当前位置: 仪器信息网 > 行业主题 > >

谷硫磷

仪器信息网谷硫磷专题为您整合谷硫磷相关的最新文章,在谷硫磷专题,您不仅可以免费浏览谷硫磷的资讯, 同时您还可以浏览谷硫磷的相关资料、解决方案,参与社区谷硫磷话题讨论。

谷硫磷相关的论坛

  • 请问谷朊粉测试辛硫磷phoxim如何提取

    谷朊粉又称活性面筋粉、小麦面筋蛋白,是从小麦(面粉)中提取出来的天然蛋白质,呈淡黄色,蛋白质含量高达 百分之75,是营养丰富的植物蛋白资源.具有粘性、弹性、延伸性、成膜性和吸脂性. 谷朊粉测试辛硫磷phoxim如何提取呢?提取时是否应该加水浸泡?用什么溶剂提取?如何净化?有参考标准吗?

  • 【资讯】—美国环保局决定逐步淘汰杀虫剂谷硫磷(及其他资讯)

    [color=blue]美国环保局决定逐步淘汰杀虫剂谷硫磷[/color] 美国环境保护局日前公布决定,从2007年开始,美国将逐步淘汰自上世纪50年代末以来一直使用的一种名为谷硫磷的杀虫剂。环保组织称这种杀虫剂危害农场工人的健康。 按照计划,从2007年起,在种植坚果、苗木和球芽甘蓝的过程中将禁止使用谷硫磷。到2010年,在苹果、蓝莓、樱桃、梨和欧芹等果蔬种植中也将停止使用这种杀虫剂。 环保局还决定,在逐步淘汰谷硫磷的过程中将取消飞机洒药的做法,同时要求在水域周围划出约30米的缓冲带,并对在喷洒谷硫磷的田间劳作人员做健康跟踪监测。 美国农场工人联盟的埃里克• 尼科尔森表示:“这种农药每年使数以千计的工人面临染上重病的危险。” 2004年,美国农场工人和环保组织曾向联邦法院起诉环保局,认为它不该继续允许使用这种会导致疾病发作、瘫痪和死亡的杀虫剂。 信息来源:中国食品产业网

  • 煤的发热量与硫、磷

    1.煤的发热量(卡/克或千卡/千克) 把一克煤样放在高压充氧的弹筒中燃烧,由量热计测得的发热量称为弹筒发热量(QDT).当煤在弹筒中燃烧时,在高温高压下,氧生成硝酸,硫生成硫酸都放出热量,这部分热量也包括在弹筒发热量内.另外,水分在弹筒的高压下保持液态,也放出冷凝热.而煤在空气中燃烧时,硫成为二氧化硫放出,而水分仍保持水蒸汽状态,故弹筒发热量减去硫和氧的校正值后的发热量称为高位发热量(QGW) 工业上多采用应用煤的低位发热量(QDW)作为计算和设计依据.低位发热量可按下式计算: QDW=QGW-6(W+9H) 式中:QGW,QDW----应用煤的高,低位热量,卡/克 WY----应用煤的全水分,% HY---应用煤的氢含量,% 煤的发热量除直接定外,还可以根据元素分析或工业分析的数据进行估算.煤科院煤化学研究所(北京煤化所)根据我国煤质资料推导出许多发热量计算式,例如: 利用元素分析数据,估算可燃基高位发热量的半经验公式 低煤化程度的煤: QGW=80CR+305(310)HR+22SR-26OR-4(Ag-10) 式中,HR前面的系数对褐煤为305,对长焰煤,不粘煤和弱粘煤为310;对AG≤10%的煤,不计算最后一项灰分的校正值。 由上式可知,OR,AG越高,QJW越低。 炼焦煤:QGW=80 CR +310HR+22SR-25OR-7(Ag-10) 无烟煤(低灰和高灰适用): QGW=80(78.1)CR+320HR+22SR+(SR-OR)-8(AG-10) 式中,对FR﹥1.5%的一般无烟煤,CR前面的系数用80 对HR≤1.5%的年老无烟煤,CR前面的系数采用78.1 对AG≤10%的所有无烟煤,公式中最后一项应予删去。 利用工业分析数据,估算低热值煤高位发热量的半经验公式 高灰(AF>45~90%)烟煤: QGW=81CGD+55VF-3AF 高灰无烟煤: QGW=80CGD+50VF-3AF 石煤: QGW=80CGD+40VF-3AF 2.煤中的硫 煤中硫分的赋存形态通常可分为有机硫和无机硫两大类,煤中各种形态的硫分的总和称为全硫(SQ) 1)有机硫: 煤的机质中所含的硫称为有机硫 (SYJ).有机硫主要来自成煤植物中的蛋白质和微生物的蛋白质.蛋白质中含硫0.3~2.4%,而植物整体的含硫量一般都小于0.5%(红树等滨海盐生植物的硫分较高).一般煤中有机硫的含量较低,但组成很复杂,主要由硫醚或硫化物,二硫化物,硫醇,噻吩类杂环硫公物及硫醌分合物等组成或官能团所构成.有机硫与煤的有机质结为一体,分布均匀,很难清除,用一般物理洗选方法不能脱除.一般低硫煤中以有机硫为主,经过洗选,精煤全硫因灰分减少而增高. 2)无机硫: 无机硫又分为硫铁矿硫(STL),硫酸盐硫(STY)两种,有时也有微量的元素硫.硫化物硫与有机硫合称为可燃硫,硫酸盐硫则为不可燃硫.硫化物硫中绝大部分以黄铁矿硫形态存在,有时也有少量的白铁矿硫.它们的分子式都是FeS2,但黄铁矿是正方晶系晶体,多呈结梳状,透镜状,团块状和浸染状等形态存在于煤中 白铁矿则是斜方晶系体,多呈放射状存在,它显微镜下的反射率比黄铁矿低。硫化物硫清除的难易程度与矿物颗粒大小及分布状态有关,颗粒大的可利用黄铁矿与有机质比重不同洗选除去。但以极细颗粒均匀分布在煤中的黄铁矿则即使将煤细碎也难以除掉。 硫化物硫在高硫煤的全硫中所占比重较大,它们一部分来源于适煤植物及其转化产物中的硫化物,另一部分则是由停滞缺氧水中的硫酸铁等盐类还原生成的。 硫酸盐硫主要存在形态是石膏(CaSO4.2H2O),也有少量绿矾(FeSO4.7H2O)等。我国在部分煤中硫酸盐含量大部分小于0.1%,部分煤为0.1~0.3%.一般硫酸盐硫含量较高的煤,可能曾受过氧化. 3.煤中的磷 煤中的磷主要是无机磷,也有微量有机磷.炼焦时,煤中磷全部进入焦炭,焦中磷又全部进入生铁,使钢铁冷脆.因此,磷是煤中有害成分.我国煤中磷含量较低,一般为0.01~0.1%,最高不超过1%.多数情况下不超过炼焦用煤的工业要求Pg<0.01%.

  • 蔬菜中有机磷农药多残留的检测的固相萃取方法

    蔬菜中有机磷农药多残留的检测的固相萃取方法

    蔬菜中有机磷农药多残留的检测的固相萃取方法(Silibase™ C18)一、实验目的本实验利用固相萃取法作为样品的前处理方法,GC法作为检测手段。该方法可简化样品的前处理过程,节省有机溶剂的用量。 二、实验目标物 敌敌畏(CAS:62-73-7),乙酰甲胺磷(CAS:30560-19-1),磷胺(CAS:13171-21-6),毒死蜱(CAS:2921-88-2),水胺硫磷(CAS:24353-61-5), 三唑磷(CAS:24017-47-8) 三、应用范围本方法适用于蔬菜水果中有机磷农药多残留的GC检测及确证。 四、参考标准农业部标准《NY/T 761-2008蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定》 五、实验材料 Biocomma®Silibase™ C18固相萃取柱500mg/6mL。六、实验方法 1、样品提取 称取10.0g试样(精确至0.01g)于50mL离心管中,加入20mL乙腈,均质2min,加入5g-7g氯化钠,盖上盖子剧烈的震荡5min,在室温下静置10min,5000r/min离心4min,使乙腈和水相分层。 2、SPE柱活化向C18小柱中加入5.0mL乙腈+甲苯(3:1,体积比)预淋洗,活化。 3、上样和洗脱 当溶剂液面到达柱吸附层表面时,立即倒入上述待净化溶液4.0mL,用15ml刻度离心管接收洗脱液,用10.0ml乙腈+甲苯(3:1,体积比)分四次淋洗石墨化炭黑/PSA复合柱。流速控制在1 mL/min内,收集流出液。 4、重新溶解 40℃缓慢氮气流条件下吹至近干(约0.5 mL)后挥干,用丙酮定容至1 mL,过0.45μm微孔滤膜,上气相色谱,待测定。 5、GC条件 气相色谱仪:agilent 7890A 色谱柱: DB1701柱:30m×0.32μm×0.25μm 或相当者 进样口温度:220℃ 检测器温度:250℃ 柱温:70℃(保持2min);以10℃/min升温到180℃(保持4min);以5℃/min升温至250℃(保持5min) 载气:氮气,流速为1ml/min;辅助气:流速60ml/min 进样方式:不分流七、实验结果1、添加回收结果表1 蔬菜中农药残留物添加回收结果 样品名称 化合物名称 添加水平(μg/mL) 回收率(%) 韭菜 敌敌畏 0.5 96.44 乙酰甲胺磷 0.5 95.38 磷胺 0.5 100.13 毒死蜱 0.5 101.45 水胺硫磷 0.5 80.45 三唑磷 0.5 94.56 2、 空白样品添加农药残留物色谱图 http://ng1.17img.cn/bbsfiles/images/2015/08/201508141602_560730_3310_3.jpg http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif

  • 【求助】测蔬菜中的马拉硫磷和乐果的前处理方法

    最近让我测蔬菜中的马拉硫磷和乐果残留,实验室以前用固相微萃取测水样中的残留,回收率可达90%,但是蔬菜中我几乎就测不到回收率。大家都用什么前处理方法测有机磷啊?我们实验室条件有限,只有微波萃取仪,超声组织粉碎机,旋转蒸发仪,索式提取器,榨汁机,布式漏斗,丙酮和甲醇,不能固相萃取。请各位高手指点一下适合我们实验室的前处理方法。请说详细些,谢谢。

  • 水中总磷的测定取水样后为什么加入硫酸?

    [font=&][color=#333333]一、固定和保存总磷[/color][/font] [font=&][color=#333333]加入硫酸可以固定和保存水样中的总磷,防止其在保存过程中发生化学变化或生物降解,从而确保测定结果的准确性。硫酸的强酸性可以抑制微生物的活性,减少其对水样中有机物的分解作用,同时也有助于保持水样中磷的化学形态稳定。[/color][/font] [font=&][color=#333333]二、调节pH值[/color][/font] [font=&][color=#333333]硫酸的加入还可以调节水样的pH值,使其达到适合总磷测定的范围。在总磷的测定过程中,通常需要将水样调节至酸性环境,以促进磷的释放和转化,使其更易于被测定。硫酸作为一种强酸,可以有效地降低水样的pH值,满足测定要求。[/color][/font] [font=&][color=#333333]三、促进磷的转化[/color][/font] [font=&][color=#333333]硫酸的加入还有助于促进水样中不同形态磷的转化。例如,在酸性条件下,磷酸盐的水解和分解速度会加快,从而使其转化成更易于分析的形式。这对于提高总磷测定的灵敏度和准确性具有重要意义。[/color][/font] [font=&][color=#333333]四、减少干扰[/color][/font] [font=&][color=#333333]在某些情况下,水样中可能含有其他干扰物质,如铁、铝等金属离子或悬浮物等。这些干扰物质可能会影响总磷的测定结果。硫酸的加入可以在一定程度上减少这些干扰物质的影响,提高测定的准确性。[/color][/font] [font=&][color=#333333]五、其他注意事项[/color][/font] [font=&][color=#333333]在加入硫酸时,需要注意以下几点:[/color][/font] [font=&][color=#333333]硫酸的加入量应根据水样的具体情况和测定方法进行确定,避免过量或不足。[/color][/font] [font=&][color=#333333]加入硫酸后应充分混匀水样,以确保其均匀分布。[/color][/font] [font=&][color=#333333]在测定前需要对水样进行适当的前处理,如过滤、稀释等,以去除悬浮物和干扰物质。[/color][/font]

  • 有机磷:毒死蜱,倍硫磷、喹硫磷、马拉硫磷、甲基嘧啶磷如何有效的分离

    我今天做有机磷的农药残留,发现毒死蜱,倍硫磷、喹硫磷、马拉硫磷、甲基嘧啶磷这几种有机磷的出峰时间均好接近啊,如果是混标了话,那这几个有机磷岂不是不能分开了,我的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件是:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 2010plus,色谱柱:Rtx-5 30m*0.25mm, 0.25um 升温程序:80℃保持1min,以20℃/min升至130℃,再以5℃/min升至200℃,最后以15℃/min升至250℃,并保持11min,检测器:FPD,温度250℃,进样口温度220℃。

  • 有机磷中的对硫磷和马拉硫磷分不开

    小妹最近在做有机磷,原来用的是DB-1701的柱子,后来不知道怎么坏了。现在用手头上的DB-1和DB-17分析后,发现用DB-17其中的马拉硫磷和对硫磷怎么都分不开,用DB-1发现对硫磷和毒死蜱是怎么都分不开。现在手头上还有一根DB-5和HP-5ms,想问下各位大神有没有用这四根柱子分开过马拉硫磷,毒死蜱和对硫磷的?谢谢大家了http://simg.instrument.com.cn/bbs/images/default/emyc1004.gif

  • 【转帖】关于出口水产品中有机磷农药残留检测的风险评估报告

    本文对出口水产品原料、加工、运输等生产全过程有机磷农药污染的风险进行了分析,对出口水产品成品中有机磷农药残留的风险进行了评估,对宁波地区以往出口水产品有机磷农药检测数据进行了统计分析,并在综合以上三方面的内容后得出了对不同生产方式不同养殖捕捞方式的出口水产品实施不同的有机磷检测风险管理措施的结论。

  • 水中总磷的测定取水样后为什么加入硫酸?

    [font=&][color=#333333]一、固定和保存总磷[/color][/font] [font=&][color=#333333]加入硫酸可以固定和保存水样中的总磷,防止其在保存过程中发生化学变化或生物降解,从而确保测定结果的准确性。硫酸的强酸性可以抑制微生物的活性,减少其对水样中有机物的分解作用,同时也有助于保持水样中磷的化学形态稳定。[/color][/font] [font=&][color=#333333]二、调节pH值[/color][/font] [font=&][color=#333333]硫酸的加入还可以调节水样的pH值,使其达到适合总磷测定的范围。在总磷的测定过程中,通常需要将水样调节至酸性环境,以促进磷的释放和转化,使其更易于被测定。硫酸作为一种强酸,可以有效地降低水样的pH值,满足测定要求。[/color][/font] [font=&][color=#333333]三、促进磷的转化[/color][/font] [font=&][color=#333333]硫酸的加入还有助于促进水样中不同形态磷的转化。例如,在酸性条件下,磷酸盐的水解和分解速度会加快,从而使其转化成更易于分析的形式。这对于提高总磷测定的灵敏度和准确性具有重要意义。[/color][/font] [font=&][color=#333333]四、减少干扰[/color][/font] [font=&][color=#333333]在某些情况下,水样中可能含有其他干扰物质,如铁、铝等金属离子或悬浮物等。这些干扰物质可能会影响总磷的测定结果。硫酸的加入可以在一定程度上减少这些干扰物质的影响,提高测定的准确性。[/color][/font] [font=&][color=#333333]五、其他注意事项[/color][/font] [font=&][color=#333333]在加入硫酸时,需要注意以下几点:[/color][/font] [font=&][color=#333333]硫酸的加入量应根据水样的具体情况和测定方法进行确定,避免过量或不足。[/color][/font] [font=&][color=#333333]加入硫酸后应充分混匀水样,以确保其均匀分布。[/color][/font] [font=&][color=#333333]在测定前需要对水样进行适当的前处理,如过滤、稀释等,以去除悬浮物和干扰物质。[/color][/font]

  • 【原创大赛】固相微萃取-气相色谱法快速检测库尔勒香梨中有机磷农药残留量

    【原创大赛】固相微萃取-气相色谱法快速检测库尔勒香梨中有机磷农药残留量

    【生活中的仪器分析】活动原创作品:食品安全——果蔬中农药残留及重金属含量检测摘要:通过对固相微萃取(SPME)条件进行优化,建立库尔勒香梨中有机磷农药残留量的快速检测方法。使用顶空-固相微萃取技术提取目标物,采用气相色谱仪检测香梨中9种有机磷农药组分。实验表明在0.05~1.0μg/mL范围内线性回归好,相关系数r大于0.99,样品加标回收率为71.8~93.5%,相对标准偏差为2.14~5.83%。与传统农药残留检测方法相比,具有快速、无溶剂萃取、简便、准确、重现新较好的特点,可作为库尔勒香梨中农药残留快速检测的分析方法。关键词:固相微萃取;有机磷农药;残留量;气相色谱;库尔勒香梨库尔勒香梨我国著名的梨品种,属蔷薇科、梨属中的白梨,已有1500多年的栽培历史,原产地为新疆库尔勒地区,目前栽培面积仍在不断扩大。该品种结果早、品质优,是新疆的名特水果之一,产品销售世界各地,已成为新疆地区支柱产业之一。目前库尔勒香梨主要病虫害有中国梨喀木虱、橄榄片盾、香梨茎蜂、香梨优斑螟、黄化病和腐烂病等,在种植过程中虽然控制农药的使用,但对于农药残留量仍然是检测工作者一直研究的任务。固相微萃取(SPME)技术是20世纪90年代初发明的一种高效、快捷的样品前处理技术,克服了传统样品前处理消耗大量溶剂,操作复杂等缺点,具有萃取、浓缩、进样一体化的优点。近几年随着固相微萃取头材质的不断改进与发展,已逐渐开始应用于基质较为复杂的样品前处理。本文通过优化固相微萃取的试验条件,对库尔勒香梨中添加的有机磷类农药进行萃取,采用气相色谱法检测农药残留量,建立了9种有机磷农药的多残留快速检测方法。1 实验部分1.1 仪器、试剂与材料气相色谱仪(Thermo Fisher赛默飞世尔科技,Trace2000);分析天平(Mettle-Toledo 梅特勒-托利多);匀浆机(IKA仪科);固相微萃取装置(美国SUPELCO公司)、聚二甲基硅氧烷萃取头(SPME-S-01 PDMS上海新拓仪器公司)9种有机磷农药标准品:敌敌畏、甲胺磷、甲拌磷、二嗪磷、乐果、毒死蜱、甲基对硫磷、马拉硫磷、杀螟硫磷(1000 µg/mL,农业部环境质量监督检验测试中心)试验材料:库尔勒香梨种植基地。1.2 标准溶液配制准确配制9种有机磷农药标准品,用丙酮定容,全部配成20 mg/L的标准储备液,吸取以上标准储备液适量,混合后稀释至质量浓度为0.05、0.1、0.2、0.5、1.0 mg/L系列标准溶液。1.3 实验方法1.3.1样品前处理将库尔勒香梨2kg先切成块后等份取出代表部分,在食物破碎机搅碎至浆状。根据试验要求准确称取样品,加入已知量的混合农药标准,均匀混合后备用。1.3.2 SPME[/size

  • 【原创大赛】茶叶中灭线磷、久效磷、对硫磷的测定

    【原创大赛】茶叶中灭线磷、久效磷、对硫磷的测定

    【生活中的仪器分析】食品安全——“菜”米油盐酱醋茶大检测摘要:本文参照SN/T1950-2007标准,采用气相色谱安捷伦7890A对茶叶中的灭线磷、久效磷、对硫磷进行检测,在优化后的色谱条件下,灭线磷、久效磷、对硫磷这三种有机磷得到了良好的基线分离,样品也均未检出这三种有机磷农药残留。仪器:气相色谱安捷伦7890A(配火焰光度FPD检测器);电子分析天平FA1604标液配制见下表:http://ng1.17img.cn/bbsfiles/images/2013/12/201312221402_483940_2166779_3.png色谱条件:DB-17MS型石英毛细管色谱柱(30m ×0.25mm×0.25um),色谱柱初始温度为70℃,保持1min,以30度/分钟升温至 130度,以5℃/min升温至250℃,再以10度/min升温至300℃,保持3min;进样量为1uL;进样方式为不分流进样;柱流量为1.2mL/min(恒流模式);进样口温度为250℃;检测器:FPD检测器; 检测器温度为250℃; 载气氮气流速:2.0mL/分钟, 尾吹气氮气流速:60mL/分钟, 氢气流速; 150mL/分钟; 空气流速: 110mL/分钟。样品处理简述:称样0.5g于10ml试管中,加入1~1.5ml水,浸泡10min,加入无水硫酸钠使之饱和,用2×2ml乙酸乙酯提取2次,离心后收集上层有机相,残渣再用2ml乙酸乙酯-正己烷(1+1)提取1次,合并上层有机相,待净化。净化:在活性炭固相萃取柱上端装入1cm高无水硫酸钠,用乙酸乙酯预淋洗小柱后,加入上层有机相,再用4ml乙酸乙酯和2ml乙酸乙酯-正己烷(1+1)洗脱,收集全部流出液,浓缩定容至2.0ml后进行GC分析。灭线磷、久效磷、对硫磷在上述色谱条件下的分离色谱图:http://ng1.17img.cn/bbsfiles/images/2013/12/201312221407_483941_2166779_3.png样品的测定结果色谱图:http://ng1.17img.cn/bbsfiles/images/2013/12/201312221408_483942_2166779_3.pnghttp://ng1.17img.cn/bbsfiles/images/2013/12/201312221408_483943_2166779_3.png结论:在上述的色谱条件下,灭线磷、久效磷、对硫磷得到了良好的分离,茶叶样品的这三种有机磷农药残留也均未检出。

  • 硫环磷、甲基硫环磷、蝇毒磷、保棉磷在FPD检测器上不出峰

    参照NY/T 761-2008的做法,发现硫环磷、甲基硫环磷、蝇毒磷、保棉磷标液在FPD检测器上不出峰,0.1和1.0ug/mL的标样都试过了,DB-1701柱,时间设的也够久了,最后250摄氏度走了22min。用GC-MS硫环磷、蝇毒磷、保棉磷出峰正常,甲基硫环磷响应很低。请各位给分析分析,谢谢。

  • 水胺硫磷、三唑磷、伏杀硫磷出峰很小。

    用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],配制10种混标,都配0.2ug/mL,其它出峰可以,但水胺硫磷、三唑磷、伏杀硫磷出峰很小。柱子用DB1701(30*0.25*0.25)。衬管稍有些脏,不严重。有什么解决办法吗?

  • 金银花中11种有机磷农药残留的固相萃取样品

    样品预处理:取l0g粉碎的金银花,加入50 mL丙酮,匀浆3 min后超声萃取10 min。过滤,用15 mL丙酮冲洗滤渣多次。固相萃取柱:C18非极性柱和硅胶极性柱串联,C18柱在上,硅胶柱在下。样品过柱:将滤液过柱,滤瓶用丙酮15 mL洗涤多次并过柱,收集所有过柱流出液。浓缩定容:旋转浓缩至于,定容后备用。气相色谱分析:脉冲式硫磷检测器,HP-1701色谱柱。金银花中添加11种有机磷农药后经上述方法萃取净化后得到的色谱图。可以看到,样品经过萃取净化后很干净,对所监测的11种有机磷农药几乎没有干扰。采用C18和硅胶串联的方式,最大程度地将样品中的杂质除去,并且减少了农药在萃取净化过程中的损失,得到满意的回收率。

  • 金银花中11种有机磷农药残留的固相萃取

    样品预处理:取l0g粉碎的金银花,加入50 mL丙酮,匀浆3 min后超声萃取10 min。过滤,用15 mL丙酮冲洗滤渣多次。固相萃取柱:C18非极性柱和硅胶极性柱串联,C18柱在上,硅胶柱在下。样品过柱:将滤液过柱,滤瓶用丙酮15 mL洗涤多次并过柱,收集所有过柱流出液。浓缩定容:旋转浓缩至于,定容后备用。气相色谱分析:脉冲式硫磷检测器,HP-1701色谱柱。金银花中添加11种有机磷农药后经上述方法萃取净化后得到的色谱图。可以看到,样品经过萃取净化后很干净,对所监测的11种有机磷农药几乎没有干扰。采用C18和硅胶串联的方式,最大程度地将样品中的杂质除去,并且减少了农药在萃取净化过程中的损失,得到满意的回收率。

  • 水中毒死蜱和马拉硫磷的测定

    水中毒死蜱和马拉硫磷的测定

    [align=center][font='times new roman'][size=13px]水中毒死蜱和马拉硫磷的测定[/size][/font][/align][font='times new roman'][size=13px]前言[/size][/font]毒死蜱,马拉硫磷是有机磷农药中一种高效低毒杀虫剂。 目前水样中毒死蜱、马拉硫磷的测定有[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法、酶抑制-薄层层析法和铜络合比色法,其中层析法操作繁琐,比色法干扰物较多, 现已很少采用。固相萃取法 SPE前处理样品, 具有回收率高、净化效果好、溶剂和试样用量小、操作简单等优点。 现使用全自动固相萃取系统,参考《EPA Method527》方法,对自来水中的毒死蜱和马拉硫磷进行回收率测定。方法结果不仅回收率良好,而且由于使用了全自动固相萃取系统,省去了人工繁琐的操作,提高效率,并减小了人工误差,平行性良好。[font='times new roman'][size=13px]关键词[/size][/font]毒死蜱 马拉硫磷 水 EPA Method 527[font='times new roman'][size=13px]1、[/size][/font][font='times new roman'][size=13px]仪器与试剂[/size][/font]固相萃取仪:Sepaths UP 全自动固相萃取系统;高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]:LC600 二元高压梯度高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url];固相萃取膜:CPI 12HS C18 47mm;手动脱水装置:IFAD除水装置;脱水膜:PTFE Membrane Filter, 47mm, Advantec;氮吹浓缩仪:MultiVap-8 平行浓缩仪;毒死蜱标准母液:5ug/mL;马拉硫磷标准品:100mg;马拉硫磷标准工作液:量取10mg马拉硫磷标准品,用甲醇定容至10mL ,即马拉硫磷标准工作液溶度为1mg/mL 。[font='times new roman'][size=13px]2、 [/size][/font][font='times new roman'][size=13px]测试过程[/size][/font][font='times new roman'][size=13px]2[/size][/font][font='times new roman'][size=13px].1 加标样品预处理[/size][/font] 量取500mL 自来水,分别加入50μL马拉硫磷标准工作液和200μL的毒死蜱标准母液,摇匀待测。加标浓度相当于马拉硫磷100μg/L,毒死蜱2μg/L。[font='times new roman'][size=13px]2.2 固相萃取浓缩过程[/size][/font]将加标样品置于SepathsUP的样品柜中,按照图1的固相萃取方法进行水中马拉硫磷和毒死蜱的萃取富集。得到的萃取液,经过脱水装置脱水,在40℃进行氮吹浓缩近干,用乙腈定容至1mL 。[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101615324739_4997_5237388_3.png[/img][align=center][font='times new roman'][size=13px]图1 水中马拉硫磷[/size][/font][font='times new roman'][size=13px]、毒死蜱[/size][/font][font='times new roman'][size=13px]固相萃取[/size][/font][font='times new roman'][size=13px]方法[/size][/font][/align][font='times new roman'][size=13px]2.3 HPLC-UV[/size][/font][font='times new roman'][size=13px]检测[/size][/font]色谱柱:C18柱,250mm×4.6mm,5μm流动相:乙腈水(80:20, v/v)流速:1.0mL/min波长:230nm进样量:20μL[font='times new roman'][size=13px]2.4 [/size][/font][font='times new roman'][size=13px]空白实验[/size][/font]除不加标样外,其余均按2.2、2.3测定条件和步骤进行。[font='times new roman'][size=13px]3、测试[/size][/font][font='times new roman'][size=13px]结果[/size][/font][font='times new roman'][size=13px]3.1 混标[/size][/font][font='times new roman'][size=13px]色谱图[/size][/font]图2为马拉硫磷和毒死蜱混标的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]图,其中马拉硫磷的出峰时间为4.992min ,毒死蜱的出峰时间为11.807min。[img=,542,245]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101616589879_7658_5237388_3.jpg!w542x245.jpg[/img][align=center][img]" style="max-width: 100% max-height: 100% [/img][/align][align=center][font='times new roman'][size=13px]图2 [/size][/font][font='times new roman'][size=13px]马拉硫磷[/size][/font][font='times new roman'][size=13px]和毒死蜱[/size][/font][font='times new roman'][size=13px]混标[/size][/font][font='times new roman'][size=13px][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]图[/size][/font][/align][font='times new roman'][size=13px]3.2 [/size][/font][font='times new roman'][size=13px]空白及加标样品色谱图[/size][/font]图3为空白样品的色谱图,从图中可以看出空白样品中并未检出马拉硫磷和毒死蜱。[img=,546,216]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101617108027_2342_5237388_3.jpg!w546x216.jpg[/img][align=center][img]" style="max-width: 100% max-height: 100% [/img][/align][align=center][font='times new roman'][size=13px]图3[/size][/font][font='times new roman'][size=13px] [/size][/font][font='times new roman'][size=13px]空白[/size][/font][font='times new roman'][size=13px]样品色谱图[/size][/font][/align]图4是加标样品色谱图,由于空白样品中未检出马拉硫磷和毒死蜱,所以加标回收率计算时直接用加标样品色谱图中百菌清和溴氰菊酯的色谱峰面积和标样做比较,结果见3.3。[img=,546,229]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101617226631_9284_5237388_3.jpg!w546x229.jpg[/img][align=center][img]" style="max-width: 100% max-height: 100% [/img][/align][align=center][font='times new roman'][size=13px]图4[/size][/font][font='times new roman'][size=13px] [/size][/font][font='times new roman'][size=13px]加标[/size][/font][font='times new roman'][size=13px]样品色谱图[/size][/font][/align][font='times new roman'][size=13px]3.3 [/size][/font][font='times new roman'][size=13px]加标回收率[/size][/font][font='times new roman'][size=13px]及[/size][/font][font='times new roman'][size=13px]平行性结果[/size][/font]4通道并行,1、2、3通道走加标样品,4通道走空白样品,由于空白样品中未检出马拉硫磷和毒死蜱,所以加标回收率计算时直接用加标样品色谱图中马拉硫磷和毒死蜱的色谱峰面积和标样做比较,结果见3.3。3个通道的马拉硫磷加标回收率为85.6~93.4%,平行性RSD为3.6%。毒死蜱的加标回收率83.6~89.8!8.57.7收率分别是。行固相萃取富集色谱峰面积和标样做笔记。89.889%,平行性RSD为 3.3%。[align=center][font='times new roman'][size=13px]表[/size][/font][font='times new roman'][size=13px]1 [/size][/font][font='times new roman'][size=13px]加标回收率[/size][/font][font='times new roman'][size=13px]及平行性[/size][/font][font='times new roman'][size=13px]测定结果[/size][/font][/align][table][tr][td=1,2][align=center][size=13px]通道[/size][/align][/td][td=2,1][align=center][size=13px]加标回收率/%[/size][/align][/td][/tr][tr][td][align=center][size=13px]马拉硫磷[/size][/align][/td][td][align=center][size=13px]毒死蜱[/size][/align][/td][/tr][tr][td][align=center][size=13px]1[/size][/align][/td][td][align=center]93.4[/align][/td][td][align=center]89.8[/align][/td][/tr][tr][td][align=center][size=13px]2[/size][/align][/td][td][align=center]85.6[/align][/td][td][align=center]83.6[/align][/td][/tr][tr][td][align=center][size=13px]3[/size][/align][/td][td][align=center][size=13px]89.5[/size][/align][/td][td][align=center][size=13px]84.2[/size][/align][/td][/tr][tr][td][align=center][size=13px]RSD%[/size][/align][/td][td][align=center][size=13px]3.6[/size][/align][/td][td][align=center][size=13px]3.3[/size][/align][/td][/tr][/table][align=center][/align][font='times new roman'][size=13px]4、[/size][/font][font='times new roman'][size=13px]结果与讨论[/size][/font] 本方法用全自动固相萃取系统,参考《EPA Method527》方法,对自来水中马拉硫磷和毒死蜱进行萃取富集,加标回收率在83.6~93.4%之间,平行性RSD≤3.6%。[font='times new roman'][size=13px]1、 [/size][/font][font='times new roman'][size=13px]水质 有机磷农药的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法(GB 13192-91)[/size][/font][font='times new roman'][size=13px]2、 [/size][/font][font='times new roman'][size=13px]EPA Method 527 DETERMINATION OF SELECTED PESTICIDES AND FLAME RETARDANTS IN DRINKING WATER BY SOLID PHASE EXTRACTION AND CAPILLARY COLUMN GAS CHROMATOGRAPHY/ MASS SPECTROMETRY (GC/MS)[/size][/font][align=right][/align][align=right][/align][align=right][/align][align=right][/align]

  • 甲基异柳磷与水胺硫磷重合?

    1701柱,一个是DB,一个是VF1701MS,尺寸是一样的,30*0.25*0.25,可是DB1701上甲基异柳磷与水胺硫磷能分开,相差1.0min,而VF1701上只相差0.1min,两者重合,大家遇见过这种情况吗?

  • 【求助】有人用液质做杀螟硫磷、辛硫磷吗?

    有人用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]做杀螟硫磷、辛硫磷吗?两者在相同的色谱条件下响应值相差多少的?质谱条件均已优化至最优,辛硫磷的响应值却比杀螟硫磷的大约200倍。不知跟标准品有效期是不是有关的?(辛硫磷为2010.7月份新购买的;杀螟硫磷为2007年购买的但还在保质期内的,长期-18℃保存。)

  • 【求助】对硫磷和杀螟硫磷注意事项

    小弟马上要参加个能力验证,测定大米中对硫磷和杀螟硫磷含量,请问做过的高手做这两种物质的实验注意事项?以及前处理和仪器方法的注意事,先谢了[img]http://simg.instrument.com.cn/bbs/images/brow/em09511.gif[/img]

  • 【转帖】马拉硫磷水胺硫磷悬乳剂的气相色谱分析

    梁贵平  侯震 摘 要:采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法,以p,p'-DDE为内标物,对马拉硫磷水胺硫磷悬乳剂进行测定.两种有效成分马拉硫磷、水胺硫磷在同一条件下测定,方法回收率均在99.0%~100.6%之间,变异系数均小于0.40%.方法简便、快速、准确且重现性好.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制