当前位置: 仪器信息网 > 行业主题 > >

光学分析

仪器信息网光学分析专题为您整合光学分析相关的最新文章,在光学分析专题,您不仅可以免费浏览光学分析的资讯, 同时您还可以浏览光学分析的相关资料、解决方案,参与社区光学分析话题讨论。

光学分析相关的论坛

  • 海洋光学诚邀您参加【化学计量学在谱学分析中的应用及值得重视的问题】网络讲座

    2012年6月8日,海洋光学将在分析测试百科网上举办“化学计量学在谱学分析中的应用及值得重视的问题”网络讲座,期待您的参与。【内容简介】 主要针对化学计量学在谱学分析,包括近红外光谱,拉曼光谱,紫外可见光谱,LIBS等中的应用和新进展进行介绍,在此基础上,还将对它们的定性定量分析及模式识别分析中几个值得充分重视的问题,如过拟合,变量选择,奇异样本识别与剔除,模型稳定性及模型应用域等,进行详尽讨论。 【讲座时间】 2012年6月8日 上午 10:00【主讲人简介】梁逸曾教授现为中南大学二级教授,中南大学中药现代化研究中心主任,国际杂志《Chemometrics and Intelligent laboratory Systems》副主编。梁逸曾教授师承俞汝勤院士,1988年于湖南大学获理学(分析化学)博士学位;1990年6月-1992年10月,获挪威皇家科学与技术委员会(NTNF)的资助,于挪威Bergen大学进行博士后研究,并于1994年获挪威哲学博士学位(Dr. Philos.)。 梁逸曾教授近三十年来一直从事分析化学、化学计量学和化学信息学、代谢组学、中药化学和中药现代化等方面的研究。在国内外知名刊物上,共发表科学论文450多篇,其中340多篇在国际性刊物上发表,被美国科学引文索引(SCI)收录的文章370多篇,并被评为中国化学学会理事。【报名地址】http://vote.antpedia.com/index.php?sid=21993&lang=zh-Hans

  • 【资料】光学分析方法的发展(共3讲)

    [B][center]光学分析方法的发展 (1) [/center][/B] 光学分析法是利用待测定组分所显示出的吸收光谱或发射光谱,既包括原子光谱也包括分子光谱。利用被测定组分中的分子所产生的吸收光谱的分析方法,即通常所说的可见与紫外分光光度法、红外光谱法;利用其发射光谱的分析方法,常见的有荧光光度法。利用被测定组分中的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]的分析方法,即[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法;利用被测定组分的发射光谱的分析方法,包括发射光谱分析法、原子荧光法、X射线原子荧光法、质子荧光法等。 (一)比色法分光光度法的前身是比色法。比色分析法有着很长的历史。1830年左右,四氨络铜离子的深蓝色就被用于铜的测定。奈斯勒的氨测定法起源于1852年,大约在同一年,硫氰酸盐被用来分析铁。1869年,舍恩报道说钛盐与过氧化氢反应会产生黄色,1882年,韦勒(Weller)将此黄色反应改进成一种钛的比色法。钒也能与过氧化物发生类似的反应,生成一种橙色络合物。1912年,梅勒一方面利用1908年芬顿发现的一个反应(二羟基马来酸与钛反应呈橙黄色,与钒反应无此色),另一方面利用与过氧化物的反应,得出了一种钛和钒这两种元素的比色测定法。吸收光度分析法提供了非化学计量法的一个很好例子。有色化合物的光吸收强弱随着所用辐射波长的大小而变化。因此早期的比色法主要凭经验将未知物与浓度近似相等的标准溶液进行对比。比如象奈斯勒在氨测定法中所作的比较。比色剂,如杜波斯克比色计,是通过改变透光溶液的厚度和利用比尔定律,来对未知物的颜色与标准液的浓度进行对比的,这种仪器并不适用于所有的有色物质,它充其量也不过经验程度很高罢了。1729年,P布古厄(Bouguer)观察到入射光被介质吸收的多少与介质的厚度成正比。这后来又被JH兰贝特(Lambert,1728—1777)所发现,他对单色光吸收所作的论述得到了下列关系式:上式中I是通过厚度为x的介质的光密度,a是吸收系数。利用边界条件x=0时,I=I0,积分得到:I=I0e-ax1852年,A比尔(Beer)证实,许多溶液的吸收系数a是与溶质的浓度C成正比的。尽管比尔本人没有建立那个指数吸收定律公式,但下列关系式I=I0e-acx仍被叫做比尔定律,式中浓度和厚度是作为对称变数出现的。这个名称似乎是在1889年就开始使用了。1940年以前,比色法一直是最直观的分析法,往往是以高度经验为根据的——实际上依靠了奈斯勒管、杜波斯克比色计和拉维邦色调计。色调计利用可叠加有色玻璃盘作为颜色比较的载片。某些测定甚至是将颜色与彩纸和有色玻璃作比较来进行的。TW理查兹在有关卤化银的测定方面,发明了一种散射浊度计,用通过微浊溶液来测量光散射。1940年初左右,分光光度计开始广泛使用,几种高质量、应用简便的工业仪器使比色法更加普及,最著名的仪器,如蔡斯—普尔费利希、希尔格、斯佩克尔、贝克曼和科尔曼分光光度计,采用滤波器、棱镜和光栅,使光的波长限制在一个很窄的范围内。光吸收一般是用光电管测量的。典型的比色试剂是二苯基硫卡巴腙(diphenyl-thiocarbazone)通常叫做双硫腙dithizone,是艾米尔费歇尔在1882年发现的,他观察到双硫腙很容易和金属离子形成有色化合物,但他没有继续这项研究。1926年,海尔穆特费歇尔研究了这个化合物,并报道了把它用于分析的可能性,这种可能性在30年代得到了最充分的利用。这种试剂与大量阳离子所形成的有色螯合物极易溶解于氯仿那样的有机溶剂中。于是,这种络合物就可从大量的水溶液中萃取到少量的溶剂中,从而使这种方法对痕量物质也非常灵敏。比色法借助仪器可用于波长短到2000Å 的紫外区。向紫外区的进一步扩展是不可能的。因为容器、棱镜及空气本身也会吸收光。记录方法(起初主要是照相记录),随着实用光电管的发展得到了明显的改进。紫外分光光度法在测定芳香化合物,如苯酚、蒽和苯乙烯方面特别有价值。紫外吸收在研究有机化合物的结构时也很有用,它同束缚松散的电子缔合,如出现在双键中的电子。乙烯、乙炔、羰基化合物和氰化物中的不饱和键吸收2000Å 以下的光,因此处于紫外分光光度计可测范围之外。不饱和键周围有取代基时,会使光的吸收向长波方向移动,但仍远离实际可测的范围。偶氮基、硝基、亚硝酸盐、硝酸盐和亚硝基的吸收光范围在2500~3000Å 之间。不饱和键发生共轭现象会使吸收增强。引起光向长波方向移动。芳香环具有一个特征吸收本领,可用于鉴定。(二)红外光谱法辐射能吸收用作一种分析工具的最大进展也许是在红外光谱领域。1920年以前,利用波长在8000Å 到几十分之一毫米光谱区的仪器就已经有了,但红外光谱研究的真正进展却发生在1940年以后。这个光谱区含有象分子振动所包括的那样一些频率的光。原子质量、键强和分子构型这样一些重要因素与所吸收的能量有联系。因此某些波段易与OH、NH、C=C和C=O那样一些基团相对应。红外光谱的兴起靠的是发展热电堆以及辐射计、放大器和记录器方面所取得的进展。许多年来,这些仪器的光学部分比检测和记录机构要令人满意得多。红外光谱主要是作为一种定性工具使用的。同时如果大量的日常分析工作——比如,工业实践中常常必需的分析工作——证明红外光谱有利于这种工作的操作的话,那么它也可用于定量分析。定量红外光谱法已经用于分析硝基烷混合物。甲酚混合物和六氯化苯异构体方面。六氯化苯的γ—异构体可用作杀虫剂。红外光谱法已经是测定混杂有相关异构体的γ—六氯化苯的有用工具。红外光谱法在定性分析中极有价值,因为吸收位置和吸收强度能提供大量数据。过去人们曾做了大量的工作,绘制了许多键和基的光吸收性质图,使得有可能利用这种数据迅速确定出新化合物的结构。工业方面,红外光谱也有助于研究聚合作用方面的进展,因为单体和聚合体的红外吸收带相互间是有区别的。目前红外光谱(IR)是给出丰富的结构信息的重要方法之一,能在较宽的温度范围内快速记录固态、液态、溶液和蒸[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的图谱。红外光谱经历了从棱镜红外、光栅红外,目前已进入傅里叶变换红外(FT—IR)时期,积累了十几万张标准物质的图谱。FT—IR具有光通量大、信噪比高、分辨率好、波长范围宽、扫描速度快等特点。利用IR显微技术和基本分离技术(matrixisolation,MI—IR)可对低达ng量和pg量级的试样进行记录,FT—IR和色谱的结合,被称为鉴定有机结构的“指纹”,这些优点是其他方法所难于比拟的。红外光谱近年来发展十分迅速,在生物化学高聚物、环境、染料、食品、医药等方面得到广泛应用。

  • ICP的光学分辨力怎么验收?

    看到很多厂家的仪器样本和官方网站上公布了ICP的光学分辨力,招投标的时候堂而皇之的要求“ 各元素可单独设置分析参数 波长范围:160-800nm 或更宽 光学分辨力:≤0.005nm(Mn257.610nm,以半峰宽表示)”。那么产品到货后验收怎么做?

  • 光学分析方法的发展

    光学分析法是利用待测定组分所显示出的吸收光谱或发射光谱,既包括原子光谱也包括分子光谱。利用被测定组分中的分子所产生的吸收光谱的分析方法,即通常所说的可见与紫外分光光度法、红外光谱法;利用其发射光谱的分析方法,常见的有荧光光度法。利用被测定组分中的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]的分析方法,即[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法;利用被测定组分的发射光谱的分析方法,包括发射光谱分析法、原子荧光法、X射线原子荧光法、质子荧光法等。 (一)比色法分光光度法的前身是比色法。比色分析法有着很长的历史。1830年左右,四氨络铜离子的深蓝色就被用于铜的测定。奈斯勒的氨测定法起源于1852年,大约在同一年,硫氰酸盐被用来分析铁。1869年,舍恩报道说钛盐与过氧化氢反应会产生黄色,1882年,韦勒(Weller)将此黄色反应改进成一种钛的比色法。钒也能与过氧化物发生类似的反应,生成一种橙色络合物。1912年,梅勒一方面利用1908年芬顿发现的一个反应(二羟基马来酸与钛反应呈橙黄色,与钒反应无此色),另一方面利用与过氧化物的反应,得出了一种钛和钒这两种元素的比色测定法。吸收光度分析法提供了非化学计量法的一个很好例子。有色化合物的光吸收强弱随着所用辐射波长的大小而变化。因此早期的比色法主要凭经验将未知物与浓度近似相等的标准溶液进行对比。比如象奈斯勒在氨测定法中所作的比较。比色剂,如杜波斯克比色计,是通过改变透光溶液的厚度和利用比尔定律,来对未知物的颜色与标准液的浓度进行对比的,这种仪器并不适用于所有的有色物质,它充其量也不过经验程度很高罢了。1729年,P布古厄(Bouguer)观察到入射光被介质吸收的多少与介质的厚度成正比。这后来又被JH兰贝特(Lambert,1728—1777)所发现,他对单色光吸收所作的论述得到了下列关系式:上式中I是通过厚度为x的介质的光密度,a是吸收系数。利用边界条件x=0时,I=I0,积分得到:I=I0e-ax1852年,A比尔(Beer)证实,许多溶液的吸收系数a是与溶质的浓度C成正比的。尽管比尔本人没有建立那个指数吸收定律公式,但下列关系式I=I0e-acx仍被叫做比尔定律,式中浓度和厚度是作为对称变数出现的。这个名称似乎是在1889年就开始使用了。1940年以前,比色法一直是最直观的分析法,往往是以高度经验为根据的——实际上依靠了奈斯勒管、杜波斯克比色计和拉维邦色调计。色调计利用可叠加有色玻璃盘作为颜色比较的载片。某些测定甚至是将颜色与彩纸和有色玻璃作比较来进行的。TW理查兹在有关卤化银的测定方面,发明了一种散射浊度计,用通过微浊溶液来测量光散射。1940年初左右,分光光度计开始广泛使用,几种高质量、应用简便的工业仪器使比色法更加普及,最著名的仪器,如蔡斯—普尔费利希、希尔格、斯佩克尔、贝克曼和科尔曼分光光度计,采用滤波器、棱镜和光栅,使光的波长限制在一个很窄的范围内。光吸收一般是用光电管测量的。典型的比色试剂是二苯基硫卡巴腙(diphenyl-thiocarbazone)通常叫做双硫腙dithizone,是艾米尔费歇尔在1882年发现的,他观察到双硫腙很容易和金属离子形成有色化合物,但他没有继续这项研究。1926年,海尔穆特费歇尔研究了这个化合物,并报道了把它用于分析的可能性,这种可能性在30年代得到了最充分的利用。这种试剂与大量阳离子所形成的有色螯合物极易溶解于氯仿那样的有机溶剂中。于是,这种络合物就可从大量的水溶液中萃取到少量的溶剂中,从而使这种方法对痕量物质也非常灵敏。比色法借助仪器可用于波长短到2000Å 的紫外区。向紫外区的进一步扩展是不可能的。因为容器、棱镜及空气本身也会吸收光。记录方法(起初主要是照相记录),随着实用光电管的发展得到了明显的改进。紫外分光光度法在测定芳香化合物,如苯酚、蒽和苯乙烯方面特别有价值。紫外吸收在研究有机化合物的结构时也很有用,它同束缚松散的电子缔合,如出现在双键中的电子。乙烯、乙炔、羰基化合物和氰化物中的不饱和键吸收2000Å 以下的光,因此处于紫外分光光度计可测范围之外。不饱和键周围有取代基时,会使光的吸收向长波方向移动,但仍远离实际可测的范围。偶氮基、硝基、亚硝酸盐、硝酸盐和亚硝基的吸收光范围在2500~3000Å 之间。不饱和键发生共轭现象会使吸收增强。引起光向长波方向移动。芳香环具有一个特征吸收本领,可用于鉴定。(二)红外光谱法辐射能吸收用作一种分析工具的最大进展也许是在红外光谱领域。1920年以前,利用波长在8000Å 到几十分之一毫米光谱区的仪器就已经有了,但红外光谱研究的真正进展却发生在1940年以后。这个光谱区含有象分子振动所包括的那样一些频率的光。原子质量、键强和分子构型这样一些重要因素与所吸收的能量有联系。因此某些波段易与OH、NH、C=C和C=O那样一些基团相对应。红外光谱的兴起靠的是发展热电堆以及辐射计、放大器和记录器方面所取得的进展。许多年来,这些仪器的光学部分比检测和记录机构要令人满意得多。红外光谱主要是作为一种定性工具使用的。同时如果大量的日常分析工作——比如,工业实践中常常必需的分析工作——证明红外光谱有利于这种工作的操作的话,那么它也可用于定量分析。定量红外光谱法已经用于分析硝基烷混合物。甲酚混合物和六氯化苯异构体方面。六氯化苯的γ—异构体可用作杀虫剂。红外光谱法已经是测定混杂有相关异构体的γ—六氯化苯的有用工具。红外光谱法在定性分析中极有价值,因为吸收位置和吸收强度能提供大量数据。过去人们曾做了大量的工作,绘制了许多键和基的光吸收性质图,使得有可能利用这种数据迅速确定出新化合物的结构。工业方面,红外光谱也有助于研究聚合作用方面的进展,因为单体和聚合体的红外吸收带相互间是有区别的。目前红外光谱(IR)是给出丰富的结构信息的重要方法之一,能在较宽的温度范围内快速记录固态、液态、溶液和蒸[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的图谱。红外光谱经历了从棱镜红外、光栅红外,目前已进入傅里叶变换红外(FT—IR)时期,积累了十几万张标准物质的图谱。FT—IR具有光通量大、信噪比高、分辨率好、波长范围宽、扫描速度快等特点。利用IR显微技术和基本分离技术(matrixisolation,MI—IR)可对低达ng量和pg量级的试样进行记录,FT—IR和色谱的结合,被称为鉴定有机结构的“指纹”,这些优点是其他方法所难于比拟的。红外光谱近年来发展十分迅速,在生物化学高聚物、环境、染料、食品、医药等方面得到广泛应用。(三)荧光分析当紫外光照射到某些物质的时候,这些物质会发射出各种颜色和不同强度的可见光,而当紫外光停止照射时,这种光线也随之很快地消失,这种光线称为荧光。第一次记录荧光现象的是16世纪西班牙的内科医生和植物学家N.Monardes,1575年他提到在含有一种称为“LignumNephriticum”的木头切片的水溶液中,呈现了极为可爱的天蓝色,在17世纪,Boyle(1626—1691)和Newton(1624—1727)等著名科学家再次观察到荧光现象,并且给予更详细的描述。尽管在17世纪和18世纪中还发现了其它一些发荧光的材料和溶液,然而在解释荧光现象方面却几乎没有什么进展。直到1852年Stokes在考察奎宁和叶绿素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍为长些,才判明这种现象是这些物质在吸收光能后重新发射不同波长的光,而不是由光的漫射作用所引起的,从而导入了荧光是光发射的概念,他还由发荧光的矿物“萤石”推演而提出“荧光”这一术语。Stokes还对荧光强度与浓度之间的关系进行了研究,描述了在高浓度时以及外来物质存在时的荧光猝灭现象。此外,他似乎还是第一个(1864年)提出应用荧光作为分析手段的人。1867年,Goppelsrö der)进行了历史上首次的荧光分析工作,应用铝—桑色素配合物的荧光进行铝的测定。1880年,Liebeman提出了最早的关于荧光与化学结构关系的经验法则,到19世纪末,人们已经知道了包括荧光素、曙红、多环芳烃等600种以上的荧光化合物。20世纪以来,荧光现象被研究得更多了。例如,1905年Wood发现了共振荧光;1914年Frank和Hertz利用电子冲击发光进行定量研究;1922年Frank和Cario发现了增感荧光;1924年Wawillous进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等等。荧光分析方法的发展,与仪器应用的发展是分不开的。19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由Jette和West提出了第一台光电荧光计。早期的光电荧光计的灵敏度是有限的,1939年Zworykin和Rajchman发明光电倍增管以后,在增加灵敏度和容许使用分辨率更高的单色器等方面,是一个非常重要的阶段。1943年Dutton和Bailey提出了一种荧光光谱的手工校正步骤,1948年由Studer推出了第一台自动光谱校正装置,到1952年才出现商品化的校正光谱仪器。近十几年来,在其它学科迅速发展的影响下,随着激光、微处理机和电子学的新成就等一些新的科学技术的引入,大大推动了荧光分析法在理论方面的进展,促进了诸如同步荧光测定、导

  • 光学分析仪器选择光电倍增管要注意的问题

    在紫外可见分光光度计等各类光学类分析仪器的设计、制造时,选择光电倍增管特别要注意以下问题。,选择光电倍增管要和选择光源联系起来考虑。第二,要根据入射光的能量和所估算的光学类分析仪器需要输出的信号大小来挑选光电倍增管。很高,如英国的9658R,其阴极灵度达到320μA/lm。阳极灵敏度达到200~2000A/lm。第三,挑选光电信增管时,必须注意灵敏度与总电压的关系。测量R456,发现当总电压为600V时,阴极积分灵敏度为47. 6A/lm。因此,在选择电倍增管的灵敏度时,必须考虑到使用时的实际情况。第四,必须对光电倍增管的主要指标进行测试。第五,在为光学类分析仪器挑选光电倍增管时,无论如何都不能超过光电倍增管的电参数的额定值。例如,平均阳极电流一般是指允许没有严重疲劳效应的平均阳极电流。如果超过此值,就会引起性的增益(放大系数)变化(即光电倍增管被损坏),降低灵敏度。一般EMI公司的侧窗型光电倍增管最阳极电流都不得超过lOOμA,其他光电倍增管不得超过200μA。第六,要重视对光电倍增管分压器的设计。第七,光电倍增管一定要工作在它的线性区(线性范围),否则输出结果不是真实的,有时还会损坏光电倍增管。

  • 如何科学的验收光学分辨率

    很多厂家宣称自己的产品独特的光学设计,达到了很高的光学分辨率,不知道如何科学的验收光学分辨率。比如某些招投标的技术规格偏离表中明确要求光学分辨力0.005nm(Mn257.610nm以半峰宽表示),个人觉得有如下考虑,如果是单道扫描的仪器可以通过标准溶液的扫描图谱进行计算,如果是全谱直读的仪器不知道怎么办?请大神不吝赐教,先谢过!!!

  • 【原创】光谱分析法和化学分析法的对比

    光谱分析法和化学分析法的对比在当今工业快速发展的社会,光谱分析仪器和化学分析仪器在冶金、化学、制药、机械、新材料开发、航空、宇宙探索等很多领域都有着很广泛的应用。两者之间又有着各自的优点和不足。光谱分析仪的优点:1.采样方式灵活,对于稀有和贵重金属的检测和分析可以节约取样带来的损耗。2.测试速率高,可设定多通道瞬间多点采集,并通过计算器实时输出。3.对于一些机械零件可以做到无损检测,而不破坏样品,便于进行无损检测。4.分析速度较快,比较适用做炉前分析或现场分析,从而达到快速检测。5.分析结果的准确性是建立在化学分析标样的基础上。光谱分析仪的缺点:1.对于非金属和界于金属和非金属之间的元素很难做到准确检测。2.不是原始方法,不能作为仲裁分析方法,检测结果不能做为国家认证依据。3.受各企业产品相对垄断的因素,购买和维护成本都比较高,性价比较低。4.需要大量代表性样品进行化学分析建模,对于小批量样品检测显然不切实际。5.模型需要不断更新,在仪器发生变化或者标准样品发生变化时,模型也要变化。6.建模成本很高,测试成本也就比较大了,当然对于大量样品检测时,测试成本会下降。7.易受光学系统参数等外部或内部因素影响,经常出现曲线非线性问题,对检测结果的准确度影响较大。化学分析仪的优点1.化学分析法是国家实验室所使用的仲裁分析方法,准确度高。2.对于各元素之间的干扰可以用化学试剂屏蔽,做到元素之间互不干扰,曲线可进行非线性回归,确保了检测的准确性。3.取样过程是深入样品中心和多点采集,更具有代表性,特别是对于不均匀性样品和表面处理后的样品可准确检测。4.应用领域广泛,局限性小,可建立标准曲线进行测定,仪器可进行曲线自我检测。5.购买和维护成本低,维护比较简单。化学分析仪的缺点:1.流程比光谱分析法较多,工作量较大。2.不适用于炉前快速分析。3.对于检测样品会因为取样过程遭到破坏。南京第四分析仪器有限公司2009年01月01日编制

  • 光谱中的光学分辨率

    光谱中的光学分辨率与在中阶梯分光光谱的中央位置有关系吗?是否是在中央位置较好,远离就越来越差,你是否看的?看到书上这样说的,觉得不好理解!

  • 光谱分析仪和化学分析仪的优缺点比较

    光谱分析仪的优点:1. 采样方式灵敏,关于稀有和宝贵金属的检测和剖析可以浪费取样带来的损耗。2. 测试速率高,可设定多通道霎时多点采集,并经过计算器实时输入。3. 关于一些机械零件可以做到无损检测,而不毁坏样品,便于停止无损检测。4. 剖析速度较快,比拟适用做炉前剖析或现场剖析,从而到达疾速检测。5. 剖析后果的精确性是树立在化学剖析标样的根底上。光谱分析仪的缺点:1. 关于非金属和界于金属和非金属之间的元素很难做到精确检测。2. 不是原始办法,不能作为仲裁剖析办法,检测后果不能做为国度认证根据。3. 受各企业产品绝对垄断的要素,购置和维护本钱都比拟高,性价比拟低。4. 需求少量代表性样品停止化学剖析建模,关于小批量样品检测显然不实在际。5. 模型需求不时更新,在仪器发作变化或许规范样品发作变化时,模型也要变化。6. 建模本钱很高,测试本钱也就比拟大了,当然关于少量样品检测时,测试本钱会下降。7. 易受光学零碎参数等内部或外部要素影响,常常呈现曲线非线性成绩,对检测后果的精确度影响较大。化学分析仪的优点:1. 化学剖析法是国度实验室所运用的仲裁剖析办法,精确度高。2. 关于各元素之间的搅扰可以用化学试剂屏蔽,做到元素之间互不搅扰,曲线可停止非线性回归,确保了检测的精确性。3. 取样进程是深化样品中心和多点采集,更具有代表性,特别是关于不平均性样品和外表处置后的样品可精确检测。4. 使用范畴普遍,局限性小,可树立规范曲线停止测定,仪器可停止曲线自我检测。5. 购置和维护本钱低,维护比拟复杂。化学分析仪的缺点:1. 流程比光谱剖析法较多,任务量较大。2. 不适用于炉前疾速剖析。3. 关于检测样品会由于取样进程遭到毁坏

  • 浅析光谱分析仪器和金属化学分析仪优缺点

    金属元素化学分析仪的优点   1.化学分析法是国家实验室所使用的仲裁分析方法,准确度高。  2.对于各元素之间的干扰可以用化学试剂屏蔽,做到元素之间互不干扰,曲线可进行非线性回归,确保了检测的准确性。  3.取样过程是深入样品中心和多点采集,更具有代表性,特别是对于不均匀性样品和表面处理后的样品可准确检测。  4.应用领域广泛,局限性小,可建立标准曲线进行测定,仪器可进行曲线自我检测。  5.购买和维护成本低,维护比较简单。  金属元素化学分析仪的缺点:  1.流程比光谱分析法较多,工作量较大。  2.不适用于炉前快速分析。  3.对于检测样品会因为取样过程遭到破坏。  光谱分析仪的优点:  1.采样方式灵活,对于稀有和贵重金属的检测和分析可以节约取样带来的损耗。  2.测试速率高,可设定多通道瞬间多点采集,并通过计算器实时输出。  3.对于一些机械零件可以做到无损检测,而不破坏样品,便于进行无损检测。  4.分析速度较快,比较适用做炉前分析或现场分析,从而达到快速检测。  5.分析结果的准确性是建立在化学分析标样的基础上。  光谱分析仪的缺点:  1.对于非金属和界于金属和非金属之间的元素很难做到准确检测。  2.不是原始方法,不能作为仲裁分析方法,检测结果不能做为国家认证依据。  3.受各企业产品相对垄断的因素,购买和维护成本都比较高,性价比较低。  4.需要大量代表性样品进行化学分析建模,对于小批量样品检测显然不切实际。  5.模型需要不断更新,在仪器发生变化或者标准样品发生变化时,模型也要变化。  6.建模成本很高,测试成本也就比较大了,当然对于大量样品检测时,测试成本会下降。  7.易受光学系统参数等外部或内部因素影响,经常出现曲线非线性问题,对检测结果的准确度影响较大。  化学分析仪器系列产品:高频红外碳硫分析仪红外碳硫仪碳硫分析仪碳硅分析仪铁水分析仪金相分析仪钢铁分析仪金属元素分析仪金属含量分析仪元素分析仪化验仪器金属材料分析仪等。(来自网络,侵删)

  • 光学分辨率,你有测过吗?

    对于中阶梯光栅光谱仪,其光学分辨率一般要求在200nm处至少小于0.009nm(如:LEEMANProdigy、Thermo IRIS INTREPID Ⅱ为小于0.005nm、VARIAN 700 小于0.007nm、PEOPTIMA 4000\5000为小于0.006nm、2000为小于0.009nm)版友们,你的仪器分辨率怎么样?有测过相关仪器的分辨率吗,其结果符合要求吗?测的是什么元素,选择了那些谱线,釆用多少浓度的标液来做?

  • 三维光学分子成像技术及其应用研究

    光学分子成像技术由于其具有灵敏度高,响应速度快,操作方便且能实时直观等优异性能引起广泛关注。穿透性荧光三维成像技术(FLIT)凭借其特有的底部透射荧光成像模式能够精确获取体内荧光标记靶点的深度、体积、细胞

  • 硒化学分析方法

    YS/T 226.1-2009 第1部分:铋量的测定 氢化物发生-原子荧光光谱法YS/T 226.2-2009硒化学分析方法 第2部分:锑量的测定 氢化物发生-原子荧光光谱法YS/T 226.3-2009硒化学分析方法 第3部分:铝量的测定 铬天青S-溴代十六烷基吡啶分光光度法YS/T 226.4-2009硒化学分析方法 第4部分:汞量的测定 双硫腙-四氯化碳滴定比色法YS/T 226.5-2009硒化学分析方法 第5部分:硅量的测定 硅钼蓝分光光度法YS/T 226.6-2009硒化学分析方法 第6部分:硫量的测定 对称二苯氨基脲分光光度法YS/T 226.7-2009硒化学分析方法 第7部分:镁量的测定 火焰原子吸收光谱法YS/T 226.8-2009硒化学分析方法 第8部分:铜量的测定 火焰原子吸收光谱法 YS/T 226.9-2009硒化学分析方法 第9部分:铁量的测定 火焰原子吸收光谱法YS/T 226.10-2009硒化学分析方法 第10部分:镍量的测定 火焰原子吸收光谱法YS/T 226.11-2009硒化学分析方法 第11部分:铅量的测定 火焰原子吸收光谱法YS/T 226.12-2009硒化学分析方法 第12部分:硒量的测定 硫代硫酸钠容量法YS/T 226.13-2009硒化学分析方法 第13部分:银、铝、砷、硼、汞、铋、铜、镉、铁、镓、铟、镁、镍、铅、硅、锑、锡、碲、钛、锌量的测定电感耦合等离子体质谱法

  • 光谱分析和化学分析

    都说化学分析是基础,那么在学习光谱分析前是否必须学习化学分析呢,学了有什么好处啊?

  • ICP-OES测试,不同波长下光学分辨率有哪些区别?

    说到光学分辨率,大家可能不是很关注,不过说到半峰宽,相信大家都知道那是强度一半位置时候积分波长从左边到右边距离,大家在做期间核查的时候有些同行可能会做半峰宽的技术指标,那么ICP-OES测试,不同波长下光学分辨率有哪些区别?

  • 钼精矿化学分析方法

    YS/T 555.1-2009 钼精矿化学分析方法 钼量的测定 钼酸铅重量法YS/T 555.2-2009 钼精矿化学分析方法 二氧化硅量的测定硅钼蓝分光光度法和重量法YS/T 555.3-2009 钼精矿化学分析方法 砷量的测定 原子荧光光谱法和DDTC-Ag分光光度法YS/T 555.4-2009 钼精矿化学分析方法 锡量的测定 原子荧光光谱法YS/T 555.5-2009 钼精矿化学分析方法 磷量的测定 磷钼蓝分光光度法YS/T 555.6-2009 钼精矿化学分析方法 铜、铅、铋、锌量的测定火焰原子吸收光谱法YS/T 555.7-2009 钼精矿化学分析方法 氧化钙量的测定 火焰原子吸收光谱法YS/T 555.8-2009 钼精矿化学分析方法 钨量的测定 硫氰酸盐分光光度法YS/T 555.9-2009 钼精矿化学分析方法 钾量和钠量的测定火焰原子吸收光谱法YS/T 555.10-2009 钼精矿化学分析方法 铼量的测定 硫氰酸盐分光光度法YS/T 555.11-2009 钼精矿化学分析方法 油和水分总含量的测定重量法

  • 锑精矿化学分析方法

    YS/T 556.1-2009 锑精矿化学分析方法 第1部分:锑量的测定 硫酸铈滴定法YS/T 556.2-2009 锑精矿化学分析方法 第2部分:砷量的测定 溴酸钾滴定法YS/T 556.3-2009 锑精矿化学分析方法 第3部分:铅量的测定 火焰原子吸收光谱法YS/T 556.4-2009 锑精矿化学分析方法 第4部分:湿存水量的测定 重量法YS/T 556.5-2009 锑精矿化学分析方法 第5部分:锌量的测定 火焰原子吸收光谱法YS/T 556.6-2009 锑精矿化学分析方法 第6部分:硒量的测定 氢化物发生-原子荧光光谱法YS/T 556.7-2009 锑精矿化学分析方法 第7部分:汞量的测定 原子荧光光谱法YS/T 556.8-2009 锑精矿化学分析方法 第8部分:硫量的测定 燃烧中和法 YS/T 556.9-2009 锑精矿化学分析方法 第9部分:金量的测定 火试金法YS/T 556.10-2011 锑精矿化学分析方法 铜量的测定 火焰原子吸收光谱法YS/T 556.11-2011 锑精矿化学分析方法 镉量的测定 火焰原子吸收光谱法YS/T 556.12-2011 锑精矿化学分析方法 铋量的测定 火焰原子吸收光谱法YS/T 556.13-2011 锑精矿化学分析方法 镍量的测定 火焰原子吸收光谱法YS/T 556.14-2011 锑精矿化学分析方法 银量的测定 火焰原子吸收光谱法YS/T 556.16-2011 锑精矿化学分析方法 铅、锌、铜、镉、镍量的测定电感耦合等离子体原

  • 【讨论】国外化学分析现状

    各位大侠:小生没去过国外,所以不甚了解国外化学分析的现状,就国内看,我是从事钢铁材料分析工作的,我们实验室除了使用火花直读、icp、XRF、ONCSH外,中心实验室仍在做经典的化学分析并且还有使用三氯甲烷、四氯化碳、醋酸乙酯等有机试剂的手工萃取方法,当然还有铜铁试剂分离(味道好重)等方法,高氯酸就更不用说了,甚至也要用到三硝基甲苯,以及对煤焦油、苯的测定(均为化学分析)。我也参加过几次的分析年会以及国家标准研讨会,就各位专家来说:化学分析是具有“中国特色”的分析方法。国外因为化学试剂的危险性和对人体的毒害性,已很少采用了。我们使用此类方法的目的倒不是因为费用的问题,主要是觉得其经典,起到一个对比、校准的作用以及研制内部标准样品以及参加标样定值。由于钢铁企业发展较快,标样不够用,而仪器分析大部分是相对分析,所以本想抛弃的化学分析却越来越重要,分析人员叫苦不迭,因为为企业实验室,分析工作不能直接创造效益,使用化学分析又慢又累,吃力不讨好。企业是看工作效率的,所以我们很是郁闷。就以上问题:想与各位大侠讨论:尤其是在国外实验室工作过的,介绍一下经验,国外实验室的化学分析现状是什么样的?国外标样的研制还要用到化学分析吗?各位大侠所在实验室的化学分析现状如何?

  • 【原创】仪器分析与化学分析的区别

    分析化学是研究物质的组成、状态和结构的科学,它包括化学分析和仪器分析两大部分。二者的区别主要有: 一、分析的方法不同: 化学分析是指利用化学反应和它的计量关系来确定被测物质的组成和含量的一类分析方法。测定时需使用化学试剂、天平和一些玻璃器皿。 仪器分析(近代分析法或物理分析法):是基于与物质的物理或物理化学性质而建立起来的分析方法。这类方法通常是测量光、电、磁、声、热等物理量而得到分析结果,而测量这些物理量,一般要使用比较复杂或特殊的仪器设备,故称为“仪器分析”。仪器分析除了可用于定性和定量分析外,还可用于结构、价态、状态分析,微区和薄层分析,微量及超痕量分析等,是分析化学发展的方向。 二、仪器分析(与化学分析比较)的特点: 1. 灵敏度高,检出限量可降低。如样品用量由化学分析的mL、mg级降低到仪器分析的 g、 L级,甚至更低。适合于微量、痕量和超痕量成分的测定。 2. 选择性好。很多的仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。 3. 操作简便,分析速度快,容易实现自动化。 仪器分析的特点(与化学分析比较) 4. 相对误差较大。化学分析一般可用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。 5. 仪器分析需要价格比较昂贵的专用仪器。 三、仪器分析与分析化学的关系: 二者之间并不是孤立的,区别也不是绝对的严格的。a. 仪器分析方法是在化学分析的基础上发展起来的。许多仪器分析方法中的式样处理涉及到化学分析方法(试样的处理、分离及干扰的掩蔽等);同时仪器分析方法大多都是相对的分析方法,要用标准溶液来校对,而标准溶液大多需要用化学分析方法来标定等。b. 随着科学技术的发展,化学分析方法也逐步实现仪器化和自动化以及使用复杂的仪器设备。 化学方法和仪器方法是相辅相成的。在使用时应根据具体情况,取长补短,互相配合。 四、学习掌握的目标不同: 化学分析主要的内容为:数据处理与误差分析、四大滴定分析法、重量分析法。学习化学分析要求掌握其基本的原理和测定方法,建立起严格的“量”的概念。能够运用化学平衡的理论和知识,处理和解决各种滴定分析法的基本问题,包括滴定曲线、滴定误差、滴定突跃和滴定终点的判断,掌握重量分析法分析化学中的数据处理与误差处理。正确掌握有关的科学实验技能,具备必要的分析问题和解决问题的能力。 仪器分析涉及的分析方法是根据物质的光、电、声、磁、热等物理和化学特性对物质的组成、结构、信息进行表征和测量,学习仪器分析要求掌握的现代分析技术,牢固掌握各类仪器分析方法的基本原理以及仪器的各重要组成部分,对各仪器分析方法的应用对象及分析过程要有基本的了解。可以根据样品性质、分析对象选择最为合适的分析仪器及分析方法。

  • 【转帖】仪器分析与化学分析的区别有哪些

    分析化学是研究物质的组成、状态和结构的科学,它包括化学分析和仪器分析两大部分。二者的区别主要有:一、分析的方法不同:化学分析是指利用化学反应和它的计量关系来确定被测物质的组成和含量的一类分析方法。测定时需使用化学试剂、天平和一些玻璃器皿。仪器分析(近代分析法或物理分析法):是基于与物质的物理或物理化学性质而建立起来的分析方法。这类方法通常是测量光、电、磁、声、热等物理量而得到分析结果,而测量这些物理量,一般要使用比较复杂或特殊的仪器设备,故称为“仪器分析”。仪器分析除了可用于定性和定量分析外,还可用于结构、价态、状态分析,微区和薄层分析,微量及超痕量分析等,是分析化学发展的方向二、仪器分析(与化学分析比较)的特点:1. 灵敏度高,检出限量可降低。如样品用量由化学分析的mL、mg级降低到仪器分析的 g、 L级,甚至更低。适合于微量、痕量和超痕量成分的测定。 2. 选择性好。很多的仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。 3. 操作简便,分析速度快,容易实现自动化。 4. 相对误差较大。化学分析一般可用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。 5. 仪器分析需要价格比较昂贵的专用仪器。三、仪器分析与分析化学的关系: 二者之间并不是孤立的,区别也不是绝对的严格的。a. 仪器分析方法是在化学分析的基础上发展起来的。许多仪器分析方法中的式样处理涉及到化学分析方法(试样的处理、分离及干扰的掩蔽等);同时仪器分析方法大多都是相对的分析方法,要用标准溶液来校对,而标准溶液大多需要用化学分析方法来标定等。b. 随着科学技术的发展,化学分析方法也逐步实现仪器化和自动化以及使用复杂的仪器设备。 化学方法和仪器方法是相辅相成的。在使用时应根据具体情况,取长补短,互相配合四、学习掌握的目标不同: 化学分析主要的内容为:数据处理与误差分析、四大滴定分析法、重量分析法。学习化学分析要求掌握其基本的原理和测定方法,建立起严格的“量”的概念。能够运用化学平衡的理论和知识,处理和解决各种滴定分析法的基本问题,包括滴定曲线、滴定误差、滴定突跃和滴定终点的判断,掌握重量分析法分析化学中的数据处理与误差处理。正确掌握有关的科学实验技能,具备必要的分析问题和解决问题的能力。 |仪器分析涉及的分析方法是根据物质的光、电、声、磁、热等物理和化学特性对物质的组成、结构、信息进行表征和测量,学习仪器分析要求掌握的现代分析技术,牢固掌握各类仪器分析方法的基本原理以及仪器的各重要组成部分,对各仪器分析方法的应用对象及分析过程要有基本的了解。可以根据样品性质、分析对象选择最为合适的分析仪器及分析方法

  • 建议版面更名为“化学分析”

    一直没仔细看过这个版面的帖子,因为今天发了个求助帖一直没得到回应,所以才大概浏览了一下整个版面。我发现从主题和内容上看,本版面如果命名为“化学分析”可能会更贴切。很多人经常将“化学分析”和“分析化学”混为一谈,其实这是不严谨的。因为前者是一种分析手段或者说分析方式、方法;而后者则是一门学科,所涵盖的范围更广,“化学分析”只是“分析化学”中的一个小的分支而已。真心不是来搅局的,个人意见,如有疑议欢迎讨论。

  • 谁有这些化学分析方法

    谁有粉煤灰化学分析(氧化钙、SO3 等)、矿粉化学分析(氧化钙、SO3 等)、砼拌和用水检验、建筑石灰化学分析、水泥化学分析( SO3、氧化镁、氧化钙、烧失量)砼外加剂(碱含量、氯离子等)。的相关资料标准,麻烦传一份给我。谢谢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制