当前位置: 仪器信息网 > 行业主题 > >

光致发光材料

仪器信息网光致发光材料专题为您整合光致发光材料相关的最新文章,在光致发光材料专题,您不仅可以免费浏览光致发光材料的资讯, 同时您还可以浏览光致发光材料的相关资料、解决方案,参与社区光致发光材料话题讨论。

光致发光材料相关的资讯

  • ACS Nano成果速递:光致发光、拉曼、近场光学同步测量技术揭示二维合金材料新特性
    近期,乔治亚大学研究人员成功使用一种新型组合显微镜对二维材料进行了深入分析,该显微镜能够利用纳米的发光,弹性和非弹性光散射测试二维材料,即实现nano-PL、nano-Raman、s-SNOM的同步测量,并将观测的尺度提升到纳米量。乔治亚大学Yohannes Abate教授与研究生讨论neaspec设备[1] 单层异质结构的应用潜力直接受到材料内在和外在的缺陷影响。乔治亚大学的研究人员在Abate教授的带领下,利用neaSNOM散射式近场光学显微镜,研究了二维(2D)单层合金光致氧化过程中纳米尺度下的奇异界面现象。他们发现界面张力可以通过建立稳定的局部势阱来集中本征激子,从而实现高的热稳定性和光降解稳定性。该实验结果由neaspec公司特的nano-PL / Raman和s-SNOM同步测量技术所采集,并已发表在ACS NANO中[2]。在实验中,作者合成了由单层面内MoS2-WS2异质结构制成的2D纳米晶体,这些晶体在富Mo的内部区域和富W的外部区域间,显示出了较强的纳米合金界面。在针增强照明刺激下( 100天),他们进一步观察到,光降解过程中界面的激子稳定性、局域性和不均匀性。得益于高度敏感的s-SNOM成像技术,作者探测到富W的外部区域的反射率出现急剧下降。该反射率始于晶体边缘,并随时间向内传播。在同一样品区域获得的高光谱纳米光致发光(nano-PL)图像显示,W氧化相关的激子的猝灭会遵循与s-SNOM相同的模式(在边缘开始并向内传播)。令人惊叹的是,合金界面的内部区域表现出了强大的抗氧化能力。即使在光降解100天后,它仍具有很强的s-SNOM信噪比和未淬灭的nano-PL信号。为了进一步研究结构变化,作者使用nano-PL进行了增强拉曼高光谱纳米成像测量,并在同一扫描区域的每个像素处获取了空间和光谱信息。实验结果表明,在整个晶体的光降解过程中,WS2拉曼峰逐渐消失,而在内部区域中的MoS2仍然存在。该结果表明在相同的环境条件、同一显微镜下测量相同的晶体,由于热诱导的合金和基底晶格常数的不匹配,导致光氧化与局部应变存在一定的关联。而合金界面可防止该应变传播到内部区域,从而防止其降解。 neaSNOM显微镜特的双光束设计,实现了3种不同测量技术在同一样品点的同步测量。该设计允许在单个显微镜中集成nano-PL / Raman和s-SNOM技术,并保持测量的灵敏度。通过 大程度优化s-SNOM信号,这种组合还可以实现非常快速的光束对准,从而获得 佳的PL和Raman信号。 在neaSNOM设备上,集成不同的纳米光学技术进行的相关分析,为深入探索2D合金奠定了基础,也使得neaSNOM成为了一个电子和发光性质测量的优 秀平台。 参考文献:[1]. Imaging technique provides link to innovative products, Science & Technology, February 4, 2021by Alan Flurry[2]. Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano 2021, 15, 2, 2447–2457
  • 光致发光和可穿戴传感器研究获进展
    人们对电子设备的便携性、多功能性和集成性的期待推动了可穿戴电子设备的快速发展。最近,摩擦电纳米发电机(TENGs)在能力收集、人机交互、医疗监测和自供电传感等方面引起了关注。遗憾的是,这类交互设备多由分隔的传感器和显示单元组成,因而总是需要一些笨重的设备或有线连接来将输出信号转换为人类易读出的形式。色彩提供了简单的传输信息的方法,其可调的颜色属性有望与传感器集成,为交互式信号的可视化开辟了新途径。金属卤化物钙钛矿具有特殊的光物理性质,为未来的可穿戴电子产品提供了新机会。然而,构建自供能、应变传感和显示等多功能特性一体化的光致发光传感系统是巨大的挑战。中国科学院苏州纳米技术与纳米仿生研究所轻量化实验室研究员李清文与项目研究员张其冲等,提出了高效窄光致发光金属卤化物固体的水合成策略,进一步将其应用于自供电的可穿戴式光致发光传感器。科研人员利用这一策略,仅使用水作为溶剂便制备了盐壳金属卤化物固体(具有高效和狭窄的绿色排放,PLQY为87.3%)。其中,KBr盐提供了一个富溴的环境来钝化钙钛矿的表面缺陷,且作为基质来提高其稳定性。该绿色环保的制备策略可用于制备无色水性油墨和柔性光致发光薄膜。另外,该固态化合物可作为聚乙烯醇(PVA)的填料,用于TENG中的高性能正摩擦材料,所制备的TENG的输出性能是原始TENG的2.3倍。研究进一步构建了电压响应范围为0-100kPa、响应时间为125ms的可穿戴光致发光传感器,以检测人体的各种运动。研究显示,运用简单的水蒸发结晶策略即可制备高发射窄半高峰宽的金属卤化物固体,巧妙地引入溴化钾盐使得难溶于水的溴化铅完全溶解在水中,不仅赋予了材料高量子产率,而且提升了产物光和热稳定性。得益于水蒸发结晶策略,前驱体水溶液可制备成水性墨水,通过与水性聚合物混合可以制备出柔性荧光薄膜,并可以通过喷墨打印技术打印相关的图案。作为概念验证,研究还构建了电压响应范围为0-100kPa,响应时间为125ms的可穿戴光致发光压力传感器,未来有望构建同时具有显示-传感一体化自供电集成器件,检测人体的各种运动。该研究为高发射的金属卤化物固体的合理设计提供了指导,并为扩展其在多功能可穿戴荧光传感器中的应用提供了参考。相关研究成果以Robust Salt-Shelled Metal Halide for Highly Efficient Photoluminescence and Wearable Real-Time Human Motion Perception为题,发表在Nano Energy上。研究工作得到中科院和江苏省青年基金项目的支持。该研究由苏州纳米所、华东理工大学、新加坡南洋理工大学、上海交通大学的科研人员合作完成。图1.固态盐壳金属卤化物的制备图2.固态金属卤化物的稳定性及其柔性应用图3.固态金属卤化物在传感领域的应用
  • 新加坡国立大学合成新型近红外发光量子点,光致发光量子效率可达25%|国际用户简讯
    作者:Sophie编辑:Joanna对于太阳能转换器件和生物成像应用程序来说,使用发射近红外光、具有显著斯托克斯位移且再吸收损失小的材料非常重要。近期新加坡国立大学化学系便合成了这样一种新型材料——四元混合巨壳型量子点(InAs?In(Zn)P?ZnSe?ZnS)。这种新型量子点可以实现显著斯托克斯位移,且光致发光量子效率可达25%,非常适合应用于太阳能及生物领域。Tips: 斯托克斯位移是指荧光光谱较相应的吸收光谱红移(斯托克斯位移=发射波长-吸收波长)。斯托克斯位移越大,荧光太阳能光电转换效率越高。图片来源于网络 单锅连续注射&结构比例控制合成新型量子点的关键新加坡国立大学使用单锅连续注射的方法来合成该量子点。四元混合巨壳型量子点结构主要成分由内到外比例为1: 50: 37.5: 37.5合成过程分为4步,由内向外,依次为:1. 合成该量子点InAs内核2. 向InAs核反应容器中注射As前驱体溶液、醋酸锌和磷酸氢,完成第2层In(Zn)P壳层的合成3. 向反应体系注射Se前驱体溶液合成第3层ZnSe壳层4. 注射S前驱体溶液和醋酸锌完成ZnS壳层的合成四元混合巨壳型量子点合成过程图示合成过程中,研究人员会定时从反应容器中取出小部分溶液测量其紫外可见吸光度和光致发光特性来跟踪反应进程,并调整量子点间的结构比例。他们利用HORIBA高能量窄脉宽 Nanoled-440L皮秒脉冲激光光源对样品进行激发,在FluoroLog-3 荧光光谱仪上测试荧光寿命。在新的荧光光谱技术中,FluoroLog-3 系列荧光光谱仪配置CCD检测器新技术,实现快速动态荧光光谱检测,实现实时反应发光测试,分子相互作用的动态检测。新型量子点材料助力太阳能及生物应用用领域终合成的巨壳量子点,In(Zn)P壳层能够吸收400-780 nm的可见光,并将吸收后的能量传递到InAs内核,使其在873nm处发射,进而实现显著的斯托克斯位移和很小的吸收-发射光谱重叠;经统计计算,该量子点光致发光量子效率可达25%,这对于近红外发射器来说相当可观,且它在873nm的发射光与硅太阳能电池的光敏响应区匹配良好。并且这一新型量子点为可调色发光,不含有害金属。种种优点使得该量子点不仅非常适合应用于荧光太阳能领域用以提高光电转换效率;且在生物领域,该量子点也可作为荧光材料用于生物成像,给疾病的诊断和治疗带来巨大进步。该工作以“Large-Stokes-Shifted Infrared-Emitting InAs?In(Zn)P?ZnSe?ZnS Giant-Shell Quantum Dots by One-Pot Continuous-InjectionSynthesis”为题,发表于《Chemistry of Materials》。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 岛津应用:有机电致发光材料的荧光测定
    近年来在电机和电子领域,不断开发出使用有机电致发光(EL)的显示器和照明设备等产品。在有机EL的开发过程中,需要通过光致发光(PL)对新合成物质的光学特性进行确认。这样可以帮助我们找到高效的发光材料,以及研究材料在溶液中发光原理。通过这个过程,以开发符合要求的光色调、满足节能和高效发光等要求的有机EL材料。在检测有机EL材料时,必须在较宽的波长范围内迅速且准确地测定荧光波长。 本次分析在韩国浦项科技大学基础科学研究院(POSTECH:Pohang University of Science and Technology)的协助下,我们使用岛津荧光分光光度计RF-6000对有机EL材料之一的卟啉溶液(溶剂:三氯甲烷)进行了测定。在各种有机EL材料的开发过程中,要求能够在更高灵敏度和更大范围内进行光谱观测。RF-6000不仅能够迅速准确地进行三维测定,还能够进行高达900nm的高灵敏度光谱测定。并且,还可使用选购件积分球测定量子效率(绝对量子产率)。综上所述,使用荧光分光光度计RF-6000可有效对有机EL材料的三维光谱及荧光光谱进行确认。本文向您介绍详细的分析示例 荧光分光光度计RF-6000 了解详情,敬请点击《有机电致发光材料的荧光测定》
  • 岛津应用:有机电致发光材料的荧光测定
    近年来在电机和电子领域,不断开发出使用有机电致发光(EL)的显示器和照明设备等产品。在有机EL的开发过程中,需要通过光致发光(PL)对新合成物质的光学特性进行确认。这样可以帮助我们找到高效的发光材料,以及研究材料在溶液中发光原理。通过这个过程,以开发符合要求的光色调、满足节能和高效发光等要求的有机EL材料。在检测有机EL材料时,必须在较宽的波长范围内迅速且准确地测定荧光波长。 本次分析在韩国浦项科技大学基础科学研究院(POSTECH:Pohang University of Science and Technology)的协助下,我们使用岛津荧光分光光度计RF-6000对有机EL材料之一的卟啉溶液(溶剂:三氯甲烷)进行了测定。在各种有机EL材料的开发过程中,要求能够在更高灵敏度和更大范围内进行光谱观测。RF-6000不仅能够迅速准确地进行三维测定,还能够进行高达900nm的高灵敏度光谱测定。并且,还可使用选购件积分球测定量子效率(绝对量子产率)。综上所述,使用荧光分光光度计RF-6000可有效对有机EL材料的三维光谱及荧光光谱进行确认。本文向您介绍详细的分析示例 荧光分光光度计RF-6000 了解详情,敬请点击《有机电致发光材料的荧光测定》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 仪器表征,科学家开发了基于光致发光的可持续辐射冷却气凝胶!
    【科学背景】在面对日益严峻的全球气候变化挑战时,被动辐射冷却作为一种潜在的可持续热管理策略备受关注。然而,传统的石油化学衍生冷却材料往往面临太阳光吸收导致效率低下的问题。为应对这一挑战,四川大学赵海波教授、王玉忠院士等人合作提出了一种内在荧光生物质气凝胶。这种气凝胶通过DNA和明胶在有序分层结构中的聚集,利用荧光和磷光效应实现了在可见光区域超过100%的太阳加权反射率。这一创新不仅使其在高太阳辐照下能够显著降低环境温度达16.0°C,还通过水焊接方法实现了高效大规模生产,展现出卓越的修复性、可回收性和生物降解性。这种生物质荧光材料为设计下一代可持续冷却材料提供了新的科学工具和技术路径,为应对全球气候变化提供了创新的解决方案。【科学图文】图1: 本征光致发光生物质气凝胶板示意图。图2. GE-DNA气凝胶的结构和形貌。图3. GE-DNA 气凝胶的可修复性、可回收性和生物降解性。图4. GE-DNA气凝胶的冷却机理和性能。【科学结论】本文开发了一种基于荧光诱导的生物质辐射冷却策略,通过利用DNA和明胶(GE)的协同效应,在可见光区域实现超过100%的太阳加权反射率。这一创新通过有序分层的气凝胶结构,不仅有效地抑制了紫外光的吸收,还优化了在可见光范围内的反射性能,从而显著提升了材料在白天辐射冷却中的效率。实验结果展示,该生物质气凝胶能够在高太阳辐照下将环境温度降低16.0°C,彰显了其在温控领域的潜力。此外,通过水辅助制备技术的可伸缩生产,使得气凝胶能够大规模制备,且保持了结构的各向异性,确保了光学性能的均匀性和稳定性。重要的是,这种材料完全由生物质原料制成,具备高修复性、可回收性和生物降解性,能够在整个使用寿命内避免对环境的负面影响。这一科学启迪为未来能效高、环境友好的新型材料设计提供了重要的参考,有望在全球应对气候变化和能源危机中发挥关键作用。文献信息:Jian-Wen Ma et al. ,A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling.Science385,68-74(2024).DOI:10.1126/science.adn5694https://www.science.org/doi/10.1126/science.adn5694
  • 近红外有机电致发光研究取得新进展
    高效率近红外发光材料因其在生物成像、医疗、光通信和夜视器件等方面的重要应用而备受关注。但受制于能隙法则,即随着激发态和基态之间的能隙差减小,非辐射跃迁速率常数呈指数增加,导致开发高效率的有机近红外发光材料一直是一个巨大的挑战,从而严重限制了相关器件电致发光效率的提升。到目前为止,尽管已有极少量性能较好的近红外有机发光二极管(NIR-OLED)获得超过15%的外量子效率,但表现出纯近红外发光的NIR-OLED电致发光效率通常低于5%。针对这一问题,西安交通大学化学学院杨晓龙、孙源慧、周桂江等人与五邑大学陈钊合作报道了电致发光效率达到16.43%的纯近红外发光NIR-OLED。研究人员通过优化Ir(III)配合物的分子结构设计降低金属中心到配体电荷转移跃迁,提高三线态激发态中的基于配体的ππ跃迁成分,成功地将发光光谱半峰宽降低至43 nm,获得了最大发射峰位于730 nm附近的高效率纯近红外发光材料。研究人员采用溶液旋涂法制备了相应的电致发光器件,获得了与对应材料光致发光光谱近乎一致的纯近红外电致发光光谱,且最高电致发光效率分别高达15.00%和16.43%,显著超过了已报道的基于近红外Ir(III)配合物的NIR-OLED最高电致发光效率,也显著超过了采用溶液旋涂法制备的基于不同有机近红外发光材料的NIR-OLED最高电致发光效率。用于溶液法制备外量子效率超过16%的有机发光二极管的窄光谱纯近红外发光铱配合物。(论文课题组供图)近日,该研究成果以《用于溶液法制备外量子效率超过16%的有机发光二极管的窄光谱纯近红外发光铱配合物》为题发表在国际化学领域期刊《德国应用化学》上。论文第一作者为西安交通大学化学学院杨晓龙副教授,通讯作者为西安交通大学化学学院孙源慧副教授、周桂江教授与五邑大学陈钊博士。西安交通大学化学学院是论文第一通讯单位。
  • 兰大教授成功研制新型发光材料
    兰州大学物理科学与技术学院王育华教授领导的课题组日前成功研制了一种新型发光材料,只要在阳光或灯光底下照一照,该材料就可以把这些光亮储存起来,然后在比较暗的环境里自己发光。其余辉初始亮度高,余辉时间近4小时左右,发光颜色为橙黄色,可以作为黑暗环境中的警戒指示照明。
  • Angew:近红外有机电致发光(NIR-OLED)新突破
    近年来,高效率近红外发光材料因其在生物成像、医疗、光通信和夜视器件等方面的重要应用而备受关注。除了无机近红外量子点和卤化物钙钛矿等材料外,各种有机近红外材料包括传统的荧光小分子材料、共轭聚合物、稳定的发光自由基、热激活延迟荧光(TADF)材料和金属有机配合物磷光材料等因其具有化学结构可调、稳定性好、便于制备近红外有机电致发光器件(NIR-OLED)的优势而得到迅速的发展。在这些有机近红外材料中,后三种材料在OLED中对单线态和三线态激子的利用率能够达到100%,从而提高了器件的效率。尽管如此,受制于能隙法则 (energy gap law),即随着激发态和基态之间的能隙差减小,非辐射跃迁速率常数呈指数增加,导致开发高效率的有机近红外发光材料( 700 nm)一直是一个巨大的挑战,从而严重限制了相关器件电致发光效率的提升。目前,扩展π-共轭和增强发光分子的电荷转移(CT)是红移材料发光波长的两种常见方法,通常需要将两种方法相结合才能获得近红外区的发光。因此,以前报道的近红外发光材料由于具有很强的CT性质,发光光谱半峰宽(FWHM)通常高达70-150 nm。当最大发光波长小于770 nm时会有部分光谱覆盖可见光区域,严重降低近红外光的纯度,这种情况不利于高性能纯近红外发光或夜视器件的制备。如若为了提高近红外光纯度,将材料的最大发光波长红移至超过770 nm,则发光效率将进一步显著降低。因此,到目前为止,尽管已有极少量性能较好的NIR-OLED获得超过15%的外量子效率,但表现出纯近红外发光的OLED电致发光效率通常低于5%。近日,西安交通大学化学学院杨晓龙、孙源慧、周桂江等人与五邑大学陈钊合作报道了电致发光效率达到16.43%的纯近红外发光NIR-OLED。作者通过优化Ir(III)配合物的分子结构设计降低金属中心到配体电荷转移跃迁,提高三线态激发态中的基于配体的ππ跃迁成分,成功地将发光光谱半峰宽降低至43 nm,因此获得了最大发射峰位于730 nm附近的纯近红外发光材料 (图1)。图1. 近红外Ir(III)配合物的分子设计策略和发光性质。与其他纯近红外材料相比,由于具有相对较短的发射波长,因此可以缓解能隙法则的不利影响。此外,理论计算表明论文报道的配合物激发态形变非常小,因而最终获得了优异的近红外发光效率。作者采用溶液法制备了具有传统结构的电致发光器件(图2),选取的功能层材料具有合适的能级,能够有效地促进从主体到客体之间的能量传递,并将激子限制在发光层内,因此,器件的电致发光光谱与其对应的光致发光光谱近乎一致。基于BIqThIr和BIqThIrO的器件电致发光波长分别为737 nm和733 nm,半峰宽仅有47 nm和44 nm,这使整个光谱中近红外成分超过98%,实现了纯近红外发光。图2. (a) 器件结构。(b) 电致发光光谱。(c) 电流密度(J)-电压(V)-辐射度(R)曲线。(d) 电致发光效率与电流密度的特性关系。由于具有优异的近红外发光性能,溶液法制备的NIR OLED最高电致发光效率分别高达15.00%和16.43%,显著超过了已报道的基于近红外Ir(III)配合物的器件最高电致发光效率,也显著超过了采用溶液旋涂法制备的基于不同有机近红外发光材料的器件最高电致发光效率 (图3)。图3. (a) 基于Ir(III)配合物的溶液旋涂法和真空沉积法NIR-OLED发光峰在700-900 nm范围内的最大电致发光效率。(b) 基于不同有机发光材料溶液旋涂法NIR-OLED发光峰值在700-900 nm范围内的最大电致发光效率。综上所述,作者提出了一种开发高效率纯近红外发光材料的新策略。通过合理地设计分子结构来调控三线态性质,减少能隙定律的不利影响,为如何改善近红外材料发光性能提供了新的思路。这一成果近期发表在Angewandte Chemie International Edition 上,该论文第一作者为西安交通大学化学学院杨晓龙副教授,通讯作者为西安交通大学化学学院孙源慧副教授、周桂江教授与五邑大学陈钊博士。原文(扫描或长按二维码,识别后直达原文页面): Narrowband Pure Near-Infrared (NIR) Ir(III) Complexes for Solution-Processed Organic Light-Emitting Diode (OLED) with External Quantum Efficiency Over 16 %Xiaolong Yang, Shipan Xu, Yan Zhang, Chengyun Zhu, Linsong Cui, Guijiang Zhou, Zhao Chen, Yuanhui SunAngew. Chem. Int. Ed., 2023, DOI: 10.1002/anie.202309739
  • 上海微系统所丁古巧团队在石墨烯量子点荧光发光机制研究获进展
    近日,中国科学院上海微系统与信息技术研究所纳米材料与器件实验室丁古巧团队在石墨烯量子点制备及荧光机制研究方面取得进展。该工作深化了关于石墨烯量子点发光机理的认知,阐释了多变量体系下机器学习辅助材料制备成果所包含物理内涵。相关研究成果以Precursor Symmetry Triggered Modulation of Fluorescence Quantum Yield in Graphene Quantum Dots为题,发表在《先进功能材料》(Advanced Functional Materials)上。近年来,以石墨烯量子点为代表的碳基量子点材料因独特的sp2–sp3杂化碳纳米结构,表现出优异的光学、电学、磁学的性质。在石墨烯量子点“自下而上”法制备中,多变量反应体系使其在合成与机制领域面临挑战。此外,机器学习以高效的分析算法和模型在复杂体系分析、新型材料设计等领域展现出优势。然而,由于缺失具备实际物理内涵的结构特征描述符,机器学习仅能得到难以阐释物理内涵的数学模型。这限制了机器学习在相关研究中的可迁移性和实用性。石墨烯粉体课题组博士研究生陈良锋、副研究员杨思维结合群论在分子结构描述上的优势,通过控制变量实验与结构化学理论的结合,将具有实际物理含义的描述符应用于机器学习,揭示了石墨烯量子点的前驱体结构与荧光量子产率间关联的物理内涵。该研究利用高结构刚性sp3前驱体与柔性sp2结构前驱体之间的“自下而上”反应,实现了石墨烯量子点中sp2-sp3杂化碳纳米结构的调制。研究结合热动力学理论,阐明了sp3刚性结构能够通过抑制非辐射跃迁过程提高石墨烯量子点量子产率。进一步,研究借助群论在描述分子结构方面的优势,结合主成份分析,明确了石墨烯量子点制备过程中影响石墨烯量子点荧光量子产率的三个决定性因素——结构因子、温度因子和浓度因子。与以往基于机器学习的研究工作相比,该团队基于群论的进一步研究,揭示了机器学习结果中分子的简正振动是前驱体对称性作用于石墨烯量子点量子产率增量的核心物理机制。基于上述原理的指导,该研究首次证明了分子振动的正常模式是前驱体的结构特性作用于 GQDs 荧光量子产率的核心机制。这一石墨烯量子点的光致发光性能在荧光信息防伪加密中具有应用前景。研究工作得到中国科学院青年创新促进会、上海市科学技术委员会以及集成电路材料全国重点实验室开放课题等的支持。
  • 天美公司助力2019国际发光材料研讨会
    2019年11月14日至17日,第十一届国际发光材料研讨会在享有“海上花园城市”美誉之称的福建厦门召开。此次会议吸引了来自国内外发光领域500多名专家和学者参会。 厦门大学解荣军教授致开幕词 2019国际发光材料研讨会大会现场  本次会议设置大会报告、主题报告、邀请报告及墙报展等多个环节,议题涵盖稀土和过渡元素发光、有机光学材料、光化学合成、超分子光化学、生物光化学、环境和大气光化学、理论光化学、光谱学、光功能材料及其他与光化学交叉的前沿学科等方面,全方位展示国内外发光材料的研究成果。天美(中国)科学仪器有限公司携爱丁堡仪器公司全程参加此次会议。会议期间,天美公司受邀作了会议报告。爱丁堡仪器公司的首席执行官Roger Fenske博士分享了一个为什么要测试量子效率极限的发光光谱报告,并重点介绍了荧光光谱技术在发光材料上的应用。   天美展台展出爱丁堡仪器公司最新研发的实时双光束UV-Vis分光光度计 DS5新品。众多专家及学者莅临展台进行了解和咨询DS5详情,同时关注稳态瞬态发光的先进技术及广泛应用。    天美旗下爱丁堡仪器公司旨在开发和寻找更多更新的应用方向和解决方案,推动荧光光谱技术在科研中更广泛地应用,更好地帮助研究者解决科研中的问题。天美公司也将始终秉承助力科研领域,为广大用户提供更优质的仪器和更专业的技术服务。关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 连发Nature!浙江大学狄大卫教授团队发光二极管系列进展
    近日,浙江大学光电学院狄大卫教授课题组先后在Nature Communications及Nature Photonics发表其课题组的最新研究文章。《Ultralow-voltage Operation of Light-emitting Diodes》一文创纪录地发现可以以LED能带宽度的36-60%超低压下观察到发光。《Ultrastable Near-infrared Perovskite Lightemitting Diodes》实现了超高稳定性、高效率(22.8%)的近红外钙钛矿发光二极管(钙钛矿LED)。 ‍研究背景LED的发展对照明、显示和信息产业有着深远的影响。新兴的LED技术的研究倍受关注。LED发光的关键机制为电致发光(EL),即在外部电压下注入的电子和空穴的辐射复合。有文献报道III-V 族半导体的 LED 的工作电压低至标称带隙的 77%,这是由于新型量子阱设计增强的辐射复合。对于OLED,其最小工作电压约0.5Eg/q,使用TTA工艺来解释这种低工作电压仍有争议,即电致发光的最低驱动电压到底是多少,以及它们是否基于同一个机理。 研究方法 在这项工作中测试了17种不同类型的LED,首先选择钙钛矿LED,制备了以近红外发光的碘基材料FPI、NFPI以及绿色发光的溴基材料PCPB的钙钛矿LED,这三种LED的最低驱动电压分别是1.3V、1.3V及1.9V,LED中光子的最高能量分别为1.55eV、1.56eV及2.4eV。这表明三种材料的LED均可在低于带隙所限制的最小阈值电压下发光。接下来选择几种不同的OLED、QLED以及商业III–V族半导体LED,得到的结论与之前的相似。 ‍ 图 1 不同种LED的电致发光强度-电压的关系。 (a. 近红外发射FAPBI3(FPI)钙钛矿LED;b.近红外发射NFPI钙钛矿LED;c.绿光PCPB钙钛矿LED;d.基于Ir(ppy)3的磷光OLED;e.基于4CzlPN的TADF OLED;f.基于F8BT的聚合物OLED;g.基于红荧烯的荧光小分子OLED;h.基于CdSe/ZnS QDs的II-VI QLED;i.基于 GaAsP 的商用 III-V 无机 LED 。) 研究还发现几种钙钛矿LED驱动电压的数值从带隙上方调整到下方时,LED的电致发光EL谱线峰形及峰位都不变。图2. 钙钛矿LED在高于及低于带隙所限制阈值电压下的EL光谱 研究方法 为解决LED最低驱动电压到底是多少的问题,他们采用一套能探测到微弱光子信号的高灵敏度光子探测系统,确定了钙钛矿LED的光致发光强度与电压之间的关系,得出EL 的最小驱动电压为低于半导体带隙 50% 的值,并表现出每个光子0.6-1.4eV的表观能量增益。 图3. 不同LED在近带隙和亚带隙电压下的光致发光强度-电压曲线 论文中提到的测试方法中,使用了海洋光学高灵敏度QE Pro光谱仪对LED的发光性能进行表征。图4. 用于测量在亚带隙电压下的 EL 光谱的实验装置示意图 研究背景 与钙钛矿太阳能电池类似,钙钛矿LED的不稳定性是一重大难题。近年来,钙钛矿LED在外量子效率(EQE)方面发展十分迅速,但其在连续工作条件下T50工作寿命(亮度降低到其初始值一半所需时间)一般在10到100小时量级,而实际应用需器件在高EQE、宽辐亮度范围下实现更长的工作寿命(高于10000小时)。和III-V族半导体及有机半导体相比,钙钛矿在器件工作过程中存在额外的降解通道。电场作用下的离子迁移和钙钛矿晶体结构的不稳定性,是影响钙钛矿器件稳定性的关键问题。解决这些问题,以同时实现长寿命与高效率,是领域的重大挑战。研究亮点 作者选取了在高性能太阳能电池与LED均有应用的FAPbI3钙钛矿作为基本研究对象,引入双极性分子SFB10,实现了高效和超稳定的近红外(~800 nm)钙钛矿LED。器件峰值外量子效率(EQE)为22.8%,峰值能量转化效率(ECE)为20.7%。这些钙钛矿LED展现了优异的稳定性,在5 mA/cm2下连续运行超过3600h(5个月)没有观察到辐亮度衰减。据加速老化测试获得,在初始辐亮度(或电流密度)分别为0.21 W/sr/m2 (0.7 mA/cm2)时,预期T50工作寿命为2.4×106h (约270年)。 图5. 钙钛矿LED器件结构和性能 上述数据表明,钙钛矿LED可在满足实际应用的光功率(辐亮度)下稳定工作。作为参考,基于Ir(ppy)3的高效率绿光OLED器件,在1000 cd/m2的高亮度下时对应的辐亮度为2.1 W/sr/m2, 在100 cd/m2的较低亮度下对应的辐亮度为0.21 W/sr/m2。表1:经SFB10稳定的钙钛矿LED寿命数据 为了探索器件高稳定性的原因,作者研究了双极性分子SFB10对钙钛矿薄膜稳定性的影响。结果表明,双极性分子SFB10提高了钙钛矿薄膜的热稳定性、相稳定性与荧光稳定性。经SFB10稳定剂处理的钙钛矿样品在空气中放置322 天,仍然维持了具有良好光电活性的α相FAPbI3钙钛矿,而对照组样品在14天内就发生了相变与降解。图6:钙钛矿样品结构稳定性和荧光稳定性 图7:SFB10与钙钛矿前驱体化学相互作用表 论文提到的测试方法中,使用海洋光学QE Pro光谱仪进行EQE的J-V曲线测量,使用Maya2000Pro记录角电致发光强度分布。QE Pro Maya2000 Pro 光谱仪 参考文献 1. Lian Y , Lan D , Xing S , et al. Ultralow-voltage operation of light-emitting diodes[J]. 2021.2. Guo, B., Lai, R., Jiang, S. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. (2022). https://doi.org/10.1038/s41566-022-01046-33. https://mp.weixin.qq.com/s/s_vFNym4bESl3wogh96n7Q 结语 超低驱动电压的研究为超低压LED器件的发展以及照明、显示及通信行业的发展做出贡献。超长的器件寿命有望提振钙钛矿LED领域的信心,这些近红外LED可用于近红外显示、通讯与生物等应用,为钙钛矿发光技术进入产业应用铺平了道路。
  • 国家纳米中心在圆偏振发光材料研究中取得进展
    具有圆偏振发光性能的手性材料在三维成像、光学信息存储、不对称合成等方面颇具应用潜力,在手性科学研究中具有重要意义。手性基元在氢键、静电相互作用及π-π堆积等相互作用的协同下,可以自组装成各种各样的手性结构,表现出独特的圆偏振发光性质。而在自组装过程中,非手性基元如何参与并影响到最后的圆偏振发光性能,手性如何在组装结构中实现转移、传递和放大仍有未知。因此,如何构筑圆偏振发光材料并实现其性能提升在手性科学领域是重要的研究方向。  中国科学院国家纳米科学中心研究员段鹏飞团队在高效圆偏振发光材料的构筑和性能提升研究方面取得了新进展。利用卤键相互作用构筑了一种二维手性分形结构,实现了手性发光材料发光各项异性因子的显著提升(Angew. Chem. Ed. Int. 2021, 60, 22711-22716);在自组装手性多孔晶态材料中实现了无机纳米粒子到有机发光分子之间的辐射能量转移,并显著放大了材料的发光各项异性因子(Adv. Mater. 2021, 33, 2101797)。  卤键本质上是一种静电相互作用,关于卤键驱动的共组装体系已有报道。科研团队合成了两种含有吡啶基团的联二萘手性分子(R/S-1,R/S-2),其与1,4-二碘四氟苯(F4DIB)可以共组装,自发形成了不同形貌的二维手性分形结构。单晶结构的分析发现,晶体中吡啶基团的N原子与F4DIB中的碘原子通过卤键形成一维的超分子聚合物链,而后在π-π和C-FH的协同作用下形成最终的组装结构(图1)。由于R/S-1与F4DIB分子间相互作用更强所以形成的手性分形结构更加致密。在共组装过程中,手性由R/S-1,R/S-2分子传递给了超分子聚合物链,再经过进一步的组装从超分子聚合物链传递到手性分形结构,实现了手性的多级次放大。从基态和激发态手性光谱上也可以观察到,分形结构的手性各项异性因子相较于单分子手性信号呈现出两个数量级的放大。卤键驱动的手性自组装实现了手性从分子手性到分形结构的转移和放大,为设计、提升圆偏振发光材料性能提供了新思路。相关研究成果发表在Angew. Chem. Ed. Int.(2021, 60, 22711-22716)上。  手性多孔晶态材料具有有序的组装结构,在圆偏振发光材料的构筑和性能提升方面具有重要意义。近日,团队工作人员通过设计“Turn-on”型二芳基乙烯(DAEC)和上转换纳米粒(UCNPs)负载的手性金属有机框架复合材料,实现了紫外光、可见光、近红外光多重光源响应的圆偏振发光固态开关,并通过UCNPs到DAEC的能量转移实现了圆偏振发光的放大(图2)。  研究人员选择了一种具有一维孔道的手性镧系框架结构,将上转换纳米粒子和具有光响应性质的二芳基乙烯同时负载于手性框架结构中,通过手性诱导分别实现了二芳基乙烯和UCNPs的圆偏振发光。UCNPs上转换发光的能量可以转移至二芳基乙烯,实现二芳基乙烯的上转换圆偏振发光。该手性多孔框架结构复合物中,二芳基乙烯可以在紫外光和近红外光照射下到达关环发光态,分别表现出下转换和上转换的圆偏振发光。在可见光照射下变为开环暗态,实现圆偏振发光的“关闭”。此外,研究发现上转换的发光各项异性因子(glum)大于下转换的发光各项异性因子,可能是手性体系中的能量转移造成的,这是首次发现无机给体到有机受体能量转移实现的圆偏振发光放大。  该手性晶态多孔复合材料实现了固态下多重光响应的圆偏振发光开关,并在不同光输入的条件下的下转换和上转换过程可以实现荧光信息和圆偏振信息的多级光信号输出,在多维度光响应和输出的存储与加密方面具有重要应用价值。相关研究成果发表在Adv. Mater.(2021, 33, 2101797)上。研究工作得到国家自然科学基金、中科院战略性先导科技专项(B类)、国家重点研发计划等的支持。
  • 滨松中国参展华人聚集诱导发光(AIE)学术研讨会
    2018年9月26日,为期四天的第一届华人聚集诱导发光学术研讨会在西安市曲江国际饭店成功举办。本次会议旨在为华人学者搭建一个AIE研究和学术交流的平台,是聚集诱导发光领域的一次盛会。滨松中国携两款绝对量子产率测试仪——Quantaurus-QY和Quantaurus-QY Plus亮相本次会议。 Quantaurus-QY是一款紧凑而易用的仪器,它将氙灯型激发光源、单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器等元件集成到一个封装里,探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量,用于测量光致发光材料的量子效率,而且无需传统相关方法所必需的已知参考标准。不同形式的样品,包括薄膜、固体、粉末和溶液等均能被分析,并能将溶液样品冷却到液氮温度。滨松绝对量子产率测量仪Quantaurus-QYQuantaurus-QY Plus在Quantaurus-QY的基础上增加了可扩展近红外探测器通道以及可扩展外接光源的接口。可扩展的近红外通道可以将量子产率的测量范围扩展至300-1650nm,覆盖市面上发光材料量子效率测量需求波段。与普通双通道探测器不同,滨松的双通道探测器测量结果通过算法拟合,结合JCSS级别的校准技术,可以让双通道结果无缝接合,得到稳定结果。产品的外接光源扩展接口可外接激光器以及高能氙灯等光源,可以轻松测量低量子产率以及上转换发光的材料,满足客户对于低发光效率以及上转换材料的测量需求。滨松近红外绝对量子产率测量仪 Quantaurus-QY PLUS本次会议深入探讨了AIE所面临的机遇、挑战及未来的发展方向。滨松的两款量子产率测量仪凭借其优异的性能受到了众多与会人员的高度关注。
  • 波兰开发出利用发光材料测量压力的新方法
    波兰科学院低温与结构研究所的科研人员开发出一种新的发光纳米材料,可以随着局部压力的变化而改变颜色。科研人员用含有发光纳米材料的油漆或清漆覆盖结构元件,然后用合适的光线照射涂料,涂料的颜色会随着给定位置的压力而变化。如,正常工作的结构在照明时会发出红光,而材料损坏的地方可能会变成绿光。该涂料可以用于远程监测机器零件、建筑物或桥梁等结构中的应力分布,并诊断结构中的某些部分是否开始失效。   科研人员表示,新材料对温度变化不敏感,被测物体的温度不会影响测量,因此可以获得更高精度和更为准确的读数。该研究结果已发表在《化学工程杂志》上。
  • 沃特世在国际AIE会议上展示用于发光材料研究色谱分离方案
    中国上海 - 2015年5月22日 - 沃特世公司(Waters)近日于第二届国际聚集诱导发光现象及其应用学术讨论会上展示了用于发光材料研究(聚集诱导材料和OLED材料)的色谱分离方案。该学术讨论会于5月15日至18日在广州举行。中国科学院院士唐本忠院士等海内外著名学者共同交流了聚集诱导发光(AIE,aggregation-induced emission)的相关研究成果。 会议期间,沃特世展示了有机发光材料色谱分离方案,包括基于超临界流体为流动相分离的超高效合相色谱(ACQUITY UPC2)和基于分子筛分离的超高效聚合物色谱(ACQUITY APC)。这一色谱分离方案,能够通过异构体选择性变化和分子量变化而达到发光聚合物的分离表征。此外,超高效聚合物色谱APC和质谱技术也可通过测定聚合物分子量,达到表征的目的,甚至可结合离子淌度给出空间构象信息。沃特世超高效聚合物色谱(ACQUITY? APC) 沃特世中国化工市场部经理蔡麒表示:“我们很荣幸能够为化工行业的尖端学术研究提供创新的实验检测解决方案。沃特世始终致力于支持化工领域各细分行业的技术创新。凭借我们在液相、质谱等领域的专注,以及对于品质的执着追求,我们帮助用户一起积极推动科技创新与进步。”沃特世超高效合相色谱(ACQUITY? UPC2) 国际聚集诱导发光现象及其应用学术讨论会由科技部、国家自然科学基金委及教育部支持,并由华南理工大学发光材料与器件国家重点实验室主办。共有280多名来自美国、日本、新加坡、加拿大、法国、韩国、以及中国等地从事有机/高分子光电功能材料领域研究的领导、专家和学者参会。 利用超高效合相色谱-质谱对有机发光二极体材料进行分析http://www.waters.com/waters/library.htm?cid=511436&lid=134675651 使用超高效合相色谱对环金属铱(III)配合物进行同分异构分离http://www.waters.com/waters/library.htm?cid=511436&lid=134715504 视频:LC和LC-MS技术在OLED材料的结构确认、杂质表征和质量控制方面的应用实例http://www.waters.com/waters/library.htm?cid=511436&lid=134772241 沃特世聚合物解决方案:http://www.waters.com/waters/zh_CN/Polymers/nav.htm?cid=10120709&bcid=134528338 聚合物分析文集:http://www.waters.com/waters/library.htm?cid=134740622&lid=134757664 关于沃特世公司(www.waters.com)50多年来,沃特世公司通过提供实用、可持续的创新,使全球范围内的医疗服务、环境管理、食品安全、水质监测、消费品和高附加值化学品领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世公司拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 关于沃特世中国 沃特世公司创始于1958年,是全球分析实验室解决方案的行业领导者。沃特世为科学家提供一系列分析系统解决方案、软件和服务,包括液相色谱、质谱和化学品。自上世纪80年代进入中国以来,沃特世目前在内地及香港设有五个运营中心拥有四百多名员工,在上海、北京、广州、成都设立实验中心和培训中心。 在中国,沃特世的业务范围涉及生物制药、健康科学、食品健康、环境保护和化学等多个领域,为小分子化学和中药研究、生物制药理化分析、农兽药筛查、代谢产物鉴定、组学平台、临床检测、乳制品检测等提供多种解决方案,服务工业生产的关键环节。 自2003年成立沃特世科技(上海)有限公司以来,今天的中国已经成为沃特世全球仅次于美国的第二大市场。沃特世中国始终坚持提高本地技术能力、培育本地技术人才,推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善,力求满足人们日益增长的健康需求,创造更美好的生活。 ###Waters、ACQUITY、ACQUITY UPLC、UPLC、SYNAPT、Xevo和ionKey/MS是沃特世公司的商标。
  • 发光“纳米快递员”可显示药物在体内移动
    俄罗斯国立核研究大学与其他机构的科研人员合作,开发出一种纳米探针,可以精准地向病变组织递送药物。有关专家称,该研究成果将有助于开发通用的靶向药物递送工具,有效治疗心血管疾病、癌症、糖尿病和一些其他疾病。相关论文发表在《纳米材料》杂志上。  向特定组织和细胞靶向递送药物是治疗病灶性疾病最重要的方向之一,包括心血管疾病、癌症、肺结核、两种类型的糖尿病和其他疾病。近年来的最新方法是通过纳米探针(能够携带药物和特殊分子的特殊结构)靶向病灶来实现。探针必须很小,大约几十纳米,同时它应具有严格定义的理化特性和尽可能低的毒性。  目前,世界上创建此类系统的技术正处于早期发展阶段,关键任务是研究药物递送过程。这就要求能够实时观察到探针在体内的移动,为此要使用特殊的激光照明。  俄国立核研究大学纳米生物工程实验室与莫斯科谢切诺夫第一国立医科大学、布洛欣国家肿瘤医学研究中心和法国兰斯香槟—阿登大学的科研人员,合作开发的新型超微探针满足了所有这些条件。  这种新型纳米探针由一个光致发光纳米晶体(量子点)和附着在其表面的吖啶衍生物分子(帮助探针穿过细胞膜的药物)组成。该系统与同类产品相比,优势在于尺寸超小,而CT亮度更高。  俄国立核研究大学纳米生物工程实验室副主任帕维尔萨莫赫瓦洛夫说,量子点是应用于一些高科技领域的荧光纳米结构,吸收光谱宽,发射光谱窄,由纳米晶体的尺寸决定。也就是说,一个量子点会以特定的颜色“发光”,这些特性使其成为医学中超敏感生物对象检测的近乎理想工具。  据悉,新型探针的尺寸大约15纳米,只有人体细胞的数百到数千分之一。CT扫描仪明亮的发光效果使研究人员可以通过定向激光束来追踪探针在身体组织中的移动。特殊的端羧基聚乙二醇外壳使纳米探针具有生物相容性,实验表明,它能够在细胞中迅速积累到所需的数量。  帕维尔萨莫赫瓦洛夫解释说,这种新型纳米探针主要用于开发抗癌药物靶向递送工具的实验研究,已经成为这种通用工具的原型。
  • 滨松中国光致/电致发光材料测量技术研讨会在太原理工大学圆满落幕
    2021年6月16-17日,由滨松中国与睿光科技联合举办的“滨松中国光致/电致发光材料测量技术研讨会”在太原理工大学圆满落幕。在为期两天的技术交流会中,滨松中国销售工程师就《滨松针对发光材料&发光器件的产品解决方案》、《滨松条纹相机产品介绍》等内容进行了报告。报告现场,来自物理与光电工程学院的老师以及同学们就产品的重点参数与实际应用范围展开了积极的讨论,对于产品解决方案中一些方案的落地与实施提出了不同的意见与建议,现场的讨论氛围数度达到高潮。滨松中国的绝对量子产率测量仪Quantaurus-QY C11347是一种紧凑,操作便捷的测量仪,用于测量荧光材料的量子产率。它采用绝对测量法,不需要已知的参考标准,相比较传统方法,该产品的性能更加优异。该产品可分析不同形式的样品-薄膜、固体、粉末和溶液,并且可以用液氮将液体样品冷却至-196℃(77k)。在报告内容结束之后,滨松中国为老师以及同学们提供了免费的样品测试,并就样机的保养与维修进行了深入交流。在测试的过程中,同学们表示滨松中国的产品具有很优异的技术参数,测量结果高效且准确,十分适用于各种科研实验。
  • 刘舜维、汪根欉、胡斌:延伸发光偶极各向异性动力学实现34.01%外量子效率
    本文重点:1. 平面定向的发光偶极必须在时域和能量域上都展现延伸的各向异性动力学,这是研发高效OLEDs的必要条件。2. 通过在平面定向的Exitplex杂合体中引入Ir(ppy)2(acac),可以抑制主宾体散射,使发光偶极的各向异性动力学延伸 至微秒量级。3. 采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。明志科技大学有机电子研究中心主任兼工程学院副院长刘舜维教授、中国台湾大学化学系汪根欉教授以及美国田纳西大学先进材料与制造工程研究所材料科学系胡斌教授三方研究团队,近日共同在《先进光学材料》(Advanced Optical Materials)期刊发表研究报告。该研究基于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体,使用包括时间解析和稳态两种光聚合物各向异性度量方法,全面研究了发光偶极在时间和能量两个维度的各向异性动力学特征。研究结果发现,相较于随机定向的发光偶极,设计能够形成平面定向的发光偶极是研发高效OLEDs的关键方法之一,这可以显著提高光的提取效率。但是,平面定向的发光偶极必须同时在时域和能量域都展现足够的偏振记忆效应,使各向异性动力学延伸至整个发光寿命时间范围,这才能大程度地增强OLED的光提取率。该研究充分证明,这种延伸的各向异性动力学是研发高效OLEDs的必要条件。研究团队将平面配置的红色磷光体Ir(ppy)2(acac)以很低的摩尔浓度分散于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体之中,构建了发光层。结果发现,平面定向的杂合体主体可以通过抑制主宾体之间的库仑散射,显著延长磷光体发光偶极的各向异性动力学,使其从纳秒量级延伸到微秒量级,与磷光寿命时间范围相当。这满足了采用Ir(ppy)2(acac):杂合体系统来提高OLED光提取效率的必要时域条件。更重要的是,研究还发现,在抑制主宾体库仑散射的情况下,高能态的发光偶极也可在杂合体主体的作用下维持延伸的各向异性动力学,而不会随着热电子从高能态松弛至LUMO而随机化。这是由于杂合体主体的偏振记忆效应不仅影响低能态,也可维持高能态发光偶极的平面定向分布。综合时域和能量域两个维度的研究结果可以看出,发光偶极延伸的各向异性动力学是研发高效OLEDs的必要条件。最终,采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。该成果为进一步提升OLED性能提供了有力指导,将促进高效OLED显示技术的进一步研发。本次研究,团队采用了光焱科技Enlitech所设计生产的超低光源光致发光量子产率高校量测设备LQ-100X-PL,Enlitech所设计的LQ-100X-PL采整合型设计,精心严选高档用料材质,设备寿命长,且拥有软、硬件整合与调校,凭借光焱科技多年量测PLQY经验,出场即校正完成,即装即用,可大幅免除自行搭建设备的难度与光强不足等扰人问题。LQ-100X-PL采用LED光源设计,整体结构紧凑,尺寸仅502.4mm(L) x 322.5mm(W) x 352mm(H),可整合手套箱,并在搭配定制样品盒下,不论研究产品是薄膜、粉末、液体型态,让研究人员十秒内完成待测物量测装载,超快速精准且方便进行PLQY量测,无须烦恼样品尺寸与积分球开口尺寸两难问题,整体量测结果精准、重复性高,更可以进行原位时间光谱解析,量测数据经得起投稿审查时高品质要求,且加上光焱科技Enlitech专业服务与销售团队服务,更能为PLQY量测进行把脉,让客户将心力专注于研究。
  • 【HORIBA学术简讯】发光、生物材料领域 | 2021年第30期
    “学术简讯”栏目旨在帮助光谱技术使用者时时掌握新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等。帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。如您对本栏目有任何建议,欢迎留言。本周我们推荐5篇前沿学术成果,针对发光、生物材料领域,涉及拉曼、荧光、粒度技术。生物材料发光更多光学光谱文献,欢迎访问Wikispectra 文献库。
  • 中科院智能所将上转换发光材料引入SERS检测
    近期,智能所刘锦淮课题组杨良保研究员等人将上转换发光材料引入表面增强拉曼光谱(SERS)研究中,实现了长波长、低能量激光下高灵敏的SERS检测,对SERS技术应用于实际检测具有十分重要的意义。相关成果已发表在英国皇家化学会《材料化学A》和《分析家》杂志上(J. Mater. Chem. A, 2015, DOI: 10.1039/C5TA03143E, Analyst, 2015, DOI: 10.1039/C5AN00441A)。  近年来,SERS技术由于可以进行无损、高灵敏的指纹识别检测而一直备受关注,已经广泛应用各大基础研究领域。但如何发展一种SERS基底使其更好的应用于实际检测和监测研究仍然是一个很大的挑战。  针对以上问题,刘洪林博士等研究人员通过简单的方法合成了上转换材料与贵金属的复合材料NaYF4:Yb,Er@Ag和NaYF4:Yb,Er@SiO2@Ag。利用上转换材料NaYF4:Yb,Er将近红外光转换为常用的可见光,实现了近红外激光下超灵敏的SERS检测和表面等离子体催化反应,并通过一系列的对比实验阐明了近红外激光下复合SERS基底高灵敏检测的机理。研究人员通过改变上转换材料的发光中心制得了另一种复合SERS基底(NaYF4:Yb,Tm@TiO2@Ag),成功实现了二氧化钛在非紫外光下的光催化降解行为。同时利用SERS技术监测不同波长单色激光下各光催化剂的光降解反应过程,为NaYF4:Yb,Tm@TiO2@Ag在非紫外光下光催化降解反应提供了直接证据,也为SERS应用提供了新的方向。  该研究工作得到了国家重大科学仪器设备开发专项任务、国家重大科学研究计划纳米专项和国家自然科学基金等项目的支持。  文章链接:   1.http://pubs.rsc.org/en/content/articlelanding/2015/an/c5an00441a  2. http://pubs.rsc.org/en/content/articlelanding/2015/ta/c5ta03143e 上转换材料中能量转移以及由表面等离子体共振引起的电磁场增强示意图
  • 吉林大学超硬材料实验室购置HORIBA光谱仪用于高压拉曼研究
    作为高压研究领域内首屈一指的实验室,吉林大学超硬材料国家重点实验室拥有一大批的科研人才。由于原有的分析设备已无法满足应用需求,他们近期从HORIBA采购了LabRAM HR Evolution新一代高分辨拉曼光谱仪、iHR320/iHR550成像光谱仪,这些仪器将用于高压拉曼方面的研究。 对于高压研究而言,光谱分辨率是一个非常重要的影响因素,此外,DuoScan原位成像、3D成像以及超低波数是非常重要的三个附件,下面我们将逐一了解它们的功能。高光谱分辨率 高光谱分辨率可以获得更准确的谱峰位置,并能区分彼此靠近的谱峰。影响光谱分辨率的因素有光谱仪焦长和光栅刻线密度。光栅的衍射限使它的使用范围有所限制,因此,光谱仪的焦长对于光谱分辨率有着其重要的影响。LabRAM HR Evolution的焦长为800mm,是单级拉曼光谱仪中焦长长的,也就是光谱分辨率高的一款仪器。高压会引起相变或谱峰位置的偏移,研究峰位位移可以定量计算压力的变化。因此,高光谱分辨率对于此类研究非常重要。 下图是研究器件的应力变化,同高压研究类似,它也需要高光谱分辨率来精确定位峰位,获取峰位的微小位移。 微器件的白光图像 所有样品点的拉曼谱图 峰位成像图 半高宽成像图DuoScan原位成像 在高压研究中(如使用高压对顶砧),通常无法通过移动高压台来获取样品成像图。DuoScan原位拉曼成像可以通过移动激光光斑的位置来进行成像,非常适用于此类样品的分析。DuoScan原位扫描原理图图中低温装置较大,不方便移动样品位置。为测试低温台中的双量子点PL成像,我们使用DuoScan原位成像的方法来获取PL分布图【感谢美国University of Arkansas 的Dr Greg Salamo提供数据】3D成像 XYZ三维成像可以帮助研究者获取样品的空间分布。强大的三维旋转、透明度调节、颜色提取以及剖面视图等功能,可帮助用户简单直观地观察不均匀样品的内部化学结构。3D成像:多层薄膜材料分析,右为透视图【感谢英国Intertek的Neil Everall提供数据】超低波数附件 低波数拉曼光谱可以反映一些材料的相变、声子振动。HORIBA超低波数附件可测试低至10cm-1的信号,可一次性测量拉曼/PL光谱范围,并保证高灵敏度。大窗口范围可满足高波数低波数同时测试。Si/Ge超晶格中折叠声学声子的低频正反斯托克斯散射,采用633nm 激光激发相关仪器:LabRam HR Evolution新一代高分辨拉曼光谱仪目前市场上焦长长(达到800mm)、分辨率高的单级拉曼光谱仪,可以实现高度自动化。 查看详情 iHR320/iHR 550成像光谱仪适用于光致发光、拉曼、多通道光谱、等离子发光、可调谐发光、荧光、透射、发射、吸收等光谱测量。查看详情关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
  • 基于氧空位缺陷对绿色长余辉发光材料的改善作用 研究方案
    一、实验目的旨在通过引入氧空位缺陷来改善α-Zn3(PO4)2:Mn2+,Na+绿色长余辉发光材料的发光性能。通过研究Na+掺杂量对氧空位缺陷的影响及其对发光性能的作用机制,进一步了解长余辉材料的发光机理,并优化发光材料的制备条件。二、实验使用的仪器设备和耗材试剂1. 仪器设备(1). 超微弱化学发光仪:BPCL-2-JZ型,用于测量样品的余辉性能。(2). X射线衍射仪(XRD):用于分析样品的物相结构。(3). 荧光分光光度计用于测定样品的激发和发射光谱。(4). 热释光谱仪(TL):用于分析材料内部的晶体缺陷。2. 耗材试剂(1). ZnO、(NH4)2HPO4、MnCO3、Na2CO3:分析纯试剂,用于制备α-Zn3(PO4)2:Mn2+,Na+发光材料。(2). 柠檬酸、聚乙二醇(PEG-4000)、浓硝酸、去离子水:用于溶胶–凝胶法制备样品。(3). 活性炭:作为还原氛围材料。三、实验过程1. 样品制备(1). 配制溶胶:按化学计量比称量ZnO、(NH4)2HPO4、MnCO3和Na2CO3,加入3% H3BO3作为助熔剂。将原料溶解于去离子水和浓硝酸的混合液中,调节pH至2-3。(2). 形成凝胶:加入柠檬酸和PEG-4000,金属离子与柠檬酸的摩尔比为1:2。混合液在75℃下搅拌形成凝胶。(3). 干燥与煅烧:凝胶在110℃干燥12小时,干燥后的凝胶研磨装入坩埚中,用活性炭作为还原气氛,在950℃下煅烧3小时,制备得α-Zn3(PO4)2:Mn2+,Na+发光材料。2. 样品表征(1). XRD分析:使用X射线衍射仪分析样品的物相结构,与标准卡片(JCPDS No. 29–1390)对比,确认相结构。(2). 荧光光谱分析:在254 nm紫外灯光激发下,使用荧光分光光度计测定样品的激发和发射光谱,激发源为150 W氙灯,测定范围为200-700 nm。(3). 热释光谱分析:样品用普通紫外灯(254 nm)照射5分钟后,放置7分钟,用微型自动控温加热器(加热速率为30℃/min)结合微弱测光仪测定热释光谱。(4). 余辉性能测量:在254 nm紫外灯激发下,使用微弱发光仪测量样品的余辉性能。四、实验结果与讨论1. 物相分析XRD图谱(图1A, 1B):通过与标准卡片(JCPDS No. 29–1390)对比,确认样品的XRD谱与α-Zn3(PO4)2标准谱相吻合,说明少量Mn2+和Na+掺入并没有改变晶体的物相。进一步分析发现,Zn3(PO4)2: Mn2+ Na+的谱线整体向高角度偏移,表明掺杂后晶胞发生了微小的收缩。这是由于在四面体场中,Na+和Mn2+取代了Zn2+的位置,从而引起晶格的缺陷和轻微变形。图1. (A) Zn3(PO4)2:0.5%Mn2+ 和Zn3(PO4)2:0.5%Mn2+,Na+ 的XRD谱图. (B) XRD局部放大图。2. 光谱分析激发和发射光谱(图2):激发光谱显示,Zn3(PO4)2: Mn2++在548 nm处有一个发射峰,对应于四面体场中Mn2+的4T1g→6A1g跃迁。Na+的加入未改变发射峰的位置,但显著提高了发射峰的强度。这表明,Na+掺杂有助于增强材料的发光强度。激发光谱中,在200-250 nm之间的激发带对应于Mn2+–O2–的电荷转移,而在350-500 nm范围内的激发带则属于Mn2+的d-d电偶极禁阻跃迁。分别对应6A1→4T1 (4G) (492 nm)、6A1→4T2 (4G) (450 nm)、6A1→4E, 4A1(4G) (421 nm)、6A1→4T2(4D) (373 nm)和6A1→4E (4D) (353 nm)能级跃迁。Na+的加入并没有改变样品发射峰的位置,但却明显提高样品发射峰的强度。图2. α-Zn3(PO4)2: Mn2+和α-Zn3(PO4)2: Mn2+, Na+的发射和激发光谱.1-α-Zn3(PO4)2: Mn2+,Na+ 2-α-Zn3(PO4)2: Mn2+.3. 余辉性能分析(1). 余辉衰减曲线(图3):在254 nm紫外灯激发下,α-Zn3(PO4)2: Mn2+, Na+样品的初始发光强度和余辉时间均明显优于α-Zn3(PO4)2: Mn2+样品,目测其余辉时间可达2小时以上。这表明Na+的掺杂显著改善了材料的余辉性能。图3. α-Zn3(PO4)2: Mn2+, Na+和α-Zn3(PO4)2: Mn2+的余辉衰减曲线.(2). Na+掺杂量对余辉性能的影响(图4):随着Na+掺杂量的增加,样品的余辉性能逐渐增强,在Na+掺杂量为4%时达到最佳,进一步增加Na+掺杂量则会降低余辉性能。这表明适量的Na+掺杂可以有效提高样品的发光性能,而过量的Na+则会导致发光性能的下降。图4. α-Zn3(PO4)2: Mn2+, xNa+ (x=2%, 4%, 6%, 7%)的余辉衰减曲线.4. 热释光谱分析热释光谱(TL)的测定可用于剖析材料微观结构的各种缺陷,同时热释峰的强度可以反映材料内部晶体结构的相关缺陷浓度的大小。TL曲线(图5)显示:在α-Zn3(PO4)2: Mn2+和α-Zn3(PO4)2: Mn2+, Na+样品中分别观察到多个TL峰。Na+掺杂后,低温处(312 K)的TL峰强度显著增强,表明氧空位缺陷浓度增加。分析表明,Na+的掺杂没有产生新的TL峰,但显著提高了原有TL峰的强度。TL峰强度反映了光子从陷阱中释放的数量,峰越强,释放的光子越多,缺陷浓度也越高。图5. α-Zn3(PO4)2: Mn2+, Na+和α-Zn3(PO4)2: Mn2+的热释光谱.5. 发光机理发光机理模型(图6):在紫外光激发下,电子由基态跃迁至激发态,部分电子立即返回基态并发光,而另一些电子通过“隧穿”效应进入陷阱并被储存。在热扰动下,这些电子缓慢释放并返回基态发光。Na+的掺杂引起了氧空位缺陷的显著增加,增强了“隧穿”效应,延长了余辉时间。图6. α-Zn3(PO4)2: Mn2+, Na+的发光机理模型示意图.五、结论通过控制Mn2+和Na+的掺杂量,成功制备了具有优异发光性能的. α-Zn3(PO4)2: Mn2+, Na++绿色长余辉发光材料。研究表明,Na+掺杂可显著提高样品的发光性能,这主要归因于氧空位缺陷浓度的增加,延缓了激发态电子的跃迁时间,从而改善了材料的余辉性能。本研究为开发高性能长余辉发光材料提供了新的方法和理论依据。*因学识有限,难免有所疏漏和谬误,恳请批评指正*资料出处: 免责声明:1.本文所有内容仅供行业学习交流,不构成任何建议,无商业用途。2.我们尊重原创和版权,如有疏忽误引用您的版权内容,请及时联系,我们将在第一时间侵删处理!
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • Multiwave7000助力OLED显示及发光材料的研究
    高清超大屏幕说到显示面板,大家几乎就会想到LCD和OLED,前者是一项已经相当普及的技术,广泛应用在各种显示设备上。后者则是近几年才逐渐普及的新显示技术,也被称为下一代显示技术。OLED将成为下一个消费电子应用风口。OLED有机发光二极管3OLED全称为有机发光二极管,又称为有机电激光显示、有机发光半导体,OLED显示技术是继LCD以后新一代平板显示技术,相比与上两代显示技术(CRT、LCD),OLED显示面板真正拥有了“未来科技”材料的轻、薄、快响应、透明显示、柔性可折叠的特点。同时,OLED具有更广的色域、更大的视角、更宽的工作温度区间且更低的功耗。我国作为全球最大的消费电子产品生产国、消费国和出口国,广大的终端应用市场是我国OLED产业发展最大的推动力量;但OLED面板供应主要集中在韩国,国内OLED面板处于供不应求的状态。目前OLED产业链上游关键材料基本被国外企业垄断,随着产能增加及良品率提升,国内OLED产业的进一步发展将面临关键材料供应“卡脖子”的风险及高成本的压力,使得上游关键材料供应的国产化势在必行。作为OLED性能关键基础的发光材料更具发展前景和投资价值。发光材料的特性影响元件之光电特性。在阳极材料的选择上,材料本身必需是具高功函与可透光性,具有4.5eV-5.3eV的高功函数、性质稳定且透光的ITO透明导电膜,便被广泛应用于阳极。在阴极部分,为了增加元件的发光效率,电子与电洞的注入通常需要低功函数的Ag、Al、Ca、In、Li与Mg等金属,或低功函数的复合金属来制作阴极(例如:Mg-Ag镁银)。在生产OLED光电材料的过程中,会引入一些金属元素。因此,OLED发光材料对其中10多种金属元素残留要求特别高,金属残留一般高于400个ppb会影响发光性能。伴随着行业发展,法律法规的健全,越来越多的生产企业开始重视这些金属元素方法开发检验检测并验证,使其能够生产出合格的产品。目前普遍采用ICP-MS检测OLED光电材料中的金属残留,但由于发光材料基质比较复杂,传统消解方法无法实现溶解,需要高性能的超级微波消解仪进行制样,来确保含量测试的准确度。Multiwave 7000实验方案消解/稀释3消解方法:称取发光材料样品,加入硝酸等消解液于Multiwave 7000超级微波消解仪18 mLPTFE反应管中:按以下程序消解样品:步骤温度[℃]爬坡[min]保持[min]12802030消解效果:见下图:图1溶液消解后效果图图2 稀释后效果图消解结束后,查看结果,溶液澄清透明,稀释后无析出,金属残留物已溶解。因此,Mutiwave 7000超级微波解决了显示材料中金属残留检测的一大难题。Multiwave 7000超级微波消解系统3Multiwave 7000 将众所周知的安东帕 HPA-S 概念与现代性能优越的微波技术相结合,代表了微波消解的新高度。新型加压消解腔 (PDC),温度高达 300 °C,压力可达200Bar。确保所有种类的样品消解完全,如食品、环境、聚合物、化妆品、药品、地质、化学和石化样品。可节省宝贵的时间并降低运营成本的出色特性。为您提供不同尺寸的经济型样品管,样品管塞和多达28位的样品管支架。集成水冷却装置,最大化样品处理量的同时将冷却时间降到最短。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 天美公司参加第十届全国稀土发光材料学术研讨会
    2021年12月16~12月20日,天美仪拓实验室设备(上海)有限公司赞助参加了由中国稀土学会发光专业委员会,中国物理学会发光分会和中国颗粒学会发光颗粒专业委员会联合主办,由华厦门大学、南京理工大学、厦门理工学院以及华侨大学联合承办的第十届全国稀土发光材料学术研讨会。该会议延续历届会议在推动稀土发光材料学科发展以及产业融合上积极作用,为国内外专家学者和技术人员搭建沟通和交流平台。 天美仪拓实验室设备(上海)有限公司(以下简称天美公司)应邀作为赞助商之一,全程参加了此次启动仪式。在会议仪式的间隙,众多老师及学者莅临天美公司展台,进一步的了解天美旗下光谱产品的新技术以及新应用,与会的老师,对爱丁堡仪器表示了极大的认可。 通过此次会议,希望天美能为更多的科研用户送去最优质的产品及应用支持。
  • 天美公司参加第八届全国掺杂纳米材料发光性质学术会议
    7月22-24日,由中国物理学会发光分会、中国稀土学会发光专业委员会主办,吉林大学电子科学与工程学院、集成光电子学国家重点实验室承办的“第八届全国掺杂纳米材料发光性质学术会议”在长春举办。开幕式于7月23日上午举行,大会主席、吉林大学电子科学与工程学院宋宏伟教授主持开幕式。 天美仪拓实验室设备(上海)有限公司(以下简称天美公司)应邀作为赞助商之一,全程参加了此次会议。会议期间,天美公司对于用户提出的需求进行相关的解答,也会进一步急用户之所急,进一步的开发出符合用户需求的产品。通过为期两天的会议,天美公司与客户进行了深入的交流,更加深了彼此的相互了解。天美公司作为知名供应商,将在掺杂纳米材料,作出进一步的技术升级,服务广大客户,让广大客户得到满意的科研结果,助力其科研发展。
  • 【HORIBA学术简讯】材料、生物、高压、发光、传感器领域相关文献推荐 | 22年1期
    本周我们推荐5篇前沿学术成果,针对材料、生物、高压、发光、传感器领域,涉及拉曼、荧光技术。材料生物高压发光传感器“学术简讯”栏目旨在帮助光谱技术使用者时时掌握最新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等,帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。更多光学光谱文献欢迎访问Wikispectra
  • 【HORIBA学术简讯】发光、​电池、材料领域相关文献推荐 | 22年4期
    本周我们推荐5篇前沿学术成果,针对发光、电池、材料领域,涉及拉曼、荧光技术。发光电池材料“学术简讯”栏目旨在帮助光谱技术使用者时时掌握最新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等,帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。更多光学光谱文献欢迎访问Wikispectra
  • 探知电池材料的组成分布变化?非接触式亚微米O-PTIR光谱成像技术强助力!
    低能量边缘光致发光的研究对提高Ruddlesden-Popper钙钛矿太阳能电池效率有着十分重要的影响和意义。然而对其机制的研究却一直面临着巨大挑战:(1)材料的结构难以确定;(2)理论模型与观测结果始终不一致。因此,寻找可靠、有效的表征手段对于揭示相关机制有着至关重要的意义。红外光谱对于有机物的变化十分敏感,在有效探知电池材料的分布变化方面具有天然的优势。近期,Photothermal Spectroscopy Corp公司研发推出的新一代的非接触亚微米分辨红外拉曼同步测量系统-mIRage在此研究中脱颖而出,该技术采用激光探针,能够对样品的表面实行非接触式光热红外探测,具备亚微米的空间分辨率并且无边缘散射问题。近日,电子科技大学王志明教授课题组与Photothermal Spectroscopy Corp公司合作,使用新一代的非接触亚微米分辨红外拉曼同步测量系统-mIRage研究MAPbBr3在(BA)2(MA)2Pb3Br板边缘的分布情况。在此项研究中,所测试的(BA)2(MA)2Pb3Br10和MAPbBr3之间缺少BA,使其红外光谱有显著差异;同时无论是BA缺陷,还是BA对MA的比例都已有使用FTIR光谱研究的报道,因此具备良好的实验基础。进一步使用O-PTIR技术进行非接触式探测,有效避免了样品高度,探针污染所带来的问题,使得结果更加。通过使用mIRage的测量(图1),能够观测到随着BA含量的降低,~1580 cm-1处的峰相对强度减小,峰值伴随着向1585 cm-1的峰值偏移。这主要是由于(BA)2(MA)2Pb3Br10在1580 cm-1附近有两个涉及NH3振动的红外吸收带:分别为1575 cm-1处(BA+)和1585 cm-1处(MA+)。当BA含量降低时,1575 cm-1处的带强度降低,导致峰值强度在约1580 cm-1处降低,并伴随向1585 cm-1偏移。在测试中观测到的另外一个现象为~1480 cm-1与~1580 cm-1的相对强度比增大,这是由于1478 cm-1的振动(CH3振动)仅与MA+相关,因此~1480 cm-1的强度没有变化,而1580 cm-1却由于BA含量降低而降低,导致比值的降低。上述结果清晰地显示了MAPbBr3在(BA)2(MA)2Pb3Br板边缘的组成分布情况。由此可见,mIRage 的O-PTIR技术在电池低能量边缘光致发光的研究中有十分理想的效果,具应用前景。图1. O-PTIR观测边缘的MAPbBr3的红外光谱信息。(a)(BA)2(MA)n-1 bn br3n+1(n = 1,2,3,∞)钙钛矿的红外光谱。(b-c)(BA)2(MA)2Pb3Br10和MAPbBr3的中MA+分子在1480 cm-1 (b)和BA+分子 1580 cm-1 (c)的图谱;(d) (BA)2(MA)2Pb3Br10的PL图像。(e)在(d)中所示的中心区域和边缘的红外光谱图参考文献:[1] Zhaojun Qin, Shenyu Dai et al., Spontaneous Formation of 2D/3D Heterostructures on the Edges of 2D Ruddlesden-Popper Hybrid Perovskite Crystals, Chemistry of Materials, DOI: 10.1021/acs.chemmater.0c00419.产品信息:非接触式亚微米分辨红外拉曼同步测量系统:https://www.instrument.com.cn/netshow/C363244.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制