当前位置: 仪器信息网 > 行业主题 > >

固态材料

仪器信息网固态材料专题为您整合固态材料相关的最新文章,在固态材料专题,您不仅可以免费浏览固态材料的资讯, 同时您还可以浏览固态材料的相关资料、解决方案,参与社区固态材料话题讨论。

固态材料相关的资讯

  • 中科大在二维材料固态自旋色心研究中取得新进展
    中国科学院院士、中国科学技术大学教授郭光灿团队在二维范德瓦尔斯材料固态自旋色心领域取得重要进展。该团队李传锋、唐建顺研究组与匈牙利魏格纳物理研究中心教授AdamGali等合作,实验研究并理论解释了六方氮化硼(hexagonalboronnitride,hBN)中带负电硼空位(VB-)色心受磁场调制的自旋相干动力学行为,揭示了hBN中VB-色心电子自旋与核自旋之间的相干耦合和弛豫机制,这对发展基于二维范德瓦尔斯材料的相干自旋系统及低维量子器件具有重要意义。9月29日,相关研究成果发表在《自然-通讯》(Nature Communications)上。 近年来,研究发现,宽禁带范德瓦尔斯材料hBN是室温自旋色心的优秀宿主。范德瓦尔斯材料通过简单的机械剥离便可制备为原子厚度的二维结构,且可与多种微纳结构相耦合,在低维量子器件制备和近场传感探测等方面比三维体材料具有天然优势,因而hBN中的自旋色心成为固态自旋色心领域的研究热点。目前,研究最广泛的hBN自旋色心为VB-色心,且集中于VB-的电子自旋,而对VB-电子自旋周围的核自旋缺乏深入研究及观测。由于色心周围的核自旋是固态自旋维度扩展的主要途径之一,且是造成固态自旋弛豫的主要因素。因此,VB-色心的电子自旋与周围核自旋耦合形成的多自旋体系的相干动力学研究,对推动基于范德瓦尔斯材料的固态量子自旋技术至关重要。本工作中,研究组使用中子辐照技术在hBN中制备出高浓度的VB-色心样品,并利用ODMR(optical probing magnetic resonance)技术探测VB-自旋能级结构,观测到VB-色心中电子自旋与3个最近邻14N核自旋相互作用产生的超精细劈裂以及14N核自旋偏振随磁场增强的极化现象。同时,研究组对VB-进行多项室温相干操控和探测,包括Rabi振荡、自旋回波、Ramsey干涉探测等。探测结果表明,VB-自旋受到明显的核自旋相干调制,且核自旋调制效应会随磁场增加而变强。为进一步揭示相关现象的内在动力学机制,研究组理论构建了VB-电子与最近邻14N核自旋组成的4自旋系统,并对该4自旋系统的多种动力学性质进行无参数(parameterfree)的理论模拟。结合实验与模拟结果,研究组发现VB-色心中存在较强的电子与核自旋相互作用,同时最近邻14N核自旋极化也受到显著的驱动微波动态调制。此外,研究组还在理论模拟中引入了包含127个14N和11B的多体核自旋环境,并模拟了与之相互作用的开放4自旋VB-系统的动力学行为。通过对照实验和理论结果,研究组发现11B核自旋环境主导了VB-色心的自旋弛豫,而磁场能够减弱核自旋环境的弛豫效应并增强VB-电子与最近邻14N的相干耦合。(a)VB-色心的原子结构示意图;(b)VB-色心的电子自旋能级结构;(c)不同磁场下VB-色心的ODMR信号;(d)不同磁场下VB-色心的Rabi振荡信号。该研究从实验和理论上揭示了VB-色心中存在显著的电子和最近邻14N核自旋相干耦合,以及多体11B核自旋环境导致的VB-色心自旋弛豫。该工作为将VB-相干操控自旋拓展至核自旋以及发展相关低维固态量子系统奠定了基础。研究工作得到科技部、国家自然科学基金、中科院和合肥国家实验室等的支持。
  • 百特参加高比能固态电池关键材料技术大会,助力电池产业转型升级
    2021年3月11日,由中国粉体网联合中国颗粒学会能源颗粒材料专委会主办的“第二届高比能固态电池关键材料技术大会暨第四届能源颗粒材料制备及应用技术高峰论坛”在湖南长沙吉美国际会展酒店隆重开幕。来自全国各地300余名电池材料界专家和厂家代表参加了本次会议。丹东百特仪器有限公司携激光粒度仪和粉体综合特性测试仪参会,为电池厂家提供粒度、物性分析一站式解决方案。相较于传统的锂电池来说,全固态电池具有不易燃、无腐蚀性、不漏液等特性,从而提升了电池使用的安全性。它功率密度较低,能量密度较高,在轻薄化后柔性程度也会有明显的提高,是电动汽车的理想电池。作为传统电池行业的一个新领域,全固态电池的开发是机遇,更面临着挑战。如何满足正负极和固体电解质的离子传输?循环过程中,正负极材料如何良好接触?金属锂电极的体积变化等都是研发团队需要克服的问题。在本次会议上,丹东百特技术总监李雪冰博士做了《固态电池中关键材料颗粒检测面临的问题和挑战》的报告。粒度分布作为电池行业质量把控的重要指标之一,样品分散、数据的稳定性一直是业内关注的焦点。李博士通过应用案例和实测数据就目前颗粒检测面临的问题做出详细分析,提供合理详尽的解决方案,赢得阵阵热烈的掌声。在仪器展示区,丹东百特展出了Bettersize2600激光粒度仪和BT-1001智能粉体特性测试仪。Bettesize2600激光粒度仪采用正反傅里叶技术,量程达到0.02-2600μm,高精度的数据采集与处理系统使测试结果达到同类进口仪器水平,它还具有一键式SOP智能化操作,十分钟就可以学会操作流程。BT-1001智能粉体特性测试仪可测试包含安息角、平板角、振实密度、松装密度、分散度、流动性等14个项目,通过自动控制技术、CCD摄像技术和触摸屏等现代技术,使粉体物性测试进入了科学化、智能化和精确化时代,是电池材料行业物性分析的标准仪器。 作为国内专业的粒度、粒形、粉体物性检测仪器的研究制造企业,丹东百特仪器有限公司始终致力于创新发展,在提供具有国际先进水平的粒度粒形分析仪器的同时,还为各个材料行业提供颗粒检测应用方案。未来,百特将继续发挥技术优势,助力电池材料行业蓬勃发展。
  • 国产纳米级固态钠离子电池下线,瞭望2024中国固态电池发展
    随着全球能源转型和新能源汽车产业的快速发展,固态电池作为一种具有高能量密度、长寿命、高安全性的新型电池技术,已经成为未来电池领域的重要发展方向。我国政府高度重视固态电池产业的发展,积极推动技术创新和产业布局。就在今年年初,国产第一块大容量高能量密度的纳米固态钠离子电池中试产品成功下线,标志着我国固态电池技术取得了重要突破。 国产纳米级固态钠离子电池技术特点1、高能量密度国产纳米级固态钠离子电池采用了先进的纳米材料技术,使得电池具有较高的能量密度。相比传统的液态锂离子电池,固态钠离子电池的能量密度提升了30%以上,达到了250Wh/kg以上,甚至有望突破300Wh/kg。这意味着在相同体积或重量下,固态钠离子电池可以存储更多的电能,为新能源汽车提供更长的续航里程。 2、长寿命固态钠离子电池具有较长的循环寿命。由于采用固态电解质,电池内部不存在液态电解质易泄漏、腐蚀等问题,因此电池的寿命得到了显著提升。实验室测试结果表明,国产纳米级固态钠离子电池的循环寿命可达10000次以上,远高于传统液态锂离子电池的寿命。 3、高安全性固态钠离子电池采用固态电解质,具有较好的热稳定性和化学稳定性。在高温、过充、短路等极端条件下,固态电解质不易燃烧和爆炸,有效降低了电池的安全风险。此外,固态电解质还可以有效抑制锂枝晶的生长,降低了电池内部短路的风险,提高了电池的安全性。 4、低成本钠元素在地壳中的储量丰富,且分布广泛,成本低廉。相比锂元素,钠元素的提取和加工成本较低,有利于降低固态钠离子电池的生产成本。此外,固态钠离子电池的结构相对简单,无需使用大量的贵金属催化剂和隔膜材料,也有助于降低成本。 2024年中国固态电池产业发展趋势政策支持我国政府高度重视固态电池产业的发展,将其列为战略性新兴产业。近年来,国家层面出台了一系列政策文件,明确了固态电池产业的发展目标和重点任务。例如,《新能源汽车产业发展规划(2021-2035年)》提出,到2025年,固态电池单体能量密度达到400Wh/kg以上,成本降至1元/Wh以下。这些政策文件的出台,为固态电池产业的发展提供了有力的政策支持。 技术创新我国固态电池技术取得了世界领先的成果。在材料研发、电池设计、制造工艺等方面,我国科研团队不断取得突破。例如,中科院宁波材料所研发的固态电解质材料,具有高离子导率和低界面阻抗的特点;清华大学研发的固态电池制备技术,实现了电池的高效、稳定生产。这些技术创新为固态电池产业的发展奠定了基础。 产业链布局随着固态电池技术的不断成熟,我国企业纷纷加大在固态电池领域的布局。目前,已有数十家企业进入固态电池产业链,涉及材料、设备、电池制造等环节。例如,宁德时代、比亚迪等知名企业纷纷投资固态电池项目,推动产业快速发展。此外,固态电池产业链的上下游企业也在加强合作,共同推动产业发展。 市场需求随着新能源汽车市场的持续扩大,对高性能电池的需求日益增长。固态电池作为一种具有高能量密度、长寿命、高安全性的新型电池,有望成为未来新能源汽车的主流动力电池。根据预测,到2025年,我国新能源汽车销量将达到700万辆,为固态电池市场提供了巨大的发展空间。 国产纳米级固态钠离子电池的成功下线,标志着我国固态电池技术取得了重要突破。在政策支持、技术创新、产业链布局和市场需求的推动下,我国固态电池产业有望在2024年实现快速发展。然而,固态电池产业仍面临诸多挑战,如材料性能提升、制造工艺优化、成本降低等。未来,我国应继续加大研发投入,推动固态电池技术走向成熟,为新能源汽车产业的可持续发展提供有力支撑。 电弛的解决方案2023年,武汉电弛新能源有限公司研发团队经过技术攻关,成功推出了DC IPT 2000/2000Pro 原位气体内压测定仪,为锂电池测试提供了全新的解决方案。该产品方案得到了行业内先进企业的认可,其具有以下优点: 直接穿刺,精准测量传统阿基米德法、理想气体方程或其他“间接法”形式,存在实验过程繁琐、测量误差大的问题。大道至简,DC IPT 2000/2000Pro 直接对锂电池内部气体及压力进行取样和测量。通过锂电池穿刺取样这种直接测量方法,可以快速获取真实、准确的数据,从而极大地提升检测质量效率。 气体采样,兼容并包“间接法”测量无法兼容的问题增加电池测试成本。为了解决这个问题,武汉电弛新能源研发团队设计一种全新的“锂电池气体采样接口(GSP)”,该接口“软硬兼容”——可同时测量软包电池、方形电池和圆柱电池等各类形态电池。便捷快速地评估电池安全性能。DC IPT 2000/2000Pro 测量方式不仅提高了测试效率,也降低了测试成本和风险。①高效便捷:用户无需在不同的测量设备之间切换或等待适配,测试效率高,降低人力时间成本。②数据准确:采用先进的测量技术和算法分析,确保数据的准确性和可靠性。③高重复性:标准化接口设计和测量流程,保证结果的可重复性和一致性,有利于比较分析。 网络接口,云端数据数据也是生产力,高效率的信息传递,对每块电池的质量状态做出快速预判。DC IPT 2000/2000Pro 预设网络接口,实现了数据联云上网,以及与其他测试设备或系统进行数据交互和共享。企业可构建一个完整的电池测试和管理系统,实现对电池测试数据的全面管理和分析,掌握质量情况。 多通道定制,高通量测试DC IPT 2000 /2000Pro 标准款为8通道设计,可定制设计更高通道数量,满足多场景测试需求。每个通道都采用了独立的测量电路,确保了测试的准确性和一致性。无论是大型企业还是研究机构,都可以根据自身的测试需求和规模,选择适合的通道数量和配置。
  • 863计划“先进激光材料及全固态激光技术”项目申请指南公布
    国家高技术研究发展计划(863计划)新材料技术领域“先进激光材料及全固态激光技术”主题项目申请指南  在阅读本申请指南之前,请先认真阅读《国家高技术研究发展计划(863计划)申请须知》(详见科学技术部网站国家科技计划项目申报中心的863计划栏目),了解申请程序、申请资格条件等共性要求。  一、指南说明  依据《国家中长期科学和技术发展规划纲要(2006-2020年)》,为满足先进制造、精密测量和国家重大科学工程等对全固态激光器的迫切需求,设立“先进激光材料及全固态激光技术”主题项目。  本项目通过突破人工晶体材料及全固态激光器研制和产业化关键技术,开发出具有自主知识产权的系列化高功率、皮秒和紫外全固态激光器产品,促进我国人工晶体材料和全固态激光器产业的发展。  本主题项目的任务落实只针对项目整体进行,项目申请者应针对指南内容,围绕项目总体目标和任务进行申请,而不要只针对项目部分目标和任务进行申请。  项目可以由一家申请,也可以由多家共同申请。对于多家共同申请的主题项目,由研究单位自行组合形成项目申请团队(一个单位只能参加一个申请团队),并提出项目牵头申请单位和申请负责人,由项目牵头申请单位具体负责项目申请。  项目申请要提出项目分解(包括任务分解及经费分解)方案,提出项目课题安排及承担单位建议,并填写课题申请书(项目拟分解的课题数最多不超过10个)。  二、指南内容  1、项目名称  先进激光材料及全固态激光技术  2、项目总体目标  突破人工晶体、全固态激光器及其核心器件的研发和产业化关键技术,开发出系列化高功率、皮秒和紫外全固态激光器产品并实现工业示范应用,促进我国人工晶体和全固态激光器产业的发展。  3、项目主要研究内容  (1)深紫外激光器及人工晶体关键技术  KBBF/RBBF晶体生长、KBBF-PCT器件制备、激光高次谐波和激光线宽控制等技术研究。  (2)新型晶体材料及器件技术  超晶格晶体制备、超晶格可调谐锁模、Nd:YAG激光陶瓷材料制备等技术研究。  (3)千瓦级光纤材料及全光纤激光器  低光子暗化光纤制备、全光纤种子源研制、全光纤激光器整机设计和装配等技术研究。  (4)单频激光器关键技术  纵模控制、增益光纤与标准光纤熔接、倍频晶体抗光损伤工艺等技术研究。  (5)紫外激光器产业化关键技术及应用  光学晶体长寿命使用、激光器单元模块化、系统集成等产业化关键技术开发 紫外激光微加工应用技术开发。  (6)高功率激光器产业化关键技术及应用示范  大批量Nd:YAG单晶高质量低成本生长及加工、激光振荡放大、系统集成等产业化关键技术研发 高功率激光在焊接、表面处理等方面的应用技术开发。  (7)皮秒激光器产业化关键技术及应用示范  皮秒激光振荡、再生与行波放大、系统集成等产业化关键技术研发 皮秒激光微加工应用技术开发。  4、项目主要考核指标  (1)深紫外人工晶体及激光器  KBBF晶体尺寸15×10×4mm3,RBBF晶体尺寸12×6×1.5mm3,KBBF-PCT器件透过率95%@193nm 177.3nm激光器功率100mW。  (2)光学超晶格锁模器件  线性损耗0.5%/cm、尺寸≥20×3×1mm3 锁模激光器:1.0μm/0.5μm双波长和1.3μm 激光陶瓷尺寸≥100×100×20mm3、透光率≥80%@1064nm。  (3)千瓦级光纤材料及激光器  双包层光纤材料光子暗化12dB/m@633nm 全光纤激光器功率1.5kW、光束质量M21.5。  (4)单频激光器  倍频晶体KTP抗光损伤阈值2GW/cm2@1064nm/10ns/10Hz 单频绿光激光器功率10W、线宽2MHz、噪声0.03%RMS 单频光纤激光器功率5W、线宽10kHz、边模抑制比60dB。  (5)紫外激光器  功率10W/20W/30W系列,重复频率50~150kHz,光束质量M2≤1.3,8小时内功率起伏3%,无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产。  (6)高功率激光器  Nd:YAG晶坯直径≥100mm、单程损耗≤2×10-3/cm@1064nm,键合晶体的键合面损耗≤0.1% 3kW和5kW激光器产品:光纤芯径为400μm,连续无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产 激光器功率≥6kW,8小时内功率起伏±2%。  (7)皮秒激光器产品  千赫兹10~20mJ@1064nm、5~10mJ@532nm、1~2mJ@355nm,脉冲宽度≤20ps,光束质量M2≤2,连续无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产。  5、项目支持年限为2年。  6、项目国拨经费控制额为9000万元,自筹经费不低于国拨经费控制额。  三、注意事项  1、鼓励“产学研用”联合申报,项目下设每个课题的协作单位原则上不超过5家。  2、受理时间:项目申请受理截止日期为2010年12月8日17时。  3、申报要求:项目申请采取网上申报方式,申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn。请按要求编写《国家高技术研究发展计划(863计划)主题项目申请书》,具体申请程序、要求及其他注意事项详见《国家高技术发展计划(863计划)申请须知》。  4、咨询联系人及联系电话、电子邮件  咨询联系人:史冬梅  联系电话:010-88372105/68338919  电子邮件:shidm@htrdc.com  863计划新材料技术领域办公室  2010年10月20日
  • 活动回顾|东西分析参加第二届固态电解质技术与市场发展论坛暨第七届先进电池电解质/隔膜材料技术国际论坛
    2024年6月12-13日,第七届先进电池电解质/隔膜材料技术国际暨第二届固态电解质技术与市场发展论坛在苏州召开。东西分析携AA-7050型原子吸收分光光度计参加了此次活动。第七届先进电池电解质/隔膜材料技术国际论坛暨第二届固态电解质技术与市场发展论坛由中国化学与物理电源行业协会和中国电子科技集团公司第十八研究所共同主办,论坛上,来自各地的专家学者和企业代表围绕“提升锂电行业新质生产力”的主题,就固态电解质技术、先进电池电解质/隔膜材料技术等方面展开深入讨论。他们通过分享最新的研究成果、技术进展和市场趋势,为与会者带来前沿的学术报告和技术分享。东西分析展台前,参观交流的观众络绎不绝。此次东西分析展出的展品是AA-7050型原子吸收分光光度计。这款仪器以其精准度高、操作简便、功能强大等特点,赢得了参观者的一致好评。在展台前,工作人员以专业的态度,耐心地向每一位观众介绍这款仪器在电池领域应用中的实际案例和检测效果。电池,作为可再生能源发电体系中关键组件,肩负着推动全球可持续能源发展的重要使命。为确保电池材料及产品的安全可靠性,从电池原材料至电解质的每一个环节,均需经过严格的精确分析测试。这些测试可以全面评估电池的性能、寿命及安全性,为电池行业的稳健发展奠定基础。东西分析公司,依托其丰富的质谱、光谱、色谱等多条产品线,为电池行业提供了一套全方位的分析测试解决方案。这些方案可以进一步提升电池的性能和品质,从而推动电池行业的健康发展,为可持续能源事业贡献力量。仪器推荐电池材料中重金属检测推荐仪器适合分析电池材料中的重金属含量,满足《GB/T 11064.4-2013、GB/T 11064.5-2013、GB/T 11064.6-2013碳酸锂、单水氢氧化锂、氯化锂中钾量、钠量、钙量和镁量的测定 火焰原子吸收光谱法》、《YS/T 1472.4-2021 富锂锰基正极材料中锂、镍、钴、钠、钾、铜、钙、铁、镁、锌、铝、硅含量的测定 电感耦合等离子体发射光谱法》等检测需求。电池材料中有机成分检测推荐仪器气相色谱质谱联用仪适用于分析电池电解液溶剂及相关原料中的有机成分,比如环状碳酸酯(PC、EC)、链状碳酸酯(DEC、DMC、EMC)及羧酸酯类(MF、MA、EA、MA、MP等)。电池材料检测及产品中气体检测推荐仪器气相色谱可用于电池产气分析,电池电解液原料纯度分析等,符合《SJ/T 11568-2016 锂离子电池用电解液溶剂》、《HG∕T 5786-2021 工业用碳酸丙烯酯》等标准检测要求。电池材料中离子检测推荐仪器离子色谱适用于分析电池电解液溶剂及相关原料中的氟离子,氯离子,硫酸根等,满足《SJ/T 11568-2016 锂离子电池用电解液溶剂》、《GB/T19282-2014 六氟磷酸锂的分析方法》等标准的检测需求。请点击下方链接,获取电池行业的全面解决方案实用干货|助力锂电行业,共迎科技未来
  • 60余场高规格固态电池报告!第九届全国固态电池研讨会第二轮通知
    第九届全国固态电池研讨会2024年11月1日-3日(1日报到)厦门香格里拉酒店【主办单位】中国硅酸盐学会固态离子学分会【承办单位】厦门大学福建省电池技术协会元能科技(厦门)有限公司一、大会介绍固态电池兼顾高能量密度和本征安全优势,有望成为未来最有技术颠覆潜力的电池体系。但固态电池依然面临固体电解质的电化学稳定窗口窄、电池外加压力大、负极锂枝晶抑制生长困难及其固-固界面不稳定等问题,尤其是产业化的技术及其生产装备很不成熟。但固态电池技术的挑战与机遇并存。行业分析认为,全固态电池有望2027年开始量产装车,2030年后固态电池将逐步进入规模性商用市场。中国硅酸盐学会固态离子学分会主办的全国固态电池研讨会每年举办一次,是中国固态电池科技研发与企业界的学术盛会和交流平台。2024年11月1-3日,第九届全国固态电池研讨会将在中国厦门举办。本次会议以“固态电池技术的现状及其发展”为主题。将汇聚固态电池领域的海内外专家学者、知名企业代表,聚焦核心技术和关键科学问题,围绕行业普遍关心的问题展开深入研讨。对固态电池发展现状及趋势进行总结与展望。欢迎各位专家、学者,及广大从业者共同参与本次会议。二、报告嘉宾&主题— 大会报告 —1、 固态电池的研发进展与技术挑战——欧阳明高 院士 清华大学2、 固态锂电池研发趋势展望——南策文 院士 清华大学3、 新型固态电解质的开发与应用——孙学良 院士 东方理工大学(暂名)4、 高比能电池:干法电极和聚合物复合电解质的研究——陈忠伟 院士 中国科学院大连化学物理研究所5、 聚合物氧化物复合电解质固态电池研究——李泓 研究员 中国科学院物理研究所6、 固态电池发展的关键技术——温兆银 研究员 中国科学院上海硅酸盐研究所7、 固态锂硫电池的研究进展——杨勇 教授 厦门大学— 邀请报告 —1、 固态电池力电耦合反应机制——薄首行 教授 上海交通大学2、 固固界面控制及功能——曹安民 研究员 中国科学院化学研究所3、 全固态电池正极材料的设计开发与产业化进展——曾雷英 技术总监 厦门厦钨新能源材料有限公司4、 柯勃尔蠕变型全固态锂金属电池——陈育明 教授 福建师范大学5、 “刚柔并济”电解质策略构筑高安全高能量密度锂电池体系——崔光磊 研究员 中国科学院青岛生物能源与过程研究所6、 聚醚基聚合物固态锂金属电池——丁书江 教授 西安交通大学7、 氧化物固体电解质与高能量密度高安全固态锂电池——郭向欣 教授 青岛大学8、 聚合物基固态锂/钠离子电池——郭新 教授 华中科技大学9、 高比能固态锂电池关键材料与界面调控——郭玉国 研究员 中国科学院化学研究所10、 基于中子表征方法的固态电解质材料晶体场设计与界面工程策略研究——韩松柏 教授 南方科技大学11、 固态电池高介电复合固态电解质——贺艳兵 教授 清华大学深圳国际研究生院12、 一类粘弹性无机玻璃固体电解质材料——胡勇胜 研究员 中国科学院物理研究所13、 高稳定金属锂负极界面研究——黄佳琦 教授 北京理工大学14、 固态电池研发进展——黄建宇 教授 燕山大学15、 锂/固体电解质界面的调控——黄学杰 研究员 中国科学院物理研究所、松山湖材料实验室16、 固态电池关键材料及界面优化——黄云辉 教授 华中科技大学17、 氧化物固态电解质材料开发及产业化应用——鞠博伟 主任研究员 长沙矿冶研究院有限责任公司固态电池项目负责人18、 复合固态电解质界面设计、工艺探索与电池产业化——李峥 总经理 清陶能源发展有限公司19、 Lithium-ion Battery Cathode: From Cobalt-rich to Cobalt-free——刘奇 副教授 香港城市大学20、 全固态电池-固固界面下的压力困境:失效,机理,与应用——宁子杨 博士 宁德时代新能源科技股份有限公司/固态电池首席技术官21、 锂离子电池多尺度力学和膨胀表征方案——齐琼琼 研发经理 元能科技(厦门)有限公司22、 全固态电池界面电阻的直接计算——施思齐 教授 上海大学23、 硫化物全固态锂电池的研发进展——孙焕丽 电池开发部部长 一汽研发总院24、 提升硫化物全固态电池循环寿命——邵敏华 教授 香港科技大学25、 Li3Zr2Si2PO12固态电解质及其固态电池研究进展——汤卫平 教授 上海交通大学26、 聚合物基固态电解质及其固态电池设计——汤育欣 教授 福州大学27、 工况XPS技术在全固态电池中的应用研究——陶剑铭 讲师 福建师范大学28、 快充固态电池的挑战与机遇——王家钧 教授 哈尔滨工业大学29、 硫化物(卤化物)全固态电池研究进展——王建涛 副总经理 国联汽车动力电池研究院有限责任公司30、 固态锂金属电池的“模型化”TEM原位表征——王鸣生 教授 厦门大学31、 全固态电池界面解析与调控——王雪锋 研究员 中国科学院物理研究所32、 锂离子电池新型固态电解质研究——尉海军 教授 北京工业大学33、 全固态电池技术研究进展——吴凡 研究员 中国科学院物理研究所34、 聚合物固态电池研究及产业化——谢海明 教授 东北师范大学35、 高性能锂钠硫化物固态电解质设计——谢佳 教授 华中科技大学36、 富锂锰基正极材料的结构调控与性能优化——谢清水 教授 厦门大学37、 固态金属空气电池关键材料研究——徐吉静 教授 吉林大学38、 复合固态电解质的微纳结构与界面调控——徐林 教授 武汉理工大学39、 面向产业化的固态电池开发进展及未来展望——徐航宇 技术总监 北京卫蓝新能源科技股份有限公司40、 固态聚合物电解质的分子结构调控——许恒辉 教授 华中科技大学41、 高能量密度固态锂电池研究开发进展——许晓雄 教授 南方科技大学42、 锂硫催化:从液态到固态——杨全红 教授 天津大学43、 脱嵌-转化卤化物正极材料的合成及反应机制研究——杨晓飞 研究员 中国科学院大连化学物理研究所44、 新型氯化物固体电解质及其全固态锂电池——姚宏斌 教授 中国科学技术大学45、 硫化物全固态电池——姚霞银 研究员 中国科学院宁波材料技术与工程研究所46、 功能型硫银锗矿电解质设计合成及高性能全固态电池构筑——余创 教授 华中科技大学47、 固态钠电池关键材料探索——余彦 教授 中国科学技术大学48、 全固态电池关键材料热安全特性——禹习谦 研究员 中国科学院物理研究所49、 硫化物/卤化物固体电解质材料的改性研究——张隆 教授 福建师范大学50、 600Wh/kg电池研究进展——张强 教授 清华大学51、 硅基固态电池性能提升策略与机理解析——张桥保 教授 厦门大学52、 金属锂在全固态电池中的沉积问题——张跃钢 教授 清华大学53、 基于离子液体凝胶一体化改性的耐高温固态锂金属电池的设计研究——郑春满 教授 国防科技大学54、 柔性复合固态电解质的构筑及界面行为研究——郑云 教授 福州大学55、 固态锂硫电池的设计制备——周光敏 副教授 清华大学深圳研究生院56、 基于新型固态电解质开发固态电池——周豪慎 教授 南京大学57、 聚合物基固态电池关键材料——周伟东 教授 北京化工大学58、 固态钠电助力双碳目标——周震 教授 郑州大学59、 全固态电池关键材料薄膜技术——朱凌云 教授 安徽大学60、 固态电池关键技术及攻关进展——朱星宝 首席科学家 合肥国轩高科动力能源有限公司三、大会日程安排四、大会注册及缴费【会议注册】本次会议由于嘉宾席位有限,请务必提早注册,若延后报名,不能保证安排会议酒店住宿及参会席位。参会代表请扫描下面二维码注册。扫码报名注册【缴费标准】1.学生代表需凭有效学生证件报名;2.注册费标准以缴费日期为准。温馨提醒:首轮报名优惠截止至9月30号,请参会者尽快提交报名信息。【缴费方式】1.现场缴费方式:现场注册缴费的参会人员,统一在签到处签到缴费后领取参会证方可入场;2.网上缴费方式:银行转账或扫码支付。如下所示:缴费方式一:银行转账户名:福建省电池技术协会账号:3515 0198 7901 0000 0067开户行:建设银行厦门翔安火炬园支行(备注须填写:参会人的单位+姓名+电话)缴费方式二:微信或支付宝(备注须填写:参会人的单位及姓名)五、大会注册及缴费1.会议将制作摘要集,有意投稿者请先下载“摘要投稿格式”文件,按照要求书写。联系人:李益孝,13599537970投稿邮箱:liyixiao@xmu.edu.cn投稿截止日期:2024年10月10日2.墙报展出:参会时须携带墙报进行展出交流,墙报尺寸:宽90CM × 120CM (自带),现场提交并登记备注。本次面向青年教师和研究生设立墙报奖。投稿时,请按照此论文形式命名文件名称:“邀请报告:单位+论文题目”或“墙报:单位+论文题目”。六、赞助参展为了共同办好这次大会,热烈欢迎各企业赞助本次会议。会议有多种赞助形式(大会独家冠名、晚宴独家冠名、茶歇赞助、资料印刷赞助、胸牌赞助、纪念品赞助、会刊赞助以及展位赞助等)。如有意愿,请联系会务组:【大会独家赞助】深圳市新威尔电子有限公司【大会晚宴赞助】厦门厦钨新能源材料股份有限公司【高级赞助】江苏前锦炉业设备有限公司厦门固纳新能源材料股份有限公司(持续征集中 王老师:13400667617)【展位赞助】深圳市科晶智达科技有限公司佛山微迈科技有限公司宜兴精新粉体设备科技有限公司Energy & Environmental Materials沃特世科技(上海)有限公司米开罗那(上海)工业智能科技股份有限公司劢强科技(上海)有限公司耐驰科学仪器商贸(上海)有限公司厦门韫茂科技有限公司元能科技(厦门)有限公司(持续新增中 王老师:17750761320)七、联系会务组注册联系刘小利,18965119380,xiaoli.liu@iesttech.com 投稿联系李益孝,13599537970,liyixiao@xmu.edu.cn 赞助参展联系王斌,17750761320,bin.wang@iesttech.com 王伟立,13400667617,wlwang@xmu.edu.cn 缴费联系王江莉:18059211502,2732226485@qq.com 住宿与餐饮咨询刘小利,18965119380,xiaoli.liu@iesttech.com 总协调高军,13950094580,gaojun@xmu.edu.cn
  • 【会议通知】固态十大焦点问题解答&天目湖先进电池产业创新论坛暨固态电池研讨会
    —2月23-24日中国-溧阳—天目湖先进电池产业创新论坛暨固态电池研讨会 参会联系人史女士:18115066088(参展联系人)周先生:18151976268(参展联系人)邢女士:18961291736(参会、发票、住宿对接人)如申请参会请填写左方二维码 论坛信息论坛时间2023年2月23-24日论坛地点江苏溧阳天目湖豪生大酒店组织机构l 指导单位工业和信息化部产业发展促进中心溧阳市人民政府长三角物理研究中心l 主办单位江苏省溧阳高新技术产业开发区管理委员会天目湖先进储能技术研究院江苏省储能行业协会中国汽车动力电池产业创新联盟固态电池分会北京清洁能源前沿研究中心江苏省储能材料与器件产业技术创新战略联盟 l 赞助单位赛默飞世尔科技(中国)有限公司溧阳储慧智能软件科技有限公司上海微纳国际贸易有限公司林德(中国)投资有限公司康模数尔软件技术(上海)有限公司牛津仪器科技(上海)有限公司上海交通大学绍兴新能源与分子工程研究院广东光华科技股份有限公司深圳市科晶智达科技有限公司上海米开罗那机电技术有限公司天津三英精密仪器股份有限公司深圳市新威尔电子有限公司合肥科晶材料技术有限公司博亿(深圳)工业科技有限公司威格科技(苏州)股份有限公司北京并行科技股份有限公司苏州易拓联国际贸易有限公司天美仪拓实验室设备(上海)有限公司苏州越视精密仪器有限公司瑞士万通中国有限公司深圳市迪斯普设备有限公司徕卡显微系统(贸易)有限公司广东欧科空调制冷有限公司杭州蓝固新能源科技有限公司东莞市琅菱机械有限公司咸阳科源新材装备有限公司深圳市泰能新材料有限公司苏州鸿昱莱机电有限公司复纳科学仪器(上海)有限公司复阳固态储能科技(溧阳)有限公司荷兰IVIUM艾维电化学(天津德尚科技有限公司)上海荆谱若科技有限公司天目湖先进储能技术研究院中科海钠科技有限责任公司北京卫蓝新能源科技有限公司l 合作媒体environmental advances、储能科学与技术、电化学期刊、电源技术杂志、高低温特种电池、金属空气电池、锂电联盟会长、锂电新能源、锂想生活、连线新能源、纳米materials、能源学人、石墨时讯、无人机、新材料资讯、新能源情报局、新威、伊曼如歌、仪器信息网、中国颗粒学会 组织委员会名誉主席:陈立泉 执行主席:温兆银,李泓组织委员会主席:李泓委员(按姓名首字母排序):薄首行、别晓非、曹安民、曾伟国、陈立桅、崔光磊、郜明文、关敬党、金東規、李泓、李晶泽、刘敏、刘张波、陆浩、史冬梅、王建涛、王尊志、尉海军、吴凡、夏晖、徐吉静、许晓雄、阳如坤、杨全红、姚霞银、易昊昊、赵伟、周伟东报告日程 固态十大焦点问题圆桌讨论期间邀请资深专家进行解答1、全固态锂电池相对于液态锂离子电池,是否有足够的的不可替代的优势,它的出现能否更好的解决安全性问题和里程焦虑?2、适合固态电池的电芯构型是什么?圆柱、软包和方壳?制造工艺选择叠片还是卷绕?制备极片选择干法还是湿法?3、有报道称,LG放弃全固态,这是否意味着全固态电池商业化短期内看不到希望?中国能否后发先至?4、原位固态化技术的意义和优势是什么?其主要难点和挑战在哪?5、为克服锂资源瓶颈,发展固态钠离子电池是否可行?固态钠离子电池相比于固态锂离子电池,可能有哪些优势和不足?6、硫化物全固态电池量产必须引入哪些新的制备技术和装备,大规模制造有哪些挑战?制造成本是否可以接受?7、目前硫化物全固态电池能量密度最高达到什么水平?循环性能达到什么水平,室温倍率特性如何?关键性能指标距离动力电池应用需求还有多大距离?8、固态电池技术在大规模储能市场的应用前景如何?是否有必要开始布局?哪些材料体系需要重点布局?9、目前混合固液电池技术在能量密度、安全性、循环寿命方面达到了什么水平?是否存在技术指标的天花板,是否是全固态电池的过渡技术?10、固态锂硫电池具备高能量密度、低成本和解决多硫离子穿梭问题的可能,目前还有哪些技术影响其量产? 赞助单位 参会单位 报名参会和住宿预订01参会费用如申请参会请填写左方二维码*注:1、参会费用包含:论坛注册费、餐费(含晚宴)、茶歇、资料费等,不包含酒店住宿费用。2、由于酒店餐饮容纳人员有限,超出部分用餐自理,敬请谅解。02缴费付款方式:银行转账公司名称:溧阳深水科技咨询有限公司地 址:江苏省溧阳市昆仑街道上上路87号(江苏中关村创智园1号楼)电 话:0519-87300136开 户 行:建设银行溧阳燕山路支行账 号:32050162634800000124付款请注明:“固态电池+姓名”,并将付款凭证保留,便于报到时查验。缴费成功后,请保持手机畅通,会务组会尽快与您联系,感谢您的支持!03住宿会务组在天目湖豪生大酒店以优惠价格为本次会议联系了一定数量的房间,参会人员可享受会议优惠价,鉴于会议规模,房间数量有限,先到先得。请各位嘉宾及时与工作人员联系确认,以免错过优惠价,费用自理。 会议联系人会务组邮箱ties-conference@aesit.com.cn联系电话史女士:18115066088(参展联系人)周先生:18151976268(参展联系人)邢女士:18961291736(参会、发票、住宿对接人)
  • 我国首台全固态连续激光鲜红斑痣治疗仪研制成功
    在“十一五”863计划“全固态激光器及其应用技术”重点项目的支持下,中国人民解放军总医院承担的“全固态激光治疗血管瘤设备”课题取得重要突破,研制出国内首台全固态连续激光鲜红斑痣治疗仪,近日顺利通过验收。   中国人民解放军总医院激光医学科、北京心润心激光医疗设备技术有限公司等单位,根据光动力作用原理和鲜红斑痣的病变特点,利用全固态激光技术,研制出国内首台全固态连续激光鲜红斑痣治疗仪。该治疗仪输出稳定、光斑质量均匀、临床使用方便、可靠性高和临床疗效好、设备达到了同类产品的国内外先进水平。目前,该项目成果已获SFDA批准在临床试用2000余例,有效率100%。   鲜红斑痣是一种先天性血管畸形,并随年龄增长而加重的、终生性常见多发病,发病率高达3-5‰,我国每年约有5-8万患者出生。该设备的成功研制,不仅为数百万鲜红斑痣患者带来福音,而且有力地促进我国相关激光医疗设备产品和产业的发展。
  • 锂离子超导体研究助力全固态电池未来!
    【研究背景】锂超离子导体是全固态电池的核心技术之一,因其具有高离子导电性而成为研究热点。相比于传统的液体电解质,这些无机超离子导体能显著提升电池的安全性和能量密度。然而,目前能够同时实现超离子导电性和满足所有实际需求的材料仍然有限,主要面临材料选择、稳定性以及经济性等挑战。为了解决这些问题,加利福尼亚大学伯克利分校KyuJung Jun,Gerbrand Ceder等科学家们在结构和化学因素方面进行了深入研究。一方面,他们通过优化结构特征,如框架结构和锂离子位置,提高了导体的离子导电性;另一方面,他们还探索了化学调控的方法,以进一步提升导电性能。通过这些研究,科学家们不仅在材料性能上取得了突破,还为全固态电池的发展奠定了基础。这些进展为未来新型超离子导体的发现和应用提供了宝贵的经验和指导。【表征亮点】本文通过多种表征手段深入探讨了无机锂超离子导体的离子导电性,从而揭示了其在固态电池中的潜在应用价值。首先,本文采用了电化学阻抗谱(EIS)来直接测量离子导电性,并通过等效电路拟合分析区分了晶粒内部和晶粒边界的离子传导过程。EIS的应用揭示了在固态电池中,超离子导体的离子导电性可以通过优化晶粒结构和界面状态得到显著提升。其次,本文通过同位素示踪技术,如时间飞行二次离子质谱(TOF-SIMS)、质谱和中子深度剖析,测量了锂离子的扩散系数。这些技术揭示了锂离子的扩散机制及其在晶格中的迁移路径,为理解超离子导体的离子导电性提供了关键信息。此外,脉冲场梯度核磁共振(PFG-NMR)技术用于探讨自扩散系数,从微观层面分析了锂离子的运动行为。在微观层面的研究中,固态核磁共振(NMR)被用来研究局部离子跳跃频率和随机行走扩散系数。通过谱线形状分析和NMR弛豫度测定,本文揭示了锂离子在不同温度下的扩散特性。此外,准弹性中子散射(QENS)和μ子自旋弛豫(μSR)技术用于探讨原子尺度上的离子扩散,这些结果帮助理解了离子在超离子导体中的实际传输行为。最后,计算方法如分子动力学模拟和nudged elastic band计算被用于揭示锂离子在固态导体中的扩散机制。分子动力学模拟提供了锂离子扩散系数的估计,并揭示了原子级别的扩散路径。Nudged elastic band计算则用于估算锂离子迁移障碍,从而推导出宏观激活能量。尽管这些计算方法不能直接测量离子导电性,但它们为理解离子扩散机制提供了重要的理论支持。综上所述,通过这些表征手段和发现,本文不仅揭示了超离子导体的离子导电性特点,还为优化其在固态电池中的应用提供了宝贵的见解。这些研究成果启发了未来在设计和开发新型超离子导体材料时,应该着重关注结构优化和化学成分调控。未来的研究应进一步探索如何结合这些微观机理与实验数据,推动新材料的发现和应用,以实现全固态电池的性能提升和商业化应用。【图文解读】图1:在无机晶体材料中,控制锂离子扩散的静态结构因素。图2. 骨架对锂离子扩散的影响。图3. 超离子导体中,锂Li位点拓扑的特征。图 4 阴离子基团的旋转运动,对锂离子扩散的影响。图5: 提高离子电导率的化学因素。图6: 在增强离子电导率方面,各种设计原理的突破。图7: 超离子导体的设计策略。【结论展望】本文深入理解和优化无机锂超离子导体的导电机制,以推动全固态电池的技术进步。首先,通过系统地探讨结构因素和化学因素对离子导电性的影响,揭示了结构框架和锂离子位点特征在提高导电性方面的重要性。这表明,设计高导电性材料不仅需要关注材料的结构特征,还要综合考虑其化学成分,以实现最优的离子导电性能。其次,文章总结了过去40年导体发展的关键概念和技术进展,强调了从理论研究到实际应用的转化过程。这为研究人员提供了一种系统化的思维框架,有助于在材料设计和优化中采用双重策略,既利用结构因素构建高导电原型,又通过化学调整进一步提升导电性。最后,本文提出了加速发现新型超离子导体的战略方法,为全固态电池的实际应用奠定了理论基础,推动了储能技术的发展。原文详情:Jun, K., Chen, Y., Wei, G. et al. Diffusion mechanisms of fast lithium-ion conductors. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00715-9
  • 创新钠离子导体显著提升全固态电池性能!
    【研究背景】钠离子电池(NIBs)因地球上丰富的钠资源,在大规模经济型能源储存等领域被视为锂离子电池的潜在替代品。与传统的锂离子电池相比,钠离子电池具有成本低、资源丰富等优点。然而,NIBs存在较低的能量密度(约160 Wh/kg)和使用易燃的有机液体电解质带来的安全问题,这给其在实际应用中带来了巨大的挑战。近日,来自加拿大西安大略大学孙学良院士,同济大学杨孟昊等团队在全固态钠离子电池(ASSNIBs)研究中取得了重要进展。该团队设计并制备了一类基于双阴离子框架的非晶钠离子导体(Na2O2–MCly, M = Hf, Zr, Ta),通过引入氧氯化物双阴离子结构,成功实现了室温下离子导电率高达2.0 mS/cm的电解质材料。这类新型电解质不仅具备宽广的电化学稳定窗口,还具有优异的机械性能。通过将这种Na2O2–HfCl4电解质直接应用于全固态钠离子电池中,并与Na0.85Mn0.5Ni0.4Fe0.1O2正极材料搭配,该团队显著提高了电池的倍率性能与循环稳定性。在室温下以0.2C速率进行700次充放电循环后,该电池仍能保持78%的容量,这一结果远超现有报道。该研究为高性能全固态钠离子电池的发展提供了新的技术路径,展现了未来钠离子超离子导体材料的广阔应用前景。【表征解读】本文通过多种先进表征手段对所制备的钠离子固态电解质(SSEs)进行了深入分析和解读,从而揭示了其优异的性能来源。首先,采用X射线衍射(XRD)技术对材料的晶体结构进行了表征,结果发现这些Na2O2–MCly(M = Hf, Zr, Ta)氧氯化物电解质具有双阴离子亚晶格结构。这种特殊的结构通过氧桥键和非桥氧协同作用,促进了钠离子的快速迁移,从而显著提高了材料的离子导电性,最高可达2.0 mS cm&minus 1(25°C)。XRD的结果揭示了材料中独特的离子传导通道,为深入理解其高离子导电率提供了直接的证据。针对钠枝晶生长这一长期困扰全固态钠离子电池(ASSNIBs)应用的问题,本文利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对电解质与钠金属负极界面处的微观形貌进行表征。结果表明,在使用Na2O2–HfCl4(NHOC)电解质时,电池在长期循环过程中未观察到明显的钠枝晶生长,这说明该类电解质能够有效抑制钠枝晶的形成。通过界面结构的微观分析,进一步揭示了Na2O2–HfCl4电解质与金属钠之间的稳定界面作用机制。为了进一步挖掘材料的电化学性能,本文结合了电化学阻抗谱(EIS)对电解质的电化学稳定性和离子导电行为进行了系统表征。EIS结果显示,这些氧氯化物电解质不仅具有优异的导电性能,而且在高压下也表现出较宽的电化学稳定窗口,特别是在Na2O2–HfCl4电解质中,宽达4.5V的电化学窗口为其在高能量密度钠离子电池中的应用提供了可能性。此外,材料的杨氏模量测试表明,该电解质具有适中的机械性能,易于通过冷压成型,与固态电池的实际应用相契合。在此基础上,本文进一步通过循环伏安法(CV)和恒电流充放电测试,对基于Na2O2–HfCl4电解质的ASSNIBs进行了详细的电化学性能研究。结果表明,该电池在0.2 C倍率下经过700个充放电循环后,仍能保持较高的容量,表现出优异的循环稳定性和倍率性能。通过这些电化学表征手段,研究人员深入分析了Na2O2–HfCl4电解质的电化学行为,证实其与高电压正极材料Na0.85Mn0.5Ni0.4Fe0.1O2之间的良好匹配性能,进一步展示了该类电解质在实际电池应用中的巨大潜力。总之,经过XRD、SEM、TEM、EIS、CV等多种表征手段的深入研究,本文全面分析了Na2O2–MCly氧氯化物电解质的微观结构、电化学性能和钠离子传导机制,揭示了其作为固态电解质的优异性能。在此基础上,成功制备了性能优异的ASSNIBs新材料,为全固态钠离子电池的进一步发展提供了新的思路和技术支撑。【图文速递】图1:xNa2O2–MCly (M = Hf, Zr和Ta)固态电解质solid-state electrolytes,SSE的合成和性质。图2:无定形Na2O2–MCly,NMOC 固态电解质SSE局部结构分析。图3:NHOC固态电解质SSE的全固态钠离子电池all-solid-state Na-ion batteries,ASSNIB电化学性能。图4:全固态钠离子电池ASSNIB中的界面相容性。【结论展望】本文的研究揭示了基于双阴离子框架的非晶钠离子导体在提升钠离子电池性能方面的巨大潜力。通过引入氧氯化物结构,研究者们成功实现了室温下高达2.0 mS cm&minus 1的离子导电率,并且展现出宽广的电化学稳定窗口和优良的机械性能。这一成果不仅克服了传统单一阴离子框架的固有局限,还为全固态钠离子电池的设计提供了新的思路。具体而言,采用Na2O2–HfCl4电解质与Na0.85Mn0.5Ni0.4Fe0.1O2正极的全固态电池,在700个循环后仍能保持78%的容量,显示出优异的循环稳定性和倍率能力。这一发现为未来探索新型超离子导体开辟了新的方向,促使科研人员进一步关注双阴离子化学在电池技术中的应用,推动钠离子电池向更高能量密度和更安全的方向发展。总之,本研究为提升钠离子电池的整体性能奠定了基础,具有重要的科学价值和应用前景。文献信息:Lin, X., Zhang, S., Yang, M. et al. A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-02011-x
  • 应用案例|锂金属固态电池绝热热失控特性测试
    本期预览 本文利用BAC-420A大型电池绝热量热仪对锂金属负极固态电池进行绝热热失控实验,评估该电芯的热稳定性和热失控危害。前言随着电动汽车的大规模发展,现有锂离子电池体系已不能满足日益增长的续航里程需求,亟须发展更高能量密度的电池体系。在众多的电池材料体系中,层状过渡金属氧化物-石墨负极体系的理论能量密度极限约为300Wh/kg。将纯石墨负极替代为硅基合金,则能量密度理论上限可提升至约400Wh/kg。而金属锂负极具有最低的电位和最高的理论比容量,被认为是电池负极材料的终极选择,锂金属电池能量密度的理论上限可达500Wh/kg以上。然而锂金属负极在传统液态电池体系中难以实现,金属锂和电解液界面副反应多,且负极容易产生锂枝晶,不满足电池循环寿命和安全性要求。将液态电池的电解液与隔膜替换成固态电解质所组成的全固态电池,被认为是解决锂金属负极应用的有效途径。固态电解质稳定性高、不挥发、不泄漏,并对金属锂具有良好的兼容性,因此锂金属全固态电池有望在实现高能量密度的同时解决锂电池本质安全问题,并且还具有成组效率高和模组结构简单等优势,因此中国在国家层面已明确提出了对固态电池的研发和产业化进程要求。图1 液态和全固态锂离子电池结构差异虽然目前固态电池仍然处于商业化早期阶段,但国内许多厂商的产品已接近量产状态。本文利用BAC-420A大型电池绝热量热仪对某厂商提供的锂金属固态电池样品进行绝热热失控实验,以评估固态电池的安全性。实验部分1. 样品准备电池样品: 锂金属全固态锂电池(20Ah),满电。2. 实验条件实验仪器:BAC-420A大型电池绝热量热仪、电池充放电设备;实验模式:HWS-R模式、温差基线模式;记录频率:1~100Hz;自放热检测阈值:0.02℃/min;热电偶固定位置:电池大面中心点(样品热电偶)、正负极耳。实验结果1. 绝热热失控曲线图2 锂电池热失控温升曲线及温升速率-温度曲线锂金属固态电池的绝热热失控曲线如图2所示,可以发现该电芯的热稳定性与常规的液态高镍三元电芯类似,但热失控剧烈程度明显更高。锂金属固态电池的热失控过程表现出如下的特征:1. 自放热起始温度Tonset低:Tonset温度为74.42℃,与常规三元电芯相当甚至略低。通常认为固态电解质与正负极界面的热力学稳定性要优于液态电池内的SEI膜,因此固态电池的Tonset温度理应较高。上述现象有待明确电池体系后进行进一步探究。2. 热失控起始温度接近锂金属熔点:热失控起始温度TTR约为180℃,该温度下锂金属负极熔化,电解质与熔融锂金属发生界面反应,产生的氧气会诱发锂金属发生剧烈氧化反应,导致热失控发生[1]。根据图2b,到达TTR之前电芯升温速率出现明显下降,与负极熔化过程相对应。3. 热失控剧烈程度显著高于液态电池:该电芯的热失控最高温度Tmax无法有效测定。这是由于热失控瞬间,用于温度采样的N型热电偶迅速发生熔断。考虑到采用的N型热电偶的熔点为1330℃,因此该电芯的Tmax明显超过三元9系液态电池的数值(1100-1200℃)。针对该电芯的检测需求,后续需更换熔点更高的铂基热电偶。同时,估算该电芯热失控瞬间的温升速率达到50000℃/min以上,超过目前已知的所有液态锂电池。图3 样品锂电池热失控过程监控视频另外,从热失控瞬间的监控画面可以看到,该固态电池的热失控爆燃持续时间短,爆炸冲击威力大。随着能量密度的提高,电芯热失控能量释放速率也显著增大。实验结论本次实验利用BAC-420A大型电池绝热量热仪对某型号的锂金属负极固态电池进行了绝热热失控特性评估,相关实验数据表明该电芯的热稳定性与液态高镍三元电芯相当甚至略低,同时热失控剧烈程度明显高于已知液态电池,因此针对该电芯应制定更为严苛的热管理策略。引用文献[1] Vishnugopi B S , Hasan M T , Zhou H , et al. Interphases and Electrode Crosstalk Dictate the Thermal Stability of Solid-State Batteries[J]. 2022..
  • 厦大团队成功研制新型自旋固态光源芯片
    磁性材料中,拓扑自旋结构具有比传统材料稳定耐久的优势,在信息处理储存领域应用潜力巨大,但因其尺度小、依赖低温和磁场环境等特点,一直在应用方面难以突破。近日,厦门大学半导体研究团队康俊勇教授、张荣教授、吴雅苹教授通过物理学、材料学、电子学的交叉研究在该领域取得重大进展,提出利用强磁场调控原子轨道的新思想,成功将拓扑自旋结构用于半导体器件,研制出拓扑自旋固态光源芯片,实现了拓扑自旋结构从理论到器件的关键突破。相关成果以吴雪峰、李煦、康闻宇为共同第一作者于7月13日发表在《自然电子学》期刊上。拓扑自旋固态光源芯片示意图。课题组研究人员介绍,为了发挥拓扑自旋结构的优势作用,并实现在半导体器件领域的应用,团队通过理论模拟,大胆预测拓扑自旋结构可能反向操纵电子和光子。在这一思想火花的指引下,团队自主设计搭建设备,通过优化材料体系,在宽禁带半导体衬底上成功生长出大尺度、长程有序且在室温及无外磁场环境下高度稳定的拓扑半子晶格,为自主研发拓扑自旋固态光源芯片打下坚实基础。(a)磁力显微镜下的大面积meron晶格(b)电子在meron结构中运动轨迹示意图(c)T-LED结构设计及其粒子手性传递机理示意图。随着研究的深入,团队进一步证实此前预测,即当电子注入半子晶格时,其输运轨迹可受到有效调控,进而产生自旋极化。在此基础上,团队进一步将自旋极化电流注入半导体量子阱中,完成了从拓扑保护的准粒子到电子再到光子的手性传递,实现了高效的自旋光发射,成功研制出拓扑自旋固态光源芯片。该新型拓扑自旋固态光源芯片有望满足未来量子科技等发展需求。
  • 日立应用|固态电池电极的原位观察
    液态锂电池是目前新能源领域最主要的能源解决方案,但是不论是磷酸铁锂还是三元材料都很难突破350Wh/kg的能量密度,在提高能量密度的同时还伴随着很多安全隐患。而固态电池与传统锂电池最大的区别在于电解质,它使用固体电解质代替了电解液和隔膜。 传统锂电池(左)和固态电池(右)结构固态电池的优点1、固态电解质大大降低热失控风险;2、固态电池电化学窗口更高,可以匹配高能的电极,大幅提高理论能量密度;3、固态电池可以简化封装,缩减电池重量,提高体积能量密度。固态电池现阶段的发展障碍1、大部分固态电解质电导率较低,快充性能不佳;2、循环过程中物理接触变差,影响使用寿命;3、制备工艺复杂。而固态电池电极之间、电极与电解质之间的形貌和结构对于电池整体的性能和安全性有重要的影响,也是研究固态电池性能的关键。目前,日本在固态电池领域的研究相对领先,其中以氧化物、硫化物路线为主。本文中我们利用日立扫描电镜、离子研磨仪、真空转移系统和原位样品台等设备,对固态电池在充放电过程中电极之间的形貌和结构变化进行了观察。固态电池正极中含有金属锂,在空气状态下容易发生反应,因此我们需要对整个制样和观察过程隔绝空气。日立独特的真空转移系统可以将样品在手套箱、电子显微镜、离子研磨仪以及原子力显微镜之间隔绝空气转移,从而避免了样品在转移过程中的氧化。 日立真空转移系统由于固态电池的电极界面需要通过切割才可以观察到,本文采用日立的离子研磨仪(IM4000Plus)对整个电池进行无损切割,从而获得电池电极的界面。离子研磨仪采用Ar离子加工,可以大大减少加工损伤,同时加工过程是在真空下完成的,配合真空转移系统可以将样品转移到扫描电镜中观察。离子研磨截面加工过程和日立离子研磨仪IM4000Plus为了实现通电状态下的原位观察,我们采用了可以原位通电的样品台,且此样品台可以配合真空转移系统工作,可以保证样品从离子研磨仪切割完后隔绝空气转移到原位样品台上,再通过扫描电镜的交换仓转移至样品仓观察。 原位真空样品台本次观察的固态电池由NCA(Ni-Co-Al)正极、硫化物固态电解质和铟对极组成,分别对电极施加不同的电压和时间,观察电极界面的变化。从下图(a)可见,在施加3.1V电压时,固态电极和铟对极之间有一层In-Li合金层;从(b)图可见在施加3.5V电压60min后合金层向In层扩散(箭头所示);从(c)图可见在施加3.7V电压110min后,Li的扩散更加明显。由此可见,在高电压或者长时间通电下In-Li合金层会逐渐变宽,Li向In层逐渐扩散。整个过程都是通过日立高端冷场电镜Regulus8230在低电压下观察实现的。Regulus8230可以在低电压下获得背散射电子图像,看到In-Li合金层与电极之间的成分衬度,从而判断Li是否扩散。 固态电池截面原位观察(a)电压3.1V(b)电压3.5V,60min(c)电压3.7V,110minSEM型号:Regulus8230,加速电压:1.5kV,放大倍率:1,000x,信号:HABSE日立为固态电池的原位观察提供了离子研磨仪、真空转移系统、原位样品台和扫描电镜一整套方案,可以满足新能源客户对锂电池形貌和结构的研究。参考文献:Long, Lizhen. et al. Polymer Electrolytes for Lithium Polymer Batteries. Journal of Materials Chemistry A. 26 (2016): 138-169.Zhu, Gaolong, et al. Fast Charging Lithium Batteries: Recent Progress and Future Prospects. Small 2019, 1805389-1805402.公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 2024固态电池元年,安全是关键,电弛电芯原位产气如何解
    2024年,被誉为固态电池元年。随着新能源汽车市场的持续扩大,固态电池作为一种具有高能量密度、长寿命、高安全性的新型电池,逐渐成为未来新能源汽车的主流动力电池。然而,在固态电池的研发和产业化过程中,安全性问题始终是关键因素之一。电芯原位产气作为固态电池安全性问题的重要表现,亟待解决。 固态电池安全性问题1、高温性能固态电池在高温环境下容易出现性能衰退,甚至热失控。高温会导致固态电解质和电极材料发生分解、氧化等化学反应,释放出气体,从而产生内部压力。当压力超过电池壳体的承受能力时,电池可能会发生爆炸。()2、过充与过放过充和过放是固态电池安全性的重要隐患。在过充过程中,电池内部会产生大量的气体,导致电池内部压力升高。而过放会导致电池内部产生锂枝晶,容易引发内部短路,进一步加剧电池的热失控风险。3、内部短路固态电池在制造和使用过程中,可能会出现内部短路现象。内部短路会导致电池局部热量积累,进而引发热失控。此外,内部短路还可能引起电池内部的气体产生和压力升高,增加电池爆炸的风险。 电芯原位产气的原因及解决方法原位产气的原因电芯原位产气是指在电池充放电过程中,由于电极材料、电解质或其它电池组件的化学反应,导致电池内部产生气体的现象。原位产气会降低电池的性能,增加电池内部压力,甚至引发热失控。固态电池中原位产气的主要原因包括:(1)电极材料的热分解:在充放电过程中,电极材料可能会发生分解反应,产生气体。(2)电解质的热分解:固态电解质在高温或高电压环境下,容易发生分解反应,产生气体。(3)电池组件的化学反应:电池内部的其他组件,如隔膜、粘结剂等,也可能会发生化学反应,产生气体。 (锂电池的内部产气原因) 解决方法为了解决电芯原位产气问题,可以从以下几个方面进行优化和改进:(1)优化电极材料:选择稳定性好、耐高温的电极材料,减少电极材料的分解反应。同时,对电极材料进行表面修饰,提高其结构稳定性。(2)改善电解质:选用具有高离子导率、低界面阻抗的固态电解质,提高电池在高温或高电压环境下的稳定性。此外,可以开发新型固态电解质,如聚合物、硫化物等,以提高电解质的化学稳定性。(3)优化电池结构:设计合理的电池结构,如采用柔性电极、三维导电网络等,以降低电池内部的应力集中,减少内部短路的风险。(4)严格制造工艺:在电池制造过程中,严格控制工艺参数,如温度、湿度等,以降低电池内部产生气体的可能性。 2024年是固态电池元年,安全性问题成为关键因素。电芯原位产气作为固态电池安全性问题的重要表现,亟待解决。通过优化电极材料、改善电解质、优化电池结构和严格制造工艺等方法,可以有效降低电芯原位产气的风险。然而,固态电池安全性问题的解决仍需要持续的技术创新和产业化推进。未来,我国应继续加大研发投入,推动固态电池技术走向成熟,为新能源汽车产业的可持续发展提供有力支撑。 电弛GPT-1000S 解决方案 电弛DC GPT-1000S 解决方案,通过特殊设计的GSP采气装置,可从软包电池、方壳电池、圆柱电池直接将电池产气已入到产气体积测量装置。该产气体积测量装置采用超微量气体流量测量技术,可原位、实时、在线、连续地监测电池的产气行为,包括产气量和产气速率等参数。其原理是为由于气体进入特定的介质中,介质分子与气体分子之间的相互作用破坏了介质表面的力平衡,使介质表面张力减少,从而在介质中形成微小气泡。由于该介质具有惰性与电池内产生的气体不发生反应,其形成的气泡可等同于电池产气体积。然后通过光学,超声波,电磁等传感器测量气泡,即可得到产气量。相较于传统的Jeff Dahn法(基于阿基米德浮力原理)、理想气体状态方程计算法等方法,本设备可直接测量微量产气的体积数据(μL),无需数据转换或换算,数据直接、结果精准、重复性高。且测量后的气体尾气可直接进行收集或直接串联GC、GC-MS、DEMS等多种气体成分分析设备,实现产气体积测量和成分分析联动测试,为材料研发和锂电池电芯产气机理的分析研究提供了真实可靠的数据支持。 (计量认证与方法验证) (定制集成化系统多因子耦合测量方案)
  • 肖向前:锂金属固态电池或是锂电终极目标
    p   “未来五年,锂电池行业将迎来大发展,或能持续十年的好光景。而以三元主导,金属固态电池将获得进一步发展。”知名锂电材料及产业化专家肖向前日前表示。3月30-31日, “2018中国新能源汽车动力电池先进技术高峰论坛”在上海举办 在活动间隙,肖向前接受了记者的采访,深入分析了未来锂电材料及新能源行业的发展方向。 br/ /p p   近几年,全球新能源汽车产业取得爆发性增长。我国新能源汽车产业受政策扶持,2017年销量高达77.7万辆。受益于电动汽车爆发式发展,动力类电池需求增长速度远超过3C数码类和储能类电池,未来市场空间巨大。预计2020年,中国动力锂电池产业规模有望突破1600亿元,可以说中国锂电市场已经提前步入动力电池驱动时代。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/774ef100-d291-4476-98ab-c214a8cfe4db.jpg" title=" 02083047965748.jpg" / /p p style=" text-align: center "   锂电材料及产业化专家肖向前 /p p   肖向前深耕新能源领域20年,现为青岛乾运高科新材料股份有限公司高管。当回顾锂电池行业的发展,肖向前感叹这几年的进步之快,可以用“惊人”“飞速”来形容。 /p p   1972年,M.Stanley Whittingham等人联合研发锂离子电池,然而在30年左右的时间里都处于实验室阶段,由于技术和成本等因素,无法实现产业化和商业化。一直以来,动力电池还是由铅酸电池主导,随着电子产品的发展,固态电池或胶体电池有了长足的进步,3C行业主要用镍氢电池,但其能量密度受制于材料本身的局限性,成本无法有效大幅降低,循环次数及“记忆性”使其寿命大大受限,环保等一系列问题决定了这只能是阶段性使用,必须开拓新的方向。 /p p   进入21世纪,经历长期的摸索,业内逐渐确立了锂离子电池的发展方向,但在具体方向上还没有确立,仍处于摸索状态。“因当时的技术原因,主要用钴酸锂做正极材料,但钴酸锂价格昂贵、有很大的毒性、环境污染大、循环性能差,也只能暂时用于3C电池,手机和笔记本电脑及其它便携式电子设备的电池多是钴酸锂作为正极材料制备的。” 肖向前介绍说,“新能源汽车及储能行业使用量较大,远远大于3C行业,钴酸锂用钴量大,而钴的有限性也难以支撑。” /p p   随着锂电池大方向基本明确,空间巨大,只是具体金属配比方向上需要技术探索。为此,我国在2004-2006年出现了第一波发展热潮,就像当初光伏行业一样的热潮,但它还算健康,并非简单盲目。以比亚迪为代表的公司大力投入,当时单是比亚迪就宣布投入50亿元进行磷酸铁锂的研发。国际上,日本三井、松下,韩国三星领先,国内同它们差距两年左右。 /p p   “因投资有过热之嫌而广为业内诟病,但投资极大地促进了技术进步,使中国成为锂电行业主要国家。同时,技术进步、国家政策、国内市场、潜在需求等决定了行业相对健康,不会走光伏行业的老路。”肖向前认为,随后行业尽管进入整合期,但技术进步没有停下脚步,磷酸铁锂、锰酸锂的逐渐成熟,推动了行业的发展。2010年前后,业内逐渐认识到三元和锰酸锂将是具有前景的锂电池正极材料。经历两轮整合后,2015年国家公布新能源汽车发展政策,补贴力度较大,行业迎来大发展机会。 /p p   肖向前表示,三元方向明确,同时伴随着技术的快速进步,近年来电池的成本平均以15-20%的速度下降,很快将达到不用补贴电动车也有竞争力的时代。三元是个广义的概念,目前国内主流的523将过度到622,当然622也是个过度,最后将升级到811。高镊三元NCA镍钴铝酸锂、NCM镍钴锰酸锂等实验室技术续航里程可达500公里,特斯拉宣布近900公里,5V锰酸锂也是正极材料的一大突破,但配套技术还需要突破,如高端电解液、电芯等。 /p p   在肖向前看来,现在国内和国外的差距主要在纯度上,在成品率上,所以做出的高端电池价格不占优势。行业技术进步之快,每年都有明显的进步,甚至按季度计,结合材料易得、安全性、低成本、比容量、便携性、使用方向等需求,未来必将是依需求不同的百花齐放式发展。而负极材料也将发生大的变化,金属固态锂电池将可能是非常有潜力的方向。“当前磷酸铁锂、三元等锂离子电池在放电过程中,电芯温度逐渐上升,绝对的安全性难以通过电池自身解决,金属锂固态电池是锂电的终极目标。” /p p   “行业的未来必将更加成熟,前景更加光明,能源将发生革命性变化,可再生、分布式、储能系统、智能化将形成全新的绿色能源生态循环系统。”肖向前判断说。 /p
  • 德可納利推出邻苯二甲酸酯在聚乙烯固态塑料的标准物质
    美国SPEX-中国独家总代理德可纳利科技集团(TKI),推出邻苯二甲酸酯在聚乙烯固态塑料的标准物质,用於美國消費者和玩具安全改進法規,相关参数请参考卖场,欢迎来电询价选购。 电话:021-64665918 021-64665971 传真:021-51079676 联系人:王小姐 邮箱:info@tkichina.com 地址:襄阳南路500号巴黎时韵大厦2509室 邮编:200031 公司网站:www.tkichina.com www.spexcsp.com
  • 电镜表征新成就颠覆认知 全固态电池量产不是梦
    导语2020开年新气象,电镜科研新成就。困扰业界许久的锂枝晶生长机理问题取得重大突破,全固态电池距离量产迈进一大步。近日,燕山大学亚稳材料制备技术与科学国家重点实验室黄建宇教授、沈同德教授和唐永福副教授等人联合美国佐治亚理工学院朱廷教授、宾夕法尼亚大学张宿林教授,通过巧妙地设计实验过程,实时直观地记录了锂枝晶生长的微观机制,精准测定了其力学性能和力-电耦合特性。更难能可贵的是,该研究团队还提出了一种固态电池中抑制锂枝晶生长的可行性方案。锂枝晶的生长机理难题困扰业界许久,至此终于有种“拨开云雾见天日,守得云开见月明”的感觉了。论文链接:www.nature.com/articles/s41565-019-0604-x据悉,该研究成果已在权威国际期刊《自然-纳米技术》(Nature Nanotechnology)刊登发布。《自然-纳米技术》是材料与纳米科技领域的国际顶级学术期刊,2019年的影响因子高达33.407,该研究成果的突破性和重要性由此可见一斑。为什么这项研究成果能够引发业界广泛关注呢?这就不得不提到目前在电动汽车上广泛使用的液态锂离子电池,其主要结构包括正负极材料、隔膜和电解液。因内部构造原因,液态锂离子电池容易受环境温度影响,而且很容易产生不可控的锂枝晶。锂枝晶非常“锋利”,可以刺破隔膜导致电解液泄漏,导致电池内部短路,从而造成电池起火甚至汽车自燃事故,近年来为提升电池的能量密度,企业把隔膜厚度从十几毫米降低到了五六毫米,2019年特斯拉、蔚来等大牌电动汽车相继“走火”,或许也间接反映了这个问题。概括言之,在材料体系没有创新的条件下,目前商品化的液态锂离子电池的能量密度已经逼近“极限”(300Wh/kg左右),“里程焦虑”、“可能自燃”等问题重创消费市场。既然液态电解液不行,那改用机械刚性的固态电解质不就完事了么?于是乎,全固态锂离子电池(简称:全固态电池)进入了公众视野。顾名思义,全固态锂离子电池采用的是固态电解质,不含任何液态组份,结构更加安全。与液态锂离子电池相比,全固态锂离子电池的能量密度最高潜力达900Wh/kg,因此,固态电池被视作为下一代锂电池技术革命,其量产与普及将会彻底解决电动汽车发展的最大瓶颈问题,国内外车企巨头已然纷纷布局涉足,“固态热潮”一时风头无两。然而,全固态电池的研发之路也并非一马平川。全固态电池以金属锂作为负极材料,仍然绕不开“不可控锂枝晶”的这个坎儿,实验结果表明,锂枝晶生长到一定程度时,也可以穿透固态电解质,造成电池短路失效。尽管诸多研究致力于探索如何抑制锂枝晶的产生,但是以往研究主要停留在宏观尺度,对于锂枝晶生长的微观机理、力学性能、刺穿固态电解质的机制及抑制其生长的科学依据缺乏足够了解。赘述至此,相信您应该充分了解黄建宇教授、沈同德教授等人的研究成果的重要性了吧?!___AFM-ETEM纳米电化学测试平台,可实现原位观测纳米固态电池中锂枝晶生长机制及其力学性能和力—电耦合精准定量测量。___据悉,该研究团队基于AFM-ETEM平台发现,在室温下,当对AFM针尖施加电压(过电位)时亚微米晶须开始生长,其生长应力高达130 MPa,远高于此前研究报道。此外,研究人员还发现锂晶须在纯机械载荷作用下的屈服强度可达244Mpa,远高于宏观金属锂的屈服强度(~1MPa)。可以说,该研究成果颠覆了研究者对锂枝晶力学性能的传统认知,为抑制全固态电池中锂枝晶生长提供了新的定量基准,为设计具有高容量长寿命的金属锂固态电池提供了科学依据,这项研究成果得到应用之后,全固态电池将有望加速实现商业化量产。很荣幸,赛默飞世尔科技旗下Thermo Scientific品牌的两大拳头电镜产品能够深度参与此项研究工作,并帮助研究团队发明了一种基于原子力显微镜—环境透射电镜(AFM-ETEM)原位电化学测试平台,建立起了一种有效的研究锂枝晶的动态原位实验表征新技术。它们是Themis™ ETEM环境气氛球差校正透射电子显微镜(左图)与Helios PFIB双束电镜(右图):Helios PFIB Themis™ ETEM Themis™ ETEM 300kV原子分辨扫描/ 透射电子显微镜可以一体化解决纳米材料在接触活性气体环境和升温的过程中的时间分辨动态特性原位研究,包括材料的结构性能关系、原子尺度的几何结构、电子结构以及化学组成。Helios PFIB系统结合了Elstar电子镜筒和Vion氙等离子体离子镜筒,既可以实现纳米分辨率和最高衬度成像,又能确保尺度样品加工的速度和精确度。基于此,赛默飞推出了一系列针对锂电池行业的多尺度二维及三维表征解决方案,主要包含多功能计算机断层扫描系统、扫描电镜、镓离子双束电镜、Xe等离子双束电镜、透射电镜等产品,涉及电芯表征、电极表征、隔膜表征等应用,希望从广度和深度两个方面,为客户在锂电池开发的各个阶段提供强力支持的产品组合,助力攻克电池研发技术难题,让全固态锂离子电池的量产与普及不再是梦,让电动汽车“充一次电跑1000公里”不再是梦!
  • 量子光驱动固态高次谐波生成器问世!
    【研究背景】高次谐波产生(HHG)是推动超快科学、极端非线性光学以及众多应用发展的关键技术。随着高次谐波在气体、液体和固体等不同介质中的产生,HHG逐渐被广泛应用于能带结构获取、极紫外光谱学、相干控制等领域。与传统的光源相比,HHG能够生成高能光子,具有时间分辨率高和频率范围广等优点。然而,HHG通常依赖于经典光场的驱动,而对于量子态光的应用仍然较少,这在理论上已经得到探讨但未能实现。因此,利用量子光驱动高次谐波产生面临着挑战,尤其是在所需的强度和短脉冲时间尺度下。近日,来自德国 马克斯普朗克光学研究所Andrei Rasputnyi,Maria Chekhova & Francesco Tani等研究小组的研究人员在HHG领域取得了新进展。他们首次成功地用宏观量子态光,即明亮压缩真空(BSV),驱动固体中的高次谐波产生。该团队设计了一种新型的BSV产生装置,显著提高了高次谐波的生成效率。与传统的经典光源相比,BSV由于其广泛的光子数分布和强烈的电场波动,能够在更广的峰值强度范围内获取自由载流子动力学。这一研究表明,BSV驱动的高次谐波生成具有更高的多光子效应,并且在抑制样品损伤方面表现出优越性。研究人员通过数值模拟和实验验证,表明BSV的引入为探索新现象提供了新的途径,并为结合强场物理和量子光学开辟了新的可能性。最终,该研究结果为HHG领域的发展提供了新的视角,并为未来的材料性质研究带来了新的机遇。【仪器亮点】本文通过高次谐波生成(HHG)原理和半导体Bloch方程,具体来说,利用线性偏振的泵浦光源,包括相干脉冲和光学超像(BSV)脉冲,首次研发了基于固体材料的高次谐波生成仪器,从而表征发现了在不同光源驱动下材料的非线性响应特性,最终揭示了光子统计特性对高次谐波生成过程的影响。针对在固态介质中高次谐波生成现象,通过设计实验并结合时间分辨光学测量技术,得到了不同脉冲宽度和频谱带宽的泵浦光源对高次谐波强度和谐波结构的影响,进而挖掘了脉冲相干性在激发强非线性光学过程中的关键作用。在此基础上,通过自建的频率分辨光学门(FROG)系统,对相干脉冲和光学超像脉冲的时间特性进行了精确表征,揭示了不同光源下的时间特性差异,这为高次谐波生成机制提供了重要的实验依据。此外,结合空间和时间特性的分析,使用了多种表征手段,包括光子数分布测量和高次谐波谱的分离检测,深入研究了泵浦光源的光子统计特性如何影响固体材料的非线性响应,尤其是如何通过精细调控光源特性提升高次谐波生成的效率和质量。这些发现不仅为后续的固态高次谐波生成研究提供了新的思路,还为未来基于高次谐波的光子技术应用奠定了重要的基础。高次谐波驱动器的经典辐射和亮挤压真空BSV参考文献:Rasputnyi, A., Chen, Z., Birk, M. et al. High-harmonic generation by a bright squeezed vacuum. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02659-x
  • 瑞士万通参展“第19届全国固态离子学会议”
    2018年8月5日上午,第19届全国固态离子学会议暨第16届亚洲固态离子学会议在上海同济大学顺利召开。此次会议由中国硅酸盐学会固态离子学分会主办,同济大学和中国科学院上海硅酸盐研究所共同承办。这是中国固态离子界学者的一次盛会,也是亚洲固态离子学界的盛会。大会开幕式本次会议共有700余名学者、专家出席。会议主题涵盖:储能材料与器件、能量转换材料与器件、电化学传感器等研究领域。会议期间,各个会场总计共做了200余场的精彩汇报。瑞士万通展台会场外,瑞士万通设立了展台,展出了SPELEC RAMAN电化学拉曼光谱仪,吸引了众多学者前来交流讨论,不少专家对我们的仪器产生了浓烈的兴趣。 关于Metrohm Autolab三十多年来,Metrohm Autolab恒电位/恒电流仪在品质,可靠性和耐用性方面,已经成为电化学领域的标杆!我们致力于为从事电化学研究的用户,提供最前沿的仪器,控制软件,附件和应用方案 。Metrohm Autolab为满足电化学研究的需要,提供一系列仪器,包括紧凑型,经济型仪器,灵活的模块化系统,以及可以同时测定多个样品的多通道工作站。
  • 我国投资1.8亿深紫外固态激光项目世界领先
    深紫外全固态激光源指输出波长在200纳米以下的固体激光器,与同步辐射和气体放电光源等现有光源相比具有高的光子流通量/密度、好的方向性和相干性。   中科院自上世纪90年代初开始研究深紫外非线性光学晶体和激光技术,经过20多年努力,在国际上首次生长出可直接倍频产生深紫外激光非线性光学晶体,并发明棱镜耦合技术,率先发展出实用化的深紫外固态激光源,使中国成为当今世界上唯一掌握深紫外全固态激光技术的国家。   中国科学家利用独创、独有的深紫外技术和深紫外激光非线性光学晶体,已成功研制出深紫外激光拉曼光谱仪、深紫外激光发射电子显微镜等8台深紫外固态激光源前沿装备,均为当今世界所独有的科研利器,居深紫外领域国际领先地位。   总投资1.8亿元人民币的深紫外固态激光源前沿装备研制项目,2008年启动实施以来进展顺利,现已研制成功的8台前沿装备还包括深紫外激光光化学反应仪、深紫外激光光致发光光谱仪、深紫外激光自旋分辨角分辨光电子能谱仪、深紫外激光原位时空分辨隧道电子谱仪、基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪等国际领先水平的仪器设备,另外1台光子能量可调深紫外激光光电子能谱仪研制工作也已基本完成,正在调试之中,多台仪器设备已初步用于前沿科学研究,并表现出优异的性能。   中科院整合麾下理化技术研究所、物理研究所、大连化学物理研究所、半导体研究所科研资源,在财政部专项资金支持下,设立深紫外固态激光源前沿装备研制项目,设计出从“材料-器件-装备-科学研究”完整研发体系。在成功研制8台重大仪器设备的同时,还搭建有深紫外非线性晶体和器件研制平台、深紫外固态激光器研发平台和深紫外应用仪器开发平台,核心器件深紫外晶体及器件已实现小批量生产,为仪器设备后续发展尤其是产业化工作奠定了基础。   深紫外固态激光技术突破是中国新型科学仪器研发的难得机遇。中科院在前期工作基础上,正组织专家进一步调研,一方面,将研制成功的8台仪器设备中技术成熟、具有市场潜力的发展为商品化仪器设备,推动中国高端科学仪器产业化 另一方面,进一步整合人才、技术力量,继续研发新型深紫外科学仪器和设备。
  • 原位电子显微学技术揭示固态金属类液态行为
    在科幻大片《终结者》系列中,常常出现这样的场面:阿诺德施瓦辛格掏出霰弹枪朝液体机器人射击,巨响过后,身体和脑袋被打穿了数个大窟窿的液体机器人又慢慢恢复了原形。真是打不死的&ldquo 小强&rdquo ! 《终结者》的&ldquo 小强&rdquo 被打了几个大窟窿,就是不死   这真的是遥远的明日科技吗?还是就在我们身边发生的事实?   东南大学电子科学与工程学院孙立涛教授团队,与浙江大学电子显微镜中心张泽院士、麻省理工学院李巨教授和匹兹堡大学毛星源教授的团队通力合作后发现,在极小的纳米尺度下(小于10纳米),普通的固态金属在常温下受到挤压、拉伸等外力作用后,会像揉面团那样柔软,甚至像液态那样任意变形 更为奇特的是,外力撤除后,还可以恢复原形。10月12日,这项研究的论文以&ldquo Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles&rdquo 为题,发表在国际著名期刊《自然材料》上,并被评为封面文章。   据查询,目前《自然材料》官网上公布的封面只到10月份,尚不含上文的研究成果。但是,在浙江大学材料科学与工程学院主页上可以发现,中国科学家这一新技能被安排在了11月号的杂志封面上 (着急想看的可以直接拖到页末)。 从外面看,金属银颗粒像液体水滴,会摇晃并随时改变形状,而它们内部则是超级稳定的晶体结构   且慢,真的是普通的金属就可以吗?这不合乎直觉。   对,你没有看错,普通金属在室温下,就可能有这种神奇的特性,但是前提是要在纳米尺度下。   38岁的孙立涛教授带领团队发展了一种原位电子显微学技术,并基于此在国际上首次观察到10纳米以下固态金属银颗粒在室温下的类液态行为。据凤凰科技报道,这些纯银粒子的直径不超过10纳米&mdash &mdash 宽度不超过人类头发的1/1000。   科研人员告诉科技日报记者,宏观的金属材料的变形机制通常遵从经典的位错滑移和孪晶变形理论。然而,到了极小的纳米尺度,金属表面原子所占的比重越来越大,其变形机制越来越受表层原子的运动影响。我们都知道,表层原子是很活跃的,纳米金属就仿佛穿了一层水膜一样的外衣,一旦受到任何外力,&ldquo 水膜&rdquo 一样的外层原子就会呼啦啦先运动起来。这时候,纳米金属就兼具了固体和液体的特性,在挤压后,表层原子迅速移动,形成了新的表面层。   这种变形机制会带来一个特别的后果,那就是当撤除挤压时,这层活跃的&ldquo 水膜&rdquo 分子又会呼啦啦往上跑,以降低表面能,直到把金属颗粒恢复原形。这样,就出现了实验中观察到的那神奇一幕,不论怎么挤压,金属颗粒最终都会恢复原形。   科研人员把这种可以恢复原形的塑性行为,叫做赝弹性。   浙江大学材料科学与工程学院主页的图片显示,室温下,银纳米颗粒受挤压时表现出了液态行为   这种奇特的纳米颗粒塑性形变,超越了传统的金属物理中位错等缺陷导致的塑性形变理论,在变形的整个过程中颗粒内部始终保持着完好的晶态结构。这一发现暗示,随着金属颗粒尺寸减小,经典的Hall-Petch规律中&ldquo 越小越强&rdquo 不再适用,会逐渐过渡到&ldquo 越小越弱&rdquo (观察者网注:目前对大部分材料的关系的理解已经很成熟,即材料的机械强度会随着体积的减少而增加。)。   这种神奇的赝弹性,会给我们带来一系列神奇的结果。例如,可以制造出无论怎么变形都可以复原的金属关节,具有记忆功能的存储器件,打不穿的金属防弹衣,甚至还包括我们前面提到的《终结者》液体金属机器人。   同时,这项工作对于如何维持下一代纳米电子器件中的互连线和电极的稳定性,以及如何实现超小尺寸的纳米加工工艺,有着重要的指导意义。因为随着现代半导体技术的发展,集成电路中金属互连线以及电极的特征尺寸正在向10纳米逼近。在这样小的尺度下,作为基础框架的金属形态是否还能像块体材料那样稳定,科学家以前并不清楚。现在新的问题是,证实了纳米金属颗粒塑性形变的现象后,如何保障在如此小尺度下电子器件物理性能的稳定性?这一问题向现代集成电路产业提出了新理论和技术的挑战。   据悉,这项工作是东南大学传统电子学科与新兴纳米领域的交叉与融合的结果,得益于学校长期对基础研究和国际学术交流合作的支持与重视。孙立涛教授课题组近年来依托原位透射电子显微学技术,已经在微纳米器件、新型二维材料、纳米金属变形机制等领域取得了一系列研究成果。   观察者网综合科技日报、浙江大学网站、中新网消息。   浙江大学材料科学与工程学院主页展示的《自然材料》11月封面
  • 什么是固态电池 ——迎接国际新一轮动力电池技术竞争
    固态电池是一种使用固态电解质替代传统液态电解质的电池,其电解质可以是聚合物、氧化物、硫化物等多种材料。固态电池的结构主要包括正极、负极、电解质和隔膜四部分。与液态电池相比,固态电池具有更高的安全性、更大的能量密度和更长的寿命。来源:《中国固态电池行业研究报告》,前瞻产业研究院固态电池的工作原理与液态电池类似,都是通过正负极之间的离子传递来实现电荷的存储与释放。在充电过程中,正极释放电子,负极吸收电子,同时离子从正极向负极移动,嵌入负极材料中;在放电过程中,电子从负极流向正极,离子从负极向正极移动,释放出储存的能量。工作原理上,固态锂电池和传统的锂电池并无区别。两者最主要的区别在于固态电池电解质为固态,相当于锂离子迁移的场所转到了固态的电解质中。而随着正极材料的持续升级,固态电解质能够做出较好的适配,有利于提升电池系统的能量密度。另外,固态电解质的绝缘性使得其良好地将电池正极与负极阻隔,避免正负极接触产生短路的同时能充当隔膜的功能。固态电池的优势安全性:固态电池采用固态电解质,可以有效防止电池内部短路和漏液,降低热失控风险。同时,固态电解质的化学稳定性较好,不易燃烧,因此在高温、撞击等极端条件下,固态电池的安全性明显优于液态电池。能量密度:固态电池具有较高的能量密度,一方面是因为固态电解质可以承受更高的电化学窗口,使得电池可以使用更高电压的正极材料;另一方面,固态电池可以采用更薄、更轻的隔膜和集流体,减轻电池重量,提高能量密度。寿命:固态电池的寿命较长,一方面是因为固态电解质可以有效抑制电池内部副反应,降低自放电速率;另一方面,固态电池的充放电循环稳定性较好,可以承受更多的充放电次数。来源:《全固态电池技术的研究现状与展望》,许晓雄固态电池的挑战1、固态电解质材料研究目前,固态电解质材料的研究尚不充分,需要进一步优化和筛选具有良好离子导电性、机械强度和化学稳定性的材料。此外,固态电解质与电极材料的界面问题也需要解决,以提高电池的性能。2、制造成本固态电池的制造成本较高,主要原因是固态电解质和电极材料的制备工艺复杂,且生产规模较小。此外,固态电池的生产设备和技术也与传统液态电池有所不同,需要投入大量资金进行研发和产业化。3、充放电速率固态电池的充放电速率相对较慢,主要受限于固态电解质的离子导电性。提高充放电速率需要进一步优化固态电解质材料,以及开发新型电极材料和结构。固态电池的国际竞争势态美国在固态电池领域具有较强的研发实力,拥有多家知名企业和研究机构,如QuantumScape、Solid Power、Ionic Materials等。美国政府也高度重视固态电池技术,将其列为国家战略项目,投入大量资金支持相关研究。欧洲在固态电池领域同样具有较强的竞争力,拥有多家知名企业和研究机构,如德国的Varta、比利时的Solvay等。欧洲联盟也推出了“欧洲电池联盟”计划,旨在推动固态电池技术的发展和产业化。日本在固态电池领域具有领先地位,拥有全球最大的固态电池制造商丰田和全球领先的电池材料供应商村田制作所。日本政府和企业对固态电池技术的研究投入巨大,力求保持在该领域的竞争优势。韩国在固态电池领域同样具有较强实力,拥有全球领先的电池制造商LG化学和三星SDI。韩国政府和企业也在积极推动固态电池技术的发展,以应对全球动力电池市场的竞争。固态电池的发展对于我国新能源汽车产业具有十分重要意义。通过加强固态电池的研发和应用,不仅可以提升我国新能源汽车的核心竞争力,还可以推动我国在全球动力电池市场中的地位提升。因此,我国应加大对固态电池技术的研发力度,加强与国际先进企业的合作与交流,共同推动固态电池技术的快速发展。固态电池的主要研究课题尽管固态电池有着巨大的潜力和商业价值,但目前仍存在很多技术难点需要研究和攻克。尤其是固态电解质离子传输动力学、固/固界面物理和化学接触问题。这其中,对于固态电池的电解质/电极材料的电导率、内部产气/压力、膨胀行为的评估依然是对电池材料、电池性能、生产工艺等的重要研究手段。电弛的解决方案固态电池中的固体电解质和电极界面并不是完全稳定,仍会存在一定程度的副反应。因此,对于固态电池产气、内部压力、膨胀行为等的研究依然受到高度关注。武汉电弛新能源有限公司自主研发的原位产气量测试系统,原位气体内压测试系统、原位电池膨胀力测试系统,可对多种电池种类和电池形态的电池进行产气量、内压、膨胀行为的测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池、软包电池、方壳电池、圆柱电池、电芯模组。系统高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。同时,可为不同形态电池提供定制化夹具,开展不同测试模式的研究。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。
  • 锂电遇上钠电!天目湖固态电池&第二届全国钠电池研讨会在溧阳召开
    仪器信息网讯 2023年2月23日,2023年“电动中国”系列论坛——“第二届全国钠电池研讨会”以及“天目湖先进电池产业创新论坛暨固态电池研讨会”同期在江苏溧阳召开,两场会议为期两天,吸引千余位新能源领域专家学者、企业家代表等参会,共同探讨纳电池、固态锂电池焦点问题与前沿技术。开幕式现场中科院物理所李泓研究员主持开幕式溧阳市委书记叶明华致辞工业和信息化部产业发展促进中心副处长刘嘉致辞中国汽车动力电池产业创新联盟理事长董扬致辞中国硅酸盐学会常务理事、固态离子学分会理事长温兆银致辞 中科海钠总经理李树军宣布推出首批三款纳电电芯新品开幕式上,中科海钠举办了以“海钠百川共蓄未来“为主题的产品发布会,中科海钠总经理李树军宣布推出NaCR32140-ME12圆柱电芯、NaCP50160118-ME80方形电芯及NaCP73174207-ME240方形电芯三款产品。面向市场主流需求,此次首批推出三款电芯产品,具有长寿命、宽温区、高功率等优势,可实现规模化量产。中科海钠正与多家行业头部企业推进合作,此次推出的钠离子电池产品将在两轮车、乘用车、商用车、家庭及工商业储能、规模储能等领域得到广泛应用。思皓新能源与中科海钠联合打造的行业首台钠离子电池试验车公开亮相随后,天目湖先进电池产业创新论坛暨固态电池研讨会、第二届全国钠电池研讨会分别召开,以下为天目湖先进电池产业创新论坛暨固态电池研讨会会场部分会议报告摘要,以飨读者。报告嘉宾集锦(一)科技部高技术研究发展中心技术总师史冬梅以“主要国家和地区电池技术和产业发展态势”为题,分享了美国、欧盟、日本、韩国等主要国家和地区先进电池技术和产业发展态势,并提出对我国电池领域发展的启示及政策建议。中国第一汽车集团有限公司电芯开发主任别晓非以“新能源汽车硫化物全固态电池应用展望”为题,从消费者真实用车习惯和产品体验出发,分析近期硫化物全固态电池技术性能水平与实际需求之间的差距,并提出商业化落地的技术突破方向。东风汽车集团有限公司刘敏博士以“‘芯’时代下,固态电池技术与产品定义的思考”为题,介绍了东风公司以固态电池技术领域为切入,打造东风固态电池原创技术策源地,解决了电池供应不稳定、成本高、整车性能优势不明显等难题。浙江锋鲤新能源科技有限公司总经理许晓雄以“固态理电池材料与电池技术开发进展”为题,介绍到,混合固液电解质锂电池是高必能高安全动力锂电池的重要发展方向,全固态锂电池在动力领域的应用暂未看到规模应用希望。中科院物理所研究员、北京卫蓝新能源科技有限公司首席科学家李泓以“长寿命固态电池技术探讨”为题,讨论了混合固液电解质电池和全固态电池实现同时具备高能量密度、长循环寿命、高安全性等目标的一些可能性。溧阳储慧智能软件科技有限公司总经理曾伟国以“新能源电池行业一站式数智创新平台”为题,介绍了该平台运用数据帮助研发环节智能化解决研发困局,促进成本改进并持续落地,加速固态电池实现真正的产业化和大规模应用。上海交通大学陈立桅教授以“面向固态电池的材料创新”为题,介绍了其团队研发的高面电导复合固态电解质、界面胶水、可溶性正极电解质和高性能固态锂金属电池等工作。中国科学院上海硅酸盐研究所研究员温兆银以“固态电池材料与技术研究进展”为题,介绍了与固态电池相关的各种类型固体电解质材料、电极及电池内界面的研究工作进展,以及通过各种复合和修饰策略对固态电池性能所实现的提升效应。报告嘉宾集锦(二)COMSOL (中国) 技术经理施翀以“多物理场仿真助力固态电池研发”为题,分享了多物理场仿真在固态电池研发中的应用,并介绍不同类型电池的仿真分析方法。中国科学院化学研究所研究员曹安民以“电极材料表面纳米层构筑及功能”为题,介绍了课题组相关研究进展,研究聚焦于电极材料表面层结构的精准调控,探讨电极材料的失稳机制及稳定途径,以获得具有大规模应用前景的稳定工艺及电极材料。北京工业大学郭现伟副教授以“锂离子固态电池关键材料与界面研究”为题,介绍了课题组在固态电池关键材料如正极材料和新型固态电解质方面的研究进展,并介绍原位固化方法来提升固态电池中面临的界面的问题。电子科技大学李晶泽教授以“金属锂及锂合金负极的研究进展”为题,综述了该课题组最近在锂及锂合金负极方面的研究进展。溧阳天目先导电池材料科技有限公司先进材料事业部总经理陆浩以“高能量密度固态电池关键材料--硅基负极与固态电解质”为题,介绍了公司硅基负极材料和固态电解质材料的开发背景、技术发展历程、未来技术路线、产品参数和性能、市场应用情况等。中国科学院宁波材料技术与工程研究所姚霞银研究员以“基于硫化物固体电解质全固态理硫电池”为题,探讨了硫化物固体电解质目前面临的诸多痛点以及对全固态锂二次电池的展望。北京化工大学教授周伟东以“聚合物基固态电池关键材料开发”为题,介绍了课题组提出的“多层复合固态电解质”结构设计,不仅可以有效改善锂金属和固态电解质之间的界面接触,还可以扩大固态电解质的稳定电压窗口,实现柔性的高电压固态锂金属电池的稳定循环。国联汽车动力电池研究院创新事业部副总经理杨容以“新型含卤素类固态电解质研究”为题,介绍了国联研究院在含卤素基固态电解质的基础上,通过结构调控、阳离子掺杂、双卤素协同作用等系列手段,开发出新型具有高离子导的卤化物电解质材料,实现与高电压正极和金属鲤负极的匹配,同时材料成本大幅下降。圆桌论坛环节答疑互动最后的圆桌论坛环节,围绕“全固态锂电池相对于液态锂离子电池,是否有足够的的不可替代的优势,它的出现能否更好的解决安全性问题和里程焦虑?”“报道称,LG放弃全固态,这是否意味着全固态电池商业化短期内看不到希望?中国能否后发先至?”、“原位固态化技术的意义和优势是什么?其主要难点和挑战在哪?”等固态锂电池焦点问题,各位嘉宾与现场参会者开展了讨论。在激烈的讨论声中,会议第一天日程落下帷幕。
  • 780万!清华大学固态物质元素分析系统采购项目
    项目编号:清设招第20221669号项目名称:清华大学固态物质元素分析系统预算金额:780.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01固态物质元素分析系统1套是设备用途介绍:对各类导电、非导电材料在多种形态下(包括粉末、薄膜、高分子等)的表面几个原子层(1~10纳米厚的表面)的化学组成、价态,深度剖析及成像、功函数特性的分析与表征,兼顾材料体相的原位分析。简要技术指标:1)能量扫描范围不小于0~4500 eV;2)最优能量分辨率不大于0.5 eV;3)具备样品的原位加热和冷却功能。合同履行期限:合同签订后12个月内完成设备交货、安装及调试工作。本项目( 不接受 )联合体投标。获取招标文件时间:2023年03月07日 至 2023年03月14日,每天上午8:00至14:00,下午12:00至16:30。(北京时间,法定节假日除外)地点:登记报名网址:http://sbcgczxxfb.sysc.tsinghua.edu.cn方式:登记报名网址:http://sbcgczxxfb.sysc.tsinghua.edu.cn售价:¥0.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:清华大学地址:清华大学华业大厦1区5层实验室管理处联系方式:李美珍,627857132.项目联系方式项目联系人:李美珍电话:62785713
  • 瑞士万通助力第18届全国固态离子学学术会议
    第18届全国固态离子学学术会议于2016年11月3-7日在广西桂林举行,此次会议由中国硅酸盐学会固态离子学分会主办。这是中国固态离子界学者的一次盛会,来自全国各地和海外的共计800余人参加本次学术会议,可谓盛况空前。 瑞士万通参加了此次会议,在会上主要推介Autolab电化学工作站,以及用于半电池或全电池样品在控温条件下的研究和表征的电化学(变温)测试系统。电解质或电池在不同温度下的性能机理研究受到越来越多电化学专家和材料专家的重视, Autolab研发的电化学(变温)测试系统在此次会议上备受青睐。会议开幕式客户到展桌进行交流产品经理雷涛为客户解说电化学(变温)测试系统现场为客户讲解操作软件 PGSTAT302N电化学工作站主要功能及特点 PGSTAT 302N型电化学工作站是继经典的PGSTAT302之后推出的新品,是一款模块化、大电流的电化学综合测试仪。此型号能够配置所有的功能模块和外部设备,满足各种电化学研究的需要。可配套的功能模块FRA、BSTR10A/20A、BA、ECN、pX1000、ADC10M、SCAN250、MUX、FI20、ECD、EQCM、DYNIR、LOAD.INT、LOAD.FRAMOD、VOLT.MULT、HIGH.VOLT.DIV 主要技术参数 1. 支持的电极体系:2、3、4电极2. 扫描电位范围:±10V,可扩展至±30V3. 最大输出电压:±30V4. 最大输出电流:±2A (可扩展至10A/20A)5. 电流范围:1A、100mA、10mA、1mA、100μA,10μA、1μA、100nA、10nA共9档,自动选择电流范围、可扩展至100pA (ECD)6. CV扫描速率: 0.1μV-250V/s (可扩展至最大250KV/s,SCAN250模块)7. 取样频率:50kHz (可扩展至10MHz,ADC10M模块)8. 恒电位仪带宽: 1MHz9. 控制软件:GPES/FRA或NOVA10.电化学技术:直流技术、交流伏安、交流阻抗 (FRA模块)11. 特别功能:可配置为动态iR补偿 应用领域 电池、燃料电池及太阳能电池 超级电容器 腐蚀与防护 导电聚合物及膜科学 涂层研究 介电材料及半导体材料 电催化 电沉积等
  • 哈工大(深圳): 基于可调塑性的凝固态液态金属的3D柔性电子
    镓基液态金属(LM)由于其优异的金属导电性以及室温流动性特点,被认为在柔性电子领域具有广泛的应用前景。基于镓基LM材料,目前已成功开发出各类柔性电子器件,如可穿戴传感器、柔性电容器、柔性电感器以及柔性变阻器等。LM柔性器件的集成性和可靠性一直以来是该领域的研究热点,其中3D柔性电子被普遍认为是提高集成性的有效解决方案之一。然而,液态金属的流动性是一把双刃剑,虽然它为LM柔性器件提供了优异的可变形性,但同时给3D结构柔性电路的制备带来了巨大挑战。目前报道的3D打印、冷冻打印、通道填充等方法在复杂3D结构电路的制备、工艺成本以及功能性芯片的集成等方面仍存在不足。近期,哈尔滨工业大学(深圳)马星教授联合中科院深圳先进技术研究院刘志远研究员,提出了一种通过将镓基液态金属转变为固态并通过塑性变形制备复杂3D结构柔性导体的方法。作者基于金属材料的合金化及相关理论,着重考量材料的相变温度、机械强度和塑性加工性能,筛选出Ga-10In作为3D柔性电子制备的基础材料。固体Ga-10In的高塑性特点允许通过机械弯曲、缠绕等方式制备复杂3D结构导体,在熔点以下温度将3D导体与功能芯片连接并使用硅胶封装后,熔点以上温度加热(22.7 °C)便可使Ga-10In熔化并恢复其流动性。此外由于过冷效应,Ga-10In导体可以在低于熔点的一定的温度范围内保持液态,保证了柔性电子器件的服役温度区间。为证明该方案的实用性,作者设计了具有超高灵敏度的3D应变传感器、由3D跳线导体构成的二极管 (LED) 阵列以及由3D螺旋结构的可穿戴传感器和多层柔性电路板组成的手指动作监测装置。相关工作以“Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity”为题发表于电子领域权威期刊《Nature Electronics》,2019级博士生李国强同学为该论文第一作者。在本项研究中,由摩方精密25 μm精度的nanoArch P150设备3D打印的高精度模具,为制备2D应变传感电路和3D拱形跳线提供了精密支持。图1:基于可调塑性的凝固态液态金属的3D柔性电子简介说明。(a) 液态的Ga-10In转变为固态的片状和棒状示意图;(b) 塑性变形能力对比;(c) Ga-10In低温拉伸性能;(d) Ga-10In相变性能测试;(e) 基于该方案制备的3D柔性电子。图2:Ga-In合金材料表征及性能测试。(a) 凝固态Ga-10In显微组织;(b) Ga-In合金中A6相体积分数于In元素含量的关系;(c) Ga-10In和Ga-15In显微组织表征;(d) Ga-10In拉伸样断口附近显微组织表征;(e) Ga-In合金力学性能测试;(f) 图(e)对应的屈服强度和延伸率;(g) Ga-In合金相变测试;(h) Ga-In合金熔点与In元素含量的关系。图3:2D应变传感器的电力性能测试及3D高灵敏度应变传感器设计。(a) 2D应变传感器电阻-应变关系;(b) 2D应变传感器平均GF值与应变的关系;(c) 2D应变传感器横向及纵向拉伸性能测试;(d) 3D应变传感器照片及其性能;(e) 3D应变传感器挤压位置的CT微观表征;(f) 与已报道LM应变传感器的灵敏度对比。 图4:Ga-10In 3D拱形导体及其LED柔性阵列应用。(a) 熔化前后拱形Ga-10In导体图像;(b) LED阵列示意图;(c) LED阵列电流-电压性能测试;(d) 控制装置和LED阵列电路图;(e) 控制系统和LED柔性阵列照片;(f) LED阵列动态弯曲图像。图5:3D结构的可穿戴手指动作监测柔性装置。(a) 装置示意图;(b) 3D柔性传感器及其变形性能;(c) 3D柔性传感器的手指动作传感测试;(d) 3D传感器疲劳性能测试;(e) 3D柔性电路板俯视图像;(f, g) 3D垂直电路图像;(h) 该柔性装置的手指动作测试。通过凝固态Ga-10In液态金属的塑性变形制备复杂结构3D柔性导体具有显著优势,但作者表示,该3D柔性电子制备方案目前在导电线径、柔性器件制备效率、以及自动化制造设备等方面仍存在限制。原文链接:https://doi.org/10.1038/s41928-022-00914-8
  • 中国科大全固态电池新突破 硫化物电解质成本降92%
    中国科学技术大学马骋教授团队开发了一种用于全固态电池的新型硫化物固态电解质,其原材料成本仅14.42美元每公斤,不到其它硫化物固态电解质原材料成本的8%。该成果近日发表在国际著名学术期刊《德国应用化学》(Angewandte Chemie International Edition)上。全固态电池有望克服锂离子电池难以兼顾续航和安全性的瓶颈,从而突破目前电池技术的玻璃天花板。固态电解质是成功构筑全固态电池的关键,性能优异的硫化物则被普遍认为最有希望实现全固态电池的实际应用。“日本丰田、韩国三星等知名企业,都在过去的十几年内对此类材料进行了大量的研发投入。”马骋说,但硫化物固态电解质的成本普遍超过195美元每公斤,远高于实现商业化所需要的50美元每公斤。这一问题的根源,在于硫化物固态电解质的合成需要使用大量昂贵的硫化锂(不低于650美元每公斤)。在此次研究中,马骋开发了一种不以硫化锂作为原料的硫化物固态电解质——氧硫化磷锂,该原材料成本仅14.42美元每公斤,具有很强的成本竞争力。据介绍,氧硫化磷锂保留了硫化物固态电解质独特优势。它和锂金属组成的对称电池能实现4200小时以上的室温稳定循环,而它和硅负极、高镍三元正极组成的全固态软包电池,在60℃下循环200次后,仍具有89.29%的容量保持率。马骋说:“我们的工作表明硫化物固态电解质的成本问题并非无解。氧硫化磷锂作为一种新材料,在性能上仍有望实现进一步提升,我们也在为此继续努力。”
  • 中科大突破全固态锂电池电解质在性能和成本上的双重瓶颈
    全固态锂电池可以克服目前商业化锂离子电池在安全性上的严重缺陷,同时进一步提升能量密度,对新能源车和储能产业是一项颠覆性技术。但是,由于全固态锂电池的核心材料—固态电解质—难以兼顾性能和成本,目前该技术的产业化仍面临巨大阻碍。6月27日,中国科学技术大学的马骋教授报道了一种新型固态电解质,它的综合性能和目前最先进的硫化物、氯化物固态电解质相近,但成本不到后者的4%,很适合产业化应用。该成果以“A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries”为题发表在国际著名学术期刊《Nature Communications》上。为了满足实际应用的需求,全固态锂电池的固态电解质至少需要同时具备三个条件:高离子电导率(室温下超过1毫西门子每厘米),良好的可变形性(250-350兆帕下实现90%以上致密),以及足够低廉的成本(低于50美元每公斤)。但是,目前被广泛研究的氧化物、硫化物、氯化物固态电解质都无法同时满足这些条件。氧化物作为脆性陶瓷,普遍不具备可变形性。硫化物和大部分氯化物则成本高昂,至少在200美元每公斤的量级。这些材料中唯一的例外是氯化锆锂,但是它的离子电导率却远低于1毫西门子每厘米。   此次研究中,马骋教授不再聚焦于上述氧化物、硫化物、氯化物中的任何一种,而是转向氧氯化物,设计并合成了一种新型固态电解质—氧氯化锆锂。这种材料具有很强的成本优势。如果以水合氢氧化锂、氯化锂、氯化锆进行合成,它的原材料成本仅为11.6美元每公斤,很好的满足了上述50美元每公斤的要求。而如果以水合氧氯化锆、氯化锂、氯化锆进行合成,氧氯化锆锂的成本可以进一步降低到约7美元每公斤,远低于目前最具成本优势的固态电解质氯化锆锂(10.78美元每公斤),并且不到硫化物和稀土基、铟基氯化物固态电解质的4%。在具备极强成本优势的同时,氧氯化锆锂的综合性能和目前最先进的硫化物、氯化物固态电解质相当。它的室温离子电导率高达2.42毫西门子每厘米,超过了应用所需要的1毫西门子每厘米。与此同时,它良好的可变形性使材料在300兆帕压力下能达到94.2%致密,也超过应用所需要的水平(250-350兆帕下90%以上致密)。由氧氯化锆锂和高镍三元正极组成的全固态电池展示了极为优异的性能:在12分钟快速充电的条件下,该电池仍然成功的在室温稳定循环2000圈以上。   氧氯化锆锂的发现,使固态电解质在性能、成本两方面同时实现了突破,对全固态锂电池的产业化具有重大意义。审稿人认为这一发现“很有新意和原创性”,并且认为氧氯化锆锂材料“很有前景”,“有益于固态电池技术的商业化”。
  • 深紫外全固态激光源重大仪器专项启动
    国家重大科学仪器设备开发专项“新型深紫外全固态激光源及其前沿装备开发(1)”启动   5月22日,国家重大科学仪器设备开发专项“新型深紫外全固态激光源及其前沿装备开发(1)”项目启动会在中科院理化技术研究所召开。科技部条财司,中科院条财局,理化所相关负责人出席会议,项目工程总体组、技术专家组和用户委员会成员及项目主要学术骨干等近50人参加了启动会。   为促进项目良好运行,推动科技成果向现实生产力转化,与会领导、专家就如何加强项目组织管理,做好项目相关知识产权研究,强化项目知识产权保护、管理和运用,实现部件的标准化和加快科技成果的应用推广等方面给予了指导建议。   该项目由中国科学院组织,中科院理化所牵头,北京中科科仪股份有限公司提供产业化技术支撑,中科院物理所、电子所和中国科学技术大学作为主要应用单位参加,获得了科技部国家重大科学仪器设备开发专项2012年度项目支持。项目旨在围绕物理、化学、材料、信息等领域前沿研究对深紫外科研装备的迫切需求,充分利用我国独有的可倍频产生深紫外激光的KBBF非线性光学晶体及其实用化的棱镜耦合使用技术,开展深紫外激光光发射电子显微镜工程化研究,为我国深紫外领域的相关前沿研究提供有力支撑。
  • 3D打印固态电池2021年即将量产 充电速度提高6倍
    2021年1月,瑞士Blackstone Resources(黑石资源 )公司的专有3D打印锂离子固态电池技术,取得了一系列重要的突破。它一直通过德国子公司Blackstone Technology GmbH投资于下一代电池技术。包括获得专利的3D打印技术和对电池批量生产的研究。恰好的是,德国是全球3D打印技术最为发达的国家之一。与目前的锂离子电池技术相比,3D打印固态电池具有将能量密度提高一倍,制造成本降低一半的潜力。3D打印固态电池的比较优势当前最先进的电池生产面临的一些弱点:1、不够灵活,无法支持必须与产品设计相匹配的组件设计;2、它仍然太昂贵(目标:<80US $/kWh);3、不适用于未来的设计,例如全固态电池;4、提供的能量密度仍然太低(目标:600英里且> 300Wh/ kg);5、原材料仍然不安全;6、碳排放仍然太高;3D打印的“多孔”电极可提高能量密度。可以将电极中的材料打印成三维晶格结果。晶格意味着电极具有更大的暴露表面积,增大化学反应面积,电池效率更高。另外,3D打印电池模块不需要多余的物质即可以实现一体化。想象一下,特斯拉85kWh电池组由7104个电池组成,将7104块电池粘合在一起的胶水和电线的重量相当大了。但是如果这些变成是增材制造过程的一部分,而不是多余的材料,能量密度将大大提高与使用液体电解质的传统电池设计相比,Blackstone Technology的3D打印工艺具有明显的优势。显著降低成本,提高电池尺寸的生产灵活性,可以不依赖电极化学性质而实现这些优点。Blackstone的3D打印固态电池技术,解决了这些弱点:1、3D打印锂离子电池生产已经成熟,且有专利,在生产过程中可提供最大的灵活性;2、可节省30%的CAPEX和10%的OPEX,而采用固态技术时,可节省70%的CAPEX和30%的OPEX;3、世界上第一个3D打印生产工艺,可以批量生产固态电池;4、可将能量密度提高20%,用固态技术时可提高100%;5、利用自身资源来缩短供应链,并确保长期获取电池材料;6、通过将干燥过程减少50%,可将能源消耗降低25%,这是电池组电池最重要的制造成本——占总能源成本的45%至57%。黑石技术有限公司CEO霍尔格格里茨卡(Holger Gritzka)表示:“我们迄今为止在3D打印电池技术方面的发展,为固态电池的大规模生产铺平了道路。除了汽车工业等主要市场之外,船舶应用和新型5G无线网络也将会受益于3D打印固态电池的优势。”埃隆马斯克(Elon Musk)承认获得下一代电池技术以及生产这些电池所需的原材料的重要性。即使采用减少电池材料量的新技术,电动汽车的需求也可能很快超过这些车辆所需的电池材料量。马斯克预计,下一代电池将使用更少的电池金属(例如钴),而使用更多的镍和锂。实际上,随着特斯拉与大型汽车制造商的入局,所有这些金属的需求可能会大幅增加,大型汽车制造商也开始推出电动汽车,并计划把全部汽车都电动化。3D打印固态电池正在量产Blackstone Resources开发并测试了3D打印电池,获得欧洲“地平线2020”计划资助,在电池密度,充电周期和成本方面均取得了显著成绩。这家瑞士公司还开发了一种工作流程,可使用专有的电池打印技术在2021年以各种形状或形式来批量生产这些电池,充电速度最大可以提高大约六倍。2020年11月,黑石在德国德贝恩镇萨克森州的Am Fuchsloch工业园区开设了第一家3D打印电池生产工厂,配套德国的汽车制造业,将大量生产用于工业应用以及电动汽车的下一代电池。首期工厂的生产能力将达到每年0.5 GWh。相关知情人告诉南极熊3D打印网,首批固态电池原型已经过测试,3D打印大量生产所需的许多电池复合材料、外壳和固态电解质。在开发和测试了这项技术之后,Blackstone准备计划生产3D打印的固态电池。这会改变固态电池的发展。自动化3D打印生产工艺,比传统的电池生产工艺减少了70%的固定投资。固态电池也更安全,不使用对环境更有害的易燃液体电解质。除黑石集团外,现在还有众多公司争相角逐下一代电池技术。在下一代技术(包括固态电池和新的先进制造技术)方面,这些公司可能会击败特斯拉。利用3D打印工艺技术,美国Keracel能够将陶瓷电解质厚度降低到100um,长期目标是达到15um。这些技术进步将使Keracel陶瓷电池能够提供1200Wh/L的能量密度,这大约是标准锂离子电池的两倍,并且能够满足工业和汽车企业应用中高倍率需要。当然,对于特斯拉来说,因为股价高,资本充足,可以通过有针对性的收购迅速加快步伐。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制