当前位置: 仪器信息网 > 行业主题 > >

光致发光分析

仪器信息网光致发光分析专题为您整合光致发光分析相关的最新文章,在光致发光分析专题,您不仅可以免费浏览光致发光分析的资讯, 同时您还可以浏览光致发光分析的相关资料、解决方案,参与社区光致发光分析话题讨论。

光致发光分析相关的论坛

  • 光致发光应用原理、范围

    一般光致发光指荧光及磷光现象。发光量子产率与激发光波长(或能量)有关,发光强度随激发波长的变化称为激发光谱。激发光谱与发射光谱间符合斯托克斯规则。光致发光可用于研究物质的电子状态,发光物质的痕量分析,发光体的分子取向,发光过程的动力学研究等等。采用发光探针,可以大大扩展光致发光的应用范围,在生物医学、环境科学等领域有广阔的应用前景。

  • 光致发光问题

    [color=#444444]请问,甲胺铅碘的光致发光谱怎么测得?用普通的荧光分光光度计么?还是需要别的设备?[/color]

  • 拉曼光谱和光致发光谱的区别?

    拉曼光谱和光致发光谱的区别?

    想问一下,拉曼光谱和光致发光谱除了谱线横坐标不同外,还有什么别的区别?类似激光器、接收器、滤波片什么的有差异吗?前两天做了一个块体试样的拉曼和PL谱,把拉曼光谱的横坐标拉曼位移计算转换为波长(拉曼位移=激发光波数-拉曼散射光波数)后,发现两个谱图近似,想问一下,拉曼光谱是不是和光致发光谱除了横坐标不一样外,还有什么别的差异?下图红线是拉曼图,黑线是光致发光图。另外我也咨询过测试老师,老师说两个没有区别,http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif说的太绝对了,我也没敢信。http://ng1.17img.cn/bbsfiles/images/2013/09/201309052037_462632_1698940_3.jpg

  • 【求助】为什么会这样:关于ZnO的光致发光谱

    诸位大侠,俺头一次做固体ZnO的光致发光谱,用的仪器是Varian Elipse,激发波长是325 nm,在室温下(16oC)做的,结果是在650nm处得到一个很锐的峰,其他地方基本没有峰。这一结果和文献上报道的ZnO的光致发光谱大相径庭,不知道到底是什么原因导致的?请高手给予指点。拜谢!!!

  • 【求助】光致发光谱的测量

    我要用F-4500作TiO2光致发光光谱,请问数据模式怎么选择啊,1.Fluorescence 2. Luminescence 3. phosphorescence选1.荧光型对吗?还有扫描方式怎么选择1.Excitation 2. synchronous 3. Emission选3.发射波长扫描对吗?

  • 化学发光免疫分析

    化学发光免疫分析放射免疫分析法有很高的灵敏度,但存在着放射性防护和同位素污染等问题。近年来,许多非放射性同位素标记的免疫分析方法相继出现。其中,在化学发光反应及抗原-抗体特异性识别基础上建立起来的一种新的非放射免疫分析技术--化学发光免疫分析法,由于这种方法具有灵敏度高,特异性强,精密度好,线性范围宽,仪器设备简单,试剂价格低廉,方法稳定、快速等优点,已成为一种重要的非同位素标记免疫分析方法,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测。  化学发光免疫分析包括三大类型:即标记化学发光物质的化学发光免疫分析;标记荧光物质的荧光化学发光免疫分析和标记酶的化学发光酶联免疫分析。下面以偶合放大化学发光酶联免疫分析法检测人血清中乙型肝炎表面抗原(HBsAg)为例。  (一) 原理  尽管辣根过氧化物酶(HRP)可以催化Luminol-H2O2反应体系产生化学发光,但由于该体系的检测灵敏度不够高,不能满足酶联免疫测定的要求。因此,为了提高体系的检测灵敏度,可将HRP催化H2O2氧化曙红(Eosin)的反应与该反应产物增强HRP催化luminol-H2O2的化学发光反应相偶合,建立偶合放大化学发光酶联免疫分析法。这里,酶的活性是基于下列发光反应进行检测的:  HRP         luminol+H2O2───→产物+hν                 产 物                  ↑       Eosin+H2O2 ──────┘               HRP 二) 操作步骤  1. 包被抗体 在每个小试管中加入聚苯乙烯珠各一枚,再加入300μl用0.05M,PH9.6 碳酸盐缓冲液稀释的抗HBsAg抗体,同时设空白对照,置4℃过夜。  2. 洗涤 用抽滤针头吸干管内液体,加入Tris-HCl-Tween20洗涤3次,每次加2ml,放置3~5min,用抽滤针头吸干管内液体。  3. 加待检血清和阳性标准品 用PBS-Tween20缓冲液不同倍数稀释HBsAg阳性标准品或待检血清,每管加入300μl。同时设阴性对照;空白对照管只加抗体稀释液。置37℃孵育2h。  4. 洗涤 同2。  5. 加酶标抗体  用含小牛血清的PBS-Tween20缓冲液稀释HRP标记的抗HBsAg抗体,每管加入300μl,空白对照管只加用于稀释酶标抗体的稀释液。置37℃孵育2h。  6. 洗涤 同2。  7. 化学发光测定 给每管加入300μl底物溶液,置37℃保温20min。犎;后将小试放入LKB-1250 lumimeter中,并置于测量位置,加入300μl 5.0×10-4M luminol。记录仪记录化学发光强度。  8. 同时用ELISA方法进行对照,结果测量采用DG3022型酶联免疫检测仪。  结果判定(1) 定性 按下列公式判别阴、阳性:          L样品-L空白     ┌≥2.1 为阳性   S/N = ──────── = 商│       L阴性对照-L空白    └<2.1 为阴性   (2) 定量 以不同稀释度的HBsAg阳性标准品的化学发光强度为纵坐标,不同稀释倍数为横坐标,作出剂量反应曲线(标准曲线),犜r待测样品中HBsAg的含量就可由测量的化学发光强度换算得到。

  • 特殊的化学发光现象之一:微观非均相化学发光

    目前已知的许多氧化还原反应都伴随着微弱的化学发光现象,但是由于其量子产率极低,往往不具有分析应用的价值。为此,必须采取某些办法提高这些氧化还原反应的速率,从而使得发光强度增强到能够用于分析化学测定。近年来,国内外分析科学家模仿生物化学发光的酶反应原理,利用溶液中的表面活性剂等分子自我组合形成胶束、反相胶束、双分子膜等分子聚集体(Organized MolecularAssemblies),或者不形成分子聚集体,但其自身可提供微观非均相反应部位的分子包合化合物、高分子电解质等作为化学发光反应的介质,实现化学发光反应效率的提高。微观非均相体系多指水溶液或其它有机溶液中的小型分子聚集体,如图1-8 所示,包括由表面活性剂和脂质形成的分子聚集体和由无机化合物的重合体形成的反应体系。化学发光常用的微观非均相体系主要包括由表面活性剂等分子聚集体组成的胶束、微乳液、二分子膜和具有独特微观非均相结构的单独分子如环糊精和高分子电解质溶液等。这些溶液外观透明,但是包含可以为化学发光反应提供特异性很高的反应微空间。而无机化合物胶体溶液目前在化学发光研究中应用较少。一般来说,微观非均相体系作为化学发光反应的介质有四种主要的效果:(1)浓缩效应。离子性分子聚集体的表面可以吸附相反电荷的离子,从而使局部反应分子的浓度增大,有利于化学发光反应速度的提高;同时,具有相同电荷的离子被分子聚集体所排斥,使反应具有一定的选择性。(2) 可溶化效应。一些在水中或者有机溶剂中难溶的反应分子、中间体、反应产物等由于其亲水性或疏水性的差异,可以在微观非均相的疏水相、亲水相或者两相的界面上得到溶解。(3) 微观介质的环境效应。介质的极性、粘度、pH 值等受到微观局部环境的作用而产生变化,可能导致化学发光反应的效率和选择性的变化。(4) 激发态分子的稳定作用。由于化学发光的能量弛豫过程往往需要比光致发光更长的时间,因此激发态的稳定性对于化学发光的强度有很大的影响。微观非均相体系的静电相互作用、疏水/亲水作用、氢键结合、电荷移动相互作用等因素的影响,可以促进反应中间体、迁移状态以及激发态分子的稳定性,从而有利于化学发光的产生。林金明等对微观非均相化学发光反应体系作了详细的综述[73]。

  • 【资料】化学发光免疫分析

    [size=4]化学发光免疫分析  [/size][url=http://baike.baidu.com/view/1401709.htm][size=4]化学发光免疫分析[/size][/url][size=4](chemiluminescence immunoassay,CLIA),是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。[/size]

  • 化学发光分析及其临床应用

    化学发光分析及其临床应用居军 甘肃省人民医院(兰州730000) 内容提要:化学发光分析是根据化学反应产生的光辐射强度确定物质含量的一种痕量分析方法,可与电化学分析、免疫分析、固定化试剂技术、传感器技术等分析技术联用,具有灵敏度高、线性范围宽、不需要外来光源、分析速度快、仪器设备相对简单、便宜等优点。常用的化学发光技术有电化学发光、化学发光免疫分析、微粒子化学发光等。化学发光分析在临床实验室中主要应用于激素、肿瘤标志物、传染病监测、血药浓度检测等。关键词:化学发光 临床激素 肿瘤标志物 传染病 近年来,化学发光分析技术发展很快,特别是化学发光免疫分析技术,在临床医学应用中发挥着越来越重要的作用。1化学发光 化学发光分析是根据化学反应产生的光辐射的强度确定物质含量的一种痕量分析方法。一些物质在进行化学反应时,吸收化学反应过程中所产生的化学能,使分子处于激发态,当其回到基态时以光子的形式释放能量。反应必须提供足够的化学能,通常只有焓变在170—300KJ/mol之间的放能反应才能产生可见光范围内的化学发光现象。化学发光分析具有灵敏度高、线性范围宽、不需要外来光源、分析速度快、仪器设备相对简单、便宜等优点。化学发光分析灵敏度可达到10-18mol/L,而通常酶联免疫技术的分析灵敏度只能达到l0-13mol/L,新型的微珠包被酶放大免疫技术的分析灵敏度可达到10-14mol/L,荧光免疫及采用沉降法的普通放免技术分析灵敏度可达到10-ls mol/L,固相放免技术分析灵敏度可达到10-16 mol/L。化学发光反应体系有鲁米诺、光泽精、过氧草酸盐(或酯)一荧光物质-H202、Ru(bipy),2+/Ru(Phen),2+等电致发光、Ce(IV)、高锰酸钾一还原性有机物等。化学发光分析测定的物质可以分为3类:第1类物质是化学发光反应中的反应物;第2类物质是化学发光反应中的催化剂、增敏剂或抑制剂;第3类物质是偶合反应中的反应物、催化剂、增敏剂等。化学发光分析测定物质的方式可分为直接法和间接法。化学发光分析反应类型可分为酶促反应和非酶促反应两类。此外化学发光分析法可以与其他分析技术联用,如流动注射分析、电化学分析、免疫分析、固定化试剂技术、传感器技术等分析技术相结合。2常用的化学发光技术 电化学发光是通过对电极施加一定的电压进行电化学反应而发光,通过测量化学发光光谱和强度来测定物质含量的一种痕量分析方法。它将电分析化学手段和化学发光方法相结合,具有独特的优点,如重现性和灵敏度进一步提高,在多种组份同时存在时,可施加不同波形、不同电压的信号进行选择性测量等,是潜在的分析手段之一。 化学发光免疫分析是以标记发光剂为示踪物信号建立起来的一种非放射标记免疫分析法,具有灵敏度高、线性范围宽、仪器设备简单、操作方便、分析速度快和容易实现自动化等优点。鲁米诺、异鲁米诺及其衍生物、吖啶酯衍生物、辣根过氧化物酶和碱性磷酸酶是目前化学发光免疫分析中使用最多的标记物。 微粒子化学发光是化学发光免疫分析的特殊形式,是以化学发光剂为底物的酶免疫技术,同时应用了磁性微珠做固相载体,增加了吸附面积,使抗原抗体最大限度的结合。以3-(2-螺旋金刚烷)-4-甲氧基-4- (3-磷氧酰).苯基.1,2一二氧环乙烷(AMPPD)为发光底物在碱性磷酸酶(Alkaline phosphatase,ALP)的作用下,迅速去磷酸酶,生成不稳定的中介体AMPPD-,进而产生激发态产物,当其跃迁回到基态时产生光子。微粒子化学发光技术所需标本量极少,孵育时间大大缩减,同时因其选择性吸附抗原,从而提高了特异性、灵敏性,使测定结果准确、可靠,并减少污染。 化学发光生物传感器是通过非创伤或非损伤性的办法,连续、实时、动态地检测生物体内的某一种或几种物质浓度的技术。该技术以化学发光作为换能器,不但继承了化学发光高灵敏度的优点,而且大大提高了化学发光的选择性。按照所固定化的生物组分的种类,可以将化学发光生物传感器分为酶传感器、免疫传感器、组织传感器、核酸传感器及微生物传感器等。特别是化学发光免疫传感器是将具有分子识别作用的抗原或抗体以适当的方式固定化而制成,它结合了化学发光高灵敏度和抗原抗体特异性结合的高度专一性以及无污染等特点,是替代放射免疫分析的重要分析工具,已日益受到重视。 化学发光核酸探针已用于检查病毒、细菌和原虫的DNA。以鲁米诺增强化学发光检测体系的核酸探针主要有两种形式,一种是用生物素标记探针,杂交后经过分离,再以过氧化物酶标记的亲和素与生物素结合,加入鲁米诺和增强剂后测发光。另一种是以过氧化物酶直接标记探针,用增强的鲁米诺检测发光。核酸探针亦可用吖啶酯或AP来标记,吖啶类发光体系发出的是瞬时光,而AP以AMPPD作为发光底物,其发光体系具有发光持续稳定的特点,发光时间可长达几天,既可用发光仪也能用简单的感光胶片检测。另外,AP-AMPPD发光体系具有非常高的灵敏度,无论是固相还是液相检测,对标记物碱性磷酸酶的检测限可达10-21(1000 AP分子),是目前最灵敏的核酸测定方法之一,已用于检测B19微小病毒DNA、人乳头瘤病毒DNA(HPV).巨细胞病毒DNA(CMV),并在DNA测序中有很好的应用。3化学发光分析在临床实验室中的应用 激素是由内分泌腺或内分泌细胞分泌的高效生物活性物质,在体内作为信使传递信息,对机体生理过程起调节作用,通过调节各种组织细胞的代谢活动来影响人体的生理活动。通过调节蛋白质、糖和脂肪等三大营养物质和水、盐等代谢,为生命活动供给能量,维持代谢的动态平衡,促进细胞的增殖与分化,影响细胞的衰老,确保各组织、各器官的正常生长、发育以及细胞的更新与衰老。影响中枢神经系统和植物性神经系统的发育及其活动,是生命中的重要物质。激素在血液中的浓度很低,一般蛋白质激素的浓度为10-10~10-12mol/L,其他激素在l0-6~10-9mol/L。目前临床上用化学发光可测定大部分激素,如E2、E3、T3、T4、fl'4、TSH、HCG、p-HCG、甲状腺球蛋白(TG)、抗甲状腺球蛋白(ATG)、甲状腺结合球蛋白(TBG)、抗甲状腺过氧化物酶(ATPO)等。 肿瘤标志物是癌细胞生长过程中产生的一种或几种正常情况下没有的或含量很低的“特异性”物质,或是宿主细胞因癌细胞入侵而过量产生的正常细胞组分。肿瘤标志物存在于组织、细胞、血液或体液中,肿瘤标志物的检测对肿瘤高危人群的筛选、肿瘤的诊断和鉴别诊断、肿瘤分期、肿瘤定位、肿瘤治疗等都具有一定的意义。尤其在肿瘤治疗过程中,肿瘤标志物浓度的升高和降低与疾病的预后密切相关,肿瘤标志物测定对恶性肿瘤的预后具有监测价值。同时应当注意,现今所知的肿瘤标志物中,绝大多数不但存在于恶性肿瘤中,而且也存在于良性肿瘤、胚胎组织,甚至正常组织中。因此,这些肿瘤标志物并非恶性肿瘤的特异性产物,但在恶性肿瘤患者中明显增多。因此肿瘤标志物也称为肿瘤相关抗原。肿瘤标志物的检测仅仅是配合临床医生对肿瘤诊断、治疗、监测的辅助手段。检测出的结果要根据其它临床检测结果综合判断。肿瘤标志物的检测方法历经了血球凝集法,电泳法、放免法、荧光免疫法,酶联免疫吸附法,微粒子法等,特别是电化学发光法、化学发光法新技术逐渐地应用到全自动免疫分析系统中,使肿瘤标志物的检测更敏感、更准确。目前常用的肿瘤标志物有:甲胎蛋白(AFP)、癌胚抗原(CEA)、糖原125(CA-125)、糖原153(CA-153)、糖原199(CA-199)、糖原724(CA-724)、糖原211(CA-211)、糖原242(CA-242)、铁蛋白(Fer)、神经元特异性烯醇化酶(NSE)、前列腺特异性抗原(PSA)、组织多肽抗原(TPA)等。 传染病的疗效监测,特别是病毒性肝炎的防治,已列为我国重大传染病专项课题。用化学发光分析技术对病毒标志物进行定量检测,与ELISA方法相比,大大提高了检测灵敏度,是临床治疗的重要依据。已成为临床应用的常规手段。 血药浓度检测是合理、安全用药,评估药效的重要手段,而化学发光分析的优点恰好满足药物分析对分析方法提出的要求,使得它在药物分析领域也有较为广泛的应用。利用该技术可对抗菌素、中枢神经系统药物、循环系统药物、维生素、代谢产物及生命相关物质进行分析,对临床药理和药物治疗的研究都起到重要的推动作用。

  • 化学发光分析法应用进展

    摘要:对近年来化学发光分析法的研究应用最新进展作了评述,包括化学发光试剂的类型,化学发光在无机、有机及药物分析中的应用,全文引用文献105篇。 关键词:化学发光分析;应用进展;综述 RECENT DEVELOPMENT OF CHEMILUMINESCENCE ANALYSIS ZHANG Li—li,ZANG Li—guo,CHEN Zhen-zhen,TANG Bo Abstract: The recent development of chemiluminescence analysis was reviewed.The analysis of inorganic,organic and medicine samples as well as the chemiluminescence reagent were related with 105 references. Keywords:Chemilum inescence analysis;Recent progress;Review 化学发光分析法是近3O年来发展起来的一种高灵敏的微量及痕量分析法,具有仪器设备简单、操作方便,灵敏度高,线性响应范围宽和易于实现自动化等显著优点。近年来,在改进和完善原有发光试剂和体系的同时,新发光试剂的合成,新体系的开发,与其它技术的联用,尤其是流动注射技术,传感器技术,HPLC技术及各种固定化试剂技术的联用,更显示出化学发光分析快速,灵敏,简便等优点,也进一步拓宽了化学发光的应用范围,现在已广泛应用于矿物岩石分析、材料分析、环境保护监测、药物分析和临床分析等方面。 1 化学发光试剂的类型 1.1 鲁米诺类 鲁米诺作为一种有效的化学发光试剂目前仍受到广泛应用。利用金属离子或过渡金属离子的不饱和配合物对鲁米诺发光体系有很强的催化作用,可以测定金属离子或有机配体。张虹蔚等以苯甲酸与Cu(II)形成的不饱和配合物对鲁米诺-H2O2体系的催化作用为基础,建立了测定苯甲酸的流动注射分析方法。李绍卿等_2 利用钛铁试剂与Co(II)形成的配合物对鲁米诺一H2O2体系增强作用,建立了钴的化学发光分析新方法。 利用有机化合物或稀土离子对鲁米诺化学发光反应的抑制作用,测定对化学发光反应具有猝灭作用的有机化合物或稀土。陈华等 利用碱性条件下扑热息痛对鲁米诺-铁氰化钾体系发光反应的强烈抑制作用,建立了流动注射化学发光测定痕量扑热息痛的新方法。通过偶合反应可以间接测定无机或有机化合物。李峰等将生成H2O2的葡萄糖_葡萄糖氧化酶(GOD)的酶促反应与鲁米诺-KIO4-H2O2的化学发光反应相偶合,建立了一种流动注射化学发光测定葡萄糖的新方法,用于人血清中葡萄糖含量的测定。利用有机化合物对鲁米诺发光体系的增敏作用,可以测定此类有机化合物。杨季冬基于吩噻嗪类药物盐酸异丙嗪和盐酸氯丙嗪对K3Fe(CN)5-鲁米诺体系的发光有强烈的增强作用,测定了两个吩噻嗪类药物片剂。 1.2 光泽精类 光泽精(N,N-二甲基-9,9-联吖啶二硝酸盐)以硝酸盐形式存在,在碱性介质中,可与还原性物质作用发光。基于此,朱智甲等采用Jones柱在线还原产生Fe(Ⅱ)、Mo(Ⅲ)、V(Ⅱ)、W(Ⅲ),研究了这些离子与光泽精的化学发光反应,并建立了相应的流动注射化学发光分析法,分析效率高。此外,光泽精还可用于测定胍基化合物[1 。庄惠生等研究出另外三种光泽精衍生物,发现其中DMDSBA的化学发光强度是光泽精的22倍,为设计合成新的发光试剂提供了一定理论和实验依据。 1.3 钌(Ⅱ)-联吡啶配合物钌(Ⅱ)-联吡啶配合物具有独特的化学稳定性、氧化还原性和发光性,在硫酸介质中,它能与氧化剂产生化学发光,加入某些有机物可以增强其发光强度,且发光强度与有机化合物浓度呈线性关系。基于此,可以测定这些有机化合物。近来,可用钌(Ⅱ)-联吡啶配合物为发光试剂测定的物质比较多,如测定硫脲、6-巯基嘌呤、四环素、戊二醛、DNA、可待因、肉桂酸、葡庚糖酸、丙酮酸、核酸等。 1.4 新合成的化学发光试剂 李善茂等利用α-酮酸和4,5-二胺基邻苯二酰肼合成了三种发光试剂:EDIQ、HDIQ、CEDIQ,并详细地研究过氧化氢浓度、铁氰化钾浓度和氢氧化钠浓度对化学发光强度的影响,并对其化学发光性能进行了研究,发现新发光试剂EDIQ、HDIQ、CEDIQ发光强度分别为鲁米诺的0.83、3.51、1.92倍。LI等合成了新发光试剂DTMC,可用于测定H202,灵敏度高,检出限为4.0×0.00000001mol/L。Sakata等利用氨基吡嗪类似物作为化学发光试剂测定丙酮酸,经过试验,发现在四种氨基吡嗪类似物中,2-氨基-5-3,4,5-三甲基苯基)吡嗪是最灵敏的一种,化学发光强度大约是与氨基吡嗪在一起所获得的化学发光的四倍。 1.5 其它类型的化学发光试剂 在酸性条件下,KMnO4有很强的氧化性,可与许多物质发生化学发光反应,依此来测定吡哌酸、DL-酪氨酸、甲氧氯普胺等。 Ce(Ⅳ)可与水杨酸或头孢氨苄形成化学发光体系,从而实现了它们的测定。利用氟喹诺酮类对亚硫酸盐和Ce(Ⅳ)反应的增敏作用,可以测定此类物质。 此外,还有另外几种,如吐温80。钌(Ⅱ)邻菲咯啉、焦性没食子酸、槲皮素(QCT)等,这些发光试剂应用不多,有待于开发研究。

  • 化学发光免疫分析仪与酶标仪的区别

    虽然酶标仪价格低廉、仪器简单、方便操作,但在越来越多的项目检测中,化学发光免疫分析仪逐渐取代酶标仪的使用。 化学发光的优点到底在哪里呢?从原理上说,酶标仪是通过对酶标板中液体的吸光值检测,获得一个OD值后进行定性或半定量的分析,达到检测的目的。化学发光免疫分析仪是化学发光反应(酶促发光或直接发光)产生的光信号通过光电倍增管进行信号转换后等到相应的信号值,用RLU(相对光单位)表示,以达到定量或定性的检测目的,其更加灵敏,线性范围更宽,而且可以做定量检测,可进行全自动操作,而酶标仪无论检测还是线性范围都不如发光仪,且只能做定性检测,但是目前国内酶标仪较为成熟,化学发光尚处于成长期。

  • 关于化学中发光分析法的讨论

    关于化学中发光分析法的讨论徐吉龙(沈阳师范大学,辽宁,沈阳,110034)【摘要】化学发光分析法是分子发光光谱分析法中的一类,是指物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发至激发态,受激分子由激发态回到基态时,便发出一定波长的光.根据化学发光反应在某一时刻的发光强度或发光总量来确定组分含量的分析方法叫化学发光分析法。化学发光与其它发光分析的本质区别是体系产生发光(光辐射)所吸收的能量来源不同。【关键词】化学发光;体系;应用 1 鲁米诺化学发光反应体系 鲁米诺(5-氨基一邻苯二甲酰肼)属于酰肼类有机化合物,性质稳定,结构简单,易于合成,无毒,不污染环境,且水溶性较好,是使用最早应用最广泛的化学试剂之一,它在强碱性溶液中可以被氧化剂氧化而处于激发态,激发态发射蓝光同时回到基态。鲁米诺可与各种氧化剂如过氧化氢、氧气、次氯酸盐、碘、铁氰化钾、高锰酸钾等反应产生化学发光。鲁米诺作为一种有效的化学发光试剂被广泛用于各种氧化剂、催化剂和抑制剂的测定。利用化学发光分析已经测定了抗坏血酸、酚磺乙胺、富马酸酮替芬、脱氧肾上腺素、甲基多巴、氯丙嗪、双嘧达莫、胰腺脂肪酶、氨苄西林、左旋多巴以及阿莫西林等。这些有机物质都是各类药物中有效成分,因此,对于此类有机物含量的测定对药物的研究和开发以及质量标准研究、安全性评价、药物临床研究等,都有非常重要的作用和意义。 2 光泽精化学发光反应体系 光泽精(N,N-二甲基二吖啶硝酸盐),也是最常见的化学发光试剂之一。它在碱性条件下,可以被过氧化氢氧化成四元环过氧化物中间体,而后裂解生成激发态的吡啶酮而发射蓝绿色的光同时回到基态.光泽精具有较高的发光效率,量子产率一般在0. 010. 02之间。光泽精可在一些还原性物质存在的情况下产生化学发光,因此该化学发光试剂主要被用于无机还原剂和有机还原剂的测定,大多数化学发光反应在无催化剂作用下是一个非常缓慢的氧化反应,光泽精发光体系亦是如此。当分别选择Sn4+、Fe2+、U3+等金属离子作为催化剂时,光泽精发光体系的发光速率急剧加快,发光强度也随之增强。被增强的发光强度与金属离子的浓度有良好的线性关系,从而建立了测定痕量金属离子的化学发光方法。3 高锰酸钾化学发光反应体系 高锰酸钾是化学发光反应中常用的强氧化剂,高锰酸钾化学发光反应可用来测定两类物质,一类是能直接与高锰酸钾产生化学发光反应的有机物,该有机物的分子结构大多数都含有多个羟基或氨基。另一类是基于能量转移机理测定荧光物质。高锰酸钾可以氧化很多种有机物从而产生化学发光,某些不易与鲁米诺、光泽精发光进行测定的物质,可以利用高锰酸钾的高氧化性与之反应,得到满意的测定结果,从而不断开发了新的化学发光体系,扩展了化学发光的应用范围。由于高锰酸钾和多种物质均有化学发光,因此高锰酸钾体系用于实际物质的化学发光测定干扰较严重,为提高分析方法的选择性,对高锰酸钾同时作用于维生素C( vc)和罗丹明B的化学发光行为进行了研究。有关高锰酸钾氧化有机物的化学发光反应已有不少报道,但高锰酸钾与无机物化学发光反应的研究较少,利用甲醛可以对高锰酸钾有很好的增敏作用,从而提高体系的灵敏度和选择性,并测定了一系列的金属以及无机离子。同时还发现连二亚硫酸钠也有很好的增敏效果。高锰酸钾作为化学发光的新体系,曾被应用于吗啡、可卡因、尿酸、肾上腺素、维生素等药物分析和的测定。4 过氧草酸酯类化学发光反应体系 过氧草酸酯类化学发光体系最早发现于20世纪60年代,最初主要用于军事目的,后来逐渐转入民用。过氧草酸酯类化学发光体系有4种要素化合物,即荧光剂、草酸酯、过氧化氢、催化剂。其化学发光的基本原理是:在合适的荧光化合物的存在下,过氧化氢诱导氧化芳香基草酸酯放出能量,而由化学发光染料分子吸收后转化为光能,以荧光形式放出。这种发光体系除了能用于制造各种冷光源外,还广泛应用于各类化学发光分析。与鲁米诺及其类似物化学发光体系相比,主要优点是量子产量高,因而具有较高的灵敏度,金属离子和氧分子干扰少。5 钌(II) -联吡啶配合物化学发光反应体系 钌(II) -联吡啶(2+溶液中加入芳香胺,观测桔红色的发光.2+是常用的电致化学发光试剂,具有独特的化学稳定性、氧化还原性和发光性,在硫酸介质中,它能与氧化剂产生化学发光,加入某些有机物可以增强其发光强度,且发光强度与有机化合物浓度呈线性关系,基于此,可以测定这些有机化合物。自从发现钉(II) -联吡啶配合物具有光解水的功能以来,钌(II) -联吡啶配合物及其衍生物一直是化学家研究的热点之一,活跃在许多研究领域,建立了多种测定有机物以及无机物方法,包括测定丙酮酸、氨基酸、草酸及其它有机酸等,同时还发现了测定抗坏血酸的新方法。6 铈(IV)化学发光反应体系 在酸性介质中,Ce (IV)可以和许多物质发生氧化还原反应从而产生荧光特性或化学发光,利用该反应已经建立了一些化合物的测定方法.何治柯等人发现铈(IV)可以氧化钌(II) -联吡啶从而产生比较微弱的化学发光现象,并且发现a-羟基羧酸、巴比妥酸、丙酮酸、抗坏血酸、盐酸小檗碱等作为增敏剂,对该反应有显著的增强作用,其增强的强度跟被测物质的浓度成正比,据此建立起一系列测定有机酸的新方法.并在此基础上提出了偶合化学发光机理,指出增强化学发光与有机酸结构的关系。

  • 化学发光免疫分析的类型介绍

    化学发光反应参与的免疫测定分为以下几种类型:   (一)化学发光酶免疫测定   化学发光酶免疫测定(CLEIA)是采用化学发光剂作为酶反应底物的酶标记免疫测定。经过酶和发光两级放大,具有很高的灵敏度。以过氧化物酶为标记酶、以鲁米诺为发光底物、并加入发光增强剂以提高敏感度和发光稳定性。应用的标记酶也可以为碱性磷酸酶,发光底物为dioxetane磷酸酯,固相载体为磁性微粒贵州学|习网搜集整理。   (二)化学发光免疫测定   化学发光免疫测定(CLIA),是用化学发光剂直接标记抗原或抗体的一类免疫测定方法。吖啶酯是较为理想的发光底物,在碱性环境中即可被过氧化氢氧化而发光。   用作标记的化学发光剂应符合以下几个条件:   1.能参与化学发光反应。   2.与抗原或抗体偶联后能形成稳定的结合物试剂。   3.偶联后仍保留高的量子效应和反应动力。   4.应不改变或极少改变被标记物的理化特性,特别是免疫活性。   鲁米诺类和吖啶酯类发光剂等均是常用的标记发光剂。   (三)微粒子化学发光免疫分析   该免疫分析技术有两种方法:一是小分子抗原物质的测定采用竞争法;二是大分子的抗原物质测定采用双抗体夹心法。该仪器所用固相磁粉颗粒极微小,其直径仅1.0%26mu;m,这样大大增加了包被表面积,增加抗原或抗体的吸附量,使反应速度加快,也使清洗和分离更简便。其反应基本过程:(1)竞争反应:用过量包被磁颗粒的抗体,与待测的抗原和定量的标记吖啶酯抗原同时加入反应杯温育,其免疫反应的结合形式有两种,一是标记抗原与抗体结合成复合物;二是测定抗原与抗体的结合形式。(2)双抗体夹心法:标记抗体与被测抗原同时与包被抗体结合成一种反应形式,即包被抗体-测定抗原-发光抗体的复合物。   (四)电化学发光免疫测定   电化学发光免疫测定(ECLI)是一种在电极表面由电化学引发的特异性发光反应,包括电化学和化学发光两个部分。分析中应用的标记物为电化学发光的底物三联吡啶钌或其衍生N-羟基琥珀酰胺(NHS)酯,可通过化学反应与抗体或不同化学结构抗原分子结合,制成标记的抗体或抗原。ECLL的测定模式与ELISA相似。其基本原理是发光底物二价的三联吡啶钉及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H+而成为强还原剂,将氧化型的三价钌还原为激发态的二价钌,随即释放光子而恢复为基态的发光底物。这一过程在电极表面周而复始地进行,不断地发出光子而常保持底物浓度的恒定。

  • 大家有知道化学发光免疫分析仪的么?

    化学发光标记免疫分析又称化学发光免疫分析(CL IA ) ,是用化学发光剂直接标记抗原或抗体的免疫分析方法。化学发光免疫分析仪包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。简介化学发光免疫分析仪包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。   化学发光免疫分析仪器中核心探测器件为光电倍增管(PMT),由单光子检测并传输至放大器,并加高压电流放大,放大器将模拟电流转化为数字电流,数字电流将发光信号由R232数据线传输给电脑并加以计算,得出临床结果。 分类化学发光标记免疫分析法  化学发光标记免疫分析又称化学发光免疫分析(CL IA ) ,是用化学发光剂直接标记抗原或抗体的免疫分析方法。常用于标记的化学发光物质有吖啶酯类化合物——acridin ium ester (A E) ,是有效的发光标记物 , 其通过起动发光试剂(N aOH2H2O 2 ) 作用而发光, 强烈的直接发光在一秒钟内完成,为快速的闪烁发光(见图1)。吖啶酯作为标记物用于免疫分析, 其化学反应简单、快速、无须催化剂; 检测小分子抗原采用竞争法 ,大分子抗原则采用夹心法 , 非特异性结合少, 本底低; 与大分子的结合不会减小所产生的光量, 从而增加灵敏度。 发光酶免疫分析法  从标记免疫分析角度, 化学发光酶免疫分析( chem ilum inescen t enzym e imm unoassay,CL E IA ) , 应属酶免疫分析, 只是酶反应的底物是发光剂,操作步骤与酶免分析完全相同: 以酶标记生物活性物质(如酶标记的抗原或抗体) 进行免疫反应, 免疫反应复合物上的酶再作用于发光底物,在信号试剂作用下发光, 用发光信号测定仪进行发光测定。目前常用的标记酶为辣根过氧化物酶(HRP) 和碱性磷酸酶(AL P) ,它们有各自的发光底物。 发光试剂  HRP 标记的CLEIA常用的底物为鲁米诺(32氨基邻苯二甲酰肼,lum ino l) ,或其衍生物如异鲁米诺(42氨基邻苯二甲酰肼) , 是一类重要的发光试剂。其结构如图4 所示。鲁米诺的氧化反应在碱性缓冲液中进行,在过氧化物酶及活性氧存在下,生成激发态中间体, 当其回到基态时发光, 其波长为425nm。   早期用鲁米诺直接标记抗原(或抗体) ,但标记后发光强度降低而使灵敏度受到影响。近来用过氧化物酶标记抗体, 进行免疫反应后利用鲁米诺作为发光底物, 在过氧化物酶和起动发光试剂(NaOH2H2O 2) 作用下, 鲁米诺发光, 发光强度依赖于酶免疫反应物中酶的浓度。Kodak Am erliteTM半自动分析系统就是利用这一体系专门设计的。 增强发光酶  增强发光酶免疫分析(enhanced luminescence enzyme immunoassay, ELEIA )在发光系统中加入增强发光剂, 如对2碘苯酚等, 以增强发光信号,并在较长时间内保持稳定, 便于重复测量, 从而提高分析灵敏度和准确性。在全自动分析仪上, 还可通过计算机严密控制, 进行自动操作, 如加试剂,混合, 温育, 洗涤, 加发光试剂, 发光计数, 数据处理, 绘制标准曲线, 直至完成病人血清样品的分析并打印出结果。Am erliteTM发光增强酶免分析系统用荧光素、噻唑等增强剂, 其发光时间可持续长达20m in, 试剂盒有甲状腺功能检测的   促甲状腺素、三碘甲腺原氨酸、甲状腺素、甲状腺素结合球蛋白、游离甲状腺素, 与性激素有关的有促黄体激素、促卵泡激素、人绒毛膜促性腺激素、甲胎蛋白、雌二醇、睾酮, 以及其他方面的如癌胚抗原、铁蛋白、地高辛等。   ALP标记的CLEIA所用底物为环1, 22二氧乙烷衍生物, 这是一类很有前途的发光底物 ,用于化学发光酶免分析底物而设计的分子结构中包含起稳定作用的基团——金刚烷基, 其分子中发光基团为芳香基团和酶作用的基团,在酶及起动发光试剂作用下引起化学发光。最常使用的底物是AM PPD , 中文名为: 32(2’2螺金刚烷) 242甲氧基242(3’2 磷酰氧基) 2苯基21, 22环二氧乙烷)。在碱性磷酸酶(AL P) 作用下,磷酸酯基发生水解而脱去一个磷酸基, 得到一个中等稳定的中间体AM PD (半寿期为2~ 30m in) ,此中间体经分子内电子转移裂解为一分子的金刚烷酮和一分子处于激发态的间氧苯甲酸甲酯阴离子, 当其回到基态时产生470nm 的光,可持续几十分钟。AM PPD 为磷酸酯酶的直接化学发光底物,可用来检测碱性磷酸酯酶或酶和抗体、核酸探针及其它配基的结合物。可检测到碱性磷酸酯酶的浓度为10- 15mol/L 。

  • 【资料】化学发光的瓶颈分析

    [size=4]化学发光法的灵敏度很高,超过一般的检测方法。其不足支出在于选择性较差,因此常与分离工具结合(HPLC, CE),能发挥很好的作用,但是联用技术的兼容性问题有很多需要考虑的地方,限制了该方法在实际中的应用。以下内容是拷自我以前的论文,主要讨论HPLC-CL联用技术需要注意的地方,供参考。要获得好的分离和灵敏的检测,往往需要综合考虑各方面的因素:(1)流动相的选择应与化学发光检侧系统相兼容,选择的溶剂既不应增加背景,也不应熄灭化学发光信号;此外,还要考虑发光试剂在其中的溶解度,以避免生成沉淀。(2)缓冲溶液及其pH值的选择。由于pH值对化学发光反应的发光强度ICL和寿命影响很大,选择合适的pH值十分重要,加缓冲溶液使流动相和反应试液均得到缓冲的方法,可控制一定的pH值;为适应不同的pH值范围,应选用合适的化学发光试剂。(3)选择适宜的流速,以保证分离完全并能检测到强的发光信号。(4)发光试剂浓度的选择应有利于提高信噪比(S/N)。一般,浓度大时可获得较大的发光强度,但浓度大,有时会形成沉淀,且增加干扰(背景噪声)。(5)所用试剂应纯化,以减小化学发光的背景。(6)输液泵的脉动会引起试液浓度的局部变化,提高背景噪声,故要保证尽可能均匀、恒定、无脉动流速输液。使用注射泵,但其容量有限,实际上多用往复泵,后接阻尼器以减小脉动。(7)化学发光检测器的设计应能检测到最大的ICL,死体积要小,且价格便宜、仪器简单、易于操作,分析速度快。为此,应使用短的混合反应管和高效光收集装置(如高质量光电倍增管及光子计数器的使用),并使流动池F尽量靠近光电倍增管。目前,微孔柱HPLC的应用日益广泛。在微孔柱的HPLC-CL分析中,流动相的流速相对于化学发光试剂的加入速度低很多,使流动相对反应池中最终的化学发光反应的影响很小,从而可使化学发光检测和HPLC分离有可能在各自的最佳条件下进行。这一点对梯度洗脱过程中的化学发光检测尤为重要。在使用化学发光检测时,可以选用反应速度快的发光体系,使柱后流出的分析物在没有明显扩散之前就完成了化学发光反应,避免了大体积池对色谱峰的展宽。微孔柱HPLC与快速灵敏的化学发光反应结合,为分离检测提供了一个完美的统一。为简化反应系统,可将反应试剂固定在固相担体上,装入短柱内,样品液流过短柱时发生反应。如将TCPO固体和固定化荧光试剂填装在短柱中,并与化学发光流动检测池相联,当流动相带着样品流过固相化学发光反应器及流动池时,即可测得化学发光信号。这种液固反应体系的优点是简单、稳定、不需附加输液泵等装置;缺点是柱寿命有限。将这种固相化学发光反应器与高效、高选择性的固定化酶反应器或光化学反应器相结合,特别适合于生化物质的测定。[/size]

  • MPI-B型多参数化学发光分析测试系统

    技术参数 1.MPI-B型多参数化学发光分析测试系统—多功能化学发光检测仪: * 测量动态范围:大于5个数量级 * 测量精度优于0.05% 2.MPI-A/B型多功能化学发光检测器: * 波长范围:300—650nm * 灵敏度: SP1000A/Lm 上述两项构成了基本化学发光分析系统 3.MPI-B型多参数化学发光分析测试系统—电化学分析仪: * 电位范围:-10V—10V * 电流范围:±250 mA * 参比电极输入阻抗:10E12Ω * 灵敏度:1x10E-12—0.1A 共16个量程 * 输入偏置电流:50pA * 电位增量:1mV * 扫描速率:0.0001—200V/S * 测试方法:循环伏安法(CV),线性扫描伏安法(LSV),计时电流法(CA),计时电量法(CC),控制电位电解库伦法(BE),开路电压—时间曲线(OCPT) 4.MPI-BH/BU型多参数化学发光分析测试系统—毛细管电泳高压电源: * 输出电压:0—20KV * 输出电流:0—300uA 5.MPI-BF/BE型多参数化学发光分析测试系统—微流控芯片多路高压电源: * 输出路数:4路(BF型),8路(BE型) * 输出电压:0—2000V/路 * 输出电流:0—2mA/路 * 高压接出方式:输出、断开、接地 * 输出电流保护控制:0—2mA * 设置程序步:10步 6.MPI-B型多参数化学发光分析测试系统—数控流动注射进样器: * 高精度蠕动泵宽范围数字调速系统:调速范围 0—99 转/分。 * 可实现多达12路管道进样(6道/泵)。 * 两独立16通道自动/手动阀,换向时间≤0.3S 技术文章 此仪器没有任何技术文章 主要特点 1.用于化学发光机理与方法研究。 2.用于化学发光应用研究。 仪器介绍 MPI-B型多参数化学发光测试系统是西安瑞迈分析仪器有限公司最新研制开发的,基于WINDOWS 系统操作平台的高性能分析测试装置。依托于系统所拥有的多通道化学分析数据采集与分析测试部件及多功能化学发光检测器(基本系统)和众多的专用分析控制部件,本仪器可应用于各种化学发光分析,如静态注射化学发光、流动注射化学发光、电化学发光、毛细管电泳化学发光、微流控芯片化学发光及多方法连用化学发光分析等。本系统采用的组合式结构,允许用户采用不同的部件组合构成各种化学发光测试系统。

  • 【分享】阴极发光显微镜分析技术

    阴极发光显微镜分析技术阴极发光显微镜技术是在普通显微镜技术基础上发展起来用于研究岩石矿物组分特征的一种快速简便的分析手段。该方法在快速准确判别石英碎屑的成因和方解石胶结物的生长组构、鉴定自生长石和自生石英以及描述胶结过程等方面得到了广泛的应用。通过对砂岩的阴极射线致发光的观察和研究,可以深人了解砂岩的原始孔隙度和渗透率,并且获得一系列有关蚀源区地质体的组成、产状、成因的信息。1) 原理 : 电子束轰击到样品上,激发样品中发光物质产生荧光,又称阴极发光。实验证明,阴极射线致发光现象多是由于矿物中含杂质元素或微量元素(激活剂),或者是矿物晶格内有结构缺陷引起的,这是矿物阴极射线致发光的两种主要解释。矿物内的激活剂包括金属元素(Eu2十、Srn +、时十、IV +、 Ea3十)以及过渡金属元素(mw十、Fe3+, c a 干、V3十、Tia+),与激活剂相对应能抑制矿物发光的物质叫碎灭剂,如Co干,Nl-2+,F e2+、Tie十等。2) 应用 :自然界中已发现具有阴极射线致发光的矿物有200多种,其中常见矿物有锡石、错石、萤石、白钨矿、方解石、尖晶石、独居石、磷灰石、长石、石英、辉石、橄榄石、云母、独居石等。目前,阴极发光显微镜技术已成为沉积学及石油地质学研究的一种常规手段,特别是对石英和方解石的发光特征已经进行了很多的研究,形成了一套系统的理论,在沉积成岩型矿床和石英脉型金矿床研究中得到了广泛地应用。石英 中 的 激发是由微量元素、结构中的缺陷,以及两者之间的相互作用造成的。例如,蓝色发光被归因为A13+替代Sia十 以及Tia+的含量有关。石英的阴极致发光颜色与岩石的形成环境密切相关,如表1所示。发蓝紫色光的石英,包括红紫、蓝紫和蓝色的石英与火山岩、深成岩以及快速冷却的接触变质岩的环境有关联。棕色发光,包括红棕、深棕和浅棕色的石英和冷却缓慢的低级和高级变质岩相联系的。碎屑 岩 中 的石英由陆源颗粒石英和胶结物石英(即自生的晶体和次生加大边)组成,通过阴极发光的观察是极易鉴定的,因为两者的阴极发光特性常有较大的差异。因此,碎屑岩的胶结作用和孔隙率演化的研究通常大量地依靠阴极发光,而且砂岩中孔隙度降低的数量可以用阴极发光来定量。普通的光学显微镜和扫描电镜技术对辩别不同形态的颗粒边界及某些情况下辩别颗粒和胶结物都无能为力,只有阴极发光能揭示出胶合的石英颗粒的碎屑形状,可观察到次生加大胶结、多期胶结、破裂愈合胶结、压溶嵌合式胶结等现象,对石英的次生加大级别的强弱、石英的溶蚀程度的强弱也极易作出判断。碳酸 盐 类 矿物方解石和白云石特别适合于用阴极发光来研究,因为这一类矿物都能发光。由于碳酸盐矿物是砂岩中最常见的孔隙充填胶结物,它们一般会含有多个阶段的矿物生长世代,而且容易发生重结晶作用和蚀变作用。阴极发光能比其他技术更快地、而且通常更成功地鉴定出成岩成矿作用事件的序列,具有不同的阴极发光颜色环带的方解石胶结物可以被用来指示成岩孔隙水物理化学条件随时间的变化,能使我们推断出成岩过程中矿物的替代。此外,阴极发光能够“看穿”重结晶作用前的原岩结构,它是测定碳酸盐的蚀变历史和成矿序列的惟一切实可行的方法。

  • 【99年】化学发光分析新进展

    1%),反应非常快,90%的发光在1~10s内完成。例如Пилипчук等用9,10-二甲基吖啶甲基硫酸盐测定一硫酸盐、过二硫酸盐等。1.3过氧草酸盐类(peroxalate)  60年代开始报道了一类新的发光体系,即含草酸基团的衍生物,其典型化合物有双草酸酯(DNPO)、双草酸酯(TCPO)。Kwakman等对液相色谱过氧草酸酯化学发光检测作了评述。和田光弘对1,1′-草酰二咪唑作为发光剂在PO-CL中的应用作了评述。Jonsson等研究了杂环化合物在PO-CL中的催化作用。最近Barnett等设计合成了草酰双三氟甲基磺酰基亚胺基-双苯基-4-4′-二磺酸及2,2′-草酰双三氟甲基磺酰基亚胺基-双乙苯基-4″-4″′-二磺酸两种新的草酰胺用于水溶性过氧草酸酯发光体系;它们具有较强的反应活性,几乎没有背景发光,具有较好的水溶性;采用罗丹明B对其分析性能进行了评价,其检出限可达1×10-7~5×10-7mol/L。他们对该化合物的非磺酸化物也进行了研究,其检出限可达9×10-8~5×10-7mol/L。1.4 1,2-二氧杂环丁烷类  1,2-二氧杂环丁烷类的化学发光也研究得比较多,这类化合物经单分子转变后生成两个含羰基的产物,产物之一可生成激发态。由于许多化学发光和生物发光的中间体都可能生成这种过渡态而早已受到人们的注意。Kamtekar等利用碱性磷酸酶(ALP)催化1,2-二氧杂环丁烷的磷酸盐衍生物的水解产生化学发光来测定Zn(Ⅱ)、Be(Ⅱ)、Bi(Ⅲ)。1.5钌(II)的联吡啶(bipy)及邻菲咯啉(phen)配合物  Ru(bipy)32+是一种被广泛研究的化合物,其化学发光及电致化学发光应用逐渐增多;Ru(phen)32+也可用作化学发光试剂。何治柯等用Ru(bipy)32+及Ru(phen)32+化学发光法在酸性介质中测定草酸、酒石酸及5种羟基酸等。其化学发光反应机理也已有报道。1.6其它发光试剂  除了上述几类主要的化学发光试剂外,还有芳基咪唑类如洛粉碱、多元酚类如连苯三酚,在H2O2存在下产生发光。四-(N-烷基氨基)-乙烯类化合物也会产生化学发光,常见的有四-(N-二甲基氨基)-乙烯,它在潮湿空气中爆炸,产生明亮的化学发光。此外还有七叶灵、硅氧烯、对氯苯基溴化镁、反式-1-(2′-甲氧基乙烯基)芘、联苯酰基过氧化物、金刚烷1,2-二氧杂环丁烷以及氢过氧化二甲基吲哚等,文献均有介绍。最近Ma等研究了杯芳烃(calixarene)衍生物的光谱特性,合成了3种衍生物,对-(2,3-二氢-1,4-酞嗪二酮-5-偶氮)杯芳烃,n=4,6或8。其特点是水溶性好,象鲁米诺一样,在催化剂存在下,与氧化剂反应发光,可用于测定H2O2。

  • 化学发光谱图分析

    各位大神你们好,本人初次接触化学发光,想要请教一下,应该要如何分析化学发光光谱呢?我测了谱图,出峰间隔时间也不一样,有时候三个峰一起出来,有时候又只有一个峰单独出来,请问这是怎么回事呢?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制