当前位置: 仪器信息网 > 行业主题 > >

光学分析

仪器信息网光学分析专题为您整合光学分析相关的最新文章,在光学分析专题,您不仅可以免费浏览光学分析的资讯, 同时您还可以浏览光学分析的相关资料、解决方案,参与社区光学分析话题讨论。

光学分析相关的资讯

  • 国家药典委员会发布关于通则0400光学分析法修订草案的公示
    2022年12月19日,药典委发布《中国药典》(2025年版)编制大纲。《大纲》指出, 到2025年,全面完成新版《中国药典》编制工作。符合中医药特点的中药标准进一步完善,化学药品、生物制品、药用辅料和药包材标准达到或基本达到国际先进水平,药品质量控制和安全保障水平明显提升。近期,国家药典委员会发布了一系列的修订草案,目的是将中药标准进一步完善,逐步完成新版《中国药典》编制工作。关于通则0400光学分析法修订草案的公示我委拟修订《中国药典》2020年版通则0400光学分析法(原通则0400光谱法)。为确保标准的科学性、合理性和适用性,现将拟修订的标准公示征求社会各界意见(详见附件)。公示期自发布之日起3个月。请认真研核,若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。相关单位来函需加盖公章,个人来函需本人签名,同时将电子版发送至指定邮箱。联系人:徐昕怡电话:010-67079522电子邮箱:xuxinyi@chp.org.cn通信地址:北京市东城区法华南里11号楼 国家药典委员会办公室邮编:100061附件:1. 0400光学分析法公示稿2. 0400光学分析法修订说明国家药典委员会2023年04月24日0400 光学分析法修订说明《中国药典》0400 光谱法通则多版未作修订。X 射线衍射法不是严格意义上的光谱方法,而是一种得到广泛应用的非光谱法的光学方法。非光谱中的光学方法中还有很多方法如折射法、散射法,特别是散射光学方法,越来越受到药学的重视,有必要将这些方法归入光学分析法中并进行归属。在光谱法中,原子光谱法除原子吸收光谱法外,常用的还有原子发射光谱法,后者主要有电感耦合等离子体原子发射光谱法(ICP-OES)。此外,电感耦合等离子体质谱法(ICP-MS)是以电感耦合等离子体作为激发源,采用质谱分析器检测电离离子的一种无机质谱法,虽然可将其视为电感耦合等离子体原子发射光谱与质谱联用技术,也不是严格意义上的光谱方法。ICP-OES 和 ICP-MS 在药品标准中的应用已很广泛,有越来越多的应用实例收载入药典,有必要对上述方法以及原子光谱法的基本原理和适用性进行定义和归属。2021 年,江苏省食品药品监督检验研究院承担了《中国药典》0400 光谱法通则修订任务,经药典委理化分析专业委员会审议,经过多次修改完善,制订了“0400 光学分析法通则(草案)”,面向社会各界公开征求意见。0400光学分析法公示稿.pdf0400光学分析法修订说明.pdf
  • 网络研讨会 | 固-液胶体分散系的稳定性及其光学分析
    引言由于构成胶体的单糖或者氨基酸种类、各单元之间的排列方式、胶体聚合度、单糖或氨基酸的取代基团等各不相同,且不同胶体的溶解性、黏度、各种理化条件下的耐热性、形成胶冻的能力、对不同物质的兼容性等都存在着不同程度的差异。通过深入研究胶体结构和性质之间的关系,从而获得种类丰富、味道香美的各色食品。本次网络研讨会将介绍Formulaction Turbiscan系列对于固-液胶体分散系的稳定性及其光学分析的应用案例,帮助用户更好地了解在不同工艺和配方的条件下样品稳定及失稳机理。同时,也将为大家详细分享如何使用Turbiscan稳定性分析仪来提高在食品行业的研究,同时简化质量控制流程。讲座主题固-液胶体分散系的稳定性及其光学分析 胶体分散系的定义 固-液胶体分散系稳定及失稳机理 多重光散射的原理及应用案例主讲人王 鹏教授,博士生导师南京农业大学国家肉品质量安全控制工程技术研究中心团队成员,美国田纳西大学访问学者。长期从事食品分子组装及活性物质递送、食品物性形成与感知研究。在《Food Hydrocolloids》、《Food Chemistry》、《Langmuir》 等杂志发表SCI及EI文章65篇,授权专利12项,共同主编十三五规划教材《食品胶体学》。近5年主持胶体与界面相关的国家自然科学基金面上项目3项,“十四五”农村领域国家科技计划子课题1项。目前任中文核心期刊《肉类研究》编委,中国肉类协会禽(蛋)业分会专家委员会专家委员及科技标准化技术委员会委员、全国畜禽屠宰质量标准创新中心专家委员、中国老年学和老年医学学会营养食品分会委员、《Food Hydrocolloids》等10余本SCI期刊客座编辑或审稿人。扫码参加本次网络研讨会注:本次研讨会将通过腾讯课堂演讲,届时可通过微信小程序或移动/PC客户端在线观看。报名成功后请保存课堂链接,会议前10分钟可提前通过链接进入课堂!欢迎感兴趣的各位踊跃报名!联系热线:400-821-0778邮箱:ins.cn@dksh.comTURBISCAN系列稳定性分析仪(多重光散射仪)通过多重光散射的原理,具有同步双检测器,可以在无损的条件下快速分析样品的稳定性程度及其不稳定的机理。- 从工艺和配方角度分析样品的不稳定原因;- 辅助工艺确认以及配方的确定;- 分析运输环境以及存储条件对样品的稳定性的影响以及一致性评价和过程控制分析。
  • Endress+Hauser光学分析子公司成立 旨在提升基于激光吸收光谱的测量技术能力
    2022年1月1日,原Endress+Hauser子公司SpectraSensors和Kaiser Optical Systems合并,强强联合,成立Endress+Hauser光学分析新子公司。Endress+Hauser集团的此举旨在提升基于激光吸收光谱测量技术的专业能力,进一步聚焦实验室和过程分析领域,实现业务可持续性发展。2012年和2013年,Endress+Hauser集团分别完成了对这两家美国公司的收购。两家公司都有悠久的创新历史,生产的光学分析产品技术先进,其中,SpectraSensors公司的TDLAS可调谐二极管激光吸收光谱技术帮助集团进一步强化气体分析业务能力;Kaiser Optical Systems公司是拉曼光谱技术的全球领导者,具备专业的固体、液体和气体分析知识,技术和产品应用广泛,部分涉及疫苗生产。Manfred Jagiella博士是Endress+Hauser集团执行委员会成员,全面负责分析业务在过去的几年里,过程和实验室分析一直被定义为Endress+Hauser集团的战略重点。“我们希望能够进一步研发和扩充实验室和过程分析领域的产品组合。Endress+Hauser液体分析,耶拿分析仪器和Endress+Hauser光学分析,这三家子公司是集团分析战略的关键组成要素。” Endress+Hauser执行委员会分析业务负责人Manfred Jagiella博士说。John Schnake出任Endress+Hauser光学分析公司总经理“客户青睐操作简单、坚固耐用、满足实际工况要求的测量仪表。” 新子公司总经理John Schnake说。有了基于激光吸收光谱的测量技术,Endress+Hauser分析产品组合全面整合,能够为工业客户提供从产品研发和工艺流程设计,到质量控制和生产制造的全方位专业支持。公司总部位于密歇根州Ann Arbor位于密歇根州Ann Arbor的拉曼光谱分析仪生产厂位于加利福尼亚州Rancho Cucamonga的TDLAS分析仪生产厂Endress+Hauser光学分析总部位于密歇根州Ann Arbor,这也是拉曼光谱分析仪的研发和生产基地。TDLAS分析仪仍在加利福尼亚州Rancho Cucamonga生产。新公司是Endress+Hauser集团的全资子公司,拥有约200名员工。
  • 新型“光学分子”片上光谱仪
    光谱仪用于分解和测量电磁波的谱信息,广泛应用于材料分析、天文观测以及生物医学成像等领域。传统台式光谱仪基于棱镜或光栅等空间色散元件,导致其结构尺寸较大,并对机械振动敏感,通常只能用于实验室环境。新型片上光谱仪有望克服这些缺陷。这类光谱仪基于集成光子回路,其中各类光学器件均由固态平面波导构成,因此可以实现芯片尺度的密集集成,并可以消除环境扰动的影响。片上光谱仪在智慧医疗、地质勘探以及片上实验室(Lab-on-a-chip)等领域具有应用价值,特别对于实现小型化、便携式,甚至可穿戴的智能传感设备具有重要使能意义。然而,目前已报道的片上光谱仪大多存在分辨率-带宽限制这一共性缺陷。具体来说,对于片上光谱仪,实现较高的分辨率需要较长的波导光程,而这往往会降低输出响应的自由光谱范围,进而影响工作带宽。虽然可以通过采用光子晶体微腔等特殊结构,在一定程度上扩展自由光谱范围,但是这类结构加工较为困难,并且调谐效率较低。目前尚无突破这一限制的通用解决方案。近日,香港中文大学电子工程学系曾汉奇研究小组,通过采用一种新颖的“光学分子”结构,结合计算重建方法,实现了一种同时具有高分辨率与大带宽的新型片上光谱仪。该成果以“Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule”为题发表于Light:Science & Applications.这一结构的基本组成是一对相同的可调谐微环谐振腔(图1a)。在热光调谐过程中,输入光谱被滤波采样,进而在输出端口生成包含谱信息的信号,最终通过计算重建方法将输入光谱还原(图1b)。此过程中,需要解决的核心问题是,如何分辨相隔自由光谱范围整数倍的波长通道。对于单谐振腔而言,各个自由光谱范围之内仅包含一个谐振模式,因此无法实现宽带谱重建。当一对谐振腔发生强耦合,各个谐振模式将劈裂为一个对称模式与一个反对称模式(图1c)。这一现象类似于双原子分子中存在的能级劈裂。值得注意的是,谐振模式的劈裂强度正比于谐振腔之间的耦合强度。因此,可以通过增强耦合强度的色散,使得“光学分子”谱线的劈裂强度随波长变化,并基于这一特征,识别位于不同自由光谱范围的波长通道。具体来说,当热光调谐经过一个自由光谱范围,各个波长通道对应的输出信号均包含一对尖峰;此时,即便对于相隔自由光谱范围整数倍的波长通道,其尖峰之间的间距仍然不同,因此不同波长通道得以去相关(图1d)。图1.“光学分子”片上光谱仪的工作原理。在该工作中,作者实验证实了40pm的谱线分辨率与100nm的工作带宽。同时利用单片集成滤波器生成测试光谱,实验验证了各类特征光谱的高精度重建。该工作的创新与亮点可以总结为:1.作者提出了一种完全区别于传统方案的片上光谱仪。不同于可调谐滤波器方案,这一设计不受自由光谱范围限制,因此得以保持高分辨率的同时,极大地扩展工作带宽。不同于计算“光斑”光谱仪,这一设计不依赖于复杂拓扑结构,具有结构简单、尺寸紧凑等优势。2.设计思路具有可扩展性。在满足特定条件情况下,可以进一步增加待分辨的自由光谱范围数目,进一步扩展工作带宽与通道容量,同时保证较低的功耗。3.该工作涉及的概念源于高品质微腔中一种极为常见的现象——模式劈裂。同时,结构完全基于集成光子回路中极为常见的单元器件——微环谐振腔。这使得这一方案具有加工简便、通用性强等优势。这一工作为新型片上光谱仪的研发提供了一种全新思路,同时对计算光谱学等研究方向具有启发意义,并可能用于单片集成的光谱传感系统。
  • 东西分析应对《水泥化学分析方法》国标
    水泥是一种良好的建筑材料,在建筑行业中具有广泛的使用范围。近些年来,我国经济水平在不断地提高,建筑行业也有了很大地发展。如果要保证建筑的质量,就必须保证所使用水泥的质量,因此对于水泥的化学分析变显得十分重要。本文通过对GB/T176-2017《水泥化学分析方法》的研读,整理出一套东西分析应对水泥化学分析的解决方案,希望对水泥生产厂商、建筑施工方及第三方检测分析检测人员提供便利。国标检测对象本标准适用于通用硅酸盐水泥和制备上述水泥的熟料、生料及指定采用本标准的其它水泥和材料。国标涵盖内容本标准规定了水泥化学分析方法、X射线荧光分析方法和电感耦合等离子体发射光谱法对烧矢量(LOI)、SO3、不溶物(IR)、SiO2、Fe2O3、Al2O3、CaO、MgO、TiO2、Cl-、K2O、Na2O、S2-、MnO、P2O5、CO2、ZnO、F-、游离氧化钙(CaO)、SrO的测定。水泥化学分析方法又分为基准法和代用法,如果同一成分列了多种测定方法,当有争议时以基准法为准。东西分析应对方案(基准法)原子吸收分光光度法(AAS法)水泥中MgO(氧化镁)成分测定 AAS法水泥中 ZnO(氧化锌)成分测定 AAS法AA-7050原子吸收分光光度计三十年来,东西分析一直致力于原子吸收光谱仪器和分析技术发展,共研发出五代原子吸收分光光度计,继续领跑国产原子吸收新技术。AA-7050型原子吸收分光光度计,一款全功能、全自动仪器,使客户在工作中可以更加便捷、直观和高效,简化客户分析过程。示例:紫外-可见分光光度法(UV法)水泥中Fe2O3 (三氧化二铁)成分分析 UV法 水泥中TiO2(二氧化钛)成分分析 UV法水泥中MnO(氧化锰)成分分析 UV法Cintra 系列紫外-可见光分光光度计 双光束光学系统,具有长时间稳定性、准确性;配合Cintral 软件,能够进行波长扫描、时间扫描和固定波长测量,还具有定量分析和系统性能验证等应用特性;采用Czerny-Turner单色器,标配1.5nm固定狭缝宽度,可升级成1.0nm-3.0nm范围内狭缝连续可调。附录:水泥中全部检测成分及方法关于我们北京东西分析仪器有限公司,拥有三十年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。“完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 谭蔚泓院士荣获2018年美国化学会光谱化学分析奖
    p   美国波士顿,当地时间8月21日下午,在刚刚结束的美国化学会年会上,湖南大学化学生物传感与计量学国家重点实验室主任、化学化工学院、生物学院教授谭蔚泓院士,因其在生物分析化学前沿研究领域取得的丰硕成果,荣获美国化学会“光谱化学分析奖”(the ACS Division of Analytical Chemistry Award in Spectrochemical Analysis)。谭蔚泓院士是迄今为止第二位获此殊荣的中国科学家。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/insimg/8d4b8975-3f12-463c-881e-b8f4474509ee.jpg" title=" 1.jpg" / /p p style=" text-align: center " 谭蔚泓教授被授予美国化学会“光谱化学分析奖”现场 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201808/insimg/508745b8-55ae-405c-80a2-0279779e8f74.jpg" title=" 2.jpg" / /p p style=" text-align: center " 谭蔚泓教授和太太共同分享大奖 /p p   美国化学会(The American Chemical Society,简称ACS)成立于1876年,是一个独立的非赢利组织,是世界上最大的科技协会和世界权威科学信息主要来源之一。“光谱化学分析奖”于1987年建立,每年只设一位获奖者,旨在奖励在光谱化学分析和光学光谱法等领域做出杰出贡献并具有重大国际影响的科学家。此次获奖词写道:谭教授在光谱化学分析方面做出了开创性的贡献:DNA探针的超灵敏生物分析,超小型光学生物传感器,生物光子学和生物纳米材料的基础研究和开发应用,以及基于核酸适体的化学和生物技术。谭蔚泓教授长期在化学生物传感与计量学国家重点实验室从事光谱学和生物光谱分析的研究与教学工作,在光学传感探针的设计、开发和应用以及分子成像等领域取得领先的科研成果。 /p p br/ /p
  • 岛津加大布局与清华大学分析中心的合作
    近年来,各大仪器公司不断加大了在中国的投资力度,除了建立工厂、研发中心之外,加强与高校、科研单位的合作也是其本土化的重要内容之一。   岛津公司是分析仪器主要提供商之一,近年来岛津公司与清华分析中心的合作不断深入,涉及人才培养、共同研究课题、建立奖学金激励制度等多个方面。近期仪器信息网(以下简称Instrument)就清华大学分析中心与岛津公司的合作内容、对合作双方的促进等问题采访了清华大学分析中心主任、教授林金明。   Instrument:林老师您好,请您给介绍一下,近几年清华大学分析中心与岛津公司的合作总体情况。   林金明:岛津公司与清华大学的合作已经有很多年了,自2004年岛津独家赞助&ldquo 中日韩分析化学研讨会&rdquo 以来,合作的领域和频次都有加强,清华大学分析中心陆续与岛津公司在人才培训、技术交流等方面开展合作。整个合作过程看似&ldquo 细水长流&rdquo ,在各个合作层面都是务实有效的。   Instrument:请您详细介绍一下,清华大学分析中心与岛津公司之间的合作具体包括哪些合作领域?   林金明:概括起来,清华大学分析中心与岛津公司近年来的合作主要有以下五个方面:   (1)发挥双方的各自优势,支持人才培养和科研工作   清华大学分析中心与岛津公司在共同培养人才方面已经做了一些工作,例如清华分析中心的学生到岛津公司进行实习,体验岛津公司各种先进的技术、仪器设备和规范化管理。清华分析中心也与于岛津公司共同完成一些仪器应用课题的研究,发表共同署名文章等。前段时间,我们与岛津公司共同合作的样品前处理方面的文章还获得了中国分析测试协会科学技术奖(CAIA奖)。   (2)发挥仪器功能,建立更深入的合作关系   5-6年前,清华大学分析中心几乎没有岛津公司的仪器设备,近几年逐渐多了起来。主要有气相色谱、液相色谱、质谱和一些光学仪器等,特别在高端的质谱仪器方面,我们添加了岛津公司的IT-TOF-MS、MALDI-TOF等仪器。这些仪器的正常使用和维护,对于我校其他院系教师购买仪器起到很好的示范作用。随着我们购买岛津公司的仪器设备种类和数量逐年增加,需要与岛津公司建立更加深入的合作关系,有利于岛津公司为清华分析中心提供更好的服务,让岛津公司的仪器设备为我们提供更多高质量的测试数据,为教学科研做贡献。   (3)举办讲座和上机培训,促进互动,加深学生对仪器设备的理解   岛津公司的工程师具有丰富的硬件知识以及对仪器原理深刻的理解,通过讲座和培训方式促进双方的互动和交流,加深学生对仪器设备的理解。   (4)共同解决一些仪器应用中遇到的问题   清华大学分析中心服务于全校及部分校外的科研用户,经常会遇到一些需要拓展仪器功能的测试任务,解决一些复杂的科学问题,这些问题的出现,对于改进或者优化仪器设备都有较好的作用。我们会给合作企业反馈有价值的相关信息,企业也会从中受益。   (5)设立奖学金,激励学生的积极性   继过去3年连续成功举办三届&ldquo 清华大学分析中心岛津优秀研究生奖学金&rdquo 的基础上,2013年5月,岛津公司扩大奖学金奖励范围,支持清华大学化学系举办&ldquo 海峡两岸清华化学系博士生论坛暨岛津奖学金论文评审会&rdquo ,包括内地和台湾新竹清华大学在内约130位博士生出席了此次论坛。岛津公司派出资深工作人员作为评委,参与整个论坛的活动,这对于一个企业来说,能够抽出时间来做这样的工作,很值得的赞扬。希望与岛津公司的这个合作能够长期坚持下去。   Instrument:清华分析中心与岛津公司进一步加强合作关系,那么在这些方面您将来有哪些打算?   林金明:我们与岛津公司的合作,我希望在上面提到五个方面能够一直坚持下去,只有长时间的坚持,一些项目的效果才能够显现出来。作为岛津公司重要的合作伙伴,我们也希望在一些领域的合作能够更加深入。为高水平的人才培养和科研成果提供支持。   Instrument:请您谈谈选择岛津公司仪器的原因,以及对售后服务情况是否满意?   林金明:很多人包括我自己,通常愿意使用自己比较熟悉的仪器设备,所以工作时也习惯性地优先选择使用研究生阶段同样风格的设备。我在日本学习和工作期间,用过多台岛津的仪器,特别是色谱相关的仪器,他们的性能及售后服务都比较可靠,这也是我们采购仪器设备时把岛津公司作为主要考虑对象的原因之一。当然,近来我们也从其他仪器厂商购置相关设备,起到互补作用。   用户对于售后服务的及时性非常在意,这一点我对岛津公司很满意。仪器遇到问题时岛津公司能够急用户之所急,及时安排技术人员到实验室进行维修,节省了时间。确保仪器能够发挥作用。   采访最后,林金明表示,著名企业与著名大学的合作在国内外已经很常见,特别在欧美,许多著名大学里都有企业支持的研究所或者实验室。清华大学以校院(系)等不同级别与国内外知名企业建立研究机构也已经非常普遍。岛津公司正在尝试在清华大学分析中心建立&ldquo 质谱联合实验室&rdquo ,这是一项非常有意义的规划,我们将积极支持这一项目的开展。近年来,清华大学分析中心在光谱、质谱仪器研制,分析方法研究以及质谱应用研究方面做出了国内外公认的成绩。每年发表相关的研究论文近百篇,为用户测试光谱、质谱相关的数据两万多个。质谱测试组连续两年获得清华大学测试服务一等奖。   校企之间的合作,对于学生非常有好处,可以让学生提前了解企业的运作模式和文化,有意识地培养自己的核心竞争力,培养解决复杂问题的能力 以便毕业之后能够更快地融入社会和所服务的企业。   最后,林金明表示,非常感谢岛津公司对&ldquo 中日韩分析化学研讨会&rdquo 一如既往地给予支持。   清华大学分析中心主任、教授林金明(中)、岛津企业管理(中国)有限公司分析仪器事业部市场部经理徐海波与仪器信息网工作人员合影 采访编辑:刘向东
  • 海洋光学与川大分析中心设联合实验室
    上海 2012-12-26(中国商业电讯)-- 海洋光学与四川大学分析仪器研究中心近日正式成立联合实验室。根据双方达成的协议,海洋光学将向这一联合实验室提供各种世界领先的光学仪器,用于科学研究与教学,双方将联手开展课题研究,合作开发光学分析技术及设备,推进高技术科研成果的产业化。 四川大学段忆翔博士(左)与海洋光学亚太区域副总裁孙玲博士(右)为联合实验室揭幕   这是海洋光学在中国大陆成立的第12个联合实验室,之前已经与广西科技大学、长春理工大学、哈尔滨工业大学(2个)、哈尔滨工程大学、吉林大学、上海理工大学(2个)、中南大学、中山大学和华中科技大学建立了联合实验室。   四川大学分析仪器研究中心由国家“千人计划”特聘教授段忆翔博士于2010年组建创立,该研究中心主要从事基于激光技术的光谱分析,质谱技术的元素痕量分析,新型便携式分析仪器的设计,各种传感器的研发,非侵入式医疗诊断技术,生化武器的探测,闪烁体光纤的研制,环境监测与保护,等离子体源的设计与等离子体光谱分析,等离子体燃烧增强效应和等离子体材料表面处理与灭菌等。   海洋光学亚太区域副总裁孙玲博士说:“海洋光学不仅是世界领先的光传感和光谱技术解决方案提供商,还一直致力于推动世界光学科技研发。我们希望通过与四川大学这样的中国一流高校合作,推动中国光学科技发展,结出丰硕成果。”   四川大学的段忆翔博士与海洋光学的孙玲博士共同出席了12月13日举行的联合实验室揭幕仪式并分别致辞。来自全国的50多位从事光谱研究的专家和研究人员与共同见证了这一时刻。在随后举行的光谱新技术及其应用研讨会上,各位专家积极发言。   段忆翔教授做了题目为“我所知道的海洋光学及研究经历”精彩报告。四川大学的许涛与林庆宇、吉林大学的杨光分别做了“便携式仪器在地质勘探现场快速分析中的应用”、“海洋微型光谱仪在LIBS技术中的应用”、“微型光谱仪的系统控制及接口技术”的报告。在场的各位专家学者也就报告中的内容展开了热烈的讨论并提出了自己的宝贵意见。   关于海洋光学(Ocean Optics)和豪迈(HALMA):   总部位于美国佛罗里达的海洋光学(www.OceanOptiCSChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了近20万套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有4000多名员工,40多家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 岛津加大布局与清华大学分析中心的合作
    近年来,各大仪器公司不断加大了在中国的投资力度,除了建立工厂、研发中心之外,加强与高校、科研单位的合作也是其本土化的重要内容之一。   岛津公司是分析仪器主要提供商之一,近年来岛津公司与清华分析中心的合作不断深入,涉及人才培养、共同研究课题、建立奖学金激励制度等多个方面。近期仪器信息网(以下简称Instrument)就清华大学分析中心与岛津公司的合作内容、对合作双方的促进等问题采访了清华大学分析中心主任、教授林金明。   Instrument:林老师您好,请您给介绍一下,近几年清华大学分析中心与岛津公司的合作总体情况。   林金明:岛津公司与清华大学的合作已经有很多年了,自2004年岛津独家赞助&ldquo 中日韩分析化学研讨会&rdquo 以来,合作的领域和频次都有加强,清华大学分析中心陆续与岛津公司在人才培训、技术交流等方面开展合作。整个合作过程看似&ldquo 细水长流&rdquo ,在各个合作层面都是务实有效的。   Instrument:请您详细介绍一下,清华大学分析中心与岛津公司之间的合作具体包括哪些合作领域?   林金明:概括起来,清华大学分析中心与岛津公司近年来的合作主要有以下五个方面:   (1)发挥双方的各自优势,支持人才培养和科研工作   清华大学分析中心与岛津公司在共同培养人才方面已经做了一些工作,例如清华分析中心的学生到岛津公司进行实习,体验岛津公司各种先进的技术、仪器设备和规范化管理。清华分析中心也与于岛津公司共同完成一些仪器应用课题的研究,发表共同署名文章等。前段时间,我们与岛津公司共同合作的样品前处理方面的文章还获得了中国分析测试协会科学技术奖(CAIA奖)。   (2)发挥仪器功能,建立更深入的合作关系   5-6年前,清华大学分析中心几乎没有岛津公司的仪器设备,近几年逐渐多了起来。主要有气相色谱、液相色谱、质谱和一些光学仪器等,特别在高端的质谱仪器方面,我们添加了岛津公司的IT-TOF-MS、MALDI-TOF等仪器。这些仪器的正常使用和维护,对于我校其他院系教师购买仪器起到很好的示范作用。随着我们购买岛津公司的仪器设备种类和数量逐年增加,需要与岛津公司建立更加深入的合作关系,有利于岛津公司为清华分析中心提供更好的服务,让岛津公司的仪器设备为我们提供更多高质量的测试数据,为教学科研做贡献。   (3)举办讲座和上机培训,促进互动,加深学生对仪器设备的理解   岛津公司的工程师具有丰富的硬件知识以及对仪器原理深刻的理解,通过讲座和培训方式促进双方的互动和交流,加深学生对仪器设备的理解。   (4)共同解决一些仪器应用中遇到的问题   清华大学分析中心服务于全校及部分校外的科研用户,经常会遇到一些需要拓展仪器功能的测试任务,解决一些复杂的科学问题,这些问题的出现,对于改进或者优化仪器设备都有较好的作用。我们会给合作企业反馈有价值的相关信息,企业也会从中受益。   (5)设立奖学金,激励学生的积极性   继过去3年连续成功举办三届&ldquo 清华大学分析中心岛津优秀研究生奖学金&rdquo 的基础上,2013年5月,岛津公司扩大奖学金奖励范围,支持清华大学化学系举办&ldquo 海峡两岸清华化学系博士生论坛暨岛津奖学金论文评审会&rdquo ,包括内地和台湾新竹清华大学在内约130位博士生出席了此次论坛。岛津公司派出资深工作人员作为评委,参与整个论坛的活动,这对于一个企业来说,能够抽出时间来做这样的工作,很值得的赞扬。希望与岛津公司的这个合作能够长期坚持下去。   Instrument:清华分析中心与岛津公司进一步加强合作关系,那么在这些方面您将来有哪些打算?   林金明:我们与岛津公司的合作,我希望在上面提到五个方面能够一直坚持下去,只有长时间的坚持,一些项目的效果才能够显现出来。作为岛津公司重要的合作伙伴,我们也希望在一些领域的合作能够更加深入。为高水平的人才培养和科研成果提供支持。   Instrument:请您谈谈选择岛津公司仪器的原因,以及对售后服务情况是否满意?   林金明:很多人包括我自己,通常愿意使用自己比较熟悉的仪器设备,所以工作时也习惯性地优先选择使用研究生阶段同样风格的设备。我在日本学习和工作期间,用过多台岛津的仪器,特别是色谱相关的仪器,他们的性能及售后服务都比较可靠,这也是我们采购仪器设备时把岛津公司作为主要考虑对象的原因之一。当然,近来我们也从其他仪器厂商购置相关设备,起到互补作用。   用户对于售后服务的及时性非常在意,这一点我对岛津公司很满意。仪器遇到问题时岛津公司能够急用户之所急,及时安排技术人员到实验室进行维修,节省了时间。确保仪器能够发挥作用。   采访最后,林金明表示,著名企业与著名大学的合作在国内外已经很常见,特别在欧美,许多著名大学里都有企业支持的研究所或者实验室。清华大学以校院(系)等不同级别与国内外知名企业建立研究机构也已经非常普遍。岛津公司正在尝试在清华大学分析中心建立&ldquo 质谱联合实验室&rdquo ,这是一项非常有意义的规划,我们将积极支持这一项目的开展。近年来,清华大学分析中心在光谱、质谱仪器研制,分析方法研究以及质谱应用研究方面做出了国内外公认的成绩。每年发表相关的研究论文近百篇,为用户测试光谱、质谱相关的数据两万多个。质谱测试组连续两年获得清华大学测试服务一等奖。   校企之间的合作,对于学生非常有好处,可以让学生提前了解企业的运作模式和文化,有意识地培养自己的核心竞争力,培养解决复杂问题的能力 以便毕业之后能够更快地融入社会和所服务的企业。   最后,林金明表示,非常感谢岛津公司对&ldquo 中日韩分析化学研讨会&rdquo 一如既往地给予支持。   清华大学分析中心主任、教授林金明(中)、岛津企业管理(中国)有限公司分析仪器事业部市场部经理徐海波与仪器信息网工作人员合影 采访编辑:刘向东 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 谭蔚泓教授荣获2018年美国化学会光谱化学分析奖
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/4d1395b7-67c3-42df-a05b-aaf0d080c928.jpg" title=" f603918fa0ec08fa1670c1b35bee3d6d55fbdab6.jpg" / /p p   近日,湖南大学化学生物传感与计量学国家重点实验室主任、化学化工学院、生物学院教授谭蔚泓院士,因其在生物分析化学前沿研究领域取得的丰硕成果,荣获美国化学会“光谱化学分析奖”(the ACS Division of Analytical Chemistry Award in Spectrochemical Analysis),颁奖典礼将于2018年8月在美国波士顿举行。 /p p   美国化学会(The American Chemical Society简称ACS)成立于1876年,是一个独立的非赢利组织,是世界上最大的科技协会和世界权威科学信息主要来源之一。“光谱化学分析奖”于1987年建立,每年只设一位获奖者,旨在奖励在光谱化学分析和光学光谱法等领域做出杰出贡献并具有重大国际影响的科学家。 /p p   此次获奖词写道:谭教授在光谱化学分析方面做出了开创性的贡献:DNA探针的超灵敏生物分析,超小型光学生物传感器,生物光子学和生物纳米材料的基础研究和开发应用,以及基于核酸适体的化学和生物技术。谭蔚泓教授长期在化学生物传感与计量学国家重点实验室从事光谱学和生物光谱分析的研究与教学工作,在光学传感探针的设计、开发和应用以及分子成像等领域取得领先的科研成果。 /p
  • 我国自主研发的光学分子成像研究平台科学仪器通过验收
    日前,山西医科大学承担的山西省科技基础条件平台建设项目“光学分子成像研究平台科学仪器的自主研发”顺利通过专家组验收。  该项目是在山西医科大学现有实验室和科研团队的基础上,建设光学分子影像工程技术研究平台,同时依托该平台研制出了多光谱分光融合外科手术引导系统(光学分子影像技术设备)。  该系统能够激发体内靶向标记的荧光报告基团产生荧光,同时摄取荧光信号,将光信号转换为电信号,以数字化解剖性图像、光学分子功能性图像和两者的融合图像显示在计算机上,并结合图像处理技术精确定量、定性、定时、定位和示踪活体体内细胞和生物大分子的生物学特征,可实时识别活体肿瘤组织、淋巴结、淋巴管和血管。  据悉,该系统拥有我国自主知识产权,有助于解决生命科学研究中的一些重大科学和技术问题,提升我国在本领域的原始创新能力,并产生一定的经济和社会效益。
  • 第二届清华大学分析中心岛津研究生奖学金评审会成功举办
    成立于1972年的清华大学分析测试中心是我国高校成立的最早的分析中心之一,是集教学、科研和对外测试服务于一体、以分析化学方法学和仪器研究为重点的研究与测试中心,除承担大型仪器测试服务外,还承担繁重的本科生和研究生的教学任务,并承担多项国家基础研究和应用研究项目。岛津公司与清华大学化学系和分析测试中心有着长期、广泛的合作关系,2008年,岛津国际贸易(上海)有限公司决定赞助清华大学分析中心设立“岛津优秀研究生奖学金”,以激励分析中心的研究生致力于分析测试方法和技术装置的创新研究与应用,不断提高分析测试水平,推动分析化学学科的发展。2010年,双方携手成功举办了清华大学分析中心《2009年度岛津研究生奖学金评审会》,本活动在清华学子之间引起了非常大的回响。 3月25日,《第二届清华大学分析中心岛津研究生奖学金评审会》如期在清华大学隆重举行,120多名师生出席评审会。会议由分析中心主任林金明教授主持。中科院大连化物所张玉奎院士,国家自然科学基金委分析化学学科主任庄乾坤教授、北京工业大学校长郭广生教授、北京市科学技术研究院副院长刘清珺研究员、中科院化学所陈义研究员、北京大学化学院邵元华教授、国家纳米中心蒋兴宇研究员、学校实验室与设备处副处长闻星火、化学系党委书记尉志武教授、岛津公司通用分析事业部副部长曹磊博士应邀担任评委。评审会首先由清华大学化学系党委书记尉志武在大会致开幕辞。他在致辞中鼓励研究生们充分利用分析中心的仪器条件开展分析测试技术和装置的创新性研究,为分析中心的建设多出技术成果,多出新点子,为取得更大科学进展打下更好的基础。 紧接着,张玉奎院士就蛋白质组学研究进展做了精彩报告。张玉奎院士在报告中讲述道:“中国的肝脏蛋白研究处于国际领先水平,发展了高丰度蛋白质去除、低丰度蛋白富集、LCMS的蛋白组学研究应用等分离鉴定的新方法。”他同时介绍了激光辅酶解方法、分类筛选的磷酸化肽段鉴定策略、规模化磷酸化蛋白质组分分离鉴定平台等五方面的研究新进展,他强调目前蛋白质定量是在蛋白组学研究中遇到的最大问题,希望清华分析中心的同学,作为未来中国分析化学的精英能够致力于问题的解决,推动蛋白组学研究研究工作的发展。 张玉奎院士为师生们做了人类肝脏蛋白组学全谱分析方面的报告 随后,13名来自分析中心的研究生,就2010年的研究工作做了相关报告。报告结束后,经过各位评委公平公正的评选,魏惠斌同学的“微流控芯片质谱联用技术应用于细胞代谢及其相互间作用的研究”、谢思佳同学的“基于电致发光微阵列的氧化传感器”被评为一等奖,另外还评选出二等奖2名,3等奖9名。各位评委高度赞赏同学们高水平的论文,并高兴地为获奖同学颁发了证书和奖金。 评审会现 评委和获奖同学的合影 最后,岛津公司分析仪器事业部副部长曹磊博士向各位获奖的同学表示祝贺,他说:“这次答辩会上各位研究生的学术报告所展现的分析化学研究水平给我留下了极深的印象,希望今后保持和扩大岛津公司与分析中心的全面合作。争取下一届评选能够面向全校从事分析化学研究的研究生。” 曹磊博士向各位获奖的同学表示祝贺 至此,此次第二届清华大学分析中心岛津研究生奖学金评审会取得圆满成功。本次评审会是岛津公司对于“以科学技术贡献于社会”这一公司经营方针的又一次成功实践,岛津在推进中国科学进步的过程中又留下了自己的一个足迹。 附:论文评审结果 奖励等级 获奖人 论文题目 一等奖 魏慧斌 微流控芯片质谱联用技术应用于细胞代谢及其相互间作用的研究 谢思佳 基于电致发光微阵列的氧气传感器 二等奖 陈晓彤 基于新型聚集荧光增强分子的荧光探针和光学材料研究 吴富根 两亲性分子有序聚集体的相变及其协同性 三等奖 何天稀 刺激响应和单分散药物载体的制备及控释研究 刘传森 以二维自组装微球为模板制作单细胞分析微井阵列方法研究 潘成思 BiPO4含氧酸盐新型光催化剂的可控合成及其构效关系研究 石睿 纳米结构对光催化活性的影响及其新型光催化剂的开发 唐龙华 石墨烯电化学传感及分析应用 王雅君 共轭分子表面杂化光催化剂研究 王颖 碳材料的功能化修饰及其在化学生物学中的应用研究 姚志轶 基于水溶性聚噻吩光学探针的生物传感器 林珍 化学发光方法研究污染物降解过程 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 【热门应用】WAVE基于GCI技术的分子相互作用动力学分析在药物开发中的应用
    Creoptix公司,光学生物传感器的领军企业,2022年加入马尔文帕纳科,拥有专利的光栅耦合干涉(GCI)技术,开创新一代动力学,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据具备先进的GCI技术的WAVE系列分子互作分析仪,究竟能为生物开发领域带来什么样的支持呢?他和传统的分子互作技术相比又有哪些差异和优势呢?本文将针对以上问题予以解答。1关于光栅耦合干涉技术(GCI)光栅耦合干涉技术(Grating-Coupled Interferometry, GCI)是一种近年发展起来的具有极高灵敏度的基于芯片的非标记生物传感器技术,它区别于依赖荧光和免疫等标记分子的传统分子间相互作用技术。通过一次GCI实验,用户可以快速、准确、可靠的获取一整套描述分子间相互作用的信息,包括并不限于结合有无、结合特异性、描述结合强弱的亲和力KD或键合常数KA、描述结合快慢与稳定性的动力学常数(结合速率常数ka与解离速率常数kd)、样品活性浓度、分子间结合机制以及理论热力学信息(范德霍夫焓变)等。GCI技术的商业化产品是Creoptix WAVE系列(2022年初被马尔文帕纳科收购作为旗下Label-Free分子互作分析平台的一员)。 GCI技术具有高灵敏度、分析物的分子量无下限以及捕获快速解离动力学等优势,改进了基于片段的小分子筛选和动力学分析,与无堵塞的流路集成芯片配合使用,加速了药物开发的过程。图1 光栅耦合干涉技术(GCI)示意图2弱相互作用也能得到很好的数据在基于片段的筛选中发现的弱结合物通常是根据亲和力而不是动力学进行排名的,因为它们的解离速率常数kd非常快,这是传统的SPR仪器无法解决的问题。然而,由于具有超快速的流路切换时间,Creoptix WAVE系统可以提供出色的分辨率,在高达10 s-1的解离速率下仍然能够可靠地确定动力学,提供了一个多功能的片段药物筛选和分析平台。使用4PCZ WAVE芯片固定淀粉样纤维蛋白(Amyloid Fibrils),小分子硫黄素(ThT,319 Da)以4种浓度(50 mM ~ 6.25 mM)注入,拟合后显示出10 s-1左右的解离速率常数。图2 淀粉样纤维蛋白与硫黄素的结合分析下图为在PCP WAVE芯片上捕获的6-mer寡核苷酸(1.7 kDa)与其互补的ssDNA结合的传感图,拟合后显示出10 s-1左右的解离速率常数。图3 寡核苷酸与其互补的ssDNA的结合分析3创新的waveRAPID技术加快药物发现的早期阶段对于更快地将新药送到患者手中至关重要。为了满足用户需求,Creoptix推出了测量动力学的新方法。在传统的动力学实验中,分析物以不断增加的浓度被注入,每次注射的持续时间一样。然而,Creoptix创新的waveRAPID (Repeated Analyte Pulses of Increasing Duration)技术通过以不同时长注入单一浓度的分析物,不断增加在芯片表面的脉冲时间来进行动力学分析,该方法免去了浓度梯度的稀释步骤,大大减少了人为稀释误差和实验前的准备时间。图4 waveRAPID与传统动力学的方法比较用waveRAPID和传统的多循环动力学测量小分子化合物FUR(分析物)与碳酸酐酶CAII(配体)的结合。使用WAVEcontrol软件的“Direct Kinetics”分析,两种方法都能提供高度一致的结果。图5 waveRAPID与传统动力学的数据比较使用waveRAPID技术,在18小时内完成了对90个小分子的动力学分析,图中显示的结果为筛选过的具有低统计学误差的速率常数,突出展示了三种不同结合强度的相互作用的传感图和拟合图。图6 小分子药物苗头化合物的waveRAPID动力学筛选结论Conclusion通过Creoptix WAVE所提供的亲和力和动力学信息能够表征药物结合的详细动力学机制,为开发具有高选择性的药物提供了理论基础,使得未来药物设计中的计算和实验更加合理化。提高通量是药物发现过程中经常提到的需求,使用waveRAPID技术大大缩短了总测量时间,在药物发现领域得到了广泛应用。参考文献[1] Kartal O, Andres F, Lai MP, et al. waveRAPID-A Robust Assay for High-Throughput Kinetic Screens withthe Creoptix WAVEsystem. SLAS Discov. 2021 26(8): 995-1003.[2] FitzGerald EA, Butko MT, Boronat P, et al. Discovery of fragments inducing conformational effects in dynamicproteins using a second-harmonic generation biosensor. RSC Adv. 2021 11(13): 7527-7537.相关产品WAVE 分子相互作用分析仪WAVE分子相互作用分析仪拥有基于光栅耦合干涉技术(GCI)的光学生物传感器,且具有创新性的微流控技术,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。与传统动力学分子互作分析技术相比具有如下优势:无需配置浓度梯度样品10倍于传统分子互作技术分析速度超高灵敏度,捕获快速动力学微流控技术,不堵塞流路点击下载产品手册马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 化学分析方法“大聚会” 你用过多少
    常见的化学成分分析方法   一、化学分析方法   化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。   1.1重量分析   指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。   1.2容量分析   滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。   酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。   络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀 剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。   氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。   沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以硝酸银液为滴定液,测定能与Ag+反应生成难溶性沉淀的一种容量分析法)。虽然可定量进行的沉淀反应很多,但由于缺乏合适的指示剂,而应用于沉淀滴定的反应并不多,目前比较有实际意义的是银量法。   二、仪器分析   2.1电化学分析   是指应用电化学原理和技术,是利用原电池模型的原理来分析所测样品的电极种类及电解液的组成及含量和两者之间的电化学性质的关系而建立起来的一类分析方法。现在一般是使用电化学工作站来对样品进行测试。其特点是灵敏度高,选择性好,设备简单,操作方便,应用范围广。根据测量的电信号不同,电化学分析法可分为电位法、电解法、电导法和伏安法。   电位法是通过测量电极电动势以求得待测物质含量的分析方法。若根据电极电位测量值,直接求算待测物的含量,称为直接电位法 若根据滴定过程中电极电位的变化以确定滴定的终点,称为电位滴定法。   电解法是根据通电时,待测物在电他电极上发生定量沉积的性质以确定待测物含量的分析方法。   电导法是根据电解质溶液中溶质溶度的不同,其电导率也不同的原理,而测量分析溶液的电导以确定待测物含量的分析方法。   伏安法是将一微电极插入待测溶液中,根据被测物质在电解过程中的电流-电压变化曲线来进行定性或定量分析的一种电化学分析方法。   2.2光化学分析   光化学分析是基于能量作用于物质后,根据物质发射、吸收电磁辐射以及物质与电磁辐射的相互作用来进行分析的化学分析方法。其主要可分为光谱法和非光谱法两大类。光谱法是基于辐射能与物质相互作用时,测量有无之内不发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度而进行分析的方法。主要有原子吸收光谱法(AAS)、原子发射光谱法(AES)、原子荧光分析法(AFS)、红外光谱法(IR)等。非光谱法是基于光的波动性而对物质进行测试,主要有分光光度法和旋光法等。   2.2.1原子吸收光谱法(AAS)   原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。   其基本原理是每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比:A=KC 式中K为常数 C为试样浓度 K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。   2.2.2原子发射光谱法(AES)   原子发射光谱法是依据各种元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,而进行元素的定性与定量分析的方法,是光谱学各个分支中最为古老的一种,可同时检测一个样品中的多种元素。   其基本原理是各物质的组成元素的原子的原子核外围绕着不断运动的电子,电子处在一定的能级上,具有一定的能量。从整个原子来看,在一定的运动状态下,它也是处在一定的能级上,具有一定的能量。在一般情况下,大多数原子处在最低的能级状态,即基态。基态原子在激发光源(即外界能量)的作用下,获得足够的能量,其外层电子跃迁到较高能级状态的激发态,这个过程叫激发。处在激发态的原子是很不稳定的,在极短的时间内(10s)外层电子便跃迁回基态或其它较低的能态而释放出多余的能量。释放能量的方式可以是通过与其它粒子的碰撞,进行能量的传递,这是无辐射跃迁,也可以以一定波长的电磁波形式辐射出去,其释放的能量及辐射线的波长(频率)要符合波尔的能量定律。   2.2.3原子荧光分析法(AFS)   原子荧光分析法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析技术。   其基本原理是通过测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度而进行定量分析。原子荧光的波长在紫外、可见光区。气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。若原子荧光的波长与吸收线波长相同,称为共振荧光 若不同,则称为非共振荧光。共振荧光强度大,分析中应用最多。在一定条件下,共振荧光强度与样品中某元素浓度成正比,从而通过测试共振荧光的强度来确定待测元素的含量。   2.2.4分光光度法   分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。   其基本原理是在分光光度计测试中,将不同波长的光连续地照射到一定浓度的样品溶液时,便可得到与不同波长相对应的吸收强度。再以波长(&lambda )为横坐标,吸收强度(A)为纵坐标,就可绘出该物质的吸收光谱曲线。利用该曲线进行物质定性、定量的分析方法,称为分光光度法,也称为吸收光谱法。用紫外光源测定无色物质的方法,称为紫外分光光度法 用可见光光源测定有色物质的方法,称为可见光光度法。   2.2.5旋光法   旋光法是基于许多物质都具有旋光性(又称光学活性)如含有手征性碳原子的有机化合物,从而利用物质的旋光性质测定溶液浓度的方法。   其基本原理是将样品在指定的溶剂中配成一定浓度的溶液,采用旋光计测得样品的旋光度并算出比旋光度,然后与标准比较,或以不同浓度溶液制出标准曲线即工作曲线,求出含量。   2.3色谱分析   色谱分析是指通过利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。   2.3.1气相色谱法   气相色谱法的基本原理是利用气相色谱仪中的一根流通型的狭长管道(色谱柱)。在色谱柱中,不同的样品由于具有不同的物理和化学性质,与特定的柱填充物(固定相)有着不同的相互作用而被气流(载气,流动相)以不同的速率带动。当化合物从柱的末端流出时,它们被检测器检测到,产生相应的信号,并被转化为电信号输出。在色谱柱中固定相的作用是分离不同的组分,使得不同的组分在不同的时间(保留时间)从柱的末端流出。其它影响物质流出柱的顺序及保留时间的因素包括载气的流速,温度等。而气相色谱法中可以使用的检测器有很多种,最常用的有火焰电离检测器(FID)与热导检测器(TCD)。   2.3.2液相色谱法   液相色谱法的基本原理是基于混合物中各组分对两相亲和力的差别。根据固定相的不同,液相色谱分为液固色谱、液液色谱和键合相色谱。应用最广的是以硅胶为填料的液固色谱和以微硅胶为基质的键合相色谱。根据固定相的形式,液相色谱法可以分为柱色谱法、纸色谱法及薄层色谱法。按吸附力可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱。近年来,在液相柱色谱系统中加上高压液流系统,使流动相在高压下快速流动,以提高分离效果,因此出现了高效(又称高压)液相色谱法。检测器主要有紫外吸收检测器、荧光检测器、电化学检测器和折光示差检测器,其中以紫外吸收检测器使用最广。   2.4波谱分析   波谱分析是指物质在光(电磁波)的照射下,引起分子内部某种运动,从而吸收或散射某种波长的光,将入射光强度变化或散射光的信号记录下来,得到一张信号强度与光的波长或波数(频率)或散射角度的关系图,用于物质结构、组成及化学变化的分析,这就叫波谱法。波谱法主要包括红外光谱、紫外光谱、核磁共振和质谱,简称为四谱。除此之外还包含有拉曼光谱等。   2.4.1红外光谱法(IR)   红外光谱法是分子吸收光谱的一种,是通过将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。主要是应用于测试有机分子的价键结构以及官能团的种类等。   其基本原理是当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。   2.4.2紫外光谱法(UV)   紫外光谱法是测定物质分子在紫外光区吸收光谱的分析方法。其基本原理是物质吸收紫外光后,其价电子从低能级向高能级跃迁,须吸收波长在200~1000 nm范围内的光,此波长恰好落在紫外-可见光区域,从而产生相应的吸收峰。并非所有的有机物质在紫外光区都有吸收,只有那些具有共轭双键(&pi 键)的化合物,其&pi 电子易于被激发发生跃迁,在紫外光区形成特征性的吸收峰。   2.4.3核磁共振谱法(NMR)   核磁共振谱法是指具有核磁性质的原子核(或称磁性核或自旋核),在高强磁场的作用下,吸收射频辐射,引起核自旋能级的跃迁所产生的波谱,叫核磁共振波谱。而利用核磁共振波谱进行分析的方法,叫做核磁共振波谱法。   2.4.4质谱法   质谱法是指用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的荷质比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核素的准确质量是具有多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。分析这些离子即可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。   其基本原理是使试样中各组分进行电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散,在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小 当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,将它们分别聚焦而得到质谱图,从而确定其质量。   2.4.5拉曼光谱法   拉曼光谱法是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。   其基本原理是当光照射到物质上会发生弹性散射和非弹性散射,其中弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,则统称为拉曼效应。由于拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。其中)。如果分子能级的跃迁仅仅涉及转动能级,则发射的是小拉曼光谱 如果涉及到振动-转动能级,则发射的是大拉曼光谱。
  • 田中群院士荣获“美国化学会2017年光谱化学分析奖”
    近日,能源材料化学协同创新中心主任、厦门大学化学化工学院田中群院士,因在表面增强拉曼光谱和谱学电化学的研究领域做出杰出贡献,荣获美国化学会“光谱化学分析奖”(ACS Award in Spectrochemical Analysis),颁奖典礼将于2017年8月在美国费城举办。  “光谱化学分析奖”  “光谱化学分析奖”于1987年建立,每年只设一位获奖者,旨在奖励在光谱化学分析和光学光谱法等领域具有国际重大影响并做出杰出贡献的科学家。田中群院士是唯一获此殊荣的亚洲学者。他的获奖是国际光谱学界对田中群院士及其科研团队长期探索科学前沿和研制科学仪器所取得成就的认可,也彰显了厦门大学光谱学研究的国际地位和影响力。  人物名片  田中群,中国科学院院士,第三世界科学院院士,国际电化学会将任主席,国际电化学会和英国皇家化学会会士。1982年获厦门大学化学系本科学位,1987年获英国南安普敦大学化学系博士学位,师从英国皇家学会院士Martin Fleischmann教授。同年回国到厦门大学化学系博士后流动站工作,1989年被聘为副教授,1991年被破格提升为教授,1996年获国家自然科学基金委杰出青年基金,2005年当选为中国科学院院士,2014年当选第三世界科学院院士。2003-2009年担任固体表面物理化学国家重点实验室主任厦门大学讲座教授,2011年- 中科院化学部常委,2014年- 能源材料化学协同创新中心主任。迄今已在包括Nature等国际学术刊物上发表SCI论文380余篇。曾获多项国际奖项,包括法国Grand Prix Franco-Chinois Senior of Institute of France Academic Science(2015)、日本Prize of Innovation on Spectroscopy, Hitachi(2015)、国际电化学会The Prix Jacques Tacussel(2013),英国Faraday Medal of Royal Society of Chemistry(2012),香港求是科技基金会“杰出青年学者奖”(1999)。  田中群院士带领的科研团队坚持“顶天立地”,不仅在表面增强拉曼光谱、谱学电化学和纳米化学等基础研究领域,而且在针对食品安全检测等新一代便携光谱仪器的研制应用领域都做出了开拓性的贡献。
  • 2000万!上海交通大学超高光学分辨显纳镜国际采购项目
    项目编号:0705-234006001005/招设2023A00023项目名称:上海交通大学超高光学分辨显纳镜国际招标预算金额:2000.0000000 万元(人民币)最高限价(如有):2000.0000000 万元(人民币)采购需求:序号货物名称简要技术规格数量交货期1超高光学分辨显纳镜1)2D超分辨光学定位成像,精度 ≤ 3 nm;2)3D超分辨光学定位成像,精度 ≤ 5 nm;3)无偏差4振镜扫描头,单视野最大图像大小≥10000 x 10000像素;4)其他技术要求详见第八章第二部分《技术规格》。1套签订合同后 6 个月内合同履行期限:签订合同后6个月内交货本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:上海交通大学地址:上海市东川路800号联系方式:陈老师,021-54744366 用户联系人:王老师,199210807132.采购代理机构信息名 称:上海国际招标有限公司地 址:中国上海延安西路358号美丽园大厦14楼联系方式:张靖姝、唐臻善,86-21-32173698、32173716,zhangjingshu@shabidding.com、tangzhenshan@shabidding.com3.项目联系方式项目联系人:张靖姝、唐臻善电话:86-21-32173698、32173716
  • 海光仪器助力全国地质与地球化学分析学术报告会
    为推动全国地质与地球化学分析的进步与发展,促进不同学科、不同领域间的国内外学术交流,中国地质学会岩矿测试技术专业委员会于2019年9月25日-26日在海南省海口市举办“第十一届全国地质与地球化学分析学术报告会”。本届大会主题为“科学与未来”,邀请了国内外学者作大会特邀报告。 海光公司在本次交流会上展示了HGF-V9原子荧光光度计和直接进样测汞仪,两款产品对环境、地质等领域样品元素痕量分析以及汞元素的直接进样检测方面有着非常表现。2017年,海光公司正式发布直接进样测汞仪,全程温控系统、催化体系、自动进样系统、长短吸收池、绿色环保尾气净化体系等一系列设计,确保仪器性能稳定可靠,满足日常检测要求。免化学前处理、固/液/气体等不同类型样品直接进样分析,能够满足近些年实施的一系列环境标准(HJ910-2017 环境空气气态汞的测定、HJ 917-2017 固定污染源废气气态汞的测定、HJ 923-2017 土壤和沉积物总汞的测定)。 海光新推出的HGF-V9原子荧光光度计同样吸引了大家关注的目光,该仪器基于全新的四通道九灯位光学系统,引入了高度集成三维集成流路、百万次免维护点火、双区温控原子化器、水冷式自排废气液分离器、自动对光等核心技术;开发了汞灯自激发及漂移自动校准技术、三通道高精度数字化气路、原子化区域可视化系统等关键技术,实现了原子荧光分析的高度自动化与智能化,显著提升仪器可靠性和长期稳定性。 会上,测汞仪事业部负责人孙鹏高工带来了《直接进样测汞技术在环境监测中的应用》主题报告。报告着重介绍了海光直接进样测汞及原子荧光技术,可帮助地质系统实验室更加好的检测汞及其他相关重金属元素,与会单位带来仪器设备的解决方案。 海光公司始终保持对光谱分析技术的高度关注,根据客户需求不断推出新技术、新产品,与行业专家、老师建立广泛的联系,从而提供更加精良的产品、更加完善的解决方案。
  • 关于召开第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会的通知
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将于2022年6月14-15日线上举行。论坛以线上会议形式,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。一、组织单位国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会、仪器信息网二、会议主题能源化学与碳中和三、会议形式线上会议,免费报名参会,进入会议官网报名或扫描以下二维码报名会议官网:https://www.instrument.com.cn/webinar/meetings/bmfx2022扫码即刻报名参会四、会议日程(最终议程以活动专题页面发布为准)时间报告题目演讲嘉宾专场1:表面分析技术应用论坛(上)——6月14日09:00-11:45专场主持人朱永法(清华大学/国家电子能谱中心 教授/常务副主任)09:00-09:15致辞李景虹(清华大学/国家电子能谱中心/中国分析测试协会高校分析测试分会 院士/主任/主任委员)09:15-10:00水滑石基纳米光催化材料合成太阳燃料及高附加值化学品张铁锐(中国科学院理化技术研究所 研究员)10:00-10:30场发射俄歇微探针JAMP-9510F在材料表面分析中的应用张元 (日本电子株式会社 应用工程师)10:30-11:00X射线光电子能谱(XPS)技术及应用龚沿东(岛津企业管理(中国)有限公司 研究员)11:00-11:45太阳能驱动人工碳循环熊宇杰 (中国科学技术大学 教授)专场2:表面分析技术应用论坛(下)——6月14日13:30-16:45会议主持人张铁锐(中国科学院理化技术研究所 研究员)13:30-14:15Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles马丁(北京大学 教授)14:15-14:45待定赛默飞世尔科技元素分析14:45-15:30有机分子电催化转化王双印 (湖南大学 教授)15:30-16:00待定北京精微高博仪器有限公司16:00-16:45有机半导体可见光催化产氢、二氧化碳还原及肿瘤治疗研究朱永法(清华大学/国家电子能谱中心 教授/常务副主任)专场3:表面化学分析国家标准宣贯会——6月15日09:00-11:45会议主持人姚文清(清华大学/国家电子能谱中心 正高级工程师/副主任)09:00-09:45辉光放电质谱最新技术进展及其在相关标准方法中的应用卓尚军(中国科学院上海硅酸盐研究所 研究员)09:45-10:15XPS分析技术在空间和深度维度探测中的应用鞠焕鑫(高德英特(北京)科技有限公司 应用科学家)10:15-11:00GB/T 41072-2021 表面化学分析 电子能谱 紫外光电子能谱分析指南赵志娟(中科院化学所 高级工程师)11:00-11:45扫描探针显微镜漂移标准化研究黄文浩(中国科学技术大学 教授)五、 嘉宾简介&报告摘要专场1表面分析技术应用论坛(上)(6月14日上午)朱永法清华大学/国家电子能谱中心教授/常务副主任专场主持人:09:00--11:45李景虹清华大学/国家电子能谱中心/中国分析测试协会高校分析测试分会院士/主任/主任委员大会致辞:09:00--09:15李景虹,中国科学院院士、第十二、十三届全国政协委员。清华大学化学系教授,化学系学术委员会主任,国家电子能谱中心主任,清华大学分析中心主任。1991年获中国科学技术大学学士学位,1996年获中科院长春应用化学研究所博士学位。近年来致力于电分析化学、生物电化学、单细胞分析化学及纳米电化学领域的教学科研工作。以通讯作者在Nature Nanotech., Nature Protocol, J. Am. Chem. Soc., Angew. Chem.等学术刊物上发表SCI论文400余篇。2015-2021年连续五年入选汤森路透全球高被引科学家。以第一完成人获国家自然科学奖二等奖、教育部自然科学奖一等奖等。任Chem. Soc. Rev., ACS Sensors, Small Methods, Biosensors Bioelectronics, Biosensors, Chemosensors等期刊编委。张铁锐中国科学院理化技术研究所研究员报告题目:水滑石基纳米光催化材料合成太阳燃料及高附加值化学品报告&答疑:09:15--10:00张铁锐,中国科学院理化技术研究所研究员、博士生导师,中国科学院光化学转化与功能材料重点实验室主任。吉林大学化学学士,吉林大学有机化学博士。之后,在德国、加拿大和美国进行博士后研究。2009年底回国受聘于中国科学院理化技术研究所。主要从事能量转换纳米催化材料方面的研究,在Nat. Catal.等期刊上发表SCI论文280余篇,被引用26000多次,H指数89,并入选2018-2021科睿唯安“全球高被引科学家”;申请国家发明专利49项(已授权37项)。曾获皇家学会高级牛顿学者、德国“洪堡”学者基金、国家基金委“杰青”、国家“万人计划”科技创新领军人才等资助、以及中国感光学会青年科技奖等奖项。2017年当选英国皇家化学会会士。兼任Science Bulletin副主编以及Advanced Energy Materials等期刊编委。现任中国材料研究学会青年工作委员会-常委,中国化学会能源化学专业委员会-秘书长,中国感光学会光催化专业委员会-副主任委员等学术职务。报告摘要:水滑石基纳米材料因组成结构易于调控、制备简便等优点在光催化领域而备受关注。近年来,我们研究团队通过在水滑石表面创造缺陷位和构造界面结构的手段,分别实现了对反应物CO2、N2等吸附和活化的增强,以及中间反应物种反应路径的调控,进而提升了光催化CO、CO2和N2加氢反应的催化活性和生成高附加值产物的选择性。张元日本电子株式会社应用工程师报告题目:场发射俄歇微探针JAMP-9510F在材料表面分析中的应用报告&答疑:10:00--10:30张元,日本电子应用工程师。2016年毕业于上海交通大学材料科学与工程专业,获工学学士学位;2019年毕业于京都大学大材料工学研究科,获工学硕士学位。2019年入职日本电子,现担任应用工程师一职,主要负责场发射俄歇微探针与钨灯丝扫描电镜的应用与培训。报告摘要:日本电子的场发射俄歇微探针装置JAMP-9510F能够实现纳米级空间分辨率下试样表层的元素分布、化学组成、化合态分析等材料表征。无论是金属试样还是绝缘材料,JAMP-9510F装载的静电半球形分析器、场发射电子枪的大束流、高精度全对中试样台以及悬浮式离子枪都能提供多种表面分析方法。龚沿东岛津企业管理(中国)有限公司研究员报告题目:X射线光电子能谱(XPS)技术及应用报告&答疑:10:30--11:00龚沿东,研究员,1986年毕业于清华大学现代应用物理系,曾任中国科学院金属研究所分析测试部主任(研究员)。英国国家物理实验室(National Physical Laboratory)访问学者,美国圣母大学(University of Notre Dame)化工系研究助理。现任全国微束分析标准化技术委员会委员,全国微束分析标准化技术委员会表面分技术委员会委员。岛津公司市场部XPS和EPMA首席技术专家。报告摘要: X射线光电子能谱仪是表面分析领域中一种崭新的分析技术,通过测量固体样品表面约10nm左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量及价态分析。报告中主要介绍XPS原理、技术特点以及XPS在催化材料、电池材料、薄膜材料、电子器件等材料中的应用案例,旨在让科研工作者对XPS表面分析技术在材料领域的应用有所了解。熊宇杰中国科学技术大学教授报告题目:太阳能驱动人工碳循环报告&答疑:11:00--11:45熊宇杰,中国科学技术大学教授、博士生导师。1996年进入中国科学技术大学少年班系学习,2000年获化学物理学士学位,2004年获无机化学博士学位,师从谢毅院士。2004至2011年先后在美国华盛顿大学(西雅图)、伊利诺伊大学香槟分校、华盛顿大学圣路易斯分校工作。2011年辞去美国国家纳米技术基础设施组织的首席研究员职位,回到中国科学技术大学任教授,建立独立研究团队,同年入选首批国家高层次青年人才计划和中国科学院人才计划。2016年获批组建中国科学院“等离激元催化”创新交叉团队,2020年终期评估结果为优秀。2017年获国家杰出青年科学基金资助,入选英国皇家化学会会士。2018年获聘长江学者特聘教授,入选国家万人计划科技创新领军人才。2022年入选新加坡国家化学会会士。现任ACS Materials Letters副主编。主要从事基于催化过程的生态系统重构研究。在Science等国际刊物上发表250余篇论文,总引用31,000余次(H指数91),入选科睿唯安全球高被引科学家榜单和爱思唯尔中国高被引学者榜单。2012年获国家自然科学二等奖(第三完成人),2014-2016和2018年四次获中国科学院优秀导师奖,2015年获中美化学与化学生物学教授协会杰出教授奖,2019年获英国皇家化学会Chem Soc Rev开拓研究者讲座奖,2021年获安徽省自然科学一等奖(第一完成人)。报告摘要:人类正在探索实现“碳中和”的有效途径,凸显出建立人工碳循环的重要性。本报告将阐述如何针对太阳能驱动二氧化碳和甲烷转化,在太阳能俘获和电荷分离的基础上,对化学键的形成和断裂进行选择性控制,将其转化为燃料或化学品。另一方面,利用自然界的生物活性基元,开发无机-生物杂化系统,为太阳能驱动固碳提供新的思路。专场2表面分析技术应用论坛(下)(6月14日下午)张铁锐中国科学院理化技术研究所研究员专场主持人:13:30--16:45马丁北京大学教授报告题目:Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles报名占位报告&答疑:13:30--14:15马丁,北京大学化学与分子工程学院教授。针对我国社会能源和资源优化利用过程,主要开展氢能制备与输运,高值碳基化学品/油品合成, 以及催化反应机理研究等方面研究工作。获得2013年度北京大学青年教师教学比赛一等奖,2014年度王选青年学者奖,2017年中国催化青年奖,2017年度中国科学十大进展。2014-2017年担任英国皇家化学会Catalysis Science & Technology副主编 目前担任Chinese Journal of Chemistry、 ACS Catalysis 副主编,Science Bulletin、Journal of Energy Chemistry、 Joule、Journal of Catalysis、Catalysis Science & Technology等刊编委和顾问编委。报告摘要:人类正在探索实现“碳中和”的有效途径,凸显出建立人工碳循环的重要性。本报告将阐述如何针对太阳能驱动二氧化碳和甲烷转化,在太阳能俘获和电荷分离的基础上,对化学键的形成和断裂进行选择性控制,将其转化为燃料或化学品。另一方面,利用自然界的生物活性基元,开发无机-生物杂化系统,为太阳能驱动固碳提供新的思路。待定赛默飞世尔科技元素分析报告题目:待定报告&答疑:14:15--14:45王双印湖南大学教授待定北京精微高博仪器有限公司报告题目:待定报告&答疑:15:30--16:00朱永法清华大学/国家电子能谱中心
  • 2000万!上海交通大学超高光学分辨显纳镜国际招标采购项目
    项目编号:0705-234006001005/招设2023A00023项目名称:上海交通大学超高光学分辨显纳镜国际招标预算金额:2000.0000000 万元(人民币)最高限价(如有):2000.0000000 万元(人民币)采购需求:序号货物名称简要技术规格数量交货期1超高光学分辨显纳镜1)2D超分辨光学定位成像,精度 ≤ 3 nm;2)3D超分辨光学定位成像,精度 ≤ 5 nm;3)无偏差4振镜扫描头,单视野最大图像大小≥10000 x 10000像素;4)其他技术要求详见第八章第二部分《技术规格》。1套签订合同后 6 个月内合同履行期限:签订合同后6个月内交货本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:上海交通大学地址:上海市东川路800号联系方式:陈老师,021-54744366 用户联系人:王老师,199210807132.采购代理机构信息名称:上海国际招标有限公司地址:中国上海延安西路358号美丽园大厦14楼联系方式:张靖姝、唐臻善,86-21-32173698、32173716,zhangjingshu@shabidding.com、tangzhenshan@shabidding.com3.项目联系方式项目联系人:张靖姝、唐臻善电话:86-21-32173698、32173716
  • 清华大学分析中心
    p   清华大学分析化学学科在1926年化学系成立之初就作为重点发展的“专门方向”之一。1952年院系调整使清华大学化学系的发展一度中断,但是分析化学教学一直得到保持和延续。1972年在国内较早建立了分析中心,1978年始恢复招收“物理化学与仪器分析”专业的本科生并招收应用化学(分子光谱、仪器分析)硕士生。1985年清华大学恢复组建化学系,原分析化学教研室与清华大学分析中心整合成教学、科研、服务三结合的实体。 /p p   本学科的发展凝聚了几代人的心血。特别是1985年复系以来,邓勃、郑用熙、李隆弟等教授在化学计量学、原子吸收光谱分析和胶束增溶及室温磷光光度分析研究方面,形成了有特色并在国内有一定影响的学科方向。九十年代后随着罗国安、童爱军、丁明玉、张新荣、林金明、李景虹等一批中青年人才的引进,明确了以色谱分析、光谱分析、表面分析、电化学分析、药物分析作为本学科的主要研究方向。本学科现有高级职称研究人员16名,其中教授8人,国家杰出青年基金获得者2人,教育部跨世纪人才1人,形成了一支学术方向和年龄结构合理的师资队伍。 /p p   2001-2006年间本学科承担了包括国家“973”、“863”、科技攻关与支撑项目、国家自然科学基金重大、重点和面上项目以及军工项目等共173项,总经费 4560 万元 共发表SCI论文365篇,影响因子IF& gt 10的1篇,IF& gt 5的23篇,IF& gt 3的70篇 其中Anal.Chem.12篇, J. Am. Chem. Soc. 2篇 申请专利近百项,其中授权38项 出版专著28部。获得国家科技进步二等奖2项,教育部科技进步一等奖1项。 /p
  • 应用行家共议冶金化学分析技术——CCATM’2016化学分析报告会
    仪器信息网讯 2016年9月20日-22日,由中国钢研科技集团有限公司和中国金属学会联合举办的第18届国际冶金及材料分析测试学术报告会暨展览会(CCATM’2016)在北京国际会议中心召开。其中的CCATM’2016化学分析报告会在9月21日-22日进行,包含国际大会报告和国内大会报告,并针对不同应用方法设立了固体化学分会场和湿法化学分会场。  在22日举行的CCATM’2016化学分析报告会国内大会报告上,11位技术研发和企业应用专家分享了最新技术成果。CCATM’2016化学分析报告会现场北京有色金属研究总院 李继东 报告题目《辉光质谱在金属材料中分析应用进展与展望》  李继东在报告中介绍说,辉光放电质谱(GDMS)是痕量和超痕量元素分享的极佳工具。根据供电方式不同,GDMS分为三类,其中直流辉光放电质谱的市场占有率最高,能达到90%以上。除了介绍GDMS的计算原理和仪器机构,李继东解释了目前GDMS的分析优势。分析速度快:通常一个固体进样样品全流程分析时间约1h;测定下限低:多数元素测定下限达到1ppb;基体效应小:可采用相对灵敏度因子进行多样品半定量成分分析。该团队在实验室曾采用GDMS分析过30余种金属合金。李继东还通过实例和数据详细介绍了GDMS在有色金属材料分析中的应用。李继东带领团队起草发布了近十项用辉光放电质谱测定有色金属材料的行业标准。李继东最后总结到,辉光放电质谱与光谱一样有很大的应用发展空间,射频和脉冲辉光放电离子源将进一步拓展其应用;目前,标样(特别是低含量标样)缺乏限制了GDMS的应用,发展标样非常重要。宝山钢铁集团中央研究院 何晓蕾 报告题目《全二维气相色谱/飞行时间质谱法分析焦化废水中的多环芳烃及其它有机物》  何晓蕾介绍了团队以焦化厂经过SBR生化处理前后的废水作为研究对象,采用液-液萃取分离方法,结合全二维气相色谱飞行时间色谱分析技术,建立了多环芳烃和其他有机物的检测方法。团队系统的研究了焦化废水SBR生化处理前后,多环芳烃的含量和毒性变化。通过两组大数据的比对,了解了SBR生化处理前后其他有机物的组成变化和分子构成变化,多环芳烃SBR去除率约为40%,高分子量多环芳烃去除率达100%,该研究获悉了废水处理系统的降解规律,为选择最佳的可行性后续废水处理方案提供了依据。中国船舶重工集团公司第七二五研究所(洛阳船舶材料研究所)刘攀 报告题目《Top-down技术和灰色理论评估化学分析测量不确定度》  刘攀介绍了以合理表征质控数据分散性的标准参数表示不确定度的Bottom-up (GUM)方法。该团队的研究通过45套质控数据验证了平均移动极差、稳健标准查、灰色标准差三种方法的一致性。刘攀还提到,检验检测应用也需要大数据深入探索,继续完Top-down技术。醴陵市金利坩埚瓷厂 荣金相 报告题目《多元复合助熔剂在红外碳硫分析仪上的应用技术》  荣金相介绍了复合助剂的种类和选择方法,以及在红外碳硫分析中的最佳分析条件。不同基体材料要正确选择相匹配的复合助剂,该团队研发并商品化了针对不同材料的复合助剂供以提高红外碳硫分析仪的应用效果。宝山钢铁股份有限公司 朱子平 报告题目《电解法测定化学钝化镀锡板表面铬量》  朱子平介绍了团队目前正在研究的电解法测定化学钝化镀锡板表面铬量的课题情况。镀锡板表面铬测定有比色法、电解法、X荧光法、原吸法和ICP法等。该研究团队设计了电化学测量装置。通过该装置,该研究对化学钝化表面铬电解曲线进行了微分曲线,可以准确判断起始点,进而确定化学钝化电解时间。根据化学钝化电解时间和电解法标定系数,可以得到化学钝化表面铬量。该电解法测量速度快、测量精度好。首钢京唐钢铁联合有限责任公司 张红领 报告题目《BH钢熔炼成分碳含量检测过程样品代表性的研究》  张红领介绍了团队在BH钢熔炼成分碳含量检测中的一些经验与数据结果。为保证球拍样检测过程的精确性,在生产检测过程中BH钢的铣床的铣削程序设置为1.2mm。同样的检验条件下,提桶样检测记过精确性略高于球拍样。球拍样与提桶样两种取样方式检测BH钢连铸碳含量无显著差异。国家钢铁材料测试中心 罗岁斌 报告题目《冶金原材料分析中溶液介质及盐分对电感耦合等离子体原子发射光谱(ICP-AES)分析结果的影响探讨》  罗岁斌介绍了影响ICP-AES信号强度的诸多因素。将无机酸引入检测体系会使进入等离子体内的分析物减少,分析信号降低。在基体匹配的基础上采用内标校正,可以校正硫酸加入量微小差异引起的对金属离子的分析误差。钠盐存在时,硫酸介质和盐酸介质下镁的测试结果均降低,基体匹配可以降低其影响,钠盐对分析信号也有明显影响。严格基体匹配较为困难,采取典型试样组成基体匹配可以完成绝大多数分析,具体个别情况可以采用参考物质监控和标准加入法验证。钢研纳克检测技术有限公司 王学华 报告题目《惰性熔融-红外吸收法测定硅钙合金中氧》  王学华在报告中介绍说,硅钙合金中有效相态组分为硅化钙,而不法行为加入CaO等非有效钙充当有效相态组分,损害产品质量。该研究组采用脉冲加热惰性气体熔融-红外吸收法建立了硅钙合金中总氧含量的测定方法。分析结果精度和准确度较好,RSD在1%左右,可满足实际生产要求。目前尚没有硅钙合金中氧含量的测定方法标准,课题组认为十分有必要建立硅钙合金中总氧含量测定方法。钢研纳克检测技术有限公司 李冬玲 报告题目《管线钢堆焊热区域成分统计分布表征及其组织和性能的相关性研究》  李冬玲在报告中介绍了用于堆焊区域成分标志的分析方法,详细解释了LIBSOPA分析方法及其特点。研究组对堆焊区域的成分、组织与显微硬度分布相关性进行了研究。其研究表明:在硬度较高的环状区域,Ti元素出现富集带,这个区域也是板条马氏体聚集的地方,可见该硬化区与Ti元素的偏析分布以及板条状马氏体分布密切相关。基体的组织晶粒细小、维氏硬度较低,焊材区域的晶粒组织粗大,其Si、Ti元素的含量也明显高于基体,导致其硬度高于基体。河钢集团钢研总院 刘洁 报告题目《光谱分析用镍基合金内部控制样品的研制》  刘洁镍分析了目前行业内基合金新材料种类开发越来越多,镍基合金类标准样品在国内非常少,而进口采购价格昂贵 直读光谱、X荧光光谱等仪器对镍基合金标准样的需求很大。在这种情况下,该研究组利用现有仪器设备资源,研制了3种镍基合金内部控制样品。这些控制样均按照相关标准的要求进行冶炼、锻造、加工、均匀性实验、稳定性检验和定值分析,该控制样品在产品质量、仪器校准、测试方法评价等发面发挥了很好的作用,并能够应用与直读光谱、辉光光谱谱仪和荧光光谱仪成分检测校准。钢研纳克检测技术有限公司 宋宏峰 报告题目《镁合金中11种稀土及非稀土元素的全谱测定及干扰校正》  宋宏峰在报告中介绍了该研究组采用电感耦合器件(CCD)的小型化光谱仪器对一定范围内的谱线进行全谱扫描,具有诸多技术优势。采用该方法,研究者系统研究了稀土镁合金中的十余种金属元素的准确度、短期精密度和干扰校正。研究表明:CCD型全谱光谱仪可以简便、快速的解决镁基样品中稀土元素及其它杂质元素的分析检测。该技术具有检出限低、覆盖面广、不受通道及基体限制等优势,还可以根据用户需求进一步拓展待测元素的种类和测定的含量范围。同时,对较低含量的元素也可以实现高精度、高准确度的检测。
  • BCEIA2023光谱学分会精彩预告:高灵敏光谱分析与成像
    第二十届北京分析测试学术报告会暨展览会(BCEIA 2023) 将于2023年9月6-8日在北京中国国际展览中心(顺义馆)召开。BCEIA作为展示国际新技术、新仪器、新设备的窗口,一直以来受到国内外众多专家、学者、科技人员的关注,同时,学术报告会作为BCEIA重要组成部分,始终面向世界科技前沿。BCEIA 2023将举办大会报告、分会报告、高峰论坛、同期会议、墙报展等多场精彩学术活动,邀请国内外行业顶尖学者及学术带头人,分享最具前瞻性的研究进展,针对学科关注度最高的技术及应用进行研讨和交流。2023年9月7-8日,BCEIA2023学术报告会——光谱学分会将在学术会议区E-206会议室举行,聚焦“高灵敏光谱分析与成像”主题,围绕分子及纳米光谱、光谱分析与材料、高分辨光学成像、光谱仪与显微镜等主题方向,邀请到19位国内色谱领域资深科学家及青年才俊带来精彩报告。特邀报告人报告摘要Surface-enhanced Raman spectroscopy (SERS) has unique advantages for in vivo analysis, but still possesses significant challenges. Aiming to the key issues for in vivo SERS analysis, including complex environment, low molecular content and intermolecular interdependence, a series of novel semiconductor Raman substrates were uniquely constructed for highly sensitive, selective and multi-channel SERS analysis of molecules associated with Alzheimer's disease.First, by regulating the semiconductor energy level structure, we proposed a new SERS method that enhances the Ramansignal by promoting charge transfer through level matching and heterojunction blocking of electron-hole recombination, resulting in a 4-order of magnitude enhancement of the SERS enhancement factor to 1010 and establishing a highly sensitive in vivo analysis method. Secondly, we proposed a new strategy for triple recognition of molecular specificity, level matching, and fingerprint peaks, establishing a highly selective Raman analysis method for in vivo analysis, a SERS optophysiological probe was created for real-time mapping and recording of chemical and electrical signals without cross-talk in the live brain. Moreover, it was the first time that a Raman fiber photometry was built up for real-time tracking and simultaneous quantitation of multiple molecules in mitochondrial across the brain of free-moving animals. Meanwhile, a highly selective non-metallic Raman probe was created through triple-recognition strategies of chemical reaction, charge transfer, and characteristic fingerprint peaks, for monitoring and quantifying of local mitochondrial O2•-, Ca2+ and pH in six brain regions upon hypoxia. It was discovered that hypoxia-induced O2•- burst was regulated by ASIC1a, leading to mitochondrial Ca2+ overload and acidification.专家简介田阳,华东师范大学特聘教授,现任华东师范大学化学与分子工程学院院长。2013年曾获国家杰出青年基金资助;获日本化学会“The distinguished lectureship award”,中国分析测试协会一等奖(第一完成人),中国化学会女分析化学家,上海市自然科学奖一等奖(第一完成人);受邀在神经学和神经科学等国际国内做大会、主题或邀请报告36次。目前担任Chemical Communications副主编和《高等化学学报》副主编。田阳教授长期从事活体电信号的化学表达分析领域研究,在发展生物化学分子(如酶、蛋白等)的精准分析测量策略、建立长时程稳定的高空间分辨成像方法、及开拓高速成像分析新仪器等方面开展了深入和系统的工作。报告摘要Single-molecule detection enables the measurement of molecules at the single-molecule level, and it can be used to study the conformational changes and interaction between the molecules, holding great potential in biochemical analysis and biomedical research. In comparison with the conventional ensemble measurements, single-molecule detection possesses the advantages of ultrahigh sensitivity, good selectivity, rapid analysis, and low sample consumption. Single-molecule detection can be used as an ideal analytical approach to quantify the low-abundant biomolecules with rapidity and simplicity. We demonstrate the applications of single-molecule detection-based biosensors for sensitive detection of various target biomolecules such as long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs). The biosensors show extremely high sensitivity. Moreover, these biosensors enable simultaneous measurement of multiple endogenous RNAs at the single-cell level, and it may discriminate the expressions of various RNAs in lung tumor tissues and the healthy tissues, offering a promising platform for clinical diagnosis and biomedical research.专家简介Chun-yang Zhang obtained his PhD degree from Peking University, China, in 1999. During 1999–2008, he worked at Tsinghua University, China Emory University, USA The Johns Hopkins University, USA and The City University of New York, USA. In 2009, he joined as a professor in the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China. During 2015-2023, he worked as the dean of college of Chemistry, Chemical Engineering and Material Science in Shandong Normal University, China. In 2023, he joins in Southeast University, China. He is the recipient of the China National Fund for Distinguished Young Scientists. His research focuses on analytical chemistry, bioelectrochemistry, bionanotechnology and single-molecule detection.报告摘要Marine plankton play important role in ocean biogeochemistry, and their observation is of fundamental significance for oceanographic research and coastal environment monitoring. However, current marine plankton observation still relies heavily on traditional manual net sampling and optical microscopy inspection, which has long been notoriously slow and labor intensive. Developing automated and online approaches for this task is expected to satisfy the urgent needs from marine scientists for research and government departments for operational oceanographic coastal seawater environment monitoring. The advent and application of in situ optical imaging have enabled more direct observations of marine plankton in different tempo-spatial scales, greatly promoted our understanding of marine plankton ecology. However, existing underwater plankton cameras compromise between their imaging resolution and field of view (FOV) for in situ observations. In order to enlarge the sampling volume in single frame acquisition, they usually adopt lower magnifications to enable larger FOV but sacrifice the resolution. This will inevitably lead to a decreased imaging resolution, leading to insufficiency to obtain enough image details for the relatively small plankton targets and hence inaccuracy for subsequent species identification and quantification.In this talk, the speaker will report some recent developments by his team on in situ plankton imaging technologies. Particularly, the talk will emphasize a deep learning-based super-resolution in situ plankton imaging technology. This new technique is expected to enhance the existing plankton imageries and enable future underwater plankton imaging instruments for better in situ plankton observation and hence deeper our understanding of the marine plankton ecology.专家简介李剑平,男,博士,中国科学院深圳先进技术研究院正高级工程师,中国科学院大学博士生导师,深圳市海洋声光探测技术及装备工程研究中心主任。研究领域包括创新光学方法、先进光电仪器、机器视觉与机器学习在海洋观测中的应用。先后主持和参与了国家重点研发计划、国家自然科学基金、中国科学院、香港大学教育资助局(RGC)、广东省科技厅、深圳市科技创新委等研究项目。带领团队研制了水下浮游生物成像仪、走航式浮游植物成像流式细胞仪、海水叶绿素a、COD、BOD传感器等多种海洋观测探测仪器。在IEEE JOE,ICES JMS, FMARS,ECCV,ICCV, Optics Letters, Optics Express、Applied Optics等光学、海洋科学和机器视觉知名期刊和国际学术会议发表论文多篇,申请中国发明专利和实用新型专利43项,获得发明专利授权7项,实用新型专利授权6项;在ICCV, Ocean Optics, International Ocean Color Sciences, Focus on Microscopy等知名国际会议做主旨报告、口头报告多次。李剑平博士是国际电子电气工程协会IEEE高级会员、美国光学学会Optica会员、国际光电工程师协会SPIE会员、国际海洋技术学会MTS会员、中国仪器仪表学会高级会员、中国海洋与湖沼学会海洋观测分会理事、中国海洋湖沼学会海洋腐蚀与污损专业委员会委员、深圳市人工智能学会会员、广东省自然资源厅赤潮专家库专家。长期担任Optics Letters, Optics Express, Biomedical Optics Express, Applied Spectroscopy, Applied Optics, Cytometry Part A等知名学术期刊论文审稿人,担任国际会议ICCV Computer Vision in the Ocean Workshop程序委员会委员和审稿人。报告摘要The advanced light source (ALS) analytical technologies have been expanded to dig into the underexplored behavior and fate of nanomedicines in vivo. It is increasingly important to further develop ALS-based analytical technologies with higher spatial and temporal resolution, multimodal data fusion, and intelligent prediction abilities to deeply unlock the potential of nanomedicines. In this presentation, we focus on several selected ALS analytical technologies, including imaging and spectroscopy, and provide an overview of the emerging opportunities for their applications in exploring the biological behavior and fate of nanomedicines.Improved ALS imaging and spectroscopy techniques will accelerate a profound understanding of the biological behavior of new nanomedicines.专家简介王亚玲,国家纳米科学中心研究员,广州市新发传染病疫苗研发技术创新促进会理事,主要研究方向为基于先进光源的纳米生物分析方法、新型纳米佐剂开发及产业化研究。近年来,在Nature protocols, Acc. Chem. Res., ACS Cent. Sci., Nano Today, Anal. Chem., ACS Nano,等期刊上发表70余篇论文,申请发明专利18项,获授权国家发明专利3项。作为首席科学家承担了科技部政府间科技合作重点专项,主持了国家重点研发计划大科学装置专项课题1项,国家自然科学基金青年、面上、重点项目子课题各1项,作为项目骨干参加中科院先导B项目、纳米生物效应及分析方法等相关十多个项目研究。报告摘要Molecular sensing and imaging have become powerful tools in both fundamental research and clinical diagnosis because they enable not only to quantify but also to track biological molecules of interest. During the past years, we are dedicated to developing new strategies that enable spatiotemporally selective molecular sensing with higher precision. For example, by designing light-activatable sensors and combining it with upconversion nanotechnology, spatiotemporally controlled imaging of metal ions in mitochondria was achieved. In addition,ly requires high power illumination that could damage the biological specimen. We report that integral imaging with surface plasmon polaritons allows single-protein detection with a signal-to-noise ratio an-order-of-magnitude beyond the shot-noise limit. Therefore, our integral microscopy allows quantitative mass imaging and binding analysis of single unlabeled protein molecules with a three-orders-of-magnitude reduction in the light intensity. It also enables highly specific protein detection at the subpicomolar concentration level that would not otherwise be achievable.专家简介2011年博士毕业于浙江大学,并先后在香港科技大学和美国亚利桑那州立大学开展研究工作。2017年加入上海交通大学生物医学工程学院,主要研究方向为光学生物传感技术及仪器。在PNAS等顶级期刊发表多篇学术论文,承担基金委国家重大科研仪器研制项目、十四五国家重点研发计划专项课题、基金委面上项目等研究任务。以上报告内容由BCEIA2023组委会提供欢迎扫码报名参加BCEIA2023
  • 科学分析仪器盛会——密西西比河畔的Pittcon 2015
    全球最大的科学分析仪器盛会—匹兹堡分析化学和光谱应用会议暨展览会(Pittcon 2015)在美国新奥尔良位于密西西比河畔的会议中心已闭幕近一个月,笔者在这里补上一月前的观感。 各国仪器巨头齐聚Pittcon唯独安捷伦公司缺席,这似乎已成为Pittcon的一个惯例,但安捷伦公司仍以其优质的客户服务被Pittcon 展会授予嘉奖。展会现场Thermos fisher、Waters、PE等大佬最为耀眼。Thermos fisher公司以巨无霸的姿态直指市场领导者的地位,重磅推出使用四极杆飞行时间质谱技术的Q Exactive Focus质谱系统,以及配备了最高级别变色龙色谱工作站的Vanquish UHPLC系统,光谱应用方面也推出了吸引眼球的Gemini手持式分析仪。 Waters在ACQUITY 系列UPLC的基础之上,推出基于其质谱技术的全谱图分子成像系统,这款颠覆性的产品据说今年9月份将登陆中国市场。除此之外,首推的Waters全新10L萃取釜的超临界植物萃取系统也让人驻足探奇。 PE公司祭出了强大的产品线,从HPLC到MS、ICP-MS、GC-MS,但PE公司貌似越来越侧重于往项目服务和应用端走,站台工程师毫不避讳说许多PE的主流产品如HPLC将由其他同行甚至竞争对手来提供,这样PE可以更专注于产品整合和项目设计。 布鲁克低调地亮相,在很小的简易展位上,带来了几个小型的X射线产品和元素分析仪,其他产品都以软件介绍和多媒体推介的方式展示。 日系公司强势跟上,岛津、日本电子、日本理学、日本分光、Horiba等公司的新品推得实在缤纷耀眼。岛津公司推出超临界流体色谱-质谱系统Nexera UC出尽风头,附带LCMS-8050、LC-2030C、LC-2040C一系列主流色谱仪器。日本电子作为商用环境电离质谱仪的先驱,推出质谱新品AccuTOF-DART?4G。日本理学以X射线荧光分析仪见长,也带来一系列轻便的光谱系列产品。日本分光在Pittcon这个平台以展出中小制备色谱系统为主。Horiba公司也出现在Pittcon展新设的食品专区,带来一系列元素分析仪和水质分析仪。 纵观Pittcon2015,色谱、光谱和红外产品云集,大致可以分为四类:一类是仪器行业巨头为代表的主流仪器厂家,除了上述列举了一些色谱厂家外,像海洋光学、福斯等这样大小行业的龙头公司都悉数到场;第二类为仪器的部件配件供应商和光源、柱子、填料等上游产业,德州仪器现场展示了代表世界顶尖水平的芯片技术,重点突出的色谱和光谱软件专区阵容强大,其他提供泵件、阀件等精密加工件的接二连三,配件更多以总经销方式出现,这是分工专业化也是为看展人提供便利的体现,默克公司和诺贝尔公司带来了众多填料资料和少量色谱柱;第三类为基于仪器应用的开发商和集成商,安捷伦公司虽然没有设展,但在展会现场至少能看到五台以上的安捷伦仪器,这些展商以安捷伦等公司的仪器为基础,开发应用使其变成附加值更高的专用仪器和联用仪器。第四类是专注细分市场的公司,自动进样器的款式很多来自德国、日本、英国和美国本土,有个美国的小伙子带来了自己设计的蛋白纯化仪目标直指GE公司和AKTA,让人对产品感兴趣时更加感受到创业的激情。 中国企业有超60家参展Pittcon,开创历年之最,天瑞仪器、上海精科如约而至,其他如博纳艾杰尔、广州禾信、舜宇恒平、上海安谱、上海伍丰、浙江月旭及北京几家仪器厂商也以学习的心态亮相展馆。更多的是色谱和制药耗材类的中国厂商登场,很多致力耗材进口替代的国内企业来到国际市场拓展,如杭州金源生物带来了自己的移液枪和耗材产品。 通过三天的所见所闻所交流,笔者充分感受到发达市场行业分工的专业化和产业配套之成熟,很值得我们思考和借鉴,对此我们国产厂商将如何定位、怎样撬动国产分析仪器发展的突破口这些问题是多么重要。 赛智科技(杭州)有限公司全国服务热线:400 001 2010公司总机:0571-86631750技术服务热线:0571-28021930官网:www.surwit.com
  • 高灵敏光谱分析与成像 BCEIA2023光谱学分会报告会在京召开
    2023 年9月6-8日,第二十届北京分析测试学术报告会暨展览会(简称BCEIA2023)在北京中国国际展览中心(顺义馆)召开。作为BCEIA的重要组成部分,学术报告会邀请了来自海内外众多著名科学家,为大家带来了精彩的学术报告。除大会报告之外,BCEIA2023还设立了色谱学、质谱学、光谱学等11个分会报告会。7日上午,光谱学分会报告会正式开讲,聚焦“高灵敏光谱分析与成像”主题,围绕分子及纳米光谱、光谱分析与材料、高分辨光学成像、光谱仪与显微镜等主题方向,邀请到19位国内色谱领域资深科学家及青年才俊带来精彩报告。部分报告嘉宾BCEIA2023光谱学分会邀请到华东师范大学田阳教授、东南大学张春阳教授、中国科学院深圳先进技术研究院李剑平高级工程师、国家纳米科学中心王亚玲研究员、国家纳米科学中心李乐乐研究员、南京大学康斌教授、清华大学张昊副教授、中国科学院生物物理研究所纪伟研究员、清华大学孙素琴教授、清华大学吴嘉敏助理教授、北京工商大学林玲教授、广州大学张玉微教授、深圳赛陆医疗科技有限公司王谷丰首席战略官、中国科学院重庆绿色智能技术研究院王化斌中心主任/研究员/教授、北京大学李婷婷研究员、北京大学陈良怡教授、材料科学姑苏实验室罗刚研究员、郑州大学/北京化工大学教授吕超教授、上海交通大学余辉副教授共19位专家带来精彩报告。光谱学分会以“高灵敏光谱分析与成像”为主题,基于表面增强拉曼光谱(SERS)、先进光源(ALS)、太赫兹光谱(THz)、纳米压印光刻(NIL)、单分子定位显微镜(SMLM)和活细胞超分辨率显微镜(SR)等研究手段,结合人工智能和算法优化等辅助技术,专家们在基因测序、分子成像和聚合物降解检测等领域取得一系列研究成果。本次会展充分展现了近年来我国光谱学科取得的最新研究进展,整个会场内容丰富,学术氛围浓郁,充分展现出近年来光谱学在生物学、医学和材料学等领域发挥重要价值,以推动知识的发展和服务社会。
  • 长光辰英工程师团队走进广东工业大学分析测试中心,共促科研创新与应用发展
    4月16日,长光辰英工程师团队受广东工业大学分析测试中心邀请,于科技北楼225室举办了一场专题培训活动,旨在提高操作人员对PRECI SCS-R300实时可视化无标记微粒分选系统的熟练度和应用能力。培训活动,提升操作技能自23年6月,长光辰英与广东工业大学测试中心共建实验室以来,双方保持紧密合作关系,共同推动单细胞研究技术创新与应用发展。中心配备由长光辰英研发制造的PRECI SCS-R300系统具有形态识别、荧光识别、拉曼光谱三种识别模式,可对单细胞进行可视化的分选,有效解决了现有细胞分选设备需标记、分选准确率较低、适用范围有限等问题。该系统广泛应用于细胞生物学、植物发育学、遗传学、微生物学、病理学、药代动力学、免疫学、食品学等领域。上午,长光辰英的高级应用工程师李航博士为大家分享了PRECI SCS-R300系统在微生物领域的应用案例。她重点介绍了该系统在微生物单细胞筛选培养、表型靶向MINI宏基因组测序、基因水平转移的可视化检测、细菌耐药性/活力检测以及细胞/组织拉曼检测等领域的实际应用情况。在分享过程中,李航博士还与在座的老师们交流了单细胞分选扩增和样品前处理方面的经验。下午的上机操作培训中,长光辰英的仪器工程师翟晨旭和光学工程师梁鹏博士首先为大家详细讲述了仪器的开关机操作、硬件维护要求、软件功能应用以及常见使用问题等。接着,在老师们实际样品上机操作中,工程师们解答了大家在仪器使用和实验操作过程中遇到的每一个细节问题,使得大家对于仪器的理解和操作技巧都有了明显的提升。先进设备,助力科研此次培训既是对合作成果的展示,亦是对未来创新应用发展的深入探讨。通过分享行业应用案例、交流操作经验,参与者不仅提高了对PRECI SCS-R300系统的操作熟练度,还深入了解了该系统在多个科研领域的前沿应用。长光辰英与广东工业大学分析测试中心的紧密合作将持续推动微生物研究的创新与发展,为科研进步和行业应用贡献更多力量。PRECI SCS-R300
  • 助跑西部科研发展—— HORIBA服务万里行•青海大学分析测试中心巡检圆满完成!
    2024年4月25日,HORIBA“服务万里行”项目组来到青海大学分析测试中心(以下简称:中心)开展巡检服务并圆满完成任务。此次巡检,是HORIBA践行推动西部科研创新发展的重要一步。中心负责人对此次服务给予高度评价,表示HORIBA的专业支持增强了他们利用科学仪器深化科研探索的信心,不仅激发了科研团队的创新潜能与活力,更为青海大学学科建设发展以及高层次科研人才的快速成长奠定了坚实的基础。青海大学分析测试中心实验室的HORIBA LabRAM Odyssey高速高分辨显微共焦拉曼光谱仪作为青海大学省部共建三江源生态与高原农牧业国家重点实验室的重要分支,青海大学分析测试中心承载着科学研究、技术创新、人才培养及促进青海经济发展的多重使命,是该区域科研工作的核心力量。2020年,中心引入HORIBA LabRAM Odyssey高速高分辨显微共焦拉曼光谱仪。仪器覆盖紫外至近红外的全光谱检测能力,辅以变温原位池、快速成像系统、光致发光光谱仪及多种成像附件,既能充分匹配中心跨学科、多应用的分析测试需求,还能为其盐湖化工和农牧业两大特色研究提供有力支持。然而,青海大学位于交通相对不便、难以快速抵达的地区,这给仪器校准操作以及测样技术交流增加了一定的难度。加之当地风沙大、湿度低等特殊环境,为仪器保持最佳运行状态、长期维持精准度也带来了不小的挑战。因而当HORIBA“服务万里行”活动通过仪器信息网“客户关怀季” 开放报名时,中心立即积极响应参与活动。青海大学作为青海省内具有重要地位的高等学府,承担着推动区域教育、科研及社会服务的重要使命。HORIBA的资深售后工程师李凡抵达现场后,立即投入到紧张而高效的服务工作中。他校准了仪器的激光与拉曼光路,确保了整个光学系统的精确性,对激光器、探测器等核心部件的性能也进行了核查,保障了数据采集的准确无误。针对当地风沙大、湿度低的特殊环境,工程师对仪器各部件进行了清洁处理。此外,他还示范了诸多自行校准、测样技巧,并分享了日常维护与使用要点,大大增强了中心团队用好仪器的信心与决心。不仅如此,结合实验室实际使用条件以及人员情况,工程师还提出了一系列切实可行的维护建议,包括:实行严格控温,以增强设备的稳定性;加强门窗密封、安装换气过滤系统以及实施进门换鞋制度等,以此控制实验室的洁净度。他特别强调防尘罩对阻挡灰尘侵扰、保护精密组件的重要性,以及定期激活半导体激光器以保障光路畅通、延长仪器寿命的必要性。这些实用建议可以为后续仪器的长期高效使用做好保障。尤为值得一提的是,为了支持较远地区的用户,HORIBA工程师除了现场支持的形式外,还提供多样化服务形式,比如线上远程交流、在线互动直播等。这些服务手段打破了地域限制,确保了问题反馈得到即时响应,消除了中心工作人员对于仪器维护时效性的顾虑,为科研工作的顺畅进行提供了强有力的保障。维护保养后,青海大学分析测试中心的老师体验仪器使用感HORIBA的“服务万里行”青海大学之行的成功开展,不仅提升了科学仪器的运行效率与精准度,更激发了科研团队面对挑战、勇于探索的热情。中心工作人员表示,未来他们将继续借助先进的科学仪器与企业的持续支持,为西部地区的科研创新与经济发展贡献更大力量。与此同时,HORIBA也将继续深化并扩大服务范围,以更加专业化、精细化的服务品质,强势助跑我国西部地区科研事业蓬勃发展!
  • 飞纳电镜访复旦大学分析测试中心王老师,让扫描电镜在学生中普及
    复旦大学化学系分析测试中心分别于 2015 年和 2016 年先后购买飞纳电镜 Phenom Prox 和飞纳电镜 Phenom XL,24 小时对外开放使用。给全校师生的科研工作带来了极大的方便。飞纳电镜能谱一体机 Phenom ProX飞纳电镜全自动显微平台 Phenom XL复旦大学注重学生的全面发展,培养学生的动手操作能力,逐渐让扫描电镜的相关知识和技术在学生中普及。飞纳台式扫描电镜,操作简单,维护方便,上手快,学生很快就能学会,亲自上手操作,第一时间知道自己的实验成果。可在飞纳电镜中国官网的该篇新闻中观看复旦大学分析测试中心王老师的采访视频现在,很多企业,外校的学生也经常来这里测试,不需要漫长的排队等待,很快就能知道测试结果。飞纳台式扫描电镜配有彩色光学显微镜全景导航,全自动马达样品台,可以很快找到感兴趣的位置,点到哪里,看到哪里。同时 15 秒抽真空,30 秒成像,1 个小时可以看很多个样品,大大提高了效率。
  • 海洋光学公司将盛装出席2009广州国际分析测试仪器与生物技术展览会
    2009年6月18-20日,海洋光学将盛装出席在广州市白云国际会议中心举办的2009(广州)国际分析测试仪器展。该展会是在华南地区唯一的专业科学仪器展览,来自科研院所、政府与公共事业机构、企业等各行各业的科学家们与实验室分析测试工作者共聚一堂,主要议题涵盖基础研究、R & D、质量控制、生物技术、疾病诊断等。 作为世界领先的微型光纤光谱仪制造商----美国海洋光学公司,凭借十余年的光谱学开发和应用经验,在生物化学分析等应用领域积累了大量的客户和应用案例,可以为客户提供量身定制解决方案。成功的案例除了大家熟知的超微量紫外分光光度计外,还有应用于化学动力学的紫外吸收,荧光和拉曼光谱等解决方案。 本次参展的产品除了世界上最流行的微型光纤光谱仪:高性价比的USB2000 ,USB4000,高分辨率的HR4000,科研级的QE65000外,还将展示海洋光学的最新产品:新开发的集成式拉曼光谱系统,适合实验室分析以及OEM系统开发;全新的教学和实验室分光光度计,将微型光纤光谱测量技术带入课堂和普通实验室;带有DPU和OLED显示模块的Jaz光谱仪,便于野外应用以及工业过程控制;和新一代采用背照式CCD的Maya2000PRO光谱仪,它具有出色的信噪比和灵敏度。海洋光学的专家们将一直驻留展会现场,为参观嘉宾提供技术建议和基于光纤光谱技术的解决方案。
  • 马尔文帕纳科:创新GCI、ITC技术,打造动力学与热力学分析一体化分子互作平台
    近年来,分子互作分析仪市场涌现出很多新品牌、新产品参与市场竞争,技术多元化,“百花齐放”。目前国内外分子互作分析仪厂商已涌现近20余家,为帮助广大科研工作者了解前沿分子互作分析技术、增强业界相关人员之间的信息交流,同时也为用户提供更丰富的分子互作分析产品与技术解决方案,仪器信息网特别策划了《“百舸争流”,谁将成为下一代金标准?——分子互作技术与应用进展》专题。本期,我们特别邀请到马尔文帕纳科生命科学业务发展经理、微量热技术&分子互作技术产品经理韩佩韦谈一谈马尔文帕纳科的创新分子互作分析技术及他对该技术应用及市场的看法。仪器信息网:贵司在分子互作分析领域主推的仪器产品是什么?请您谈谈该产品的核心竞争力。韩佩韦:马尔文帕纳科公司不断致力于为基础科研与药物研发领域提供更先进的分析仪器和解决方案,在分子互作分析领域我们公司主推的产品是一种将动力学分析与热力学分析整合为一体的非标记分子互作平台,包括Creoptix WAVE系列分子相互作用仪和MicroCal PEAQ-ITC系列等温滴定量热仪等。众所周知,深入全面研究分子间相互作用需要借用多种原理互补的技术进行多角度分析,其中,动力学分析技术能够准确描述分子间的识别能力与结合的稳定性和半衰期,是一种实时、动态检测的手段;而热力学分析则深入探究分子互作的能量学本质,即分子间互作的机理,包括特异性相互作用驱动、疏水相互作用以及构象变化驱动。我们Creoptix WAVE分子相互作用仪拥有基于光栅耦合干涉技术(Grating-Coupled Interferometry,GCI)的光学生物传感器,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。另外,Creoptix WAVE产品采用了waveRAPID动力学检测方式和创新性微流控技术。不同于传统力学的检测方式,只需一个浓度的样品,无需稀释,能够更快地得到动力学数据(waveRAPID 比传统动力学检测约快10倍),解决了市面部分分子互作技术的低灵敏度、无法捕获快速动力学、表观亲和力偏离、流路易堵塞以及动力学分析中需要配制大量浓度梯度等问题。Creoptix WAVE 分子相互作用仪MicroCal PEAQ-ITC 是一款高灵敏度、低容量的等温滴定量热仪,可用于生物分子相互作用的无标记溶液内研究。它可以在单次实验中直接测量所有结合参数,并且可使用低至10μg容量的样品对无论是高亲和力还是低亲和力的结合剂进行分析。MicroCal PEAQ-ITC可用于多种应用,包括表征小分子、蛋白质、抗体、核酸、脂质和其他生物分子的分子间相互作用等。MicroCal PEAQ-ITC 等温滴定量热仪仪器信息网:请回顾一下贵公司分子互作分析仪技术的发展历程。韩佩韦:分子间相互作用的生物物理表征是研究分子互作的重要环节,马尔文帕纳科一直致力于帮助用户从不同角度阐述分子互作的机理和特征。其中,采用热力学代表技术的MicroCal ITC系列成立于1977年,是最早商业化的微量热技术品牌,在业界拥有众多粉丝,其先后多款经典产品如VP-ITC, ITC200以及PEAQ-ITC都有众多的用户群和文献支持;动力学代表技术Creoptix WAVE系列则成立于其他技术如SPR/BLI等相对成熟的时期,正是在发现了现有技术的某些局限和不足后,Creoptix开发并成功商业化了新一代动力学分析技术——光栅耦合干涉技术(Grating-Coupled Interferometry,GCI)。目前,MicroCal和Creoptix品牌都是马尔文帕纳科旗下分子互作分析的中坚力量,与MicroCal DSC和Light Scattering一起打造了从样品质量控制直至动力学与热力学全面分析的Label-Free分析平台。仪器信息网:贵公司分子互作分析仪的主要应用领域有哪些?韩佩韦:马尔文帕纳科旗下的非标记分子互作平台几乎应用于分子互作相关研究的各个领域:在药物研发领域包括药靶确认,片段药物、小分子药物、肽段和核酸药物的筛选、表征与优化,抗体药物筛选、表位分析、结构改造,制剂开发、稳定性、可比性和生物相似性研究等;诊断试剂开发与优化、生理条件下(如血清、血浆等复杂体系)测试等等;在基础科研中则包括癌症、神经科学、免疫科学、膜蛋白、环境科学等领域。目前,研究者应用我们的技术和产品组合来研究分子互作相关的定性与定量信息,包括有无结合、结合特异性和选择性、结合强弱、结合快慢与稳定性以及部分非生物和非水相体系,如超分子组装、有机溶剂环境等。比如在冠状病毒(COVID-19)疫苗研发过程中,Creoptix WAVE system为病毒蛋白和抗体的结合动力学研究提供了有力支持。WAVE system系统将高信号和高时间分辨率与ELISA(酶联免疫吸附测定)才能实现的样品稳定性结合起来。实时分析广泛的生物流体样品的相互作用,提供完整的动力学数据,包括亲和力和高精度的结合和解离常数。由于整个微流体都包含在外置的传感器芯片WAVEchip中,可将实验中交叉污染的风险降至最低。WAVE system可用于表征病毒样颗粒(VLPs)的动力学,为研发疫苗的诱导免疫反应提供一个有效的平台。一种单克隆抗体结合嵌入VLPs中的蛋白质仪器信息网:您如何看待当前分子互作分析仪市场及前景?未来看好哪些细分领域?韩佩韦:我未来更看好分子互作技术在医学临床分析、食品分析、细胞与基因治疗领域等领域的应用。我的个人观点是当今的分子互作分析市场百花争艳,百家争鸣。各种不同原理的技术和产品层出不穷,研究者可以更好的根据自己的需求和问题来找到适合的技术,这对于技术发展和研究者而言都无疑是件好事,无论是进口的还是国产的技术,每种技术都有其各自的优点和局限,能够解决自己问题的才是最好的。随着市场的竞争,我未来更看好分子互作技术在医学临床分析、食品分析、细胞与基因治疗领域等领域的应用。马尔文帕纳科 韩佩韦韩佩韦,中科院生物物理所生物物理学博士,马尔文帕纳科生命科学业务发展经理、微量热技术和分子互作技术产品经理。长期负责蛋白质稳定性以及分子间相互作用技术如DSC,ITC,SPR等的技术支持和市场拓展。在2014年加入马尔文帕纳科之前,多年任职于通用电气(中国)医疗集团生命科学部(现Cytiva),曾任技术经理、Biacore & MicroCal产品经理和Label-Free技术资深应用科学家等职位。韩佩韦博士长期活跃于生命科学领域和生物制药行业,组织和举办过相关的几百场技术交流会和培训班,并在多个大型会议上做分会技术报告,在分子相互作用领域和微量热应用领域具有丰富的经验。
  • 理化分析仪器的化学分析方法理论
    理化分析仪器的化学分析方法理论 用做工作标准时要求与校准样品相同。但测定值其中代表标准物质,代表试样。注意应用上述公式时应从测定值中扣除空白值得到实际测定值。 空白的校正空白来自分析试剂、试样中与被测组分共存的组分、分析用器皿、分析用水以及环境(主要是空气和灰尘)。空白影响分析结果的准确度和精密度以及检测方法的检出限度和灵敏度,尤其在恒量、微量元素分析和纯度分析中影响明显。所以要搞清空白来源并及时消除或控制。 分析空白的消除。现在的分析用水由于制备、输送和储存环节的缺陷,常出现某种元素浓度超标分析人员习惯使用铬酸洗液洗涤玻璃器皿造成器壁吸附铬铬污染实验室灰尘飘人正在分析试液中也会造成结果偏差主要是低硅分析、加过磷酸的器皿用于分析微量磷样品在实验室传递中被沾污尤其是粉末样品等。这些原因造成的空白都可以通过改变工作方式消除,如洗涤玻璃器皿改用稀盐酸浸泡实验室经常保持洁净到实验室的分析用水要进行检测取用分析试剂和分析样品的工具和器皿要专用,不能混用。 空白的控制。对于一些无法消除的空白可采取措施尽量降低。这一点在痕量分析中尤为重要,如果空白值过高甚至超过试样测定值,这种结果的准确度就大打折扣。可把分析纯试剂换成优级纯,一二级分析用水换成一级水来降低空白值。降低空白应从几方面试剂、分析用水、器皿、仪器同时进行,否则效果不一定好。分析试样时按相同步骤做空白试验必要时空白试验应做平行样。有些空白在有试样基体和无试样基体时的测定值还不一样,因此做空白试验不能简单了事,需考虑基体的影响。 其它因素分析操作中一些细节要特别注意,如溶解、蒸发、浓缩过程中防止瘟度过高试液崩溅萃取或滴定时防止分液漏斗或滴定管不严密漏液过滤沉淀时酸度控制不好使沉淀部分溶解仪器长时间工作零点飘移又未及时校准等,都会造成分析误差或错误。对玻璃量器要按检定规程检定标准溶液要定期标定对分析仪器要进行检定或校准,校准是对仪器的线性关系和灵敏度进行校正用化学试剂或标准物质,检定是按检定规程对仪器的综合性能测量重复性和检测限等全面评价。 结束语选择化学分析方法时,应依据分析目的检测或验证、准确度要求、分析室现有技术水平、材料特性基本组成和含量范围及分析成本等综合考虑,湿法分析法和分析仪器分析法、标准分析法和非标准分析法要灵活运用,切忌死板教条。要求分析人员能利用现有条件科学选择分析方法。 对分析方法的实施过程中影响分析质量的诸多因素要采取质量控制措施。正确理解方法原理,避免不必要的返工样品制备要有代表性分解样品要达到彻底、无干扰、无损失和时间短标准物质用途分校准和工作标准,勿用单个样品校准被测样品要根据分析空白来源有效地消除或尽量降低空白值对分析结果的影响玻璃器皿、标准溶液、分析仪器要进行计量检定或校准。要求分析室有完善的质量控制制度,分析人员经过专业培训,能熟练进行日常分析项目的操作,使分析工作处于受控状态。 总之,化学分析方法会随着材料科学的发展而不断地推出和充实,每个分析工作者都应学会并掌握分析方法如何选择和分析过程的质量控制。 高频红外碳硫分析仪 http://www.jqilin.com 南京麒麟分析仪器有限公司 杨工
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制