请教一下,有用GFAAS测试光阻材料的吗?用二甲苯稀释后直接进样[img]http://ng1.17img.cn/bbsfiles/images/2017/09/201709221957_01_2173240_3.jpeg[/img]
[color=#ff0000]摘要:薄的织物和隔热材料的逐渐广泛应用,使得现有各种测试方法已经无法满足这些材料导热系数和热阻准确测试的要求。本文详细介绍了现阶段对这些低导热薄材料热导率测试中存在的错误现象,从测试方法方面分析造成这些问题的原因,为今后准确测量提供参考和借鉴。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000][b]一、问题案例[/b][/color][/size]隔热材料作为有效阻断热量散失材料在各个领域发挥着重要重要,特别是在服装行业,薄的隔热织物越来越得到了重视和发展,为人体保温抗寒提供了更轻便和更舒适的面料。随着低导热薄织物的出现和技术发展,对薄织物的隔热性能,如导热系数和热阻,就提出了严峻的挑战,现有的各种测试方法都无法满足准确测量要求。如国内某机构研制开发了一种新型隔热面料,开发目的是设法采用纳米孔技术来大幅度降低面料的导热系数。面料的厚度为0.75±0.1mm,重量为48±2g/㎡,体积密度为65±11kg/m3,孔隙率为96%以上,闭孔率为95%以上,孔径30~190微米,壁厚为20~180纳米,面料如图1所示。此面料经不同检测机构采用多种测试方法进行了测试评价,导热系数测试结果如图2所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,373]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061135481562_7545_3384_3.jpg!w600x407.jpg[/img][/color][/align][align=center][color=#ff0000]图1 新型隔热面料[/color][/align][align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,221]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136137426_2566_3384_3.jpg!w600x242.jpg[/img][/color][/align][align=center][color=#ff0000]图2 隔热面料导热系数测试结果汇总[/color][/align]从上述多种测试方法的导热系数测试结果可以看出,结果之间相差巨大,甚至出现了数量级的差别。特别是由纺织行业权威检测机构得到的超低导热系数测试结果(0.00824W/mK),严重误导了织物的提供方,织物提供方对这测试结果也表示怀疑,但检测机构也无法对测试的准确性进行核实。如图2所示,该薄织物还采用其他测试方法进行了导热系数测试,尽管没有出现太离谱的测试结果,但测试结果之间还是相差较大,测试结果显示出的是完全不同的隔热能力。鉴于上述混乱的导热系数测试结果,此织物的研发生产机构只能在官网上声明“导热系数是某某材料的核心数据。现有测试仪器和方法,无法测试出材料导热系数的绝对值。使用不同测试方法,供应用单位参考”。这是一个非常典型的无法得到准确测试结果的案例,此现象在纺织行业普遍存在。为彻底解决此问题,本文将针对薄织物的导热系数测试,从测试方法方面分析造成测量不准确的原因,为今后进一步开展新型测试方法研究提供参考和借鉴。[size=18px][color=#ff0000][b]二、薄织物和隔热材料导热系数测试方法分析[/b][/color][/size]在图2所示的导热系数测试结果中,几乎用到了现有的大多数标准测试方法,下面将对现有的已经和可能用于薄织物和隔热材料导热系数测量的各种测试方法进行分析。导热系数测试方法主要分为稳态法和瞬态法两大类,本文分析的具体路线是从稳态法和瞬态法的源头开始,然后延伸到相应的拓展方法,以期对多个测试方法的整体轮廓有一个清晰的概念。[color=#ff0000][size=16px][b]2.1 导热系数和热阻测试稳态法[/b][/size]2.1.1 稳态护热板法和稳态热流计法[/color]对于隔热材料导热系数测试,普遍采用的测试方法是经典的稳态护热板法(GB/T 10294)。稳态护热板法作为一种绝对法具有最高的测试精度,并同时用来校准相对测试方法稳态热流计法(GB/T 10295),其测量原理如图3所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,358]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136309581_831_3384_3.png!w600x391.jpg[/img][/color][/align][align=center][color=#ff0000]图3 稳态护热板法测量原理示意图[/color][/align]为保证测量准确性,GB/T 10294标准文本做出明确规定,规定试件热阻不应小于0.1 m2K/W,规定用此来确定试件最小厚度。如果按照此规定,对于上述薄织物的0.75mm厚度,薄织物相应的导热系数不应大于0.0075W/mK才能符合规定。对于试件最小厚度做出规定,是因为试件太薄后试件内部热流分布不均匀和热场变形,并会造成试件上的温差很小,相应的温度传感器测量精度会在小温差测量上产生很大误差。由此,在标准文本中指出:当试件热阻低于0.1m2K/W时,表面温度的测量需要使用特殊的方法。冷板、中心量热计和护热板的表面应机械加工或切削平整、平行且不能有应力,同时它们的温度均匀性要求很高。这些要求在现实中很难实现或实现造价很高,因此对于厚度小于1mm的薄织物和隔热材料,稳态护热板法并不适合,很难满足导热系数准确测量的要求。对于稳态热流法导热系数测试,相应标准GB/T 10295给出了相同的最小热阻0.1m2K/W规定,同样需要按照此规定来确定试件最小厚度。由此可见,稳态热流计法同样存在温差测量不准确等一系列很难克服的问题,对于厚度小于1mm的薄织物和隔热材料,热流计法同样不适用。当然,在不得已的情况下,可以将多层薄织物叠加成厚试件以增大被测试件热阻来测量薄织物的导热系数。这种多层叠加形式在理论上确实能够测量导热系数,但最大问题是叠加过程中会在被测试件中产生空气隙而引入接触热阻,从而使得被测试件的热阻值变大,导致导热系数测试结果偏小,所以一般情况下不推荐采用多层叠加形式进行稳态法测量,除非被测试件比较柔软。[color=#ff0000]2.1.2 纺织品蒸发热板法[/color]纺织品蒸发热板法是一种上述稳态护热板法的一种变形,其基本原理完全基于稳态护热板法,不同之处是将图3稳态护热板法中的试件用空气层和被测试件来代替,以模拟人体散热和外部空气散热条件。 纺织品蒸发热板法目前执行的标准为GB/T 11048-2018,在具体测试中,通过从测定试件加上空气层的热阻值中减去空气层的热阻值得出所测材料的热阻值。需要特别注意的是,蒸发热板法中的热阻值与稳态护热板法中的热阻值并不能等效,这主要是因为以下不同:(1)蒸发热板法在测试热阻时,试件冷面处于空气对流传热环境;而稳态护热板法测试热阻时,试件冷面处于与冷板的导热传热环境。两种测试方法尽管原理相同,但边界条件和物理意义完全不同,蒸发热板法测试的是模拟环境下的等效热阻,稳态护热板法测试的是纯热传导环境下的导热热阻,在稳态护热板法中,根据此导热热阻和试件厚度,可以准确得到导热系数。(2)蒸发热板法中被测试件是平放在中心量热计上,试件靠自身重量与量热计接触。而稳态护热板法中试件通过上面的冷板加载一定的力与量热计接触,两者所形成的热接触效果完全不同,稳态护热板法中的接触热阻更小,即蒸发热板法中得到的试件热阻含有较大的接触热阻。(3)在蒸发热板法标准GB/T 11048中,只涉及了织物热阻的测量,并未涉及通过厚度和测量得到的热阻来计算获得织物的导热系数。这基本就意味着蒸发热板法不能用来测量导热系数。(4)另外,在蒸发热板法标准GB/T 11048中,规定可测量的最小热阻不能小于2m2K/W,与稳态护热板法和热流计法规定的0.1m2K/W最小热阻相比高了20倍,即蒸发热板法比较适合较大热阻的测量。根据上述分析,我们再来看图2得到的导热系数测试结果,就明显存在以下两大问题:(1)图2中的导热系数测量是依据GB/T 11048-2008,在此版本的蒸发热板法中,规定的热导率为热传导、热辐射和热对流的总和,是存在着三种传热形式的等效热导率,不能用此等效热导率与图2中的其他方法获得的纯导热传热过程的热导率相比较。(2)如果按照图2中的0.00824W/mK导热系数计算结果和0.75mm厚度可以反推出实际测量的热阻值,可得到热阻值为0.09m2K/W。显然此热阻值要远小于GB/T 11048-2008和GB/T 11048-2018中规定的最小可测热阻2m2K/W。从上述分析基本可以得出结论,即蒸发热板法不适合测量薄织物的热阻,更不适合测量纯导热性质的导热系数,这也是GB/T 11048-2018不再提热导率这个参数的主要原因。另外,检测机构出具图2所示的检测结果,也说明相关检测人员对标准方法GB/T 11048的适用范围还缺乏了解。[color=#ff0000]2.1.3 恒定热流法[/color]恒定热流法是上述稳态热流计法的一种变形,其测量原理与稳态热流计法完全相同,同样采用了热流计来测量流经试件厚度方向上的热流密度,不同之处在于采用了独特的技术手段来测量薄试件厚度方向上的小温差,并且可以加载压力以保证较小的接触热阻和准确控制试件厚度。恒定热流计法的相应标准为ASTM D5470,这种方法普遍用于薄型导热胶垫和固态电绝缘板材的导热系数和热阻测量。根据测量原理,恒定热流法应该比较适合薄织物和隔热材料的热导率和热阻的测量,但在具体测试过程中流经薄试件的热流密度很小,这就对热流密度测量精度提出了很高要求,现有执行标准ASTM D5470的测试仪器还无法实现如此小热流的准确测量,需要研发测量精度更高的测试设备以满足低导热薄片样品的测试要求。[color=#ff0000][b]2.2 导热系数测试瞬态法[/b]2.2.1 瞬态平面热源法(HOT DISK法)[/color]在图2所示的薄织物导热系数测试案例中,显示了采用瞬态平面热源法(HOT DISK法)的测试结果。已经有很多研究并报道了这种方法在低导热系数测试中存在测试结果偏高很多的现象,这方面的详细介绍及其解决方案可在网上搜索上海依阳编写的《气凝胶隔热材料超低导热系数测试中存在的问题及解决方案》应用报告。在瞬态平面热源法导热系数测试中,最大的问题是测量准确性无法进行考核。在稳态护热板法和热流计法中可以采用不同厚度标准参考材料来考核热阻的测量精度,而在HOT DISK法中只能测量热导率而无法测量热阻,那么对于导热系数低于标准参考材料数值0.03W/mK的低导热材料,就根本无法考核其测量的准确性。总之,瞬态平面热源法(HOT DISK法)也不适合测试低导热系数的薄织物和隔热材料。[color=#ff0000]2.2.2 闪光法[/color]闪光法作为一种应用最为普遍的绝对法,广泛用于各种固体材料的热扩散系数测量。但闪光法对于薄织物和隔热材料并不适用,主要原因如下:(1)对于低导热的薄织物和隔热材料,隔热性能比较好,热阻比较大,闪光信号很难传输到样品背面,信噪比较差,测量误差较大。(2)薄织物和隔热材料,多为多孔材料且透光,闪光加热很容易穿透被测试件。如果对试件表面进行遮光处理,遮挡涂层很容易进入试件孔隙而改变试件的导热系数。[size=18px][color=#ff0000][b]三、结论和今后工作[/b][/color][/size]通过上述薄织物和隔热材料测试案例和现有各种测试方法的分析,可以得出以下结论:(1)现有的各种导热系数测试方法,不论是稳态法还是瞬态法,都无法满足薄织物和隔热材料导热系数准确测试的需求。各种测试方法都有各自的局限性,没有一种完全适合低导热系数薄试件的测试方法。特别是目前用于纺织品热阻测量的GB/T 11048-2018测试方法,还存在很多问题,其中测量的热阻值应为等效热阻,是多种传热机理的复合作用结果,这很容易误导纺织品的开发人员。有关GB/T 11048-2018测试方法的更详尽研究分析,将在后续专文进行论述。(2)由于缺乏准确的测试方法,给新型织物材料的研究和研制带来的不便和困难,无法通过准确的热导率和热阻测量来调整材料的相应工艺。(3)对于薄织物和隔热材料的热导率测试,需要解决小温差和低热流密度精密测量难题,需要解决材料透光性的影响,这些都是今后工作的主要内容。(4)现有大多数采用稳态法的热阻和热导率测试仪器,所要求的样品尺寸太大,如大多采用面积为300mm×300mm的样品。对于薄织物和隔热材料的热导率测试,如果要实现高精度测量,如此大的样品尺寸势必会增大测试仪器的护热、机加工和热应力变形等方面的技术难度和造价。因此,对于厚度小于1mm的被测样品,完全可以采用小尺寸样品,如50mm×50mm,同样可以保证稳态下的一维热流。(5)对于难度最大的小温差准确测量,可以借鉴闪光法而避开热导率的直接测量,可通过测量热扩散率来间接获得热导率,热扩散率的测量则可以采用频域技术,通过频域技术可以非常准确的将温差信号转换为频域信号。这可能将是今后的一个重要研究方向。(6)另外,表征薄织物的热性能参数中,除了导热系数和热阻之外,还涉及到人体触摸织物的冷感或热感表征参数:吸热系数。最好有新型测试方法能将这些热性能参数进行整体考虑和测试,为织物热性能提供完整的准确测试评价。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]
阻燃电线的外包材料和非阻燃电线的外包材料有什么不同?
热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。2、热电阻的类型1)普通型热电阻从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。2)铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。3)端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更准确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。
阻燃材料里添加了什么物质使该材料不然明火?
求助!在哪儿可以测量低电阻材料的高温电阻呀?
贴片电阻在扫XRF时,两面的结果都不一样,有一面Pb有峰型形成,显现有铅。另一面就没有。各位谁有这方面的材料,共享下,交流交流。
在哪能找到关于不同材料的电阻率的手册?比如sio2,zno,mgo,mgf2
求助!在哪儿可以测量低阻(电阻率0.5微欧.米)材料的电阻(0~300K)?或者是1000度以下高温的也可以。
阻燃材料技术研究-国内外新产品及动态阻燃技术与材料张治华等[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=34114]阻燃材料技术研究-国内外新产品及动态[/url]
炭素材料真假密度、电阻率的测定方法
求助!在哪儿可以测量低阻(电阻率0.5微欧.米)材料的电阻(0~300K)?或者是1000度以下高温的也可以。
薄膜材料磁电阻效应实验 王立锦 编 用巨磁电阻(GMR)和各向异性磁电阻(AMR)磁性薄膜材料制作计算机硬盘读出磁头和各种弱磁传感器,已经广泛应用于信息技术、工业控制、航海航天导航等高新技术领域。通过本实验能够使同学们对磁性薄膜材料的知识和磁电子学有所了解,并由此引起对纳米磁性薄膜材料研究和应用的浓厚兴趣。本实验仪器由我校教师设计搭建,采用高精度纳伏表和数控恒流源,计算机自动采集和显示数据,具有结实牢固、操作简便等优点,适用于大专院校教学和科研使用。以下略,详细内容请看附件。
[table][tr][td][b]FMVSS302 汽车内饰材料阻燃测试[/b][/td][/tr][tr][td][align=right] [/align][/td][/tr][tr][td]本标准规定了汽车内饰材料水平燃烧特性的技术要求及试验方法,适用于汽车内饰材料水平燃烧特性的评定! 客户提供样板尺寸:表面材料:2米或规定尺寸内层材料:试样大小与数量:102×356×厚度(试样在汽车上实际应用的厚度,但是不大于13mm,若大于13 mm,则要切割成13 mm.)至少5块试样,若沿不同方向有不同燃烧速度,则要在不同的方向都要取样每个方向至少5块试样。若材料的尺寸不符合测试要求,要做成测试符合的要求的样品。评判要求: (1) 试样不燃烧,或火焰在样品上水平燃烧的速度不超过102mm/min (2) (注:当样品表面是切割出来的,则这个判定要求不适用于测试该表面火焰水平燃烧速度,); (3) (2) 从测试记时开始,若样品燃烧的时间不到60秒,就停止燃烧了,且从记时开始那个位置起,样品的损毁长度没有超过51mm,则认为其满足FMVSS302的要求。(4) (注:记时开始位置为离点火端38mm处,当火烧到此位置开始记时) [/td][/tr][/table][b] [/b]
[b]职位名称:[/b]华南理工大学发光材料与器件国家重点实验室-发光材料设计[b]职位描述/要求:[/b]合作导师:唐本忠(tangbenz@ust.hk)、吴水珠(shzhwu@scut.edu.cn) 、赵祖金(mszjzhao@scut.edu.cn)、秦安军(msqinaj@scut.edu.cn)、胡蓉蓉(msrrhu@scut.edu.cn)、王志明(wangzhiming@scut.edu.cn) 要求: 1) 熟悉有机光电功能材料、聚集诱导发光或光电器件等领域相关基础理论知识和实验技能;有较强有机合成功底或OLED器件制备研究背景者优先 2) 或者具有生物、医学、物理等领域的相关基础知识和实验技能,有较强的化学生物学背景者优先; 3) 具有光学(荧光、光声)性质的分子或纳米材料的设计与制备及其在生物检测、生物成像、疾病诊断与治疗等方面的应用; 4) 中英文写作能力较好,发表SCI论文2篇以上; 5) 遵守科研学术道德,身心健康,有团队精神和责任心,执行力强。[b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/59923]查看全部[/url]
哪种材料的电阻率在几百欧姆厘米左右?什么材料都可以,最好是金属氧化物,其他的也可以
[size=5][font=楷体_GB2312]内耗(或阻尼)是指在一定的外部条件下(如温度、频率、振幅等),材料内部缺陷和原子运动所引起的机械振动能量的耗散,它对材料中缺陷的动力学行为非常敏感。因此,内耗测量可提供其它手段所不易提供的物理信息(如缺陷浓度和分布、缺陷扩散激活能、相变动力学等)。特别地,研究缺陷和结构演化等原子的动态行为及微观力学行为,内耗技术将是一个合适的、不可替代的手段。在内耗测量中,测量模式有两种:[b]强迫振动模式[/b]和[b]自由衰减模式[/b],通常情况下,后者在测量精度上要比前者高[/font][font=Times New Roman]1~2[/font][/size][size=5][font=楷体_GB2312]量级。[/font]中国科学院固体物理研究所基于现代先进的电子、自动化控制技术成功研制了新一代多功能内耗仪。同DMA相比,我们研制的阻尼性能测量精度(损耗角)要比DMA高一个量级以上,在价格上也有不可比拟的优势。[/size][b][size=3][font=楷体_GB2312]应用范围主要包括:[/font][/size][size=3][/size][font=楷体_GB2312]高阻尼材料方面:[/font][/b][font=楷体_GB2312]通过对材料阻尼和模量的测量,对材料的高阻尼性能进行评估;[/font][b][size=3][font=楷体_GB2312]金属材料方面[/font][/size][/b][size=3][font=楷体_GB2312]:固溶碳、氮、氧和氢含量的分析,位错与点缺陷相互作用研究;[/font][/size][size=3][/size][b][size=3][font=楷体_GB2312]固体材料方面:[/font][/size][/b][size=3][font=楷体_GB2312]各种缺陷引起的弛豫性内耗峰机制的研究;各种相变内耗峰的研究;[/font][/size][size=3][/size][b][size=3][font=楷体_GB2312]磁性材料方面[/font][/size][/b][size=3][font=楷体_GB2312]:磁内耗的研究;[/font][/size][size=3][/size][b][size=3][font=楷体_GB2312]非晶态材料方面[/font][/size][/b][size=3][font=楷体_GB2312]:晶化过程、结构弛豫和结构转变的研究;[/font][/size][size=3][/size][b][size=3][font=楷体_GB2312]液态物质方面:[/font][/size][/b][size=3][font=楷体_GB2312]金属熔体、聚合物材料的结构转变过程研究等。[/font][/size]
[color=#333333] [/color][color=#333333]近几年,面内以共价键成键、层间以弱范德瓦尔斯力结合的二维材料得到了广泛关注。这类二维材料中最引人注目的是石墨烯、黑磷(BP)及以二硫化钼(MoS[sub]2[/sub])为代表的过渡金属硫化物(TMDs)等。相对于石墨烯的零带隙,MoS[sub]2[/sub]禁带宽度在1.2~1.8电子伏特之间,MoS[sub]2[/sub]场效应管结构光电探测器对可见光有很强的光响应,在光电探测领域有很好的应用前景。然而,这种光导型二维材料光电探测器受限于二维材料背景载流子浓度,暗电流偏大,且带隙决定了其无法实现红外探测,限制了其在红外光电探测领域的应用。[/color][color=#333333] [/color][color=#333333]最近,中国科学院上海技术物理研究所王建禄副研究员、胡伟达研究员将P(VDF-TrFE)铁电聚合物材料沉积在二维材料MoS[sub]2[/sub]表面,利用铁电聚合物材料极强的铁电极化场,实现了对少层MoS[sub]2[/sub]的完全耗尽。在光电特性表征中,他们发现这种超强局域场可使得MoS[sub]2[/sub]原子晶格重新排布,禁带宽度变小。基于该结构,他们报道了MoS[sub]2[/sub]材料在短波红外光电响应,研制出了高性能的可见-红外光电探测器件。研究发现该结构MoS[sub]2[/sub]光电探测器具有高响应率(达到2570A/W),高探测率(2.2×10[sup]12[/sup]Jones),低功耗(0栅压),宽波段探测(可见-1550nm),快速响应等特点,相关成果近期发表于《Advanced Materials》上。[/color][color=#2B2B2B]据巨纳集团低维材料在线91cailiao.cn的技术工程师Ronnie介[/color][color=#333333]绍,这种利用铁电极化局域场操控二维材料光电特性新方法,为推进二维材料在光电子器件及电子器件等领域的应用提供了新思路。[/color][img=,433,350]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271400_01_2047_3.png[/img][img=,433,350]http://ng1.17img.cn/bbsfiles/images/2017/07/201707271400_01_2047_3.png[/img]
[color=#444444]请问哪位国内外课题组有紫外可见吸收光谱仪,需要测量一种固态材料的吸收光谱特性,可见光谱范围,所以detector和light source需要都在试样的上面,望知道的亲告知一下,谢谢![/color]
对一合成的阻燃剂材料的热性能表征-燃点和分解温度如何确定?
非常实用的非晶材料磁阻抗特性测量仪器,硬件软件完全自主研制,首次资料公开,欢迎批评指正。
奶粉作为高脂肪、高蛋白的营养食品,需要采用铝箔复合包装袋等高阻隔包材进行包装储存,并且常以充氮包装或气调包装为主,以保证内部无氧或低氧环境,避免奶粉被氧化变质。那么,问题来了,如何对食品包装材料阻隔性能进行测试?大家一起讨论一下。
请问半绝缘材料的扫描电镜二次电子像与被测材料的电阻率分布变化有关吗?
做镁砂氧化镁含量的EDTA滴定法实验。样品熔融温度为1000℃,4~5分钟。实验室的电阻炉坏了,可以用材料高温软化荷重测定仪代替吗?熔样的坩埚为白金坩埚,会不会和材料高温软化荷重测定仪里面的电热偶反映?先谢谢各位了!
下周直播:拉曼光谱在物理材料领域的应用——第六届拉曼光谱网络会议 【1】张俊(中国科学院半导体研究所 研究员):极端条件时空分辨布里渊散技术实现和相关准粒子研究 【2】高鹏(北京大学 教授):纳米和亚纳米尺度上的声子测量及物性研究 【3】徐伟高(南京大学 教授):力学拉曼光谱技术 【4】史芸(奥地利安东帕 应用工程师):原位拉曼技术在材料研究中的应用以及拉曼仪自动化的应用前景 【5】童廉明(北京大学 研究员):二维材料的圆偏振拉曼光谱技术:方法与应用 【6】杨腾(中国科学院金属研究所 副研究员):二维材料共振拉曼散射的第一性原理计算模拟研究 点击参会:https://insevent.instrument.com.cn/t/Yro (主办单位:仪器信息网、中国科学院半导体研究所半导体声子物理研究组) https://ng1.17img.cn/bbsfiles/images/2024/10/202410091714270910_1332_3295121_3.png!w690x2625.jpg
[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=67724]GB T1410-2006材料体积电阻率和表面电阻率试验方法[/url]
[align=center][size=18px]基于上转换复合材料的光引发组织粘合剂研究[/size][/align][size=16px]以研究适用于应急组织伤口处理的光引发组织粘合剂为目标,以设计[/size][size=16px]基于功能化凝胶上转换纳米复合材料的光引发组织粘合剂为研究重点,以制备合[/size][size=16px]成多色可调的上转换纳米材料光导平台和设计功能化光交联凝胶修复剂为突破[/size][size=16px]口。采用纳米技术、表面化学修饰、生物技术、光化学技术、细胞实验和统计分[/size][size=16px]析等手段相结合,深化上转换纳米材料和功能化凝胶的设计开发,探究复合材料[/size][size=16px]的修复作用机理和抗菌性能,实现创面组织缺损光诱导原位修复,提高表面和深层损伤组织修复效率,减少疤痕形成和继发性炎症,开发出可替代传统缝合术的[/size][size=16px]新型功能化凝胶上转换纳米复合材料组织粘合剂,为突发事件中受损组织的快速整合和创面修复提供理论与技术支撑[/size][size=16px]。[/size][size=16px]主要研究内容[/size][font='宋体'][size=16px](1)功能化凝胶上转换纳米复合材料的设计与制备:上转换纳米材料[/size][/font][font='宋体'][size=16px]具有独特的光学特性,能够使生物光子在深层组织中的应用。光引发组织粘接是创面组织[/size][/font][font='宋体'][size=16px]修复的新型无创技术,依赖于光敏剂的光激活释放活性物质在组织表面和基质材料之间产[/size][/font][font='宋体'][size=16px]生有效的交联。以凝胶材料壳聚糖作为基质,光敏基团邻硝基苯作为光敏剂并引入胍基抗[/size][/font][font='宋体'][size=16px]菌基团,通过化学修饰改性方法制备功能化凝胶。光反应性材料在创伤组织缝合时诱导受[/size][/font][font='宋体'][size=16px]损皮肤组织中的胶原基质交联,以上转换纳米材料为载体结合功能化凝胶通过表面修饰制[/size][/font][font='宋体'][size=16px]备合成功能化凝胶上转换纳米复合材料作为光引发组织粘合剂,近红外光照将光传输到深部组织中,激活光敏剂诱导组织黏结修复。(2)光引发组织粘合剂的优化筛选:优化筛[/size][/font][font='宋体'][size=16px]选功能化凝胶上转换纳米复合材料光引发组织粘合剂,考察荧光发射光谱与紫外吸收光谱[/size][/font][font='宋体'][size=16px]相互匹配度以及功能化凝胶上转换纳米复合材料的组织损伤修复能力。考察所选复合材料[/size][/font][font='宋体'][size=16px]的荧光、紫外性能以及元素组成、形貌特征、晶型结构、热稳定性和表面基团及电荷分布情况等以及复合材料的粘附机理、抗菌性能、抗拉强度及使用条件等参数。(3)光引发[/size][/font][font='宋体'][size=16px]组织粘合剂的应用潜力评价。考察复合材料的生物相容性、细胞毒性、凝血效果、整合凝[/size][/font][font='宋体'][size=16px]胶与组织粘连能力。进一步考察复合材料对各种动物组织[/size][/font][font='宋体'][size=16px]([/size][/font][font='宋体'][size=16px]皮肤、肌肉、肝脏、胃和心脏等)损伤修复能力。[/size][/font][align=right][/align][font='宋体'][size=16px]研究方法和技术路线[/size][/font][font='宋体'][size=16px]图 [/size][/font][font='宋体'][size=16px]1. [/size][/font][font='宋体'][size=16px]总体研究技术路线示意图[/size][/font][font='宋体'][size=16px]研究方法和实验手段如下:[/size][/font][font='宋体'][size=16px](1)[/size][/font][font='宋体'][size=16px]功能化凝胶上转换纳米复合材料的设计与制备。采用热共沉淀法以 [/size][/font][font='宋体'][size=16px]β[/size][/font][font='宋体'][size=16px]-NaYF4 [/size][/font][font='宋体'][size=16px]作为基质,调节镧系元素掺杂剂量比例,制备具有不同发射光谱的上转换纳米材料;采用[/size][/font][font='宋体'][size=16px]酸处理法除去上转换纳米材料表面的油酸配体得到白色固体颗粒,聚丙烯酰胺配体交换修[/size][/font][font='宋体'][size=16px]饰后备用;以凝胶材料壳聚糖为基质,采用碳二亚胺盐酸盐化学法将邻硝基苯和抗菌基团修饰到基质上制备出功能化凝胶。[/size][/font][font='宋体'][size=16px](2)光引发组织粘合剂的优化筛选。检测功能化凝胶上转换纳米复合材料及相应组[/size][/font][font='宋体'][size=16px]成单体的荧光光谱与紫外光谱,筛选能够相互匹配的复合材料;以猪的皮肤或肌肉为组织[/size][/font][font='宋体'][size=16px]基质制作组织切口,注入复合材料并在近红外激光照射下,检测切口均粘接情况测试组织粘合强度以及组织基质的粘合后的最大拉伸力。[/size][/font][font='宋体'][size=16px](3)[/size][/font][font='宋体'][size=16px]光引发组织粘合剂的表征及机理性能考察。通过电镜分析、傅立叶红外光谱、[/size][/font][font='宋体'][size=16px]X [/size][/font][font='宋体'][size=16px]射线衍射、热重分析和 [/size][/font][font='宋体'][size=16px]Zeta[/size][/font][font='宋体'][size=16px] 电位分析等表征合成复合材料性能;利用光电子能谱仪进行[/size][/font][font='宋体'][size=16px]粘附机理分析;考察功能化凝胶上转换纳米复合材料的抑菌作用;比对商品化纤维蛋白胶和氰基丙烯酸酯胶粘剂粘接的抗拉强度试验;考察功能化凝胶上转换纳米复合材料。[/size][/font][font='宋体'][size=16px](4)光引发组织粘合剂的应用潜力评价。对所合成材料的体内生物相容性、体外细胞毒性试验、全血凝血试验、体内透皮给药试验以及胶原纤维形成试验等评价方法。[/size][/font]
常见的分析仪器有,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计、原子荧光光谱仪、[url=http://www.huaketiancheng.com/][b]电感藕合等离子体光谱仪[/b][/url](简称ICP)、火花直读光谱仪(简称光谱仪)、X射线荧光光谱仪、能谱仪等。此外,还有些专属性分析仪器,如碳硫分析仪、氧氮氢三元素连测仪等。这些仪器有生产过程中扮演着不同的角色。下面谈一下各种仪器在金属材料中扮演的不同角色,供各位选择设备时参考。[b] 一、火花直读光谱仪[/b] 直读光谱仪(又叫光电直读光谱仪、火花直读光谱仪) 1、直读光谱仪优势 (1)直读光光谱仪从诞生到发展原自于钢铁生产企业要求炉前快速分析,具有60余年的历史。 (2)直读光谱仪是金属材料的首选设备。具分析制样简单,只需简单物理加工。分析速度快,一分钟可以给出所需检测元素的全部信息,分析精度高。 (3)金属材料生产企业,无论是钢铁行业,还是有色金属冶炼企业均是用直读光谱仪进行过程控制分析和最终产品检验。 (4)目前直读光谱仪覆盖了钢铁、铝、铜、铅、锌、金、银、铜各种金属和合金的分析,用户分布越来越广。 (5)目前主流光谱仪生产商(如ARL直读光谱)能提供工厂校正曲线,这样大大减少了用户对标样的依赖性。 2、火花直读光谱仪的局限性 对于金属材料生产企业来讲,直读光谱仪的优势发挥到了极至。但对于机械厂进厂材料检测来讲或其它行业用户来讲,会遇到以下问题: (1)当分析基体很多时,设备的采购成本会很高。 (2)受仪器分析通道数的限制,一台仪器安装的通道数有限。 (3)特殊型状的样品,如非常小的线材、非常薄的金属泊片用直读光谱就无法分析。通常直读光谱仪只能分析直径3mm以上的线材和厚度0.1mm以上的片状试样。[b] 二、电感耦合等离子体发射光谱仪(ICP)[/b] 1、ICP光谱仪的优势 电感藕合等离子体发射光谱仪是目前应用最最广泛的分析仪器之一。它只所以在分析领域占有举足轻重的地位,主要是: (1)ICP具有突出的检出限,在水溶液中的检出限可达ppb级,基体上能满足常见材料的分析要求 (2)分析对象广泛,只要能处理成液体的试样均可进行分析 除能分析金属材料外,地质样品、环保样品、电镀液等均可进行分析。 (3)分析速度快,一分钟可以给出所有元素的含量信息。 2、ICP仪器的局限性 由于需要将试样处理成液体,哪么在试样处理过程中形成挥发的元素将不能或不会准确测定[b] 三、XRF荧光光谱仪[/b] XRF荧光光谱仪根据其分光原理不同分成波长色散型X荧光光谱仪(波谱仪,WDXRF)和能量色散型X荧光光谱仪(能谱仪,EDXRF)。我们通常所说的X荧光光谱仪就是指波长色散的仪器。 1、XRF荧光光谱仪的优势 (1)制样简单。通常情况下是物理制样。试样经过简单的破碎、研磨成粉末压片或熔融制成。 (2)分析范围广,理论上从四号元素Be到92号元素铀均可进行分析。 (3)测量范围宽,从0.001%到100%均可进行分析。 2、XRF荧光光谱仪的局限性 (1)各公司宣传XRF荧光光谱仪的分析范围从PPM到100%。实际上仪器的分析下限受所分析试样的基体影响很大。如果分析碳氢化合物中的元素,检出限可以达到到PPM,如石油中硫S的分析,地质样品中则只能达到10PPM,而在铅合金中检出限要50PPM以上。XRF无法进行纯金属材料分析,纯金属材料中各元素的含量均很低。 (2)不锈钢中的五害元素也不能用XRF进行分析。传统上,不锈钢生产企业通常用XRF荧光进行过程控制分析,主要是直读光谱仪对高含量元素铬、镍的测量精度不能令人满意。一台仪器就能满足合金成份与微量元素的全部测定。便目前不锈钢生产企业就只能用直读光谱仪来测量微量元素了,因当今材料要求五害元素的含量比国家标准要低得多。 (3)XRF对标样的依赖性很强。试样的颗粒度、组成、结构差异等均会对分析结果产生很大影响。[b] 四、其他专属性仪器[/b] 碳硫分析仪和氧氮氢分析仪,专于用于金属材料中碳硫元素分析和气体氧氮氢的分析。直读光谱仪对碳硫分析已获得很好的测量结果,哪么为什么还需要配碳硫分析仪呢,主要是国家规定的标准测试方法就是碳硫分析仪。直读光谱仪测量钢铁中氮和铜中的氧是没有问题的,但对于钢铁中氧和氢还不能达到满意的结果。 结论 (1)做为金属材料实验室,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]、ICP光谱仪、直读光谱仪是必备设备。各种仪器取长补短。不是哪一种仪器就能满足全部应用要求。 (2)直读光谱仪是金属实验室的首选设备,可提供快速准确的定量分析。 (3)其它分析仪器是直读光谱仪的补充手段。
前天我发了一个关于氙灯曝晒效率与自然曝晒之间的近似等效关系,引起了我们论坛几位专家的关注和重视,今天特开一个帖子,介绍一些关于塑料材料耐光老化测试方面的资料,希望大家能够喜欢。塑料制品的耐老化性能是指其在加工、存放和应用过程中,因受环境中的光、热、氧、水、机械应力及微生物等条件的作用,再加上塑料的自身因素,所引起其本身的化学结构变化和破坏,而逐渐失去其原有的优良性能,称其为老化。塑料的老化象征,如外表颜色改变,失去原有的表面光泽、出现龟裂,其力学性能和电性能下降等。塑料老化的检测试验方法较多,可分为两种类型:一种是自然老化,如自然气候中老化、埋地老化和海水浸泡老化等;另一种是人工老化,如人工热空气老化、人工气候暴露老化、盐雾老化和电化老化等。塑料制品的老化试验方法可采用自然老化检测试验和人工老化检测试验方法。具体试验方法如下。(1) 自然老化检测试验 塑料制品的自然老化试验,是把检测试样置于室外,暴露在气候变化的自然环境中,在其作用下所进行的老化试验。自然老化试验是按标准GB/T3681-2000规定进行。把按规定裁取的试样放置在可倾斜成一定角度的架上,朝向正南(要求试样可在试架上自由收缩、翘曲和扩张)。然后确定出试验分段时间(月、年),再分别检测试样在各段试验时间后的性能变化与试样试验前的性能比较。用此比较数据来评价此试样制品的耐候性能。(2)人工老化检测试验 人工老化塑料制品的试验,是采用模拟日光的人工光源,如用水银灯、碳弧灯、氙弧灯等,这些光源都会产生比自然日光强得多的光照。这些光在应用中还可配合模拟降雨和露水等。用这些人为的条件综合作用来对塑料制品引起加速老化。塑料制品的人工老化是按标准GB/T 7141-92规定,把按标准规定采取的试样置于热老化试验箱内,分出阶段试验时间,使试验在规定的条件下(如温度、气、风等),加速试样的老化进程。然后,分不同的时间段检测试样的性能变化,与试验前试样性能比较(包括外观、质量、力学性能和电阻率等性能指标),来评价试样的热老化性能。
GB 1410-89固体绝缘材料体积电阻和表面电阻测试方法[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=42925]GB 1410-89固体绝缘材料体积电阻和表面电阻测试方法[/url]