当前位置: 仪器信息网 > 行业主题 > >

观测方法与研究

仪器信息网观测方法与研究专题为您整合观测方法与研究相关的最新文章,在观测方法与研究专题,您不仅可以免费浏览观测方法与研究的资讯, 同时您还可以浏览观测方法与研究的相关资料、解决方案,参与社区观测方法与研究话题讨论。

观测方法与研究相关的仪器

  • 1 引言 水体富营养化的危害已众所皆知,长期以来人们对工业等典型点污染源、农业面污染源乃至流域及区域水污染给予大量关注,并做出了辛勤的工作,取得的明显成效。但是,一种新的污染源-来自于污染大气中的富营养物质正在日益严重影响着水体,而对该方面的研究目前尚少。 污染大气含有气态污染物、颗粒态污染物及细小液滴。大气一个重要的特性是大气沉降,包括干沉降(dry deposition)和湿沉降(wet deposition)。大气气团及颗粒物直接迁移到地表的形式为干沉降,大气中物质通过降水(如雨、雾、雪、雹等)的形式迁移到地表为湿沉降。酸雨(acid rain),也叫酸性降水,是指pH5.60的降水。 大气沉降过程对环境与水体的影响起步于酸雨的研究。近几十年来,国内外对各地降水化学和酸雨污染问题进行了较多的研究,监测方法和技术都相对成熟,并积累了大量的监测资料和降水数据,为大气降水的研究奠定了基础。但是,无论是酸雨还是干湿沉降对湖泊、河流、近海海洋等水体的营养物质输送,至今报道很少。人们对大气沉降的组成与沉降量能否对水体形成一个新的污染源至今还没有完整的认识。2 观测系统设计2.1 目标 该观测系统通过与样品有接触的所有材料、漏斗和收集盘尺寸均满足VDI-3871推荐标准的不锈钢主体样品收集单元,自动连续采集干湿沉降,并可同时自动监测pH值、电导率、降雨量、降雨时间和收集时间等参数。然后对收集到的干湿沉降样品,采用激光光谱元素分析单元对河湖、流域不同观测点的干湿沉降量及其组成成分进行精确分析,从而为了解干湿沉降对河湖和流域等水体的营养物质输送规律、对水体富营养化的贡献率以及研究大气干湿沉降颗粒污染物对河湖流域及滨岸带生态系统的影响及响应机制等提供基础数据和科学依据。2.2 观测/采样点布设 选取具有代表性的典型区域作为观测/采样样地,安置干湿沉降采集器。观测点位应尽可能的远离局部污染源,四周无遮挡雨、雪的高大树木或建筑物。观测点数目,根据研究的目的和需要来确定。要尽可能照顾到气象地形、地貌。若观测点处于森林生态系统,林外干湿沉降的同时通常要收集林内穿透雨,因此林内外通常各设一个观测/采样点或几个。 各采样点常同时采集土壤或水样进行同步分析来说明干湿沉降对下垫面理化性质的影响。2.3 采样频率 干湿沉降物样本采集频率根据各研究目的和需要而定。 湿沉降通常于每次降水后马上进行取样分析,对于长期监测也可每月采集一次;干沉降通常每月采集一次,也有长期监测每年采集一次,各次干沉降采集要保证采集前期及采集过程无降水。2.4 测量指标观测目标测量指标生态系统初级生态力N、P、S重金属污染Pb(铅)、Hg(汞)、As(砷)、Cd(镉)等重金属物质循环传输痕量元素乃至整个元素周期表上各种元素2.5 观测系统组成 J200-Tandem河湖、流域干湿沉降观测系统由干湿沉降采样器、激光光谱元素分析单元和系统分析软件共同组成。3 数据处理1)利用多功能系统软件,优化采样方法有效识别发射峰,并进行统计分析。此外,利用化学统计分析软件模块,通过预先设定的或宽范围光谱特征识别和分类样品的不同组分;2)利用光谱数据库软件,选择一组或全部元素进行谱线筛查,快速、准备地识别样品的谱峰;3)利用强大的光谱分析工具:任意选取谱线及背景,自动计算峰值下的面积,提供谱线的“净”强度;4)选取光谱段,自动去除背景强度,为以后的分析提供高质量光谱数据;5)可采用各种数据格式保存谱线,并随时调用作比较分析;6)系统软件采用多激光脉冲技术在信号采集时同时进行光谱强度统计分析,将结果用于优化采样方法;7)制定标定曲线,完成高精度定量分析;8) 利用系统软件所提供得多种数据分析工具,如:PCA、PLS、多参数线性回归、化学统计分析等,将随机样品的谱线与数据库中的谱线进行比较,得到复杂的、多组分样品的定量分析结果。
    留言咨询
  • ETran地表蒸散观测系统作为水循环的重要环节,地表蒸散或称蒸发散(Evapotranspiration),是气候和生态学观测研究的重要参数,其测量方法有水平衡法、微气象法及植物生理学方法等,其中蒸渗仪技术是目前公认的基于水量平衡原理直接测量地表蒸散的唯一方法,波文比能量平衡法则是根据微气象学原理测算地表蒸散的比较普遍的方法,植物茎流测量则是植物生理学方法中测量植物蒸腾作用的重要也是主要手段。通过几种方法的综合运用,可以全面分析研究地表的蒸发散及其各气候要素的相互关系,深入分析各气候要素与土壤蒸发、植物蒸腾、植被生长及土壤水分等的动态变化格局。ETran地表蒸散观测系统由可移动式小型蒸渗仪、波文比自动气象站及茎流观测系统组成,可全面监测分析土壤水分动态、植物茎流、地表蒸发散、气象要素动态变化及其相互关系。其主要特点如下:1. 小型蒸渗仪(专利号)便携可移动,安装过程不破坏植被,采用TDR土壤水分传感器和精密自动称量系统,为高性价比直接测量地表蒸散的重要技术设备,可根据观测条件和目的选配1个或多个; 2. 可选配德国UGT蒸渗仪,用于测量草原、农田、坡地或湿地蒸散;3. SHB技术(茎杆热平衡技术)测量细枝条茎流,包裹式测量,茎杆外部加热,高精确度、高稳定性、高分辨率;4. THB技术(组织热平衡技术)测量树干茎流,独有的不锈钢片式电极和插针式温度传感器,树干内部加热,高精确度、高稳定性、高分辨率、客观真实地反映树干茎流量; 5. 波文比自动气象站实时监测太阳辐射、净辐射、土壤热通量、空气温湿度(双层)、土壤温度(双层)、风速风向及降雨量;6. 根据植被条件可选配草原蒸散观测系统(适于草原和农田等)或森林蒸散观测系统(具备多通道树干茎流观测及树干生长监测)7. 可选配小型蒸渗仪和SHB茎流监测传感器,用于实验室或温室控制实验等;8. 软件功能强大,可进行数据下载、图表展示、参数设置及基本数理统计分析 技术指标:1. 标准小型蒸渗仪配置:底面积10002cm、高50cm、重量(含原位土柱)约70kg,可选配其它底面积和深度(高度)的小型蒸渗仪2. 3层土壤水分、土壤温度传感器,可选配土壤水势等传感器3. TDR土壤水分测量,探头直径8mm,测量范围0-100%,精度优于2%,分辨率0.1%;土壤温度传感器测量范围-20~60摄氏度,分辨率0.01摄氏度,精度 0.5 C4. SHB包裹式茎流测量,测量直径6-20mm,平均耗能0.3-0.4W,特制T形热电偶温度传感器0.6mm探针5. THB不锈钢电极片式测量,利用电极间流经木质部的电流直接加热植物组织,测量树干直径8cm以上,平均耗能0.3-0.4W6. 净辐射传感器:波长范围0.3-30&mu m,0-1500W.m-2,稳定性2%/年7. 温湿度传感器:温度测量范围-40-60 deg.C,精确度± 0.2deg.C;湿度测量范围0-100%,精确度± 2%8. 土壤热通量传感器:范围-2000-2000W.m-2,温度范围-30-70 deg.C,直径80mm9. 森林生态系统建议选配林下高精度雨量筒,14640cm2,0.01mm精确度10. 森林生态系统建议选配树干流监测单元,应用范围0-200m/min11. 可选配H-F地表径流观测系统,用于观测地表径流情况12. 可选配PL300土壤空气渗透性测量仪和Hood入渗仪配置组成:1. 小型蒸渗仪1个或多个(根据观测样地条件和研究目的而定)2. 波文比气象站1个或2个(做对比实验研究用,如林内或林外、不同植被类型或耕作类型等)3. 森林生态系统建议选配林下高精度雨量筒和树干流监测单元4. 森林生态系统须同时选配多通道SHB包裹式茎流监测和THB树干茎流观测5. 建议选配H-F地表径流观测系统产地:欧洲
    留言咨询
  • 1 引言根际是植物、土壤和微生物相互作用的重要界面,也是物质和能量交换的结点,根系生产和周转直接影响陆地生态系统碳和氮的生物地球化学循环。自1904年德国科学家Lorenz Hiltner提出根际这一概念后,相关研究方兴未艾。但由于受土壤不可观测性的限制,传统的研究方法如挖掘法、剖面法、盆栽法及土柱法仍在大量使用,陆地生态系统根际微生态学的研究进展缓慢,因此寻找并建立新的根际微生态研究方法就显得至关重要。近年来随着光学和电子学技术的提升,特别是微根窗法(Minirhizo tron)的应用,使根际微生态研究得到了较快的发展。当前,这是唯一可多个时间段内原位重复观测根系的方法,其最大优点是在不干扰细根生长过程的前提下,原位长期连续观测并记录细根从出生到死亡的消长变化动态。这种测量方法是非破坏性的,是传统的研究方法不可替代的。因此,在国外,微根窗技术目前被广泛应用于森林、果园、草地、沙漠和农业生态系统等植物根系动态及其功能的研究中。2 观测系统设计2.1 目标AZ-B0201根际微生态观测系统通过可视化微根窗技术对根系生长和形态因子进行非破坏性的长期连续定位观测,结合专业的根系分析软件,能够将根系相关数据定量化,包括根的长度、面积、根尖数量、直径分布格局、死亡根及存活根数量等等,实现探索植物细根生长和消亡动态及其周转规律、研究植物根系拓扑结构的目标。同时测量根区土壤理化指标和监测土壤水温等环境因子,揭示植物根系消长动态与环境因子间的关系。2.2 观测点布设在待研究地区选择群落结构明显、优势种典型、地势平坦、土壤层足够深厚的区域,设置观测样地。选择标准木,在根部按照45°角安装微根管。通常一个观测样地安装12~24根1.8m/0.9m(L)×5cm/3cm(D)微根管。在每标准木安装的微根管周围安装1~3根1m或者1.5m观测管,同时检测土壤水分和温度参数。2.3 数据采集频率微根管安装好,应在其与土壤间达到平衡后再开始采集数据,平衡时间从几周到几个月或一年乃至更长的时间不等。众多研究表明,通常情况下7个月后开始采集图像比较合适。数据采集根据环境条件、植物生长周期不同,使用不同的采集间隔期,范围从每1周、每2周到每4周或每6~16周。一般生长季节至少每2周取1次图像,冬天可以降低采样频率或取消。每根观测管可由下到上或由上到下依次采集图像,每管每次取图像数量不少于30个。2.4 观测内容根系形态因子:根的长度、单位面积根长密度、根尖数量、直径分布格局、死亡根及存活根数量、平均直径、投影面积、表面积、根体积、分类数量、每个直径类的根尖数量、细根生长量、细根死亡量和细根周转。根际水盐指标:土壤水分、土壤温度。土壤理化指标:根际土壤全氮、土壤全磷、土壤有效磷、土壤全硼、土壤钙离子、土壤氯离子、土壤硝酸盐和亚硝酸盐、土壤碳酸盐。2.5 观测系统组成和技术指标AZ-B0201根际微生态观测系统由手动土壤取样套件、土壤水分温度测量单元和根系形态因子观测单元共同组成。3 数据处理3.1 根系根长密度和根系面积密度在微根管图像中测量根的长度,通过总根长除以观察的整个管面积获得根系单位面积根长密度RLD(mmcm-2或cmcm-2)。根系表面积的计算可用观察到的根长乘以根直径。同样,以单位面积图片中观察到的根系表面积可得到单位面积根面积密度(mm2cm-2或 cm2cm-2)。3.2 细根生长与死亡RLDP和RLDM分别表示细根生长量和细根死亡量。假设根系在两次相邻采样间隔期内的生长与死亡速率一致的前提下,以单位管面积上根系根长的增加与减少来表示相邻两次采样间隔期内根系的生长与死亡,然后除以间隔时间,得到细根生长RLDP和死亡RLDM。式中:RLDP ——间隔期内根系生长量,mmcm-2d-1;RLDM ——间隔期内根系死亡量,mmcm-2d-1;RLDn ——第n次观测到的根系根长密度值,mmcm-2;RLDn+1 ——第(n+1)次观测到的根系根长密度值,mmcm-2;T ——相邻两次采样间隔时间,d。3.3 根系生长死亡量、现存量和周转计算1)根系年生长量为一年内所有次采样得到的根系根长净增加值(包括所有出现的新根长与以前存在的根系长度净增加值);根系年死亡量为一年内所有次采样中根系长度的消失(包括存在根的死亡以及由于根系的脱落或昆虫的取食引起根长的减少值);根系年生长量与年死亡量的单位也以每年单位管面积内的单位根长来表示(mmcm-2a-1)。2)根系现存量以每次观测到的单位面积活根系长度来表示。3)根系周转估计采用以下3种方法进行估计。① 年根系生长量与年根系平均现存量之比。② 年根系死亡量与年根系平均现存量之比。③ 年根系生长量与年根系最大现存量之比。4 应用案例4.1 植物对营养元素的竞争性利用(Science,2010)James F.、Cahill Jr.等利用AZ-B0201根际微生态观测系统对关键营养元素不同利用策略下的植物根系生长状况进行了为期8周的观测。研究结果显示,在没有竞争植物的条件下,无论关键营养物质在植物周围分布态势如何,植物的根系分布及平均直径不受影响(A、B、C)。当有竞争植物存在时,那么植物根系的分布状况、平均直径则取决于关键营养元素与植物之间的相对距离(D、E、F)。图中红条是植物甲的平均根系直径,蓝条是植物乙的平均根系直径,阴影是关键营养元素所处位置示意(如果存在的话)。4.2 氮肥对水曲柳和落叶松细根寿命的影响(植物生态学报,2009)采用微根管技术研究氮肥对水曲柳和落叶松细根生长、衰老和死亡的影响,探讨两树种细根寿命与氮有效性之间的相关关系。结果表明,林地施氮肥后,两树种细根数量都呈减少趋势, 细根总体直径增加, 分枝程度降低; 氮肥使水曲柳细根存活率提高,细根中位值寿命延长,而落叶松细根存活率对氮肥反应不敏感; 施氮肥对细根寿命的延长效应主要体现在直径较小的一级根、表层,根系和春夏季新生的细根,表明氮肥对高生理活性的细根影响较强。
    留言咨询
  • 大气中的氮元素以NHx(包括NH3、RNH2 和NH4+)和NOx的形式,降落到陆地和水体的过程称为氮沉降。随着矿物燃料燃烧、化学氮肥的生产和使用以及畜牧业的迅猛发展等,人类活动向大气中排放的活性氮化合物激增,大气氮素沉降也呈迅猛增加的趋势,成为影响陆地和水生态的重要人为因素,导致酸雨、水体富营养化等全球环境问题。我国是氮沉降情况最严重的区域,根据2008《自然》发表的Dave Reay等的文章,到2030年,我国东部和东南部地区氮沉降将增加50~100%。 氮沉降在线观测系统由陆地氮沉降及酸雨在线观测单元、水体原位氮观测单元、气象单元及数据采集与无线传输单元组成,可同步在线观测大气氮沉降及酸沉降、水体营养盐状况及氮沉降对水体氮素浓度的相关关系等。系统测量原理为:原位(in-situ)大气干湿沉降采集筒采集到的样品,通过蠕动泵抽样过滤,按程序设置的测量间隔进入氮沉降在线分析仪,采用实验室标准的湿化学法循环顺序分析总氮、氨氮及硝态氮等浓度,并根据采集筒面积等求出氮沉降通量,包括总湿沉降、干沉降,总无机氮沉降和有机氮沉降,总氨氮沉降、硝态氮沉降、亚硝态氮沉降等参数。通过安装到水体中的原位营养盐监测探头,可同步监测分析水体(河流湖泊)的总氮、氨氮、硝态氮等含量,以研究分析水体营养盐与大气氮沉降的关系。分析数据在线显示和储存下载,也可通过无线通讯模块远程下载显示数据。 Ecotron氮沉降在线观测系统主要功能特点如下:1. 可连续监测大气氮湿沉降和干沉降,包括总氮、有机氮、总无机氮、氨氮、硝态氮、亚硝态氮2. 可连续监测大气酸沉降(湿沉降和部分干沉降),包括硫酸根、硝酸根对酸雨的贡献率3. 可精密连续记录大气沉降重量(选配)4. 同步原位监测河流湖泊氮素和营养盐包括氨氮、硝态氮、亚硝态氮、磷酸盐5. 数据可通过GPRS无线传输,或通过U盘直接下载数据性能指标:1. 湿化学法在线观测大气氮沉降,分析参数包括总氮、氨氮、硝态氮+亚硝态氮、亚硝态氮2. 可选配SO42-在线观测模块,在线观测分析大气氮沉降中硫酸根沉降,从而全面了解酸雨沉降情况3. 精密连续观测记录大气沉降量及降水,精确度分别为0.01g和0.1mm4. 原位营养盐监测探头可同步原位监测水体氨氮、硝态氮、亚硝态氮、磷酸盐及总磷等5. 内置时钟和显示屏,在线显示和存储数据包括日期、时间及测量值等6. 无人值守自动在线监测,建议每隔2周左右维护一次7. 交流电或太阳能供电,太阳能供电模块:12V、20W8. EnviData数据采集与无线传输模块,包括EnviData软件、数据采集器、GPRS无线通讯模块等国内外应用状况:作为全球变化的重要议题、与气候变化同步引起日益关注的氮沉降问题(在全球变化中与climate change相对应,又称chemical change),与气候变化一样已日益成为全球变化研究的热点问题。我国氮沉降研究一般采取离子交换树脂法和降水采集法(盛文萍等,2010;王德宜等,2010;张国森等,2003),然后拿到实验室进行分析,如张国森等(2003)在野外采集雨水后带到实验室分析硝态氮、亚硝态氮及氨氮浓度。相对于我国零散的大气氮沉降研究,国际上对氮沉降的监测研究更加重视和系统化,如欧洲RECOVER:2010 项目(designed to assess the impact of current and future anthropogenic pressures on sensitive European freshwater ecosystems)对30个酸雨敏感区监测点的分析结果,氮沉降如果超过10kgNha-1yr-1的阈值,将导致河流氮饱和趋势和硝态氮浓度的增高。欧洲WARMER(Water Risk Management in Europe)项目研究设计了微环流分析技术(Micro Loop Flow Analysis)以就地或原位持续监测陆地及水体氮素营养盐的动态变化(Moscetta etc. 2009)。参考文献:1. 盛文萍、玉贵瑞、方华军、姜春明,大气氮沉降通量观测方法。生态学杂志,29(8):1671-1678,20102. 王德宜、赵普生、张玉霞、张丽华,北京市区大气氮沉降研究。环境科学,31(9):1989-1992,20103. 张国森、陈洪涛、张经、刘素美,长江口地区大气湿沉降中营养盐的初步研究,14(7):1107-1111,20034. Moscetta, P., L. Sanfilippo, E. Savino, etc. Instrumentation for continuous monitoring in marine environment. IEEE Oceans&rsquo 09 conference. Biloxi(USA), 20095. Wright R. F., C. Alewell, J. Cullen, etc. Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Recover:2010 project report, 2010
    留言咨询
  • 舜宇 RX50 研究级生物显微镜全新RX50研究级正置生物显微镜,汇集舜宇仪器多年来在显微光学领域的研发成果与科技智慧,以全心追求安全、舒适、高效的用户体验为核心设计理念,创新产品的人性化设计。系统以模块化的功能组合,高清晰的光学图像 , 简易的操作机构,轻松实现明场、荧光等各种专业观察与诊断分析,全面满足科研、医疗等领域的用户需求。 高眼点超宽视野平场目镜匹配超宽视野观察筒的目镜观察视场范围也由传统的22mm 跃升至25mm 以及26.5mm,提供更加平坦的观察范围,提高工作效率。更大值域屈光度调节范围可满足更多用户的使用需求。目镜采用定位销结构,方便视度调节。可翻叠橡胶眼罩防止外部杂散光线干扰,带眼镜用户可将眼罩翻下,防止眼镜接触目镜,划伤眼镜和目镜。 左右手位大尺寸平台新型载物台采用双向线轨传动机构,彻底解决传统平台的横向导轨突出所带来的安全隐患,并在双向行程末端起到过载保护作用,提高机构的可靠性。同时,线轨传动技术带来更为舒适的操作体验。 模块化机身,提高系统兼容性RX50 生物机架采用模块化结构设计,横臂与显微镜镜体分离,从而完成生物 / 荧光机架系统兼容,选型更自由。 高灵敏度粗微调同轴调焦机构新型调焦机构采用粗调和微调两级传动,带有松紧调节装置与随机上限位装置,可自行调节粗调机构的轻重,并可设定任意位置为粗调上限位。粗调行程25mm,微调精度提高到1μm,高灵敏度的微调机构不仅能作精确调焦,还能兼作精密测量。 多功能聚光镜SOPTOP 为用户观察不同的样品提供更多选择,可选配 8 孔转盘式多功能聚光镜,主体组内设3小5大孔,与其它光学元件相结合,用于进行明场、暗场、相衬、诺马斯基 DIC 和简易偏光观察。您在观察样品时,能够平滑、灵活的切换各种观察模式,操作自如,便捷,提高工作效率。 丰富的产品配件实现多种观察方式明场:图像更明亮,所有倍率都能获得更高超的分辨率。 相衬:优异的相衬图像效果,适用于观察高透明度的样品。 微分干涉:根据样品特征,呈现高对比度,立体感的图像,观察效果更为逼真。 多功能平场复消色差物镜UPlanAPO 系列平场复消色差多功能物镜,适用于高级研究镜检和显微图像拍摄。通过校正红、绿、蓝色光轴向色差,使其同时会聚到同一焦点平面上,并有效校正紫色光的轴向色差,真实地再现被观测物体红、绿、蓝等颜色。超大数值孔径,进一步提高分辨率及有效放大率。
    留言咨询
  • 1 引言植物的生存环境并不总是适宜的,常会遭受到高低温、冻害、光照、水分、营养元素、CO2、化学元素、大气污染、除草剂和杀虫剂等各种环境因子复杂多变的逆境胁迫。植物对环境胁迫的最直观反应表现在形态上,但往往滞后于生理反应,一旦伤害已经造成,则难以恢复。通过研究植物对环境胁迫的生理反应,不但有助于揭示植物适应逆境的生理机制,更有助于生产上采取切实可行的技术措施,提高植物的抗逆性或保护植物免受伤害,为植物的生长创造有利条件。20 世纪 80 年代以来,便携式光合作用测定系统和叶绿素荧光仪等生理生态测试仪器的问世,为研究植物逆境生理及其响应提供了新的研究手段,产生了大量的研究成果。但另一方面,它们又都有各自的局限性。当气孔不均匀关闭现象出现时,叶片气体交换测量系统计算得到的Ci 会被高估;另外,不同生境之间叶片光合速率大小比较没有直接的意义,而且比较费时费力。叶绿素荧光虽然容易测定,但如果实验设计不够好,结果将很难解释。 2 观测系统设计 2.1 目标植物逆境生理研究需要测量的指标首选叶绿素荧光参数,叶绿素荧光反应是植物光化学反应的指示物,与物种、季节、环境、样品情况和其它影响植物生理作用的因素有关。因此,可测定叶绿素荧光的变化来反映植物对环境胁迫的反应。植物生长区域的降水、光照、气温、土壤水分等环境因子指标与植物逆境生理胁迫水平密切相关,对其进行实时观测,有利于精确反映环境因子的变化对植物逆境生理状态的动态影响。 同步测定活体叶片气体交换和叶绿素荧光对阐述植物对环境因子逆境胁迫的响应,结合环境因子的同步测量可提供更有意义的结果。AZ-B0300植物逆境生理观测系统能同时测量植物的气体交换参数、荧光参数和环境因子,可用于植物多种类型环境因子的逆境胁迫研究。 2.2 植物逆境种类及荧光参数测量方法 胁迫类型研究方法和测量参数水分胁迫测量净光合速率、气孔导度和水分利用效率等气体交换参数;测量加热处理(39℃)前后的Yield; C4植物测量ETR/A;C3、C4和CAM植物的中度水分胁迫,测量Fs/Fo & Fo;OJIP曲线和K-Step荧光动力学曲线参数。光胁迫测量净光合速率、气孔导度和水分利用效率等气体交换参数;荧光淬灭和淬灭弛豫测量---研究光保护机制下类囊体膜⊿ph变化的最好方法;OJIP参数比Fv/Fm对光胁迫更敏感(Thach 2007)。高温胁迫测量净光合速率、气孔导度和水分利用效率等气体交换参数;荧光淬灭和淬灭弛豫测量---适于研究中度高温胁迫(≥35℃);光响应曲线Fv/Fm,Yield,OJIP参数(Dascaliuc A., Ralea t., Cuza P.,2007) (Schreiber U. 2004) (Strasser 2004)低温胁迫测量净光合速率、气孔导度和水分利用效率等气体交换参数;ETR/CO2同化率;Yield;Fv/Fm;ETR;荧光淬灭及弛豫参数(NPQ, qN, qP, qL, qE, qT, qI,Y(NPQ), Y(NO)),光响应曲线(Cavender-Bares J., Bazzaz F., 2004) (Krause 1994) (Adams1994, 1995)冻害胁迫Yield;Fv/Fm;ETR;荧光淬灭及弛豫参数(NPQ, qN, qP, qL, qE, qT, qI,Y(NPQ), Y(NO).)(Ball 1994,1995), (Krause 1994), (Adams1994, 1995)CO2胁迫测量净光合速率、气孔导度和水分利用效率等气体交换参数;FV/Fm,OJIP参数对CO2胁迫很敏感;qP能很好的反映出水分、光照和CO2复合胁迫情况;Yield和NPQ参数对CO2胁迫不敏感(Siffel & Braunova 1999)。大气污染(O3)胁迫Yield,Fv/Fm,qP,NPQ等参数均对O3胁迫很敏感(Calatayud,Pomares,Barreno 2006)除草剂胁迫VJ-OJIP对于多种农药胁迫敏感;Yield & NPQ;NPQ对于DDT和DCMU胁迫敏感。(Christiansen, Teicher and Streibig 2003) (Percival 2005)化学元素胁迫铝、镉、钴、铜、锌、镍元素等……营养元素胁迫氮素、硫元素、硼元素、钙元素、氯元素、铁元素等…… 2.3 观测内容 荧光指标:FRFexd360/FRFecx440(主要用于测量氮胁迫。这是区分氮胁迫和硫胁迫的重要测量方法)Kramer Lake模型荧光淬灭参数:Y(II),qL ,Y(NPQ),Y(NO)Kughammer简化Lake模型荧光淬灭参数:Y(II),Y(NPQ),Y(NO),NPQPuddle模型荧光淬灭参数:qP,qN,NPQ,qE(光保护机制导致的非光化学淬灭),qT(稳态跃迁过程导致的非光化学淬灭),qI(光抑制和光破坏机制导致的非光化学淬灭)其它常规荧光参数:Y、Fv/Fm、ETR、PAR、叶片温度、Fo、Fm、Fv、Ft、Fod、Fms、Fs、OJIP曲线光合参数:光合速率、蒸腾速率、气孔导度等环境参数:温湿度、辐射、土壤水分温度、土壤元素2.4 系统组成和技术指标 AZ-B0300植物逆境生理观测系统可测量、存储光合、荧光和环境因子参数。 光合测量单元: 测量范围:CO2 0-3000ppm,分辨率1ppm,H2O 0-75 mbar,分辨率0.1mbar, PAR 0-3000μmol m-2 s-1,余弦校正;可控条件: CO2控制最高2000ppm;H2O控制可高于或低于环境条件;温度由微型peltier元件控制,可高于或低于环境10℃; PAR控制由高效、低热 红/蓝LED阵列单元控制,最高2000μmol m-2 s-1;叶绿素荧光测量单元: 测量模式:Fv/Fm,Yield常规测量模式、Lake和Puddle模型荧光淬灭测量模式、Kinetic荧光动力学测量模式、OJIP测量模式、多次饱和光闪测量模式。多功能PAR叶夹:通常情况下,如果植物受到了氮素胁迫,则植物表皮会积聚一种对紫外光吸收能力强的物质,FRFex360/FRFex440多功能PAR叶夹即是通过测量这种情况下的紫外光和蓝光激发的红外荧光值比率来判断植物的氮素胁迫水平。a双光源饱和脉冲:690nm卤素灯与双通道660nm 和450nm可调 LED。卤光灯最大光强0-15,000μmolm-2s-1,LED 0-4,500μmolm-2s-1。光化学光:LED光源0-3,000 μmolm-2s-1,卤素灯光源0-6,000μmolm-2s-1。远红外光源:735nmLED(用来测定Fod),强度可调。数据存储:1Gb的内存容量,能存储上万组数据,可扩展SD卡。 环境因子: 总辐射0-2000 Wm-2,分辨率1 Wm-2;降雨量0.005mm~250mm,分辨率0.005mm;光合有效辐射0~500Wm-2,分辨率1 Wm-2,采样频率6次/min,滑动平均值作为结果;空气温度-30℃~+70℃,分辨率0.1℃,采样频率6次/min,滑动平均值作为结果;空气相对湿度0-100%,分辨率1%,采样频率6次/min,滑动平均值作为结果;地表温度-30℃~+50℃,分辨率0.1℃,采样频率6次/min,滑动平均值作为结果;土壤温度-30℃~+100℃,分辨率0.1℃,采样频率6次/min,滑动平均值作为结果;降雨形态数据采集器:有16 个可编程、多功能通道,每个通道自由编程,可扩展。测量范围 40mV 至25V,每个通道可赋予数学计算。操作软件:包含有系统设置软件和数据报告软件。系统设置软件用于设置系统的各通道及计算公式,数值平均方法,数据文件命名方式,WEB 页设置,Ethernet 口设置。数据报告软件提供滑动平均值(sliding average),矢量平均和分级平均。 土壤水分:水分0-100%,精度±2%;温度-15℃~+50℃,精度±0.2℃。测管长度0.6m, 1m,1.5m, 2m,2.5m, 3m可选。采用掌上电脑和蓝牙无线通讯。土壤元素3 数据处理   利用AZ-B0300植物逆境生理测量系统所获得的气体交换参数和荧光参数测量结果,与各环境因子或人工处理条件的测量数据之间进行相关分析或主成分分析。从而分析各环境因子对植物逆境胁迫的影响机理和贡献率。4 应用案例4.1 植物水分胁迫/轻度干旱胁迫测量的新方法(John Burke 2010) 用荧光仪测量C3和C4植物的水分胁迫和轻度干旱胁迫一直是个难题。早在2007年,美国德克萨斯州植物胁迫研究实验室的John Burke教授以棉花为研究对象,提供了一个新方法,利用美国OPTIC公司的调制式荧光仪测量40℃加热处理前后叶片样品的暗适应参数Fv/Fm’ (△F/Fm’)或光适应参数Yield测量结果,发现该测量值能很好的反映植物水分胁迫和轻度干旱胁迫状况。  2010年5月份,John Burke教授再次发表了新的研究成果,进一步验证了这一新方法的可行性和科学性。  Burke 在文中指出C3和C4植物都能用这个方法简单快速的测量,且一次性可以测量200-300个植物叶片样品。该方法将未受到胁迫的对照植物和受干旱胁迫植物的测量结果,从灌溉停止后一天开始对比,一直持续好几天。研究结果显示,灌溉停止后24小时之内,测量结果很好地反映了水分胁迫状况,这一结果也得到了其它实验室的验证。
    留言咨询
  • CPEC310是由美国Campbell Scientific Inc.(CSI)研制的一款高性能、高可靠性的科研级闭路涡动相关通量观测系统,可用于大气与生态系统之间的二氧化碳、水汽、热量和动量交换的长期监测。 一套完整的CPEC310闭路涡动相关通量观测系统系统由一套EC155闭路气体分析仪、CSAT3A三维超声风传感器、CR6数据采集器以及其他配件和配套操作软件组成,系统高度集成,包含了使用中所必须的各种仪器及配件,能够为用户提供“交钥匙”系统,极大得方便了用户的使用。 EC155是专为涡动相关通量观测设计的闭路气体分析仪,可同时测量二氧化碳和水汽的密度,采样气室内的温度和压力,其采用5.8ml的小采样气室设计,大大减少了采样停留时间(50ms,7LPM时)。这使系统的功耗大幅降低到12W,并拥有优异的频率响应性能(5.8Hz,半功率带宽)。结合CSAT3A三维超声风传感器即可同步测量三维风速、空气温度和超声虚温。  作为系统控制核心的CR6数据采集器保障了整套系统的高速、稳定运行,其可将采集到的测量数据存储到CF存储卡中(支持16GB),亦可以有线或无线方式,通过局域网、Internet、卫星等多种途径实现数据的远距离传输,支持3G、GPRS、WiFi、微波电台等多种无线通讯方式。涡动协方差系统,亦称涡度相关系统,是一种微气象学的测量方法,采用涡度相关原理,利用快速响应的传感器来测量大气下垫面的物质交换和能量交换,它是一种直接测定通量的标准方法,已成为近年来测定生态系统碳、水交换通量的关键技术,得到了越来越广泛的应用,并逐渐成为国际通量观测网络的主要技术。涡动协方差系统可以测量显热通量、潜热通量、动量通量、摩擦风速,以及其它物质通量(如CO2等),主要应用在边界层理论研究、大气扩散、能量收支研究、水分及其它物质收支研究等众多领域。系统特点系统集成度高,包含所需各种仪器及配件频率响应性能优异低功耗,支持多种供电方式可选配零点与阈值标定输出原始参数■ Ux(m/s)■ Uy(m/s)■ Uz(m/s)■ 超声虚温(℃)■ 超声风速仪诊断值■ CO2混合比(μmol/mol)■ H2O混合比(mmol/mol)■ 气体分析仪诊断值■ 采样室温度(℃)■ 采样室压力(kPa)■ CO2信号强度■ H2O信号强度■ 采样室内外压差(kPa)
    留言咨询
  • 舜宇 RX50 研究级金相显微镜全新RX50M 研究级金相显微镜集舜宇多项首创于一身,从外观到性能都紧跟国际设计风向,致力于拓展工业领域全新格局。RX50M 秉承舜宇不断探索不断超越的品牌设计理念,为客户提供完善的工业检测解决方案。 多档分光比观察头设计全新RX50M 系列观察筒,采用宽光束成像系统设计,支持26.5mm 超宽视野观察,带给您全新的大视野体验。两档式正像铰链三目观察筒,保证样品的移动方向与您通过目镜观察到的方向一致,使操作更加得心应手。三档式铰链三目观察筒,在成像光线全部用于双目观察或三目摄影的基础上,增加一档20% 用于双目观察,80% 用于显微摄影,方便用户同时对镜下图像与视频图像进行对比观察; 偏振系统偏振系统包括起偏器和检偏器,可做偏光检测,在半导体和PCB 检测中,可消除杂光,细节更清楚。检偏器分为固定式检偏器和360 度旋转式检偏器。360°旋转式检偏器可在不移动标本的情况下,方便的观察标本在不同偏振角度光线下呈现的状态。可在偏振系统的基础上加载舜宇全新研发微分干涉器,建立诺曼尔斯基微分干涉衬比系统。 诺曼尔斯基微分干涉衬比系统全新研发的U-DICR 微分干涉组件,可以将明场观察下无法检测的细微高低差,转化为高对比度的明暗差并以立体浮雕形式表现出来,如LCD 导电粒子,精密磁盘表面划痕等。 物镜转换器,多孔可选多孔物镜转换器可以对同一个标本的观测点进行连续的更加合理的低、中、高放大倍率观察。全新的物镜转换器将光轴与转动轴之间的夹角降低到15°,提高了对中精度和齐焦精度,且外观更加紧凑。
    留言咨询
  • 系统介绍: 开路大气CH4(甲烷)通量观测系统,采用涡动协方差原理,是一种微气象学的测量方法,利用快速响应的传感器来测量大气—下垫面间的物质交换和能量交换。是一种直接测算通量的标准方法,是测定生态系统物质、能量交换通量的关键技术。由于测量方式和原理不同,涡动观测系统分为开路涡动观测系统和闭路涡动观测系统。 涡动观测系统可以测量能量通量(显热通量、潜热通量、动量通量)和物质通量(CO2 / H2O / CH4 / N2O)以及一些空气动力学参数等,主要应用于边界层理论研究、大气扩散、能量收支研究、水分等物质收支等众多领域。 通量观测适用于森林、草地、农田、沙漠、城市、水域等各种下垫面环境,被广泛应用于中科院、林科院、气象局、海洋局及各科研领域对区域碳、水循环过程的研究;做为测算生态系统与大气间物质和能量交换信息的有效手段,为分析地圈-生物圈-大气圈的相互作用提供重要的数据基础,为大尺度、长期和连续的科学研究提供支撑。系统概述:开路涡动系统可以测量感热通量、动量通量、大气和地表面之间甲烷(CH4)的通量。这个系统包括一个数据采集器,快速响应、三维超声波风速计和快速响应的标量传感器。一个独立的测量温湿度的低速响应的传感器也是需要的,它测量的数据可以为计算气象变量做参考。水平的风速风向可以被数据采集器计算出来,用三维超声波风速计测量出来的数据。系统特点: 可定制的系统,可提供一系列的测量选择 低功耗,适用于太阳能供电 可以长期野外监测 经济实用,易于安装和维护 采用量子级联激光开放式光腔,无需采样,超灵敏,响应快速 无运动部件,稳定可靠 超灵敏的激光光谱学带来极低的漂移测量参数:二氧化碳通量、水汽通量、动量通量、湍流强度、三维超声波风速、空气温湿度可扩展测量参数:气压、总辐射、光合有效辐射、土壤水分、土壤温度、土壤热通量等技术参数:CR1000X数据采集器图片操作温度-40° 到+70°C(标准);-55° 到 +85°C(标准)模拟输入支持16个单端(SE)或8个差分(DIFF)输入,可单独配置,用于电压,热电偶,比例和周期平均测量。脉冲计数10个电压激励终端4开关12V2个数字I/O8个端口可配置用于数字输入和输出,包括状态高/低,脉宽调制,外部中断,边沿定时,开关闭合脉冲计数,高频脉冲计数,UART,RS-232,RS-485,SDM,SDI-12 ,I2C和SPI功能。输入限制±5 V模拟电压精确度在0° 到 40°C时,±(0.04% 的测量值+偏差值)在 -40° 到 +70°C时,±(0.06%的测量值+偏差值)在 -55° 到 +85°C(扩展的温度范围)时,±(0.08%的测量值+偏差值)ADC24位供电10-16V实时时钟精度每年最大误差为3分钟,装配可选的GPS校正后可缩短至10μs内置协议Ethernet, PPP, CS I/O IP, RNDIS, ICMP/Ping, Auto-IP(APIPA), IPv4, IPv6, UDP, TCP, TLS, DNS, DHCP, SLAAC, SNMPv2, NTP, Telnet, HTTP(S), FTP(S), SMTP/TLS, POP3/TLS通讯协议PakBus, Modbus, DNP3, SDI-12, TCP, UDP和其他CPU32位,运行频率100MHz内部存储128M内存,和4M电池供电SRAMMicroSD卡扩展最大支持8GB内部锂电池2.4Ah,3.6V,AA电池,仅给内部时钟和SRAM供电,可持续使用三年电力消耗(12V) 1 mA (空闲状态), 1 mA (激活状态, 1 Hz 扫描频率),55 mA (激活状态, 20 Hz 扫描频率), 激活状态 + 25 mA (使用RS-232/RS-485连接),激活状态 + 48 mA (使用以太网连接)供电保护反极性保护 过电压保护达30 V尺寸23.8 x 10.1 x 6.2 cm重量860g81000三维超声风速风向传感器图片风速测量范围/s(0-90mph),分辨率:0.01m/s阈值:0.01m/s,精度:±1%±0.05m/s(0-30m/s), ±3%(30-40m/s)风向范围:360度,仰角范围:±60度,分辨率:0.1度精度:±20(1-30m/s) ±30(30-40m/s)声速范围:300-360m/s,分辨率:0.01m/s精度:±0.1%±0.05m/s(0-30m/s)声学温度范围:-50-+500C,分辨率:0.01m/s,串行输出精度:±20C(0-30m/s RS-232或RS-485,1200-38400波特用户可编程的ASCII输出配置模拟电压输出单位0-5000mv,V1和V2;0-1000mv,V3和V4分辨率:1 part in 4000,精度:±0.1% of full scalem/s,cm/s,mph,knots,km/hHT8600 高精度大气甲烷本底激光开路分析仪图片CH4精度(1σ 0.1s/1s/10s)7ppbv/ 3ppbv/ 1ppbv测量范围0 - 20 ppm (其它量程可定制)工作温度-25~45℃,70~110kPa环境湿度0~100%供电电压20~28VDC主机功耗50 W (热机过程 ~100W)数据接口RS232输出带宽10Hz主机重量小于10kg尺寸834mm×ø 200mm测量技术量子级联激光吸收光谱技术(QCLAS)EE08-SS空气温湿度传感器图片测量范围温度:-40至60 ℃;湿度:0至100%RH20℃时的精度温度:±0.2℃;湿度:±2%(0 - 90%),±3%(90%-100%)长期稳定性温度:低于0.1℃/年;湿度:小于1%/年响应时间小于30s输出信号0至2.5 V DC传感器类型温度:PT1000(A类),湿度:电容芯片输入电压直流7-30 V电流小于1.3 mA启动时间2s外壳聚碳酸酯,IP65过滤不锈钢丝网,孔径为30微米外型尺寸长度83毫米,直径12毫米重量270g(含5米线缆)工作环境-40至60℃ 0至100%RH线缆M12连接器(IP67防护等级),用于连接传感器外壳,5 m的四芯屏蔽双绞线(也提供10 m和20 m电缆),白色TPR护套(高耐水性,高紫外线稳定性,耐寒性)条件),尾纤引线
    留言咨询
  • 用途:VSI MS-16根系生长动态监测系统,是一套定性和定量研究根系生长、寿命、分布或用于实验的观察工具。本系统利用微根管(Minirhizotron,又称微根窗)技术用于非破坏性监测分析根系动态的仪器技术,它是一种非破坏性、定点直接观察和研究植物根系及菌根发展的方法,其最大优点是在不干扰细根生长过程的前提下,能原位连续监测根系及根围,了解其发展、生产和根系结构,是估计生态系统地下C分配和N平衡研究的有效方法,结合所提供根系分析软件,能够将根系相关数据定量化,包括根的长度、根尖数量、直径分布格局、死亡根及存活根数量等。还可以根据用户需求监测土壤水分状况,从而研究根系所在区域内溶质运移及水分胁迫所引起的生理变化,广泛运用于苗木培养、作物生长模型研究、根系病理分析、昆虫行为生态等领域。 工作原理:VSI MS-16根系生长动态监测系统利用微根管技术,整套系统由成像头、微根管、微根管塞、钻孔器、分析软件等部件组成。将成像头伸入埋设在根系周围的微根管内,通过控制模块进行根系图像抓取成像,然后使用预装在电脑上的专业根系分析软件系统对混合图像进行分析,从而跟踪了解其在不同季节的生长过程。 产品特点: 超高分辨率:2500 dpi 手动根部的“可管理”图像尺寸(最大34 mm x 24 mm,在7 cm 直径微根管内)用于根部追踪 高成像速度非常快(1 s),无需“白色校准” 实时根图像,对于任何筛选目的都很重要 UI选项:图像大小调整(20 mm x 20 mm)和非线性校正(基于测量管弯曲度) 精确而强大的分度系统(经典的“Smucker”手柄,具有新颖的分度,用于头部快速、可靠的弧形定位) 12V(3A)系统,全野外和温室可操作 可选:内部可充电电池 可用于水平,垂直和有角度弯曲的测量管 管长度可延长到500厘米; 定点、连续观测根系在整个生长季中的动态变化; 根系软件可以快速的进行分析根系的相关参数(根长、周长、表面积、体积、根尖数、直径等几十个参数). 技术规格:监测分析参数细根长、细根直径、细根颜色及存活状态等图像尺寸31 mm x 24 mm(7cm MR根管)图像像素3280 x 2464 px 2500 dpi图片格式*.jpg成像时间<1s光源2 x 3 w穗轴发光二级管(界面强度可调)操作模块LCD触摸屏,键盘,微电脑(可选蓝牙远程触发器)图像输出USB接口用户界面VSI软件(触摸感应,可用键盘或鼠标操作)供电12V,3A带电器(可选:内置可充电电池)相机材料耐用铝壳,阳极氧化相机重量420g相机尺寸170mm相机和用户界面连接HDMI线,长达7m分度头铝质,100mm*175mm,1.2kgUI模块345mm*285mm*105mm控制模块功能控制系统含电源开关,控制成像头的光学放大缩小开关,紫外光源的开关,成像焦距的微调开关。刻度手柄铝质,25mm*25mm*1000mm,约670g,最多可5个手柄相连接使用微根管尺寸外径70mm,内径64mm,壁厚3mm,长度1m 和2m(长度可定制) 产地:奥地利
    留言咨询
  • CPEC310闭路涡动相关通量观测系统是由美国Campbell Scientific Inc.(CSI)公司自主研发的一款高性能、高可靠性的科研级通量观测系统,可用于大气与生态系统之间的二氧化碳、水汽、热量和动量交换的长期监测。 一套完整的CPEC310闭路涡动相关通量观测系统系统由一套EC155闭路气体分析仪、CSAT3A三维超声风传感器、CR6数据采集器以及其他配件和配套操作软件组成,系统高度集成,包含了使用中所必须的各种仪器及配件,能够为用户提供“交钥匙”系统,极大得方便了用户的使用。 EC155是专为涡动相关通量观测设计的闭路气体分析仪,可同时测量二氧化碳和水汽的绝对密度,采样气室内的温度和压力,其采用5.8ml的小采样气室设计,大大减少了采样停留时间(50ms,7LPM时)。这使系统的功耗大幅降低到12W,并拥有优异的频率响应性能(5.8Hz,半功率带宽)。结合CSAT3A三维超声风传感器即可同步测量三维风速、空气温度和超声虚温。  作为系统控制核心的CR6数据采集器保障了整套系统的高速、稳定运行,其可将采集到的测量数据存储到CF存储卡中(最大支持16GB),亦可以有线或无线方式,通过局域网、Internet、卫星等多种途径实现数据的远距离传输,支持3G、GPRS、WiFi、微波电台等多种无线通讯方式。涡动协方差系统,亦称涡度相关系统,是一种微气象学的测量方法,采用涡度相关原理,利用快速响应的传感器来测量大气下垫面的物质交换和能量交换,它是一种直接测定通量的标准方法,已成为近年来测定生态系统碳、水交换通量的关键技术,得到了越来越广泛的应用,并逐渐成为国际通量观测网络的主要技术。涡动协方差系统可以测量显热通量、潜热通量、动量通量、摩擦风速,以及其它物质通量(如CO2等),主要应用在边界层理论研究、大气扩散、能量收支研究、水分及其它物质收支研究等众多领域。系统特点系统集成度高,包含所需各种仪器及配件频率响应性能优异低功耗,支持多种供电方式可选配零点与阈值标定输出原始参数■ Ux(m/s)■ Uy(m/s)■ Uz(m/s)■ 超声虚温(℃)■ 超声风速仪诊断值■ CO2混合比(μmol/mol)■ H2O混合比(mmol/mol)■ 气体分析仪诊断值■ 采样室温度(℃)■ 采样室压力(kPa)■ CO2信号强度■ H2O信号强度■ 采样室内外压差(kPa)
    留言咨询
  • VISIR动物行为观测分析系统基于可见光与长波红外热成像技术,由可见光摄像头、红外热成像仪、动物行为分析软件、动物活动室/池等组成。通过可见光数码摄像头及长波红外热成像录制数码视频,并通过软件在计算机上根据反差法或背景减除法的原理(可见光部分)和红外热成像温度测量技术(红外热成像部分)对视频中的目标动物、动物不同部位进行行为分析、温度时空分布分析。原始结果包括目标动物随时间变化的行为轨迹(X坐标和Y坐标;单个动物可做3D跟踪,包括X、Y、Z坐标)和温度时空分布动态。配套软件可对原始结果进行深入分析,给出数十种动物行为学的参数和感兴趣区温度的时空变化曲线。 可用于单目标动物行为观测分析和多目标动物行为观测分析,可以对实验室中背景单一的环境里的动物,如多孔板中的动物、迷宫、野外开阔区域、鱼缸(池)、动物笼舍中的动物如昆虫、鱼类、爬行类、啮齿类、鸟类或其他动物的行为视频进行行为学分析和温度测量成像。对于野外动物(主要为恒温动物),可进行温度测量成像,同时使用动物行为分析软件对热成像视频进行分析,从而有效避免可见光成像中复杂背景对动物识别分析造成的干扰。结合动物呼吸测量,可同步化监测动物行为与呼吸代谢。 工作原理:基于可见光成像技术与红外热成像技术,根据反差法即目标动物与周围环境的反差(要求目标动物与环境温度反差及可见光色彩反差),通过动物行为分析软件及红外热成像分析软件,对视频资料做行为学分析,并对动物温度时空变化进行分析,可用于以下学科相关研究:1. 昆虫学研究:监测环境胁迫下昆虫的行为响应和生理响应,动态测量和记录昆虫的行为、体温。2. 动物行为研究:监测群居动物的交互行为、社群行为和等级(左下图中,尾温高的小鼠社群等级高)和交互时肉眼不可见的体温变化。3. 野生动物调查:以红外热成像为主,可见光成像为辅,对野生动物进行精准的定位和数量统计,并对其行为和生理状态进行分析研究(右下图中,红外热成像相机对大群聚居的巴西无尾蝙蝠进行察)。分析时可设置目标区域,分析计算动物的活动时间与非活动时间、运行速度、加速度、移动距离、活动方向、活动取向、在某一区域的逗留时间、在某一区域的出现次数及对兴趣区的接触次数、动物不同部位温度变化比较及温度频率直方图分析等等。可与动物呼吸代谢测量系统耦合,组成单通道或多通道动物行为监测与呼吸代谢测量系统。 功能配置:1.动物行为观测分析软件、红外热成像分析软件2.USB3.1彩色摄像头及镜头3.红外热成像相机:通过动物体体温二维时空分布变化,以研究分析动物生理状态及对环境的响应、动物社群行为与等级、动物应激行为状态、动物实验体温监测等4.红外光板(选配):用于室内透明鱼缸等的红外照明,可提高反差,模拟黑暗环境5.动物活动室/池(动物行为观测室或观测池):有昆虫观测室、啮齿类观测室、CO2控制观测室、嗅觉观测室等供选配 技术指标:1) 动物行为观测分析软件可观测分析:l 位置坐标(包括前、后、中线中心、重心)l 移动距离l 速度和速率l 加速度l 移动方向l 取向l 身体弯曲(如摆尾频率、身体摆动)l 移动方向和取向变化速率l 活动/非活动时间和比例l 选区花费时间和比率l 动物到选区中心的距离l 个体间距离(IID)l 距选区中心距离所有参数都能够从单个动物体、动物群体(处理组)或者用户自定义区域(还可统计区域停留时间和访问次数等)中计算获得。2) 动物行为观测分析软件具备多种基于反差法和背景减除法的过滤功能,并有效解决了遮挡的问题(如碰撞、相遇)。3) 可以在单个竞技场内跟踪多个动物,即使动物具有相同(或不同)的形状,颜色和大小,可以遮挡处理(如碰撞或交叉路径),以及可以将动物识别隐藏或移出视线应用。如果需要,可以轻松识别和更正任何跟踪错误。4) 红外热成像单元:a) 红外热成像技术,7.5-13.5μm长波段红外热成像精准测温,温度范围-25°C~+150°C,具校准证书b) 红外热成像分辨率640*512像素,灵敏度0.03℃(30mK),帧率:9Hz或30Hzc) 标配13mm镜头、FOV 45° x37°、可选配9 mm – 19 mm等光学镜头d) 通讯端口:USB3或GigE网络接口e) 分析软件具备ROI选区与ROI分析功能、视频与快照模式、14种调色板并支持自定义,可设置空气温湿度、距离等参数等f) 可对点、线、面进行温度实时测量、记录并在线显示温度动态曲线、频率直方图、3D图等,自动在线显示最高温度、最低温度以及平均值等g) 可选配4通道红外热成像监测系统5) USB彩色高分辨率数码摄像系统:a) USB3.1彩色高清高帧频工业摄像机:紧凑设计,分辨率2592 x 1944 (5.04 MP),帧率48FPS,芯片尺寸1/2.5" (5.702 mm x 4.277 mm),重量33g。包括USB数据线、三脚架适配器、壁挂式支架安装。 b) 高品质定焦镜头:可选配6mm、8mm、12mm、16mm、25mm、50mm焦距可选。6) 对于动物园、野外等场景的观测,建议选配WIRIS Pro红外热成像相机。该相机同时具备全高清画质的RGB相机(1920×1080)和红外热相机(640×512)。RGB相机具10倍光学减震变焦。红外热成像相机温度分辨率0.05℃(0.03℃可选),帧率30Hz或9Hz,可提供1266 x 1010像素的超级红外分辨率。相机内置高速SSD存储7) 红外光板:大小25×11cm至113cm×51cm共5种尺寸可选,波长850nm。8) 可同时选配低氧调控模块、温控模块、TC-2000高分辨率温度监测器、动物活动度检测器、动物能量代谢测量及微型植入式体温心率监测 产地:欧洲
    留言咨询
  • CPEC-6是由美国Campbell Scientific Inc.(CSI)研制的一款高性能、高可靠性的科研级闭路涡动相关通量观测系统,可用于大气与生态系统之间的二氧化碳、水汽、热量和动量交换的长期监测。 一套完整的CPEC-6闭路涡动相关通量观测系统系统由一套EC155闭路气体分析仪、CSAT3A三维超声风传感器、CR6数据采集器以及其他配件和配套操作软件组成,系统高度集成,包含了使用中所必须的各种仪器及配件,能够为用户提供“交钥匙”系统,极大得方便了用户的使用。 EC155是专为涡动相关通量观测设计的闭路气体分析仪,可同时测量二氧化碳和水汽的密度,采样气室内的温度和压力,其采用5.8ml的小采样气室设计,大大减少了采样停留时间(50ms,7LPM时)。这使系统的功耗大幅降低到12W,并拥有优异的频率响应性能(5.8Hz,半功率带宽)。结合CSAT3A三维超声风传感器即可同步测量三维风速、空气温度和超声虚温。  作为系统控制核心的CR6数据采集器保障了整套系统的高速、稳定运行,其可将采集到的测量数据存储到CF存储卡中(支持16GB),亦可以有线或无线方式,通过局域网、Internet、卫星等多种途径实现数据的远距离传输,支持3G、GPRS、WiFi、微波电台等多种无线通讯方式。涡动协方差系统,亦称涡度相关系统,是一种微气象学的测量方法,采用涡度相关原理,利用快速响应的传感器来测量大气下垫面的物质交换和能量交换,它是一种直接测定通量的标准方法,已成为近年来测定生态系统碳、水交换通量的关键技术,得到了越来越广泛的应用,并逐渐成为国际通量观测网络的主要技术。涡动协方差系统可以测量显热通量、潜热通量、动量通量、摩擦风速,以及其它物质通量(如CO2等),主要应用在边界层理论研究、大气扩散、能量收支研究、水分及其它物质收支研究等众多领域。系统特点系统集成度高,包含所需各种仪器及配件频率响应性能优异低功耗,支持多种供电方式可选配零点与阈值标定输出原始参数■ Ux(m/s)■ Uy(m/s)■ Uz(m/s)■ 超声虚温(℃) ■ 超声风速仪诊断值■ CO2混合比(μmol/mol)■ H2O混合比(mmol/mol)■ 气体分析仪诊断值■ 采样室温度(℃)■ 采样室压力(kPa)■ CO2信号强度■ H2O信号强度■ 采样室内外压差(kPa)
    留言咨询
  • 地气间动量、热量和水分交换对大气的动力热力过程起着十分重要的作用。了解这些过程,尤其是定量了解是感热通量和潜热通量, 对天气气候预报、水循环过程分析、农业和水资源管理等意义重大。传统的观测热通量的方法主要有涡动相关方法、波文比—能量平衡方法和空气动力学方法,然而其尺度通常仅是单点或斑块尺度。闪烁仪的测量尺度可与地表通量遥感估算模型或陆面过程模型、水文模型等像元或网格尺度相匹配,因此成为模型验证的最佳地面通量观测仪器。荷兰Kipp & Zonen公司推出的LAS Mk II大孔径闪烁仪(Large Aperture Scintillometer), 发射波长为近红外波段(850 nm),在此波长下,闪烁仪主要对由于大气中温度引起的波动较为敏感,因此可有其计算100 m至4.5 km范围内的平均感热通量。 其测量尺度与大气模式的网格尺度,以及卫星遥感的像元尺度,匹配较好。然而LAS的测量无法直接获得潜热通量,其计算需要结合能量平衡法。德国RPG公司推出的MWSC 160微波闪烁仪,发射波长为毫米(mm)波段,此波长对于大气中温度和水汽的波动较为敏感,因此在结合LAS使用的情况下,可以获得在同一路径下的显热和潜热通量。这种直接获得感热通量和显热通量的方法又称为双波长闪烁仪法,英文名称为Optical-Microwave Scintillometer, 即OMS系统。应用l 可输出参数大气折射率 Cn2,是研究边界层湍流特征的重要指标l 单独使用LAS Mk II,可直接测量感热通量 (H)l LAS Mk II结合MWSC 160,可直接测量感热通量 (H)以及蒸散 (潜热通量,LvE)l 加装气象站设备,同时测量风速、温度和大气压力值等l 测量参数可应用于农业、气象、水文、天气预报、能量平衡等领域 主要技术参数指标LAS MKII参数MWSC 160 参数路径长度100-1000 m(10 cm口径);250-4500 m(15 cm 口径1-10 km波长/频率850 nm160.8 GHz (λ=1.86 cm)望远镜类型 10 cm/15 cm300 mm口径卡塞格伦式望远镜探测带宽6.5-7 kHz10 kHz供电要求 12 V DC12 V DC耗电约6W(不含加热情况下)约35W (含加热情况下)约50 W(含加热) 数据处理内置数据采集器,实现Cn2、感热通量和其他参数的内部处理自带光纤,将自身以及LAS的数据导入控制电脑内,使用先进的软件处理数据,实现Cn2、感热通量和潜热通量的数据获得
    留言咨询
  • SUSTRA风蚀观测系统用途: SUSTRA(Suspension Sediment Trap)开始由德国风蚀研究项目(German Wind Erosion Reserch Project)研制(Kuntze and Beinhauer, 1989),并由德国UGT生产成为风蚀观测的专业仪器设备,用于监测自然界的风沙运动趋势和土壤风蚀作用、土壤沙化与荒漠化监测、土壤有机质(SOC)剥蚀等。SUSTRA风蚀观测系统带有自动风向控制的沙尘采集系统,收集随风扬起的沙尘,并即时通过电子天平对收集到的沙尘进行称重,数据采集器自动记录收集沙尘的时间和采集的沙尘量(电子天平称重获得),同时利用外接的气象单元,同步监测记录风蚀过程中的风速、风向、温湿度和太阳辐射等气象因子。特点:自动记录风蚀沉淀物侵蚀的起始时间、强度以及沉淀物随时间变化的累计量记录相关过程中的气象参数如风速、风向、温湿度、雨量、辐射、土壤水分与土壤温度等通过选配Sedimat土壤粒径分析仪,可以分析风蚀物的粒径分布及与风速等环境因子的关系自动风向控制、自动采集沙尘和土壤颗粒、自动采集记录数据采集粒径范围为中等到细的沙尘(medium-to-fine sand fraction),采集效率达80%配置方案1. 基本配置:为SUSTRA风蚀观测主机,包括、自动风蚀沉淀物收集器、数据采集器及野外精确称重天平等2. 建议选配:四向沙尘通量监测采集筒,以采集监测沙尘通量(单位为毫克每天每平米);或选配降尘率监测采集筒,用于被动采集风蚀沙尘并计算降尘率(毫克每天每平方米),可以选配多个以监测风蚀空间异质性3. 建议选配:垂直梯度MWAC风蚀采集系统,以采集不同梯度的沙尘,标准配置为4个梯度 4. 建议选配:WS-MC01自动气象站,WS-MC01自动气象站用于对风向、风速、雨量、气温、相对湿度、太阳辐射、光合有效辐射七气象要素进行测量,可扩展土壤温度、土壤水分等气象要素进行全天候自动监测。5. 选配:WS-GR03 梯度气象监测系统,WS-GR03 梯度气象系统是针对各要素垂直空间分布测量而设计的高精度气象监测系统,能对大气平均特征和湍流特征进行直接测量。实现对不同下垫面的边界层能量、辐射、多种物质交换、阻尼和扰动的观测和研究。选用世界气象组织认可的高精度传感器,模块化结构,设置简单,安装操作便捷,易于维护,出厂前经严格测试,安全可靠,运行稳定,可长期置于野外无人看管。本系统测量的是一个垂直方向空气、土壤不同高度和深度的气象要素,空气中测量的是风速风向、温湿度、辐射、降雨、大气压等参数;土壤中测量的是温度、湿度、盐度、热通量等6. 选配:Unidata 6541地下水位监测仪,用于监测地下水位技术规格: 测量间隔5 mins;RAM内存容量:可连续监测80天(5min时间间隔)测量范围0-1200g测量精度0.1g进风口内径50mm,高度23cm,通过调节称重箱的埋深,可以调节进风口离地面的高度软件UGTLOG通讯端口RS232接口四向沙尘通量监测采集筒4个1000ml采集筒,1.6m高,符合英国标准BS1747Pt5,重量约14kg降尘率采集筒阳极电镀铝采集筒,直径227mm,5000ml采集瓶,重量约8kgMWAC梯度风蚀采集系统采集瓶进气口和出气口内径7.5mm,容量100mlWS-MC01自动气象站风速风向测量范围0.5~89m/s,0~360度空气温湿度测量范围-40℃~80℃,0~100%大气压测量范围49~109 kPa雨量筒测量范围日降雨量0.0 mm ~ 999.8 mm总辐射测量范围 0~1250W/m2土壤水分测量范围1(空气)~100%土壤温度测量范围-40~60℃WS-GR03 梯度气象监测系统空气温湿度测量范围-40~60℃,0~100%气压传感器量程500~1100hPa风速风向测量范围0~45m/s,0~360º 总辐射传感器测量范围0~5000Wm² 光量子传感器测量范围0~50000μmol/m² /secUnidata 6541地下水位监测仪测量范围0.0m~65.5m或0-13.1m(65.5英尺)精度和分辨率1.0mm,0.2 mm 或 0.3mm,取决于选择的浮标系统的类型应用案例:重要参考文献:1. Funk. R, Skidmore, E. L. Hagen, L.J. 2004. Comparison of wind erosion measurements in Germany with simulated soil losses by WEPS. Environmental modeling & software, 19: 177-1832. Goossens, D. and Offer, Z.Y. 2000. Wind tunnel and field calibration of six aeolian dust samplers, Atmospheric Environment, 34 (7), 1043-1057.3. Janssen, W., 1991. Prognostische Beschreibung eines Transportprofils bei Winderosion auf einem Ackerboden. Mitt. Dt. Bodenkundl. Ges. 65, 33–36.4. Kuntze, H., Beinhauer, R.T., Tetzlaff, G., 1989. Quantifizierung der Bodenerosion durch Wind. Mitt. Dt. Bodenkundl. Ges. 59/II, 1089–1094.产地:德国
    留言咨询
  • 海鸟HyperSAS海面高光谱仪已经停产(海鸟产品停产链接:https://www.seabird.com/discontinued-models),但是hyperOCR高光谱辐射计为停产,我司根据hyperOCR高光谱辐射计集成推出VM HyperAOP船载表观高光谱观测系统可代替该产品进行测量,以下是详细介绍:VM HyperAOP船载表观高光谱观测系统,主要用于走航式水体表观高光谱测量。系统搭载了三套高光谱辐射计,采用水面之上法,测量天空辐亮度、水面辐亮度和太阳入射辐照度,以此得出离水辐亮度和遥感反射率。VM HyperAOP集观测几何自动调整、光谱自动采集、积分时间自动调整等功能于一体,可以高效地、无人为误差地,进行船载走航、大尺度、高空间分辨率、长时间观测水体表观光谱测量。产品优势l 配置差分GPS和姿态传感器,提供精准姿态和位置信息l 船载走航式测量,高效经济l 全自动长期连续观测,实现无人值守l 配置灵活,可选Trios或Satlantic高光谱辐射计应用领域l 水体表观光谱调查l 水色卫星真实性检验和现场标定l 水色三要素的反演l 赤潮、藻类水华等现象的研究及预报l 遥感反演模型的建立和光学模型研究l 海洋及湖泊水色遥感软件界面技术指标
    留言咨询
  • 一、 概述 在越来越大型的城市化过程中,不同源汇和不同机械和热力学相互作用背景下,高塔梯度观测是最有效地表征人类活动、城市建设对城市气象和城市环境变迁影响的观察者和记录者。(Gradient Meteorological Observation System)测量大气中不同高度的风速风向、温湿度、辐射以及不同深度土壤的土壤温度和含水量,适用于不同的下垫面和大气条件, 是边界层气象,农林气象、大气环境监测运用最普遍和最基本的观测手段,是以空气动力学理论、Monin-Obukhov相似理论在近地表层的,尤其在垂直方向上以湍流交换为基础的物质和能量的传输规律的研究不可替代的观测系统。在风能评估、大气成分扩散乃至核物质、生化物质的传播和作用机理研究中,高塔梯度系统是最稳定的表征空间差异性和时间性的观测系统,是风能预测、污染员环境预报最重要的手段。对于森林生态系统的梯度观测系统,由于森林冠层下的逆梯度现象,以及各种不同植被的相互作用,不同高度的同时观测得以准确地把控细微的空间变异和稳定的时序演替,具有其他系统无法替代的作用。 BL1000/BL3000梯度气象观测系统测量大气中不同高度的风速风向、温湿度、辐射以及不同深度土壤的土壤温度和含水量,适用于不同的下垫面和大气条件。系统测量的数据能够直接用于计算大气稳定度、湍流强度、平面粗糙度和零平面位移、感热通量、潜热通量、土壤热通量,Monin-Obukhov长度等空气动力学参数,在森林系统中的辐射梯度和PAR梯度,可用于计算群落叶面积指数、有效叶面积指数,林冠结构等;梯度气象观测系统也是涡动协方差系统的重要补充,能够为涡动协方差系统提供重要的气象环境背景资料、梯度气象观测系统包括风温湿梯度观测、辐射收支观测及土壤观测等。 二、 设计依据 1、 《地面气象观测规范》; 2、 《气象仪器和观测方法指南》; 三、 系统组成、原理及性能指标 系统主要有数据采集、存储和传输单元、气象要素观测单元、供电单元和安装附件组成。系统包括BL1000和BL3000两种配置,BL1000系统主要用于5层(含5层)以下梯度,BL3000用于5层(不含5层)以上梯度气象的测量,测量的层数可个根据用户调整。
    留言咨询
  • DLI 100光照观测仪 400-860-5168转4470
    DLI 100光照观测仪名称:光照观测仪 型号:DLI 100 产地:美国用途:瞬时光合有效辐射对植物的生长发育意义很大,但光合有效辐射总量往往能够决定植物的有效生长。光合有效辐射总量是用来测量植物在单位面积(每平方米内)24小时时间里所积累的光照总量。DLI 100光照观测仪量化了植物所需要的光合有效辐射总量,对作物科学生产及管理提供有效依据。适用于用于农业、林业、气象、植物生理、温室、生态等研究和生产部门的光强测量。技术规格:按键一个开始按键,用于控制仪器工作显示间隔4秒测量波段400~700nm显示单位μmol/m2/s1或Foot~Candles(1FC=10.76LUX)观测参数日累积光量供电1节3V CR2032电池电量约可用记录60个日累积光量(DLI)计算结果大多数植物对不同光照水平的反应(参考数据)相对光照水平日累积光量(DLI)正午光强(μmol/m2/s1)对植物的影响非常低2~5100~200(500~1000FC)很差低5~10200~400(1000~2000FC)可以忍受的最低水平中等10~20400~800(2000~4000FC)好高20~30800~1200(4000~6000FC)非常好很高(室外)30~601200~2000(6000~10000FC)非常好产地:美国点将科技-心系点滴,致力将来! table: (上海) (北京) (昆明) (合肥) Email: (上海) (北京) (昆明) (合肥) 扫描点将科技官方微信,获取更多服务:
    留言咨询
  • REMS系统的基本原理来自于摄影测量的三维深度测量技术。系统通过布置合理的拍摄光环境,在降雨过程中对通过观测视野的雨滴进行高速连续拍摄。系统内置的立体相机在同步信号的驱动下记录雨场数据。得到现场数据后,经过系统的分析软件计算获得降雨的雨滴直径、速度分布,并给予这些数据进一步得到冲量、雨量、雷达系统反演等参数。立体相机的高速同步技术。 与其他产品相对比的优势本系统区别于常规的线扫描技术,直接采用面阵相机拍摄实际的雨滴影像,计算雨滴在三维空间的实际位置和尺寸。低照度影像的解译技术。降雨过程中大气光环境照度低、雨滴本身的对比度低,高速摄影时快门时间短。这些因素的共同作用下导致原始的观测影像能见度有限,我们采用了统计学习的视觉技术有效的提取出雨滴的信息。雨滴场景的三维重建技术。降雨过程中雨滴在三维空间随机分布,通过摄影测量的三维空间重建技术可以有效的反映真实的雨滴位置,获得雨滴的真实位置并精确的计算获得雨滴的实际直径。观测系统的防雨技术。相机系统、灯光系统都是防雨级别较低的弱电设备,为了长时间在野外作业,为此我们研制了行之有效的防雨的观测窗口技术。应用领域:气象科学研究院、农业气象和水文学、机场公路交通监控产品特点l 面阵相机拍摄实际的雨滴影像l 低照度影像的解译技术l 雨滴场景的三维重建技术l 观测系统的防雨技术 技术参数有效观测窗口长200宽100高200mm系统分辨率0.1毫米系统测量精度雨滴物理尺寸精度1%,速度精度3%系统尺寸长915宽330高360mm总重量8公斤防雨外材质防雨、防雷、耐低温ABS材料工作电源220Vdc交流电系统功率15W软件系统在线高速记录,数据离线分析计算
    留言咨询
  • 鱼类与水生生物呼吸在线观测系统是由丹麦奥尔堡大学和哥本哈根大学研制的世界上最著名、最为广泛应用的水生生物特别是鱼类呼吸测量仪器,主要用于鱼类、水生无脊椎动物、鱼卵及其胚胎乃至浮游生物的耗氧量测量,同时还可以配置CO2传感器和PH计以测量CO2排放、PH值等,与摄像头和行为分析软件配合进行行为轨迹观测分析等。广泛应用于海洋淡水鱼类等水生生物生态学、水体环境毒理学、水产养殖、鱼类行为生理生态、水生动物发育生态及水族箱等研究。右下图为幼体虹鳟鱼的呼吸代谢测量,可以看出,在开始时由于处理鱼时造成的应急反应,耗氧量很高,随后即达到一个较低的平稳水平&mdash &mdash 相当于其基础代谢率。从图中还可以看出,本系统有很高的时间解析度,可以反应突然的耗氧量变化。鱼类与水生生物呼吸观测系统采用&ldquo 间歇式&rdquo 测量原理,集合了&ldquo 开放式&rdquo (实时测量)和&ldquo 封闭式&rdquo (测量简单但精度差)的优点,同时又克服了开放式测量时间解析度差、封闭式不能连续长时间测量等缺点。&ldquo 间歇式&rdquo 测量的呼吸室放置在水浴槽(周边水体)内,循环泵可以确保呼吸室内水体的均一并保证有足量的水体流经传感器,而水体交换泵可以使周边水体与呼吸室内水体进行交换。测量时水体交换泵关闭(呼吸室类似封闭式),然后由计算机控制开启交换泵,周边水体被泵入呼吸室从而使氧气水平达到测量前的水平。整个过程分3个步骤:测量、水体交换、等待,测量时循环泵开启,水体交换时交换泵开启循环泵关闭,等待时交换泵关闭循环泵开启,每10分钟即可测量1次。如此以来,象&ldquo 开放式&rdquo 一样,实验可以无限期地进行下去,从而进行长时间的实验分析监测。在每个测量期,由于动物的呼吸耗氧,溶解氧浓度随着测量时间的延长而降低并呈直线相关关系,动物耗氧率(每小时每公斤体重消耗的毫克氧气)等于相关曲线的斜率乘以呼吸室的静体积除以动物的体重。 功能特点: &ldquo 间歇式&rdquo 测量,在线即时观测溶解氧及鱼类等水生生物的呼吸率(耗氧率)有一通道、四通道、八通道测量系统可供选择,多通道系统可同时测量多条鱼或其它水生生物的呼吸代谢情况,以便设计梯度对照实验等可在线测量氨浓度及排氨率(选配)可在线测量调控水体温度、溶解氧、pH/CO2、盐度等环境因子(选配),并测量分析环境因子与呼吸率的关系可同时在线测量观测自然水体呼吸(藻类及细菌等)和鱼类呼吸可选配静态呼吸室或游泳呼吸室,以便测量观测鱼类在静态条件下的基础呼吸代谢率及在不同游泳速度的情况下的呼吸代谢率可根据实验研究及经费预算情况选配原电池氧电极传感器或光纤荧光氧传感器可选配行为观测配件以观测研究鱼类的行为,包括活动时间与非活动时间、运行速度、加速度、移动距离、活动方向、活动取向、在某一区域的逗留时间、在某一区域的出现次数及对兴趣点的接触次数等 配置方案: 系统主要包括数据采集及分析单元、O2等测量单元、水环境控制单元、呼吸室及其它配件或备选件。根据需求,有单通道、4通道、8通道及更多通道测量系统,可以同时连接多个呼吸室以测量多个动物的呼吸代谢情况。根据溶解氧传感器的不同,又有原电池氧电极传感器组成的系统和光纤荧光氧气传感器组成的系统两种。 原电池氧电极技术:适于50g以上的鱼类呼吸测量及水环境溶解氧控制,具体有1通道、4通道、8通道供选择 光纤荧光传感器技术:高精度高稳定性,可用于鱼卵、昆虫、蚌类、螃蟹、鱼类乃至水体藻类呼吸测量,具体有1通道、4通道、8通道供选择 呼吸室有微型呼吸室、各种静态呼吸室和游泳室(活动呼吸室)等: 微型呼吸室 斑马鱼呼吸室 蚌类及螃蟹呼吸室 静态呼吸室测量 游泳室测量 技术性能指标1)、数据采集和分析单元:包括主机和软件,主机有数据采集和继电控制作用,为8通道(同时对8个静态呼吸室的鱼进行测量实验),USB接口,与计算机连接使用,主要性能指标如下:可以接光纤荧光氧气传感器或原电池氧电极;程序控制水体交换泵的开启时间实时记录显示呼吸室内O2随时间的变化;实时记录显示周边水体(水浴槽)O2随时间变化;实时记录耗氧率随时间的变化;自动计算显示平均耗氧量、相关系数R2;实施记录显示温度随时间的变化;解析度16bit,模拟输出6 x 0-5VDC测量数据自动储存成Excel文档和所有原始数据的txt文档重量1.4kg,大小21x20x74cm。2)、O2等测量单元:O2传感器有光纤氧气传感器、原电池氧电极供选配。荧光光纤氧气传感器具有很高的时空分辨率,但价格昂贵。检测极限可达15ppb,可在线测量水体和空气中的氧气,可长期在线监测,稳定性极强,响应时间小于1秒。对于小型鱼类及其它微小生物、需要高分辨率的实验等情况下必须选择此类传感器;具体性能指标: Mini型荧光光纤氧传感器, Mini光纤氧探头外径2.8mm,内径2.0mm,被覆有光隔离材料以避免生物自发光造成的干扰,因而可以测量藻类等(有叶绿素荧光)具有内部自发光的生物耗氧;零氧耗、高稳定性,响应时间快于6秒(气相测量);可测量液相和气相氧浓度,测量范围0-50%空气氧、0 - 22.5 mg/L,测量极限0.15 %空气氧、15 ppb溶解氧;氧浓度在线温度补偿,不受电磁信号干扰原电池氧电极价格低,但精度也低,需要一些维护措施和校对,具温度补偿,测量精度好于± 1%,响应时间低于20秒时间,一般在传感器和数采中间加一个前置放大器配合使用;3)、水环境控制模块包括水温监测控制系统、氧气监测与调节系统及CO2/pH监测与控制系统等,每个监测控制系统又有单通道和4通道供选配。水温监测控制系统包括控制器主机、温度传感器、潜水泵、不锈钢撒热旋管等;Pt100温度传感器,测量范围-200° C至850° C;Eheim潜水泵;温度调控范围-20° C 至 60° C ,最大功耗3.5瓦,响应时间1-60妙,精度优于0.2° C氧气监测与调节系统包括控制器主机、原电池氧电极、螺线阀等;原电池氧电极,测量范围0-200%;响应时间0.4-60妙,精度读数的0.1%,最大功耗3.5瓦。系统通过程控螺旋阀加氧或加氮以控制水质处于过氧或缺氧状态CO2/pH监测控制系统包括控制器主机、pH机、螺旋阀、气石及CapCTRL调控软件等, 通过监测PH值间接确定水中CO2含量并调节控制水的PH和CO2含量并实时监测,PH值测量范围0-14,分辨率0.01.用于监测和控制水体pH或pCO2。4)、静态呼吸室:玻璃或丙烯酸有机玻璃,直径3.3cm到190cm各种规格供选配,长度根据用户需求而定(取决于鱼类的长度),还可根据动物性状及用户需求配置其它各种类型的呼吸室,如适于斑马鱼的呼吸室、比目鱼呼吸室、螃蟹呼吸室等等。5)、 潜水泵为离心式,流速每分钟4.5升到57升各种规格供选配,技术规格如下:流速(L/min)4.5510204057功率(Watt)45102865806)、游泳室:包括外部温控水浴池、活动室、马达、潜水泵等,不同型号技术指标如下表: 产品编码体积[l]实验截面 [cm]鱼大小 [g]水速[cm/s]长宽[cm]SW10000170mlID2.64 X L101-43-37 SW100301.5ID5.5 X 204-123-50 SW10050530x7,5x7,520-803-110117x40SW101001040x10x1050-1503-110128x45SW101503055x14x14175-5003-110147x53SW102009070x20x20450-15005-150188x71SW1025018587,5x25x25750-500010-225227x917)、微型呼吸室,硼硅酸盐玻璃,直径有11.2、14.5mm、18.5mm及22.2mm各种规格供选配,与微型被覆玻璃的磁力搅拌棒及非损伤性荧光光纤氧传感器配合使用。微型搅拌器适于0.1-5ml体积的搅拌,功率为0.1-0.25W,可遥控1-4个微型磁力搅拌棒的搅 产地:欧洲
    留言咨询
  • EMS-ET野外光谱在线观测系统EMS-ET野外光谱在线观测系统通过监测植物冠层上下方光辐射通量的变化,可以了解植被发育、冠层内部结构、植物健康状况等。野外光谱在线观测系统可以获取冠层上下方的光通量、植被归一化指数及光化学植被指数参数,用于研究光对植物的生长影响、冠层结构对光利用效率的相关关系等。建立植物生长指标、冠层光谱预测模型。植物对太阳辐射的吸收和反射与植物的色素、水分、碳、氮相关。通过监测、分析叶片和冠层的光谱特征,度量植物的生物量和生长状况、冠层结构、光合作用对入射光的利用效率;光谱在线观测系统不仅能自动、在线观测叶片、冠层尺度的实时光谱数据,还需要能自动远程传输数据,及时汇集样点数据,得到景观或区域尺度的光谱特征,提高反演卫片的时空分辨率。观测点布设在不同类型、不同处理的植物冠层上布设传感器测量叶片和冠层的反射。传感器的测量面积与传感器安装位置与冠层的距离有关,特殊的设计使得传感器的散射角满足研究的要求,通常1.8米高度=0.5平米 面积。测量透射光时,传感器可放置在上部、中部、下部叶片附近。采样频率光谱在线观测系统可每秒采集一次光谱数据,也可按用户的要求设定采样间隔,如每10分钟、30分钟,每小时等。光谱数据自动存储在数据采集器中。观测内容光谱在线观测系统测量植被紫外、紫蓝、绿、红橙、可见光、近红外、红外、远红外光谱数据及透射、总辐射(各类传感器可根据需要选择),还可用户指定的波段光谱。通过软件计算常用植被物候发育的相关指数,进而对土地利用和气候影响评估,植被生产力建模等。系统组成及技术指标光谱在线观测系统由数据采集、光传感器、数据在线监测与处理软件分析软件组成。全天候野外自动测量和记录叶片、冠层的光谱数据。技术指标:1、数据采集器:标配16,32或64通道(可选)模拟输入;符合DIN导轨安装标准;支持SDI-12数字传感器,最多可支持107个数字通道;具备8个计数通道;16-32个RTD通道,精度:0.03%读数,可存储220,000(可扩展至450,000)组带时间戳的数据,采间隔3秒至4小时可调,支持GSM/GPRS/Internet远程数据传输,电压6.5-15VDC,待机耗电低于1mA,测量耗电30mA,3V锂电备用电池可使用5年以上,具备过电保护功能2、光谱范围:紫外、紫蓝、绿、红橙、可见光、近红外、红外、远红外,总辐射、紫外指数等多种,可根据研究需求选配。也可根据研究需求定制不同波段及带宽的传感器。3、双通道、单通道光谱传感器:定制范围:400-1050nm线性误差:<0.2% 响应时间:100ns 余弦误差:5%绝对校准:优于5%4、数据服务器及分析软件:4G远程无线数据传输、在线浏览下载数据。计算归一化植被指数、比值植被指数等,可扩展计算增强植被指数、大气阻抗植被指数、绿波段总和指数等。5、叶片光谱指数NDVI/PRI校准测量参数:光化学反射系数PRI = (R531 - R570)/(R531 + R570);归一化植被指数NDVI = (RNIR – RRED) / (RNIR + RRED)测量光:内置双波长光源,531nm和570nm(PRI)或635nm和760nm(NDVI)检测波长:500–600 nm(PRI); 620-750 nm(NDVI)通讯:蓝牙1.1,USB存储:16M数据存储:100,000个显示:图形显示电源:可充电锂电池,USB充电,连续工作70小时,低电报警数据处理通过对系统采集的光谱数据进行分析,可得到如下信息:1) 植被的光谱特性及其影响因素2) 通过分析光谱与作物叶片生化组分的相关关系,筛选出一些与作物品质显著相关的光谱参量,建立了相应的光谱诊断模型3) 在叶面积指数、叶片产量、生化品质指标变化的基础上,通过大量光谱参量的相关分析,建立作物生长指标和主要化学品质指标的冠层光谱预测模型4)软件可计算归一化植被指数、比值植被指数等,可扩展计算增强植被指数、大气阻抗植被指数、绿波段总和指数等。,为反演卫片提供基础数据。应用案例1 光对植物生长的影响位于英国Wales州的草地和环境研究所(IGER)在遗传、育种、生理、农学和植物、微生物生态学方面处于世界领先水平,为了维护其领先地位,在研究人工环境下的植物长势项目中,采用了自动控制的人工气候室及AZ-R0810系统中的光传感器。光传感器用于控制和监测中等、低温两个气候室内的光强。两个PAR传感器并列放置,一个用于控制光强,另一个与数采连接,自动连续测量、记录实际的光强。2 野外植被生长HERB 项目(Hydrology Ecology and Regional Biodiversity of Colombian Montane Forests)是英国伦敦皇家学院、哥伦比亚环境部、热带农业研究中心和数个哥伦比亚研究机构的合作项目,该项目采用野外监测系统、GIS 和计算机模型研究热带山地雾林(TMCF)生态系统的结构和功能。该项目采用AZ-R0810中的光传感器器,按小时采集如下参数:总辐射(入射和反射)、红外/远红外(入射和反射)、入射蓝光、入射PAR及温湿度3 日光波长监测韩国国家作物研究所采用两日光波长监测系统研究不用颜色的遮棚对高丽参生长的影响。每套系统包括系类传感器,覆盖UV、可见光、近红外波段。所有的光传感器安装在高丽参的高度,一套系统安装在红色遮棚下,另一套安装在蓝色遮棚下,数采自动全天记录光强、同时记录空气温湿度和土壤温度。光传感器的波段:一个4通道光传感器的波段:400-480nm, 480-560nm,560-650nm,645-760nm,另一个4通道光传感器的波段:760-850nm,850-950nm,950-1050nm, 400-1050nm, UVA,UVB, PAR, 总辐射。产地:捷克EMS
    留言咨询
  • Rhizoscope原位根系3D观测系统一、应用植物科学家和生态学者在研究植物根系生长中面对最大挑战是如何在原位、非破坏条件下了解影响根系生长的各个土壤环境因素。目前普遍采用的微根窗技术适用于野外根系研究、拥有良好的分辨率,能长时期对根系进行追踪、摄像,但根系研究范围相对较小局限于点的研究大部分是年幼的植物,微根管的埋设对植物根系的生长也有一定影响,传统的与地面成45度角微根管埋设只关注部分垂直根系研究;Rhizoscope原位根系3D观测系统采用2.5m(深)?0.8m(直径)原状土柱内水平分多层级埋设根管,可后续进行摄像对根系定量分析、测量土壤水分和提取土壤溶液,研究表明水平埋设微根管更适于根系生长空间评估。二、系统组成Rhizoscope原位根系3D观测系统采用2.5m(深)?0.8m(直径)原状土柱,在蒸渗柱体各深度0.2、0.4、0.65、1.45、2.0m预先留有孔用于微根管、水分测量仪埋设和土壤溶液取样。系统采用人工滴灌模拟降雨,上部构建大棚以防降雨且满足植物光合作用,在系统底部设计有排水系统。 图一:Rhizoscope原位根系3D观测系统示意图 图二:柱体取原状土用机械将2.5m(深)?0.8m(直径)蒸渗柱体打入土壤中取原状土体,在各土柱之间用混凝土连接构成走廊为1.2米宽的地下室。 图三:12个柱体构成的地下室三、技术指标Rhizoscope原位根系3D系统在蒸渗柱体内多参数监测土壤水分和土壤溶液分析基础上研究根系的生长和空间分布。1.原状土蒸渗柱体尺寸2.5m(深)?0.8m(直径)2.AZR-300根系实时观测图像:◆主机显示屏:12英寸◆高清摄像头分辨率:3840*2880(4800dpi)可调节◆拍摄视野:20mm*16mm3.Trime水分测量范围:0-100%体积含水量精确性:电导率范围 0-6dS/m 6-15dS/m水分范围0-40% ±2% ±3%水分范围40-70% ±3% ±4%4.AZS-100土壤溶液采集器探头材料:尼龙聚乙烯真空泵压力:100kPa四、系统根系空间分布分析多年生植物根系空间分布系统分别在0.65m、0.9m、1.45m、2.05m处安装微根管,观测植物根系的数量。在个蒸渗柱状体内播种多年生苜蓿植物,系统采用滴灌模拟降雨,水分测量仪监测土壤水分分布,土壤溶液取样器采集溶液分析。如下图四(左):为苜蓿第一年根系生长的空间分布,土壤上层根系量增长较快;如下图四(右):是苜蓿根系3年内生长空间分布情况,上层根系量增长到一定时间后基本保持稳定,下层根系量逐年增加。 图四(左):第一年苜蓿根系分布 图四(右):3年内苜蓿根系分布一年生植物根系空间分布 如下图五各柱体中播种农作物小麦,在各深度研究根系的空间分布。在整个生长周期中小麦根系总量不断增加,最深1.45m处根系很小,最多分布在0.4m处。图五:小麦根系空间分布五、系统应用 Rhizoscope原位根系3D观测系统采用的蒸渗柱体适用于地下农业改良环境研究,在用于全球气候变化植物对于水胁迫的适应性研究,同时在根系生长、根系空间分布、根际分泌有机物、根的周转率以及土壤微生物与根腐烂速率的相关性研究,非常适用于农作物和草地的土壤根际研究。
    留言咨询
  • 1 引言自从20世纪80年代起光谱分析技术以数据量大、分辨率高、连续性强的优点广泛应用于资源调查、地质调查、大气监测、灾害环境监测、土壤调查、城市环境调查、水文观测等领域,取得了较好的应用结果和经济效益。鉴于光谱技术的独特性能,特别是在地表物质的识别与分类、有用信息的提取等方面与其它技术相比有较大优势,使得这一技术在植被的精细分类、农作物的长势监测与估产、农作物病虫害监测、作物品质监测和农田水肥状况的分析方面展现出巨大的应用前景。目前在研究水稻、玉米、小麦、棉花、烟草等作物的光谱特征时多采用便携式、瞬时测量技术上,越来越多的研究需要大田实时、在线的光谱数据,减少人为操作限制带来的数据偏差。2 观测系统的设计2.1 目的作物对太阳辐射的吸收和反射与作物的色素、水分、碳、氮相关。通过监测、分析叶片和冠层的光谱特征,度量作物的生物量和生长状况、叶绿素含量、冠层结构、光合作用对入射光的利用效率;估算叶片生化组分、籽粒品质、纤维素和木质素干燥状态的碳含量;估测植被中与胁迫性相关的色素、植被冠层中水分含量、重金属污染程度等。野外光谱在线观测系统不仅能自动、在线观测叶片、冠层尺度的实时光谱数据,还需要能自动远程传输数据,及时汇集样点数据,得到景观或区域尺度的光谱特征,提高反演卫片的时空分辨率。2.2观测点布设在不同类型烟草、不同烤烟品种、不同氮、磷、钾施用量处理的冠层上布设传感器测量叶片和冠层的反射。传感器可以水平排列如图1,也可在一个弧面上,如图2。传感器的测量面积与传感器安装位置与冠层的距离有关,特殊的设计使得传感器的散射角满足研究的要求,通常1.8米高度=0.5平米 面积。测量透射光时,传感器可放置在上部、中部、下部叶片附近。 2.3采样频率AZ-R8010 野外光谱在线观测系统可每10ms采集一次光谱数据,也可按用户的要求设定采样间隔,如每10分钟、30分钟,每小时等。光谱数据自动存储在数据采集器中。数据采集器实时将数据通过GPRS发送到远程的数据服务器ENVIdata,用户可在 网站上查看系统运行状态、下载数据。无论用户在哪里,只要能上网,用户可随时查看测点的数据。同时, 数据服务器ENVIdata也可通过邮件,自动将数据发送到用户指定的邮箱。2.4 观测内容AZ-R0810野外光谱在线观测系统测量植被紫外、紫蓝、绿、红橙、可见光、近红外、红外、远红外光谱数据及透射、总辐射,还可测量紫外指数和用户指定的波段光谱。Ecograph 软件计算宽带绿度指数,宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。2.5系统组成及技术指标AZ-R0810野外光谱在线观测系统由数据采集、全光谱光传感器、ENVIdata数据服务器、Ecograph软件组成。全天候野外自动测量和记录叶片、冠层的光谱数据, 技术指标:数据采集器:通道:5-15个普通模拟输入通道,12脉冲输入通道,12个数字通道;可扩展最大采样速度:25Hz;U盘存储;自动发送数据的GPRS模块。光谱范围:紫外、紫蓝、绿、红橙、可见光、近红外、红外、远红外,总辐射、紫外指数ENVIdata数据服务器:数据推送模式,实时在线、自动远程采集数据。Ecograph软件:计算归一化植被指数、比值植被指数、增强植被指数、大气阻抗植被指数、绿波段总和指数3数据处理通过对AZ-R0810 系统采集的光谱数据进行分析,可得到如下信息:1) 植被的光谱特性及其影响因素2) 通过分析光谱与作物叶片生化组分的相关关系,筛选出一些与作物品质显著相关的光谱参量,建立了相应的光谱诊断模型3) 在叶面积指数、叶片产量、生化品质指标变化的基础上,通过大量光谱参量的相关分析,建立作物生长指标和主要化学品质指标的冠层光谱预测模型4) Ecograph 软件可自动计算归一化植被指数、比值植被指数、增强植被指数、大气阻抗植被指数、绿波段总和指数,为反演卫片提供基础数据。4 应用案例4.1 光对植物生长的影响位于英国Wales州的草地和环境研究所(IGER)在遗传、育种、生理、农学和植物、微生物生态学方面处于世界领先水平,为了维护其领先地位,在研究人工环境下的植物长势项目中,采用了自动控制的人工气候室及AZ-R0810系统中的光传感器。光传感器用于控制和监测中等、低温两个气候室内的光强。两个PAR传感器并列放置,一个用于控制光强,另一个与数采连接,自动连续测量、记录实际的光强。4.2 野外植被生长HERB 项目(Hydrology Ecology and Regional Biodiversity of Colombian Montane Forests)是英国伦敦皇家学院、哥伦比亚环境部、热带农业研究中心和数个哥伦比亚研究机构的合作项目,该项目采用野外监测系统、GIS 和计算机模型研究热带山地雾林(TMCF)生态系统的结构和功能。该项目采用AZ-R0810中的光传感器器,按小时采集如下参数:总辐射(入射和反射)、红外/远红外(入射和反射)、入射蓝光、入射PAR及温湿度4.3 日光波长监测韩国国家作物研究所采用两日光波长监测系统研究不用颜色的遮棚对高丽参生长的影响。每套系统包括系类传感器,覆盖UV、可见光、近红外波段。所有的光传感器安装在高丽参的高度,一套系统安装在红色遮棚下,另一套安装在蓝色遮棚下,数采自动全天记录光强、同时记录空气温湿度和土壤温度。光传感器的波段:一个4通道光传感器的波段:400-480nm, 480-560nm,560-650nm,645-760nm,另一个4通道光传感器的波段:760-850nm,850-950nm,950-1050nm, 400-1050nm, UVA,UVB, PAR, 总辐射。
    留言咨询
  • 便携式地面观测站 400-860-5168转5113
    便携式地面观测站具有轻便、易携带的特点,可以方便地携带到不同的观测地点进行观测。同时,它还具有高精度、自动化的特点,可以连续获取气象数据,并通过数据采集系统进行实时传输和分析。一、产品简介便携式地面观测站可对风速、风向、温度、湿度、气压、降雨量、冰雹等气象环境要素进行实时观测,可实现户外气象参数24 小时连续在线监测,其中自带显示屏为触摸屏,数据上传实现秒级上传,通过数字通讯接口将多参数一次性输出给用户该设备免调试,可快速部署,广泛运用于风电测量、海洋监测、防务保障、 机场监测、高压输电监测、路桥监测、科学研究等领域,在当前形势下,我们已经做好了国产替代的准备。二、技术参数名称六要素手持式气象仪型号FT-SQ6B序号要素范围分辨率精度1风速0~60m/s0.1m/s±3%2风向0~360°0.1°±2°3温度-55~85℃0.1°±0.3℃4湿度0~100%RH0.1%RH±3%RH5气压300~1200hPa0.1hPa±0.5hPa6降雨强度0~8mm/min0.01mm/min±5%7冰雹强度0~100个/cm2/min0.01个/cm2/min±5%8LCD屏温度-30~85℃可定制超低温屏9背光调节可调节10分钟屏保10数据存储1年1分钟--11数据导出可在线读取数据12自动寻北可使能可校准可禁用13续航时间低功耗30小时最高功耗22小时14重量1.8Kg15外观尺寸400mm x 156mm16三脚架瞬时抗风20m/s17便携箱高强度拉杆箱
    留言咨询
  • 农业小气候观测设备站产品简介:自动气象站是按照国际气象WMO组织气象观测标准,研究而开发生产的多要素自动观测站。可监测空气温度、空气湿度、风向、风速、雨量等常规气象要素,可在无人值守的恶劣环境下全天候全自动正常运行。可以组成中尺度气象监测网络,每一个自动气象站作为子站,向中心站传送数据。而且可通过灵活的移动端APP方式进行参数设置和读取,或者采用气象要素显示终端进行数据读取。具有自动记录、超限和数据通讯等功能。广泛应用于气象、水文、农业、工业、环保、旅游、科研等城市环境监测和其它领域。典型应用:中尺度加密网、网格化预报服务、精细化天气预报数据源、山洪预警重点监测、区域气象环境观测、行业服务系统、校园气象系统、环保气象监测、通用航空机场产品特点:全自动,适合野外工作,适应各种不同安装环境;低功耗,备有后备电池,可长时间使用;高可靠性,免日常维护;支持4G全网通通讯方式支持北斗卫星通讯系统支持一站多发,可向四个中心站同时发送数据;使用新型材料,防盗设计;具有数据质量控制功能;具有状态监控功能;系统组成:自动气象站系统由硬件和软件两部分组成,硬件由集成一体化的高精度数据采集器、多种传感器、支架及防护箱、太阳能供电控制系统四部分组成,软件包括数据接收平台和移动客户端软件。功能特点:1、采集器:采用ARM7内核工业级处理芯片,搭配ABS外壳,整体轻便、坚固美观。具备192*64全点阵液晶显示,可完成图形显示或12*4个汉字显示(可选配7寸液晶显示屏幕),适用于各种恶劣环境,设备具有高可靠性、高准确性、易维护、易备份。2、工作环境:-50℃~+50℃、0~100RH3、整机功耗:1.5W(GPRS通讯)/10W(北斗通讯)4、连续性:连续15天阴雨可正常工作(GPRS通讯);5、供电电源:12V
    留言咨询
  • 湿地是地球上最为重要的生态系统类型,具有巨大的环境功能和效益,在提供水源、补充地下水、抵御洪水、调节径流、蓄洪防旱、控制污染、调节气候、控制土壤侵蚀等方面有其它系统不可替代的作用,被誉为&ldquo 地球之肾&rdquo 。 湿地地下水生态观测蒸渗仪通过地下水位模拟控制系统、精准称重系统、根系观测单元、气体通量观测单元、溶质在线分析单元等,原位(In-situ)观测或异地(Ex-situ)模拟观测地下水位变化(0-2m)与湿地土壤蒸散、渗漏、降雨及溶质运移的即时(高时间分辨率)动态变化关系,研究分析湿地土壤水通量、溶质通量、气体通量、持水状况等与地下水位的动态关系,适于三角洲、河滩及洪泛平原、泥炭地、高山湿地及其它地下水位较浅(常年一般维持在0-2m)的土地类型。 湿地地下水生态观测蒸渗仪由德国UFZ环境研究中心Meissner教授与德国UGT公司研制(Patent-No.: 19907462),利用公司特制的原位取土系统采取原位湿地土柱,采用精确的地下水控制系统,可精确重现真实的野外条件。原位湿地地下水生态观测蒸渗仪直接安装在湿地现场(如图一所示),蒸渗仪底部经由平衡水箱通过压力转换器和流量表直接与外界环境(河流或湖泊水体、湿地地下水)相通。异地湿地地下水生态观测蒸渗仪可以安装在远离现场湿地的实验场(比如研究所院内等),原位地下水位经由实时水位监测和数据无线传输,及时在线调控蒸渗仪水位(如图二所示),使蒸渗仪水位一直保持与原位湿地水位一致。如果目标水位(原位水位)与蒸渗仪内的水位相差1cm或以上,地下水位模拟控制系统会自动触发调节机制,使蒸渗仪与原位湿地水位始终保持一致。 1. 原位土柱2. 温度、TDR、水势等传感器及溶液取样器等。3. 地下水水位4. 滤层5. 称重系统6. 平衡箱7. 储水罐8. 调节阀9. 数据采集器图二 安装在异地试验场的湿地地下 水生态观测蒸渗仪 地下水位模拟控制系统的调控机理为:当水位出现不一致(相差1cm)时,首先关闭蒸渗仪和平衡水箱的阀门,然后向平衡水箱注水(或从中抽水),注水水源来自储水罐(抽出的水会存放在储水罐)。此后关闭储水罐和平衡水箱间的阀门,打开平衡水箱和蒸渗仪间的阀门,使得蒸渗仪和平衡水箱水位进行平衡。此过程反复进行,直到蒸渗仪水位达到目标水位。 湿地地下水生态观测蒸渗仪每分钟即可称量记录一次。不仅是降雨、蓄水,还可记录括露水、霜、降雪、沙尘等轻微输入,使得即使是较小的蒸散也可记录到。将15分钟数据的平均,以减小风或野外动物的影响。水分平衡公式如下所示:P + Pond = Et + ( Rout&ndash Rin) ± &Delta S其中P是降雨量, Pond是表面蓄水,Et是蒸散,Rin是地下水流入,Rout是地下水流出,&Delta S是持水量改变。 一旦水分平衡公式中各组分精确测量计算出后,溶质平衡情况可由如下公式计算出:L=Cs× S其中L为溶质输入,Cs为渗漏溶质浓度,S为渗漏液体积 技术指标: 1. 蒸渗仪规格:表面积1m2,高2m;滤层25cm;可根据需要定制其它规格的蒸渗仪2. 装土类型:特别设计的湿地取土系统取原位湿地土柱3. 高精度称重系统,分辨率:0.01mm,采样频率1min,15min平均一次4. 渗漏测量:翻斗计数器,精确度0.1mm5. 高精度即时地下水位模拟控制系统,精确度1cm6. BTC-100微根窗根系生态观测系统(备选)观测根系生长状况7. 气体通量观测单元用于测量分析湿地土壤CO2、O2和甲烷通量(备选):气体抽样模块具Baseline配置,可手动或自动定时切换测量大气CO2、O2等气体含量(baseline)和呼吸室内CO2、O2等气体含量,从而更加精确地测量监测土壤气体通量内置温度和大气压传感器,温度压力自动补偿,高稳定性、高精确度氧气测量分析:燃料电池O2分析仪,不受水汽、CO2及其它气体的影响,测量范围1-100%,分辨率0.001%二氧化碳测量分析:双波段非色散红外技术,测量范围0-5%,分辨率0.0001%CH4分析器(外置备选):双波段非色散红外技术,量程0-10%,精度优于1%,分辨率1 ppm/0.0001%8. 在线原位测量分析总氮、硝态氮和亚硝态氮等9. 传 输:无线传输,用户可在ENVIdata服务器上下载;若用户有固定IP,可直接传输至用户服务器10. 传 感 器:土壤水势、TDR土壤含水量、温度传感器,可根据用户要求选择不同传感器。11. 安装层数:标准30、60、90、120cm深处,每层均安装各种传感器。 国外应用: Doerthe Bethge-Steffense等(2004)利用湿地蒸渗仪控制地下水状况研究了2003年2月对德国schö nbergg Deich 和W ö rlitz湿地的地下水位、土壤含水量、土壤水量平衡(降雨、蒸散、渗漏等)进行了研究。在研究湿地采用梯度气象站监测环境因子,包括土壤温度、水势、含水量,降雨,空气温湿度,地下水位传送给蒸渗仪的控制中心。研究首次直接得到了蒸散和渗漏,结果显示湿地土壤含水率受湿地的地下水位动态影响,受蒸散影响有限。在水量平衡中,蒸散和渗漏使得土壤水储量减少,而这是2月降雨无法补偿的。 参考文献: 1. Doerthe Bethge-Steffens, Ralph Meissner, and Holger Rupp (2004) Development and practical test of a weighable groundwater lysimeter for floodplain sites. J. Plant Nutr. Soil Sci, 167, 516-524R. Meiß ner , M. N. V. Prasad, G. Du Laing and J. Rinklebe(2010) Lysimeter application for measuring the water and solute fluxes with high precision. CURRENT SCIENCE, VOL. 99 NO. 5 601-607.R. Meiß ner and Manfred Seyfarth (2004). Measuring water and solute balance with new lysimeter techniques. SuperSoil 2004: 3rd Australian New Zealand Soils Conference, 5 &ndash 9 December 2004, University of Sydney, Australia. 1-8
    留言咨询
  • 概述温室气体排放通量测量是大气环境科学的重要课题,是研究温室气体浓度变化趋势、源和汇的基础,对温室气体分布评估和应对气候变化有要意义。了解地气间的交换通量随时间的变化,理解全球温室气体的交换,对不同生态系统通量的长期观测,在揭示大气中CO2、CH4、NH3、N2O、SF6等温室气体吸收与释放过程、能量流动与物质循环、地表生物圈大气圈间的相互作用等方面发挥重要作用。比如湖泊沼泽、生态学研究、污染土壤检测、农田施肥监测、畜禽养殖、有机肥堆放、河海土壤、温室气体排放等等。DUKE公司DKG-ONE系列温室气体通量观测系统,基于公司核心的增强型悬臂量光学麦克风红外光声光谱技术,具有测量精度高、检测限低、实时性好、原位在线、高效测量等优点,已成为温室气体通量在线或移动式观测与分析的可靠解决方案。特性可测量300多种气体,比如CO2、CH4、N2O、HFCs、PFCs、SF6、H2O、TOC、NH3、SO2、H2S等,最多可同时测量10种气体ppb,sub-ppm级的检测限高准确度、高可靠性、坚固耐用即采即测、实时分析、秒级响应时间长的标定周期、低的样气量高分辨率图形显示界面,友好人机交互界面丰富的可编程测量任务可储存超过1年的数据内置趋势查看监控任务平均值、均方差、最高和最低浓度等统计功能无耗材、免维护、坚固耐用的外壳设计USB接口、Ethernet、RS232、RS485通讯等测量气体腔室恒定温度50℃管线预热、恒温测量、防止吸附可选交流供电、太阳能电池供电专用温室气体通量观测分析软件可本地观测、远程观测、云端操作、手机端APP
    留言咨询
  • 概述温室气体排放通量测量是大气环境科学的重要课题,是研究温室气体浓度变化趋势、源和汇的基础,对温室气体分布评估和应对气候变化有要意义。了解地气间的交换通量随时间的变化,理解全球温室气体的交换,对不同生态系统通量的长期观测,在揭示大气中CO2、CH4、NH3、N2O、SF6等温室气体吸收与释放过程、能量流动与物质循环、地表生物圈大气圈间的相互作用等方面发挥重要作用。比如湖泊沼泽、生态学研究、污染土壤检测、农田施肥监测、畜禽养殖、有机肥堆放、河海土壤、温室气体排放等等。DUKE公司DKG-ONE系列温室气体通量观测系统,基于公司核心的增强型悬臂量光学麦克风红外光声光谱技术,具有测量精度高、检测限低、实时性好、原位在线、高效测量等优点,已成为温室气体通量在线或移动式观测与分析的可靠解决方案。特性可测量300多种气体,比如CO2、CH4、N2O、HFCs、PFCs、SF6、H2O、TOC、NH3、SO2、H2S等,最多可同时测量10种气体ppb,sub-ppm级的检测限高准确度、高可靠性、坚固耐用即采即测、实时分析、秒级响应时间长的标定周期、低的样气量高分辨率图形显示界面,友好人机交互界面丰富的可编程测量任务可储存超过1年的数据内置趋势查看监控任务平均值、均方差、最高和最低浓度等统计功能无耗材、免维护、坚固耐用的外壳设计USB接口、Ethernet、RS232、RS485通讯等测量气体腔室恒定温度50℃管线预热、恒温测量、防止吸附可选交流供电、太阳能电池供电专用温室气体通量观测分析软件可本地观测、远程观测、云端操作、手机端APP
    留言咨询
  • 中科光电立体监测走航车以刘文清院士提出的移动走航观测平台为支撑,依托国家重点研发计划“大气污染成因与控制技术研究”专项中的重大项目“大气污染多平台一体化监测技术”平台,紧密依靠中国科学院安徽光学精密机械研究所技术团队,经过近一年的技术论证、设计,实现时速稳定,续航持久,长途里程无维修记录等优势。搭载设备:大气环境监测激光雷达(高能扫描)系列;多轴差分吸收光谱仪;温湿度雷达;激光风廓线雷达;其他地基遥感监测设备;优势特点:单次续航时间超10小时;连续走航2万公里无维护记录;能克服地域地形、气候条件等复杂因素;可在100公里/小时的时速下获取高时空分辨率的环境气象数据;通过三维可视化数据集成分析系统,可实时反应区域和局地空气质量演变过程;可对区域空气质量变化进行“情景复盘”;能在重污染天气、重大事件空气质量安保、区域空气管理、空气质量站点精细化管理中发挥重要作用;
    留言咨询
  • 便携式综合气象观测仪大气环境中的气象数据对于农林行业和科学研究领域都有着非常重要的作用,该设备采用了移动手持式的方式,可移动监测区域内的大气环境数据,内置芯片可存储至少一年内的气象监测数据。一、产品简介便携式综合气象观测仪又称手持气象仪,是一款携带方便,操作简单,集多项气象要素于一体的可移动式气象观测仪器。系统采用精密传感器及智能芯片,能同时对风向、风速、大气压、温度、湿度五项气象要素进行准确测量。内置大容量FLASH存储芯片可存储至少一年的气象数据;通用USB通讯接口,接入U盘导出数据,方便用户对气象数据的进一步处理分析。本仪器可广泛应用于气象、环保、机场、农林、水文、军事、仓储、科学研究等领域。二、功能特点●2.1寸屏幕液晶显示温度、湿度、风速、气压值;●特制的风向刻度盘(16个方位)及指针用来指示实时风向;●大容量数据存储,最多可存储40000条气象数据(数据记录间隔可在1~60分钟之间设置);●通用USB通讯接口,方便usb数据下载;●只需三节5号干电池供电;低功耗设计,长时间待机;●结构设计科学合理,方便携带。三、技术参数 气象参数测量要素测量范围精度分辨率单位风速0~30±0.30.01m/s风向16方位±1方位1方位方位大气温度-40~85±0.30.01℃相对湿度0~100%±3%0.01%RH大气压力30~110±0.02(相对)0.01KPa电源5号干电池(4节)通讯USB存储4万条数据主机尺寸160mm×70mm×28mm整机尺寸405mm×100mm×100mm重量约0.5Kg工作环境-20℃~80℃;5%RH~95%RH 四、使用注意事项1.建议每次开机需要记录时间时,清理一次数据的存储,防止导出当前需要的数据时数据量大,导致时间过长。2.建议使用完毕后及时导出气象站中的数据内容。3.使用前请认真阅读本说明书,确保传感器要插入对应传感器接口,电池方向正确;4.仪器上显示电池电量不足时,请及时跟换电池,以防电池泄露损坏仪器;5.防止化学试剂、油、粉尘等直接侵害传感器,勿在结露、极限温度环境下长期使用,请勿进行冷、热冲击;6.仪器属于精密器件,用户在使用时请不要自行拆卸以免损坏产品;7.请保存好检定证书和合格证,维修时随同产品一同返回。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制