当前位置: 仪器信息网 > 行业主题 > >

光学性质

仪器信息网光学性质专题为您整合光学性质相关的最新文章,在光学性质专题,您不仅可以免费浏览光学性质的资讯, 同时您还可以浏览光学性质的相关资料、解决方案,参与社区光学性质话题讨论。

光学性质相关的论坛

  • Mie散射及水中气泡光学性质的研究

    【题名】: Mie散射及水中气泡光学性质的研究【期刊】:【年、卷、期、起止页码】:【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-10702-2010190437.htm

  • 另解海洋光学

    海洋光学是光学与海洋学之间的边缘科学。它主要研究海洋的光学性质、光辐射与海洋水体的相互作用、光在海洋中的传播规律,以及和海洋激光探测、光学海洋遥感、海洋中光的信息传递等应用技术有关的基础研究。海洋光学的发展简史 早在19世纪初,就有人用透明度盘目测自然光在海中的铅直衰减。不过直到19世纪末,海洋学家才开始注意研究海洋的光学性质,并结合海洋初级生产力的研究,用光电方法测量海洋的辐照度。到了20世纪30年代,瑞典等国的科学家设计制造了测定海水的线性衰减系数、体积散射系数和光辐射场分布的海洋光学仪器,进行了一系列现场测量。 从第二次世界大战后到20世纪60年代中期,是海洋光学的形成时期,人们研制了各种测定海洋水体光学性质的海洋光学仪器,对各大洋光学性质进行了现场测量和调查。

  • 煤的物理性质和工艺性质

    煤的物理性质 主要包括煤的密度、表面性质(湿润性、表面积、孔隙度)、光学性质(折射率、反射率)、电性质(电导率、介电常数)、磁性质、热性质(比热容、热导率、热稳定性)和机械性质(硬质、脆度、可磨性)。煤的工艺性质 ①粘结性。指烟煤在受热时本体粘结或与外加惰性物质粘结的能力,它是评价工业用煤特别是炼焦煤的主要指标。实验室测定方法有粘结指数、坩埚膨胀序数、罗加指数等。②结焦性。指在模拟工业焦炉条件下,或在半工业性试验焦炉内,煤结成焦炭时的性能,实验室测定方法有奥亚膨胀度、胶质层指数、葛金焦型等。③发热量。指单位质量的煤在完全燃烧时放出的热量。它是评价燃料煤的主要指标。根据计算时燃烧产物中水的状态不同,有高位发热量与低位发热量之分,包含燃烧生成的水蒸气冷凝潜热的,称为高位发热量,不包括水蒸气冷凝潜热的,称为低位发热量。④反应性。又称活性,是指在一定温度下,煤与不同气体介质如二氧化碳、水蒸气、氧气、氢气作用的气化反应能力。⑤热稳定性。指气化、燃烧用煤在加热时块度变化的性质。⑥焦油产率。是评价煤和油页岩炼油适宜性的指标,通常采用铝甑低温干馏法测定。⑦可选性。是反映煤在洗选过程中,除去其中矿物质的难易程度。它是将各级粒度的煤在不同密度的液体中经浮沉试验而确定的。⑧灰熔点和熔融灰的粘度。将煤灰制成三角锥体,放在高温炉中,在一定气氛下加热,观察灰锥形状的变化,从而测定变形温度T1、软化温度T2和流动温度T3,其中T2表示煤灰熔点。熔融灰的粘度用高温粘度计测量。再想详细问老皮去,我是不懂的

  • 【讨论】X射线的性质

    X射线四1895年由德国物理学家伦琴发现的。其后人们运用光学手段对X射线的本质这一问题研究了十几年。到了1912年,德国的科学家劳厄与X射线束照射闪锌矿等,在照片底板上得到了有名的劳厄斑。这才搞清了X射线是一种电磁波,同时也证明了物质的基本结构是晶体结构。并查明,X射线的波长在0.1[font=宋体]~100唉之间,比同样是可见光的波长要短,即具有跟可见光类似的性质,又具有一些可见光所没有的特性。[/font][color=#f10b00]大家一起谈谈X射线有哪些性质![/color]

  • 【分享】部分物质的性质

    [B]磷 酸 锂(95.0%-98.0%)[/B]LITHIUM PHOSPHATE化学式:Li3PO4 相对分子质量: 115.84性质:白色结晶粉末,难溶于水 溶于稀酸,比重2.41.用途:催化剂及彩色荧光粉等.[B]醋 酸 锂(AR99.0%,CP98.0%,企标99.0%)LITHIUM ACETATE [/B]化学式:CH3CO2Li 相对分子质量:84.02性质:无色结晶.有潮解性.溶于水和醇,防潮密封保存.用途:饱和和不饱和的脂肪酸的分离.制药工业用于制备利尿剂,锂离子电池用原料.[B]碘 化 铯(99.99%,99.999%)CESIUM IODIDE [/B]化学式:CsI 相对分子质量:259.81性质:立方形结晶或粉末,易溶于水和醇,比重4.5,熔点621℃,易潮解,避光充氮气保存.用途:用于X-射线图像增强管、碘化铯钠、碘化铯铊闪烁晶体材料、特种电光源添加剂、特种光学玻璃医药及分析试剂等.

  • 【分享】三维光学测量仪的特征及功能简介

    三维光学测量仪又可称为三维影像测量仪或非接触式光学测量仪,是集光学、机械、电子、计算机图像处理技术于一体的高精度、高效率、高可靠性的测量仪器。三维光学测量仪采用非接触式三维测量方式,可进行快速精密的几何尺寸和形位公差的测量,具有了良好的刚性质量比,运动平稳、精确,确保了整机精度更高。 三维光学测量仪采用国际先进的有限元分析技术设计,具有高精度、高性能高速度和高稳定性的特点。使用冷光源系统,可以避免容易变形的工件在测量是因为热变形所产生的误差,并避免了由于碰触引起的变形。三维光学测量仪可高效地检测各种复杂精密零部件的轮廓和表面形状尺寸、角度及位置,全自动地进行微观检测与质量控制;还可自动抓边、自动聚焦的功能使得最大程度减少了人为误差。 三维光学测量仪适用于航空、航天、军工、汽车、模具、电子、机械、仪表、五金、塑胶等行业中的模具、螺丝、金属、配件、橡胶、PCB板、弹簧等以坐标测量为目的一切应用领域适用范围。

  • 【网络讲堂】快速原子力显微镜和超分辨光学系统联用技术

    http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2174原子力显微镜由于其对样品的是否导电或是否处于液体环境没有要求被广泛应用于科学研究的各个领域。原子力显微镜可以获得样品役区域的表面形貌和力学性质(如粘性和硬度等)。随着应用领域的不断扩展和对仪器性能越来越高的要求,尤其是生物研究者希望能实时监测细胞和蛋白分子的反应过程,对原子力的扫描速度提出了越来越高的要求。传统的原子力的扫描速度已经无法满足需要了。同时因为原子力只能得到形貌和力学性质而无法获得样品的化学信息和样品内部结构,研究者希望能将原子力与光学仪器联用起来,这样,就能同时获得同区域的原子力信息和光学信息。 本次的webinar,将会为大家带来JPK公司的最新快速原子力显微镜与超分辨光学系统联用的最新进展。

  • 光学新领域----液晶

    从液晶手表的出现开始,液晶就作为电子时代的重要角色分外引人注目。之后又相继出现了带有液晶显示的电子手册、便携式电话、情报工具、游戏机、翻译辞典、文字处理机、笔记本电脑、PC监视器,乃至摄像机、数字相机、多功能电话、可视电话、液晶电视等。如今,液晶已是家喻户晓、人人皆知的名角了。但名归名,液晶到底是一种什么物质呢? 什 么 是 液 晶 通常说物质有三态,即气、固、液态,其实这是液晶还未被人们认识时的总结。液晶是介于固态和液态之间的一种物态,它具备液体的流动性,又具备固态晶体的排列性质。液晶状态可以向结晶态和液态相变。变为结晶态时,不仅具有分子取向的有序性,而且分子重心具有周期平移性;变为液态时,失去分子重心周期平移性,也失去了分子取向的有序性,成为完全无序状态。 1888年,奥地利科学家赖因策(F.Reinitzer)在布拉格植物生理研究所做实验时,发现他加热的化合物熔化后先变成了白浊液体,并且闪现某些颜色,继续加热后变成透明液体。于是他又对化合物进行降温后,重复实验,依然看到上述现象。赖因策没有像其他人那样将这种特有的现象简单看作是材料不纯造成的,而是更精心地制备材料,对颜色的起因进行探究。1888年3月14日,赖因策将样品寄给德国的年轻结晶学家雷曼(O.Lehmann),并附上一封长信。雷曼经过系统研究,发现有许多有机化合物都具有同样的性质,这些化合物在混浊状态,其力学性质与液体相似,具有流动性,而其光学性质与晶体相似,具有各向异性,故取名为液晶(liquid crystal)。 构成液晶的分子为有机分子,大多为棒状,即它的长度尺寸为直径尺寸的5倍以上。由于分子结构的这种对称性,使得分子集合体在没有外界干扰的情况下形成分子相互平行排列,以使系统自由能最小。但是,液晶具有液体的流动性,不可能脱离固体容器的盛载,但固体容器表面往往给液晶带来干扰,破坏液晶整体一致的排列性,而变成一微米至数十微米取向不同的小畴。所以在制作液晶器件时,一定要在基板上附上液晶取向膜,以保持液晶整体的排列。 液晶具有光学各向异性,沿分子长轴方向上的折射率不同于沿短轴方向上的折射率。如果沿分子长轴方向上的折射率大于沿短轴方向上的折射率,称为正性液晶,反之称为负性液晶。偏振光入射正性液晶时有两种状况:偏振面平行液晶分子取向,折射率大,光速小;偏振面垂直液晶分子取向,折射率小,光速大。如果沿其他方向入射则会产生双折射,所以无排列时的液晶畴织构在偏光显微镜下观察呈现五颜六色的美丽图案,那是由于双折射产生的寻常光(o光)与非寻常光(e光)的干涉造成的。

  • 偏光显微镜之光学显微镜的局限性

    显微镜的工作目标是对样品得到一个放大像,使原来肉眼看不见的细节能变得清晰可见。这里有两个基本的性能指标:一是分辨率极限,二是最高有效放大倍数。分辨率是分辨物体细节的最小极限。仪器可分辨的最小细节经适当放大后,变成人眼所能看清者。显然,如果超越了仪器分拚率的能力,即使进一步提高放大倍数,也不能让人清晰看到更小的细节。这种现象必须借助于光的波动学说来解释。  光学显微镜中所用的可见光源是波长为400^-800nm的电磁波。波传播的特性之一是衍射。衍射就是波遇到障碍物时能偏离直线传播的性质。根据基础物理知识可知,由于实际光学仪器都有限制光束的“窗口”(光学显微镜中的“窗口”就是物镜边缘所限制的透光范围),它造成的衍射效应会使每个物点形成的像都是有所扩展的衍射光斑。靠得太近的像点彼此重亚起来,会使画面中的细节变得模糊不清.光学显徽镜中还有一些像差(如球差和色差等)也会使像点展宽,但它们大多可以被矫正.所以衍射差就成了限制光学显微镜分辨率的唯一重要因素.http://www.shpuda.com.cn/

  • 【网络讲座】快速原子力显微镜和超分辨光学系统联用技术 (2016-11-11 10:00 )

    【网络讲座】快速原子力显微镜和超分辨光学系统联用技术 (2016-11-11 10:00 )

    【网络讲座】:快速原子力显微镜和超分辨光学系统联用技术【讲座时间】:2016-11-11 10:00【主讲人】:樊友杰先生,JPK Instruments AG,中国区技术负责人。樊先生长期从事原子力显微镜在生物学领域的成像与力学表征以及高速原子力显微镜与先进光学系统(如Raman/STED)的联用工作。【会议简介】原子力显微镜由于其对样品的是否导电或是否处于液体环境没有要求被广泛应用于科学研究的各个领域。原子力显微镜可以获得样品役区域的表面形貌和力学性质(如粘性和硬度等)。随着应用领域的不断扩展和对仪器性能越来越高的要求,尤其是生物研究者希望能实时监测细胞和蛋白分子的反应过程,对原子力的扫描速度提出了越来越高的要求。传统的原子力的扫描速度已经无法满足需要了。同时因为原子力只能得到形貌和力学性质而无法获得样品的化学信息和样品内部结构,研究者希望能将原子力与光学仪器联用起来,这样,就能同时获得同区域的原子力信息和光学信息。本次的webinar,将会为大家带来JPK公司的最新快速原子力显微镜与超分辨光学系统联用的最新进展。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016-11-11 10:003、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2174http://ng1.17img.cn/bbsfiles/images/2016/09/201609271102_612272_2507958_3.jpg扫描二维码,报名参会4、报名及参会咨询:QQ群—290101720,扫码入群“大讲堂”http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669141_2507958_3.gif

  • 【原创】介绍几本国内电子光学的书。

    80年电子光学的书也很多,但买不到了,只能到图书馆去借。所以只介绍这几本最近的偏重电子光学理论和基础,而不是电镜应用的资料。1.高等电子光学 作者: 唐天同 出版社: 北京理工大学出版社 出版日期: ISBN:781045091 图书简介:本书从统一的角度论述了应用于电子束器件、电子显微学、质谱学、微分析与表面分析、微电子工艺技术、加速器与核科学技术及电子束工艺技术等方面的现代电子光学(带电粒子光学)的共有的理论基础、分析方法与主要的最新进展。本书包括电子运动的质点动力学基础,电场与磁场研究,旋转对称系统,直轴多极场系统,电子束流的传输,束电流密度分布的演化,波动电子光学基础,扫描偏转系统,曲光轴系统与偏转分析器,自旋极化电子光学初2.电子光学作者:杜秉初 汪健如出版社:清华大学出版社ISBN:730205582本书以“轴对称场细束电子光学理论和应用”与“强流电子光学理论和应用”为主体内容,把“偏转系统光学与多极场理论”作为补充内容,以适应整体电子光学器件和仪器的应用需要。此外,为了辅助细束电子光学理论的学习,在第1章讨论了几何光学基础。在细束电子光学理论和应用方面,除包含细束电子光学的基本理论和应用外,还介绍了电子光学像差理论、像差系数求解,以及场与轨迹的计算机求解方法;而在强流电子光学理论和应用方面,除包含了轴对称场外,还介绍了非轴对称场的磁控注人枪设计理论和设计方法。因此本书从讨论的内容看具有相当图书目录:第1章 几何光学基础 1. l 序言 1. 2 几何光学基本原理 1. 3 光学系统的近轴成像 1. 4 实际光学系统的光阑 1. 5 实际光学系统的像差习题第2章 电子在均匀场中的运动 2. 1 直角坐标系中的电子运动方程和电子运动速度 2. 2 电子在均匀电场中的运动 2. 3 电子在均匀磁场中的运动 2. 4 电子在均匀复合场中的运动 2. 5 电子光学与几何光学的比较习题第3章 电子光学中的场 3. 1 轴对称静电场的数学表达式 3. 2 轴对称静电场近轴区的性质 3. 3 轴对称静电场力函数(流函数)的性质3. 4 轴对称磁场的矢位3.应用电子光学新编尹涵春, 张晓兵, 王保平编著 出版: 南京 东南大学出版社 2005 载体形态: 4, 176页 图 24cm 丛编说明: 显示技术丛书 提要或文摘附注: 本书介绍在电子光学研究中应用到的实际方法:电磁场的计算和求取;电子透简易的实际分析和和设计;电子三角学和相空间分析方法在研究中的应用。还介绍了电子束在实际应用中的各种作用。 4.彩色显像管中的电子光学作 者: 童林夙出 版 社: 东南大学出版社出版日期: 2004年12月版次:数字电视即将在我国实施之际,一般模拟电视所用的彩色显像管必须改为适用于数字电视彩色显像管中的电子枪和偏转线圈需要重新设计和调整,以适应数字电视要求。本书为涉及圈但又缺乏电子光学基本知识的工程技术人员编写,主要介绍彩色显像管电子枪中阴极、三子光学基本原理和设计方法,以及与偏转线圈有关的电子光学基本内容。5.电子光学华中一、顾昌鑫主编复旦大学出版社,1999年7月基本内容:电子光学系统中带电粒子的运动规律、电子光学系统的基本性能、以及用于电子光学系统设计常用的一些数值计算法。6.宽束电子光学 作者: 周立伟 出版社: 北京理工大学出版社 图书简介:宽束电子光学是研究变像管和像增强器等光电子成像器件中大物面宽电子束在电场和磁场作用下聚焦、偏转和成像的规律的科学,是物理学和电子学中电子光学学科的一个分支。利用这种规律,可以设计制造各种类型的光电成像器件,因而在夜视技术、摄像技术、X射线诊断技术、高速摄影变像管技术、天文学和空间物理学等领域有着广泛的应用。本书是全面论述这一分支学科基本理论的专著。书中由一般的曲线坐标系出发,用张量分析的方法阐述了场和电子运动的一般原理和基本方程以及宽电子束聚焦的普遍理论,并对实际的宽电子束成像系统,诸如近贴聚焦系统、静电聚焦与电磁聚焦同心球系统、倾斜型电磁聚焦系统,以及电磁聚焦移像系统、电磁复合聚焦阴极透镜等的电子光学、像差理论和电子光学传递函数进行了深入的探讨。对于宽电子束成像系统的计算、设计和分析,包括正设计和逆设计,本书亦有较详细的叙述.此外,对于发射系统的电子光学以及变像管高速摄影的动态电子光学亦作了简要的叙述。本书内容的大部分是著者20余年来潜心研究的成果,在内容和体例上,与国内外现有的电子光学著作和教科书有较大的差别。本书可作为光电技术、电子物理与器件、光电子成像技术等专业的高年级大学生、研究生教材;也可供从事电子光学、电子物理、光电子成像器件的科研和教学人员参考。从事电子光学、电子物理、光电子成像器件的科研和教学人员参考。7.束流光学作者:刘祖平 编著 出版社:中国科学技术大学出版社 出版时间:2005年10月 束流光学的主要研究对象是带电粒子束流的形态及其在电磁场中的运动规律,其侧重点不在于粒子能量的变化,而在于约束粒子的轨迹,使束流在传输中偏转、会聚、发散、成像、成形、实现相空间匹配或满足其他要求。本书分为电子光学和束流传输理论两个部分,分别针对电子束器件中的低能电子束和加速器系统中的其他带电粒子束,讲述其运动规律、数学描述手段、主要元器件、组合系统设计计算方法和误差分析方法。8.电子枪与离子束技术作者:张以枕 编著 出版社:冶金工业出版社 出版时间:2004年01月 焊接等行业从事设计研究、设备应用与维护的技术人员使用,也可供大专院校相关专业师生参考。 图书目录: 1 电子光学 1.1 电子光学特征 1.2 轴对称电场中的电子运动 1.3 电透镜 1.4 磁透镜 1.5 实用磁透镜 ...9.电子显微分析章晓中 清华大学出版社这一本比较基础。微电子、土木、生物、医学等学科的本科生或研究生,也可作为非电子显微学专业人员的参考书。 图书目录: 第1章 电子光学基础 1.1 分辨率 1.2 磁透镜的聚焦原理 1.2.1 电子在均匀磁场中的运动 1.2.2 短磁透镜 1.2.3...10.电子束与离子束物理 作者:唐天同,刘纯亮 编著 出版社:西安交通大学出版社 出版时间:2001年02月 本书论述利用电子束和离子束工作和器件、仪器及装置的基本原理与概念和带有共同性的分析方法,包括带电粒子运动的分析动力学、轨道理论、电子离子光学、空间电荷光学、相空间动力学与束流传输、电子束和离子束的统计等等.

  • 光学滤光片的保养方法

    光学滤光片的保养方法

    我们很多的朋友可能都不知道滤光片是什么东西,甚至连听都没有听过,更别说去见到过了。接下来就让我们飞宇达光电的技术人员来与大家谈论一下滤光片![img=,584,405]http://ng1.17img.cn/bbsfiles/images/2017/10/201710121132_01_3313006_3.jpg[/img]滤光片是属于光学元件,是精密仪器,表面是极其容易被刮花的,而当你不当的清洁和存放的方式都可能会给滤光片造成滤镜表面膜层损坏的,降低它的应用性能,缩短使用的寿命。因此我们有一个好的保养方式是很重要的。光学玻璃为基片材料的光学滤光片的保养方法:一、 在平时的使用过程中应当尽可能的小心拿放,同时还得注意外部的环境,避免衣服的拉链、纽扣等划到滤光片,也不要把滤光片放在有灰尘的工作环境中。二、 在我们接触滤光片的时候要带指套,避免手上的一些盐和酸性物质去腐蚀到它的表面。三、 我们在取放滤光片的时候手要去拿滤光片的边缘,就算是在戴着指套的情况之下,也不要去接触滤光片的表面。四、 滤光片就应该被放在柔软干净的物体上,切记不能放在玻璃、金属、桌子或者不干净的纸上。存放的时候放在干净的电容纸里,也可以放在专用的透镜清洁纸里,存放的温度一般在23︒ C左右,温度不要高于40%,放在干燥的环境里。五、 如果发现它的表面有脏的污渍的时候必须要马上去清洁,因为灰尘会很容易使得表面被刮花,和我们手指不小心留下的酸性物质如果留的太久,也会与表面镀膜材料发生化学反应,从而变成了污点。我们可以用无水乙醇或者类似的功能溶剂去进行擦拭污点和手指印。具体的操作方法:手指戴上无尘指套,用无水乙醇浸湿毛巾,拖动浸湿乙醇的毛巾边缘,在滤光片的表面沿着同一个方向去移动。擦拭的过程中尽可能的轻一点,力气小一点,太大的压力可能会破坏滤光片的表面。我们去使用溶剂的目的是为了溶解滤光片表面的残留物中粘性附着物。但是我们得提现大家任何的清洗都会在微观的水平上去降低滤光片的表面层级。六、 我们不要把滤光片堆在一起放,避免磨损。当然我们不同的光学滤光片的保养方法是不一样的,我们得看产品的类型和护理的需要性质来定。如果您还有任何的疑问可以到我们飞宇达光电的网站http://www.fydxr.com去看看了解,您也可以联系刘先生13699819761,QQ:470625897。

  • 【转帖】磁性液体性质及应用

    磁性液体性质及应用 一、概述磁性液体是由纳米级(10纳米以下)的强磁性微粒高度弥散于某种液体之中所形成的稳定的胶体体系。60年代美国首先应用于宇航工业,后来逐渐转为民用,现已成为很庞大的产业,在美国、日本、德国等发达国家都有磁性液体公司,全球每年要生产磁性液体器件数百万吨。磁性液体中的磁性微粒必须非常小,以致在基液中呈现混乱的布朗运动,这种热运动足以抵消重力的沉降作用以及削弱粒子间电、磁的相互凝聚作用,在重力和电、磁场的作用下能稳定存在,不产生沉淀和凝聚。磁性微粒和基液浑成一体,从而使磁性液体既具有普通磁性材料的磁性,同时又具有液体的流动性,因此具有许多独特的性质。磁性液体是由强磁性微粒、基液以及表面活性剂三部分组成。为了得到稳定的磁性液体,强磁性微粒必须足够小,如对铁来说,微粒直径要小于3纳米;对Fe3O4来说,直径不能大于10纳米。制备纳米微粒的方法很多,我们采用化学共沉淀技术制备直径10纳米左右、分布均匀的Fe3O4微粒。化学共沉淀技术具有操作简便、成本低,对设备要求不高等优点。选择合适的表面活性剂是制备磁性液体的关键。表面活性剂包覆在微粒表面,具有以下作用:1. 防止磁性颗粒的氧化;2. 克服范德瓦尔斯力所造成的颗粒凝聚;3. 削弱静磁吸引力;4. 改变磁性颗粒表面的性质,使颗粒和基液浑成一体。对表面活性剂总的要求是,活性剂的一端能吸附于微粒表面,形成很强的化学键,另一端能与基液溶剂化。不同基液的磁性液体要选择不同的表面活性剂,有时甚至需要两种以上的表面活性剂。南京大学从八十年代开始进行磁性液体的研制工作,在强磁性微粒的制备,表面活性剂的选择等方面积累了丰富的经验。现已能制备出高质量的水基、煤油基和邻苯二甲酸二异辛脂基磁性液体。 二、磁性液体的性质由于磁性液体同时具有磁性和流动性,因此具有许多独特的磁学、流体力学、光学和声学特性。磁性液体表现为超顺磁性,本征矫顽力为零,没有剩磁;在外磁场下,磁性液体被磁化,满足修正的伯努利方程。与常规伯努利方程相比,添加了一项磁性能,使磁性液体具有其它流体所没有的、与磁性相关联的新性质:例如磁性液体的表观密度随外磁场强度的增加而增大;当光通过稀释的磁性液体时,会产生光的双折射效应与双向色性现象。当磁性液体被磁化时,使相对于磁场方向具有光的各向异性,偏振光的电矢量平行于外磁场方向比垂直于外磁场方向吸收更多,具有更高的折射率;超声波在磁性液体中传播时,其速度及衰减与外磁场有关,呈各向异性;磁性液体在交变场中具有磁导率频散、磁粘滞性等现象。 三、磁性液体的应用磁性液体的特殊性质开拓了许多新的应用领域,一些过去难以解决的工程技术问题,由于磁性液体的出现而迎刃而解。下面简单地介绍几种磁性液体应用的原理。1. 旋转轴动态密封 磁性液体旋转轴动态密封技术是磁性液体较成熟也是最重要的应用之一,现已广泛应用于X-射线转靶衍射仪、单晶炉、大功率激光器、计算机等精密仪器的转轴密封。其结构原理见图1. 磁性液体在非均匀磁场中将聚集于磁场梯度最大处,因此利用外磁场可将磁性液体约束在密封部位形成磁性液体“O”型环,具有无泄露、无磨损、自润滑、寿命长等特点。目前在国外的精密仪器中,磁性液体密封部件作为一个整体出售,售价一般在两、三千美圆,不单独出售磁性液体。南京大学在磁性液体旋转轴动态密封方面做了大量工作,积累了丰富的经验,拥有一项国家实用新型专利。在南京大学、南京师范大学、南京55研究所等单位的仪器上使用我们的磁性液体密封技术,效果良好,真空度可达10-6t .磁性液体密封技术目前重要用于真空、灰尘、气体的动态密封,封水等液体由于难度较大,实际应用的不多。若能在封水、封油等方面取得突破,其应用领域将极为广阔,必将产生巨大的经济效益和社会效益。我们认为可从以下方面开展工作:改进密封件结构,改善磁路设计,研制新型磁性液体。2. 扬声器 将磁性液体注入扬声器的音圈气隙对音圈的运动起一定的阻尼作用,并能使音圈自动定位,同时音圈所产生的热量可以通过磁性液体耗散,因此加入磁性液体可以提高扬声器的承受功率,在同样结构条件下可使输入功率提高2倍,同时改善频率响应,提高保真度。磁性液体用于金属膜扬声器性能更佳。目前国内许多厂家生产磁性液体扬声器,生产线和磁性液体均从国外进口。若能将磁性液体国产化,必将带来非常可观的收益。3. 阻尼器件 利用磁性液体作为旋转与线性阻尼器,以阻尼不需要的系统振荡模式。与一般阻尼介质相比优点在于可挤占籍助外磁场定位。例如在步进马达中使用磁性液体阻尼来消除系统的振荡与共振,使马达精确定位。另外在防振台中使用磁性液体阻尼(图2),可消除外界振动噪音的干扰,以确保精密仪器(天平,光学设备等)正常工作。4. 选矿分离 利用磁性液体的表观比重随外磁场的变化而改变的特点,可用来筛选比重不同的非磁性矿物(图3)。比重差别在10%左右的矿物可用此技术较好地分离,一般采用水基磁性液体,可重复使用。5. 开关 图4为磁性液体无摩擦开关示意图。水银和磁性液体装在一个不导电的容器中,利用外磁场改变水银在容器中的位置,来达到接通和断开电流的目的。图5为不需动力的新型磁性液体离心开关示意图。磁性液体密封在转轴上的非磁性容器中。当转轴静止时,磁性液体位于容器下部,传感器检测不到它;当轴转动时,离心力使磁性液体分布于容器内壁,传感器检测到磁性液体并引发开关动作。6. 精密研磨和抛光 磁性液体研磨是利用磁性液体的浮力将微米级的磨料悬浮于液体表面,与待抛光的工件紧密接触。不论工件的表面形状多么特殊,均可用此技术精密抛光。另外还可用来研磨高级Si3N4陶瓷球(图6),效率比传统方法高40倍。7. 传感器 目前有两种商用磁性液体传感器:一种是在石油勘探工业中用来测量钻头的加速和倾斜(图7),另一种是在建筑工业中用来检测地下管道的倾斜(图8)。8. 其它应用 除此以外,磁性液体还在许多领域有着广泛的应用前景。如:磁性液体印刷、磁性液体薄膜轴承、声纳系统、磁性药物、细胞磁性分离、磁性液体人工发热器、磁性液体涡轮发电、光学开关,磁性液体刹车,等等。 四、当前的重要工作首先将已经成熟的磁性液体旋转轴封真空、封气技术推向市场,以此为突破口占领市场。同时研制用于超高真空的硅油基磁性液体、可封油用的憎油基磁性液体;改善磁路设计和密封件结构,力争在封水、机油等液体介质方面取得突破。

  • 光学显微镜的分类

    以下内容摘自中国分析仪器网,供有兴趣的版友参考。一、显微镜的分类 (一)、按使用目镜的数目可分为单目、双目和三目显微镜。 单目价格比较便宜,可以作为初学爱好者的选择,双目稍贵点,观察的时候两眼可以同时观察,观察得舒适些,三目又多了一目,它的作用主要是连接数码相机或电脑用,比较适合长时间工作的人员选用。 (二)、根据其用途以及应用范围分为生物显微镜、金相显微镜、体视显微镜等。 1、生物显微镜是最常见的一种显微镜,在很多实验室中都可以见到,主要是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。 2、体视显微镜又称为实体显微镜、立体显微镜,是一种具有正像立体感的目视仪器,广泛的应用于生物学、医学、农林等。它具有两个完整的光路,所以观察时物体呈现立体感。主要用途有:①作为动物学、植物学、昆虫学、组织学、考古学等的研究和解剖工具。②做纺织工业中原料及棉毛织物的检验。③在电子工业,做晶体等装配工具。④对各种材料气孔形状腐蚀情况等表面现象的检查。⑤对文书纸币的真假判断。⑥透镜、棱镜或其它透明物质的表面质量,以及精密刻度的质量检查等。 3、金相显微镜主要是用来鉴定和分析金属内部结构组织,是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。不仅可以鉴别和分析各种金属、合金材料、非金属物质的组织结构及集成电路、微颗粒、线材、纤维、表面喷涂等的一些表面状况,金相显微镜还可以广泛地应用于电子、化工和仪器仪表行业观察不透明的物质和透明的物质。如金属、陶瓷、集成电路、电子芯片、印刷电路板、液晶板、薄膜、粉末、碳粉、线材、纤维、镀涂层以及其它非金属材在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。所以用金相显微镜来检验分析金属内部的组织结构在工业生产中是十分重要的。体视显微镜在工业生产中也可以用到,但是它只是用来观察金属表面划伤、划痕等,放大倍数一般在10X-50X之间,金相的放大倍数一般在40X-400X,有些可以达到800X。 (三)、按光学原理可分为偏光、相衬和微差干涉对比显微镜等。 1、偏光显微是鉴定物质细微结构光学性质的一种显微镜。凡具有双折射性的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。主要用于研究透明与不透明各向异性材料。一般具有双折射的物质都可以用这种显微镜进行观察。双折射性是晶体的基本特征。因此,偏光显微镜被广泛地应用在矿物、化学等领域,如在植物学方面,如鉴别纤维、染色体、纺锤丝、淀粉粒、细胞壁以及细胞质与组织中是否含有晶体等。在植物病理上,病菌的入侵,常引起组织内化学性质的改变,可以偏光显微术进行鉴别。在人体及动物学方面,常利用偏光显微术来鉴别骨骷、牙齿、胆固醇、神经纤维、肿瘤细胞、横纹肌和毛发等。 2、相衬显微镜又称为相差显微镜,最大的特点就是可以观察未经染色的标本和活细胞。这些样品在一般的显微镜下是观察不到的,而相差显微镜则利用物体不同结构成分之间的折射率和厚度的差别,把通过物体不同部分的光程差变为振幅差,经过带有环状光阑的聚光镜和带有相位片的相差物镜来实现观测,简单的说它利用的是样品密度差别产生的反差来进行观察的,所以即使样品不染色也可以进行,这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。有相板的物镜称”相衬物镜”,外壳上常有”Ph”字样。相衬法是一种光学信息处理方法,而且是最早的信息处理的成果之一,因此在光学的发展史上具有重要意义。 3、微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图像呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。 (四)、按光源类型可分为普通光、荧光和激光显微镜等。 1、普通光显微镜采用的就是普通光源,是最常用的。 2、荧光显微镜是以紫外线为光源,通常是照射被检物体(落射式),使之发出荧光,然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 3、激光共聚焦扫描显微镜,采用激光做为扫描光源,逐点、逐行、逐面快速扫描成像。因为激光束的波长较短,光束很细,所以共焦激光扫描显微镜有较高的分辨力,大约是普通光学显微镜的3倍。 (五).按显微镜物镜的位置分正置和倒置显微镜 1、倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为”倒置显微镜”。倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。倒置显微镜由于制作更加严密,价格也是比较贵的。目见倒置显微镜广泛应用于patch-clamp(膜片钳),transgeneICSI等领域。 (六).数码显微镜 1、数码显微镜又叫视频显微镜,它是将显微镜看到的实物图像通过数模转换,使其成像在计算机上。数码显微镜是将精锐的光学显微镜技术、先进的光电转换技术、普通的电视机完美地结合在一起而开发研制成功的一项高科技产品。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。数码显微镜在观察物体时能产生正立的三维空间影像。立体感强,成像清晰和宽阔,又具有长工作距离,并是适用范围非常广泛的常规显微镜。它操作方便、直观、检定效率高,适用于电子工业生产线的检验、印刷线路板的检定、印刷电路组件中出现的焊接缺陷(印刷错位、塌边等)的检定、单板PC的检定、真空荧光显示屏VFD的检定等等,它将实物的图像放大后显示在计算机的屏幕上,可以将图片保存,放大,打印。

  • 几何光学和光学设计

    【题名】: [b]几何光学和光学设计 王子余 著 浙江大学出版社 1989[/b]【链接】: https://www.qianqiantushu.com/ebook/449970.html

  • 【原创】就在你我身边:多氯联苯的性质与危害

    由于PCBs的一些性质,如:特殊高温下一般不可燃、低电导率以及化学稳定性和生物难降解性,使它非常适合用于一些电力设备、液压设备和导热系统中,它已被用作绝缘油、阻燃剂、导热剂、液压油、增塑剂以及其它一些用途。PCBs也被用于铁路变压器、矿井设备、无碳复写纸、颜料、电磁设备中,作为一种衬纸介质和浸没油、光学液体以及天然气管道液体。PCBs的化学性质极其稳定,在自然界中降解极其缓慢,这有赖于联苯的氯化程度,而且持久性也随着氯化程度的增加而增加,是一种长寿命的环境污染物。因此不可避免的通过各种途径迁移入大气、土壤、水体环境中。据估计到1990年止,人类生产出的PCBs已达120万吨,相信有31%流入了大海和土壤。其余的仍在使用、贮藏之中,或埋入土壤——据报导单是英国每年便有600吨。PCBs对生物肌体脂肪的亲和力,很容易在脂肪中溶解,具有很强的脂溶性。这意味着它们一旦污染环境便会进入食物链,影响人类和动物的生存能力,具有致畸性,致癌性,致突变性,被列入世界八大公害。PCBs通过食物链,在鱼类体内积聚,其身体上的PCBs的浓度比它所生活的水域高十几万倍,北极熊体内积聚的含量是它周围环境的30亿倍。所以远离工业以捕鱼为生的因纽特印第安人,通过食物链,在身体组织中积聚了极为可观的PCBs。1966年日本发生6,000人PCBs中毒事件,其中13名孕妇就有2例流产,2例早产,还有死婴。出生的婴儿眼分泌物多,牙龈色素沉着,出生有牙。死者表皮角化萎缩,毛囊扩张,各脏器出血,并在脐血母血中检出多氯联苯。1968年日本北部九州县又发生了震惊世界的米糠油事件,1,600人因误食被 PCBs污染的米糠油而中毒,22人死亡。 1979年台湾也重演了类似的悲剧。PCBs不但可以通过食物链传递,也可以直接由父母传给他们的后代。他们先是在子宫里遭受污染,随后又吸收了母乳中的毒素。据报道,食用受PCBs和其他有机氯化物污染的密歇根湖鱼的妇女所生的孩子,与不吃湖鱼妇女的孩子相比,出生时体重轻、头围小、协调性差。5至7月后的测试表明,这些婴儿的视觉识别能力也很差。流通到以母乳中的PCBs也对儿童健康有着潜在影响。有一些报告表明男性生殖系统异常与血液中PCBs含量升高有关。精子数量少也与精液中存在PCBs有关。人们还逐渐发现PCBs可以阻止动物的内分泌,如大海鸥、海豚和水貂,很容易导致各种癌症、免疫系统缺损、性发育失调、神经系统及肝肾的损坏。人体摄入0.5~2g/kg时即出现中毒现象 ,如食欲不振、恶心、头痛、肝肿大等。这些现象的产生是因为氯化合物干扰了基因的功能

  • 【分享】光学计的特征及应用

    光学计属于精密光学机械长度计量仪器。光学计是应用光学自准直原理测量微差尺寸的长度计量仪器,是一种用标准器以比较法测量工件的尺寸。光学计结构设计紧凑、外型尺寸小巧、便于运输,可对五等量块、量棒、钢球、线形及平行平面状精密量具和零件的外型尺寸作精密测量。 光学计是一种采用量块或标准零件与试件相比较的方式测量物体外形尺寸的仪器。光学计采用腊屏新技术,附加读数放大镜、视场亮度匀称、像质清晰;光学计具有测量精度高、数据稳定可靠,对于小尺寸精密零件的检测方便快捷;光学计能够一机两用,将投影光学计镜管取下装在机床上,可直接控制加工尺寸。 光学计主要用于五等精度量块,一级精度柱型规及各种圆柱形、球形、线形等物体的直径或板形物体的厚度的精密测量,对被测件作微小位移测量。光学计对工件的直径或样板工件的厚度以及外螺纹的中径均能作比较。光学计广泛应用于工厂计量室、车间检定站或制造量具、工具与精密零件车间。

  • 【分享】分子结构、性质与活性

    分子结构、性质与活性[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15188]分子结构、性质与活性[/url][color=#dc143c]原始附件目前失效,不过某人发现可以到资料中心下载,只需一分: --handsomeland [/color]http://www.instrument.com.cn/download/shtml/022123.shtml王连生,化学工业出版社,1998目录第一章结构、性质与活性1.1结构-性质研究发展过程1.2化学键模型与分子结构的表示1.3结构对物理化学性质的影响1.4结构-性质相关预测水中溶解度1.5分子连接性指数与硝基芳烃理化参数的相关性1.6结构-怀质相关估算土壤-沉积物吸附系数1.7应用结构-性质相关研究有机物的亨利常数1.8摩尔体积与理论参数相关性1.9结构与活性第二章量子化学在定量结构-性质-活性相关研究中的应用2.1分子轨道理论方法2.2MOPAC软件及其计算方法2.3应用量子化学参数预测有机污染物的理化性质2.4应用量子化学参数预测有机污染物的生的活性2.5量子化学在有机污染物定量结构-性质-活性相关研究中的展望第三章典型有机物毒理学机理3.1典型有机物毒性反应类型3.2典型有机物的分子毒性机制3.3典型有机物遗传毒理学原理3.4典型有机物毒性作用的生命替代性机制第四章人工神经网络技术在结构-性质-活性关系研究中的应用4.1人工神经网络的构造和功能4.2人工神经网络在结构-性质-活性研究中的应用实例4.3一个BP型神经网络计算程序示例第五章拓扑学方法在结构-性质-活性相关研究中的应用5.1结构-性质-活性相关研究中的拓扑学方法5.2分子连接性指数方法在结构-性质-活性相关研究中的应用5.3Am指数在结构-性质-活性相关研究中的应用5.4自相关拓扑指数的计算方法及其改进5.5拓扑指数与有机物理化学性质的相关性5.6自相关拓扑指数与含氯有机化合物遗传毒性的相关性5.7自相关拓扑指数与有机物对水生生物急性毒性的定量关系第六章基团贡献法预测有机物理化性质6.1ASOG模型6.2UNIFAC法6.3其他基团贡献法第七章一种新的Lewis酸碱性判别指数及其应用7.1Lewis酸碱强度研究概述7.2原理7.3Lewis酸碱性指数的定量化7.4酸碱性指数的应用第八章反相液相色谱保留在定量结构-性质-活性相关研究中的应用8.1概述8.2反相液相色谱保留与分子连接性指数的关系8.3反相液色谱保留在定量结构-性质相关(QSPR)、定量结构-活性相关(QSAR)研究中的应用第九章有机污染物理化性质测定与估算方法9.1分配系数的测定与估算9.2溶解度的测定与估算9.3萘在水溶液中的光化学氧化9.4对硝基苯甲腈水解速率常数的测定9.5苯和间二甲苯挥发速率的测定9.6有机化合物在自然沉积物上吸附与解吸动力学数快速测定9.7有机物饱和蒸气压测定方法9.8分子连接性指数计算9.9分子表面积计算方法9.10EXAMS模式用于研究湖泊中污染物的迁移转化规律第十章生物活性测定与预测10.1有机物对水蚤的急性毒性10.2应用光发菌测定有机化合物的毒性10.3有机物对酵母菌毒性的测定方法10.4鼠伤寒沙门氏菌/哺乳动物肝微粒体致突变性10.5哺乳动物经口急性毒性试验10.6哺乳动物骨髓细胞微核试验10.7利用前线分子轨道能预测氯代芳烃化合物生物毒性的方法10.8典型有机物对鱼毒性的预测10.9典型有机物对藻类毒性的预测10.10典型有机物对小鼠毒性的预测10.11取代芳烃对蝌蚪毒性及其预测10.12毒物风险评价外推法参考文献

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制