当前位置: 仪器信息网 > 行业主题 > >

光致发光

仪器信息网光致发光专题为您整合光致发光相关的最新文章,在光致发光专题,您不仅可以免费浏览光致发光的资讯, 同时您还可以浏览光致发光的相关资料、解决方案,参与社区光致发光话题讨论。

光致发光相关的资讯

  • 光致发光和可穿戴传感器研究获进展
    人们对电子设备的便携性、多功能性和集成性的期待推动了可穿戴电子设备的快速发展。最近,摩擦电纳米发电机(TENGs)在能力收集、人机交互、医疗监测和自供电传感等方面引起了关注。遗憾的是,这类交互设备多由分隔的传感器和显示单元组成,因而总是需要一些笨重的设备或有线连接来将输出信号转换为人类易读出的形式。色彩提供了简单的传输信息的方法,其可调的颜色属性有望与传感器集成,为交互式信号的可视化开辟了新途径。金属卤化物钙钛矿具有特殊的光物理性质,为未来的可穿戴电子产品提供了新机会。然而,构建自供能、应变传感和显示等多功能特性一体化的光致发光传感系统是巨大的挑战。中国科学院苏州纳米技术与纳米仿生研究所轻量化实验室研究员李清文与项目研究员张其冲等,提出了高效窄光致发光金属卤化物固体的水合成策略,进一步将其应用于自供电的可穿戴式光致发光传感器。科研人员利用这一策略,仅使用水作为溶剂便制备了盐壳金属卤化物固体(具有高效和狭窄的绿色排放,PLQY为87.3%)。其中,KBr盐提供了一个富溴的环境来钝化钙钛矿的表面缺陷,且作为基质来提高其稳定性。该绿色环保的制备策略可用于制备无色水性油墨和柔性光致发光薄膜。另外,该固态化合物可作为聚乙烯醇(PVA)的填料,用于TENG中的高性能正摩擦材料,所制备的TENG的输出性能是原始TENG的2.3倍。研究进一步构建了电压响应范围为0-100kPa、响应时间为125ms的可穿戴光致发光传感器,以检测人体的各种运动。研究显示,运用简单的水蒸发结晶策略即可制备高发射窄半高峰宽的金属卤化物固体,巧妙地引入溴化钾盐使得难溶于水的溴化铅完全溶解在水中,不仅赋予了材料高量子产率,而且提升了产物光和热稳定性。得益于水蒸发结晶策略,前驱体水溶液可制备成水性墨水,通过与水性聚合物混合可以制备出柔性荧光薄膜,并可以通过喷墨打印技术打印相关的图案。作为概念验证,研究还构建了电压响应范围为0-100kPa,响应时间为125ms的可穿戴光致发光压力传感器,未来有望构建同时具有显示-传感一体化自供电集成器件,检测人体的各种运动。该研究为高发射的金属卤化物固体的合理设计提供了指导,并为扩展其在多功能可穿戴荧光传感器中的应用提供了参考。相关研究成果以Robust Salt-Shelled Metal Halide for Highly Efficient Photoluminescence and Wearable Real-Time Human Motion Perception为题,发表在Nano Energy上。研究工作得到中科院和江苏省青年基金项目的支持。该研究由苏州纳米所、华东理工大学、新加坡南洋理工大学、上海交通大学的科研人员合作完成。图1.固态盐壳金属卤化物的制备图2.固态金属卤化物的稳定性及其柔性应用图3.固态金属卤化物在传感领域的应用
  • 新加坡国立大学合成新型近红外发光量子点,光致发光量子效率可达25%|国际用户简讯
    作者:Sophie编辑:Joanna对于太阳能转换器件和生物成像应用程序来说,使用发射近红外光、具有显著斯托克斯位移且再吸收损失小的材料非常重要。近期新加坡国立大学化学系便合成了这样一种新型材料——四元混合巨壳型量子点(InAs?In(Zn)P?ZnSe?ZnS)。这种新型量子点可以实现显著斯托克斯位移,且光致发光量子效率可达25%,非常适合应用于太阳能及生物领域。Tips: 斯托克斯位移是指荧光光谱较相应的吸收光谱红移(斯托克斯位移=发射波长-吸收波长)。斯托克斯位移越大,荧光太阳能光电转换效率越高。图片来源于网络 单锅连续注射&结构比例控制合成新型量子点的关键新加坡国立大学使用单锅连续注射的方法来合成该量子点。四元混合巨壳型量子点结构主要成分由内到外比例为1: 50: 37.5: 37.5合成过程分为4步,由内向外,依次为:1. 合成该量子点InAs内核2. 向InAs核反应容器中注射As前驱体溶液、醋酸锌和磷酸氢,完成第2层In(Zn)P壳层的合成3. 向反应体系注射Se前驱体溶液合成第3层ZnSe壳层4. 注射S前驱体溶液和醋酸锌完成ZnS壳层的合成四元混合巨壳型量子点合成过程图示合成过程中,研究人员会定时从反应容器中取出小部分溶液测量其紫外可见吸光度和光致发光特性来跟踪反应进程,并调整量子点间的结构比例。他们利用HORIBA高能量窄脉宽 Nanoled-440L皮秒脉冲激光光源对样品进行激发,在FluoroLog-3 荧光光谱仪上测试荧光寿命。在新的荧光光谱技术中,FluoroLog-3 系列荧光光谱仪配置CCD检测器新技术,实现快速动态荧光光谱检测,实现实时反应发光测试,分子相互作用的动态检测。新型量子点材料助力太阳能及生物应用用领域终合成的巨壳量子点,In(Zn)P壳层能够吸收400-780 nm的可见光,并将吸收后的能量传递到InAs内核,使其在873nm处发射,进而实现显著的斯托克斯位移和很小的吸收-发射光谱重叠;经统计计算,该量子点光致发光量子效率可达25%,这对于近红外发射器来说相当可观,且它在873nm的发射光与硅太阳能电池的光敏响应区匹配良好。并且这一新型量子点为可调色发光,不含有害金属。种种优点使得该量子点不仅非常适合应用于荧光太阳能领域用以提高光电转换效率;且在生物领域,该量子点也可作为荧光材料用于生物成像,给疾病的诊断和治疗带来巨大进步。该工作以“Large-Stokes-Shifted Infrared-Emitting InAs?In(Zn)P?ZnSe?ZnS Giant-Shell Quantum Dots by One-Pot Continuous-InjectionSynthesis”为题,发表于《Chemistry of Materials》。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • ACS Nano成果速递:光致发光、拉曼、近场光学同步测量技术揭示二维合金材料新特性
    近期,乔治亚大学研究人员成功使用一种新型组合显微镜对二维材料进行了深入分析,该显微镜能够利用纳米的发光,弹性和非弹性光散射测试二维材料,即实现nano-PL、nano-Raman、s-SNOM的同步测量,并将观测的尺度提升到纳米量。乔治亚大学Yohannes Abate教授与研究生讨论neaspec设备[1] 单层异质结构的应用潜力直接受到材料内在和外在的缺陷影响。乔治亚大学的研究人员在Abate教授的带领下,利用neaSNOM散射式近场光学显微镜,研究了二维(2D)单层合金光致氧化过程中纳米尺度下的奇异界面现象。他们发现界面张力可以通过建立稳定的局部势阱来集中本征激子,从而实现高的热稳定性和光降解稳定性。该实验结果由neaspec公司特的nano-PL / Raman和s-SNOM同步测量技术所采集,并已发表在ACS NANO中[2]。在实验中,作者合成了由单层面内MoS2-WS2异质结构制成的2D纳米晶体,这些晶体在富Mo的内部区域和富W的外部区域间,显示出了较强的纳米合金界面。在针增强照明刺激下( 100天),他们进一步观察到,光降解过程中界面的激子稳定性、局域性和不均匀性。得益于高度敏感的s-SNOM成像技术,作者探测到富W的外部区域的反射率出现急剧下降。该反射率始于晶体边缘,并随时间向内传播。在同一样品区域获得的高光谱纳米光致发光(nano-PL)图像显示,W氧化相关的激子的猝灭会遵循与s-SNOM相同的模式(在边缘开始并向内传播)。令人惊叹的是,合金界面的内部区域表现出了强大的抗氧化能力。即使在光降解100天后,它仍具有很强的s-SNOM信噪比和未淬灭的nano-PL信号。为了进一步研究结构变化,作者使用nano-PL进行了增强拉曼高光谱纳米成像测量,并在同一扫描区域的每个像素处获取了空间和光谱信息。实验结果表明,在整个晶体的光降解过程中,WS2拉曼峰逐渐消失,而在内部区域中的MoS2仍然存在。该结果表明在相同的环境条件、同一显微镜下测量相同的晶体,由于热诱导的合金和基底晶格常数的不匹配,导致光氧化与局部应变存在一定的关联。而合金界面可防止该应变传播到内部区域,从而防止其降解。 neaSNOM显微镜特的双光束设计,实现了3种不同测量技术在同一样品点的同步测量。该设计允许在单个显微镜中集成nano-PL / Raman和s-SNOM技术,并保持测量的灵敏度。通过 大程度优化s-SNOM信号,这种组合还可以实现非常快速的光束对准,从而获得 佳的PL和Raman信号。 在neaSNOM设备上,集成不同的纳米光学技术进行的相关分析,为深入探索2D合金奠定了基础,也使得neaSNOM成为了一个电子和发光性质测量的优 秀平台。 参考文献:[1]. Imaging technique provides link to innovative products, Science & Technology, February 4, 2021by Alan Flurry[2]. Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano 2021, 15, 2, 2447–2457
  • 仪器表征,科学家开发了基于光致发光的可持续辐射冷却气凝胶!
    【科学背景】在面对日益严峻的全球气候变化挑战时,被动辐射冷却作为一种潜在的可持续热管理策略备受关注。然而,传统的石油化学衍生冷却材料往往面临太阳光吸收导致效率低下的问题。为应对这一挑战,四川大学赵海波教授、王玉忠院士等人合作提出了一种内在荧光生物质气凝胶。这种气凝胶通过DNA和明胶在有序分层结构中的聚集,利用荧光和磷光效应实现了在可见光区域超过100%的太阳加权反射率。这一创新不仅使其在高太阳辐照下能够显著降低环境温度达16.0°C,还通过水焊接方法实现了高效大规模生产,展现出卓越的修复性、可回收性和生物降解性。这种生物质荧光材料为设计下一代可持续冷却材料提供了新的科学工具和技术路径,为应对全球气候变化提供了创新的解决方案。【科学图文】图1: 本征光致发光生物质气凝胶板示意图。图2. GE-DNA气凝胶的结构和形貌。图3. GE-DNA 气凝胶的可修复性、可回收性和生物降解性。图4. GE-DNA气凝胶的冷却机理和性能。【科学结论】本文开发了一种基于荧光诱导的生物质辐射冷却策略,通过利用DNA和明胶(GE)的协同效应,在可见光区域实现超过100%的太阳加权反射率。这一创新通过有序分层的气凝胶结构,不仅有效地抑制了紫外光的吸收,还优化了在可见光范围内的反射性能,从而显著提升了材料在白天辐射冷却中的效率。实验结果展示,该生物质气凝胶能够在高太阳辐照下将环境温度降低16.0°C,彰显了其在温控领域的潜力。此外,通过水辅助制备技术的可伸缩生产,使得气凝胶能够大规模制备,且保持了结构的各向异性,确保了光学性能的均匀性和稳定性。重要的是,这种材料完全由生物质原料制成,具备高修复性、可回收性和生物降解性,能够在整个使用寿命内避免对环境的负面影响。这一科学启迪为未来能效高、环境友好的新型材料设计提供了重要的参考,有望在全球应对气候变化和能源危机中发挥关键作用。文献信息:Jian-Wen Ma et al. ,A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling.Science385,68-74(2024).DOI:10.1126/science.adn5694https://www.science.org/doi/10.1126/science.adn5694
  • 岛津应用:有机电致发光材料的荧光测定
    近年来在电机和电子领域,不断开发出使用有机电致发光(EL)的显示器和照明设备等产品。在有机EL的开发过程中,需要通过光致发光(PL)对新合成物质的光学特性进行确认。这样可以帮助我们找到高效的发光材料,以及研究材料在溶液中发光原理。通过这个过程,以开发符合要求的光色调、满足节能和高效发光等要求的有机EL材料。在检测有机EL材料时,必须在较宽的波长范围内迅速且准确地测定荧光波长。 本次分析在韩国浦项科技大学基础科学研究院(POSTECH:Pohang University of Science and Technology)的协助下,我们使用岛津荧光分光光度计RF-6000对有机EL材料之一的卟啉溶液(溶剂:三氯甲烷)进行了测定。在各种有机EL材料的开发过程中,要求能够在更高灵敏度和更大范围内进行光谱观测。RF-6000不仅能够迅速准确地进行三维测定,还能够进行高达900nm的高灵敏度光谱测定。并且,还可使用选购件积分球测定量子效率(绝对量子产率)。综上所述,使用荧光分光光度计RF-6000可有效对有机EL材料的三维光谱及荧光光谱进行确认。本文向您介绍详细的分析示例 荧光分光光度计RF-6000 了解详情,敬请点击《有机电致发光材料的荧光测定》
  • 近红外有机电致发光研究取得新进展
    高效率近红外发光材料因其在生物成像、医疗、光通信和夜视器件等方面的重要应用而备受关注。但受制于能隙法则,即随着激发态和基态之间的能隙差减小,非辐射跃迁速率常数呈指数增加,导致开发高效率的有机近红外发光材料一直是一个巨大的挑战,从而严重限制了相关器件电致发光效率的提升。到目前为止,尽管已有极少量性能较好的近红外有机发光二极管(NIR-OLED)获得超过15%的外量子效率,但表现出纯近红外发光的NIR-OLED电致发光效率通常低于5%。针对这一问题,西安交通大学化学学院杨晓龙、孙源慧、周桂江等人与五邑大学陈钊合作报道了电致发光效率达到16.43%的纯近红外发光NIR-OLED。研究人员通过优化Ir(III)配合物的分子结构设计降低金属中心到配体电荷转移跃迁,提高三线态激发态中的基于配体的ππ跃迁成分,成功地将发光光谱半峰宽降低至43 nm,获得了最大发射峰位于730 nm附近的高效率纯近红外发光材料。研究人员采用溶液旋涂法制备了相应的电致发光器件,获得了与对应材料光致发光光谱近乎一致的纯近红外电致发光光谱,且最高电致发光效率分别高达15.00%和16.43%,显著超过了已报道的基于近红外Ir(III)配合物的NIR-OLED最高电致发光效率,也显著超过了采用溶液旋涂法制备的基于不同有机近红外发光材料的NIR-OLED最高电致发光效率。用于溶液法制备外量子效率超过16%的有机发光二极管的窄光谱纯近红外发光铱配合物。(论文课题组供图)近日,该研究成果以《用于溶液法制备外量子效率超过16%的有机发光二极管的窄光谱纯近红外发光铱配合物》为题发表在国际化学领域期刊《德国应用化学》上。论文第一作者为西安交通大学化学学院杨晓龙副教授,通讯作者为西安交通大学化学学院孙源慧副教授、周桂江教授与五邑大学陈钊博士。西安交通大学化学学院是论文第一通讯单位。
  • 岛津应用:有机电致发光材料的荧光测定
    近年来在电机和电子领域,不断开发出使用有机电致发光(EL)的显示器和照明设备等产品。在有机EL的开发过程中,需要通过光致发光(PL)对新合成物质的光学特性进行确认。这样可以帮助我们找到高效的发光材料,以及研究材料在溶液中发光原理。通过这个过程,以开发符合要求的光色调、满足节能和高效发光等要求的有机EL材料。在检测有机EL材料时,必须在较宽的波长范围内迅速且准确地测定荧光波长。 本次分析在韩国浦项科技大学基础科学研究院(POSTECH:Pohang University of Science and Technology)的协助下,我们使用岛津荧光分光光度计RF-6000对有机EL材料之一的卟啉溶液(溶剂:三氯甲烷)进行了测定。在各种有机EL材料的开发过程中,要求能够在更高灵敏度和更大范围内进行光谱观测。RF-6000不仅能够迅速准确地进行三维测定,还能够进行高达900nm的高灵敏度光谱测定。并且,还可使用选购件积分球测定量子效率(绝对量子产率)。综上所述,使用荧光分光光度计RF-6000可有效对有机EL材料的三维光谱及荧光光谱进行确认。本文向您介绍详细的分析示例 荧光分光光度计RF-6000 了解详情,敬请点击《有机电致发光材料的荧光测定》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • Angew:近红外有机电致发光(NIR-OLED)新突破
    近年来,高效率近红外发光材料因其在生物成像、医疗、光通信和夜视器件等方面的重要应用而备受关注。除了无机近红外量子点和卤化物钙钛矿等材料外,各种有机近红外材料包括传统的荧光小分子材料、共轭聚合物、稳定的发光自由基、热激活延迟荧光(TADF)材料和金属有机配合物磷光材料等因其具有化学结构可调、稳定性好、便于制备近红外有机电致发光器件(NIR-OLED)的优势而得到迅速的发展。在这些有机近红外材料中,后三种材料在OLED中对单线态和三线态激子的利用率能够达到100%,从而提高了器件的效率。尽管如此,受制于能隙法则 (energy gap law),即随着激发态和基态之间的能隙差减小,非辐射跃迁速率常数呈指数增加,导致开发高效率的有机近红外发光材料( 700 nm)一直是一个巨大的挑战,从而严重限制了相关器件电致发光效率的提升。目前,扩展π-共轭和增强发光分子的电荷转移(CT)是红移材料发光波长的两种常见方法,通常需要将两种方法相结合才能获得近红外区的发光。因此,以前报道的近红外发光材料由于具有很强的CT性质,发光光谱半峰宽(FWHM)通常高达70-150 nm。当最大发光波长小于770 nm时会有部分光谱覆盖可见光区域,严重降低近红外光的纯度,这种情况不利于高性能纯近红外发光或夜视器件的制备。如若为了提高近红外光纯度,将材料的最大发光波长红移至超过770 nm,则发光效率将进一步显著降低。因此,到目前为止,尽管已有极少量性能较好的NIR-OLED获得超过15%的外量子效率,但表现出纯近红外发光的OLED电致发光效率通常低于5%。近日,西安交通大学化学学院杨晓龙、孙源慧、周桂江等人与五邑大学陈钊合作报道了电致发光效率达到16.43%的纯近红外发光NIR-OLED。作者通过优化Ir(III)配合物的分子结构设计降低金属中心到配体电荷转移跃迁,提高三线态激发态中的基于配体的ππ跃迁成分,成功地将发光光谱半峰宽降低至43 nm,因此获得了最大发射峰位于730 nm附近的纯近红外发光材料 (图1)。图1. 近红外Ir(III)配合物的分子设计策略和发光性质。与其他纯近红外材料相比,由于具有相对较短的发射波长,因此可以缓解能隙法则的不利影响。此外,理论计算表明论文报道的配合物激发态形变非常小,因而最终获得了优异的近红外发光效率。作者采用溶液法制备了具有传统结构的电致发光器件(图2),选取的功能层材料具有合适的能级,能够有效地促进从主体到客体之间的能量传递,并将激子限制在发光层内,因此,器件的电致发光光谱与其对应的光致发光光谱近乎一致。基于BIqThIr和BIqThIrO的器件电致发光波长分别为737 nm和733 nm,半峰宽仅有47 nm和44 nm,这使整个光谱中近红外成分超过98%,实现了纯近红外发光。图2. (a) 器件结构。(b) 电致发光光谱。(c) 电流密度(J)-电压(V)-辐射度(R)曲线。(d) 电致发光效率与电流密度的特性关系。由于具有优异的近红外发光性能,溶液法制备的NIR OLED最高电致发光效率分别高达15.00%和16.43%,显著超过了已报道的基于近红外Ir(III)配合物的器件最高电致发光效率,也显著超过了采用溶液旋涂法制备的基于不同有机近红外发光材料的器件最高电致发光效率 (图3)。图3. (a) 基于Ir(III)配合物的溶液旋涂法和真空沉积法NIR-OLED发光峰在700-900 nm范围内的最大电致发光效率。(b) 基于不同有机发光材料溶液旋涂法NIR-OLED发光峰值在700-900 nm范围内的最大电致发光效率。综上所述,作者提出了一种开发高效率纯近红外发光材料的新策略。通过合理地设计分子结构来调控三线态性质,减少能隙定律的不利影响,为如何改善近红外材料发光性能提供了新的思路。这一成果近期发表在Angewandte Chemie International Edition 上,该论文第一作者为西安交通大学化学学院杨晓龙副教授,通讯作者为西安交通大学化学学院孙源慧副教授、周桂江教授与五邑大学陈钊博士。原文(扫描或长按二维码,识别后直达原文页面): Narrowband Pure Near-Infrared (NIR) Ir(III) Complexes for Solution-Processed Organic Light-Emitting Diode (OLED) with External Quantum Efficiency Over 16 %Xiaolong Yang, Shipan Xu, Yan Zhang, Chengyun Zhu, Linsong Cui, Guijiang Zhou, Zhao Chen, Yuanhui SunAngew. Chem. Int. Ed., 2023, DOI: 10.1002/anie.202309739
  • 上海微系统所丁古巧团队在石墨烯量子点荧光发光机制研究获进展
    近日,中国科学院上海微系统与信息技术研究所纳米材料与器件实验室丁古巧团队在石墨烯量子点制备及荧光机制研究方面取得进展。该工作深化了关于石墨烯量子点发光机理的认知,阐释了多变量体系下机器学习辅助材料制备成果所包含物理内涵。相关研究成果以Precursor Symmetry Triggered Modulation of Fluorescence Quantum Yield in Graphene Quantum Dots为题,发表在《先进功能材料》(Advanced Functional Materials)上。近年来,以石墨烯量子点为代表的碳基量子点材料因独特的sp2–sp3杂化碳纳米结构,表现出优异的光学、电学、磁学的性质。在石墨烯量子点“自下而上”法制备中,多变量反应体系使其在合成与机制领域面临挑战。此外,机器学习以高效的分析算法和模型在复杂体系分析、新型材料设计等领域展现出优势。然而,由于缺失具备实际物理内涵的结构特征描述符,机器学习仅能得到难以阐释物理内涵的数学模型。这限制了机器学习在相关研究中的可迁移性和实用性。石墨烯粉体课题组博士研究生陈良锋、副研究员杨思维结合群论在分子结构描述上的优势,通过控制变量实验与结构化学理论的结合,将具有实际物理含义的描述符应用于机器学习,揭示了石墨烯量子点的前驱体结构与荧光量子产率间关联的物理内涵。该研究利用高结构刚性sp3前驱体与柔性sp2结构前驱体之间的“自下而上”反应,实现了石墨烯量子点中sp2-sp3杂化碳纳米结构的调制。研究结合热动力学理论,阐明了sp3刚性结构能够通过抑制非辐射跃迁过程提高石墨烯量子点量子产率。进一步,研究借助群论在描述分子结构方面的优势,结合主成份分析,明确了石墨烯量子点制备过程中影响石墨烯量子点荧光量子产率的三个决定性因素——结构因子、温度因子和浓度因子。与以往基于机器学习的研究工作相比,该团队基于群论的进一步研究,揭示了机器学习结果中分子的简正振动是前驱体对称性作用于石墨烯量子点量子产率增量的核心物理机制。基于上述原理的指导,该研究首次证明了分子振动的正常模式是前驱体的结构特性作用于 GQDs 荧光量子产率的核心机制。这一石墨烯量子点的光致发光性能在荧光信息防伪加密中具有应用前景。研究工作得到中国科学院青年创新促进会、上海市科学技术委员会以及集成电路材料全国重点实验室开放课题等的支持。
  • 连发Nature!浙江大学狄大卫教授团队发光二极管系列进展
    近日,浙江大学光电学院狄大卫教授课题组先后在Nature Communications及Nature Photonics发表其课题组的最新研究文章。《Ultralow-voltage Operation of Light-emitting Diodes》一文创纪录地发现可以以LED能带宽度的36-60%超低压下观察到发光。《Ultrastable Near-infrared Perovskite Lightemitting Diodes》实现了超高稳定性、高效率(22.8%)的近红外钙钛矿发光二极管(钙钛矿LED)。 ‍研究背景LED的发展对照明、显示和信息产业有着深远的影响。新兴的LED技术的研究倍受关注。LED发光的关键机制为电致发光(EL),即在外部电压下注入的电子和空穴的辐射复合。有文献报道III-V 族半导体的 LED 的工作电压低至标称带隙的 77%,这是由于新型量子阱设计增强的辐射复合。对于OLED,其最小工作电压约0.5Eg/q,使用TTA工艺来解释这种低工作电压仍有争议,即电致发光的最低驱动电压到底是多少,以及它们是否基于同一个机理。 研究方法 在这项工作中测试了17种不同类型的LED,首先选择钙钛矿LED,制备了以近红外发光的碘基材料FPI、NFPI以及绿色发光的溴基材料PCPB的钙钛矿LED,这三种LED的最低驱动电压分别是1.3V、1.3V及1.9V,LED中光子的最高能量分别为1.55eV、1.56eV及2.4eV。这表明三种材料的LED均可在低于带隙所限制的最小阈值电压下发光。接下来选择几种不同的OLED、QLED以及商业III–V族半导体LED,得到的结论与之前的相似。 ‍ 图 1 不同种LED的电致发光强度-电压的关系。 (a. 近红外发射FAPBI3(FPI)钙钛矿LED;b.近红外发射NFPI钙钛矿LED;c.绿光PCPB钙钛矿LED;d.基于Ir(ppy)3的磷光OLED;e.基于4CzlPN的TADF OLED;f.基于F8BT的聚合物OLED;g.基于红荧烯的荧光小分子OLED;h.基于CdSe/ZnS QDs的II-VI QLED;i.基于 GaAsP 的商用 III-V 无机 LED 。) 研究还发现几种钙钛矿LED驱动电压的数值从带隙上方调整到下方时,LED的电致发光EL谱线峰形及峰位都不变。图2. 钙钛矿LED在高于及低于带隙所限制阈值电压下的EL光谱 研究方法 为解决LED最低驱动电压到底是多少的问题,他们采用一套能探测到微弱光子信号的高灵敏度光子探测系统,确定了钙钛矿LED的光致发光强度与电压之间的关系,得出EL 的最小驱动电压为低于半导体带隙 50% 的值,并表现出每个光子0.6-1.4eV的表观能量增益。 图3. 不同LED在近带隙和亚带隙电压下的光致发光强度-电压曲线 论文中提到的测试方法中,使用了海洋光学高灵敏度QE Pro光谱仪对LED的发光性能进行表征。图4. 用于测量在亚带隙电压下的 EL 光谱的实验装置示意图 研究背景 与钙钛矿太阳能电池类似,钙钛矿LED的不稳定性是一重大难题。近年来,钙钛矿LED在外量子效率(EQE)方面发展十分迅速,但其在连续工作条件下T50工作寿命(亮度降低到其初始值一半所需时间)一般在10到100小时量级,而实际应用需器件在高EQE、宽辐亮度范围下实现更长的工作寿命(高于10000小时)。和III-V族半导体及有机半导体相比,钙钛矿在器件工作过程中存在额外的降解通道。电场作用下的离子迁移和钙钛矿晶体结构的不稳定性,是影响钙钛矿器件稳定性的关键问题。解决这些问题,以同时实现长寿命与高效率,是领域的重大挑战。研究亮点 作者选取了在高性能太阳能电池与LED均有应用的FAPbI3钙钛矿作为基本研究对象,引入双极性分子SFB10,实现了高效和超稳定的近红外(~800 nm)钙钛矿LED。器件峰值外量子效率(EQE)为22.8%,峰值能量转化效率(ECE)为20.7%。这些钙钛矿LED展现了优异的稳定性,在5 mA/cm2下连续运行超过3600h(5个月)没有观察到辐亮度衰减。据加速老化测试获得,在初始辐亮度(或电流密度)分别为0.21 W/sr/m2 (0.7 mA/cm2)时,预期T50工作寿命为2.4×106h (约270年)。 图5. 钙钛矿LED器件结构和性能 上述数据表明,钙钛矿LED可在满足实际应用的光功率(辐亮度)下稳定工作。作为参考,基于Ir(ppy)3的高效率绿光OLED器件,在1000 cd/m2的高亮度下时对应的辐亮度为2.1 W/sr/m2, 在100 cd/m2的较低亮度下对应的辐亮度为0.21 W/sr/m2。表1:经SFB10稳定的钙钛矿LED寿命数据 为了探索器件高稳定性的原因,作者研究了双极性分子SFB10对钙钛矿薄膜稳定性的影响。结果表明,双极性分子SFB10提高了钙钛矿薄膜的热稳定性、相稳定性与荧光稳定性。经SFB10稳定剂处理的钙钛矿样品在空气中放置322 天,仍然维持了具有良好光电活性的α相FAPbI3钙钛矿,而对照组样品在14天内就发生了相变与降解。图6:钙钛矿样品结构稳定性和荧光稳定性 图7:SFB10与钙钛矿前驱体化学相互作用表 论文提到的测试方法中,使用海洋光学QE Pro光谱仪进行EQE的J-V曲线测量,使用Maya2000Pro记录角电致发光强度分布。QE Pro Maya2000 Pro 光谱仪 参考文献 1. Lian Y , Lan D , Xing S , et al. Ultralow-voltage operation of light-emitting diodes[J]. 2021.2. Guo, B., Lai, R., Jiang, S. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. (2022). https://doi.org/10.1038/s41566-022-01046-33. https://mp.weixin.qq.com/s/s_vFNym4bESl3wogh96n7Q 结语 超低驱动电压的研究为超低压LED器件的发展以及照明、显示及通信行业的发展做出贡献。超长的器件寿命有望提振钙钛矿LED领域的信心,这些近红外LED可用于近红外显示、通讯与生物等应用,为钙钛矿发光技术进入产业应用铺平了道路。
  • 滨松中国参展华人聚集诱导发光(AIE)学术研讨会
    2018年9月26日,为期四天的第一届华人聚集诱导发光学术研讨会在西安市曲江国际饭店成功举办。本次会议旨在为华人学者搭建一个AIE研究和学术交流的平台,是聚集诱导发光领域的一次盛会。滨松中国携两款绝对量子产率测试仪——Quantaurus-QY和Quantaurus-QY Plus亮相本次会议。 Quantaurus-QY是一款紧凑而易用的仪器,它将氙灯型激发光源、单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器等元件集成到一个封装里,探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量,用于测量光致发光材料的量子效率,而且无需传统相关方法所必需的已知参考标准。不同形式的样品,包括薄膜、固体、粉末和溶液等均能被分析,并能将溶液样品冷却到液氮温度。滨松绝对量子产率测量仪Quantaurus-QYQuantaurus-QY Plus在Quantaurus-QY的基础上增加了可扩展近红外探测器通道以及可扩展外接光源的接口。可扩展的近红外通道可以将量子产率的测量范围扩展至300-1650nm,覆盖市面上发光材料量子效率测量需求波段。与普通双通道探测器不同,滨松的双通道探测器测量结果通过算法拟合,结合JCSS级别的校准技术,可以让双通道结果无缝接合,得到稳定结果。产品的外接光源扩展接口可外接激光器以及高能氙灯等光源,可以轻松测量低量子产率以及上转换发光的材料,满足客户对于低发光效率以及上转换材料的测量需求。滨松近红外绝对量子产率测量仪 Quantaurus-QY PLUS本次会议深入探讨了AIE所面临的机遇、挑战及未来的发展方向。滨松的两款量子产率测量仪凭借其优异的性能受到了众多与会人员的高度关注。
  • 发光“纳米快递员”可显示药物在体内移动
    俄罗斯国立核研究大学与其他机构的科研人员合作,开发出一种纳米探针,可以精准地向病变组织递送药物。有关专家称,该研究成果将有助于开发通用的靶向药物递送工具,有效治疗心血管疾病、癌症、糖尿病和一些其他疾病。相关论文发表在《纳米材料》杂志上。  向特定组织和细胞靶向递送药物是治疗病灶性疾病最重要的方向之一,包括心血管疾病、癌症、肺结核、两种类型的糖尿病和其他疾病。近年来的最新方法是通过纳米探针(能够携带药物和特殊分子的特殊结构)靶向病灶来实现。探针必须很小,大约几十纳米,同时它应具有严格定义的理化特性和尽可能低的毒性。  目前,世界上创建此类系统的技术正处于早期发展阶段,关键任务是研究药物递送过程。这就要求能够实时观察到探针在体内的移动,为此要使用特殊的激光照明。  俄国立核研究大学纳米生物工程实验室与莫斯科谢切诺夫第一国立医科大学、布洛欣国家肿瘤医学研究中心和法国兰斯香槟—阿登大学的科研人员,合作开发的新型超微探针满足了所有这些条件。  这种新型纳米探针由一个光致发光纳米晶体(量子点)和附着在其表面的吖啶衍生物分子(帮助探针穿过细胞膜的药物)组成。该系统与同类产品相比,优势在于尺寸超小,而CT亮度更高。  俄国立核研究大学纳米生物工程实验室副主任帕维尔萨莫赫瓦洛夫说,量子点是应用于一些高科技领域的荧光纳米结构,吸收光谱宽,发射光谱窄,由纳米晶体的尺寸决定。也就是说,一个量子点会以特定的颜色“发光”,这些特性使其成为医学中超敏感生物对象检测的近乎理想工具。  据悉,新型探针的尺寸大约15纳米,只有人体细胞的数百到数千分之一。CT扫描仪明亮的发光效果使研究人员可以通过定向激光束来追踪探针在身体组织中的移动。特殊的端羧基聚乙二醇外壳使纳米探针具有生物相容性,实验表明,它能够在细胞中迅速积累到所需的数量。  帕维尔萨莫赫瓦洛夫解释说,这种新型纳米探针主要用于开发抗癌药物靶向递送工具的实验研究,已经成为这种通用工具的原型。
  • 刘舜维、汪根欉、胡斌:延伸发光偶极各向异性动力学实现34.01%外量子效率
    本文重点:1. 平面定向的发光偶极必须在时域和能量域上都展现延伸的各向异性动力学,这是研发高效OLEDs的必要条件。2. 通过在平面定向的Exitplex杂合体中引入Ir(ppy)2(acac),可以抑制主宾体散射,使发光偶极的各向异性动力学延伸 至微秒量级。3. 采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。明志科技大学有机电子研究中心主任兼工程学院副院长刘舜维教授、中国台湾大学化学系汪根欉教授以及美国田纳西大学先进材料与制造工程研究所材料科学系胡斌教授三方研究团队,近日共同在《先进光学材料》(Advanced Optical Materials)期刊发表研究报告。该研究基于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体,使用包括时间解析和稳态两种光聚合物各向异性度量方法,全面研究了发光偶极在时间和能量两个维度的各向异性动力学特征。研究结果发现,相较于随机定向的发光偶极,设计能够形成平面定向的发光偶极是研发高效OLEDs的关键方法之一,这可以显著提高光的提取效率。但是,平面定向的发光偶极必须同时在时域和能量域都展现足够的偏振记忆效应,使各向异性动力学延伸至整个发光寿命时间范围,这才能大程度地增强OLED的光提取率。该研究充分证明,这种延伸的各向异性动力学是研发高效OLEDs的必要条件。研究团队将平面配置的红色磷光体Ir(ppy)2(acac)以很低的摩尔浓度分散于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体之中,构建了发光层。结果发现,平面定向的杂合体主体可以通过抑制主宾体之间的库仑散射,显著延长磷光体发光偶极的各向异性动力学,使其从纳秒量级延伸到微秒量级,与磷光寿命时间范围相当。这满足了采用Ir(ppy)2(acac):杂合体系统来提高OLED光提取效率的必要时域条件。更重要的是,研究还发现,在抑制主宾体库仑散射的情况下,高能态的发光偶极也可在杂合体主体的作用下维持延伸的各向异性动力学,而不会随着热电子从高能态松弛至LUMO而随机化。这是由于杂合体主体的偏振记忆效应不仅影响低能态,也可维持高能态发光偶极的平面定向分布。综合时域和能量域两个维度的研究结果可以看出,发光偶极延伸的各向异性动力学是研发高效OLEDs的必要条件。最终,采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。该成果为进一步提升OLED性能提供了有力指导,将促进高效OLED显示技术的进一步研发。本次研究,团队采用了光焱科技Enlitech所设计生产的超低光源光致发光量子产率高校量测设备LQ-100X-PL,Enlitech所设计的LQ-100X-PL采整合型设计,精心严选高档用料材质,设备寿命长,且拥有软、硬件整合与调校,凭借光焱科技多年量测PLQY经验,出场即校正完成,即装即用,可大幅免除自行搭建设备的难度与光强不足等扰人问题。LQ-100X-PL采用LED光源设计,整体结构紧凑,尺寸仅502.4mm(L) x 322.5mm(W) x 352mm(H),可整合手套箱,并在搭配定制样品盒下,不论研究产品是薄膜、粉末、液体型态,让研究人员十秒内完成待测物量测装载,超快速精准且方便进行PLQY量测,无须烦恼样品尺寸与积分球开口尺寸两难问题,整体量测结果精准、重复性高,更可以进行原位时间光谱解析,量测数据经得起投稿审查时高品质要求,且加上光焱科技Enlitech专业服务与销售团队服务,更能为PLQY量测进行把脉,让客户将心力专注于研究。
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 大连化学物理研究所研制出单组分暖白光电致发光器件
    近日,大连化学物理研究所复杂分子体系反应动力学研究组(1101组)杨斌副研究员与山东大学刘锋研究员等合作,开发出了具有高效白光发射的新型双钙钛矿材料,并制备了基于该材料的单组分暖白光发光二极管(LED)。电气照明占全球电力消耗的15%,释放了全球5%的温室气体。采用更加高效、低成本的照明技术可缓解能源、环境危机,助力实现“双碳”目标。目前,绝大多数白光LED技术主要依靠蓝光LED激发多组分荧光叠加的方式产生白光,因此很容易出现显色性差、发光效率低、有害蓝光成分高、白光光谱不连续等问题。开发高效单组分白光材料被认为是解决以上问题的关键。研究人员发现,非铅金属卤化物双钙钛矿材料可在低温溶液法制备,生产成本低。此外,由于自身结构的限域以及强烈的电—声子耦合效应,双钙钛矿材料具有独特的自陷激子特性(STE),其复合发光表现出较大的斯托克斯位移及宽带光发射,从而表现出白光发射的特点。在本工作中,科研人员通过利用有机分子4, 4-二氟哌啶(DFPD)和碱金属之间的强化学键,制备了具有一维结构的(DFPD)2MIInX6 (MI= K, Rb X= Cl, Br)双钙钛矿化合物。其中,DFPD+不仅作为有效的层间间隔物来平衡电荷,而且可作为构成金属卤化物八面体的关键组分。特别地,(DFPD)2MIInX6中的电子态在空间上被限制在单个八面体中,产生了天然的电子限域效应。为了促进辐射复合,研究人员进一步采用微量Sb3+掺杂策略,将白光量子效率从5%提高到90%以上。由于所制备的低维双钙钛矿材料具有高光电性能和优异的溶液可加工性,可以通过简单的溶液法制备基于该材料的单组分暖白光LED,因此,该工作为下一代照明器件的设计提供新的思路。杨斌等近年来在基于自陷激子的单组分白光材料及其发光动力学领域开展了系统的研究:揭示了激子超快自陷过程(Angew. Chem. Int. Ed.,2019;Acc. Chem. Res.,2019),以及电—声子耦合对该超快过程的影响机制(Sci. Bull.,2020);揭示了基于自陷激子热活化延迟荧光的发光机制(Angew. Chem. Int. Ed.,2020);通过三线态自陷激子与受体离子Mn2+之间的高效能量转移,实现了胶体纳米晶中的高效白光发射(Nano Lett.,2021);并基于自陷激子独特的性质拓展了其在长余辉发光材料(Angew. Chem. Int. Ed.,2022)、高灵敏紫外光电探测器(Adv. Mater.,2021;Laser Photonics Rev.,2022)、X-射线闪烁体(J. Phys. Chem. Lett.,2022;J. Phys. Chem. Lett.,2022;Laser Photonics Rev.,2022)、超灵敏的光学测温器(J. Phys. Chem. Lett.,2022)等领域的应用。相关研究成果以“Highly Luminescent One-Dimensional Organic–Inorganic Hybrid Double-Perovskite-Inspired Materials for Single-Component Warm White-Light-Emitting Diodes”为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。该工作的第一作者是我所1101组联合培养博士研究生柏天新。上述工作得到国家自然科学基金、中科院青促会、我所创新基金等项目的支持。
  • 兰大教授成功研制新型发光材料
    兰州大学物理科学与技术学院王育华教授领导的课题组日前成功研制了一种新型发光材料,只要在阳光或灯光底下照一照,该材料就可以把这些光亮储存起来,然后在比较暗的环境里自己发光。其余辉初始亮度高,余辉时间近4小时左右,发光颜色为橙黄色,可以作为黑暗环境中的警戒指示照明。
  • 精彩持续中 | 第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛
    2024年8月15日,由北京卓立汉光仪器有限公司、北京怀柔仪器和传感器有限公司、先锋科技(香港)股份有限公司、无锡中镭光电科技有限公司联合举办的第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛的精彩报告继续进行。来自全国各大知名高校及研究院的近百名专家学者出席了本次会议。8月14日至15日,线上直播观众人数突破9.3万人,明日精彩继续,欢迎预约直播。▲昨日精彩回顾(点击查看)本次研讨会聚焦荧光、拉曼、条纹、分幅、iCMOS、成像光谱仪、2μm激光器、光机、自动化,磁光,压电,仪器联用等10余类产品以及钙钛矿,太阳能,二维材料,燃烧诊断,等离子体诊断,LIBS,半导体,激光物理等八大应用方向。会议期间,共进行了多场精彩纷呈的学术报告和专题研讨。今日,17位来自光电探测、磁光、荧光及超快等领域的专家学者分别就各自的研究领域作了深入的阐述,分享了最新的研究成果和经验。▲华中科技大学研究员——韩俊波华中科技大学韩俊波研究员做二维本征铁磁体的磁性调控及应用探索报告,二维磁性材料是基础磁学和新型存储器件研究重要平台,其宏观性质和微观磁畴密切相关。深入研究其微观磁畴的调控方法及其与宏观性质间的内在联系,对提升材料性能、优化器件结构、诱发新奇量子物性至关重要。韩老师课题组以二维Fe3GeTe2(Fe3GaTe2)为载体,采用低温显微磁光克尔技术,系统研究了二维Fe3GeTe2在界面、电流及磁场调控下铁磁增强特性。获得如下有趣实验结果:(1)在二维反铁磁/铁磁异质结中观测到“非局域”铁磁增强效应;(2)在二维Gr/ Fe3GeTe2/Gr中观测到电流诱导的拓扑磁光效应;(3)在二维单个Fe3GeTe2中同时实现了非易失性和易失性磁光存储。这些研究成果不仅增进了对二维磁性材料微观机制的理解,也为未来磁存储技术和自旋电子学的发展开辟了新方向。▲Clemson University Assistant Professor——Lianfeng Zhao 远在美国克莱姆森大学赵连锋助理教授通过国际直播平台,为国内外科研工作者做Metal Halide Perovskite Laser Diodes英文报告,赵老师聚焦于金属卤化物钙钛矿半导体这一多功能的杂化材料,该材料在推动下一代光伏与发光技术革新中展现出巨大潜力。报告重点阐述了团队在电泵浦钙钛矿激光二极管领域的最新突破,包括钙钛矿内光增益机制的深入研究,以及在极端电流条件下器件性能的优化策略。这些成果不仅增进了对该领域关键技术的理解,还为克服技术障碍、推动该技术变革性发展提供了宝贵见解。▲北京交通大学教授——梁春军北京交通大学梁春军教授做一种新型光伏发电技术_钙钛矿太阳能电池报告,介绍钙钛矿太阳能电池的基本器件结构,进展情况和未来趋势。▲北京大学研究员——康佳昊北京大学康佳昊研究员做显示器件的频率色散和集约模型报告,介绍了北京大学碳基电子学研究中心在显示器件建模方面的部分研究。报告核心内容涵盖三大方面:首先,简要介绍了碳基电子学的基本概念及碳基显示在未来显示技术中的潜力;其次,深入剖析了薄膜晶体管(TFT)的关键性能特征,包括界面态现象、偏压稳定性以及电容的频率色散行为,并据此构建了相应的集约模型,为TFT性能预测与优化提供了理论支持;最后,探讨了微型发光二极管(Micro-LED)在微缩化过程中的尺寸效应,详细分析了其电学与光学性能的频散特性,并建立了集约模型以准确描述这些特性,为Micro-LED显示技术的发展奠定了坚实基础。▲湖北众韦光电科技有限公司研发经理——戴宏伟湖北众韦光电科技有限公司戴宏伟博士做低温磁场下的微区磁光克尔及光谱测试报告,报告从磁性二维材料的磁光克尔研究出发,探讨低温磁场下的微区光谱测试面临的问题与解决方案,如设备稳定性、磁场干扰及高精度要求等,并随后提出了针对不同磁体和低温环境的定制化解决方案。这些方案旨在提升测试平台的易用性和稳定性,为磁光学研究提供强有力的技术支持。▲北京交通大学教授——张福俊北京交通大学张福俊教授做倍增型有机光电探测器报告,重点介绍倍增型有机光电探测器的工作。张老师课题组在2013开始探索全新机理的倍增型有机光电探测器,2015年报道了基于单载流子有源层制备出界面附近受陷电荷诱导能带弯曲的倍增型有机光电探测器,并通过器件工程实现响应范围可调、正、反向偏压下都能工作且响应范围可调的器件。并从有源层中载流子传输通道的调控入手,率先报道了一种具有单载流子传输特性的低暗电流、倍增型有机光电探测器。课题组还通过多元化的策略,包括三元材料体系、厚膜策略调控光场分布、精细的界面工程以及电极优化等,成功制备出响应范围更加灵活、支持双向偏压操作、具备双探测窗口及功能集成化特性的倍增型有机光电探测器。这些创新不仅丰富了倍增型有机光电探测器的设计思路,也为未来高性能光电探测技术的发展提供了宝贵的经验和启示。▲中国科学院半导体研究所青年研究员——郝宏玥中国科学院半导体研究所郝宏玥青年研究员做超表面锑化物红外探测器研究报告,锑化物红外探测材料体系晶格失配度低,能带结构灵活可调,是实现高性能红外探测的优选材料。郝老师课题组聚焦于超表面结构在锑化物红外探测器领域的研究进展,并展望相关技术在焦平面成像领域的应用。通过在单波段锑化物红外探测其基础上,通过超表面结构设计及高精度图形转移技术,实现波长调制型可见-红外探测器制备,及片上集成多谱段红外探测芯片制备,为新一代宽光谱、多谱段红外焦平面探测阵列提供技术基础。▲浙江大学教授——何海平浙江大学何海平教授做钙钛矿发光:材料、器件及应用报告,全面概述了卤化物钙钛矿材料因其优异的光电特性,在新型显示、照明等领域具有潜在的广阔应用情况。何教授课题组聚焦于钙钛矿的发光性质,介绍课题组在钙钛矿光致发光、电致发光、激光等三个方面的研究工作,以及近期在钙钛矿量子点显示应用方面的进展。▲中国人民大学教授——龙峰中国人民大学龙峰教授做全光纤倏逝波荧光生物传感仪器及检测新污染物的应用报告,介绍了新污染物治理在美丽中国建设中具有重要的战略定位。新污染物具有“新”“多”“广”“低”等特点,其快速精准识别和监测是构建新污染物治理体系的重点和难点。传统监测技术存在前处理繁琐、成本高、难以满足现场快速检测需求等不足。龙教授团队通过建立全光纤倏逝波荧光生物传感新理论并突破系列关键核心技术,创制了具有完全自主知识产权的全光纤倏逝波荧光生物传感系列仪器,结合多样化生物靶向识别材料和生物传感机制,建立了新污染物多指标现场快速检测新方法,为新污染物监测提供精准化、即时化、智能化、集成化技术支撑。▲华北电力大学讲师——仇恒伟华北电力大学仇恒伟讲师做钙钛矿纳米晶的表界面调控和光电应用报告,全无机CsPbBr3钙钛矿纳米晶(PNCs)稳定性不足等诸多问题,无损晶格外延核壳纳米晶有望彻底攻克该问题并最小化界面电荷积累。仇老师从PNCs单晶面S系半导体外延生长出发,辅以合适的表面配体钝化晶面以降低结合能垒,实现晶格外延CsPbBr3/PbS核壳纳米晶可控合成,这一创新方法不仅增强了纳米晶的稳定性,还优化了其光电性能。进一步地,报告介绍了结合普适性纳米晶图案化和3D打印工艺的最新进展,成功构建了集成式光电探测阵列。这一技术突破不仅提升了光电探测器的性能和分辨率,还为其在更广泛领域的应用开辟了新途径。仇老师所做的一系列工作旨在推动PNCs稳定性和光电性能方面的发展,并极大拓展其应用。▲RMITUniversity研究员——Xiaoming Wen远在澳大利亚皇家墨尔本理工大学的文小明研究员通过国际直播平台,为国内外科研工作者做Time dependent steady-state and time-resolved photoluminescence under light bias in halide perovskites英文报告,文老师首先介绍了稳态光致发光 (PL) 和时间分辨光致发光 (TRPL) 技术发展现状。然而,当对表现出光照诱导的 PL 光谱、效率和寿命变化的材料(如卤化物钙钛矿)进行测量时,这些技术面临一些问题。在过去十年中,卤化物钙钛矿因其优异的光电特性和出色的器件性能(如高效太阳能电池、光电探测器和 LED)而引起了极大的研究兴趣。使用标准 PL/TRPL 测量时,可能会忽略和遗漏关键信息,并可能导致误解。本次报告文老师重点介绍一些光照诱导 PL 效率和载流子寿命增加的应用案例。使用专门设计的时间相关 PL/TRPL,有/没有光照偏置,进行探索异常的光电特性,并利用其团队最近提出的晶格能量库理论对该现象做了很好地解释。文老师作为卓立汉光产品的使用者,也在演讲中感谢卓立汉光的协助,其团队在RIMT大学定制了多功能PL-TRPL光谱系统,该系统能够完成上述大部分功能,并且功能大大扩展,包括激发、检测范围。可以预期该系统将能为其团队的光物理研究提供重要的技术支持。▲华北电力大学讲师——贾东霖华北电力大学贾东霖讲师做钙钛矿量子点表面特性调控研究及其光伏应用报告,钙钛矿量子点(PQD)凭借出色的光电性能和化学加工性,被视为下一代光伏器件的潜力材料,然而其表面高密度的长链绝缘油酸油胺配体成为电荷传输的障碍。贾去除这些原始配体会引发一系列问题,如表面缺陷增加、载流子捕获、钙钛矿晶格畸变以及水氧渗透通道的形成,从而影响光伏性能。为解决这些问题,研究团队开发了一系列创新策略,包括表面缺陷钝化、表面配体取代和表面晶格锚定等,以优化PQD的表面状态。通过这些策略,贾老师有效改善了太阳能电池的载流子提取效率,使无机CsPbI3-与混合FAxCs1-xPbI3-PQD太阳能电池的光电转换效率分别提升至16.64%与17.29%,为改善量子点光伏性能的表面调控策略提供了全新见解。▲香港城市大学教授——雷党愿香港城市大学雷党愿教授做微纳光腔与低维半导体相互作用及功能器件研究报告,首先分享了微纳光腔这类具有电磁场极端局域化和增强的超构光学体系,是发展多功能、小型化、低功耗、超快响应光学器件的基本模块。雷教授介绍了耦合光学微腔与钙钛矿量子点,构建高稳定性、低量子缺陷和超低阈值的微腔激光器(Nature Communications 2020, 11, 1192 Advanced Functional Materials 2024, 2401247);接着展示集成自组装等离激元纳腔阵列与无铅钙钛矿量子点,实现宽带高探测灵敏度和响应度的柔性光电探测器(Nano Letters 2021, 21, 9195);最后介绍近场耦合等离激元纳腔偶极共振模式与过渡金属硫族化合物自旋禁阻暗激子或其异质结中层间激子,获得室温下暗激子(Nano Letters 2022, 22, 1915)或层间激子的可观测发光(ACS Nano 2024, 18, 13599)。这些研究成果不仅展示了微纳光腔与低维半导体相互作用的独特优势,也为未来高性能光学器件的设计与开发提供了重要的科学依据和技术支撑。▲中国科学院长春应用化学研究所研究员——秦川江中国科学院长春应用化学研究所秦川江研究员做准二维钙钛矿发光机理与高性能器件报告,首先强调了有机/无机杂化钙钛矿半导体材料的显著优势,包括高吸收截面、高载流子迁移率和低成本溶液加工等特性,使其成为新一代半导体发光材料和激光器增益介质的理想选择。然而,这类新型材料的发光和激射原理尚未完全阐明,成为国际研究难题。针对这一挑战,秦老师课题组利用瞬态光谱技术取得了重要突破,不仅证实了Rashba自旋效应和暗态三线态激子的存在,还首次提出了准二维钙钛矿中长寿命暗态三线态激子的概念,并深入探讨了其对光电性能的影响。通过创新的维度和组分工程策略,团队成功调控了钙钛矿中的三线态激子行为和发光特性,进而实现了系列高性能发光器件的制备,和具有低激发阈值的室温连续光泵浦准二维钙钛矿激光。▲北京卓立汉光仪器有限公司应用专家——覃冰北京卓立汉光仪器有限公司应用专家覃冰做超快分子光谱探测技术及解决方案报告,介绍卓立汉光超快光谱探测方案在飞秒及皮秒时空中对超快物理化学及生物过程进行监测的应用,如太阳能电池、低维材料、量子器件、超导材料、新型半导体、纳米催化、生物传感等材料中载流子时空演化,载流子的激发动力学,钙钛矿中的放大自发辐射测试等。▲北京理工大学教授——王卓然北京理工大学王卓然教授做多元硫硒化物半导体光电器件报告,在立足于信息技术领域对新一代光电子器件与集成技术的重大需求基础上,报告聚焦半导体光电材料与器件领域关键问题,重点介绍以Cu2ZnSn(S,Se)4和AgBiS2为代表的环境友好型多元硫硒化物半导体在薄膜光伏与光电探测领域的应用,并就未来面向短波至中波红外应用的多维度硫硒化物材料体系与高维度集成光电传感系统展开讨论。▲北京金竟科技有限责任公司应用经理——李洋北京金竟科技有限责任公司李洋做阴极荧光成像及光谱采集系统及其在半导体领域的应用报告,报告内容涵盖其公司简介、阴极荧光含义及其原理、阴极荧光相关产品介绍及应用案例分享、 电子束曝光简介及产品介绍及应用案例分享、合作用户单位等,整个报告展示了北京金竟科技有限责任公司在阴极荧光成像及光谱采集系统、电子束曝光技术方面的深厚积累和创新能力,以及这些技术在推动半导体行业发展中的重要作用。▲中国人民大学博士——曹丹丹中国人民大学曹丹丹博士做纳米晶半导体高效单光子上转换发光报告,研究发现,钙钛矿具有显著的“声子辅助-单光子上转换”光致发光,浅能级缺陷可作为关键中间态角色。报告分享了基于配体工程调控深缺陷分布,可以有效抑制非辐射复合损失;基于结晶动力学工程调控浅缺陷分布,能够大幅度提升亚带隙电子跃迁的振子强度。在两者协同作用下,钙钛矿纳米晶的单光子上转换强度提高40%以上,有效光学冷却增益窗口超过130 meV。上述结果为深入认识纳米晶光致发光机制、拓宽纳米材料在光学/光电方面的实际应用提供了新的学术见解。▲仪器展示介绍环节除上述大会报告以外,会议期间,结合用户各种需求,卓立汉光公司适时展示多种产品系统,部分产品系统提供免费测样,欢迎详询:拉曼光谱荧光光谱微纳器件光谱响应度测试系统光栅单色仪/光栅光谱仪超快时间分辨光谱测试系统2μm波段掺铥光纤激光器笼式系统阻尼隔振平台
  • 基因技术让树木发光 阿凡达中发光树或成真
    科学家们希望未来用树木作为街灯照明   科学家们正在试图通过改造树木基因令其能够发出光亮,如果能够成功,这些树木就能作为不需要电源的自然街灯。   据国外媒体报道,一组研究人员希望借助基因的研究,将诸如萤火虫发出的生物荧光(Bioluminescence)移植到各种不同的生物中去,以使得这些生物能够产生光亮。生物发光植物将有助于作为传统街灯取代品,即便需要更多的光亮,也可以通过这些植物的生长而实现。   剑桥大学的科学家尝试将萤火虫基因与一种发光海洋细菌创造出一个“生物积木(Biobricks 也称生物砖块、生物零件)”来插入至目标的基因组,从而产生名为氧化荧光素(oxyluciferin)的物质,产生发光效果。届时,科学家们可以通过插入改良后的基因来控制诸如发光的颜色等特征。   “生物积木”的概念最早由美国麻省理工学院人工智能实验室汤姆奈特教授提出。据科学网(kexue.com)了解,所谓的“标准生物积木”,是一些简单拼装好了的,具有特定功能的DNA小片段——也可以看成具备某种性状的积木单元。   研究队伍成员之一的遗传学家西奥-桑德森(Theo Sanderson)表示,这是个绝妙的设想,目前并没有做出最终的“发光树”,但会做出一套“零件”,来让未来研究者更方便的进行研发。研究团队表示这个项目未来有着巨大的商业潜力,可以用于取代目前传统的街道照明系统,并且这种方式不需用电,非常环保。   之前有科学家们尝试过利用人类的废弃物来作为燃料,此外还有研究团队发现,利用金纳米粒子可以诱导植物叶子发光,使树叶发出红色的光芒。也许就在不远的将来,电影《阿凡达》中那些给人留下印象深刻的发光树木,即将在人们的生活中实现。
  • 1030万!哈尔滨工程大学电致发光器件综合特性测量系统及激光直写系统采购项目
    一、项目基本情况项目编号:HTCL-ZB-236129项目名称:哈尔滨工程大学电致发光器件综合特性测量系统及激光直写系统采购及服务预算金额:1030.000000 万元(人民币)最高限价(如有):1030.000000 万元(人民币)采购需求:1套电致发光器件综合特性测量系统,其他要求详见招标文件。1套激光直写系统,其他要求详见招标文件。合同履行期限:合同签订后12个月内完成所有设备到货、所有设备调试完毕并具备验收条件。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月06日 至 2023年11月10日,每天上午8:30至11:30,下午13:00至17:00。(北京时间,法定节假日除外)地点:黑龙江省招标有限公司方式:现场获取。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:哈尔滨工程大学     地址:哈尔滨市南岗区南通大街145号        联系方式:0451-82519862      2.采购代理机构信息名 称:黑龙江省招标有限公司            地 址:哈尔滨市南岗区汉水路180号            联系方式:陆超、温智伟 电话:0451-82375252            3.项目联系方式项目联系人:陆超、温智伟电 话:  0451-82375252
  • 超高效有机发光二极管研制成功
    德国科学家开发出一种新型有机发光二极管(OLED),其产生的白光质量可媲美白炽灯泡,而其能效甚至大大优于荧光灯。该项研究的领导者、德国应用光学研究所的塞巴斯蒂安雷内柯表示,该OLED原型也许将可成为显示器和普通照明的一个超高效光源,他们的远期目标是利用传统的低成本卷带式印刷术来装配这些器件。 近年来,许多国家都在寻求将白炽灯照明转换成紧凑型荧光灯,因为后者能节约更多的能量。也因为同样的原因,在显示器和普通照明中使用发光二极管(LED)也得到了人们的青睐。但是,无论是荧光灯还是LED照明,其产生的白光质量一直有待改善。荧光灯因为缺乏红光会使人感觉不适,而目前市售的大多数白光LED会带一些蓝色,会使人感觉有些冷。 与此相反,OLED的制造材料来源广泛,要获得高质量的白光相对显得比较容易。就OLED来说,其面临的问题一直以来都不是白光质量,而是其能效。荧光灯的能效大约在每瓦60流明到70流明,白炽灯的能效大约为每瓦10流明到17流明,而到目前为止,OLED的最大报告能效是每瓦44流明。 在最新出版的《自然》杂志上,雷内柯及其同事报告了一种能效可达每瓦90流明的OLED结构设计,其最高能效甚至可达每瓦124流明。 研究人员对OLED的设计工艺进行了改进和完善。一方面,他们将连接发光材料的有机材料掺杂到它的金属触点,从而降低其工作电压。另一方面,他们用光学性能与器件衬底更为匹配的玻璃来制作器件的外表面。在传统结构中,大约80%的光会损耗掉。 这种OLED的最新颖之处是器件内部不同发光材料的组织搭配。3种材料被用于各自发出蓝、绿和红光,其间还有主基质材料。诀窍是选择一种具有高“自旋态”的基质材料,它可与蓝光匹配,并夹杂在绿光和红光材料之间,如同是分离的主基质材料的一部分。这意味着,从红光或绿光材料逃逸的任何电子—空穴对(激子)将穿过蓝光材料,从而增加了转化为光子的机会。 不过,这种新型OLED的主要缺陷仍是其寿命。虽然飞利浦等公司已能生产出寿命与荧光灯相同的OLED(超过1万小时),但具有更高效能的材料往往其寿命无法持续这么久。目前,雷内柯的OLED器件的寿命仍只能达到短短的几个小时。(来源:科技日报 冯卫东)
  • 中国科大在纯红光钙钛矿电致发光二极管取得新进展
    近日,中国科大姚宏斌教授课题组联合张群教授、林岳教授和张国桢副研究员研究团队提出金属卤化物钙钛矿亚稳相结晶策略,有效消除了混合卤素钙钛矿CsPbI3-xBrx晶粒内部的面缺陷,从而制备了高效的纯红光钙钛矿发光二极管,其外量子效率达17.8%,亮度为9000cd m-2,研究成果以题为“Planar defect-free pure red perovskite light-emittingdiodes via metastable phase crystallization”发表在国际期刊Science Advances上(Sci. Adv. 2022,8, eabq2321)。金属卤化物钙钛矿材料由于其高色纯度、宽色域、低成本以及可溶液加工等优势有望用于下一代发光二极管。然而钙钛矿材料由于其结晶过程的不可控,容易产生缺陷,这往往会限制钙钛矿发光二极管(PeLED)的效率以及稳定性。小分子钝化剂已成功用于调控单一卤素钙钛矿的成核、聚集以及组装过程,获得了高发光效率的微/纳米晶薄膜,进而使得绿光和近红外光PeLED的外量子效率超过20%。虽然小分子钝化剂也被尝试用于调控混合卤素钙钛矿的结晶,但目前混合卤素PeLED的效率以及稳定性依然很低,这其中的原因依然未知。图1.混合卤素钙钛矿小分子调控的非经典结晶过程以及亚稳相结晶策略姚宏斌教授课题组基于前期钙钛矿结晶调控的相关研究基础(J. Am. Chem. Soc. 2022, 144, 8162−8170;Adv. Optical Mater. 2021, 9, 2001684),首先揭示了在混合卤素钙钛矿成核、团聚以及组装过程中,不均匀的卤素离子分布会导致晶粒内部的面缺陷形成,进而提出了亚稳相结晶(MPC)制备混合卤素钙钛矿薄膜的策略。该策略可以有效促进钙钛矿晶格内部的卤素均匀混合,进而降低钙钛矿结晶过程中的晶格应力,从而消除钙钛矿晶粒内部的面缺陷(图1)。图2.不同结晶过程制备的CsPbI3-xBrx薄膜晶粒内部的RP型面缺陷表征。(A-C)没有聚合物引发的相分离过程(NPS)(A),一步法退火(OSC)(B)和亚稳相结晶(MPC)(C)薄膜的TEM图。(D-E) NPS (D), OSC(E)和MPC(F)膜晶粒内部的HAADF-STEM图。内部插图是相应的快速傅里叶变换图。(G-I)D-F图中相应的原子级分辨的HAADF-STEM放大图。基于球差电镜分析(林岳教授合作),该工作首次观察到未经过亚稳相结晶制备的CsPbI3-xBrx薄膜晶粒内部存在着大量面缺陷,并且是沿着(100)和(010)方向广泛存在于晶粒内部并形成迷宫状的限域纳米区域(图2D)。进一步球差电镜分析表明在面缺陷边缘卤化铯层呈岩盐石结构堆积,从而形成Ruddlesden-Popper(RP)型面缺陷(图2G),这是由于CsPbI3-xBrx钙钛矿薄膜在结晶过程中卤素离子不均匀分布产生晶格应力从而导致的晶格错位搭接。同样地,在没有精细调控结晶过程的一步法退火(OSC)制备的钙钛矿膜内也存在RP型面缺陷(图2E,H)。然而,对于经过亚稳相结晶调控的CsPbI3-xBrx薄膜,其内部不存在这种RP型面缺陷,因此亚稳相结晶过程可以有效促进体系中卤素离子的均匀分布,降低钙钛矿结晶过程中的晶格应力,从而避免了CsPbI3-xBrx薄膜在结晶过程中产生RP型面缺陷(图2F, I)。图3. Ruddlesden-Popper (RP)型面缺陷对于钙钛矿带隙以及光电性质的影响。(A) 具有二维RP缺陷限域的NPS膜的晶格模型。(B,C) NPS (B)以及MPC (C)膜的态密度计算。(D-F) NPS (D), OSC (E)和MPC (F)薄膜的瞬态吸收等高线图。(G) 稳态荧光光谱。(H,I)单电子(H)和单空穴(I)的电流电压曲线。第一性原理态密度分析(张国桢副研究员合作)表明相对于无RP型面缺陷的钙钛矿薄膜,晶格内部的RP型面缺陷会在钙钛矿价带边形成独立的缺陷态(图3A-C)。并且随着晶粒内部的一维RP缺陷变成二维RP缺陷,钙钛矿的带隙会增大超过0.3 eV,这是由于RP型缺陷限域的区域小于CsPbI3-xBrx激子波尔半径导致的。瞬态吸收光谱测试(张群教授合作)表明NPS膜的基态漂白峰相对于OSC和MPC膜表现出超过30 nm的蓝移和大的拓宽,这是由于在NPS和OSC膜内部存在着二维RP缺陷限域的复合带隙(图3D, E)。作为对比,MPC膜表现出最窄的基态漂白峰,这是由于其晶粒内无RP型缺陷限域的原因(图3F)。由于在MPC膜内部无RP型面缺陷,所以MPC膜表现出较高荧光量子产率、高发光色纯度以及低载流子缺陷态(图3G-I)。图4.基于CsPbI3-xBrx薄膜的电致发光器件性能评估通过对比不同退火方式制备的CsPbI3-xBrx薄膜的PeLED器件性能,该工作发现RP型面缺陷会制约器件的效率、亮度以及稳定性。在消除CsPbI3-xBrx膜内部的RP缺陷之后,纯红光PeLED器件的最大外量子效率和亮度分别达到了17.8%和9000 cdm-2(图4 A-C)。同时RP型面缺陷的有效消除也提升了卤素离子迁移的能垒,进而提升了器件的光谱稳定性(图4D-E)。我校化学与材料科学学院应用化学系博士生宋永慧与访问学者葛晶讲师为该论文的共同第一作者。该工作得到了国家自然科学基金、中国科学技术大学、合肥微尺度物质科学国家研究中心以及合肥同步辐射国家实验室的支持。文章链接:https://www.science.org/doi/10.1126/sciadv.abq2321(合肥微尺度物质科学国家研究中心、化学与材料科学学院、科研部)
  • 中国化学发光产业图谱
    p   中国体外诊断市场生化诊断、免疫诊断、分子诊断、POCT的竞争格局已经形成,2010-2014年,生化诊断市场份额由27%降低至19%,免疫化学的市场份额由33%增加至38%,分子诊断由5%增加至15%。化学发光为最先进的免疫诊断技术,2015年国内市场规模达160亿元,近年来维持20%-25%的增速,为IVD企业必争之地。 /p p   免疫诊断经历了同位素放射免疫(RIA)、胶体金、酶联免疫(ELISA)、时间分辨荧光(TRFIA)、化学发光(CLIA)等技术的演进。目前我国酶联免疫和化学发光并存,近年来化学发光市场份额越来越大,已经逐渐替代酶联免疫成为免疫诊断的主流。 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/05d34011-007a-4823-9b1d-bef2db81ac1c.jpg" / /p p   化学发光免疫分析(chemiluminescence immunoassay,CLIA)广泛应用于肿瘤标记物、传染病、内分泌功能、激素等方面的诊断。目前,在大多数三甲医院,化学发光已经取代酶联免疫(ELISA)成为主流。检测内容涵盖肿瘤标志物、心脏标志物、甲状腺能、胰岛素、糖尿病、感染性疾病、细胞因子、激素、过敏反应和治疗药物浓度监测等。 /p p   酶促化学发光、直接化学发光、电化学发光是目前主流化学发光技术,国内目前化学发光市场渗透率依然较低,市机市场愿为得到满足。2015年国内化学发光市场份额预计为69亿人民币,远未达到测算的230亿市场容量。 /p p   中国263家化学发光相关企业分布相对集中,形成以北京、广东、江苏、山东、上海、浙江为主的产业集聚区。 /p p   从企业成立时间来看,中国化学发光企业主要企业已经基本进场完毕,化学发光产业新成立公司数量下降,产业新进入者活跃度降低。新产业、安图生物、迈克生物为国内化学发光产业佼佼者,到2017年7月为止化学发光领域超过20家上市/新三板企业进行相应布局。 /p p   从一级市场资本层面,近年来化学发光领域投资几乎绝迹,在行业龙头已经出现的情况下,早期投资机会基本丧失。国际化学发光产业资本整合已经完成,格局已定,以罗氏、雅培、西门子、贝克曼为首的龙头企业地位难以撼动,通过资本整合,拓展企业化学发光上下游产品线,中国企业才刚刚起步。 /p p   中国化学发光产业图谱分为仪器、试剂两部分,仪器包括半自动化学发光仪、全自动化学发光仪、便携化学发光仪,试剂包括微孔板化学发光是机、磁微粒化学发光是集以及其他试剂(蛋白芯片、杂交捕获、酶免疫点印迹等)。 /p p   化学发光仪经历了半自动、全自动、到便携化的发展过程,截止2017年6月底,共有51家企业的80个未过期仪器批件在市场流通、销售。 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/3c7d1ad2-7a59-49db-b6b8-ed0d8a4e9902.jpg" / /p p   国内化学发光仪市场,罗氏诊断占据中国化学发光29.8%市场份额,专利到期给国内企业带来机会。罗氏以电化学发光为核心产品,由宝灵曼1996年研发而成,具有核心专利保护,被称为第四代化学发光。罗氏公司1997年收购宝灵曼公司后,产品不断升级换代,目前以170 T/H的E170和86T/H的E411为主要产品。2016年罗氏电化学发光专利正式过期,为国内企业带来发展机遇。新产业、迈克、安图等国内化学发光领军企业快速发展。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/6fc56e0f-3750-44f2-8863-55a092eda967.jpg" / /p p   国内化学发光试剂市场则经历了由微孔板到磁微粒主导的技术更新,到2017年6月底共有91家企业2313个未过期试剂批件在市场销售。其中激素、抗体、蛋白类化学发光检测试剂占据批准产品83%。安图生物是国内化学发光试剂企业的翘楚,公司已掌握了酶联免疫、微孔板化学发光、磁微粒化学发光、胶体金等多个免疫诊断技术,其中磁微粒化学发光技术是公司重要收入来源。2016年上半年化学发光产品销售收入占公司56.5%,达到2.3亿元人民币。 /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/ccc69d5e-376f-411f-abe1-31a2a11fadd8.jpg" / /p p   无论试剂还是仪器,进入2017年国内化学发光相应产品审批数量均明显减少。 /p p style=" text-align: center " img title=" 6.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/1bc95e47-566d-442f-b7ae-111172ae7bea.jpg" /    /p p   从化学发光检测项目来看,甲功、肿瘤检测是化学发光企业必争之地。 /p p style=" text-align: center " img title=" 7.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/28af80ca-8f62-418b-8f0d-13f80108e7c7.jpg" / /p p   从行业发展趋势来看,技术突破、分级诊疗、价格优势等加速进口替代,2015年化学发光国产化10%左右,与生化诊断70%市场占有率有巨大差距,进口替代空间巨大。 /p p style=" text-align: center " img title=" 8.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/ef86d8bc-0489-44ca-9a9e-9d3eb761d4d7.jpg" / /p p   另外一方面国家分级诊疗战略的大力推进,不断快速增加的基层医疗、诊断需求也在推动我国化学发光产业的进一步发展。 /p p style=" text-align: center " img title=" 9.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/43312dd4-fe25-4c0e-9fc6-c302ecedb3bd.jpg" /    /p
  • 科学家制成彩色高效硅基发光二极管
    据物理学家组织网2月18日报道,硅纳米晶体的尺寸仅为几纳米,却具有很高的发光潜力。现在,来自德国卡尔斯鲁厄理工学院(KIT)和加拿大多伦多大学的科研人员借助硅纳米晶体,成功制造出了高效的硅基发光二极管(SiLEDs),其不含重金属,却能够发射出多种颜色的光。相关研究报告发表在近期出版的《纳米快报》杂志上。   硅虽然在微电子和光伏产业占据着主导地位,但长期以来其却一直被认为不适合发光二极管的制造。然而,这在纳米尺度却并非正确,由成百上千的原子构成的微小硅纳米晶体能够产生光线,也具备成为高效光发射器的巨大潜力。迄今为止,硅基发光二极管的制造一直局限于红色的可见光谱范围和近红外线,因此制造可发出彩色光的二极管可谓绝对新颖。   KIT科学家发现,通过采用不同大小的单分散的纳米粒子,能够改变二极管所发出光的颜色。其可由深红色光谱区域调谐至橘黄色的光谱区域,外量子效率亦可达1.1%。值得一提的是,制成的硅基发光二极管具有令人惊讶的长期稳定性,这在此前从未实现过。操作组件寿命的增长是因为只采用了同一尺寸的纳米粒子,这能有效增强敏感的薄膜元件的稳定性,而可导致短路的过大尺寸粒子则被排除在外。   此款彩色硅基发光二极管还具有不含有任何重金属的优势。与其他使用硒化镉、硫化镉或硫化铅的研究小组不同,科研团队此次采用的硅纳米粒子完全不具毒性,而且地球上的硅储量丰富,成本低廉,更有利于硅基发光二极管的进一步发展。   此外,新型发光二极管惹人注目的方面亦在于其发光区域的同质性。研究人员表示,随着液态处理的硅基发光二极管或能以低成本大批量制成,纳米粒子“群体”也将进入新的领域,相关潜力将难以估计,而教科书上有关半导体元件的描述或许也将被改写。
  • HORIBA | 只有发丝直径十万分之一的量子点,如何解析它的“光”|科普
    被Science评为年度十大科学突破之一的量子点你了解吗?量子点又称半导体纳米晶,它的三维尺寸在2-10nm范围内,大概是一根头发丝直径的十万分之一,人眼无法看到。它一般由II-VI族元素(如CdSe、ZnSe等)或III-V族元素(如InP、InAs等)半导体材料构成,具有明显的量子效应。由于量子点独特的物理、光学、电学特性,曾被Science杂志评为年度十大科学突破之一。 量子点发光图片来自网络01会发“光”的量子点,有哪些应用?正是在纳米尺度,量子点表现出量子效应——当这些半导体晶体做到纳米尺度,不同的尺寸就可以发出不同颜色的光。例如,量子点发光波长可达850纳米(红光),相对于可见光穿透深度更深,更适合应用于生物体内组织成像。量子点吸收能力非常强,能够大提高灵敏度。它对照明和显示产业将会有重大影响。使用量子点的发光二管,更加接近于自然光,并且发热大大减少。在显示产业方面,据了解,中国的研究处于领先优势,有机会整个显示产业的发展。如此荣耀之事,相信各位读者和我们一样,期待不已。但是问题来了,看不见的量子点,它的“光”如何解析呢?量子点电视图片来自网络02如何解析量子点发光?下面就以英国牛津大学、埃默里大学和乔治亚理工学院的研究成果做一下说明。在这部分,你可以了解到量子点尺寸、组成与对应的能带隙和发射峰值的变化关系。1样本准备本例中使用的CdSeTe量子点[1],直径范围2.7-8.6 nm。量子点通过沉降和离心纯化处理后室温保存备用。2测试条件吸收光谱由吸收光谱测得 (带宽=1.0 nm)。参照Fendle等人[2]的方法,通过吸收数据获得起始吸收边和能带隙。光致发光光谱(通常所说的荧光光谱)由HORIBA FluoroMax® 高灵敏度荧光光谱仪测得 (λexc = 475 nm,带宽 = 2.0 nm)。所有光谱测量都在光谱仪响应校正下获得的。3结果分析下图是组成相同,尺寸不同量子点的吸收和发射光谱。我们发现吸收和发射波长随量子点直径增大而红移。不同尺寸的CdSe0.34Te0.66量子点的吸收光谱(实线)和光致发光(虚线)谱下面两张图分别是Te含量对能带隙(上图)及发射峰位(下图)的影响。从图中可以发现,量子点组成不同,对应的能带隙和发射峰值也会发生变化。当Te含量为60%时,电子跃迁和荧光带边发射都出现拐点。 能带隙(上图),发射波长(下图)与量子点中Te浓度的关系曲线尽管量子点的尺寸小到纳米级,看不见摸不着,但是通过以上两组实验表征量子点的发光特性,我们可以发现量子点的发光与其尺寸和组成相关。这一重要结论,是通过HORIBA荧光光谱仪获得的。在本实验中,研究人员使用的是FluoroMax® 高灵敏荧光光谱仪,正是由于它高灵敏的特性,可以轻松、快速得到非线性变化的光致发光光谱。因此,如果说“量子点的世界”是神奇、复杂的,经常表现出与宏观世界不同的现象,那么HORIBA荧光光谱仪,就是帮助科研工作者解析量子点世界的“神器”。03致 谢感谢英国牛津大学的Robert Bailey和埃默里大学和乔治亚理工学院的Shuming Nie提供数据和图片。参考文献:[1]R.E. Bailey and S. Nie, J. Am. Chem. Soc., 125, 7100–7106 (2003).[2]Y. Tian, et al., J. Phys. Chem., 100, 8927–8939 (1996). 点击标题,查看往期精华文章上交大新拉曼探针有望精准定位肿瘤君,助力攻克医学难题光谱分析助力锂电池产业突破:拉曼篇(1)锂电池充放电过程正负的研究HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 这篇Nature会发光,可柔了!
    1895年,威廉伦琴(WilhelmRöntgen)发现了X射线,从而在医学和工业射线照相领域取得了许多重大进展。早期的射线照相技术将X射线穿过物体并在摄影胶片上捕获剩余光束的图像。在1980年代初期,人们开发了计算机射线照相术,成像板设备取代了摄影胶片。但计算机射线照相具有若干缺点,例如低图像分辨率和高成本。在1990年代中期,替代性的数字X射线成像技术得到了发展,由一层闪烁体(将X射线转换为光发射的材料)和一层高度像素化的光电晶体管组成平板X射线探测器,将X射线能量直接或间接地直接转换为电信号。但这些扁平的非柔性X射线探测器无法生成弯曲或不规则形状的3D对象的高分辨率图像。截至目前,对3D对象进行高分辨率X射线成像仍然是一项艰巨的挑战。为此,福州大学杨黄浩、陈秋水联合新加坡国立刘小钢等使用一系列可溶液处理、掺杂镧系元素的纳米闪烁体实现了无平板,高分辨率,三维成像的超长寿命X射线捕获。该柔性X射线探测器能够产生比平板探测器更好的3D图像。含镧系元素的纳米晶体可以将X射线辐照产生的激发电荷载流子存储在晶格缺陷中数周。这是由于晶格中的氟离子可以通过与X射线光子的碰撞而被置换。这会产生空位,而这些空位处的离子以及间隙中的氟化物离子通常不会被占用。空位与填隙配对,在Frenkel缺陷的晶格中产生不规则性。图1 掺杂镧系元素的持久发光纳米闪烁体的表征通过缺陷形成和电子结构的量子力学模拟表明,Frenkel缺陷充当纳米晶体中载流子的陷阱,并且陷阱具有不同的深度,即,被俘获的载流子需要逃逸的能量大小有所不同。但是,在环境条件下,浅陷阱中载流子的能量可以缓慢逸出并迁移到晶格中的镧系离子。该过程与缺陷的自我修复同时发生。因此,由辐射触发的阴离子迁移到宿主晶格中而导致被俘获电子的缓慢跳跃可以诱导超过30天的持续辐射发光。这种持久性在实际应用上大有所为,因为与以前使用的荧光粉相比,它延长了潜像在被转换成电信号进行分析之前可以在检测器中存储的时间段。图2 掺杂镧系元素的纳米闪烁体中X射线能量俘获的机理研究研究人员使用这些持久发光纳米晶体制作了用于高分辨率3D射线照相的柔性X射线探测器,并开发了一种称为X射线发光扩展成像(Xr-LEI)的新技术。图3 高分辨率Xr-LEI探测器由一块硅酮聚合物组成,其中嵌入了纳米晶体(图4)。纸张被包裹在要成像的3D对象上,然后用X射线照射。电荷载流子被捕获在X射线穿过的检测器区域内的纳米晶体的Frenkel缺陷中,从而产生残留X射线束的潜像。然后将检测器移出并加热到80°C,随着被捕获的电荷载流子的能量被激发迁移为镧系元素离子,从而将潜像迅速转换为发光体。图4 弯曲物体的高分辨率X射线成像通过将纳米晶体嵌入高度可拉伸的硅树脂中,作者获得了约25微米的分辨率。这远高于使用常规平板检测器可获得的分辨率(通常约为100微米)。而且该X射线发光扩展成像技术的光学存储时间超过15天。Ou, X., Qin, X., Huang, B. et al. High-resolution X-ray luminescence extension imaging. Nature 590, 410–415 (2021). https://doi.org/10.1038/s41586-021-03251-6
  • Light: 黄维&王建浦|顶发光微腔结构实现高效率钙钛矿发光二极管
    金属卤化物钙钛矿材料具有可溶液法制备、高荧光量子效率、高色纯度等特点。近年来,钙钛矿发光二极管(PeLED)的器件效率提升迅速,成为下一代照明与显示技术的有力竞争者。然而,由于钙钛矿材料较大的折射率,导致大量的光子被限制在器件内部,阻碍了PeLED效率的进一步提升。近日,南京工业大学黄维院士和王建浦教授团队在国际顶尖期刊Nature子刊 Light: Science & Applications 发表论文,他们提出通过构筑光学微腔,制备顶发射PeLED,从而大幅度提升器件效率的新思路。光学微腔一方面能够通过Purcell效应提高辐射复合速率,提升材料的荧光量子效率;另一方面,优化的微腔结构可以使更多光子沿着微腔的光轴出射,从而提高器件的出光耦合效率。现代信息社会的快速发展,对发光显示技术提出了高效率、高亮度、柔性可穿戴等要求。传统的无机发光二极管通常在单晶衬底上通过外延法生长制备,难以获得大面积柔性器件。近年来快速商业化的有机发光二极管能够通过溶液法、蒸镀法制备大面积柔性器件,但有机材料本身的激子特性使其难以在大电流下实现高亮度和高效率。钙钛矿材料兼具无机半导体高导电性和有机材料可溶液法制备的优点,在下一代显示领域极具竞争力。然而,近年来底发光PeLED的效率逐渐达到瓶颈,效率提升速度放缓。发光二极管的效率是由荧光量子效率、载流子注入效率、光耦合效率共同决定的。平板型底发光器件的光耦合效率通常为20%左右,其发光层发出的光子大部分被限制在了器件内部,无法从正面出射。另一方面,将发光器件应用于显示时,还需加上不透光的控制电路,因此显示面板上一部分区域无法发光,也就是产业化过程中面临的开口率的问题。设计具有微腔结构的顶发光器件,能够有效地同时解决以上两个问题。这是由于微腔结构能够提高器件的出光耦合效率,而顶发光能够解决显示面板的开口率问题。图1 顶发光器件和底发光器件构筑基于光学微腔的高效率PeLED需要解决三个难题:1)制备具有高荧光量子效率的钙钛矿薄膜;2)制备高质量光学微腔;3)实现器件内部平衡的载流子注入。在钙钛矿薄膜的选择上,作者选择了具有多量子阱(MQW)结构的准二维钙钛矿。其优点在于,通过调控大尺寸阳离子和小尺寸阳离子的组分,能够精确地调控钙钛矿的结晶性、形貌以及薄膜内部量子阱的分布。基于此思路,作者获得了致密的MQW钙钛矿薄膜,并将其荧光量子效率提升到了78%。图2 MQW-PeLED的能级结构及钙钛矿层形貌构筑高质量的光学微腔需要在器件的两端分别制备全反射和半反射的电极。为此,作者在器件底端蒸镀了100 nm的金电极作为全反射层,并且优化了顶端半反射金电极的厚度,将器件的光耦合效率从20%提升到了30%。要实现增强型的微腔效应,还需将微腔的光学长度设计到发光半波长的奇数倍。作者发现,通过调控电子传输层ZnO和空穴传输层TFB的厚度,可以有效地调控微腔的光学长度。值得注意的是,优化ZnO、TFB厚度的同时,还要考虑发光层在微腔内部所处的位置是否位于微腔效应增强的位置。此外,高性能PeLED的实现还依赖于器件内部载流子的平衡注入。作者前期的研究表明,MQW钙钛矿层内部存在快速的(皮秒量级)能量转移,从而使得发光区域主要位于与TFB的交界处。考虑到ZnO和TFB都具有较高的载流子迁移率,因此ZnO的厚度通常低于TFB的厚度。图3 微腔器件内部不同位置的增强效果及发光区域基于以上对钙钛矿发光层、器件光学结构及载流子注入/输运方面的优化,作者将微腔结构顶发射PeLED的外量子效率提升至20.2%。该器件表现出显著的微腔效应,不同于底发光器件的朗博体发光,顶发射微腔PeLED在正面的出光显著增强,从而大幅度提升了光耦合效率。图4 微腔器件外量子效率及发光轮廓较低的光耦合效率是限制平板发光的重要原因之一,该工作将顶发射微腔结构应用于PeLED,实现了超过20%的外量子效率,是目前顶发射PeLED的效率最高值。该工作的发表,使钙钛矿这种明星材料在LED实际应用方面更进了一步。此外,高质量微腔的制备及其器件内整合,也对电泵浦钙钛矿激光器的实现具有重要的借鉴意义。文章信息:该成果以“ Microcavity top-emission perovskite light-emitting diodes ”为题发表在 Light: Science & Applications 。本文共同第一作者为南京工业大学先进材料研究院博士生缪炎峰、程露、邹伟,通讯作者为王建浦教授、黄维院士、彭其明副研究员。论文地址:https://www.nature.com/articles/s41377-020-0328-6文章来源:中科院长春光机所 Light学术出版中心
  • 自然:立式全彩微型发光二极管制成
    美国麻省理工学院研究团队发明了一种堆叠二极管以创建垂直、多色像素的方法,该方法可用于制作更清晰、无缺陷的显示器。研究成果近日发表在《自然》杂志上。多年来,单个像素的尺寸不断缩小,使得更多的像素能被封装到设备中以产生更清晰、更高分辨率的数字显示。但像计算机中的晶体管一样,发光二极管(LED)中的像素也正在接近其尺寸极限。这种限制在增强现实和虚拟现实设备的近距离显示中尤为明显,有限的像素密度会导致“屏幕门效应”,从而使用户感知到条纹。在新研究中,每个堆叠像素都可生成完整的颜色,宽度约为4微米。微型LED可实现每英寸5000像素的封装密度。这是目前已知最小的微型LED像素和最高像素密度。研究表明,垂直像素化是在更小的空间内实现更高分辨率的新方式。研究人员称,对于虚拟现实,目前它们看起来真实程度有限,但使用垂直微型LED,用户可获得完全身临其境的体验,且无法区分虚拟与现实。微型LED制造需要极高的精度,因为红色、绿色和蓝色的微型像素需要首先在晶圆上单独生长,然后精确地放置在板上,彼此精确对齐,以便正确反射和产生各种颜色和阴影。实现这种微观精度是一项艰巨的任务,如果发现像素不合适,则需要报废整个设备。麻省理工学院团队此次提出的是一种不需要精确地逐像素对齐的微型LED制造方法。与传统的水平像素排列相比,该技术是一种完全不同的垂直LED方法。在传统显示器中,每个红绿蓝像素都是横向排列的,这限制了可创建的每个像素的大小。垂直堆叠所有3个像素,理论上可将像素面积减少三分之一。作为演示,该团队制造了一个垂直LED像素,并展示了通过改变施加到每个像素的红色、绿色和蓝色膜上的电压,他们可在单个像素中产生各种颜色。到目前为止,他们已证明可刺激一个单独的结构来产生全光谱的颜色。
  • 欧盟研制成功高效紫外发光二极管
    p    a title=" " href=" http://www.instrument.com.cn/zc/35.html" target=" _self" 紫外 /a (UV)辐射灯光通常应用于水净化处理行业和水产养殖场,直接杀死有害细菌和加速有机或无机污染物的化学反应中和过程。但目前市场上使用的紫外辐射灯光源含有汞(Mercury)元素成分,将对人体健康和生态环境造成新的风险。欧盟第七研发框架计划{FP7}中小企业主题提供110万欧元,总研发投入140万欧元,由欧盟4个成员国及联系国爱尔兰(总协调)、英国、捷克和挪威,4家创新型中小企业(SMEs)和4家科研机构联合组成的欧洲AQUA-PULSE研发团队。利用先进的二氧化钛(TiO2)作为紫外光催化材料,成功研制开发出更高效更廉价的紫外发光二极管(UV LEDs),被欧委会称作水净化处理行业的“突破性”技术。 /p p   研发团队反复测试不同紫外发光二极管的材料配置,包括TiO2紫外发光催化材料,直到结构功效性价比实现最佳优化。在此基础上设计开发的原型,已通过各项技术、环境和安全可靠性验证,可有效清除水中的有害细菌和其它污染物。设立于挪威的一家企业,已开始生产应用于鱼缸水净化处理的紫外发光二极管紧凑型净化装置 而设立于英国的一家企业,正在开发生产应用于家庭、办公场所和饭店的新型水净化处理装置。 /p p   2013年,全球水净化装置市场规模已达350亿欧元,且市场快速增长。目前,研发团队联合工业界合作伙伴集中优势资源,正在积极研制生产可应用于大型饮用水和污水处理行业的创新型净化处理装置,包括应用于水产养殖场。 br/ /p
  • 基于步进扫描的光调制反射光谱方法及装置获国家专利授权
    近日,一种“基于步进扫描的光调制反射光谱方法及装置”近日获得国家知识产权局专利授权。该专利由中科院上海技术物理研究所邵军、陆卫等科研人员发明。 该装置包括傅立叶变换红外光谱测量系统、作为泵浦光源的激光器、以及联结傅立叶变换红外光谱仪中探测器与电路控制板的锁相放大器和低通滤波器,置于样品与激光器之间光路上的斩波器,从而使连续泵浦激光变为调制激光,并馈入锁相放大器的输入参考端来控制锁相。该方法使用上述装置进行光调制反射光谱测量,包括消除泵浦光的漫反射信号以及泵浦光产生的光致发光信号的干扰;消除傅立叶频率和增强中、远红外波段微弱光信号的探测能力三个功能。 经过对分子束外延生长GaNxAs1-x/GaAs 单量子阱样品和Ga1-xInxP/AlGaInP多量子阱材料的光调制反射光谱实际测试。表明本发明显著提高探测灵敏度和光谱信噪比,并具有快速、便捷的优点,特别适用于中、远红外光电材料微弱光特性的检测。
  • 标记免疫专委会化学发光组化学发光交流会在清华大学化学系举办
    p   2017年4月21日下午,中国分析测试协会标记免疫专业委员会化学发光学组在清华大学化学系何添楼举办了发光交流会。化学发光组组长清华大学林金明教授和化学发光组秘书长陈吉波主持了会议,共有30位专委会成员包含14家企业代表、4家院校教授代表和3家医院主任代表出席了此次会议。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/dae3db11-7a08-476c-8e43-dbd477f18b21.jpg" / /p p style=" text-align: center " 会议现场 /p p   标记免疫专委会化学发光组组长林金明教授致辞,简要介绍了国内外化学发光的发展历程以及课题组目前所开展的研究工作。北京热景生物技术有限公司董事长林长青,复旦大学教授卢建忠,山东新华医疗集团体外诊断事业部技术总监郑淑芳,北京达成生物技术有限公司副总经理苑希宁,北京大学第一医院检验科副主任闫存玲,四川迈克生物科技股份有限公司技术总监龙腾镶,北京利德曼生化股份有限公司研发副总陈立杰,北京华科泰生物技术有限公司副总经理林斯,深圳市新产业生物医学工程股份有限公司仪器研发总监尹力,中科院肿瘤医院免疫室研究员张郁,上海透景生物技术有限公司研发中心免疫部经理朱丽,苏州长光华医生物医学工程有限公司副总经理沙利烽,深圳普门科技有限公司市场总监卢国强,国家纳米科学中心研究员孙佳姝,北京科美生物技术有限公司董事会秘书刘宇卉,苏州翊曼生物技术有限公司总工程师陈任远,武警总医院检验科主任杨晓莉,苏州海狸生物医学工程有限公司技术总监张燕军,深圳市易瑞生物技术有限公司技术总监袁克湖,郑州安图生物股份有限公司主任工程师李林分别做了自我介绍,部分参会代表还详细介绍了本单位产品及化学发光技术现状。 /p p style=" text-align: center " img width=" 600" height=" 493" title=" 2.jpg" style=" width: 600px height: 493px " src=" http://img1.17img.cn/17img/images/201704/insimg/02fc1eed-7c5b-42d6-8075-a355b04165ca.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 化学发光组组长 林金明 /p p & nbsp & nbsp & nbsp & nbsp 会上展开热烈讨论,院校教授代表提出了应该及时抓住目前我国纳米技术和微流控技术在国际上领先的大好机会,鼓励企业和医院临床检验部门积极参与新技术的开发,在化学发光领域赶超国际先进水平。医院主任代表提出了目前国产仪器存在的问题,指出国产化学发光系统的核心应该是产品的质量,并就化学发光系统的统一性、标准化、连续性及产品的质量、技术服务和仪器稳定性提出了客观评价,也对仪器使用后的维护、保养及技术培训提出建议。企业代表提出了资源整合,避免闭门造车,就免疫产品标准化及团体标准展开讨论,也提出了企业的人才需求。 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/3d5b20d3-cee4-49e8-ab3f-dd66b036025f.jpg" / /p p style=" text-align: center " 现场讨论 /p p   与会者一致认识到国产化学发光和国外先进技术的差距,整合资源、统一标准、突破、创新方能实现弯道超车。会议约定今年10月份左右再次举办小规模的化学发光产学研技术研讨会,逐渐形成科研院所、企业、医院三者合作的化学发光新技术研发体系。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/653fdca3-85a1-4da8-abd9-dac6f5cb365a.jpg" / /p p style=" text-align: center " 会后合影 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制