体、压电复合物等。另外,MENG能够在走路时产生180V电压以及0.5uW的能量,可以用于传感器,具有更高的灵敏度。( a href=" https://www.instrument.com.cn/webinar/video_105761.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 完整报告视频链接 /span /strong /a )。 /p p style=" text-align: justify text-indent: 2em " 北京理化分析测试中心副主任高峡研究员带来了题为《高性能与功能化高分子材料的表征技术》的报告,重点就与之相关额表征和评价分析测试技术进行了介绍,并做了经典案例分享。按照组成、结构到性能的分类,主要有元素分析、官能团与分子结构,以及聚集态结构、分子量及分子量分布表征技术、基本性能表征、材料力学性能表征、热性能表征、耐环境性能表征等( a href=" https://www.instrument.com.cn//webinar/video_105760.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " strong 完整报告视频链接 /strong /span /a )。 /p p style=" text-align: justify text-indent: 2em " 岛津高级产品经理郝正明介绍了XRF、SPM、EPMA、XPS等几种常见的表征分析方法, 并就锂电池负极集流体、太阳能电池缓冲层、锂电池正极氧化钴原料、三元正极材料等代表性应用案例进行了介绍和分析。( a href=" https://www.instrument.com.cn/webinar/video_105759.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 完整报告视频链接 /span /strong /a )。 /p p style=" text-align: justify text-indent: 2em " 江苏科技大学副教授李照磊带来了《聚乳酸外消旋共混物结晶行为的热分析研究》的报告,主要介绍了常规差式扫描量热仪在聚乳酸立构复合晶与均质晶平衡熔点的差异研究和告诉扫描芯片量热仪的新型成核动力学表征方法等内容。( a href=" https://www.instrument.com.cn/webinar/video_105758.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 完整报告视频链接 /span /strong /a )。 /p p style=" text-align: justify text-indent: 2em " 林中清在安徽大学现代实验技术中心从事扫描电镜管理及测试工作超过30年,他认为,“冷场扫描电镜无法进行磁性材料测量”是一个片面的说法,在报告中,林老师从磁性材料以及冷场扫描电镜的认识出发,以大量事例来探讨冷场电镜对磁性材料的检测方法及注意事项。以修正这种观点,开拓冷场扫描的应用领域。( a href=" https://www.instrument.com.cn//webinar/video_105757.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 完整报告视频链接 /span /strong /a )。 /p p style=" text-align: justify text-indent: 2em " 会议期间广大网友与老师们积极互动交流,气氛热烈,会议结束后,在仪器信息网的材料表征与评价学术交流群中也得到了热烈的反响。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201909/uepic/b2bd82ce-b463-432e-92fa-50c6a5e7e224.jpg" title=" 国庆公益大放送!材料表征与评价专家授课视频全集1_看图王.jpg" alt=" 国庆公益大放送!材料表征与评价专家授课视频全集1_看图王.jpg" width=" 300" height=" 352" border=" 0" vspace=" 0" style=" text-align: center max-width: 100% max-height: 100% width: 300px height: 352px " / /p p style=" text-align: center text-indent: 2em " strong 扫描下方二维码加入材料表征与评价学术交流群 /strong /p p style=" text-align: center text-indent: 0em " strong img style=" max-width: 100% max-height: 100% width: 300px height: 348px " src=" https://img1.17img.cn/17img/images/201909/uepic/103eb435-b909-4034-a91d-aa4c89b967b4.jpg" title=" 国庆公益大放送!材料表征与评价专家授课视频全集2_看图王.jpg" alt=" 国庆公益大放送!材料表征与评价专家授课视频全集2_看图王.jpg" width=" 300" height=" 348" border=" 0" vspace=" 0" / /strong /p p br/ /p p style=" text-align: center text-indent: 2em " strong 精彩讲堂预告 /strong /p p br/ /p p style=" text-align: left text-indent: 2em " strong 会议名称:“ /strong 3D打印应用及检测”主题网络研讨会 /p p style=" text-align: left text-indent: 2em " strong 会议时间: /strong 2019年11月4日 /p p style=" text-align: justify text-indent: 2em " strong 会议详情: /strong 专家名单及报名入口将在国庆节后开放,想要得到第一时间的通知,可扫描屏幕下方二维码,添加仪器信息网小材子个人微信号(XCZ3i666),备注3D打印。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 300px height: 300px " src=" https://img1.17img.cn/17img/images/201909/uepic/11e25da5-0c4c-4e71-a5fb-0ea252c9c76b.jpg" title=" 微信图片_20190605094648.jpg" alt=" 微信图片_20190605094648.jpg" width=" 300" height=" 300" border=" 0" vspace=" 0" / /p
  • 明天开播!千人大会之“电池材料与颗粒分析表征”专场精彩预告
    电池性能的优劣,很大程度上取决于其构成材料的选择与制备工艺,以及材料微观结构的精细控制。颗粒分析表征作为材料科学研究的重要手段,能够揭示材料在纳米至微米尺度的结构特征、化学成分、相变过程及界面效应等关键信息,为电池材料的设计与优化提供科学依据。为促进学术界与产业界的交流,推动电池材料科学与技术的进步,仪器信息网联合中国颗粒学会将于2024年7月23-24日举办第五届“颗粒研究应用与检测分析”网络会议,特设“电池材料与颗粒分析表征”专场。点击图片直达报名页面 会议特邀中国颗粒学会秘书长王体壮致辞,中科院金属所研究员孙振华、北汽新能源高级经理宋冉冉、天目湖先进储能技术研究院吴喜明、清华大学博士研究生左安昊、中科大理化科学实验中心工程师周宏敏分享电池材料结构调控与电化学性能研究、关键指标及表征方法、单颗粒动力学测试方法与材料数据库等。中国科学院金属研究所研究员 孙振华《聚合物基储能材料的结构调控与电化学性能研究》(点击报名)孙振华研究员研究工作主要围绕着锂硫电池和固态电池等新型电池体系,开展关键电极材料、电解质和器件性能研究,相关研究成果在Nature Commun.、Chem. Soc. Rev.、Energy Environ. Sci.、Adv. Mater.等期刊发表SCI收录论文120余篇,被引用12000余次,H-index为53,申请发明专利22项,获授权专利9项。曾获得中国颗粒学会自然科学一等奖(排名第二),入选中国科学院青年创新促进会优秀会员和辽宁省“兴辽人才计划”青年拔尖人才。目前担任中国颗粒学会青年理事,《天津大学学报》编委,SusMat、eScience和中国化学快报的青年编委。聚合物材料在电化学储能材料和器件中具有重要的作用。聚合物材料的结构决定着锂离子在聚合物中的反应和输运行为,从而影响储能器件的性能。针对聚合物材料在锂硫电池电极材料中的应用,该报告系统总结了有机硫聚合物在锂硫电池中的不同功能。在此基础上,报告为聚合物在电化学储能中应用和提高锂硫电池、聚合物固态电池的性能提供了新思路。北京新能源汽车股份有限公司高级经理 宋冉冉《动力电池核心原材料关键指标及表征方法》(点击报名)宋冉冉博士2014年毕业于北京化工大学材料学,2016年入职北汽新能源。10年锂电池材料研发经验,对电芯材料合成制备、表征、电化学原理、材料前瞻技术等有较深入的研究。牵头电芯技术项目开发、负责电芯原材料选型及体系开发工作。本报告针对影响动力电池性能的各项核心原材料关键指标,讲述了指标特征、相关作用机理、表征方法和测试原理等,并对原材料失效进行典型案例分析。天目湖先进储能技术研究院高级工程师 吴喜明 《电池材料形貌、表界面表征方法及应用案例》(点击报名)吴喜明高工硕士毕业于深圳大学材料学专业,具有多年材料显微分析,表面分析、理化测试工作经验,目前在天目湖先进储能研究院从事电镜及表面分析仪器的测试工作,专注于先进分析仪器表征电池材料微观形貌、表面成分,为电池材料、电芯企业提供检测服务。电池材料的形貌、表界面性质对电池性能的发挥起着至关重要的作用,而常规的测试分析手段存在一定的局限性,本报告列举了透射电子显微镜(TEM)、俄歇电子能谱(AES)、X射线光电子能谱(XPS)、飞行时间-二次离子质谱(Tof-sims)等先进表征分析仪器在电池材料分析方面的独特作用,依赖类似高水平的测试技术可以对电池材料进行更加深入、细致的理解。清华大学博士研究生 左安昊《电池材料单颗粒动力学测试方法与材料数据库》(点击报名)左安昊博士担任北京易析普罗科技有限责任公司CEO,主要从事电池材料单颗粒测试方法相关基础研究与产业化工作。在Cell Reports Physical Science、Journal of Power Sources、Journal of Energy Storage、储能科学与技术等期刊上发表学术论文10篇,授权发明专利13项,参与国家自然科学基金、国家重点研发计划等多项课题。曾获国家奖学金、北京市三好学生、江苏省优秀学生干部、清华大学优秀学生干部标兵、清华大学“一二九”辅导员等荣誉以及世界电动车大会优秀论文奖、首届未来颗粒前沿论坛优秀报告奖等奖项。电池材料研发需要快速、精准的性能评价手段,电池模型搭建需要精确的动力学参数输入。目前,业内主要以电极/单体为测试对象,根据电池性能反推材料性能/参数。然而,电池内部含有多种材料、多种物相,传统动力学测试方法仅能得到不同材料各自动力学过程的混合结果,难以确定单因素对材料/电池性能的影响,也不能反映单一材料性能。本报告将介绍一种以材料单颗粒为实验对象的热/动力学性能测试方法。该方法适用于锂离子电池活性材料并具有较高的测量精度,对固态电解质、钠离子电池材料等也具有一定通用性。中国科学技术大学理化科学实验中心工程师 周宏敏《扫描电镜在新能源电池和钙钛矿材料表征中的应用》(点击报名)周宏敏工程师在中国科学技术大学理化科学实验中心从事扫描电镜应用服务及相关技术开发。主持中科院仪器设备功能开发技术创新项目2项,参与863仪器研究项目1项,作为第一发明人获授权专利3项,发表仪器技术及管理文章10余篇。针对新能源电池研究材料如Li,Na,K以及卤素、硫化物的全固态电解质等化学性质活泼的材料,不能接触空气的特点,周宏敏研制了基于气氛保护的传输盒,在扫描电镜仓内真空环境下打开,实现了测试材料从实验室手套箱全程不接触空气进入扫描电镜进行分析表征,支撑了多项成果发表于Nature Communications,Angew. Chem. Int. Ed.,Energy Storage Materials,J. Am. Chem. Soc.等高水平杂志。本报告针对有机无机杂化钙钛矿材料在电子辐射条件下不稳定的难点,将进行OIHP薄膜样品的扫描电镜成像条件探讨研究,采用低加速电压的策略,既保持OIHP表面细节的分辨率又减小辐射损伤,并采用扫描旋转的成像方式较好地解决截面成像易畸形的难点。以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/particuology2024/
  • 感恩节直播有礼!光电材料器件研究与表征技术主题网络会议倒计时!
    11月24日上午,在2022年感恩节之际,仪器信息网将携手日立科学仪器(北京)有限公司特别举办“追光逐电 与日俱新”光电行业主题网络会议。此次会议将聚焦光电材料器件研究进展与相关表征技术,同时,作为感恩节直播活动,直播间将设置多轮千元红包雨、精美礼品抽奖回馈参与直播的广大用户。【直播免费报名倒计时,赶快点击报名】一、活动背景光电产业是将光子学、电子学、信息学技术相融合的高新技术产业,是围绕光信号产生、传输、处理和接收等环节,开展各类零件、组件、设备制造及应用市场商业行为活动的总和。光电行业虽是一个新兴产业,但已呈现出生机勃勃的发展态势,产值指标一路扶摇直上。据数据,2019年光电行业总体规模已超过1.5万亿元,预计全球光电市场仍会持续以两位数的速度增长。正是这种快速增长的产业发展速度,吸引了众人的眼球,带动了世界各国光电相关产业的发展。光电子材料、器件是光电子技术的关键和核心部件,是现代光电技术与微电子技术的前沿研究领域,对应材料、器件的表征测试技术对于光电技术发展至关重要。为推动光电表征测试技术及光电产业的发展,仪器信息网携手日立科学仪器(北京)有限公司,11月24日特别举办“追光逐电 与日俱新”光电行业主题网络会议,邀请光电材料、器件研究专家及检测技术专家,以线上报告分享形式,共同探讨光电产业检测技术的最新进展。二、活动时间11月24日 09:30 –12:00三、活动报名点击会议官网报名,或扫码以下二维码报名https://www.instrument.com.cn/webinar/meetings/hitachi2022/ 四、活动日程时间 报告题目演讲嘉宾09:30会议开场及红包雨主持人09:32薄膜光电器件中的界面能带结构陈琪(中国科学院苏州纳米技术与纳米仿生研究所 研究员)10:00日立电镜在光电行业的应用(三维形貌观察和失效分析)周海鑫 (日立科学仪器(北京)有限公司 电镜市场部 副部长)10:28抽奖及红包雨:小米充电宝主持人10:30面向未来显示的量子点发光材料与器件宋继中(郑州大学 教授)11:00日立光谱在光电材料研发测试中的应用王锡树(日立科学仪器(北京)有限公司 光谱应用工程师)11:28抽奖及红包雨:新秀丽双肩包主持人五、活动福利直播间千元惊喜红包雨(需要在微信内进入直播);优质问答奖,日立甄选高定礼盒;二等奖,新秀丽双肩包;三等奖,小米充电宝六、活动嘉宾宋继中 郑州大学 教授【嘉宾简介】本科毕业于郑州大学,曾在显示面板公司-友达光电从事OLED研发,目前为郑州大学教授。近年来一直从事发光显示材料及器件教学及科学研究。在发光显示领域,首次实现了铯铅卤量子点的电致发光,被Science、Nature Nanotechnology等评价为“首次(first)发展”、“发起了(initiated)”、“开启了(opened)”该LED体系。研究成果在Nature Photonics、Advanced Materials等期刊上共发表SCI论文80余篇,被SCI他引12000余次,获国家发明专利授权20项。支持国家优秀青年基金、江苏省杰出青年基金等项目。2015、2017年连续指导第十四届(一等奖)、第十五届(特等奖)“挑战杯”全国大学生课外学术科技作品竞赛,获第十五届“挑战杯”全国大学生课外学术科技作品竞赛优秀指导教师奖。【分享题目】面向未来显示的量子点发光材料与器件【分享摘要】全无机铯铅卤(CsPbX3)量子点发光二极管(QLEDs)具有窄而可调谐的发射光谱,显示出高纯度和真实的色彩,被认为是未来柔性和高清显示有力的候选者。报告的内容包括: 1. 率先构筑了该体系量子点发光器件,被评论为“发展(developed)”、“发起(initiated)”了该方向; 2. 针对应用化受限于电-光转换效率低的问题,提出了该体系量子点表面态及缺陷态的调控思路,发展了“混合溶剂纯化”、“杂化钝化”、“界面钝化”、“异质相”等策略,与国际同行交替刷新了器件的最高效率; 3. 针对应用化受限于难以规模化生产的问题,发展了“三配体协同”的方法,实现了高效量子点的规模化合成。陈琪 中国科学院苏州纳米技术与纳米仿生研究所 研究员【嘉宾简介】陈琪,研究员,博士生导师,创新实验室副主任,获评国家优秀青年科学基金,江苏科技创新U35攀峰提名奖,苏州杰出青年岗位能手等。担任Chinese Chemical Letters青年编委,TCL集团技术顾问等。2014年获中国科学技术大学博士学位,2014-2017年在中科院苏州纳米所和美国华盛顿大学从事博士后研究;2017-2020年任中科院苏州纳米所副研究员,2021年晋升为研究员。研究领域为新能源、新型显示器件中的材料与界面。迄今在Nature Commun.,J. Am. Chem. Soc.,Adv. Mater.,Energy Environ. Sci.,Nano Lett.等期刊发表论文50余篇。作为项目负责人承担科技部国家重点研发计划课题,国家自然科学基金,龙头企业合作项目等十余项。【分享题目】薄膜光电器件中的界面能带结构【分享摘要】薄膜光电器件,包括太阳能电池,光电探测器,发光二极管和激光器等,是由电极层,界面层和活性层等多层薄膜堆叠组成的光-电或者电-光转换器件,包含丰富的层间甚至层内异质结,其中的关键科学问题是界面能带结构与器件性能的构效关系。薄膜光电器件的界面能带结构非常复杂,不仅随空间位置改变,而且在工况下动态演变,难以根据界面材料组成由理论模型准确推测。 本人致力于发展横截面扫描探针显微术,突破薄膜光电器件垂直封闭结构的限制,解决包埋界面能带结构的工况表征难题。通过界面能带结构与器件性能之间构效关系的准确理解,解析薄膜光电器件未知工作机理,从而为界面设计提供判据,突破器件性能瓶颈。周海鑫 日立科学仪器(北京)有限公司电镜市场部副部长【嘉宾简介】周海鑫博士毕业于北京化工大学,主修高分子材料和化学专业,曾在德国马克斯普朗克高分子研究所电镜中心工作,主要负责电镜的测试和相关研究工作,对扫描电镜和透射电镜的原理、操作及应用非常熟悉。周博士目前主要负责日立表面科学相关产品的技术支持、应用开发和产品推广,具有将近10年的电镜相关领域工作经验。【分享题目】日立电镜在光电行业的应用(三维形貌观察和失效分析)【分享摘要】电子显微镜作为重要的微观表征设备,已经广泛的应用于光电行业。本报告将重点介绍日立各类电镜及其相关产品的特点以及其在光电相关行业的应用案例,包括各类光电材料的形貌观察和成分分析,光电器件的三维形貌观察和失效分析,光电薄膜的粗糙度测量及界面分析等。王锡树日立科学仪器(北京)有限公司光谱应用工程师【嘉宾简介】王锡树,日立科学仪器(北京)有限公司 分析应用部 光谱产品工程师,硕士毕业于上海师范大学,目前主要负责日立紫外-可见-近红外分光光度计、荧光分光光度计等光谱产品的应用工作,拥有多年光谱分析测试技术和应用解决方案等方面的工作经验。【分享题目】日立光谱在光电材料研发测试中的应用【分享摘要】介绍日立荧光光度计和紫外可见近红外分光光度计对光电材料的表征
  • 直播预告!第四届材料表征与分析检测技术网络会议之表界面分析分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/表面与界面分析主题专场会议日程:报告时间报告题目报告人专场二:表界面分析(12月14日下午)14:00--14:30XPS谱峰拟合中国科学技术大学理化科学实验中心高级工程师 姜志全14:30--15:00分辨率、液相、物性测试——原子力显微镜在表界面分析中的应用牛津仪器科技(上海)有限公司AFM应用工程师 竺仁15:00--15:30电池中的表界面分析中国科学院苏州纳米技术与纳米仿生研究所研究员 沈炎宾15:30--16:00钕铁硼磁性材料的电子探针表征岛津企业管理(中国)有限公司应用工程师 赵同新16:00--16:30铜基金属催化剂表界面的原位环境透射电镜研究天津大学教授 罗浪里16:30--17:00应用非线性光学技术探测物质表界面东南大学研究员 卢晓林直播抽奖:暖心青年玻璃杯5个嘉宾介绍:中国科学技术大学理化科学实验中心高级工程师 姜志全姜志全,理学博士,中国科学技术大学高级工程师。研究领域为表面化学与纳米催化,在不同层次构筑纳米催化模型体系,利用各种光谱和能谱技术对物质进行测试和分析,同时致力于构建原位测试表征系统,力图在原子分子水平上揭示研究体系的构效关系和作用机制。作为项目负责人,已主持完成两项国家自然科学基金项目(项目批准号20803072与11079033)和一项中国科学院仪器设备功能开发技术创新项目(项目编号2015gf05)。已在国内外学术期刊发表SCI收录论文七十余篇。【摘要】 针对XPS数据处理过程中的谱峰拟合问题,报告主要介绍了谱峰拟合的基础知识、拟合方法和相应的拟合参数设置,并结合实例示范了谱峰拟合的操作流程。牛津仪器科技(上海)有限公司AFM应用工程师 竺仁2015年毕业于美国明尼苏达大学机械工程系,在博士以及博士后期间积累了多年的原子力显微镜使用和研发经验。2016年加入牛津仪器Asylum Research ,任职原子力显微镜应用工程师,负责原子力显微镜的技术支持和应用开发。【摘要】 在众多的表界面分析工具中,原子力显微镜(AFM)具有独特的优势及应用。通过纳米针尖和样品的近场相互作用,AFM可以达到远超光学技术的分辨率,甚至实现晶格缺陷级别的表征。由于不依赖于真空技术,AFM适合在复杂液体环境中进行扫描,包括对液相反应进行原位成像。功能化的AFM针尖,还能够对样品的电学性质和力学性质进行表征。凭借这些特点,AFM不仅是表界面学术研究中的常用工具,也愈来愈多地被用于解决工业研发和生产中的问题。中国科学院苏州纳米技术与纳米仿生研究所研究员 沈炎宾沈炎宾,中国科学院苏州纳米技术与纳米仿生研究所研究员,博导,国家级青年人才,江苏省双创人才。哈尔滨工业大学学士,丹麦奥胡斯大学博士。长期从事先进二次电池关键材料、界面化学调控、原位电化学机理研究。截止2022年4月,已在J. Am. Chem. Soc., Nature Commun., Joule等期刊发表研究论文~80篇,是30余项中外发明专利的发明人,主持国家省市各级基金和产业界横向合作项目十余项,《物理化学学报》和《电化学》青年编委。【摘要】 锂电池的界面稳定化学对电池循环寿命和安全性影响极大,聚焦界面化学研究是实锂电池长循环寿命和高安全性突破的关键。我们致力于锂电池界面化学研究,近几年围绕着锂电池的三个界面问题,即电极活性材料的界面化学稳定性、电极|电解液界面的循环稳定性、以及固态金属锂电池固-固界面的离子传输挑战开展研究,提升锂电池的性能。在这个报告中,我将跟大家分享我们在锂电池表界面分析中的一些经验。岛津企业管理(中国)有限公司应用工程师 赵同新从事电子显微分析十多年,专长于材料表征,在材料微区测试和金属构件的失效分析上有着丰富的经验,曾参与CNAS压力容器失效分析机构认可标准制定和研讨。在大型的行业研讨会上主讲过《金属构件的失效分析》、《汽车材料的电子探针测试与分析》、《含超轻元素矿物的微区定量测试》、《电子探针及其在材料测试中的应用》等专题。现专职于微区定量测试研究,负责不同行业材料的应用开发。对多种材料的微区观察、测试和分析需求有着深入的理解,为行业用户提供现场技术支持及应用解决方案。【摘要】 介绍超轻元素和稀土元素的电子探针测试特点、NdFeB磁性材料微区定量测试方法探讨、NdFeB磁性性能改善晶界扩散Tb/Dy的表征等问题。天津大学教授 罗浪里天津大学分子+研究院教授,国家青年人才计划入选者,在纽约州立大学获得博士学位,先后在美国西北大学、能源部西北太平洋国家实验室从事研究工作。主要研究方向为原位透射电子显微学在异相催化、锂电池等领域的应用,以第一/通讯作者在Nature Mater., Nature Nano., PNAS, JACS, PRL, Angew等杂志上发表论文40余篇。【摘要】 气体与金属界面的相互作用是相催化研究的核心科学问题之一。反应气体在金属表面上的吸附、解离和反应过程决定了催化反应的机理和金属催化剂的性能。金属催化剂设计中的表观形貌、表面原子结构、元素掺杂、物相以及应变调控等等策略都需要对于金属催化剂表面原子级的精准表征。更重要的是,反应气体分子与上述金属催化剂表面的相互作用的原子过程,厘清这些原子过程既可以为反应机理的研究例如活性位点的确定提供直接证据,又可以为催化剂的衰减机制研究提供有力证据,从而优化催化剂设计。 在诸多高分辨原位表征手段中,透射电子显微学一直走在催化科学研究的应用前沿。球差矫正的扫描透射成像(AC-STEM)以其亚埃级的空间分辨率,成为催化剂材料中单原子、原子团簇以及原子尺度结构调控几乎唯一的直接结构表征手段。另一方面,球差校正环境透射电镜(AC-ETEM) 作为原位透射电镜技术中为催化研究而开发的技术,为样品室创造出加热/气体环境的同时保持基本不损失电镜本身的分辨率,是研究催化剂在反应气体中动态变化的强有力的手段之一。本工作以广泛用于合成甲醇、水煤气转换、CO/烃类选择氧化等众多反应的铜基催化剂为例,研究了铜及合金单晶表面和纳米颗粒在CO氧化反应、水蒸汽中反应条件下的动态结构的变化,厘清了一系列反应气体驱动的活化原子机理,丰富了催化理论以及指导原子精准催化剂的设计。东南大学研究员 卢晓林研究员,博士生导师,东南大学生物科学与医学工程学院,生物电子学国家重点实验室。任多个协会/学会委员或会员,曾参与评审科技部、科技委和省一级基础研发和应用类项目等。【摘要】 和频振动光谱(Sum frequency generation vibrational spectroscopy,SFG)技术最近几十年来发展迅速。由于这种二阶光学技术本身所具有的表界面选择性和对分子基团取向的敏感性,已经成为了研究物质表界面的一种重要和有效的工具。报告将介绍和频振动光谱在高分子和生物界面研究方面的一些成果。会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • 仪器表征,科学家提出金属异质结构的区域选择性外延生长新技术!
    【科学背景】与单金属材料相比,贵金属基异质结构(NMHSs)结合了两种或更多种材料,具有整合单金属优势并克服单个组件弱点的潜力,从而在给定应用中实现性能提升,甚至产生额外功能。因此,精确定义组成、结构和界面的NMHSs的受控合成对于推进这一领域的研究至关重要。然而,NMHSs在异质界面处不可避免地存在晶格不匹配问题,由于不同晶体在异质界面处的不对称晶格不匹配,导致难以构建明确定义、原子精确的异质结构。这种晶格不匹配的问题难以准确识别,进一步增加了受控合成的难度。此外,直接一步法合成具有目标结构取向、成分分布和界面的NMHSs尚未得到充分研究,其主要障碍在于如何在成核和生长阶段调节前驱体的热力学和动力学平衡。为了解决这些问题,科学家们提出了三项关键参数:首先,必须准确识别和控制金属前驱体的还原速率,以形成预制的基材材料。其次,基材材料必须足够坚固,以承受后续生长过程中化学环境的变化,并且应具有各向异性,这可以通过在异质界面处实现最佳晶格匹配来达到。最后,必须避免次生材料在基材表面上的不良异质成核,以使其能够顺利外延生长。有鉴于此,厦门大学化学化工学院固体表面物理化学国家重点实验室的黄小青和来自苏州大学化学化工与材料科学学院的邵琪合作报道了一种动力学控制的一步法合成Pt/Pd-Sb异质结构中的区域选择性架构的方法。通过精确控制Pt前驱体的成核速率,成功合成了两种类型的明确定义的Pt/Pd-Sb异质结构,即在Pd20Sb7六方纳米片上区域选择性外延生长的Pt冠和在Pd20Sb7纳米片上均匀分布的Pt壳。此外,通过相位和形貌调节来验证合成机制。【科学亮点】1. 本研究首次成功实现了一种一步法动力学控制合成框架,用于构建金属异质结构中的区域选择性架构。该方法能够同时考虑金属前驱体的还原速率和异质界面处的晶格匹配关系,解决了传统方法中复杂过程、杂质污染以及不明确生长机制的问题。2. 实验通过一步法合成框架,成功实现了Pd–Sb异质结构的相位和形貌调节。从Pd20Sb7六方纳米片(HPs)到Pd8Sb3 HPs的相位调节,以及从Pd20Sb7 HPs到Pd20Sb7菱形体和Pd20Sb7纳米粒子的形貌调节,为选择和优化基材材料提供了坚实的基础。3. 实验中通过精确控制Pt前驱体的成核速率,合成了两种类型的明确定义的Pt/Pd–Sb异质结构。包括在Pd20Sb7六方纳米片(r-Pt/Pd20Sb7 HPs)上区域选择性外延生长的Pt冠,以及在Pd20Sb7 HPs上均匀分布的Pt壳(u-Pt/Pd20Sb7 HPs)。4. 研究表明,区域选择性外延生长的Pt在Pd20Sb7 HPs上的催化活性大大增强。特别是用于乙醇氧化反应(EOR)时,r-Pt/Pd20Sb7 HPs/C的质量和比活性显著高于商业Pt/C,其活性是商业Pt/C的57倍。此外,r-Pt/Pd20Sb7 HPs/C在2000个循环后表现出更高的稳定性(下降16.3%)和选择性(72.4%),远优于商业Pt/C(56.0%和18.2%)。【科学图文】图1:相位和形态调节的演示。图2. r-Pt/Pd20Sb7 HP 和 u-Pt/Pd20Sb7 HP 的形态表征和结构分析。图3. r-Pt/Pd20Sb7 HPs和u-Pt/Pd20Sb7 HPs的电子结构。图4. r-Pt/Pd20Sb7和u-Pt/Pd20Sb7 HPs的合成机理研究。图5:用于验证区域选择性生长机制的形态调控。图6:Pt/Pd20Sb7 HPs的乙醇氧化反应应用。【科学结论】以上文章提出了一种新颖的动力学控制合成框架,专门用于设计Pt/Pd–Sb异质结构中的区域选择性架构。通过精确调控Pd–Sb互金属相的相结构和形貌,以及Pt前驱体的还原速率,实现了对Pt在异质结构表面生长过程的精确控制。其中,利用Pt与Pd–Sb互金属相之间的优化晶格匹配,有助于实现Pt的偏好性生长,提高了催化性能和稳定性。此外,通过调整不同Pt前驱体的还原动力学,有效地打破了成核和生长的平衡状态,进一步调控了Pt在Pd–Sb表面上的分布规律。这些技术创新为制备具有精确定义结构的异质结构材料提供了新的途径,开拓了材料设计和功能优化的新前景。这种方法不仅适用于催化材料领域,还对电化学、传感器和其他功能材料的开发具有广泛的应用潜力,为未来材料科学和工程提供了重要的理论和实验基础。原文详情:Huang, X., Feng, J., Hu, S. et al. Regioselective epitaxial growth of metallic heterostructures. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01696-0
  • 科迈恩科技与安捷伦科技在聚合型药用辅料精细表征领域继续开展深度合作
    一、合作新篇章 近日,科迈恩(北京)科技有限公司与安捷伦科技(中国)有限公司再度围绕基于高分辨质谱的聚合物精细表征技术应用签署深度战略合作。双方将共同致力于推广聚合型化合物智能分析系统Polymer Studio结合高分辨质谱对于药用辅料及其制剂中的复杂组分自动表征与鉴定技术,展示LC-HRMS在以吐温、司盘、脂质体等为代表的聚合型药用辅料的质量评价中的独特优势,为制药行业广大用户提供前沿技术手段及整体解决方案。该项产学研用一体化合作也得到了中国医学科学院/协和医学院药物研究所张金兰教授及其团队的大力支持和肯定。 全新的Polymer Studio药用辅料智能表征分析软件暨数据库的发布填补了现有各国药典关于聚合型药用辅料质量精细表征与一致性评价的空白;缓解了高级药用辅料长期依赖进口的卡脖子问题;提供了抗体药及mRNA疫苗制剂中广泛使用的吐温系列辅料潜在的因氧化等因素导致疫苗失效及细胞毒作用的杂质分析方法,将在聚合型组分复杂体系的高分辨质谱表征这一“聚合物组学”的全新应用领域发挥重要和积极的作用。二、产品亮点1. 可扩展的天然及合成高分子聚合物系列高分辨质谱(MSn)数据库2. 制药领域最全面的聚合型药用辅料及有关物质(杂质)数据库(收载多达2万个化合物单体)3. 专利的高分辨质谱复杂组分精细表征高性能识别算法4. 专业UI界面、丰富、直观的数据分析结果5. 辅料一致性评价报告智能生成三、行业新应用 下一阶段双方将围绕生物、制药、食品、材料等相关高分子聚合物精细表征领域开展深度合作,针对行业Q-TOF质谱重点客户提供差异化解决方案,满足辅料软件用户的品种定制化需求,充分挖掘该分析平台的技术潜力,共同致力解决行业辅料相关质量分析挑战,促进双方人员技术交流和能力提升。 同时,双方还将共同开展相关应用领域公开性质的市场活动,推动企业界领袖、中国科学家及药品监管部门之间的技术交流,引领药用辅料质量分析、评价与控制技术发展趋势,进一步扩大安捷伦科技和科迈恩科技在制药行业及药用辅料质量分析与评价领域的服务能力和影响力。 双方自2019年首次开展战略合作以来,在提升我国药用辅料质控水平方面取得一系列进展。未来,科迈恩科技也将进一步加深与安捷伦科技在制药行业及药用辅料质量分析与评价领域的合作,逐步优化服务水平,完善解决方案内容,持续为行业创新与高质量发展贡献力量。关于科迈恩科技科迈恩科技秉持“让AI为创新分析技术赋能”的愿景,致力于让广大用户受益于大数据和人工智能技术对于检测能力的创新和提高。目前科迈恩科技已在智能化仪器数据分析、快检技术、新药研发、精准医疗、感官评价等工业级AI建模等领域拥有系列化产品或解决方案,涵盖色谱、质谱、光谱、核磁共振等多维分析大数据的融合。所服务的客户覆盖制药、快消品、农产品、临床、石化、环保、交通、汽车制造等诸多领域。关注“科迈恩科技”公众号,了解更多分析检测行业的解决方案如您对科迈恩科技有更多想了解,可通过仪器信息网和我们取得联系!400-860-5168转3905
  • “70万一针”寡核苷酸药物进医保,此类药物的分析与表征您知道吗?
    导读2021年12月3日,国家医疗保障局召开新闻发布会公布2021年国家医保药品目录调整结果,于2022年1月1日正式执行。治疗罕见病脊髓性肌萎缩症(SMA)的药物诺西那生钠注射液被纳入医保,价格从曾经的70万一针降至3.3万,为患者及其家庭带来福音。SMA是一种罕见的遗传性神经肌肉疾病,是由于SMN1基因突变或缺失,造成与运动神经元密切相关的SMN蛋白缺乏,导致肌肉萎缩,大部分患者因为呼吸衰竭而死亡。诺西那生钠的有效成分是一种反义寡核苷酸,可以改变SMN2前mRNA的剪接,增加完整长度SMN蛋白的产生,达到治病的目的。什么是寡核苷酸药物?寡核苷酸药物通常指由人工合成的长度50个以内核苷酸组成的一类药物,包含单链或双链DNA或RNA。目前研究较多的是反义寡核苷酸药物(ASO)和小干扰RNA药物(siRNA)。与小分子药物和单抗药物靶向蛋白质不同,寡核苷酸药物通常靶向mRNA,从转录后水平进行治疗,具有特异性好、有效性高和长效性突出的优势。寡核苷酸药物分析和表征为了保证产品的安全性和有效性,寡核苷酸药物通常需要从分子量、碱基序列、解链温度Tm、产品纯度、有关物质等方面进行分析,需要使用质谱、生物惰性液相色谱、紫外分光光度计等仪器,岛津公司开发了一系列的解决方案,供您参考。分子量表征寡核苷酸药物通常使用固相亚磷酰胺化学法进行合成,亚磷酰胺单体是合成的关键原料。寡核苷酸药物的分子量则是其重要的产品属性。因此,检测寡核苷酸药物及其合成用原料亚磷酰胺单体的分子量是常用的质量控制手段。常用的分子量检测方法是质谱法。岛津质谱产品四极杆飞行时间质谱仪(LCMS-9030)、单四极杆质谱仪(LCMS-2050)和基质辅助激光解吸电离飞行时间质谱(MALDI-8030)都是寡核苷酸药物及其原料分子量表征的常用仪器。下面就为大家带来QTOF LCMS-9030测定寡核苷酸药物精确分子量和MALDI-8030测定亚磷酰胺单体分子量的精彩案例。• LCMS-9030分析寡核苷酸药物分子量岛津四极杆飞行时间质谱 LCMS-9030具有高分辨率、高质量数准确度和媲美三重四极杆灵敏度的特点,可以准确测定寡核苷酸分子量。寡核苷酸分子带负电,通常使用ESI负离子模式检测,在质谱图上常观测到一系列的多电荷离子,需要进行解卷积处理,得到寡核苷酸分子量。LCMS-9030结合Insight Explore CSD分析结果寡核苷酸药物序列: 5' -mG-mC*-mC*-mU*-mC*-dA-dG-dT-dC*-dT-dG-dC*-dT-dT-dC*-mG-mC*-mA-mC*-mC*-3' 理论单同位素分子量:6431.7239采用QTOF LCMS-9030采集一个长度为20 mer的寡核苷酸药物的高分辨质谱图,使用Insight Explore CSD进行解卷积处理,得到实测单同位素分子量为6431.7236,质量数偏差为0.05 ppm。• MALDI-8030分析亚磷酰胺单体的分子量采用MALDI-8030测定了四种亚磷酰胺单体的分子量,在线性正离子模式下,均检测到显著质谱峰,质荷比大小与钾离子加合峰相符。MALDI-8030体积紧凑、分析速度快、维护方便,是寡核苷酸样品分析的有力工具。序列确认寡核苷酸的序列同设计序列一致,是保证药物有效性的重要方面。采用MALDI-8030测定了长度为20 mer的一种寡核苷酸的分子量和碱基序列。寡核苷酸的MADLI-TOF质谱图主要以单电荷和双电荷形式存在,可直接读出分子量,操作简单,结果直观。利用源内裂解技术(ISD),寡核苷酸更倾向于形成w型碎裂离子,碎裂离子谱图更简单。通过比对这些碎片离子信息,可以较容易地读出核酸序列。寡核苷酸MALDI-ISD-TOF质谱图和碎裂离子解链温度(Tm)随着温度升高,双链核酸分子的双链结构开始打开,最终变成两条单链的结构。Tm是双链核酸分子双链结构解开一半时的温度,是双链核酸分子结构稳定性的重要指标。使用岛津UV Tm分析系统可以非常方便地测定双链核酸分子的Tm。该系统由紫外分光光度计、电热温度控制单元和Tm分析软件组成。Tm分析软件可以控制温度控制单元准确控温,升温速率12档可调,可满足双链核酸分子解链曲线的连续测定。Tm分析软件还可以自动分析解链曲线,给出准确的Tm数值。UVTm分析系统组成(左)和核酸样品Tm分析结果(右)纯度分析使用生物惰性液相Nexera XS Inert结合Shim-pack Scepter C18色谱柱进行了寡核苷酸样品的快速纯度分析,寡核苷酸和其杂质分离良好。即使在50℃高温、0.1M TEAA的盐浓度条件下分析,也表现出良好的稳定性。基于有机杂化颗粒硅胶技术的Shim-pack Scepter C18,适合用于寡核苷酸纯度以及杂质分析。12 mer寡核苷酸样品纯度分析UHPLC色谱图递送介质分析递送介质是将核酸药物递送至靶组织,穿透细胞膜,进入细胞内部发挥药效的关键。脂质纳米粒(LNP)和聚乙烯亚胺(PEI)都是核酸药物的常用递送介质。LNP通常包含阳离子脂质、胆固醇、PEG修饰脂质和辅助性中性脂质,四种成分协同作用,将寡核苷酸包裹并递送到细胞内发挥作用。PEI是一种水溶性高分子聚合物,携带大量正电荷,可通过静电作用结合核酸药物,将其递送至细胞内,并保护其免受核酸酶降解。递送介质的含量检测对寡核苷酸药物给药方式、药学研究等具有重要意义。利用岛津生物惰性液相系统结合蒸发光散射检测器ELSD-LT III建立了定量分析LNP中四种成分含量,以及PEI含量的分析方法。结语天价寡核苷酸药物首进医保,使得这类药物在近期迅速刷屏,备受关注。对寡核苷酸药物进行分析和表征,可以更好地保证产品的药效和安全性。基于岛津丰富的分析仪器产品线,我们利用QTOF LCMS-9030、单四极杆质谱LCMS-2050、MALDI TOF质谱、UHPLC、UV Tm分析系统等技术平台,开发了分子量表征、核苷酸序列确认、Tm测定、纯度分析和递送介质分析的方法,助力寡核苷酸药物研发和质控,希望未来开发出更多更好的药物,造福患者。本文内容非商业广告,仅供专业人士参考。
  • 首届催化剂表征与评价主题网络研讨会取得圆满成功(含回放链接)
    p   由仪器信息网(www.instrument.com.cn) 联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建)主办的首届“催化剂表征与评价”主题网络研讨会于昨日圆满闭幕。此次会议邀请了业内著名催化研究学者、检测分析专家以及业界企业代表,针对催化研究应用及检测分析的前沿热点和关键技术进行探讨,为催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流。本次会议报名参会人数近700人,观众反响强烈,会议取得了圆满成功。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202005/uepic/e14a20ed-81cd-4636-ba2b-0df66b586998.jpg" title=" 1125_480.jpg" alt=" 1125_480.jpg" width=" 500" height=" 213" border=" 0" vspace=" 0" style=" max-width: 100% max-height: 100% width: 500px height: 213px " / /p p   大会开始前,中国石油和化学工业联合会科技与装备部处长李文军为大会致辞,随后6位专家奉献了精彩的报告,并为现场提问的观众进行了耐心的解答。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/1d6d6704-bc2c-4795-9ccc-626827c41586.jpg" title=" 李瑛.jpg" alt=" 李瑛.jpg" / /p p style=" text-align: center " strong 浙江工业大学工业催化研究所 李瑛 /strong /p p style=" text-align: center " strong 报告题目:《表征技术在工业催化剂开发中的重要性及工业催化剂宏观物性表征》 /strong /p p   李瑛,浙江工业大学教授。2005年获中国科学院大连化学物理研究所物理化学博士学位,师从国际催化委员会主席李灿院士 2005.08-2007.08荷兰 Eindhoven University of Technology做博士后及访问学者。合作导师:荷兰皇家科学院院士Prof. Rutgers Van Santen。 /p p   目前担任浙江省石油协会理事,浙江省科协九届委员。中国化学工程学报(英文版)编委,近年来在国际知名期刊共发表SCI论文100余篇,已获得授权专利10余项,其中多项技术已经实现产业化推广。承担浙江工业大学研究生核心课程《现代催化剂表征技术》、《催化学科前沿讲座》、本科生《物理化学》上下册等教学。 /p p   主要研究方向:新型多孔碳材料及其复合材料的调控合成及催化应用 纳米金属催化剂的调控合成及工业应用 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f09f957d-8dd1-41ee-bfa9-5a1af9e669ca.jpg" title=" 陈婧琼.png" alt=" 陈婧琼.png" / /p p style=" text-align: center " strong 安东帕(上海)商贸有限公司 陈婧琼 /strong /p p style=" text-align: center " strong 报告题目:《表征技术在工业催化剂开发中的重要性及工业催化剂宏观物性表征》 /strong /p p   陈婧琼,安东帕(上海)商贸有限公司产品应用专家,毕业于天津科技大学。具有长达8年的粉体材料表征经验。 /p p   2012~2014从事甲醇制烯烃MTO催化剂的制备和表征,包括催化剂原料SAPO-34的合成,催化剂喷雾干燥制备、粒度测试、zeta电位测试,催化剂微反评价,酸性测试,比表面积和孔径分析等 /p p   2014~2015于兰州化学物理研究所羰基合成与氧化国家重点实验室从事光催化产氢研究,以共沉淀法制备了掺杂石墨烯的光催化剂,具有良好的产氢效应 /p p   2015至今,任职于安东帕,从事粉体表征产品气体吸附仪等的技术支持。每年于清华大学、复旦大学、石油大学、大连理工等高校进行气体吸附的技术交流和客户培训。 /p p   从业多年来,以丰富的职业经验和深入浅出、活泼的手法编写和翻译气体吸附相关行业技术文件50多篇,深受行业客户的好评。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/05114d62-4523-4231-b8ec-f70eebdd41c0.jpg" title=" 刘伟.png" alt=" 刘伟.png" / /p p style=" text-align: center " strong 中国科学院大连化学物理研究所 刘伟 /strong /p p style=" text-align: center " strong 报告题目:《电子显微技术在催化剂表征评价中的机会与挑战》 /strong /p p   刘伟,中国科学院大连化学物理研究所电子显微中心副研究员,环境透射电镜负责人,中科院青年创新促进会会员,大连市紧缺技术人才。 /p p   迄今,研制了国内首套专用于环境透射电镜的mbar级负压定量混气自动控制系统 研制“透射电镜可控气氛转移样品台” 解决敏感材料向电镜转移中的氧化相变问题 基于深度学习技术和数字滤波图像识别,实现单原子催化剂的原子精度识别与万级样本空间的分散度统计 /p p   先后主持国家自然科学基金(1项)、近3年围绕催化剂显微结构分析与支撑发表Nature Catalysis(1篇),JACS 2篇、Nano Lett. 2篇、Nature Commn. 2篇、Adv. Mater. 1篇、Adv. Sci. 1篇、Chem. Mater.1篇、ACS Catal. 1篇、Appl. Catal. B 1篇。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/4d44be02-96e2-4296-9333-ea9b61824ba1.jpg" title=" 彭路明.jpg" alt=" 彭路明.jpg" / /p p style=" text-align: center " strong 南京大学 彭路明 /strong /p p style=" text-align: center " strong 报告题目:《氧化物纳米催化材料的固体核磁共振研究进展》 /strong /p p   彭路明,博士,南京大学教授,博士生导师。在Nature Materials,Science Advances,Nature Communications,Journal of the American Chemical Society等杂志发表学术论文100多篇。入选2010年度新世纪优秀人才支持计划。2012年获得国家自然科学基金委优秀青年科学基金项目资助,同年获中国化学会催化专业委员会中国催化新秀奖。2016年起任中国物理学会波谱专业委员会委员和《波谱学杂志》编委,同年获英国皇家学会牛顿高级学者项目资助(Newton Advanced Fellowship)。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/241ab918-ba36-4070-979c-70cc80fbe37d.jpg" title=" 杨贵东.jpg" alt=" 杨贵东.jpg" / /p p style=" text-align: center " strong 西安交通大学 杨贵东 /strong /p p style=" text-align: center " strong 报告题目:《基于催化剂结构修饰的光催化反应过程强化》 /strong /p p   杨贵东,西安交通大学化工学院教授,博士生导师。主要从事光催化反应过程强化及吸附新材料开发的研究工作。在Angewandte Chemie International Edition、ACS Catalysis、Applied Catalysis B: Environmental、Nano Energy等高质量学术期刊发表论文52篇,其中IF& gt 10的论文17篇,累计被 SCI引用3000余次,个人 H 因子27。开发了一系列具有高介孔含量、强疏水、高机械强度的三维分级通孔碳质吸附材料,实现了其工业化生产与应用。入选了教育部“青年长江学者”、“王宽诚青年学者”、“陕西省青年科技新星”,兼任中国化工学会化工过程强化专业委员会青年委员会委员和中国石油和化学工业联合会工业催化联盟青年工作委员会委员等学术职务。担任国际期刊《Frontiers in Environmental Chemistry》副主编、《Chinese Journal of Catalysis》客座编辑、《Chinese Chemical Letter》青年编委和《工业催化》期刊编委。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 293px " src=" https://img1.17img.cn/17img/images/202005/uepic/7f1b13b7-19a4-49ea-a36f-9ffc0238539a.jpg" title=" 刘家旭.jpg" alt=" 刘家旭.jpg" width=" 200" height=" 293" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 大连理工大学 刘家旭 /strong /p p style=" text-align: center " strong 报告题目:《双光束FT-IR光谱在多相催化反应中的应用与进展》 /strong /p p   刘家旭,大连理工大学副教授,主要从事分子筛催化在能源、环境及精细化学品清洁制备等领域的应用基础研究和原位分子光谱表征技术开发。作为项目负责人主持国家自然科学基金、中国石油科技创新基金和大连市高层次人才创新创业计划等12项科研项目。研制出具有自主知识产权的双光束原位红外光谱技术,并将其成功应用于多相催化反应的原位表征,已在Catalysis Science & amp Technology, Chemical Engineering Journal, ACS Applied Materials & amp Interfaces等期刊发表30余篇学术论文,申请10余项国内专利,1项国际专利。作为项目负责人开发的精细化学品清洁制备催化剂,低碳烃芳构化催化剂已实现工业应用。 /p p   会后,李文军处长介绍了面向工业催化领域创新成果产业化的公共服务平台现阶段的工作内容,并鼓励催化领域学者间的沟通与交流。会议至此圆满结束。 /p p   此次会议获得了工业催化协会的帮助以及安东帕的大力支持。 /p p    a href=" https://www.instrument.com.cn/netshow/SH101011/" target=" _self" strong 安东帕(上海)商贸有限公司 /strong /a /p p   安东帕(上海)商贸有限公司隶属于奥地利安东帕公司旗下,是其全资子公司,总部位于上海。安东帕公司作为密度、浓度、二氧化碳和流变测量的技术引领者,依托仪器领域的百年经验,为食品饮料、石油石化、制药、高校科研、质检、商检、药检和出入境检验检疫等领域提供量身定制的检测解决方案。安东帕的产品及服务涵盖实验室与过程应用中的密度、浓度和温度测量技术、旋光及折光仪等高精密光学仪器、微波消解、萃取及合成等样品前处理技术、黏度计及流变仪、闪点、馏程分析等石油石化产品测试仪器、以及研究材料特性及表面力学性能的测试仪器等。 /p p    strong 专家视频回放链接: /strong /p p   a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10541" target=" _self"  https://www.instrument.com.cn/webinar/Video/Video/Collection/10541 /a /p p br/ /p
  • 第二届催化剂表征与评价主题网络研讨会再度来袭 强大专家阵容先睹为快
    催化剂在全球各行各业广泛使用,未来无论在催化剂的科学理论研究、清洁能源的开发与利用,环境保护与提高经济效益以及人类的生存环境的治理与保护都有极大的发展前景。简言之,人类的生存发展,吃穿住行离不开催化剂及其发展。催化剂广泛应用于石油化工、能源、环境等多个当前最热门、最重要的领域,从国家工业生产到日常生活的节能环保,催化都在无形中的发挥着“四两拨千斤”的重要作用。催化剂的表征与评价对于催化剂的设计和性能调控起到重要的媒介作用,因此对于催化剂的研究有着至关重要的意义。由仪器信息网联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建)共同主办的第二届催化剂表征与评价主题网络研讨会将于今年6月16日举办。本次会议邀请到来自中国科学院大连化学物理研究所、浙江大学、天津大学、北京化工大学、华东理工大学、中国科学院山西煤炭化学研究所等多位国内催化领域的知名专家学者,共同分享催化领域的研究成果,促进催化领域研究人员间的互动交流。本次会议同时也得到知名科学仪器厂商——东京理化的大力支持。东京理化器械株式会社报告嘉宾简介(以报告时间为序):华东理工大学教授 戴升戴升,博士,华东理工大学教授,博导。2009年本科毕业于清华大学, 2014年于清华大学获得博士学位,师从我国著名电子显微学专家朱静院士。2014年至2019年,先后在美国密歇根大学与加州大学尔湾分校进行博士后研究,合作导师为Xiaoqing Pan教授。2019年,全职回国加入华东理工大学,担任电镜中心负责人、课题组组长。 主要研究方向为催化剂原位电镜表征方法的开发与应用研究。运用先进的原位电子显微学技术,于原子尺度探究催化剂在真实催化反应条件下的动态演化行为,从而辨识其活性位点,建立催化剂的构效关系。近五年内,在Nature、Nat. Mater.、Nat. Catal. 等期刊发表论文50余篇;其中,以第一作者与通讯作者身份发表论文20余篇,包括Nat. Mater.、Nat. Commun.、J. Am. Chem. Soc、Nano Lett.、 ACS Catal.等。入选国家高层次人才引进计划、上海市高校特聘教授等项目资助。浙江大学研究员 姚思宇姚思宇,博士毕业于北京大学化学院物化专业。2015-19年在美国布鲁克海文国家实验室开展博士后研究工作。19年9月入职浙江大学化工学院,任百人计划研究员。获国家海外高层次人次引进计划青年项目、浙江省杰出青年基金项目资助。姚思宇博士致力于研究能源环境相关的小分子活化转化催化剂的开发,Mo 基催化剂体相、表面结构调控及贵金属替代催化剂的设计策略。具有多年同步辐射光源研究经历,对应用原位表征手段探究微纳尺度催化剂的构效关系和催化材料合成调控机制等基础问题具有深入理解。目前共发表SCI论文 85篇。以第一作者、共同第一作者或通讯作者在 Science, Nature Nanotechnology. JACS等学术期刊发表论文十余篇,他引4000余次,H-index 36。东京理化器械株式会社应用工程师 王超王超,硕士,毕业于中国日化所。现任东京理化器械株式会社产品在中国市场的应用工程师,主要负责EYELA实验室前处理设备的培训及应用推广。中国科学院大连化学物理研究所研究员 侯广进侯广进研究员于2007年在中国科学院武汉物理与数学研究所获得理学博士学位。2007至2011年先后在德国马普高分子研究所和美国特拉华大学从事博士后研究工作;2011年被特拉华大学聘为二级副研究员;2012年晋升为磁共振谱学研究员。2016年入选中科院大连化学物理研究所“百人计划”,2017年入选国家青年海外高层次人才引进计划,入职于中科院大连化学物理研究所催化基础国家重点实验室,聘为研究员、任固体核磁共振与催化化学研究组组长。侯广进研究员长期从事固体核磁共振方法学的发展和多种材料体系结构及动力学的应用研究,截止目前已在Science, Proc. Natl. Acad. Sci., J. Am. Chem. Soc., Angrew. Chem. Int. Ed., Adv. Energy. Mater., Nat. Commun., Acc. Chem. Res., Environ. Sci. Technol.等学术期刊上发表论文80余篇。侯广进研究员目前主要从事固体核磁共振波谱学与催化化学相关的研究工作,发展高分辨固体NMR方法学,并应用于实际固体材料体系,包括催化能源材料、高分子材料及生物材料等,在原子和分子水平上探测材料的微观结构和动力学特征,解决与实际研究体系相关的基础科学问题。中国科学院大连化学物理研究所研究员 刘健刘健,博士,中国科学院大连化学物理研究所研究员,博士生导师。长期致力于纳米多孔材料的设计合成及在能源、催化相关领域的基础应用研究,在催化纳米功能材料的设计合成与应用,及纳米反应器构筑等方面取得了一系列重要的成果。迄今在包括 Angew. Chem. Int. Ed., Adv. Mater., JACS, Mater. Today, Matter, Nature Commun., Nature Mater., NSR等刊物发表正式论文220余篇。所发表论文已被 SCI 引用超过 17000余次,H 因子为 59,2018到2020年连续三年入选科睿唯安高引作者。受邀为CRC Press编写 “Mesoporous Materials for Energy Storage and Conversion” 专著一本。任期刊“Materials Today Sustainability” 主编(Editor-in-Chief)。曾获得 “第 14 届国际催化大会青年科学家奖”(2008),“UQ Foundation Research Excellence Award”(澳大利亚昆士兰大学基础研究最高奖,2011),英国皇家化学会旗下杂志Journal of Materials Chemistry A 2017杰出研究者等多项奖励。并于2011年获得澳大利亚基金委博士后特别研究员资助 (AustralianPostdoctoral Fellowship),2013年入选日本学术振兴会特邀研究员 (JSPS Invitation Fellow),2016年获大连化学物理研究所“百人计划”支持。2017年入选国家青年海外高层次人才引进计划,2018年入选辽宁省“兴辽英才计划”青年拔尖人才,2020年获得辽宁省自然科学基金优秀青年基金。中国科学院山西煤炭化学研究所研究员 吕宝亮吕宝亮,现任中国科学院山西煤炭化学研究所研究员,课题组长,中国科学院青年创新促进会会员,山西省“三晋英才”拔尖骨干人才,太原市高端创新型人才,主要研究方向为纳米催化材料的结构设计、合成及应用研究。先后主持研究了包括国家自然科学基金、山西省优秀青年基金在内的20余项国家及省部级科研项目。在ACS Catalysis、 Journal of Catalysis、Advanced Functional Materials等期刊上发表论文80余篇,曾获山西省自然科学一等奖(排名1/4)、中国颗粒学会自然科学二等奖(排名1/6)等奖项,应邀担任40余个国际学术期刊审稿人、国家自然科学基金函评专家、国家自然科学奖函评专家。天津大学教授 李新刚天津大学长聘教授、工业催化学科带头人,天津市131创新团队负责人,自2019年对口支援兰州交通大学。入选教育部新世纪人才、天津市中青年科技创新领军人才、天津市131创新人才第一层次。担任J. Chem. Technol. Biotechnol.期刊副主编、Catal. Today和《化工学报》期刊客座编辑、中国化工学会稀土催化与过程专业委员会副主任、中国化学会分子筛专业委员会委员、中国稀土学会催化专业委员会委员、中国能源学会能源与环境专业委员会委员等职务。长期从事低碳分子催化转化及大气污染物催化消除等方面的研究工作,在Nat. Commun.、Chem、EES、CES等期刊发表SCI论文120余篇,荣获国际催化理事会“青年科学家奖”。北京化工大学教授 冯俊婷冯俊婷,教授,博士生导师。2005年和2010年分别毕业于北京化工大学,获理学学士和工学博士学位; 2012年-2013年在英国卡迪夫大学访问,合作教授Graham Hutchings院士。以通讯/第一作者在Chem. Soc. Rev.(1 篇)、 ACS Catal.(6 篇)、 J.Catal.(15 篇)、Appl. Catal. B: Enviorn.(2篇)、Chem. Sci.(1 篇)等发表SCI论文40余篇;作为主要完成人授权专利10件,含美国专利1件。2020年获国家优秀青年科学基金资助。现任北京市多级结构催化材料工程技术研究中心学术秘书,全国工业催化联盟青年委员。会议日程:报告时间报告主题报告专家09:30--10:00常压扫描透射电子显微术在原位催化表征中的应用戴升(华东理工大学 教授)10:00--10:30XAFS 表征方法在催化剂结构解析中的应用姚思宇(浙江大学 研究员)10:30--11:00柱型连续流动反应装置在催化剂评价中的应用王超(东京理化 应用工程师)11:00--11:30固体核磁共振技术及在多相催化研究中的应用侯广进(中国科学院大连化学物理研究所 研究员)13:30--14:00纳米反应器与纳米多孔催化剂的构筑及表征刘健(中国科学院大连化学物理研究所 创新特区组组长 / 研究员)14:00--14:30过渡金属氧化物晶面结构调控及其催化应用吕宝亮(中国科学院山西煤炭化学研究所 研究员)14:30--15:00低碳分子高效转化催化剂的设计、表征和机理研究李新刚(天津大学 催化科学与工程系主任/教授)15:00-15:30界面活性催化剂设计、表征与性能强化机制研究冯俊婷(北京化工大学 教授)注:会议日程可能根据实时情况有所调整,以会议页面展示为准。本次会议报名完全免费,只需扫描下方会议报名二维码或点击下方报名链接,即可进入会议页面,在会议页面可以实时查看会议日程,点击下方“立即报名”按钮,填写报名信息即可报名参会:会议报名二维码报名链接:https://www.instrument.com.cn/webinar/meetings/catalysts2021/
  • TA仪器与陕西科技大学联合举办“材料热分析和粘弹性表征及其应用技术交流会”邀请函
    TA仪器与陕西科技大学联合举办&ldquo 材料热分析和粘弹性表征及其应用技术交流会&rdquo 近年来随着材料研究的不断发展,在化工、医药、食品、能源、新材料等工程技术领域对于材料的研究不断深入,作为材料研究的重要工具,流变仪,动态热机械分析仪、热重分析仪、差示扫描量热仪等仪器越来越广泛的应用其中,这些仪器对于材料的粘弹性能、热物性能的研究提供了的重要技术手段。此次会议主要是加强这些领域的技术交流,针对各领域研究人员及工程技术人员,达到深入的了解材料在热分析和粘弹性等方面的基础理论和表征方法的目的,包括这些测试的最新应用。提高技术人员在自己的研究领域内,确定材料在热物性和粘弹性方面的测试目的和评价手段,更好的针对自己的研究领域和实验所需参数选择和组织更好的研究工作。 会议主要内容: 一、材料热分析表征及其应用 1、材料热分析(热重、差热)的特性及其表征方法 2、材料热分析测试的结果分析及其实验方法改进 3、材料热分析测试的应用 二、材料粘弹性能表征及其应用 1、材料的粘弹特性及其物理指标 2、材料粘弹特性的仪器测试方法 3、材料粘弹特性的应用 -------------------------------------------------------------------------------------- 演讲嘉宾:(以下排名按照演讲顺序,不分先后) 刘保健副教授 陕西科技大学化学与化工学院 主要研究方向 高分子物理,聚合物结构与表征的实验研究,不同结晶度聚乳酸膜降解性的研究等 王宇副教授 西安交通大学理学院材料物理系 物质非平衡合成与调控教育部重点实验室,目前从事的研究领域主要包括: 智能材料、形状记忆与磁控形状记忆合金、固态相变与玻璃化转变、磁热与磁致伸缩效应。曾在日本国立物质材料研究机构、美国Los Alamos国家实验室进行研究工作。 杨胜鹰 先生 毕业于北京化工大学高分子材料系,国家高级工程师,在加入美国TA仪器之前,他在石化行业材料研发行业任职多年,拥有非丰富的研发和技术支持经验。 李润明 博士 TA仪器流变技术支持,上海交通大学材料学博士。主要研究方向是聚合物流变学,在材料表征分析和测试领域具有丰富的经验。 马倩 博士 TA仪器热分析技术支持,美国Tufts大学凝聚态物理博士,师从美国著名热分析科学家Peggy Cebe。有着多年高分子热分析表征以及X射线散射理论和实验研究经历。 会议时间 2013年4月18日 会议地点:陕西科技大学逸夫楼会议室 会议日程安排 08:50 - 09:00 会议嘉宾致辞 09:00 - 09:40 材料动态粘弹性理论及实验表征 李润明 博士 09:40 - 10:30 流变在材料粘弹性的表征方法及其应用 李润明 博士 10:30 - 10:40 茶歇 10:40 - 11:00 流变仪技术应用专题 刘保健 先生 11:00 - 11:40 DMA在材料粘弹性的表征方法及其应用 李润明 博士 11:40 - 12:00 DMA在记忆合金方面的测试和应用 王宇 先生 12:00 - 14:30 午餐 14:30 - 15:20 差热法对于材料的表征方法及其应用 杨胜鹰 先生 15:20 - 16:10 热重法对于材料的表征方法及其应用 马倩 博士 16:10 - 16:20 茶歇 16:20 - 16:50 TA热物性测试仪器及其应用 马倩 博士 16:50 - 17:30 参观陕西科技大学化学与化工学院重点实验室仪器展示现场问答 附件:材料热分析和粘弹性表征及其应用技术交流会 详情请垂询: TA仪器市场部王小姐 电话: 021-34182128 传真: 021-64951999 Email: vwang@tainstruments.com
  • 新材料表征技术研究专题研讨会在京召开
    仪器信息网讯 2011年11月1日,大昌华嘉商业(中国)有限公司(以下简称:大昌华嘉)与清华大学化学系徐柏庆教授课题组联合举办的新材料表征技术研究专题研讨会在清华大学化学馆301报告厅召开;30余位业内的专家学者出席了会议,仪器信息网作为特邀媒体亦参会。 会议现场   本次会议分为上下两场,主题分别为“最新颗粒表征技术研讨会”和“β亚基介孔分子筛的合成,表征及催化学术讲座”。 大昌华嘉公司科技事业部产品经理严秀英女士与樊润先生分别主持会议   大昌华嘉是一家总部位于瑞士的全球性企业,2009年收益总额高达86亿瑞士法郎,在亚太、欧洲和美洲地区的35个国家有560个营业网点,自2002年至今,大昌华嘉在全球已拥有22000名专业员工。其中,大昌华嘉科学仪器部分为市场、销售、维修及应用4个部门,其仪器设备产品主要应用领域包括材料科学、物理性质、化学反应、化学分析和食品分析等。   此外,大昌华嘉目前在中国已有49名员工,并设立了11个办事处,拥有超过20000名中国客户;同时大昌华嘉为众多的中国客户专门在上海建立了应用开发实验室,还积极参与或组织各种相关的会议展览、用户培训等活动。 美国麦奇克有限公司副总裁 Mr. Paul Cloake   Mr. Paul Cloake首先介绍到,自Leeds & Northrup研究所成功推出第一台商用激光粒度分析仪(Microtrac Model 7991)到现在,麦奇克几经坎坷,但是公司一直致力于颗粒表征方面的科技创新和仪器开发。2000年,Microtrac正式成立Microtrac Inc.;2003年,公司隆重推出Microtrac S3500系列激光粒分析仪;2004年推出全新设计的干粉递送系统Turbotrac;2005年,Microtrac S3500系列仪器全面升级;2007年,公司在仪器中引进Zetatrac和蓝波技术等。   随后,Mr.Paul Cloake主要谈到了激光散射技术的原理和最新的技术进展,并特别提到了采用三激光技术的激光粒分析仪S3500、S3500SI及其相应的图像分析软件。S3500系列激光粒分析仪采用固定位置的三激光固体光源设计及“Bluewave” 技术,配合双接受透镜,可以实时大角度的接受颗粒的衍射/散射光信号(0-165度),信号稳定,重复性好。在S3500的基础上,2011年麦奇克公司推出了S3500SI激光粒度粒形分析仪,实现了一台仪器具有两种技术(静态激光衍射法和动态图像分析法)能同时测量12种粒径和14种粒形的参数。   最后,Mr.Paul Cloake还讲到,麦奇克公司凭借其在激光衍射/散射技术和颗粒表征方面的独到见解,开发了最新一代Nanotrac Wave 纳米粒度及Zeta电位分析仪。该款仪器采用先进的“Y”型光纤探针光路设计和先进的动态光背散射技术,融纳米颗粒的力度分布和Zeta电位测量于一体,操作简单,测量迅速,结果准确可靠,重现性好。 Mr. Paul Cloake 给大家介绍仪器的操作及维护技巧   研讨会下半场,日本Gifu大学的Yoshihiro SUGI教授和日本拜尔公司的Keita Tsuji博士分别给参会人员作了有关介孔分子筛的合成、表征和催化及吸附技术最新进展等方面的精彩报告。 日本Gifu大学 Yoshihiro SUGI 教授   Yoshihiro SUGI教授从微孔、介孔材料谈起,介绍了不同材料的划分区域及其相关的应用情况,并向大家展示了不同种类分子筛的孔径大小和结构模型。随后介绍了以CTMABr和TEAOH为模板合成具有β沸石结构单元的介孔硅铝分子筛的过程,并对所合成的材料进行了X射线衍射(XRD)、核磁(NMR)、透射电镜(TEM)、傅立叶红外光谱(FT-IR)等多方面的性能表征,结果表明,所合成的材料具有很好的耐热性及稳定的机械加工性能等优良的特性。最后Yoshihiro SUGI教授通过维他命E的合成形象说明了介孔材料在催化方面所表现出的高活性和高选择性。 日本拜尔有限公司 Keita Tsuji 博士   日本拜尔成立于1988年,是一家研究生产容量法/重量法气体吸附分析仪的专业制造厂商。其产品主要包括比表面和孔隙分析仪、化学吸附仪、金属分散度分析仪等一系列高品质的仪器。   Keita Tsuji博士结合日本拜尔多款表面吸附产品,在报告中介绍了表面吸附技术的最新进展。例如,日本拜尔BELSORP-max是一款高性能容量法气体吸附仪,可以实现原位脱气功能,在极宽的压力范围内对被测多孔材料进行吸附/脱附等温线分析。同时,针对近年来低温吸附要求越来越多的情况,日本拜尔开发的BELCryo低温控制系统,配合BELSORP系列吸附仪器的使用,可以将相关的应用领域延伸至极低的温度范围,为吸附表征打开了一扇通往低温方向的大门。   此外,Keita Tsuji博士重点讲到,日本拜尔吸附仪产品与X射线衍射技术(XRD)相结合可实现结构和数据两方面信息的同时检测;还有如果BELCAT 系列程序升温化学吸附仪选配CATCryo低温控制装置,可以增加低温化学吸附功能,控温范围能从-100℃到1100℃。 与会代表与Keita Tsuji 博士沟通交流
  • 高分子表征技术专题——小角中子散射技术及其在大分子结构表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!小角中子散射技术及其在大分子结构表征中的应用The Basic Principle of Small Angle Neutron Scattering and Its Application in Macromolecules作者:左太森,马长利,韩泽华,李雨晴,李明涛,程贺作者机构:中国科学院高能物理研究所 中国散裂中子源 2.散裂中子源科学中心,东莞,523803 中国科学院大学,北京,100049作者简介:程贺,男,1978年生. 中国科学院高能物理研究所东莞研究部研究员. 1996年考取中国科学技术大学,2006年在吴奇教授课题组获得博士学位. 随后赴中国科学院化学研究所韩志超研究员课题组工作,建设我国第一台SANS(2012年国家验收). 2014年加入中国散裂中子源,中国科学院高能物理研究所东莞研究部,现正在主持建设世界上第二台基于散裂中子源的VSANS. 致力于使用和发展散射方法,研究软物质多相多尺度结构和动态学行为.摘要小角中子散射(SANS)是一种表征从纳米到微米尺寸物质特征结构的有力工具,配合中子的强穿透性和同位素辨识等特性,在软物质大分子结构表征方面发挥着独特的作用. 随着中国散裂中子源(CSNS)在2018年正式对外接受机时申请,国内SANS用户群逐年扩大. 本文首先简要介绍小角中子散射技术的基本原理、谱仪结构和实验技巧,然后紧扣小角谱仪的特点和方法学方面的最新进展,介绍小角中子散射在高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料、生物大分子等研究领域的结构表征方面的典型应用. 小角中子散射和其他表征手段,如小角X射线散射(SAXS)相互紧密配合和补充,成为连接大分子内部多相多尺度的微观结构和宏观性的桥梁.AbstractSmall angle neutron scattering (SANS) is a powerful tool to characterize multi-scale structures in macromolecules. Deep penetration and H/D isotope labeling make it a unique scattering method. To make it more familiar to the users, basic principle of SANS, instrumentation and experimental skills were firstly demonstrated. Then typical applications in the fields of polymer solution, polymer blends, nanocomposites, crystallization, gels, porous materials and biomacromolecules were introduced. As for the data analysis of complex systems, such as biomacromolecules, in addition to the traditional data analysis methods, advanced methods such as the ab initial analysis and Reverse Monte-Carlo (RMC) simulations provide more detailed information. Combine with small angle X-ray scattering (SAXS), static light scattering (SLS), electron microscope (EM)et al., SANS enables us to solve the structure and interaction of more complicated systems such as interaction of biomacromolecues and solvation of polymers in mixed solutions. As the China Spallation Neutron Source (CSNS) was officially opened to the users around the world in 2018 and SANS instruments equipped with various sample environments are being built, more opportunities are opened to the SANS communities domestically and abroad.关键词小角中子散射  大分子  多相多尺度  结构表征  中国散裂中子源KeywordsSmall angle neutron scattering  Macromolecules  Multi-scale and multi-phase  Structure characterization  China spallation neutron source 小角散射,通常包括小角光散射(SLS)、小角X射线散射(SAXS)和小角中子散射(SANS),都是表征物质纳米到微米的多尺度特征结构的有力手段[1,2]. 它们的基本原理[3]和数据处理分析方法[4]十分类似,三者可以互补和互相验证. 3种散射方法有两点主要不同之处:一是光源与样品的作用机理不同,所以使用不同散射方法时样品的衬度不同;二是波长不同,所以研究的特征尺度范围不同. 首先,衬度直接决定了散射实验的可行性. 光散射衬度来自样品的微分折光指数;X射线与核外电子相互作用,衬度来自于电子云密度,所以原子序数高的元素衬度高;对于中子,由于中子直接作用于原子核,与核的性质有关而与原子序数无关,反而同一元素的各种同位素的中子衬度有很大不同. 小角中子散射的衬度等于样品与分散剂的相干散射长度密度之差,这里的相干散射长度密度(ρcoh,单位:Å-2)是散射体中所有的元素或同位素的相干散射长度(bcoh, 单位:Fermi,1 Fermi = 10-15 m)的加权平均与散射体的摩尔体积之比;同位素的散射截面相当于原子核与中子相互作用被散射的概率( σσ,单位barn, 1 barn = 10-24 cm 2),正比于散射长度的平方. 中子与原子核相互作用,除了被散射外,还会有一定的概率被吸收. 常见天然元素和同位素对于1.8 Å中子的相干散射长度、相干和非相干散射截面以及吸收截面的数据如表1所示[5]. 设计SANS实验的第一步需要估算样品的中子衬度和透光率,前者决定了SANS实验的可行性,后者决定了数据分析的可行性. 根据表1,已知大分子体系的元素、同位素组成和密度,可以计算中子衬度,溶液体系衬度为溶质和溶剂的中子相干散射长度密度差,二元共混体系衬度为二元组分大分子的中子相干散射长度密度差. 衬度低的样品无法进行SANS实验(比如一般的非晶碳氢化合物样品,化学组成一般为CH2,根据表1,bc+2bH≈0bc+2bH≈0,在不进行氘代的情况下无法进行SANS实验);而样品对中子的透过率可以通过式(1)所示的朗伯-比尔定律计算.其中:d为样品厚度.nini为样品中第ii种元素的原子比例,pij、σij(λ)σij(λ)和ρijρij分别为第i种元素的第j种同位素的丰度、全截面和数密度. 其中全截面包含相干、非相干和吸收截面,同位素截面相关数据可以参考ENDF数据库[6]. 传统的散射基本理论是建立在单次散射的基础上的,如果样品太厚,透光率较低,可能在实验中引入多次散射,造成数据无法用常规分析方法解析,所以一般的SANS实验要求 Ttrans85%,如果是溶液样品,尽量采用氘代溶剂.Table 1Coherent scattering length and coherent, incoherent and adsorption scattering cross section of common elements in macromolecules and commonly used isotopes in SANS experiments[5].一些吸收截面非常大的天然元素或者同位素通常用于中子吸收材料,如表1中的B-10,在实验样品中要尽量避免这类对热中子具有强吸收的同位素,除B-10外,还有Cd-113、Gd-155、Gd-157、Sm-149、Eu-151等同位素.对于结构表征的各类技术,能够覆盖的尺寸范围很大程度上决定了这一技术的应用范围. 用于光散射的激光波长在可见光范围,所以小角激光光散射观察尺度在微米的数量级,而静态激光散射的观察尺度在20~300 nm;由于X射线和中子的波长在埃的数量级,所以常规的SAXS和SANS可以测量1~300 nm的特征尺度.表2总结了3种小角散射方法的一些基本特征,可以看到每种方法都有其特点和不足. 小角光散射波长较长,需要样品透明并且容易受到灰尘的影响;小角X射线散射的优势是亮度非常高,特别是同步辐射X射线小角,缺点是穿透能力一般,容易被吸收(当然共振散射赋予了它另外的特点);小角中子散射的特点是穿透能力强,可以加载各类样品环境,同时还能够识别同位素,可以得到样品的绝对散射强度,缺点是中子源亮度太低. 所以实际使用中,用户需要依据自身样品的特点和需要观察的特征尺度范围,选择合适的散射手段,互相验证和补充.Table 2Comparison between SLS, SAXS and SANS.随着小角中子散射方法的应用越来越广泛,谱仪和方法学上出现了2种趋势,一方面通过中子束的聚焦或准直向更小散射矢量方向扩展1~2个量级,研究特征尺度更大的体系,典型的就是发展微小角(VSANS)[7]甚至超小角(USANS)中子散射谱仪[8];另一方面利用波长更短的中子的散射将散射矢量扩展到50 Å-1以上,研究无序体系在原子尺度上的结构,即所谓的无序大分子中子全散射方法[9]. 谱仪技术发展的驱动力在于实现通过一次散射实验来表征样品从原子到分子,再到组装体,甚至相区的多相多尺度结构的梦想. 虽然这些谱仪的设计思路和物理结构千差万别,但是它们的基本散射原理完全相同. 下文将着重介绍SANS谱仪.1小角中子散射谱仪、基本原理、实验技术和方法小角中子散射谱仪通常分为两类,一类是基于反应堆的固定波长小角谱仪[10],国内有绵阳研究堆的狻猊谱仪和中国先进研究堆的小角中子散射谱仪;另一类是基于强流脉冲中子源的飞行时间小角谱仪[11],国内有CSNS的小角中子散射谱仪. 固定波长小角谱仪,利用速度选择器将中子单色化后进行散射实验;而飞行时间小角谱仪则采用白光中子进行散射实验,利用脉冲中子从中子源运动到探测器的飞行时间标定中子波长. 两类SANS的基本原理完全一样,准直系统通常为如图1所示的小孔几何,源光阑和样品光阑用于中子准直,1个或者多个探测器接收散射中子[7].Fig. 1(a) Schematic diagram of the SANS instrument (b) The relationship between the characteristic length scaled and the scattering vector q⇀q⃑ (Bragg's Law). 运动的中子从量子力学的观点可以看成一种物质波,其波长λ = h/(mnv)(其中h为普朗克常数,mn为中子质量,v为中子速度),入射中子的波矢量记作k⇀i,其绝对值为2π/λ,中子被样品散射后,散射波矢量记作k⇀s,如果是弹性散射,中子波长不变,其绝对值仍为2π/λ.散射前后,入射波矢量和散射波矢量的差值k⇀s−k⇀i定义为散射矢量q⇀.图1是CSNS的VSANS谱仪在小角模式下的示意简图. 根据如图 1所示的几何关系和矢量加减规则得到布拉格公式:其中θ为散射角. 如果样品的特征长度为d,根据如图1几何关系和布拉格方程,两束被样品散射的中子的波程差为2dsin(θ/2),当波程差等于波长λ的整数倍时,散射中子相干增强,即:当n取1时,由公式(4)可知,正空间的样品特征长度与散射矢量q是倒易关系,即1/q是正空间的尺子,在计划实验时,需要对样品的特征尺寸范围有一个预判. 根据香农采样定理[12]:如果谱仪q范围为0.001~0.3 Å-1,其可表征的样品特征尺寸范围为300~1 nm. 如果能将中子聚焦,或者放弃一个方向的分辨率,将最小q向低q方向推进1~2个量级,从而能够表征的样品的特征尺度将增加1~2个量级. 我们将这类谱仪称为微小角中子散射谱仪(qmin=10-4 Å -1)[7]和超小角中子散射谱仪(qmin=10-5 Å -1)[13].考察一个由N个大分子链组成的链间有相互作用的体系,假设每根链聚合度为n,并粗粒化单体作为基本的散射单元. 为了方便表示,如图2所示,考察体系中的链α和链β. 链α和链β的质心距离坐标原点分别为Rα和Rβ,链α和第i个单体距离链α的质心为Sαi,链β的第j个单体距离链β的质心为Sβj,链α和链β之间的距离为Rαβ,i,j距离原点分别为rαi和rβj. 根据散射基本原理,中子入射到单个单体后形成球面波,其散射振幅:Fig. 2Schematic draw of the polymer chain and the vectors between atoms and polymers.一条链的散射振幅:考虑大分子与周围介质的散射长度密度差为Δρ,大分子单体的体积为υ,体系总体积为V.α和β遍历体系中的每一根链,i,j遍历链的每一个单体,得到体系的宏观散射截面可表示为公式(8).公式(8)右边第2项可以近似为倒易2根链的质心相互作用的相干散射得到公式(9).根据如图2所示的几何关系,代入(9)得到:其中F(q)为形状因子的散射振幅,定义单粒子的形状因子P(q),注意,这里的i,j位于同一个散射体或者同一条链上.散射体可近似视为连续介质,P(q)可改写为:其中,Vpart为散射体的体积,ρpart(r)为散射体内部的密度空间分布.定义散射体之间的结构因子SI(q),式(11)适用于所有散射体系对于密度分布均匀的散射体,∣∣F(q)2∣∣=|F(q)|2,而这里的dΣ(q)dΩ是散射矢量为q时的绝对散射强度(单位为cm-1). 小角中子散射实验中,经过样品散射进入立体角为ΔΩ的探测器的中子计数Is(q)(单位为count/s)与q的关系为:其中T(λ)为样品透过率,d为样品厚度,定义入射中子强度I0(λ):Φ(λ)为入射中子波长分布,ε(λ)为探测器效率,A为样品光阑面积,t为数据采集时间.所以对于典型的小角散射实验,如果实验的q值范围已经覆盖了样品的多相多尺度结构,通过一次SANS实验,可以得到Δρ(衬度),n(分子量),P(q) (基本形状)和SI(q) (相互作用),但需要注意的是SANS用了一个粗粒化的模型,所能观察的最小尺度是π/qmax,一般不小于1 nm.2小角中子散射实验一个完整的小角中子散射实验过程包括(1)计划实验:根据科学目标准备合适大小和数量的样品;(2)确定实验方案,并采集小角中子散射数据;(3)对散射数据进行处理和分析.2.1样品准备和要求在样品准备阶段需要注意几个问题,第一,衬度:样品中散射体与周围介质的散射长度密度的差异是否足够. 一般而言,如果衬度Δρ≥1×10-6 Å -2就完全没有问题,否则就需要与谱仪科学家进行沟通,依据谱仪本身的信噪比进行调整. 如果衬度不够就可能需要对溶剂或者散射体进行氘代. 第二,样品的特征尺寸是否在谱仪的测量范围内,通常谱仪的测量范围在π/qmax到π/qmin内;第三,做一些前置实验,如小角X射线散射、电镜等确定合成的样品状态是否由于聚集、结晶等过程的发生而改变. 此外,还需要注意样品的使用量和样品厚度. 根据样品内散射体的尺寸和与周围介质之间的衬度,样品量从300~1500 mg不等,样品厚度根据散射强度选择,通常为1和2 mm. 对于强散射样品,如果样品太厚会产生多重散射;对于溶液样品需要注意样品的结构与浓度有关,稀、亚浓和浓溶液结构会随着样品间相互作用而改变,为区分‍P(q)和‍SI(q)对‍I(q)的影响,除硬球体系之外,一般需要在稀溶液中先确定样品P(q),这时也许需要在0.1 wt%~5 wt%之间做多个样品,从而外推到无限稀溶液的情况.2.2实验数据处理实验数据处理是通过对原始实验数据进行一系列的物理校准和校正,最终得到与实验仪器和样品厚度等无关的,体现样品本质特征的绝对散射强度(dΣ(q)dΩ,cm-1)随着散射矢量(q,Å-1)变化的信息. 一个完整的实验通常包括5组数据的采集:空样品池透过率数据Tc(λ)、空样品池散射数据Iexpcb(q)、样品加样品池透过率数据Tsc(λ)、样品加样品池散射数据Iexpscb(q)、空背底测量Ibackground(下标s表示样品,下标c表示样品池,下标b表示背底). 小角中子散射实验中,散射信号Iexpscb(q)有以下来源:样品、样品池和各种背底(如天然背底、空气散射和电子学噪声等).各种散射信号之间的关系可以用式(1)和式(2)表示,其中I0(λ)代表零散射角度的散射强度. 扣除样品池的散射和其他各种背底,最终计算得到dΣ(q)dΩ. 式(1)和式(2)只是简化和近似,真实SANS数据处理还需要考虑探测器效率、死时间和入射中子波长分布等因素[14].2.3实验数据分析SANS数据分析方法多种多样. 一般来说,可分为不依赖于模型的分析方法和依赖于模型的分析方法. 不依赖于模型的分析方法植根于数学,是数据分析的起点. 具体来说,包括吉尼尔(Guiner)、Porod、Kratky等分析方法. Guiner分析方法是样品的散射强度的自然对数对散射矢量的平方作图,即1n(I(q))对q2作图,在qRgPorod分析方法是主要用于分析散射体尺寸的局部结构信息,要求qRg1. Porod作图即是将散射强度对散射矢量作图,即1g(I(q))对lgq作图,其斜率即为散射体的Porod因子n. 高q的散射数据通常可表示为或者对于长棒形散射体,n=1;对于二维光滑散射体,n=2;如果三维散射体拥有光滑表面,n=4; 否则,n为3~4之间. 对于大分子链,Porod因子与排斥体积参数ν有关,即n=1/v,对于稀溶液中的有排斥体积高斯链n=5/3(或者1/0.588),对于稀溶液中没有排斥体积的高斯链n=2,对于完全蹋缩的大分子链n=3.n为2~3之间可能是枝状大分子或者是形成网络结构.图3为半径为R=50 nm的硬球的散射模型,可以用贝塞尔方程拟合. 对曲线低q区域(qRg≤1)进行Guinier拟合,如图3中的小插图所示,得到均方旋转半径为38.94 nm,与理论值500 × (3/5)0.5 = 38.73 nm相符. 需要注意的是在得到 Rg之后需要进行一次验证,验证拟合区间确实满足qRg≤1.Fig. 3Guinier and Porod fit of the form factor of the hard sphere with a radius of 50 nm.对高q区域(qRg1)进行Porod拟合,得到斜率为-4.0,符合光滑球体表面分形维数. 更详细的关于Guiner、Porod和Kratky作图的图文解释和示例,读者可以参考Hammouda的SANS TOOLBox的第15章[15].常用的依赖于模型的分析方法是借助已知的样品信息,以有限多个初始参数建立正空间中散射体的几何模型,并根据公式(13)计算与之对应的倒空间的数学曲线,采用最小二乘法,不断迭代输入参数,直到模型的计算散射曲线与实验曲线的偏差在可接受范围内. 常用的分析软件有Igor[16]和SASView[17]等. Svergun和McGreevy等发展了新从头算起(ab initio)和逆蒙特卡罗模拟的分析方法[18~21],可以将正空间三维结构的傅里叶变换与散射曲线进行比较.对依赖模型的分析方法,初始模型的设计至关重要. 所以在SANS实验之前,需要进行一系列的前置散射、光谱或者成像实验,估计样品的初始结构. 根据不依赖于模型的Guinier和Porod等方法对一维散射曲线的分析结果,验证初始模型的选择是否正确. 需要注意的是,拟合参数或者基本假设越少,分析结果的准确性越高. 拟合参数多的方程可以拟合大多数SANS曲线,但必须通过结合其他研究手段固定大部分的参数.3大分子相关领域典型应用小角中子散射在物理学、化学、材料、生命科学和工业界等均有大量应用. 本文主要聚焦于大分子领域,即合成高分子、生物大分子和大分子材料领域的典型应用. 为方便讨论,依据样品的特点进行分类,分为高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料、生物大分子. 以下就这些方面的一些经典案例和最新发现进行讨论. 由于小角中子散射应用领域众多,并且各个领域之间还会出现交叉和重叠,所以以下分类讨论并不一定严格和全面,本文只是抛砖引玉,旨在说明小角中子散射的特点和在各领域的典型应用.3.1高分子溶液体系大多数用户使用SANS研究溶液体系是为了得到溶质的多尺度形貌,所以高分子溶液体系的样品处理,实验方法,数据处理与分析具有普适性[22,23]. 大分子在溶液中的基本构象(confor-mation)的确定需要使用SANS进行证明,一般在稀溶液测定. 1974年,Cotton等使用SANS研究了线形聚苯乙烯(PS)在二硫化碳(良溶剂)和环乙烷(θ溶剂)中的构象,验证了高分子在良溶剂中是有排斥体系的高斯链,分形维数5/3,在θ溶剂中是无扰高斯链,分形维数是2[24]. 随着高分子化学的进步,科学家们合成了不同几何形状的单分散大分子. 2014年,Goossen等使用SANS研究了环形PS在氘代甲苯(良溶剂),氘代环乙烷(θ溶剂)和氘代线形PS(类θ本体)中的构象,如图4所示[25]. 环形PS在良溶剂中,Porod区间的表观分形维数1.56,小于线形PS在良溶剂中的5/3,作者解释是由于第2维利系数(A2)的影响,通过扣除A2,得到没有端基的环形PS在良溶剂中的分形维数;环形PS在θ溶剂和相同分子量的PS本体中,分形维数为2. 我们需要着重指出两点:一是对θ溶剂体系,或者高分子本体体系,图4的拟合区间在0.006~0.2 Å-1,对于低q区间,0.002 Å-1qP(q)的基本定义(公式(13))进行计算[15].Fig. 4Scattering functions and representative slopes for the overall and internal structure of ring polystyrene in good andθ solvents at different length scales. The linear polymeric matrix in the ring/linear blend is congruent with the θ‍-solvent. (Reprinted with permission from Ref.‍[25] Copyright (2015) American Chemical Society).相分离过程的研究是高分子溶液研究领域的重点之一. 大多数情形下,基于平均场理论的Ornstein-Zernike方程可以描述溶液中相分离过程的浓度涨落的变化[26,27]. Jia等使用SANS,研究了聚(N,N′-二乙基丙烯酰胺)(PDEA)在氧化三甲胺(TMAO)水溶液中的相分离发生前浓度涨落(concentration fluctuation)的变化,如图5所示[28]. 浓度涨落的强度和幅度都随温度升高而增大,随TMAO含量的增高而增大;通过外推零散射角度散射强度的倒数随着温度的倒数曲线,得到浓度涨落趋近无穷时的温度,就可以得到该共混体系的旋节线相图. 同样,这里需要注意两点:一是SANS是唯一的直接测量旋节线相图的研究手段,其他研究手段,例如浊度法,测量的都是双节线相图;二是越靠近相边界,浓度涨落的尺度越大(图5),这与温敏性高分子靠近最低共溶温度(LCST)时体积收缩[29]并不矛盾:由于图5的SANS实验的衬度来源于浓度涨落的微区,而不是单链高分子. 如果需要看到PDEA单分子链的LCST塌缩(就像使用动静态激光光散射观察PDEA极稀水溶液一样),需要使用衬度匹配技术. 典型的例子可以参考Hammouda等的实验,使用氘代和氢化聚(N-异丙基丙烯酰胺)(PNIPAM)在衬度匹配的重水/水混合溶剂中,用SANS观察PNIPAM单链的塌缩过程[30].Fig. 5SANS profiles of 4% mass fraction PDEA in TMAO-d9/D2O mixtures. (a) Temperature dependence of PDEA atcTMAO = 0.28 mol/L the arrow is used to guide the eye, indicating the increase of concentration fluctuations with temperature. (b) TMAO concentration dependence at 15 °C when TMAO concentrations are 0, 0.1, 0.28, 0.44, 0.58, 0.76, 0.90, 1.13 and 1.25 mol/L, respectively. (Reprinted with permission from Ref.[ 28] Copyright (2017) American Chemical Society).随着大分子在溶液中的浓度增加,分子之间相互作用(SI(q))逐渐变强,这时相互作用在散射曲线上将会表现为最小散射矢量附近的散射强度相对无相互作用时变小,中间q区间的散射强度相对无相互作用时变强. 如果体系中存在复杂的相互作用,如氢键相互作用、静电相互作用、憎水相互作用、π-π堆叠作用[31]等,在溶液中将形成亚稳的并且能够响应外界刺激的微相自组装结构,在污水净化、废油回收、药物输送等方面有着广泛的应用[32]. 小角中子散射是研究这类体系的非常有效的方法,既可以研究大分子或组装体在溶液中的结构(P(q))的变化[33],又可以研究组装体的结构在溶液中的相互作用(SI(q)).大分子组装结构是小角中子散射研究的一个热点. Sternhagen等合成了一系列的两亲性离子类肽嵌段共聚物,这些共聚物唯一不同的是肽链序列的离子单体的位置不同. SANS研究表明,这些肽嵌段共聚物组装成星形胶束结构,并且离子单体的位置越靠近星形胶束中心,胶束的均方旋转半径越小,并且二者呈现一定的指数关系[34]. 此项研究为利用肽键氨基酸序列调控组装胶束结构开辟了新的道路.3.2高分子共混物和复合材料通过将高分子共混、复合,石油化工工业只需要生产常见的几十种高分子材料,如聚乙烯、聚丙烯、聚酰胺等,就可以大致满足人们日常生活对高分子材料的硬度、弹性、机械强度、疲劳强度、导电性、透光性、耐热性、阻燃性、吸水性、耐酶性等多方面的需求. 这表明高分子共混物和复合材料的多相多尺度微观结构及其演化过程与宏观性能密切相关. 小角中子散射适用于实时追踪这类体系的微观结构的变化.通常非晶高分子本体或者共混物中,由于要观察的目标大分子与其周围环境的化学结构大致相同,对大部分研究手段而言衬度几乎都为0,无法看到单一高分子链或者选择性观察某一相高分子. 少部分的观察手段,包括单分子荧光或者核磁虽然有选择性地观察能力,但是前者引入了大尺寸的荧光基团,有可能影响体系的动力学和动态学行为;后者直接观察的是能量空间. 只有SANS可以通过衬度匹配具有选择性地观察单链结构的能力[35].高分子共混物在双节线相区,初级成核过程究竟是如何发生的?到现在仍然是一个非常具有挑战性的课题. Balsara课题组曾进行了深入的研究[36]. 他们使用时间分辨SANS,研究了氘代聚乙基丁烯(dPE)、聚甲基丁烯(PM)和聚(甲基乙烯-b-乙基丁烯)的三元共混物相分离初期的成核过程,如图6所示. SANS的中子束流强度低,需要较长时间(通常大于3 min,依赖于不同中子源或者SANS谱仪)才能得到满足统计误差的散射谱图. 嵌段共聚物hPM-hPE的加入是为了增强dPE/hPM的相容性,降低相分离温度并延长相分离时间,从而满足SANS采样所需时间.图6(a)表明,相分离未发生时,体系为均相,相对散射强度不随散射矢量q变化;随着相分离发生,低q散射曲线随相分离时间增长,不断向上倾斜,这说明有相分离成核的尺寸逐渐增大,零散射矢量处散射强度随之增长. 使用不依赖具体模型的Guinier方程对SANS数据进行拟合(图6(b)),可以得到零散射矢量处散射强度(In)随其均方旋转半径(Rg)变化的标度关系,分形维数1/0.54,说明初级成核也许并不是Gibbs成核过程(分形维数3),而是浓度涨落诱导过程(分形维数2).Fig. 6(a) Dependence of SANS profiles on time during the early stage of the sample with 50 vol% block copolymer. The solid lines in represent fits to the Guinier model. (b) A lg-lg plot ofRg at a given time versus In(In = I(Q=0,t)/I(Q=0,t=0)) at that time. The solid line represents the best power law fit. (Reprinted with permission from Ref.‍[36] Copyright (1996) The American Physical Society).复合大分子材料在工业界有着十分广泛的应用. Liu等利用小角中子散射和电子显微镜研究纳米二氧化硅球(20 nm左右)和橡胶复合体系,发现SiO2会形成24~97个硅球的聚集体,聚集体尺寸随着SiO2球体积分数增加线性变小,最佳的二氧化硅的体积分数在40%~50%之间[37,38].具有刺激响应的智能大分子材料,如自愈(self-healing)复合材料是目前研究的热点. Staropoli 等利用小角中子散射和流变实验研究靠氢键结合而成的瞬态枝化梳状大分子在熔融状态下的氢键形成机理[39]. 结果表明,瞬态链合结构对此类材料至关重要.3.3高分子结晶高分子结晶过程极为复杂,尽管科学家们进行了多年不间断地研究,一些基础性的问题仍有疑问. 1977年,Sadler等使用SANS研究了氘代聚乙烯经过溶液和熔融结晶生成的晶体内部的单链构象[40],在一系列假设下(氘代和氢化聚乙烯无相分离、同时结晶),证明了高分子单链在溶液中优先按照近邻折叠模型结晶;在熔融过程中,优先按照插线板模型结晶. 这个结果争议不大,已经写入了高分子物理的教科书. 而串晶(shish-kebab)中shish的生成机理则至今仍争议不休:究竟是高分子链的拉伸、缠结网络变形或者是壁滑导致了shish的产生?Kimata等的SANS研究使shish成核理论的研究向前迈出了关键的一步[41]. 实验观察结晶过程中分子链结构变化的关键难点还在于衬度:如何能够在shish的狭小范围内看到高分子链的结构. 如之前表2所示,X射线的衬度来源于电子云密度的差别,因此SAXS可以看到二维的大分子片晶结晶区与非晶区片层之间的电子云密度差别,从而得到片晶厚度,但是SAXS看不到一根结晶大分子链与其周围链段之间的任何差别;而常规的SANS均聚物氘代和氢化二元共混同样存在问题,它虽然提供了氘代分子与周围分子之间的衬度差别,但是也引入了结晶的氘代大分子与非晶的氘代大分子之间的衬度差别. 所以Kimata之前,科学家们没有设计出合适的可以在shish中提取分子链结构的实验方法. Kimata等使用了氘代短链(S),中等链(M)和长链(L)等规丙烯(iPP)与多分散非氘带iPP进行共混,在不同温度下进行剪切实验,用SANS观察散射图样的变化,如图7所示.图7(a)中S链的各向异性散射更加显著,温度升高到168 ℃时shish开始熔化,各向异性开始逐渐消失. Kimata等用166 ℃ 时shish刚刚开始取向的散射图样减去168 ℃或者180 ℃完全熔融的背景散射,如图7(b)所示,成功得到了d-iPP链在shish中的取向信息.图7证明了长链在shish中只起引发作用,但扩散较慢,不是shish的主体.Fig. 7(a) Temperature dependence of SANS profiles of deuterium labeled iPP during heating from 25 °C to 180 °C. The labeled fraction is denoted by S, M, and L for short D, medium D, and long D, respectively. (b) The change in SANS scattering intensity between 166 and 180 °‍C (left) and between 168 and 180 °‍C (right) for each of the three deuterium-labeled blends. (Reprinted with permission from Ref.[41] Copyright (2007) American Association for the Advancement of Science).3.4凝胶溶胶或者溶液中的胶体粒子或者大分子在合适条件下相互连接,形成空间网络结构,最后失去流动性,整个体系变成一种外观均匀,并保持一定形态的弹性半固体,这种弹性半固体称为凝胶. 凝胶在有机体的组成中占重要地位,人体内的肌肉、皮肤、细胞膜、血管壁,以及毛发、指甲、软骨等都可看作是凝胶. 相对于稀溶液,凝胶体系中的结构和相互作用更加复杂,小角中子散射方法,可用于研究此类体系的微观结构[42,43]、凝胶相的形成过程[44]和形成机理等[45].Endo等利用SANS研究不同浓度的间规聚丙烯(sPP)在氘代十氢萘溶剂中形成的物理凝胶的结构[46],散射曲线如图8(a)所示. 散射曲线在某一q范围的斜率表示在相应正空间尺度上散射体的分形维数. 浓度最低的sPP十氢萘溶液(2 wt%)的散射曲线低q区间分形维数1,说明在交联点之间有棒状结构,中等q值范围内分形维数4,类似光滑球形外表面. 所以假设sPP纳米晶为球形结构(用贝塞尔方程拟合),纳米晶之间存在的非晶sPP链形成的网络结构(用Ornstein-Zernike方程拟合),纳米晶球之间进行Percus-Yevick近似,就可以得到交联点形状、尺寸随sPP浓度和温度变化的定量关系(图8(b)).Fig. 8(a) SANS profiles of the nitrogen quenched gel with differentsPP concentrations (symbols) and corresponding fitting results (solid lines). The profiles are vertically shifted to avoid the overlap. (b) Schematic illustration of hierarchical structures in gel LN suggested by the SANS profiles. (Reprinted with permission from Ref.‍[46] Copyright (2019) The Royal Society of Chemistry)3.5多孔材料中子直接作用于原子核,具有很强的穿透性,可以轻松穿透较厚的多孔材料,从而在1~100 nm范围内研究其内部孔隙的孔隙率、尺寸分布、各向异性、孔的连接性和比表面积,并且可以追踪这些参数对其容纳和吸附性能的影响.Yang等利用小角中子散射研究我国四川盆地龙马溪页岩的多孔结构[47,48]. 用多分散球形孔模型和Porod方法分析中子散射数据得到的比表面积和孔隙率,都大于压汞法得到的结果,说明样品中存在盲孔. 随着样品埋藏深度的增加,盲孔数量也随之增加,并且与有机碳含量存在相关性. 这个例子需要注意样品多重散射对散射曲线的影响,通常页岩样品厚度在200 μm的情况下可以保证单次散射;具体实验中需要测量不同厚度样品散射曲线来避免多重散射.碳纤维是重要的工业材料,小角中子散射可以对碳纤维内的孔隙缺陷进行精确的表征. Jafta等利用小角中子和小角X射线对多孔碳纤维内的孔隙率和比表面积进行了精确的分析[49]. 同时还用弦长分布函数分析了体系中孔隙的空间分布,发现孔的分布相对无序. 如果多孔材料的孔隙分布比较窄,就可以用于研究液体在空间受限行为、各种气体在孔隙内的吸附和脱吸附. Melgar等利用多金属氧酸盐为水分子提供含有不同配体的孔隙,研究水分子在孔隙内的分布情况[50],研究表明,当孔隙小于1.1 nm,水分子将不能进入孔隙从而去润湿. Bahadur等利用小角中子散射研究二氧化碳在多孔碳材料内的高压吸附行为[51]. 观察到二氧化碳在微孔内随着压强的非线性吸附,微孔尺寸从约5 Å增加到7 Å. 但氩气在同样压强作用下的吸附并没有引起孔隙尺寸的变化. 说明吸附二氧化碳后,孔隙内的压强大于外界压强,推测孔内存在很强的吸附引起的溶解压.3.6生物大分子生物大分子种类丰富,多尺度结构复杂,其内部结构和作用原理的解析对解开生命的奥秘、开发新型药物等意义重大. Shi和Li对小角X射线在该领域的研究进展和一般分析方法进行了详细的阐释[52],介绍的分析方法和研究方向与本小节介绍的内容有一些类似和重叠,有兴趣的读者可以自行查阅. 中子凭借其特性和与X射线的互补在生物大分子方面的应用前景也十分广阔[53].生物大分子的小角中子散射表征难度相对较高,第一,氘代样品的制备难度大,需要利用氘水和氘带碳源培养特定的细菌,粉碎后再纯化需要的氘带样品;第二,小角中子散射是一种低空间分辨率的表征手段,对于复杂体系的散射,人们通常将小角中子散射与其他实验手段和分析方法如透射电镜、X射线晶体衍射、核磁共振以及模拟方法等结合起来对散射数据进行分析,如图9所示. David等综述了利用小角散射研究生物大分子[54]. 在生物大分子方面小角中子散射的研究内容包括但不限于:(1)肽链、核酸、蛋白质[55]、双层磷脂膜、淀粉、纤维素等生物大分子在不同环境下的结构;(2)肽链、核酸、蛋白质和双层磷脂膜等的相互作用和组合结构;(3)病毒、细胞器等.Fig. 9A scheme of an SAS experiment, structural tasks addressed and the joint use with other methods. The nominal resolution of the scattering data is indicated asd = 2 p/s. (Reprinted with permission from Ref.[56] Copyright (2007) Elsevier Ltd.).对于生物大分子这类复杂体系,在能够达成科学目标的前提下,模型设计需要尽可能地简单,将变量维持在可接受范围内. 如果散射体非常复杂,由多个具有不同结构、功能的部分组成,需要使用氘代对各个部分进行衬度匹配. 数据分析方面,第一步,对散射数据做定性或半定量的分析,例如稀溶液,可以通过Guinier作图分析散射体均方旋转半径,Porod作图分析体系拓扑结构或者分形维度;第二步,依据已知数据建立模型,分析数据. 数据分析模型通常有以下2种:第一种是依赖于散射数据的可迭代优化模型,依据模型的计算曲线和实验曲线的均方差对模型的一些变量进行迭代优化,如规则几何模型拟合、逆蒙特-卡洛(RMC)方法[21,57]、从头计算(ab initio)方法[20]等;第二种是不依赖于散射数据的独立模型(强烈依赖于所用力场),例如独立的分子动力学或者蒙特-卡洛模型,独立模型的计算SANS曲线可以与实验曲线对比,或者依据实验曲线与模型得到的可能结构进行筛选[58].限于篇幅,以下举几个有代表性的实例. 如图10为天冬氨酰-tRNA合成酶(Aspartyl-tRNA synthetase complexed)与tRNA复合物结构的小角X射线和小角中子散射联合研究图示[59]. Petoukhov和Svergun分别利用ab initial的串球模型分析复合体系的低分辨结构,如图10(A)和10(B)所示,然后利用复合物各个部分的X射线晶体学结构和刚体建模方法拟合X射线和中子散射数据,得到体系在溶液中的高分辨结构模型.Fig. 10(A) Aspartyl-tRNA synthetase complexed with tRNA. (a, b) Comparisons of the crystal structure with the ab initio bead models generated by the program MONSA. In the high resolution model, the protein and tRNA are shown as blue and magenta backbones, in the bead model corresponding phases are presented in gray and yellow, respectively. (c) Best rigid body model generated by SASREF. (d) A SASREF model with different orientations of tRNA. Right view is rotated by 90° about horizontal axis. (B) Scattering profiles from the Aspartyl-tRNA synthetase complex with tRNA. The simulated data are shown by dots, the fits obtained by the program MONSA and the program SASREF are displayed as red solid and blue dashed lines, respectively. 1 and 2 are X-ray scattering curves of the dimeric protein and the entire complex, respectively. 3-7 are neutron scattering patterns at 0, 40%, 55%, 70% and 100% D2O, respectively. The patterns are displaced in logarithmic scale for better visualization. (Reprinted with permission from Ref.[59] Copyright (2006) Springer European Biophysics Journal).同步辐射和X射线晶体学是研究生物大分子结构的利器,在得到蛋白质的晶体结构后,利用刚体建模方法,或者分子动力学模拟,结合小角X射线和小角中子散射,可以研究各类蛋白在溶液中的结构和相互作用. Shrestha等利用小角中子散射、小角X射线散和分子动力学模拟研究天然无规蛋白(intrinsically disordered protein)结构[60],发现Flory指数为0.54,介于理想链的0.5和自避行走链的0.588之间.4总结小角中子散射技术在基础、应用、产业化的各个领域中都有广泛的应用. 由于篇幅所限,本文只是首先从原理和实践两个方面对这一技术进行了简要的介绍,然后列举了小角中子散射在高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料和生物大分子等体系结构表征方面的一些典型应用,希望能够进一步扩展我国的SANS用户群体. 如果需要更深一步了解SANS或者中子散射技术在高分子科学中的应用,可以参考一些专业书籍[12,61,62].参考文献1Borsali R,Pecora R.Soft-Mattter Characterization.Springer,2008.377-9522Cebe P,Hsiao B S,Lohse D J.Scattering from Polymers Characterization by X-rays, Neutrons, and Light.Washington DC:American Chemistry Society,2000.1-1163Roe R J.Methods of X-ray and Neutron Scattering in Polymer Science.Oxford:Oxford University Press,2000.1-804Feigin L A,Svergun D I.Structure Analysis by Small-Angle X-Ray and Neutron Scattering.New York and London:Plenum Press,1987.275-320.doi:10.1007/978-1-4757-6624-0_95Dianoux A J,Lander G.Neutron Data Booklet Second Edition (July 2003).2020-10-25.https://www.ill.eu/fileadmin/user_upload/ILL/1_About_ILL/Documentation/NeutronDataBooklet.pdf6National Nuclear Data Center.Evaluated Nuclear Data File (ENDF).2020-10-25.https://www.nndc.bnl.gov/exfor/endf00.jsp.doi:10.2172/9818137Zuo T S,Cheng H,Chen Y B,Wang F W.Chinese Phys C,2016,40(7):76204.doi:10.1088/1674-1137/40/7/0762048Carpenter J M, Agamalian M.J Phys:Conference Series,2010,251:012056.doi:10.1088/1742-6596/251/1/0120569Han Z,Zuo T,Ma C,Cheng H.Instrum Sci Technol,2019,47:448-465.doi:10.1080/10739149.2019.159773310Zhang H,Cheng H,Yuan G,Han C C,Zhang L,Li T,Wang H,Liu Y T,Chen D.Nucl Instrum Meth A2014,735:490-495.doi:10.1016/j.nima.2013.09.06511Anderson K.Reactor & Spallation Neutron Sources.Oxford:Oxford School of Neutron Scattering,2013.55-7612Higgins J S,Benoît H C.Polymers and Neutron Scattering.Oxford:Clarendon Press,1994.86-9513Rehm C,Barker J,Bouwman W G,Pynn R.J Appl Crystallogr,2013,46(2):354-364.doi:10.1107/s002188981205002914Du R,Tian H L,Zuo T S,Tang M,Yan L,Zhang J R.Instrum Sci Technol,2017,45(5):541-557.doi:10.1080/10739149.2016.127822915Hammouda B.Probing Nanoscale Structures-The SANS Toolbox.Gaithersburg:National Institute of Standards and Technology Center for Neutron Research,2010.31-19116Kline S.J Appl Crystallogr,2006,39(6):895-900.doi:10.1107/s002188980603505917Butler P,Doucet M,Jackson A,King S.SasView for Small Angle Scattering Analysis (July 2020).2020-10-25.https://www.sasview.org/18Konarev P V,Svergun D I.IUCrJ,2018,5(Pt 4):402-409.doi:10.1107/s205225251800590019Petoukhov M V,Svergun D I.Acta Crystallogr D Biol Crystallogr,2015,71(Pt 5):1051-1058.doi:10.1107/s139900471500257620Volkov V,Svergun D.J Appl Crystallogr,2003,36:860-864.doi:10.1107/s002188980300026821Gereben O,Pusztai L,McGreevy R L.J Phys Condens Matter,2010,22(40):404216.doi:10.1088/0953-8984/22/40/40421622Li Z,Cheng H,Li J,Hao J,Zhang L,Hammouda B,Han C C.J Phys Chem B,2011,115(24):7887-7895.doi:10.1021/jp203777g23Hu W T,Yang H,He C,Hu H Q.Chinese J Polym Sci,2017,35(9):1156-1164.doi:10.1007/s10118-017-1969-724Cotton J P,Decker D,Benoit H,Farnoux B,Higgins J,Jannink G,Ober R,Picot C,des Cloizeaux J.Macromolecules,1974,7(6):863-872.doi:10.1021/ma60042a03325Goossen S,Bras A R,Pyckhout-Hintzen W,Wischnewski A,Richter D,Rubinstein M,Roovers J,Lutz P J,Jeong Y,Chang T,Vlassopoulos D.Macromolecules,2015,48(5):1598-1605.doi:10.1021/ma502518p26Hao J,Cheng H,Butler P,Zhang L,Han C C.J Chem Phys,2010,132(15):154902.doi:10.1063/1.338117727Hore M J A,Hammouda B,Li Y,Cheng H.Macromolecules,2013,46(19):7894-7901.doi:10.1021/ma401665h28Jia D,Muthukumar M,Cheng H,Han C C,Hammouda B.Macromolecules,2017,50(18):7291-7298.doi:10.1021/acs.macromol.7b0150229Cheng H,Wu C,Winnik M A.Macromolecules,2004,37(13):5127-5129.doi:10.1021/ma049620130Hammouda B,Jia D,Cheng H. OAJoST,2015,3:101152.doi:10.11131/2015/10115231Datta S,Kato Y,Higashiharaguchi S,Aratsu K,Isobe A,Saito T,Prabhu D D,Kitamoto Y,Hollamby M J,Smith A J,Dagleish R,Mahmoudi N,Pesce L,Perego C,Pavan G M,Yagai S.Nature,2020,583(7816):400-405.doi:10.1038/s41586-020-2445-z32Zhang H V,Polzer F,Haider M J,Tian Y,Villegas J A,Kiick K L,Pochan D J,Saven J G.Sci Adv,2016,2(9):e1600307.doi:10.1126/sciadv.160030733Wang Z,Faraone A,Yin P,Porcar L,Liu Y,Do C,Hong K,Chen W R.ACS Macro Lett,2019,8(11):1467-1473.doi:10.1021/acsmacrolett.9b0061734Sternhagen G L,Gupta S,Zhang Y,John V,Schneider G J,Zhang D.J Am Chem Soc,2018,140(11):4100-4109.doi:10.1021/jacs.8b0046135Zuo T,Ma C,Jiao G,Han Z,Xiao S,Liang H,Hong L,Bowron D,Soper A,Han C C,Cheng H.Macromolecules,2019,52(2):457-464.doi:10.1021/acs.macromol.8b0219636Balsara N P,Lin C,Hammouda B.Phys Rev Lett,1996,77(18):3847-3850.doi:10.1103/physrevlett.77.384737Liu D,Song L,Song H,Chen J,Tian Q,Chen L,Sun L,Lu A,Huang C,Sun G.Compos Sci Technol,2018,165:373-379.doi:10.1016/j.compscitech.2018.07.02438Liu D,Chen J,Song L,Lu A,Wang Y,Sun G.Polymer,2017,120:155-163.doi:10.1016/j.polymer.2017.05.06439Staropoli M,Raba A,Hövelmann C H,Krutyeva M,Allgaier J,Appavou M S,Keiderling U,Stadler F J,Pyckhout-Hintzen W,Wischnewski A,Richter D.Macromolecules,2016,49(15):5692-5703.doi:10.1021/acs.macromol.6b0097840Sadler D M,Keller A.Macromolecules,1977,10(5):1128-1140.doi:10.1021/ma60059a04541Kimata S,Sakurai T,Nozue Y,Kasahara T,Yamaguchi N,Karino T,Shibayama M,Kornfield J A.Science,2007,316(5827):1014.doi:10.1126/science.114013242Shibayama M,Li X,Sakai T.Colloid Polym Sci,2018,297:1-12.doi:10.1007/s00396-018-4423-743Gao J,Tang C,Elsawy M A,Smith A M,Miller A F,Saiani A.Biomacromolecules,2017,18(3):826-834.doi:10.1021/acs.biomac.6b0169344Srivastava S,Andreev M,Levi A E,Goldfeld D J,Mao J,Heller W T,Prabhu V M,de Pablo J J,Tirrell M V.Nat Commun,2017,8:14131.doi:10.1038/ncomms1413145Nishi K,Fujii K,Katsumoto Y,Sakai T,Shibayama M.Macromolecules,2014,47(10):3274-3281.doi:10.1021/ma500662j46Endo F,Kurokawa N,Tanimoto K,Iwase H,Maeda T,Hotta A.Soft Matter,2019,15(27):5521-5528.doi:10.1039/c9sm00582j47Yang R,He S,Hu Q,Sun M,Hu D,Yi J.Fuel,2017,197:91-99.doi:10.1016/j.fuel.2017.02.00548Sun M,Yu B,Hu Q,Zhang Y,Li B,Yang R,Melnichenko Y B,Cheng G.Int J Coal Geology,2017,171:61-68.doi:10.1016/j.coal.2016.12.00449Jafta C J,Petzold A,Risse S,Clemens D,Wallacher D,Goerigk G,Ballauff M.Carbon,2017,123:440-447.doi:10.1016/j.carbon.2017.07.04650Melgar D,Zhou Q,Chakraborty S,Porcar L,Weinstock I A,Ávalos J B,Wu B,Bo C,Yin P.J Phys Chem C,2020,124(18):10201-10208.doi:10.1021/acs.jpcc.0c0101951Bahadur J,Melnichenko Y B,He L,Contescu C I,Gallego N C,Carmichael J R.Carbon,2015,95:535-544.doi:10.1016/j.carbon.2015.08.01052Shi Ce(史册),Li Yunqi(李云琦).Acta Polymerica Sinica(高分子学报),2015, (8):871-883.doi:10.11777/j.issn1000-3304.2015.1504853Fitter J,Gutberlet T,Katsaras J.Neutron Scattering in Biology: Techniques and Applications.Berlin Heidelberg and New York:Springer,2006.doi:10.1007/3-540-29111-354Jacques D A,Trewhella J.Protein Sci,2010,19(4):642-657.doi:10.1002/pro.35155Koruza K,Lafumat B,ÁVégvári,Knecht W,Fisher S Z.Arch Biochem Biophys,2018,645:26-33.doi:10.1016/j.abb.2018.03.00856Petoukhov M V,Svergun D I.Curr Opin Struct Biol,2007,17(5):562-571.doi:10.1016/j.sbi.2007.06.00957Ma Chang-li(马长利),Cheng He(程贺),Zuo Taisen(左太森),Jiao Guisheng(焦贵省),Han Zehua(韩泽华),Qin Hong(秦虹).Chinese Journal of Chemical Physics(化学物理学报),2020,33(6s):727-732.doi:10.1063/1674-0068/cjcp200507758Jiao G,Zuo T,Ma C,Han Z,Zhang J,Chen Y,Zhao J,Cheng H,Han C C.Macromolecules,2020,53(13):5140-5146.doi:10.1021/acs.macromol.0c0078859Petoukhov M V,Svergun D I.Eur Biophys J,2006,35(7):567-576.doi:10.1007/s00249-006-0063-960Shrestha U R,Juneja P,Zhang Q,Gurumoorthy V,Borreguero J M,Urban V,Cheng X,Pingali S V,Smith J C,O’Neill H M,Petridis L.Proc Natl Acad Sci,2019,116(41):20446-20452.doi:10.1073/pnas.190725111661Han C C,Akcasu A Z.Scattering and Dynamics of Polymers: Seeking Order in Disordered Systems.Singapore:John Wiley & Sons (Asia) Pte Ltd,2011.1-98.doi:10.1002/978047082484962Zemb T,NeutronLindner P.X-rays and Light.Scattering Methods Applied to Soft Condensed Matter.Amsterdam:Elsevier,2002.1-552.doi:10.1107/s0021889803001808原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2020.20242&lang=zhDOI:10.11777/j.issn1000-3304.2020.20242《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 大昌华嘉将召开最新颗粒表征技术研讨会
    大昌华嘉商业(中国)有限公司将于2011年11月1日在清华大学化学馆301报告厅与清华大学化学系徐柏庆教授课题组联合举办“最新颗粒表征技术研讨会”和“β亚基介孔分子筛的合成,表征及催化学术讲座”。此次会议分为上下午两场,大昌华嘉公司特邀请美国麦奇克公司副总裁Mr. Paul Cloake介绍动态激光在纳米技术上的最新应用及日本Pro. Yoshihiro SUGI讲解β亚基介孔分子筛的合成,表征及催化,并在现场演示最新激光粒度粒形分析仪,Zeta电位及纳米粒度分析仪的操作及维护技巧,欢迎您届时光临。大昌华嘉商业(中国)有限公司科技事业部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。大昌华嘉在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。日本拜尔有限公司(Bel Japan,Inc.)是一家研究生产容量法和重量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。Yoshihiro SUGI教授简介:Yoshihiro SUGI, Faculty of Engineering, Gifu UniversityAwards:1994 Prize for Distinguished Patent Applications, Agency of Science and Technology1995 JPI Prize for Distinguished Papers.1996 Prize for Distinguished Patent Applications, Agency of Science and Technology2003 The Best Article of the Month, BCSJ #5, 2003.2009 The Japan Petroleum Institute AwardMajor Interest: Catalysis (Homogenous and Heterogenous), Zeolite Synthesis,Ecomaterials.SEMINAR ARRANGEMENTS CHECK LIST本次会议初步议程如下: Conference 1 会场一 (8:30-12:20) Time / 时间 Content / 内容 CIP / 主持人 8:45-9:00 Registration / 会议注册 9:00-9:20 DKSH Presentation / 大昌华嘉公司介绍 Sinndy Yan严秀英 经理 9:20-10:30 Laser Diffraction and Image Analysis光散射与图像分析原理及应用 Paul Cloake 副总裁 10:30-10:50 Coffee Break茶歇 10:50-11:50 Dynamic Light Scattering – latest advances with probe technology动态激光散射在纳米上的应用 Paul Cloake 副总裁 11:50-12:20 Question / 仪器展示及问题讨论 Sinndy Yan严秀英 经理 12:20-13:20 Lunch午餐 Conference 2 会场二 (13:30-17:30) 13:30-14:00 DKSH Presentation / 大昌华嘉公司介绍 Rain Fan樊润 经理 14:00-15:10 Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis,β亚基介孔分子筛的合成,表征及催化 Yoshihiro SUGI 教授Keita Tsuji博士 15:10-15:30 Coffee Break茶歇 15:30-16:30 Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysisβ亚基介孔分子筛的合成,表征及催化 Pro.Yoshihiro SUGIDr.Keita Tsuji 16:30-17:30 Discussion /问题讨论 RainFan樊润 经理 17:30 End / 结束 本次会议内容丰富多彩,主办单位将向与会者赠送精美礼品。为便于会务安排,请将参会回执于10月25日前传真或发送电子邮件至大昌华嘉公司。联系方式: 地 址: 北京市光华路7号汉威大厦西区26层 电 话: 010- 6561 3988 联系人: 张媛 13301217002 王卫华13810747749 樊润 13901255059 传 真: 021- 6561 0278 电子邮件: Helen.zhang@dksh.com 备注:化学馆的具体地点在清华大学西北部理学院的正北面(从清华西北门进入往东200-300米路北即到)。西北门禁止没有清华车证的私家车出入,开车的客户可以从西门或者南门进入。 回 执 姓名 单位 地址 电话 手机 E-mail 邮编 参加人数 我希望参加以下会议: 会场1 会场2
  • 岛津材料化学研究表征技术研讨会成功举办
    2023年12月22日,岛津材料化学研究表征技术研讨会在湖南大学成功举办,会议邀请了各大高校专家老师参与了此次会议。会议现场湖南大学化工学院书记王双印教授首先致辞,他对参会的各位嘉宾表示了欢迎,岛津公司和湖南大学化学化工学院建有合作实验室,和电催化与电合成实验室亦有很多的互动交流沟通,之前,我们合作有在这举办电催化相关研究的技术交流会,今天我们在这就材料化学研究表征进行技术交流,报告专家会分享材料研究中的表征技术及仪器使用,希望能对各位嘉宾的科研有所助力,也预祝本次会议能圆满成功。湖南大学化工学院书记王双印教授中南大学粉末冶金国家重点实验室沈茹娟副研究员做了题为《试验机在材料分析和矿物分析中的解决方案》的发表。报告分享了:电子万能试验机基础介绍和应用实例、扫描电镜中的原位力学测试系统、力学性能微观测试。中南大学粉末冶金国家重点实验室沈茹娟副研究员岛津分析计测事业部营业部售前支持团队王文龙先生做了题为《X射线光电子能谱 (XPS) 在材料研究中的应用进展》的分享。报告分享了:XPS作为一种表面成分及化学状态分析的表征手段,可应用于研究表面反应、薄膜及涂层成分和结构,在材料科学研究中越来越受到大家的重视。王文龙先生在报告中介绍了XPS的原理、基本功能及在材料科学中的应用进展,包括XPS(准)原位测试、成像XPS、角分辨XPS及XPS深度剖析等。岛津分析计测事业部营业部售前支持团队王文龙先生岛津分析计测事业部市场部 石欲容女士岛津分析计测事业部市场部石欲容女士做了题为《岛津在材料研究中的典型解决方案及应用》的分享。报告分享了:岛津在材料研究中的整体解决方案,在材料研究中化合物、金属元素定性定量用到的有机、无机测定分析仪器,结构性能表征中XPS、EPMA、SPM、UV、SALD、试验机等分析仪器;在典型应用中重点介绍了EPMA标配的波谱测定功能在定性和面分析能力上比能谱更优异的应用,同时介绍了岛津的典型客户使用带扫描的试验机在氧化物弥散强化钢板高温蠕变性能的影响中的应用,以及岛津粒度仪的应用及特点。本文内容非商业广告,仅供专业人士参考。
  • 【突破局限】水凝胶及软物质的流变行为表征
    让我们从传统技术开始,您可能熟悉这些技术,流变仪和DMA,广泛用于机械测试。我们都同意它们都是伟大的技术,但它们在软物质材料方面存在一些主要限制: 1.软组织或易碎样品可能在测试后被破坏,甚至无法测试; 2.保持样品无菌是很困难的; 3.需要高水平的专业知识来运作,对操作人员有依赖性; 4.难以获得一致和可重复的数据; 5.无法测量凝血材料对血液的影响、无法测量形状各异的器官、3D打印支架的粘弹性等等。EB粘弹性分析技术就为突破传统技术的局限而设计的,主机小巧紧凑,可以放入洁净台或者培养箱中,通过无线连结的平板控制和采集数据,采用可拆卸的样品架和独特的专利技术,允许样品存储重复长期测量,更加智能的软件分析系统,结合AI的智能分析,使得测量模式从基于数据的实验科学转变为数据驱动的预测科学。 2022年12月28日将由2位嘉宾为我们带来相关应用介绍、技术分享,难点答疑!会议日程(点此报名,免费参会) 时间报告题目嘉宾报告摘要10:00水凝胶材料的合成及其流变行为表征经鑫(湖南工业大学 教授)水凝胶是一类大量含水的三维网络结构的聚合物材料,在药物释放、生物医用、组织工程等领域应用广阔。采用流变学手段表征了水凝胶材料的凝胶化过程及其流变行为,利用流变学手段探索了水凝胶的线性粘弹性等剪切特性,建立了凝胶流变特性与其微观结构及宏观力学性能之间的关系,探究了其在组织工程领域及柔性传感领域的应用。10:40水凝胶和软物质粘弹性的测量新技术刘兵 昇科仪器(上海)有限公司 经理EB粘弹性分析仪是一种新型的粘弹性分析技术,解决了传统流变和DMA在测量软物质生物材料方面面临的挑战,在水凝胶、组织工程、类器官、3D打印、凝血材料和高吸水材料领域已发展出非常成熟的应用,通过全球领先研究机构、大学和公司等的严格测试、批准和采用! 【点击下方图片,免费报名参会】
  • 仪器表征,科学家揭示铁基催化剂稳定性与性能的提升新方法!
    【科学背景】铁基费托合成(FTS)催化剂是广泛用于合成气转化的重要催化剂,由于其产品分布灵活、反应条件广泛且成本低廉,因而成为了研究热点。然而,铁基催化剂在反应过程中,其铁碳化物活性相容易被生成的水氧化成Fe3O4,这导致催化性能逐渐下降,成为该领域面临的一大挑战。有鉴于此,武汉大学定明月教授、Yanfei Xu等课题组在“Nature Communications”期刊上发表了题为“Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer–Tropsch synthesis”的最新论文。科学家们提出了通过表面疏水化来保护铁碳化物活性相的策略。疏水表面能够在合成气转化过程中减少催化剂核心附近的水浓度,从而有效抑制水对铁物种的氧化。这一策略不仅增强了催化剂的C-C偶联能力,还促进了长链烯烃的形成。此外,研究进一步表明,适当的壳层厚度在稳定铁碳化物活性相、避免Fe3O4的生成以及实现良好催化性能方面发挥了关键作用。这一研究为开发高效、稳定的铁基FTS催化剂提供了新的思路。【科学亮点】(1) 本研究首次采用表面疏水化的方法,对铁基费托合成(FTS)催化剂进行改性,成功保护了铁碳化物活性相。通过实验发现,疏水表面能够在合成气转化过程中减少催化剂核心附近的水浓度,从而有效抑制了水对铁物种的氧化,保持了铁碳化物的稳定性。(2) 通过调控催化剂表面的疏水壳层厚度,实验进一步揭示了壳层厚度在稳定铁碳化物活性相中的关键作用。结果表明,适当厚度的疏水壳层不仅有效防止了Fe3O4的形成,还显著增强了催化剂的C-C偶联能力,促进了长链烯烃的生成,最终实现了优良的催化性能。这一研究为铁基FTS催化剂的性能优化提供了新的思路和方法。【科学图文】图1:结构表征与催化性能。图2:亲水性和疏水性催化剂的相变行为。图3:通过表面疏水化抑制水对碳化铁的氧化图4:壳层厚度对相结构与催化性能的影响。。图5:氯对相变行为及CO吸附行为的影响。【科学结论】本文揭示了通过表面疏水化策略有效保护铁基费托合成催化剂中铁碳化物活性相的重要性。传统铁基催化剂在合成气转化过程中,铁碳化物活性相容易受到生成的水的氧化,从而导致Fe3O4的形成,严重影响催化性能。而通过在催化剂表面引入疏水层,可以显著减少水在催化剂核心区域的浓度,抑制铁物种的氧化过程,进而稳定铁碳化物活性相,增强催化剂的C-C偶联能力,促进长链烯烃的生成。此外,本文强调了壳层厚度在这一过程中的关键作用,适当的壳层厚度不仅能有效防止Fe3O4的形成,还能在保持催化剂良好性能的同时,确保其活性相的稳定性。此研究为开发高效、稳定的铁基FTS催化剂提供了新的思路和方法。原文详情:Xu, Y., Zhang, Z., Wu, K. et al. Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer–Tropsch synthesis. Nat Commun 15, 7099 (2024). https://doi.org/10.1038/s41467-024-51472-w
  • 仪器表征,科学家实现乙醇高效产率与能源可持续利用新技术!
    【科学背景】随着全球气候变化和环境问题的日益严重,碳达峰和碳中和已成为全球关注的焦点。利用可再生能源将CO2转化为有价值的化学品是实现净零碳管理的重要途径。然而,生成高附加值多碳(C2+)产品仍然是一个巨大挑战。特别是乙醇由于其高能量密度(26.8 MJ kg&minus 1)和便捷的运输与储存特性,在实际应用中具有显著优势。尽管CO2还原为乙醇在热力学上是有利的,但激活CO2分子(C=O键能为806 kJ mol&minus 1)需要大量的能量输入,传统热催化通常需要高温(200-400°C)才能实现足够的反应速率,这需要额外的加热装置,导致成本增加和CO2排放增多。此外,加热会影响整个反应装置,导致没有催化剂的区域出现能源浪费。光热催化结合了传统热催化和光催化的优势,利用光热材料局部加热催化区域,同时利用光激发的载流子进行催化反应。然而,单一光热材料在CO2转化方面仍存在严重的局限性。首先,光热材料产生的热量容易通过红外辐射散失,难以维持局部高温。其次,为增强光吸收能力,光热材料需要具备窄带隙,这限制了它们在同时进行CO2还原和H2O氧化时的应用。此外,传统光热复合材料通常依赖贵金属的等离子体效应,效率较低且成本高昂,大多数研究使用H2作为还原气体,在利用H2O作为质子源进行高效CO2光热转化方面进展有限。为此,中国科学技术大学,微尺度物质科学国家研究中心孙永福教授以及德国德累斯顿工业大学Xinliang Feng教授合作提出了一种基于Cu/Cu2Se-Cu2O异质结纳米片阵列(Cu-CSCO HNA)的原位热增强方法。该设计通过Cu箔作为基底,维持催化剂温度并确保反应持续进行;垂直原位生长的Cu2Se纳米片引发光热效应,作为CO2转化催化剂;Cu2Se纳米片之间的阵列间隙作为微反应器,提高中间体浓度,促进C-C偶联过程。原位生长的Cu2O纳米颗粒形成Z型异质结,加速载流子的空间分离,抑制复合,提高光催化效率。结果表明,该系统在可见光-红外光照射下,可在2分钟内加热至200°C,并实现149.45 µ mol g&minus 1 h&minus 1的乙醇生成速率,电子选择性为48.75%。【科学亮点】(1)实验首次提出了基于Cu/Cu2Se-Cu2O异质结纳米片阵列(Cu-CSCO HNA)的原位热增强方法,成功实现了在可见光-红外光照射下高效将CO2转化为乙醇。(2)实验通过以下几点取得了重要结果:&bull 首先,利用Cu箔作为基底稳定催化反应温度,保证了连续的CO2还原反应,Cu2Se纳米片的光热效应使系统温度迅速升至200°C以上,无需外部加热设备。&bull 其次,垂直生长的Cu2Se纳米片作为催化剂,展现出丰富的活性位点和高效的光催化性能,促进了CO2的选择性还原为乙醇。&bull 第三,Cu2Se-Cu2O异质结构形成的Z型能级带结构有效分离载流子,抑制了复合效应,提高了光催化效率。&bull 最后,通过密度泛函理论计算和原位傅里叶变换红外光谱实验,证明了Cu-CSCO HNA系统在水为质子源条件下的高效率乙醇生成,乙醇生成速率达到149.45 µ mol g&minus 1 h&minus 1,电子选择性为48.75%。【科学图文】图1:Cu-CSCO HNA的理论能带结构。图2:Cu-CSCO HNA的表征。图3:Cu-CSCO HNA的光热效应和催化性能。图4:Cu-CSCO HNA光热CO2转化为乙醇的反应机制研究。【科学结论】本文通过设计和应用Cu/Cu2Se-Cu2O异质结纳米片阵列(Cu-CSCO HNA)光热催化剂系统,成功实现了在太阳光谱下将CO2高效转化为乙醇的目标。这一成果不仅展示了光热效应与光催化的协同优势,还通过优化载流子传输和中间体浓度调控,显著提高了C-C偶联反应的效率。此外,催化剂在无需外部加热的情况下即可达到高温,有效地降低了能源消耗和成本。这种策略不仅有望推动CO2转化技术向更高效率和可持续性发展,还为开发其他需要高温的重要催化反应(如甲烷氧化和氨合成)提供了新的思路和方法。原文详情:Li, X., Li, L., Chu, X. et al. Photothermal CO2 conversion to ethanol through photothermal heterojunction-nanosheet arrays. Nat Commun 15, 5639 (2024). https://doi.org/10.1038/s41467-024-49928-0
  • 大科学装置助力材料高通量表征
    仪器信息网讯 2014年10月20日,材料基因组计划&mdash 高通量表征报告会在北京国际会议中心举行。与会的数位科学家介绍了材料基因组计划,以及散裂中子源和同步辐射光源等大科学装置在材料高通量表征中的应用及其在我国的建设情况。 会议现场 北京科技大学刘国权教授   材料基因组计划(又名Materials Genome Initiative),简称MGI,最早在2011年由美国政府提出。北京科技大学刘国权教授介绍说:&ldquo 今年5月,王崇愚院士、南策文院士等数十名专家组成的咨询专家组撰写了《材料基因组计划与高端制造业先进材料咨询建议报告》。另外,中国工程院撰写了《材料科学系统工程发展战略研究》,堪称中国版的材料基因组计划咨询报告。&rdquo 中国科学院高能物理研究所董宇辉研究员   中国科学院高能物理研究所董宇辉研究员介绍说:&ldquo 以往材料的研发,由于缺乏足够的参考数据,更多的是采用&ldquo 试错法&rdquo 。不断的试验各种化学配比、各种制备条件,检验制备的材料性能如何,然后考察这些材料在服役过程中的性能。之所以采取这种方式来探索新型材料,主要是因为我们对上述决定材料性能的环节了解的太少,而且没有系统的认识,只好根据经验来摸索,凭借努力和运气来发现合适的新材料,这无疑得花费很高的时间和成本。&rdquo   材料基因组的核心目标是将新材料的研发周期缩短,降低成本,因此需要高通量计算、高通量合成与快速表征以及数据信息库三部分之间的有效结合,其中高通量表征在材料基因组计划的重要部分。同步辐射光源和中子源由于其自身的特点和优势,无疑在材料的高通量表征中发挥举足轻重的作用。 中国科学技术大学国家同步辐射实验室副主任高琛教授   中国科学技术大学国家同步辐射实验室副主任高琛教授介绍说:&ldquo 同步辐射光源具有高亮度,特别是高亮度的X射线能够给出精确的原子结构信息 同步辐射具有从红外到硬X射线的宽能谱,使得探测原子、电子、声子多种结构都有可能 同步辐射具有很好的准直性,可以获得纳米、微米、毫米各种尺寸的光斑,因而使得探测埃-纳米-微米,直到毫米级的多尺度成为可能。同步辐射光源的这些特点能为实现材料样品的高通量快速检测提供了条件。&rdquo   据介绍,目前,我国在北京、上海和合肥等地建有同步辐射光源装置。其中上海同步辐射光源装置首批7条光束线站已经对用户开放,其中6条线站可用于材料研究和表征。在未来线站工程规划中,微束白光劳厄衍射等光束线将能够进一步提升高通量材料芯片的表征能力。 中科院能量转换材料重点实验室主任陆亚林教授   中科院能量转换材料重点实验室主任陆亚林教授介绍了合肥同步辐射光源装置的建设情况。他说:&ldquo 合肥的同步辐射光源装置始建于1984年,总投资6400万,建有5条光束线和实验站 1998-2004年,投资11800万,用于提高光源亮度和运行可靠性,并增建8条光束线和8个实验站 2012-2014年,再次投资18900万,增加安装波荡器的直线节,降低束流发射度,大幅度提高亮度,新建3台波荡器和10个光束线前端。&rdquo   此外,董宇辉介绍说,中科院还将计划在北京周边建设高能同步辐射光源,材料科学研究是该光源的首要目标之一,特别是高通量、原位实时的实验技术,将为材料基因组的高通量、多尺度分析提供重要技术支撑。 中国科学院物理研究所CSNS靶站谱仪工程中心王芳卫研究员   中子不带电,穿透性强,有磁矩。因此,中子散射具有许多独一无二的特点,成为探测研究材料的微观结构与动力学的强有力工具之一,与同步辐射互为补充。中国科学院物理研究所CSNS靶站谱仪工程中心王芳卫研究员介绍说:&ldquo 散裂中子源是中子散射研究和应用的主要平台,具有脉冲中子通量高,中子波段宽,及脉冲时间结构。这些特点为高通量、高分辨率、复合体系的微观结构和动态测量(特别是在固态量子材料、生物软物质材料和工程结构材料等领域)带来新的契机。&rdquo   王芳卫介绍说,我国于2011年10月在广东省东莞市开始建设散裂中子源。中国散裂中子源(CSNS,China Spallation Neutron Source)是发展中国家拥有的第一台散裂中子源,目前关键设备设计均已完成,预计2018年3月完成实验验收并对用户开放。   CSNS一期设计的束流功率为100kW,脉冲中子通量将大于2*105/(cm2/s),进入世界四大散裂中子源行列,将来升级到500kW后中子通量将提高到~1016/(cm2/s)。   CSNS设计拥有3个中子慢化器,能产生4种不同脉冲特性的中子束流,提供20条束道用于中子散射研究。不过由于项目建设经费的限制,一期工程仅建有3台谱仪,严重制约CSNS的应用范围。CSNS科技委员会和461次香山会议的专家都呼吁加紧规划和申请剩余束道的谱仪建设。因此特申请在国家&ldquo 十三五&rdquo 计划期间,增资建设其余17台特色中子散射谱仪,使CSNS高效、全面地服务于我国科学技术前沿研究。
  • 高分子表征技术专题——X射线晶体结构解析技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!X射线晶体结构解析技术在高分子表征研究中的应用X-ray Diffraction Methodology for Crystal Structure Analysis in Characterization of Polymer作者:扈健,王梦梵,吴婧华作者机构:青岛科技大学 教育部/山东橡塑重点实验室,青岛,266042 北京化工大学 碳纤维及复合材料教育部重点实验室,北京,100029作者简介:扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究. 扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究.摘要高分子材料结构具有多尺度的复杂性,解析高分子材料各级微观结构并建立结构与性能之间的关系是高分子研究领域的重要目标和挑战. 对结晶性高分子而言,第一步工作就是对其晶体结构进行表征和解析,X射线衍射法是高分子晶体结构解析中最经典也是最常用的方法. 本文主要介绍X射线衍射等技术在高分子晶体解析中的基本原理和测试表征方法,总结概述近些年来晶体结构解析在高分子领域内的主要进展以及应用. 通过晶体结构解析的方法建立可靠的高分子晶体结构,不仅可以应用于新合成结晶高分子结构的解析,也可以进一步研究高分子各级结构在外场作用下的演变,探明微观结构与宏观性能之间的关系.AbstractBecause of complicated multi-scale structure for the polymer material, studying microscopic structure of polymer and clarifying the relationship between structure and physical property are the major goal and challengein the polymer science. For the crystalline polymer, crystal structure should be analyzed and established at first. X-ray diffraction is the most classical and conventional method for the crystal structure analysis in polymers, which gives the detailed information of molecular chain conformation, chain aggregation in the crystal lattice. This article reviews the main principles and experimental techniques of X-ray diffraction methodology, and also summarizes the progress and application in the polymer field over the past decade. By utilizing X-ray diffraction method, the crystal structure of newly synthesized crystalline polymers can be analyzed, which may help us recognize crystal phase transition and hierarchical structure evolution by the external force, and also study towards the microscopic clarification of structure-property relationship. By combining other techniques such as neutron scattering, electron diffraction, nuclear magnetic resonance, vibrational spectroscopy and computer simulation, the crystal structure of polymers with higher reliability can be established, leading us to the highly quantitative discussion from the molecular level. For this purpose, the study of polymer crystal structure is still on the way, and the contents may be helpful for the beginners and researchers.关键词结晶性高分子  晶体结构  X射线衍射  结构与性能KeywordsCrystalline polymer  Crystal structure  X-ray diffraction method  Structure and property 目前已知的高分子中,大约70%的都是结晶性高分子,它们在日常生活和高端领域有着大量的应用. 结晶性高分子受分子链结构不规整、链缠结和链间相互作用等效应的影响,很难像小分子一样完全结晶,通常也被称作半结晶性高分子[1-3]. 高分子结构具有多尺度复杂性,其各级结构通常包括聚合物链结构、晶体(胞)结构、晶胞堆砌结构、晶区与非晶区堆砌结构以及球晶中片晶结构等,各级结构都有可能影响着高分子相态及形貌,进而影响高分子材料的性能. 而其中,晶体结构的确定是研究结晶性高分子的基础,所以建立高质量的结晶性高分子的晶体结构是非常必要的[4,5].近几十年来,随着各类表征技术和计算机模拟等领域的快速发展,大量的高分子晶体结构被建立或者修正. 确定结晶性高分子在单元晶胞基础上的晶体结构信息,最传统和经典的方法是广角X射线衍射法,并且结合红外光谱、拉曼光谱、核磁共振谱、中子散射以及高分辨电子衍射等技术能够得到更为准确的晶体结构. 这些技术的进步和运用不仅有助于分析聚合物的晶体结构,而且也提供了新方法去研究更为复杂的高分子材料. 基于晶体结构的建立,我们可以研究高分子的各级结构以及在外场作用下各种相态之间的演变规律,对阐明聚合物材料微观结构与物理性能之间的关系都具有重要意义[6,7].1高分子X射线晶体结构解析法X射线是一种波长为埃(1 Å = 10-10 m)级的电磁波,由于其波长的数量级与晶体点阵中原子间距一致,晶体点阵可以成为X射线发生衍射效应的光栅,而衍射图会随晶体点阵的变化而变化,因此X射线适用于晶体结构解析. 从20世纪30年代开始,X射线衍射法对聚合物科学领域的发展就起到了重要的作用,例如通过X射线衍射方法确定了各类合成或天然高分子的纤维周期均为几个Å到几十个Å,这也证明了一根聚合物分子链可以贯穿多个晶胞. 随着近几十年同步辐射技术的应用,拓宽了X射线的波长范围,更短的波长可以使我们获得更多倒易空间的坐标信息,灵敏度更高的探测器可以帮助我们更细致观测相变的动力学以及其他行为. 另外,通过分子模拟软件进行数据分析,建立模型以及能量最小化等已经普遍用于X射线衍射法解析或精修晶体结构. 1.1X射线衍射法基本原理解析晶体结构的衍射原理和方法学主要是20世纪初期建立的,包括布拉格定律、晶体学对称、群论以及从实空间到倒易空间的傅里叶变换等等. 很多书籍对这些方法都有着详尽的描述,这里对几个重要的概念和原理进行简要的概述[8~11].1.1.1Bragg和Polanyi公式Bragg公式:如图1所示,当一束单色X射线非垂直入射晶体后,从晶体中的原子散射出的X射线在一定条件下彼此会发生干涉, 满足下列方程:其中λ为入射光波长,d为晶面间距,θ为入射光与晶面的夹角.Fig. 1Bragg' s condition.Polanyi公式: 如图2(a)所示,当一束波长为λ的X射线垂直入射在一维线性点阵时(例如单轴取向的纤维样品),其等同周期为I, 当满足Polanyi方程公式时,散射出的X射线间会产生强烈的衍射:其中Φm为第m层衍射的仰角. 结晶高分子中分子链排列时以相同结构单元重复出现的周期长度被称为等同周期(identity period)或者纤维周期(fiber period),图2(b)为全同聚丁烯-1的(3/1)螺旋构象,可以利用Polanyi公式从二维X射线纤维图中计算等同周期.Fig. 2(a) Polanyi' s condition (b) Identity period ofit-PB-1.1.1.2倒易空间倒易点阵是根据晶体结构的周期性抽象出来的三维空间坐标,是一种简单实用的数学工具来描述晶体衍射,X射线衍射的图样实际上是晶体倒易点阵的对应而不是正点阵的直接映像. 正点阵与倒易点阵是互易的,倒易晶格中越大的晶面指数(hkl),在实晶格中就对应越小的晶面间距. 如图3(a)所示,假设晶体点阵中的单位矢量为a1,a2和a3,和它对应的倒易点阵的单位矢量为a1*,a2*和a3*,其关系如下式:其中晶胞体积V=a1 × ( a2 × a3),a1*垂直于a2和a3,a2*垂直于a1和a3,a3*垂直于a1和a2,其长度是相应晶面间距的倒数的向量.Fig. 3(a) Relationship between real space and reciprocal space (b) Reciprocal lattice and vector.倒易晶格中的任一点称作倒易点,倒易点阵的阵点与晶体学平面的矢量相关,每一组晶面(hkl)都对应一个倒易点. 从倒易空间原点指向倒易点的矢量被称为倒易矢量Hhkl,如图3(b)所示,其关系如下:其中指标(h,k,l)就是实空间中的晶面指数,h,k,l均为整数. 倒易矢量Hhkl垂直于正点阵中的(hkl)晶面,并且矢量的长度等于其对应晶面间距的倒数|Hhkl|=1/dhkl.1.1.3Ewald球Bragg方程指出,当散射矢量等于某倒易点阵矢量时就具备发生衍射的基础,如果把Bragg方程进行变形可得到公式(5):以1/λ为半径画一个球面,C点为圆心,CP为散射X射线,球面与O点相切,只要倒易点阵与球面相交就可以满足Bragg方程而发生衍射现象,这个反射球就被称为Ewald球,如图4所示.Fig. 4Relationship between Ewald sphere of radius 1/λ and reciprocal lattice. 根据图中的几何关系OP = 1/d,假设O点为倒易空间原点,OP即为倒易散射矢量,P点与倒易空间点阵的交点即为(hkl)晶面指数. 转动晶体的同时倒易点阵亦发生转动,从而会使不同的倒易点与Ewald球的表面相交. Ewald球直径的大小与X射线波长成反比,衍射点数量取决于Ewald球与倒易空间的交点的数目,实验可探测衍射的最小d值取决于Ewald球的直径2/λ,在实际测试中,可以减小入射光波长以增加可观测的衍射点数量.如图5所示,对于单轴取向的样品,拉伸方向平行于c轴方向,而a轴和b轴仍然是随机取向,所以倒易空间的(hkl)点呈同心圆分布,这一系列同心圆与Ewald反射球的交点就构成了一系列的hk0,hk1,hk2… hkl的倒易格子的平面. 通常定义(hk0)层为赤道线方向,沿拉伸方向的(00l)为子午线方向.Fig. 5The relationship among Ewald sphere, circular distribution of reciprocal lattice points and a diffraction pattern on a flat photographic film.1.1.4X射线衍射强度X射线的衍射强度Intensity公式如下:其中K是比例因子,m是多重性因子,p为极化因子,L是Lorentz因子,A是吸光因子,F为结构因子. 其中需要强调的是结构因子F,它是由晶体结构决定的,和晶胞中原子的种类和位置相关.如图6所示,一束平行X射线经过电子A和B分别发生散射,假设A到B的距离为r,S0和S分别为入射和散射单位矢量,其光程差为:其中b即为散射矢量,与图4中OP矢量一致.Fig. 6Sketch of classic scattering experiment.一个原子中的核外电子云呈球形分布,对环绕中心的所有可能实空间矢量的干涉进行积分可以得到一个原子周围的电子产生的相干散射:这个公式就是ρ(r)的傅里叶变换,其中ρ(r)是原子的散射因子.晶体中原子的周期排列决定了晶体中的一切都是周期的,相当于一种周期函数,这种周期函数的实质就是晶胞中的电子密度分布函数,倒易晶格就是实晶格的傅里叶变换. 晶格对X射线的散射为晶格中每个原子散射的加和,每个原子的散射强度是其位置的函数,加和前必须考虑每个原子相对于原点的位相差.r为实空间中的原子位置矢量,设r = xna1 + yna2 + zna3,b为倒易空间的倒易矢量,b = Hhkl = ha1* + ka2* + la3*,根据倒易空间的性质可以得出公式:通过此公式可以看出结构因子和原子坐标位置相关,这也就决定了系统消光现象,也就是说在不同晶系中不是所有衍射点都会出现,可以通过计算结构因子来判断.另外由于衍射强度正比于|Funit cell|2,在晶体计算过程中,衍射峰的绝对强度意义不大,但是衍射峰的相对强度对最后晶体结构的确定影响很大.1.1.5分子链排列方式和空间群一根分子链一般包含内旋转相互作用、非键接原子间相互作用、静电作用、键长伸缩和键角变形作用以及氢键作用等. 在晶格中分子链排列大多遵循2个原则:最稳定的空间螺旋构象以及最密堆砌.晶体学中的空间群是三维周期性的晶体变换成它自身的对称操作(平移,点操作以及这两者的组合)的集合,一共有230种空间群. 空间群是点阵、平移群(滑移面和螺旋轴)和点群的组合. 230个空间群是由14个Bravais点阵与32个晶体点群系统组合而成[12].我们挑选比较简单的空间群操作进行比较直观的说明,如图7所示,若一个右旋向上的分子链(图7(a)中Ru),通过以箭头方向为旋转轴做180°转动,可以得到右旋向下的分子链(图7(a)中Rd),如果空间中只有这一种对称操作,那么这种空间为P2;又若Ru分子链通过镜面对称操作可以得到左旋向上的分子链(图7(b)中Lu),如果空间中只有这一种对称操作,那么这种空间为Pm;若空间群中同时包含以上2种对称操作,且镜面法线方向与对称轴垂直,也就是说在此晶胞内就同时存在右旋向上Ru,右旋向下Rd,左旋向上Lu,左旋向下Ld 4种分子链构象,那么这种空间群为 P2/m,如图7(c)所示.Fig. 7Introduction of different operation in the space group.1.2其他方法简介1.2.1振动光谱法振动光谱法通常包括红外及拉曼光谱,其可以提供分子链构象,晶体对称性等信息[8]. 虽然通过X射线衍射法进行晶体结构解析时可以得到晶区高分子链的构象信息,但无法获知分子间作用力的信息,而有时分子间作用力在晶体结构的形成起到很重要的作用.1.2.2中子衍射法X射线衍射是X射线与电子相互作用,它在不同原子上的散射强度与原子序数成正比,对高分子而言通常都给出主链的信息,而中子衍射法是中子与原子核相互作用,其衍射强度随原子序数的增加不会有序的增大,主要与原子的种类有关,因此中子衍射法可以确定晶体结构中轻元素的位置. 很多力学性能的各向异性通常受侧链的氢原子影响很大,结合X射线衍射和中子衍射法能得到更为准确的晶体结构[13,14].1.2.3电子衍射法电子衍射法可以给出聚合物单晶的形貌信息并且可以得到相应电子衍射图进行结构分析[15]. 但是通常电子衍射法得到衍射点数量较少,而且容易产生次级衍射,样品容易被电子束破坏.1.2.4固体核磁共振谱法固体NMR适用于解析固态高聚物的本体结构、链构象、结晶、相容性以及分子动力学等[16,17]. 谱峰的化学位移(chemical shift)是固体核磁波谱的主要信息,它依赖于分子的局部电子云环境. 电子云结构对分子构象的变化非常灵敏,是研究多晶型的重要依据. 但固体核磁法很难给出晶体的直接结构,常作为X射线衍射法的补充.2X射线衍射测试方法及技巧对于聚合物而言很难培养出0.1 mm以上的单晶,所以测试大多数采用的都是多晶样品. 相较于小分子和低分子量的化合物而言,高分子结晶区的尺寸通常只有几百个Å,晶格内分子链排列不完善,衍射点的数量较少并且衍射点尺寸较宽,大角度范围衍射点强度衰减非常严重,要得到高质量的数据和非常可信的结构解析结果是比较困难的,从样品制备到测试以及后续分析的每一个环节都需要仔细的处理.图8为X射线衍射法解析高分子晶体结构的具体步骤.
  • 你距离一流的催化剂可能只差一个表征
    p   催化在化工、能源、环境、材料、生物、制药、分析等领域被广泛应用。催化研究涵盖的领域更是包括了能源催化、催化材料、催化机理、环境催化、工业催化、电化学催化、化学合成催化、光催化、单原子催化等领域。90%以上的化学化工工程都是催化反应过程,因此,催化剂的表征与评价研究与应用具有重大的意义。 /p p   基于此,仪器信息网(www.instrument.com.cn) 联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建),将于2020年5月12日组织召开 a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" 首届“催化剂表征与评价”主题网络研讨会 /a ,邀请业内著名催化研究学者、检测分析专家以及业界企业代表,针对催化研究应用及检测分析的前沿热点和关键技术进行探讨,为催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流,促进我国催化领域的研究发展。 /p p    strong 会议日程(以报名页面为准): /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 389px " src=" https://img1.17img.cn/17img/images/202004/uepic/2d2b81b9-37c4-4310-b824-24a0dde5bb40.jpg" title=" 会议日程.png" alt=" 会议日程.png" width=" 600" height=" 389" border=" 0" vspace=" 0" / /p p    strong 报告嘉宾简介: /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 280px " src=" https://img1.17img.cn/17img/images/202004/uepic/f0ffda9a-a79b-46b2-b962-61852b503735.jpg" title=" 李瑛.jpg" alt=" 李瑛.jpg" width=" 200" height=" 280" border=" 0" vspace=" 0" / /p p style=" text-align: center " 浙江工业大学工业催化研究所 李瑛 /p p   李瑛,浙江工业大学教授,主要研究方向:新型多孔碳材料及其复合材料的调控合成及催化应用 纳米金属催化剂的调控合成及工业应用。2005年获中国科学院大连化学物理研究所物理化学博士学位。师从国际催化委员会主席李灿院士。2005.08-2007.08荷兰 Eindhoven University of Technology做博士后及访问学者。合作导师:荷兰皇家科学院院士Prof. Rutgers Van Santen。2007.10-至今,浙江工业大学参加工作,目前担任浙江省石油协会理事,浙江省科协九届委员。中国化学工程学报(英文版)编委,近年来在国际知名期刊共发表SCI论文100余篇,已获得授权专利10余项,其中多项技术已经实现产业化推广。承担浙江工业大学研究生核心课程《现代催化剂表征技术》、《催化学科前沿讲座》、本科生《物理化学》上下册等教学。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/8eb4aed1-d4cb-4371-87f4-5a95d4f8985f.jpg" title=" 陈婧琼.png" alt=" 陈婧琼.png" / /p p style=" text-align: center " 安东帕(上海)商贸有限公司 陈婧琼 /p p   陈婧琼,安东帕(上海)商贸有限公司产品应用专家,毕业于天津科技大学。具有长达8年的粉体材料表征经验。 /p p   2012~2014从事甲醇制烯烃MTO催化剂的制备和表征,包括催化剂原料SAPO-34的合成,催化剂喷雾干燥制备、粒度测试、zeta电位测试,催化剂微反评价,酸性测试,比表面积和孔径分析等 2014~2015于兰州化学物理研究所羰基合成与氧化国家重点实验室从事光催化产氢研究,以共沉淀法制备了掺杂石墨烯的光催化剂,具有良好的产氢效应 2015至今,任职于安东帕,从事粉体表征产品气体吸附仪等的技术支持。每年于清华大学、复旦大学、石油大学、大连理工等高校进行气体吸附的技术交流和客户培训。 /p p   从业多年来,以丰富的职业经验和深入浅出、活泼的手法编写和翻译气体吸附相关行业技术文件50多篇,深受行业客户的好评。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 300px height: 359px " src=" https://img1.17img.cn/17img/images/202004/uepic/b3624259-0e1f-46c8-96f6-617867a5f51a.jpg" title=" 刘伟.png" alt=" 刘伟.png" width=" 300" height=" 359" border=" 0" vspace=" 0" / /p p style=" text-align: center "   中国科学院大连化学物理研究所 刘伟 /p p   刘伟,中国科学院大连化学物理研究所电子显微中心副研究员,环境透射电镜负责人,中科院青年创新促进会会员,大连市紧缺技术人才,2013年度北京航空航天大学优秀博士论文。2003.07~2012.06 北京航空航天大学应用物理学士,凝聚态物理博士 2012.06~2013.10,四川大学物理系 讲师 2013.11~2017.03,电子科技大学物理系副教授 2011.07~12、2015.08~2016.08,美国密西根大学电子显微分析中心访问学者。 /p p   迄今,研制了国内首套专用于环境透射电镜的mbar级负压定量混气自动控制系统 研制“透射电镜可控气氛转移样品台” 解决敏感材料向电镜转移中的氧化相变问题 基于深度学习技术和数字滤波图像识别,实现单原子催化剂的原子精度识别与万级样本空间的分散度统计 /p p   先后主持国家自然科学基金(1项)、近3年围绕催化剂显微结构分析与支撑发表Nature Catalysis(1篇),JACS 2篇、Nano Lett. 2篇、Nature Commn. 2篇、Adv. Mater. 1篇、Adv. Sci. 1篇、Chem. Mater.1篇、ACS Catal. 1篇、Appl. Catal. B 1篇。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/c2152725-0f04-4b8e-ad99-d0c80dbd4ec5.jpg" title=" 彭路明.jpg" alt=" 彭路明.jpg" / /p p style=" text-align: center "   南京大学 彭路明 /p p   彭路明,博士,教授,博士生导师。1997-2001,南京大学化学化工学院化学系,学士(2001) 2001-2006,美国纽约州立大学石溪分校化学系,博士(2006) 2006-2008,美国斯坦福大学地质和环境科学系,博士后;2008- 至今,南京大学化学化工学院,副教授(2008-2013),研究员(2013-2017),教授(2017-至今)。 /p p   在Nature Materials,Science Advances,Nature Communications,Journal of the American Chemical Society等杂志发表学术论文100多篇。入选2010年度新世纪优秀人才支持计划。2012年获得国家自然科学基金委优秀青年科学基金项目资助,同年获中国化学会催化专业委员会中国催化新秀奖。2016年起任中国物理学会波谱专业委员会委员和《波谱学杂志》编委,同年获英国皇家学会牛顿高级学者项目资助(Newton Advanced Fellowship)。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 300px " src=" https://img1.17img.cn/17img/images/202004/uepic/c9d9165c-5824-45a4-84f4-ef47d8320e90.jpg" title=" 杨贵东.jpg" alt=" 杨贵东.jpg" width=" 200" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " 西安交通大学 杨贵东 /p p style=" text-align: left "   杨贵东,西安交通大学化工学院教授,博士生导师。主要从事光催化反应过程强化及吸附新材料开发的研究工作。在Angewandte Chemie International Edition、ACS Catalysis、Applied Catalysis B: Environmental、Nano Energy等高质量学术期刊发表论文52篇,其中IF& gt 10的论文17篇,累计被 SCI引用3000余次,个人 H 因子27。开发了一系列具有高介孔含量、强疏水、高机械强度的三维分级通孔碳质吸附材料,实现了其工业化生产与应用。入选了教育部“青年长江学者”、“王宽诚青年学者”、“陕西省青年科技新星”,兼任中国化工学会化工过程强化专业委员会青年委员会委员和中国石油和化学工业联合会工业催化联盟青年工作委员会委员等学术职务。担任国际期刊《Frontiers in Environmental Chemistry》副主编、《Chinese Journal of Catalysis》客座编辑、《Chinese Chemical Letter》青年编委和《工业催化》期刊编委。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 293px " src=" https://img1.17img.cn/17img/images/202004/uepic/330e9a1d-1016-4fa5-af51-cd6ed2420c2b.jpg" title=" 刘家旭.jpg" alt=" 刘家旭.jpg" width=" 200" height=" 293" border=" 0" vspace=" 0" / /p p style=" text-align: center " 大连理工大学 刘家旭 /p p   刘家旭,大连理工大学副教授,主要从事分子筛催化在能源、环境及精细化学品清洁制备等领域的应用基础研究和原位分子光谱表征技术开发。作为项目负责人主持国家自然科学基金、中国石油科技创新基金和大连市高层次人才创新创业计划等12项科研项目。研制出具有自主知识产权的双光束原位红外光谱技术,并将其成功应用于多相催化反应的原位表征,已在Catalysis Science & amp Technology, Chemical Engineering Journal, ACS Applied Materials & amp Interfaces等期刊发表30余篇学术论文,申请10余项国内专利,1项国际专利。作为项目负责人开发的精细化学品清洁制备催化剂,低碳烃芳构化催化剂已实现工业应用。 /p p    strong 参与方式: /strong /p p   免费报名链接: a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" & nbsp /a /p p a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self"   https://www.instrument.com.cn/webinar/meetings/catalyst/ /a /p p   或扫描下方二维码报名: /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/7f447697-bd90-47df-8213-b3370e6155a6.jpg" title=" 报名二维码.png" alt=" 报名二维码.png" / /a /p p   扫下方二维码进入催化剂表征与评价交流群: /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/810a8756-4206-4f04-a26c-8134245d0576.jpg" title=" 催化剂表征与评价交流群.jpg" alt=" 催化剂表征与评价交流群.jpg" / /p
  • “材料表征与检测技术”主题约稿函
    材料是社会进步的重要物质条件,材料的创新不仅是发展各种颠覆性技术的核心,更是国家科技发展水平的重要体现。而在材料的研究过程中,设计和制备的每一个阶段都需要应用不同的表征与检测方法去了解其多样化结构、评价其特殊性能及物理化学性质,从而为生产工艺的改进提供科学依据,满足使用的要求。可以说,材料的研究进展极大地依赖材料表征与检测技术的发展水平。当前,材料的表征与检测技术多元,涉及的仪器和设备多样,常见的如成分分析(质谱、色谱);结构与形貌(扫描电镜、透射电镜);粒度/表界面(粒度仪、比表面分析仪);表面分析(X射线光电子能谱、俄歇电子能谱);物相分析(X射线衍射、红外);热性能(热重、差热);机械性能(拉力试验机、疲劳试验机)、无损检测(X射线成像、超声成像);几何测量(三维扫描、影像测量)等等。此外,随着新型材料的研究深入,材料表征与检测技术的应用范围愈广,新的表征与检测手段也层出不穷。为帮助广大材料领域科研工作者了解前沿表征与检测技术,解决材料表征与检测技术难题,开展相关表征与检测工作,仪器信息网广泛向业内技术专家、仪器厂商约稿。相关稿件将收录至【材料表征与检测技术盘点】专题,并在仪器信息网平台全渠道推送,后续还将把干货整理成册,以供更多人士阅读。欢迎各位行业协会/学会、高校/科研院所的专家老师,以及领域内仪器厂商们投稿。一、主办单位:仪器信息网二、专家约稿主题聚焦材料表征与检测仪器或技术,可选择以下主题(但不限于)其中之一:1、仪器专家(1)某类仪器或技术的研究进展(包括国内外研究现状、存在的问题、发展趋势等);(2)某类在研仪器的最新研究成果(包括项目概述、结构和功能、取得成果等);(3)某类仪器或技术的相关标准/法规概况及解读;(4)某类仪器的操作技术要点、数据分析技巧;(5)某类仪器国产与进口的差别、亟待解决的问题、未来发展的建议;2、应用专家(1)基于某类仪器取得的最新研究成果(研究背景、研究过程、取得成果等) (2)其它相关经验之谈。参考样文及链接:【研究成果】借助电镜/光谱之单原子催化最新成果【技术要点】金属材料的微观结构分析——用合适的样品制备获得最佳结果【技术经验】安徽大学林中清谈扫描电镜系列约稿【技术经验】张承青老师谈电镜实验室环境系列约稿【综述】超微量紫外可见分光光度计仪器及应用现状分析三、厂商约稿提纲1、请问贵司在材料表征与检测领域主要推出的仪器产品是什么?具有什么技术优势?2、请问该类仪器产品国内外发展现状如何?3、当前,国内用户是否对此类仪器提出了更高的技术要求(可举例说明)?贵司对此是否有相关应对之策?4、贵司现下比较关注的细分材料领域有哪些,是否会推出相关的仪器产品或解决方案?可以为用户解决什么科研难题?5、请展望材料领域市场前景,预测材料表征与检测技术发展方向。此外,厂商还可聚焦【面向某类仪器,用户在日常操作中需要注意的技术要点,以及相关数据分析技巧】主题,撰写成文。参考样文及链接:力试总经理王斌谈国产力学性能试验设备的挑战与机遇日立工程师谈手机镜头等光学元件如何测?紫外分光光度法应用详解安捷伦原子光谱应用专家解析锂电材料元素分析难点真理光学董事长张福根谈谈国内外激光粒度仪技术现状及行业亟需解决的问题QD中国销售总监苗雁鸣博士谈热电材料的测试需求四、稿件要求1、文章为原创作品,尚未公开发表;2、观点明确,数据可靠,文字准确简练,中心思想积极向上;3、正文不少于1500字符,图片或照片务必清晰;4、请在稿件末尾注明供稿者姓名、单位、个人简介。五、回稿邮箱:gaolj@instrument.com.cn六、活动时间:2022年6月-8月仪器信息网2022年6月8日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制