当前位置: 仪器信息网 > 行业主题 > >

寡聚化并形成

仪器信息网寡聚化并形成专题为您整合寡聚化并形成相关的最新文章,在寡聚化并形成专题,您不仅可以免费浏览寡聚化并形成的资讯, 同时您还可以浏览寡聚化并形成的相关资料、解决方案,参与社区寡聚化并形成话题讨论。

寡聚化并形成相关的论坛

  • 【原创大赛】用试剂盒方法(酶法)测定食品中葡聚糖含量(范本贴)

    用试剂盒方法(酶法)测定食品中葡聚糖含量摘要:描述了用试剂盒(酶法)测定食品中葡聚糖含量的方法前言: β-葡聚糖是禾谷类植物籽粒细胞壁中的多糖,是籽粒细胞壁的主要成分,化学名称为(1,3)(1,4) -β-D-葡聚糖,其含量以大麦和燕麦中较高其主要功能有:降低胆固醇,降血脂,调节血糖,提高免疫力,抗肿瘤和预防心血管疾病等。还有研究发现,它可以缓解和减轻肥胖症状。 β-葡聚糖测定方法包括酶测定法、荧光法、高效液相色谱法等,其中酶测定法因其反应专一性,测定准确可靠,而被采用为国际测定方法。酶法的方法过程如下:样品经水合和糊化,用地衣酶(β一葡聚糖酶)将样品中的β一葡聚糖酶解成β-葡基-寡聚糖。经调整体积和过滤分离后,用β一葡萄糖苷酶将这些可溶的B-葡基-寡聚糖水解成葡萄糖。葡萄糖用葡萄糖氧化酶氧化成葡萄糖酸和过氧化氢,后者用过氧化酶分解,以便在苯酚存在下,生色基4一氨基非那宗存在下形成适于比色分析的光吸收络合物,在紫外分光光度计下测定。 本文采用爱尔兰的Megazyme公司提供的测定(1,3)(1,4) -β-D-葡聚糖试剂盒,借鉴了EBC法3.11.1、AOAC法995.16,AACC法32-23方法,建立了测定相关制品中β-葡聚糖的测定方法。

  • 【原创大赛】硅胶假体-乳房植入物的安全性

    [color=#333333] [size=16px] 外科整形手术中,乳房植入物曾受大家关注,所用材料即我们常说的硅胶假体,它的囊壁为弹性体[b]硅橡胶[/b],囊内冲注的内容物为[b]硅凝胶[/b],其手触柔软,与自然乳房组织的柔软度相一致。硅橡胶及硅凝胶是医学领域中研究已十分深入,广泛运用于起博器、心脏瓣膜、缝合材料、润滑剂、皮下缝针及注射器等。并已通过了严格的安全性试验,美国FDA检测证明,硅凝胶植入物的生物相容性非常高,是一种非常安全的人体植入物,对健康[font=宋体]、[/font]生育、哺乳不会产生不良的影响。[/size][/color][size=16px][font=宋体]假体植入就是将硅胶假体植入在胸大肌的后方,然后用自体组织、补片去覆盖它,形成一个接近于对侧乳房外形的再造乳房,它的优点就是不需要取自身的组织,患者接受度高,另外,使用假体的操作比自体再造更容易,更易普及。[/font][font=宋体] 乳房假体检验合格的标准之一为寡聚硅氧烷类物质的残留量,其中[b]八甲基环四硅氧烷(D4)[/b]残留量应不超过50mg/kg,[b]十甲基环五硅氧烷(D5)[/b]残留量应不超过50mg/kg。我们采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法分析丙酮浸提液中的该类物质。丙酮浸提液制备方法为:从乳房植入物中取出硅凝胶适量,按1g样品加5mL丙酮的比例在37℃环境下超声浸提30min,冷却至室温后用0.45um有机滤膜过滤后即得检验液。同法制备空白对照液。[/font][/size][size=16px][font=宋体] 标准溶液配制:分别取D4、D5等寡聚硅氧烷类物质各0.05g左右,精密称定,用丙酮定容至50mL,再将该溶液用丙酮依次稀释,配成浓度为1-50ug/mL的浓度梯度的D4、D5寡聚硅氧烷类物质的混和标准溶液。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相[/url]条件如下,色谱柱:5%苯基-95%聚二甲基硅氧烷为固定液的毛细管柱(30mX0.25mmx0.25um) 柱温:60℃(保持3min),以10℃/min升至300℃(保持10min) 进样口温度:280℃ 检测器温度:300℃ 载气:氦气或氮气(纯度99.99%以上),流速1.0mL/min 进样量:1uL。[/font][/size][size=16px][font=宋体] 分别取空白溶液、标准溶液、样品溶液进[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]测试,取一份中间浓度的标准溶液连续进样5次,计算寡聚硅氧烷类物质峰面积的相对标准偏差。[font=宋体]方法学要求:a)寡聚硅氧烷类物质标准曲线方程的线性相关系数R均应不小于0.995;b)寡聚硅氧烷类物质在色谱图上的分离度均应不小于1.5;c)方法的重复性:寡聚硅氧烷类物质峰面积的相对标准偏差RSD均应不大于10%。[/font][/font][font=宋体]用外标法对试验结果进行分析,建立标准工作曲线及回归方程,按下式分别计算样品中寡聚硅氧烷类物质的残留量,测定结果以寡聚硅氧烷类物质的质量(pg)占供试品质量(g)的比值表示,单位为pg/g,即mg/kg。[/font][/size][size=16px][font=宋体] X=CXV/m ([/font][font=宋体]式中:X-寡聚硅氧烷类物质的残留量,单位为pg/g,即mg/kg C-标准曲线上读得的样品检验液中寡聚硅氧烷类物质的浓度值,单位为pg/mL V-所加萃取溶剂丙酮的体积,单位为mL m-样品的质量,单位为g[font=宋体])[/font]。[/font][/size]

  • ICP炬形成过程

    ICP炬形成过程如下:1)Tesla线圈----高频交变电流----交变感应磁场;2)火花----氩气----气体电离----少量电荷----互相碰撞----雪崩现象----大量载流子;3)数百安极高感应电流(涡电流,Eddy current)----瞬间加热----到10000K----等离子体----内管通入氩气形成环状结构样品通道----样品蒸发、原子化、激发。

  • 耐划伤测试仪与耐刮擦试验仪对比分析

    耐划伤测试仪与耐刮擦试验仪对比分析

    耐划伤测试仪最新参数解析    测试原理:  耐划痕试验是 ( 标准规定的模拟安全试验项目。耐划痕试验仪能在标准条件下,在规定形状和尺寸 (40° 锥端 ) 的钢针轴在线施加试验压力 (10N) ,按一定的划痕速度 (20mm/s) 和一定的倾斜角度 (80° ~ 85°) 对 呈水平状态的印刷电路板试品表面单向施划若干次,以试品涂层是否松脱、刺透,并能否耐受规定的抗电强度试验来对印刷电路板的耐划痕性进行评定。耐划痕试验 仪适用于照明设备、低压电器、家用电器、机床电器、电机、电动工具、电子仪器、电工仪表、信息技术设备、音频视频设备等产品及其部件的研究、生产和质检部 门,也适用于绝缘材料、印刷电路板行业。    技术参数:  1、划痕钢针:淬硬钢针,锥端,锥顶角 40° 倒圆半径 0.25mm±0.02mm( 可更换 )  2、施划速度:20mm /s± 5mm /s  3、施划角度:划针移动平面垂直试品表面,顺向施划倾角 80 ° 或 85°( 可调换 )  4、钢针轴向力: 10N±0.5N  5、施划长度:max 200mm ( 可调节 )  6、平移距离:max 170mm ( 可调节 )  7、试品尺寸:厚 0.2mm ~ 6.0mm ,面积 max 300mm×190mm  8、外形尺寸:宽 500mm× 深 400mm× 高 500mm  9、电源功率:0.2kVA 220V 50Hz。    测试方法:  1、操作者升起刮擦重锤至其上部位置。  2、重锤固定在上部位置,如有必要,可通过释放销将重锤移除。双面胶带用于将样品粘至下部测试平面,然后降低重锤。  3、按下按钮开始试验。机器将自动运行一个周期然后停止。通过视觉检查样品。  汽车材料耐刮擦试验探究    多功能刮擦仪:  适用范围:  本仪器适用于各种汽车用内饰材料,如塑料、橡胶、皮革、织物、涂层材料、非涂层材料及其他复合材料等的耐刮擦性能检测。  多功能耐刮擦仪是适用各类汽车内饰材料刮擦性能测试仪器,仪器集成国内三个测试标准(五指刮擦法、百格法、塑料刮指刮擦法)。    刮擦原理:    本测试方法是用来测试表面材料抵抗由刮指引起伤害的能力。按照材料使用中可能接触到的指甲或其他硬质物,采用不同材料的刮指,按照规定的方向、行程、速度,以一定的压力作用于样品表面,刮擦头和样品做相对运动,产生单向的、非往复的直线刮擦轨迹,刮痕之间保持平行。最终评定材料的刮痕感官等级,刮擦区域和未刮擦区域的色差,或样品表面遭到损坏时的最小刮擦力。    仪器特征:  1. 仪器由电机驱动机构、刮擦组件、样品夹持固定装置等组成。  2. 刮擦组件包括刮擦支架、刮指、刮指定位套、加压装置(砝码及砝码支撑杆)等。  3. 仪器可自由安装、更换、拆卸不同规格的刮指,能够在不同负荷下实施匀速单向直线刮擦运动。  4. 采用嵌入式系统、人机界面操作对测试流程进行自动化控制,采用精密的伺服电机、滚珠丝杠传动,对于在相关标准下的刮擦速度控制精确度具有决定性的作用。  5. 采用碳化钨材质做刮指,增加仪器适用寿命。  6. 采用铝合金及不锈钢材质,外观简洁轻便且耐腐蚀。    技术参数:  1. 行程范围:10-200mm;  2. 速度范围:10-200mm/s;  3. 速度缓冲:10±1mm;  4. 金属刮擦头直径:0.5mm、0.75mm、1mm(Erichsen318)、3mm、5mm、7mm;  5. 金属刮擦头材质:碳化钨;  6. 加压砝码及刮擦组件总重量:2N,3N,5N,7N,8N,10N,12N,15N,20N (可任意配选)质量误差不超出1%;  7. 塑料刮指:聚甲基丙烯酸甲酯(PMMA);  i. 直径 16mm 厚度 1mm;  ii. 刮指边缘的半径为0.5mm;  iii. 硬度为shore D85。  8. 电源:AC220V±10%,50Hz。    耐刮擦测试  塑料制品表面有好几种明显损坏的方法,其中有尖锐物体的划痕;磨料摩擦产生的磨损;改变表面性能或光泽的表面损伤;或者钝化物体轻微刮擦造成的“写入效果”。  根据汽巴精化的高级研究员Ashu Sharma博士的解释,材料在压入力和滑动力或横(侧)向力的作用下发生屈服,产生延性/脆性破坏从而造成刮痕。在刮痕中,不平的表面产生不均匀的光散射和“刮痕发化”。  改善刮痕性能的解决方法包括尽可能减小聚合物底面粗糙程度和降低刮痕的胎肩,以产生尽可能少的光散射以及尽可能小的刮痕可见度。准确地测量耐刮擦性能,弄清楚表面破坏背后的材料科学知识对于形成改善方案是重要的。  检测表面损害的试验方法有好几种。一种是五指刮痕试验(five-finger scratch test),它是在不同载荷刮擦后,根据经验比较刮痕可见度,美国的汽车OEM商们常常要求使用这种方法。  而欧洲的汽车行业广泛采用的是伊利其逊十字形切口试验(Erichsen cross cut test),它检测的是刮痕应力发白发生的颜色变化。美国德克萨斯A&M 大学(TAMU)聚合物技术中心的刮痕联盟(Scratch Consortium)已经开发出刮痕试验设备和新的试验方法,最近已得到美国材料试验协会(ASTM)的批准,标准号为D7027-5。该刮痕试验的测试方法所具有的较少主观性已经得到了汽车行业的肯定。作为联盟会员的汽巴(Ciba)公司正为了能使这三个方法相互关联起来而积极努力,希望这三个方法都能在短期内得以使用。http://ng1.17img.cn/bbsfiles/images/2016/04/201604121518_590081_2964_3.png

  • 【讨论】三聚氰胺快速检测方法研究取得重要进展

    近年来,三聚氰胺事件对整个食品行业产生了严重冲击。消费者对食品中三聚氰胺的含量极为关注。学术界也积极寻求三聚氰胺的有效检测方法。  近日,国际知名学术杂志Talanta报道了中国科学院研究生院化学与化学工程学院研究生曹倩与其导师赵红、何裕建教授等人利用电化学方法快速灵敏检测三聚氰胺的工作。该工作对于食品中三聚氰胺的高效检测具有重要潜在意义。  现今有关电化学方法检测三聚氰胺的报道较少。电化学方法凭着简单、快速、灵敏以及成本低的优点在分析领域占有重要地位。该课题组以寡聚DNAd(T)20为探针分子,利用其与三聚氰胺之间存在的静电和氢键作用,以铁氰化钾为电化学识别元素实现了用电化学方法对三聚氰胺分子的灵敏与特异性检测。  在研究过程中,利用循环伏安法、差分脉冲溶出伏安法、电化学阻抗谱和原子力显微镜等证明了寡聚DNAd(T)20与三聚氰胺之间的强相互作用。研究表明,三聚氰胺浓度在3.9×10&8722 8M到3.3×10&8722 6M范围内时,铁氰化钾的还原峰电流和三聚氰胺的浓度成线性相关,相关系数达到0.990,该方法对三聚氰胺的检测限低至9.6×10&8722 9M。该方法在实际奶制品的检测中,三聚氰胺回收率可达到95%。  在此基础上,该课题组正在进一步研究更加高效专一、灵敏实用的三聚氰胺分析方法,并已取得了很好的阶段性成果。该研究得到了国家自然科学基金、国家973项目基金以及中科院研究生院院长基金的大力支持。

  • 如何富集样品中大分子量杂质?

    测试目的:通过样品前处理将样品中的大分子量杂质富集,然后做GCMS进行外标法定量现在不知道如何富集样品中的大分子量杂质,我的样品极性都很弱,样品结构是饱和环己烷接烷基 或者饱和环己烷接苯环类的;样品的分子量200~500;样品中有痕量大分子量杂质,分子量500~2000,大分子量杂质可能是样品的寡聚物 或者是塑料制品的寡聚物。现在需要寻找样品前处理方法,将样品中痕量大分子量杂质富集起来。目前已知行业内是将25克样品进行前处理,前处理后做GCMS进行定量,但是不知道前处理方式。看到药典中有用凝胶色谱富集药品中寡聚物或高分子,但是我的分子量相差这么低,大分子量杂质的极性也是很弱的。请大神们多多指教。

  • 【06年】聚合酶链式反应(PCR)实验方法

    聚合酶链式反应(Polymerase Chain Reaction,PCR)是体外酶促合成特异DNA片段的一种方法,为最常用的分子生物学技术之一。典型的PCR由(1)高温变性模板;(2)引物与模板退火;(3)引物沿模板延伸三步反应组成一个循环,通过多次循环反应,使目的DNA得以迅速扩增。其主要步骤是:将待扩增的模板DNA置高温下(通常为93℃-94℃)使其变性解成单链;人工合成的两个寡核苷酸引物在其合适的复性温度下分别与目的基因两侧的两条单链互补结合,两个引物在模板上结合的位置决定了扩增片段的长短;耐热的DNA聚合酶(Taq酶)在72℃将单核苷酸从引物的3’端开始掺入,以目的基因为模板从5’→3’方向延伸,合成DNA的新互补链。 PCR能快速特异扩增任何已知目的基因或DNA片段,并能轻易在皮克(pg)水平起始DNA混合物中的目的基因扩增达到纳克、微克、毫克级的特异性DNA片段。因此,PCR技术一经问世就被迅速而广泛地用于分子生物学的各个领域。它不仅可以用于基因的分离、克隆和核苷酸序列分析,还可以用于突变体和重组体的构建,基因表达调控的研究,基因多态性的分析,遗传病和传染病的诊断,肿瘤机制的探索,法医鉴定等诸多方面。通常,PCR在分子克隆和DNA分析中有着以下多种用途:(1) 生成双链DNA中的特异序列作为探针;(2) 由少量mRNA生成 cDNA文库;(3) 从cDNA中克隆某些基因;(4) 生成大量DNA以进行序列测定;(5) 突变的分析;(6) 染色体步移;(7) RAPD、AFLP、RFLP等DNA多态性分析等。一、试剂准备1. DNA模版2.对应目的基因的特异引物3.10×PCR Buffer 4.2mM dNTPmix:含dATP、dCTP、dGTP、dTTP各2mM5.Taq酶二、操作步骤 1.在冰浴中,按以下次序将各成分加入一无菌0.5ml离心管中。 10×PCR buffer 5 μl dNTP mix (2mM) 4 μl   引物1(10pM) 2 μl  引物2(10pM) 2 μl Taq酶 (2U/μl) 1 μl DNA模板(50ng-1μg/μl)  1 μl 加ddH2O至 50 μl 视PCR仪有无热盖,不加或添加石蜡油。2. 调整好反应程序。将上述混合液稍加离心,立即置PCR仪上,执行扩增。一般:在93℃预变性3-5min,进入循环扩增阶段:93℃ 40s → 58℃ 30s → 72℃ 60s,循环30-35次,最后在72℃ 保温7min。3. 结束反应,PCR产物放置于4℃待电泳检测或-20℃长期保存。4.PCR的电泳检测:如在反应管中加有石蜡油,需用100μl氯仿进行抽提反应混合液,以除去石蜡油;否则,直接取5-10μl电泳检测。三、PCR反应体系的组成与反应条件的优化 PCR反应体系由反应缓冲液(10×PCR Buffer)、脱氧核苷三磷酸底物(dNTPmix)、耐热DNA聚合酶(Taq酶)、寡聚核苷酸引物(Primer1,Primer2)、靶序列(DNA模板)五部分组成。各个组份都能影响PCR结果的好坏。1. 反应缓冲液:一般随Taq DNA聚合酶供应。标准缓冲液含:50mM KCl,10mM Tris-HCl(pH8.3室温),1.5mM MgCl2。Mg2+的浓度对反应的特异性及产量有着显著影响。浓度过高,使反应特异性降低;浓度过低,使产物减少。在各种单核苷酸浓度为200μM时,Mg2+为1.5mM较合适。若样品中含EDTA或其它螯合物,可适当增加Mg2+的浓度。在高浓度DNA及dNTP条件下进行反应时,也必须相应调节Mg2+的浓度。据经验,一般以1.5-2mM(终浓度)较好。2. dNTP :高浓度dNTP易产生错误掺入,过高则可能不扩增;但浓度过低,将降低反应产物的产量。PCR中常用终浓度为50-400μM的dNTP。四种脱氧三磷酸核苷酸的浓度应相同,如果其中任何一种的浓度明显不同于其它几种时(偏高或偏低),就会诱发聚合酶的错误掺入作用,降低合成速度,过早终止延伸反应。此外,dNTP能与Mg2+结合,使游离的Mg2+浓度降低。因此,dNTP的浓度直接影响到反应中起重要作用的Mg2+浓度。3. Taq DNA聚合酶酶:在100μl反应体系中,一般加入2-4U的酶量,足以达到每min延伸1000-4000个核苷酸的掺入速度。酶量过多将导致产生非特异性产物。但是,不同的公司或不同批次的产品常有很大的差异,由于酶的浓度对PCR反应影响极大,因此应当作预试验或使用厂家推荐的浓度。当降低反应体积时(如20μl或50μl),一般酶的用量仍不小于2U,否则反应效率将降低。4. 引物:引物是决定PCR结果的关键,引物设计在PCR反应中极为重要。要保证PCR反应能准确、特异、有效地对模板DNA进行扩增,通常引物设计要遵循以下几条原则:⑴ 引物的长度以15-30bp为宜,一般(G+C)的含量在45-55%,Tm值高于55℃。应尽量避免数个嘌呤或嘧啶的连续排列,碱基的分布应表现出是随机的。⑵ 引物的3’端不应与引物内部有互补,避免引物内部形成二级结构,两个引物在3’端不应出现同源性,以免形成引物二聚体。3’端末位碱基在很大程度上影响着Taq酶的延伸效率。两条引物间配对碱基数少于5个,引物自身配对若形成茎环结构,茎的碱基对数不能超过3个由于影响引物设计的因素比较多,现常常利用计算机辅助设计。⑶ 人工合成的寡聚核苷酸引物需经PAGE或离子交换HPLC进行纯化。⑷ 引物浓度不宜偏高,浓度过高有两个弊端:一是容易形成引物二聚体(primer-dimer),二是当扩增微量靶序列并且起始材料又比较粗时,容易产生非特异性产物。一般说来,用低浓度引物不仅经济,而且反应特异性也较好。一般用0.25-0.5pM/μl较好。⑸ 引物一般用TE配制成较高浓度的母液(约100μM),保存于-20℃。使用前取出其中一部分用ddH2O配制成10μM或20μM的工作液。5. 模板:PCR对模板的要求不高,单、双链DNA均可作为PCR的样品。虽然PCR可以用极微量的样品(甚至是来自单一细胞的DNA)作为摸板,但为了保证反应的特异性,一般还宜用μg水平的基因组DNA或104拷贝的待扩增片段作为起始材料。原材料可以是粗制品,某些材料甚至仅需用溶剂一步提取之后即可用于扩增,但混有任何蛋白酶、核酸酶、Taq DNA聚合酶抑制剂以及能结合DNA的蛋白,将可能干扰PCR反应。6. PCR循环加快,即相对减少变性、复性、延伸的时间,可增加产物的特异性。四、注意事项1.PCR反应应该在一个没有DNA污染的干净环境中进行。最好设立一个专用的PCR实验室。2.纯化模板所选用的方法对污染的风险有极大影响。一般而言,只要能够得到可靠的结果,纯化的方法越简单越好。3.所有试剂都应该没有核酸和核酸酶的污染。操作过程中均应戴手套。4.PCR试剂配制应使用最高质量的新鲜双蒸水,采用0.22μm滤膜过滤除菌或高压灭菌。5.试剂都应该以大体积配制,试验一下是否满意,然后分装成仅够一次使用的量储存,从而确保实验与实验之间的连续性。6.试剂或样品准备过程中都要使用一次性灭菌的塑料瓶和管子,玻璃器皿应洗涤干净并高压灭菌。7.PCR的样品应在冰浴上化开,并且要充分混匀。

  • 影响混凝实验中矾花形成的因素?

    影响混凝实验中矾花形成的因素?

    大家都知道,混凝实验中矾花的形成是检测实验好坏的一个重要因素,往往矾花大而密实才表明混凝实验的沉淀效果好,而很多新用户由于操作不当等会让矾花很难形成或者非常小之类的现象,那么这是为什么呢??到底有哪些因素会影响到矾花的形成呢???今天小编就混凝实验中影响矾花形成的最主要因素总结如下:矾花定义:在制水工艺上所谓的矾花,是指明矾水解之后跟水质的杂质吸附一起,形成絮状物,再加上适当的搅拌,絮状物会互相粘结成团,把这种物体称之矾花。影响矾花形成的主要因素:1)搅拌速度,一般搅拌器的速度一定要先快后慢,如果在反应阶段搅拌过于剧烈时会因空气进入液体过多而产生气泡,就会导致矾花很难形成;2)混凝剂种类,例如,最常用的PAC,因为PAC的的絮体本质是非常小的,所以可以当PAC搅拌均匀后,再加点PAM会有明显的助凝效果;3)混凝剂量度,一般混凝剂量太大/太小,都会难以形成矾花,混凝效果也非常差,当然,这个得根据个人处理的比例来调试。建议可以先做小的试验,找到最佳的投加量;4)搅拌时间,特别是在反应阶段(沉降阶段)搅拌时间最好以20-30转/分慢搅至少5分钟;5)沉淀时间,当烧杯中有明显的颗粒进行相互碰撞并缓缓下降时,再静沉至少5~10分钟。以上均为混凝实验中影响矾花形成的“最直观”因素,除此之外,与原水样浊度、PH值、水处理比例、药剂状态(颗粒/溶液)等有着密切的关系,最后,武汉梅宇在这里建议所有用户,每一次药剂的投放最好配比成溶液再加入。[img=,690,430]http://ng1.17img.cn/bbsfiles/images/2018/03/201803231116292882_3559_3192191_3.jpg!w690x430.jpg[/img]

  • 关于形成碳化钨

    在Si基底上预溅了一层W,然后在W层上面沉积了一层碳纳米管薄膜,经700~900度,1~2h真空退火后,仍然没有检出有碳化物(WC、W2C)形成。请问退火温度和时间应该在多少才能让碳纳米管中的C和底下的W层形成碳化钨呢?有这方面的专家吗

  • 形成ICP炬焰的过程

    作为仪器分析者,针对ICP炬焰的形成,我们需要简单了解其过程,这样可以针对异常情况进行判断,其步骤主要分成如下,首先是要通入所谓的等离子体气和辅助气,这是外管和内管的气体,其次感应线圈接入高频电源,最后感应线圈的尖端放电使整个炬室中的氩气局部电离成导体,从而产生感应电流,感应电流加热进一步形成所谓的火焰,这就是我们通过观测窗看到的点火后稳定的现状,相信大家通过这一个过程,可以了解炬焰形成原理了!

  • 丹参酮I与哌啶骨架杂交的强效NLRP3炎性小体抑制剂

    [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]丹参酮是中药丹参的功效物质,丹参酮I(Tanshinone I,Tan I)是丹参酮的一个亚类,具有芳香二萜醌的结构,具有抗菌和抗炎活性。然而,其过高的亲脂性,效价较弱,溶解度低、不稳定等特质,极大地限制了丹参酮I的应用。因此,建立有效的化学演化机制,开发更有效的丹参酮Ⅰ衍生物具有重要意义。哌啶是一种重要的饱和杂环支架,是美国FDA批准的药物中最常用的氮杂环,具有良好的药理特性。该团队将丹参酮Ⅰ和哌啶的骨架杂交,得到了一类新型有效的NLRP3炎症小体抑制剂。2023年2月14日,浙江大学药学院的崔孙良和王毅团队在J Med Chem(IF=7.3)上发表题为“Scaffold Hybrid of the Natural Product Tanshinone I with Piperidine for the Discovery of a Potent NLRP3 Inflammasome Inhibitor”的文章,通过骨架杂交策略得到了一系列具有NLRP3抑制活性的丹参酮Ⅰ-哌啶杂化物,相较于丹参酮Ⅰ,这些化合物在活性、选择性和类药性具有显著改善。其中化合物5j、12a和12d对IL-1β的分泌有较强的抑制作用,在脓毒症小鼠模型中也具有较好的治疗效果。机制研究表明,这些化合物可以阻断ASC的寡聚化,抑制NLRP3炎症小体的激活,且化合物5j可与NLRP3蛋白直接结合,对NLRP3蛋白具有显著亲和力。本研究发现了一种全新结构的丹参酮Ⅰ衍生物,为NLRP3炎性体抑制剂的开发提供了新的思路。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px]1、设计合成了36种Tan Ⅰ-哌啶杂化物前期研究发现Tan Ⅰ中的醌结构是其主要药效团,不宜进行结构修饰。因此研究团队从呋喃结构入手,通过支架杂交的策略,利用哌啶合成出了5个系列 36个Tan Ⅰ的衍生物。为了提升反应活性,在引入哌啶骨架前,研究团队将Tan Ⅰ中的醌并呋喃部分活化为富电子的苯并呋喃。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px]2、体外生物学评价Tan Ⅰ-哌啶杂化物抗炎活性前期研究发现Tan Ⅰ具有抗炎活性,而NLRP3炎症小体作为炎症反应的核心,被证明与多种炎症性疾病相关。因此,作者选用小鼠腹膜巨噬细胞(PMs)开展了一系列体外生物学评价,首先通过MTT法发现36种Tan Ⅰ-哌啶杂化物在4 μΜ浓度无明显细胞毒性,随后发现与Tan-I相比,化合物5d、5j、10c、10f、10g、12a、12d在2 μΜ浓度下更能抑制IL-1β分泌,其中化合物12d与经典的NLRP3抑制剂MCC950活性相当。综合构效关系结果发现引入氢键受体或亲水基团可提升抑制活性(5j、12a、12d),于是作者选用化合物5j、12a、12d作为进一步的研究对象。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px]3、化合物5j、12a和12d阻断NLRP3炎症小体激活,是广谱抑制剂NLRP3炎症小体通路包含准备和激活两个阶段,准备阶段pro-IL-1β和pro-caspase-1的表达升高,而激活阶段IL-1β和caspase-1分泌增加。作者发现化合物5j、12a、12d可抑制IL-1β和caspase-1的分泌,而对pro-IL-1β和pro-caspase-1的表达没有显著影响,表明它们通过阻断激活阶段而不是准备阶段来抑制NLRP3炎症小体活化。此外,5j、12a、12d也可以抑制尿酸钠晶体(MSU)、尼日利亚菌素(Nig)刺激的NLRP3炎症小体激活,表明5j、12a和12d是针对NLRP3炎症小体激活的广谱抑制剂。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px]4、Tan Ⅰ-哌啶杂化物5j/12a/12d可抑制ASC寡聚化,5j可直接结合NLRP3蛋白ASC寡聚化可促进caspase-1的活化,是NLRP3炎症小体活化的标志之一。作者进一步研究化合物5j、12a、12d抑制NLRP3炎症小体的作用机制,通过免疫荧光实验发现在添加化合物5j、12a、12d和阳性药MCC950时,ASC寡聚化形成的斑点显著减少,表明它们均可抑制ASC寡聚化。接着利用表面等离子体共振分析(SPR)和细胞热位移测定(CETSA)实验证明化合物5j和NLRP3存在直接互作。[/size] [size=14px] [/size] [size=14px]5、Tan Ⅰ-哌啶杂化物在脓毒症小鼠模型的体内抗炎评价接着作者对Tan Ⅰ-哌啶杂化物5j、12a、12d进行了成药性评价,发现它们相较于Tan Ⅰ有极大的改善。进一步开展体内抗炎效果评价,发现在LPS诱导的炎症性脓毒症小鼠模型中,化合物5j、12a和12d预处理可以显著降低IL-1β的释放,显著改善肺组织病理损伤,如肺泡壁增厚明显减轻,粒细胞数量和炎症浸润显著减少。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px]总结该研究通过骨架杂交策略得到了一系列具有NLRP3抑制活性的丹参酮Ⅰ-哌啶杂化物,与原型丹参酮Ⅰ相比,这些新的结构化合物在效力、选择性和类药性方面有显著改善,其中化合物5j、12a和12d对IL-1β的分泌具有高抑制活性。机制研究表明,这些化合物可以阻断ASC的寡聚化,抑制NLRP3炎症小体的激活,同时SPR和CETSA显示化合物5j可与NLRP3蛋白直接结合。体内研究表明它们对脓毒症小鼠模型具有较好的治疗效果,研究开发出了一种丹参酮I的简单结构修饰策略并提供了一类新的有效的NLRP3炎症小体抑制剂。[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size]

  • 如何富集样品中大分子量杂质

    测试目的:通过样品前处理将样品中的大分子量杂质富集,然后做GCMS进行外标法定量现在不知道如何富集样品中的大分子量杂质,我的样品极性都很弱,样品结构是饱和环己烷接烷基 或者饱和环己烷接苯环类的;样品的分子量200~500;样品中有痕量大分子量杂质,分子量500~2000,大分子量杂质可能是样品的寡聚物 或者是塑料制品的寡聚物。现在需要寻找样品前处理方法,将样品中痕量大分子量杂质富集起来。目前已知行业内是将25克样品进行前处理,前处理后做GCMS进行定量,但是不知道前处理方式。看到药典中有用凝胶色谱富集药品中寡聚物或高分子,但是我的分子量相差这么低,大分子量杂质的极性也是很弱的。请大神们多多指教。以前注册使用账号忘记了,新注册的账号,积分很少,还请大神笑纳。

  • 形成菊池线与形成选区电子衍射花样时电子束的不同

    本人菜鸟,求助一个基本的透射电镜问题:我们都知道在样品中把光会聚的时候会在后焦面上形成菊池线,同时把光散开的时候会形成一些衍射斑点。菊池线的形成是由于电子束先受到非弹性散射,再发生弹性散射形成的,那么按理说把光散开的时候也同样会有这样的效应。那么为什么在会聚的时候非弹性散射的效应比较强呢?还望各位大牛多指教啊

  • ICP光源的装置及其形成?

    炬管的组成:三层石英同心管组成(如右图)。冷却(等离子)氩气以外管内壁相切的方向进入ICP炬管内,有效地解决了石英管壁的冷却问题。防止其被高温的ICP烧熔。炬管置于高频线圈的正中,线圈的下端距中管的上端2-4mm,水冷的线圈连接到高频发生器的输出端。高频电能通过线圈耦合到炬管内电离的氩气中。当线圈上有高频电流通过时,则在线圈的轴线方向上产生一个强烈振荡的环形磁场如图所示。开始时,炬管中的原子氩并不导电,因而也不会形成放电。当点火器的高频火花放电在炬管内使小量氩气电离时,一旦在炬管内出现了导电的粒子,由于磁场的作用,其运动方向随磁场的频率而振荡,并形成与炬管同轴的环形电流。原子、离子、电子在强烈的振荡运动中互相碰撞产生更多的电子与离子。终于形成明亮的白色Ar-ICP放电,其外形尤如一滴刚形成的水滴。在高度电离的ICP内部所形成的环形涡流可看作只有一匝的变压器次级线圈,而水冷的工作线圈则相当于变压器的初级线圈,它们之间的耦合,使磁场的强度和方向随时间而变化,受磁场加速的电子和离子不断改变其运动方向,导致焦耳发热效应并附带产生电离作用。这种气体在极短时间内在石英的炬管内形成一个新型的稳定的“电火焰”光源。样品经雾化器被气动力吹散击碎成粒径为1-10um之间的细粒截氩气由中心管注入ICP中,雾滴在进入ICP之前,经雾化室除去大雾滴使到达ICP的气溶胶微滴快速地去溶、蒸发和原子化。

  • 克隆形成实验及划痕实验、流式细胞术操作步骤

    [size=16px]克隆形成实验[/size][size=16px]及划痕实验[/size][size=16px]、[/size][size=16px]流式细胞术[/size][size=16px]操作步骤[/size]软琼脂克隆形成实验检测单细胞克隆形成能力软琼脂克隆形成实验适用于悬浮生长的细胞。1. 配胶液:用蒸馏水和琼脂糖粉配制浓度为 0.3% 的琼脂糖液,高压灭菌,置于42℃ 水浴锅中,目的是为了使其保持融化状态。2. 配制含 20% FBS 的 2×1640 培养基,用 0.22 ?m 的滤器过滤除菌。3. 铺下层胶:将 0.6% 的琼脂糖胶液与 2×1640 培养基等体积混合,以每孔 1.5mL 加至 6 孔板中,室温等其凝固。4. 细胞计数:将细胞用 PBS 洗一遍,离心,加入新的培养基混匀稀释,计数。H69-NC、H69-shMSI1-1、H69-shMSI1-2、H82-NC、H82-shMSI1-1、H82-shMSI1-2、H526-NC、H526-shMSI1-1、H526-shMSI1-2 均以 1×104/孔铺入 6 孔板。5. 铺上层胶:将 0.3% 的琼脂糖胶液与 2× 培养基 1:1 混合,加入 100 μL 细胞悬液,混匀后,每孔加入 1.5 mL 混合液。6. 放入 37℃,5%CO2 培养箱培养,约 2-3 周后终止培养。7. 比较细胞克隆形成能力的差异,利用 Graphpad prism5 作图计算两种细胞克隆形成能力的差异。平板克隆形成实验检测单细胞克隆形成能力平板克隆形成实验适用于贴壁生长的细胞。1. 细胞处理:将 SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2 细胞,用 PBS洗一遍,用胰酶消化并计数。2. 接种细胞: 将细胞接种于 6 孔板中, SW1271-NC 、SW1271-shMSI1-1 、SW1271-shMSI1-2 接种密度为 3×103/孔,注意一定让细胞均匀分布。于 37℃,隔离CO2 静置培养 2-3 周(终止培养时间以不小于 2 周且克隆之间不发生融合为标准)。3. 出现肉眼可见的克隆时,终止培养。弃去旧培养基, 用 PBS 清洗 2 次,用 4% 多聚甲醛固定液固定 20 min,吸除固定液,用蒸馏水清洗 2 次后加适量结晶紫染色15-20 min,用蒸馏水洗去结晶紫,自然风干,用扫描仪扫描成图片。4. 在低倍镜下计数大于 50 个细胞的克隆数。5. 计算克隆形成率。细胞划痕实验1. 用记号笔在 12 孔板底部划两条平行线做为标记。2. 将 SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2 细胞接种至 6 孔板。3. 待细胞汇合度为 90% 左右时,用 10μL 枪头垂直于两条平行标记线进行划痕。4. 吸除培养基,1xPBS 漂洗 2 次,并换用无血清培养基培养。5. 分别在划痕后培养 0h,12h,24h,48h,72h 观察细胞迁移情况并拍照。流式细胞术1. 收集 H69、H82、H526、SW1271 的对照组和实验组细胞(包括培养上清中的细胞),收集 1 - 10 ×105 个细胞,用预冷 PBS 离心洗涤。用双蒸水稀释 5 ×Binding Buffer为 1 × 工作液,取 500 μl 1 × Binding Buffer 重悬细胞。2. 每管加入 5 μl Annexin V-APC 和 10 μl 7-AAD。3. 轻柔涡旋混匀后,室温避光孵育 5 分钟。4. 上机进行分析。

  • 【原创】瓜叶菊栽培

    每到春节,色彩斑斓的瓜叶菊争相斗艳,成为人们布置室内的迎春盆栽,岂不知,每年的七八月份正是繁殖瓜叶菊的好时机!偶现在谈谈如何栽培瓜叶菊: 瓜叶菊为多年生菊科草本值物,全株密布柔毛,叶片每三片一轮,成三角形,叶似黄瓜叶片,故名瓜叶菊。其花色艳丽,花色丰富,具有室内十分少见的蓝色花;且花期长,约有6个月之久的开花时间,是元旦、春节、“五一”劳动节等节日的理想盆花,是冬春代表性花卉。但要栽培出株型好、叶色美、开花长的瓜叶菊盆花,也不容易,须掌握瓜叶菊栽培环节中的以下关键技术措施。 播种时间:一般选择8月中旬。瓜叶菊性喜凉爽气候,不耐炎热高温,生长适中温为15度—20度。应把播种箱放在荫棚下面,或放在树荫下面;如果是采用畦播种,那么在哇土的上方一定要搭荫棚,以减少太阳的辐射热。 幼苗水分控制:主要是通过喷施水雾来降低苗床的温度,以及供给幼苗水分。喷施的原则是喷湿就够,不能让苗床土过干,也不能让苗床土过湿。过干幼苗萎蔫后很难恢复,过湿加上幼苗正处高温期,很容易坐蔸,从而导致幼苗成活率低。 培养土配制:瓜叶菊性喜富含腐殖质而排水良好的沙质土壤,PH为6.5—7.5比较合适。配制播种用的培养土时要注意将没有污染过的腐叶土或人士灰、纯黄土和细沙按照3:1:1混合后过筛,并且不再放进任何肥料,这样配制的培养土有利于种子发芽生长。过粘的培养土经不起干燥,一旦稍微干裂,便会把幼苗的须根拉断,从而导致幼苗死亡,降低了成活宰。分苗后的培养土可以与播种用的培养土相同,进行幼苗练壮。上盆时的培养土中均匀放人豆饼、骨粉或过磷酸钙为基肥,或者用厩肥、火土灰、园土、菜饼、细沙,按3:2:2:1:1的比例配制培养土,以保证植株养分的充足供应。厩肥须经沤制腐熟后晒干,菜饼必须粉碎,并将其充分搅拌混合后过筛方可作为定植的培养土使用。 注意控制温度:瓜叶菊喜凉爽气候,冬季忌寒冷,夏季忌高温。因而冬季要用温室栽培,一般要保持10度以上,经常保持室温15度左右,才能生长良好;夏季要将播种箱放在荫棚下面,或者在荫棚下面开好播种畦,并且在上午10:00以前或在下午;5:00以后浇水比较适宜,切忌在中午浇水,以使幼苗顺利地度过高温期。 冬季注意控制湿度:瓜叶菊对湿度要求比较高,才能生长良好。如何在冬季使湿度适中,也就是栽培瓜叶菊成功的关键。过于干燥,易使瓜叶菊的叶片经常处于萎蔫状态,不利于叶片生长,易使叶片发黄,也易于产生红蜘蛛和蚜虫。浇水过多,室内湿度过高,易使根系、主茎、叶片腐烂,同时也易产生蚜虫;如果加上室温过高,通风不好,易产生白粉病。 防治蚜虫和红纫蛛:首先是保持适当的温度和湿度,保持良好的通风。其次是在发病的初期要及时发现,把有虫害的植抹及早分开,对有虫害的植株喷施少量农药即可。对于蚜虫和红蜘蛛危害比较严重的,可用2000倍乐果稀释液喷杀。因为红蜘蛛一股发生在叶片的背面,而蚜虫一般发生在瓜叶菊幼撤的顶部,喷药时要以叶片背面及植株的顶部为重点,叶片正面也要适当喷药。

  • 【分享】PCR技术在食品检测领域的最新应用进展

    PCR技术在食品检测领域的最新应用进展云南农业大学食品科技学院王伟等拟文谈到,随着人们对食品安全性要求的不断提高,PCR技术以其特异性强、灵敏度高和快速准确等优点在食品检测领域得以广泛的应用。1 PCR的技术原理根据已知的待扩增的DNA片段序列,人工合成与该DNA两条链末端互补的两段寡核苷酸引物,在体外将待检DNA序列(模板)在酶促作用下进行扩增,这种方法也就是PCR技术。扩增过程由高温变性、低温退火和适温延伸等3步反应作为一个周期,反复循环,从而达到迅速扩增特异性DNA的目的。高温变性是在体外将含有需扩增目的基因的模板双链DNA经高温处理,分解成单链模板,低温退火降低反应系统温度,使人工合成的寡聚核苷酸引物与目的DNA互补结合,形成部分双链,适温延伸是将反应循环系统的温度调至适温,在TaqDNA聚合酶的作用下,有4种核苷酸存在时,引物链将沿着5′→3′方向延伸,形成与模板互补的新链,新链又可作为下一次反应的模板,如此周而复始使目的基因的数量呈几何级数扩增。PCR技术检测的主要步骤为:1运用化学手段对目标DNA提取;2设计并合成引物,引物设计与合成的好坏直接决定PCR扩增的成效,通常要求引物位于待分析基因组中的高度保守区域,长度为15~30个碱基为宜;3进行PCR扩增;4克隆并筛选鉴定PCR产物,将扩增产物进行电泳、染色,在紫外光照射下可见扩增特异区段的DNA带,根据该带的不同即可鉴定不同的DNA;5DNA序列分析。  不同的对象如扩增DNA片断序列全知、半知或未知,其PCR参数、退火温度、时间、引物等都有较大的差别,将RFLP、Sequence、反转录PCR等技术相结合,形成了众多的衍生技术,如多重PCR,定量PCR,竞争PCR单链构型多态性PCR,巢式PCR等。这些技术的产生将使PCR技术在食品中的应用潜力更加广泛。

  • 【资料】推荐一台做 分子相互作用 的仪器

    BIA是英语“Biomolecular Interaction Analysis” 的缩写,BIA提供了实时观察生物分子间相互作用的技术。通过它能观察两种分子结合的特异性,能知道两种分子的结合有多强,还能了解生物分子的结合过程共有多少个协同者和参与者。BIA可以让得到用其他技术方法难以得到的结果,因为它可以实时反映分子结合过程中每一秒变化的情况。无需借助标记物进行分析使BIA广泛应用于各类生物体系的测定,从各类小分子化合物、多肽、蛋白质、寡核苷酸和寡聚糖直至类脂、噬菌体、病毒和细胞。一、 动力学常数的测定BIA可以用来分析不同抗体与抗原的结合与解离常数,相对与以前其它检测抗体效价的方法,BIA不仅快速,可以准确定量,和可以让你看到整个结合和解离的动态过程。二、浓度的测量三、分子相互作用模式的研究我们想知道两分子之间相互作用的比例,结合位点,抗原决定族的位点,都可以用BIA来完成。研究突变后活力大小的变化,研究复合物形成次序等等。四、蛋白质功能分析复合物的组装可以看成研究蛋白功能的一个例子。也可以设计其它的一些实验,只要前后芯片表面的质量有变化就可以利用BIA技术来检测。详情请见:[URL=http://biotech.ustc.edu.cn/html/yiqijieshao/2006/0727/2.html]http://biotech.ustc.edu.cn/html/yiqijieshao/2006/0727/2.html[/URL]

  • 【讨论】雪花的形状是怎样形成的

    冬天已经过了大半,在我国的许多地方都出现了下雪的天气,观察雪花的形状,看起来很美的,各种各样的有如一幅幅图画。这些如此美妙的形状是怎样形成的呢?为什么会形成这样的形状呢?这里面一定涉及到很多物理化学相关的知识,希望大家发表自己的见解,共同讨论学习。

  • 送给实验室的谷友们--------------电泳中常犯的6条错误

    看到这篇文章内容不错,转载下来,希望对大家的实验操作有所帮助。 尽管有了教科书、仪器说明书、产品操作指南和网络教程,但周围仍存在着多种错误的操作步骤,使电泳运行反复出现问题,并导致不适当的结果。迷你系统的相对低分辨率以及短运行时间常常掩盖了这些问题。然而,在大型凝胶的高分辨率双向电泳中,这也是蛋白质组学中最重要的分离方法之一,这些错误的后果会变得更为明显。来自GE Healthcare Life Sciences的Reiner Westermeier博士指出了电泳中常犯的几点错误。 1. 聚丙烯酰胺凝胶的交联系数的错误计算聚丙烯酰胺凝胶的孔大小是由两种因素控制的:丙烯酰胺的总浓度T和交联度C:http://www.ebiotrade.com/imagewatermark/UploadFile/2011031817245713.JPG 其中a是丙烯酰胺的质量,以g为单位,b是亚甲基双丙烯酰胺的质量,以g为单位,V是体积,以mL为单位。错误有时候假设给定的丙烯酰胺总浓度T就是单位体积中丙烯酰胺的百分比,而交联系数C就是单位体积中亚甲基双丙烯酰胺的百分比。这导致凝胶中交联剂的含量过高,产生了不透明的凝胶,不但易碎,而且高度疏水。正确的操作根据上面的等式配置溶液,或者使用即用型的丙烯酰胺/亚甲基双丙烯酰胺储备液,它可从不同的来源购买到。2. 聚丙烯酰胺凝胶的聚合温度和时间丙烯酰胺和亚甲基双丙烯酰胺的聚合通常在30分钟至一小时内发生。然而,在这段时间内,基质的形成并没有结束。所谓的沉默聚合仍在继续,直至完整的基质形成。这一部分的聚合过程需要数小时,并且只在室温(20-25°C)下才能高效开展。错误在有些实验室,聚丙烯酰胺凝胶在冰箱或冷库中聚合,或者在聚合开始后一个或几个小时就已经使用。这可能会造成分离的干扰,尤其是当蛋白必须在天然条件下分离时。并且,若下游必须开展质谱分析,那么未完全聚合的丙烯酰胺单体或寡聚物会在质谱图中产生高的背景噪音。正确的操作让凝胶聚合在室温下过夜进行。如果需要,凝胶可随后储存在冰箱或冷库中。3. SDS样品中产生聚集物单向SDS聚丙烯酰胺凝胶电泳的样品通常须在1-2 % SDS和1 %(w/v)DTT(≈65 mM)或2 %(v/v)β-巯基乙醇(≈350 mM)存在时煮沸几分钟,以实现多肽链的彻底变性和解折叠。错误样品常常在冷却后直接上样到SDS凝胶中。通常还原剂被部分氧化,其中一部分半胱氨酸不受保护,导致重折叠和多肽间聚集物的形成。重折叠形成模糊的区带,有时是两条带。一些聚集物在高分子量区域形成了人为的区带;其他聚集物则过大,无法进入凝胶,在点样孔形成了沉淀聚集。还原剂的过量可能在整个凝胶上40-60 kDa的分子量范围内形成两条或三条水平线。正确的操作煮沸后让样品冷却至60°C左右,然后加入碘乙酰胺。通常我们在100 μl样品中加入10 μl 20%(w/v)的碘乙酰胺水溶液,并在室温下孵育30分钟。通过这一步,我们可以获得更为锐利的条带,并排除了一些假象,如两条带、其他的高分子量条带、点样孔中的沉淀,以及凝胶上的线。

  • 【原创大赛】欢乐亦是假象:轮虫与聚缩虫共舞

    [font=宋体] 聚缩虫,原生动物纤毛亚门寡膜纲缘毛亚纲,肌丝连接形成树状群体,受到刺激整个群体会收缩,微生物的命名就是这样简单粗暴(好认)。有人说它好看,象花一样,有人说它欢乐,而它们是鱼虾的寄生虫。[/font]

  • 【分享】一种新型荧光探针———分子信标的研究及应用进展

    [b] [size=4]分子信标是一种基于荧光能量转移原理而设计的发夹型寡聚核酸荧光探针。它通过与核酸等靶分子相互作用后发生构象的变化而产生荧光信号,对靶分子的检测具有灵敏度高、选择性强、适合于活体实时检测等优点。 目前已广泛应用于生物化学分析、生物医学研究和环境监测等各领域。本文对分子信标的设计原理及其研究和应用进展进行了综述。[/size][/b]

  • 耀变体加热对解析宇宙结构的形成具重要意义

    中国科技网讯 据物理学家组织网5月15日报道,来自德、加、美的联合科研团队发现,宇宙中的漫射气体能够从耀变体处吸收明亮的高能伽马射线放射,并为其强劲加热。这一令人惊讶的结果对于解析宇宙结构的形成具有重要意义。相关研究报告发表在近日出版的《天体物理学杂志》等刊物上。 耀变体是一种密度极高的高变能量源,其被假定为是处于寄主星系中央的超大质量黑洞。虽然可见光和无线电波等辐射穿越宇宙毫无问题,但高能伽马射线却不一样。这种特殊的辐射能够与星系放射出的可见光相互作用,使其变成基本粒子。最初,这些基本粒子会以近光速的速度运动,但随着其因为周围的漫射气体而减速,它们的能量将转化为热量,如同其他的制动过程一样,因此粒子周围的气体能被有效加热。处于平均密度的气体温度将提升10倍,而较稀疏区域的气体温度则可比预想的提高100多倍。 德国海德堡理论研究所(HITS)的科研人员表示,耀变体改写了宇宙的热演化史。在类星体的光谱中,存在着各种各样的“森林线”,它们源自宇宙中发生的密度波动,而“森林”则源于宇宙早期阶段中性氢对紫外线的吸收。额外的加热过程可电离中性氢,同时也意味着对类星体放射的紫外线吸收减少。如果气体变热,“森林线”也会随之拓展,这种效果代表了一个衡量早期宇宙温度的绝佳机会。 科研人员检查了新假设的加热过程,并利用超级计算机详细模拟了宇宙的结构发展。在宇宙进化中,最密集的波动将坍塌形成星系和星系团,漫射的气体则因为过热而无法坍塌,从而促使矮星系的形成趋缓甚至完全被抑制。这也是解决另一星系形成理论难题的关键:为什么我们在银河系附近以及气体密度较低的区域仅能观测到屈指可数的矮星系。 研究负责人、HITS的伏尔克·斯普林吉教授解释说,耀变体的加热过程十分令人兴奋,因为这种单独的效应能同时解决数个有关宇宙结构形成的谜题。下一步,科研团队还计划进一步改进这一模拟模型,以便更深入地了解耀变体的特性及其对当前宇宙的影响和意义。(张巍巍) 《科技日报》(2012-05-17 二版)

  • 【分享】2008年的第一场雪,和大家分享漂亮的雪花及形成机理

    【分享】2008年的第一场雪,和大家分享漂亮的雪花及形成机理

    [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811102123_117596_1644912_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811102123_117597_1644912_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811102123_117598_1644912_3.jpg[/img]为什么每片雪花形状都不一样?雪花的形状极多,而且十分美丽.如果把雪花放在放大镜下,可以发现每片雪花都是一幅极其精美的图案,连许多艺术家都赞叹不止。但是,各种各样的雪花形状是怎样形成的呢?雪花大都是六角形的,这是因为雪花属于六方晶系。云中雪花"胚胎"的小冰晶,主要有两种形状。一种呈六棱体状,长而细,叫柱晶,但有时它的两端是尖的,样子象一根针,叫针晶。别一种则呈六角形的薄片状,就象从六棱铅笔上切下来的薄片那样,叫片晶。 如果周围的空气过饱和的程度比较低,冰晶便增长得很慢,并且各边都在均匀地增长。它增大下降时,仍然保持着原来的样子,分别被叫做柱状、针状和片状的雪晶。 如果周围的空气呈高度过饱和状态,那么冰晶在增长过程中不仅体积会增大,而且形状也会变化。最常见的是由片状变为星状。 原来,在冰晶增长的同时,冰晶附近的水汽会被消耗。所以,越靠近冰晶的地方,水汽越稀薄,过饱和程度越低。在紧靠冰晶表面的地方,因为多余的水汽都已凝华在冰晶上了,所以刚刚达到饱和。这样,靠近冰晶处的水汽密度就要比离它远的地方小。水汽就从冰晶周围向冰晶所在处移动。水汽分子首先遇到冰晶的各个角棱和凸出部分,并在这里凝华而使冰晶增长。于是冰晶的各个角棱和凸出部分将首先迅速地增长,而逐渐成为枝叉状。以后,又因为同样的原因在各个枝叉和角棱处长出新的小枝叉来。与此同时,在各个角棱和枝叉之间的凹陷处。空气已经不再是饱和的了。有时,在这里甚至有升华过程,以致水汽被输送到其他地方去。这样就使得角棱和枝叉更为突出,而慢慢地形成了我们熟悉的星状雪花。 上面说的实际上是一个典型的星状雪花的形成过程。它的相当部位,不论形状或大小,都应当是相同的。这种典型的星状雪花只有在一个理想的、平静的环境中(譬如在实验室内)才能形成。在大气中,它不能象上面说的那样有步骤地增大,所形成的形状也就不能那样典型。这是因为冰晶逐渐在下降着,而且有时在旋转着,各个枝叉接触水汽的多少有所不同,而那些接触水汽较多的枝又便增长得较多。因此,我们平常所看到的雪花虽大体上一样但又互不相同。 另外,雪花在云内下降的过程中,也会从适宜于形成这种形状的环境降到适宜于形成另一种形状的环境,于是便出观了各种复杂的雪花形状。有的象袖扣,有的象刺猾。即使都是星状雪花,也有三个枝叉的、六个枝叉的,甚至有十二个枝叉、十八个枝又的。 以上所述都是单个雪花的情况。在雪花下降时,各个雪花也很容易互相攀附并合在一起,成为更大的雪片。雪花的并合大多在以下三种情况下出观。(1)当温度低于0℃的时候,雪花在缓慢下降的途中相撞。碰撞产生了压力和热,使相撞部分有些融化而彼此沾附在一起,随后这些融化的水又立即冻结起来。这样,两个雪花就并合到一起了。(2)在温度略高于0℃的时候,雪花上本来已覆有一层水膜,这时如果两个雪花相碰,便借着水的表面张力而沾合在一起。(3)如果雪花的枝叉很复杂,则两个雪花也可以只因简单的攀连而相挂在一起。 雪花从云中下降到地面,路途很长,在条件适合时,可以经多次攀连并合而变得很大。在降大雪的时候,有时有一些鹅毛般的大雪片,就是经过多次并合而成的。 但是,有时雪花互碰时不是互相并合在一起,而是给碰破了,这时便产生一些畸形的雪花。例如,在降雪的时候,有时会见到一些单个的"星枝",就属于这种情况。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制