当前位置: 仪器信息网 > 行业主题 > >

功能化碳纳米管

仪器信息网功能化碳纳米管专题为您整合功能化碳纳米管相关的最新文章,在功能化碳纳米管专题,您不仅可以免费浏览功能化碳纳米管的资讯, 同时您还可以浏览功能化碳纳米管的相关资料、解决方案,参与社区功能化碳纳米管话题讨论。

功能化碳纳米管相关的方案

  • 天津兰力科:功能化碳纳米管及其性质研究
    自1991年碳纳米管被发现以来,就吸引了众多科学家和研究学者的注意。根据其手性参数的不同,碳纳米管既可呈金属又可呈半导体的性质。由于单壁和多壁碳纳米管独特的结构、力学性能和电学性能,使其在材料和器件方面有着广泛的应用。本论文主要对碳纳米管膜的电学性质、压阻效应和电化学性质进行了研究。本论文首先讨论了对碳纳米管的不同酸处理方法,并用透射电镜图和傅立叶红外谱表征了处理前后的碳纳米管,结果发现经过酸处理后的碳纳米管的端头被打开,并接上了羧基,成为羧基修饰的碳纳米管。文章对不同管径的碳纳米管膜电阻率随温度的变化进行了测定,发现所有这些碳纳米管膜电阻率均随温度的上升而呈下降趋势,即表现出非金属性。建立了碳纳米管膜的导电模型,其电阻率随温度的变化趋势与实验相符合。计算了碳纳米管膜的激活能,结果表明,碳纳米管膜的激活能随着管径的增加而减小。该研究对碳纳米管膜的应用有很好的指导意义。对碳纳米管膜的压阻效应进行了实验研究。研究表明,未处理的和经化学处理的碳纳米管膜相比,在相同的应变下,经化学处理的碳纳米管膜的电阻变化要大于未处理的碳纳米管膜的电阻变化;而对不同管径的多壁碳纳米管膜的研究发现,在相同的应变下,管径越小,电阻相对变化率就越显著。压阻因子K和应变的关系并没有显示出很好的规律性,在相同的温度下,未处理的碳纳米管膜的压阻因子在开始的时候随着应变的增加迅速增大,而后又逐渐减小。然而经化学处理后的碳纳米管膜的压阻因子随应变增加一直增大,两个样品的压阻因子随温度的升高也有很大的增加;在室温下对不同管径的多壁碳纳米管膜的压阻效应的研究发现,管径较小的碳纳米管膜与管径较大的相比具有更好的压阻效应,文中还对压阻效应的机制进行了详细的讨论。采用硝酸处理的方法实现了对氮掺杂碳纳米管的羟基修饰,使其具有化学活性,碳纳米管电化学性质主要决定于碳纳米管膜活化能和碳纳米管表面的官能团两个重要因素。碳纳米管的微孔道结构和端头的活性基团对多巴胺的氧化有很强的催化作用。正是由于这些催化作用,碳纳米管电极可用于在微量多巴胺与大量抗坏血酸共存下的检测等,并表现出很高的灵敏性和选择性。
  • 利用 SP-ICP-MS对单壁碳纳米管进行分析
    SP-ICP-MS 提供了一种单壁碳纳米管金属含量的定量方法。使用金属杂质的含量可以推测单壁碳纳米管的计数浓度,有效拓展了ICP-MS在纳米材料领域的应用。另外,一旦金属含量已知,即可测定未知样品中的单壁碳纳米管浓度。这项研究的意义是可以在无需消解碳纳米管(一个冗长繁琐的过程)的情况下准确量化碳纳米管中的金属杂质。
  • 改性碳纳米管的XPS测定与分析
    碳纳米管以其独特的结构和优异的性能,在纳米、生物、能源、催化、电子材料等领域有很大的应用潜力。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来;目前碳纳米管的合成和应用已经成为材料科学研究的前沿热点。然而,由于其分散性以及与基体材料的相容性问题制约着碳纳米管材料的发展;为解决这两个问题,很多科研工作者致力于碳纳米管表面改性的研究,以提升其分散性和相容性。XPS作为一种表面分析技术,由于其表面敏感性,这就使XPS成为碳纳米管研究过程中一种必不可少的研究手段。本文通过ESCALAB Xi+对改性前后的碳纳米管进行检测分析,探索不同改性工艺获得的改性碳纳米管的结构与组成信息,文章中将详细介绍如何利用XPS准确的获得材料表面组成和化学态信息。
  • 碳纳米管修饰金电极检测特定序列DNA
    利用化学偶联法将末端修饰氨基的寡聚核苷酸固定在表面修饰有羧基化碳纳米管(CNTs-COOH)的金电极表面,制备新型核酸探针, 可以特异性结合目标单链寡聚核苷酸. 以阿霉素作为嵌合指示剂, 利用示差脉冲法测定杂交的结果. 经过实验条件的优化, 测定DNA 浓度在1.0×10-6~1.0×10-9 mol/L 呈良好的线性关系. 检测限为: 2.54×10-10mol/L. 碳纳米管特有的纳米结构对检测结果的放大作用, 提高了该传感器的检测限和灵敏度
  • 探究研磨时间对碳纳米管分散体稳定性的影响
    嵌段共聚物(BCP)纳米复合材料由于独特的纳米结构形态以及碳纳米管(CNTs)的定向掺入使得开发具有特殊热、机械和电学性能的功能材料成为可能。CNTs具有优良抗拉强度,优异导电性,高导热性,密度低等众多特点。通过将CNTs选择性地定向掺入到非混相共混物的合适相形态中,可以特异性地调整电学、热学和力学性能。碳纳米管的长径比较大阻碍了碳纳米管在纳米级BCP结构域中的定向掺入,碳纳米管的平均长度为1.5µm,明显超过了嵌段共聚物相的结构域尺寸。使用短CNTs比较容易将CNTs选择性掺入嵌段共聚物,但随着长径比的减小,电渗透阈值增加,即需要更多的填料含量来生产导电复合材料。对碳纳米管进行不同时长的球磨处理,并分别与BCP进行混合制备成复合分散体,利用LUMiSizer®分散体分析仪进行分散稳定性表征,研究不同研磨时间对稳定性的影响。
  • 用SAXS研究碳纳米管的内部结构
    碳纳米管(CNTs)是具有圆柱形纳米结构碳的同素异形体。由CNTs构成的复合材料展示了有趣的和新颖的特性,这使得它们可以应用于多个领域,如材料科学、电子,光学或其他领域等。聚合物/多壁碳纳米管的复合材料可以使用SAXSess mc² 进行测量。 碳纳米管的内部结构可以通过碳纳米管横截面的电子密度分布计算得出。
  • 碳纳米管的超声处理分散方法
    多壁碳纳米管管壁上通常存在一些小洞样的缺陷,通过强超声波的空化效应,可以把碳纳米管从缺陷处震断,形成短纤维,然后分散于介质中。
  • 海能仪器:微波消解消解碳纳米管产品配置单(微波消解仪)
    碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料;碳纳米管还具有光学等其他良好的性能。
  • 探究研磨时间对碳纳米管分散体稳定性的影响
    碳纳米管的长径比较大阻碍了碳纳米管在纳米级BCP结构域中的定向掺入,碳纳米管的平均长度为1.5µm,明显超过了嵌段共聚物相的结构域尺寸。使用短CNTs比较容易将CNTs选择性掺入嵌段共聚物,但随着长径比的减小,电渗透阈值增加,即需要更多的填料含量来生产导电复合材料。对碳纳米管进行不同时长的球磨处理,并分别与BCP进行混合制备成复合分散体,利用LUMiSizer®分散体分析仪进行分散稳定性表征,研究不同研磨时间对稳定性的影响。
  • 4SU9000在观察碳纳米管方面的应用
    近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。如可以制成透明导电的薄膜,用以代替ITO(氧化铟锡)作为触摸屏的材料。同时碳纳米管触摸屏还具有柔性、抗干扰、防水、耐敲击与刮擦等特性,可以制做出曲面的触摸屏,具有高度的潜力可应用于穿戴式装置、智慧家俱等产品。
  • 颗粒形态表征——对碳纳米管产品质量稳定作用巨大
    碳纳米管(CNTs)是一种低密度、柔韧、导电的材料,单个碳纳米管具有较高的抗拉强度。Nanocomp Technologies, Inc.生产的碳纳米管形式有薄片、条带、粉末、分散体和线状。Nanocomp的产品用于航空航天、装甲和耐火材料。
  • 天津兰力科:超电容器碳纳米管与钼复合电极材料的研究
    以碳纳米管(CNTs) 为基体材料,用浓硝酸回流处理碳纳米管,TEM(透射电子显微镜) 研究表明碳纳米管的端帽被部分打开,通过液相反应对碳纳米管进行表面改性,制备CNTs/ Mo 复合电极材料,复合电极使电解液和导电材料的接触面积增大,使电极反应的有效表面积增大,反应场所有所增加,从而提高电极电化学反应的活性。基于此复合材料的超电容器具有高比电容、高稳定性、良好的可逆性和长寿命等特点。循环伏安结果表明:CNTs/ Mo 复合电极的比电容比纯CNTs 电极要高出20 %。
  • 碳纳米管的近红外区荧光光谱测量方案
    大部分单壁碳纳米管(SWNTs)的研究聚焦于单管,而对于多管束的研究甚少。根据新的研究结果表明,可以通过检测SWNTs激子研究单管和多管束的电子性质。因此利用HORIBA Scientific(Jobin Yvon光谱技术)设计生产的Nanolog模块式近红外荧光光谱仪,研究SWNTs管束间FRET的光致发光光谱,从而获得SWNT管束的电子性质。
  • LISICO LS-1分散均质分析测试仪在碳纳米管/石墨烯复合导电浆料的应用
    石墨烯是一种由单层碳原子组成的二维材料,由于其具有优异的导电、导热、硬度等性能,成为现代的热门功能材料。碳纳米管(CNT)是一种新型的碳素材料,由呈六边形排列的碳原子构成数层至数十层的同轴圆管,层与层之间保持固定的距离,约0.34nm,直径一般为2-20nm。石墨烯和碳纳米管具有非常优良的物理化学性质,由于石墨烯和CNT间的协同效应,使得CNT/石墨烯复合材料的导电性,机械性等性能得到增强。近年来随着其制备方法日趋成熟,在制备光电器件,储能电池,电化学传感器等领域的应用也逐渐成熟和广泛。
  • 天津兰力科:基于碳纳米管- 纳米二氧化锰增强的H2O2修饰电极的研制
    将碳纳米管(CNT)和纳米二氧化锰(Nano2MnO2 )分散在壳聚糖(CH IT)溶液中, 用涂敷法固定到玻碳电极表面, 制成修饰电极。由于碳纳米管具有良好的电子传递性能, 使纳米二氧化锰对H2O2 的电催化活性明显提高, 通过循环伏安法、计时电流法对传感器的性能进行了研究。在最佳测试条件下, 该传感器对H2O2 的线性范围为115 ×10 - 6~510 ×10 - 2 mol/L, 检出限为4 ×10- 7 mol/L。用于实际样品的测定, 结果满意。
  • 基于电子拉曼散射谱的金属性单壁碳纳米管手性结构测定
    拉曼光谱是探测单壁碳纳米管性质的重要手段。通过G模的峰型判定碳管的导电性(金属或半导体)和通过RBM模的拉曼频移计算碳管管径,是碳管拉曼光谱的两大主要应用。但是要通过分析拉曼光谱精确获得碳管的手性指数(n,m)仍然具有挑战,尤其是在仅有少波长激发的情况下。
  • 天津兰力科:杨梅酮在碳纳米管上修饰电极上的电化学性质研究
    制备了多壁碳纳米管修饰玻碳电极(MWN T sö GC) , 并研究了杨梅酮在MWN T sö GC 上的电化学性质。方法:采用循环伏安法对杨梅酮的浓度进行测定。结果: 氧化还原峰电流与杨梅酮的浓度呈线性关系。结论: 多壁碳纳米管对杨梅酮有良好的催化活性,MWN T sö GC 对于测定杨梅酮呈现良好的响应特性和较高的测定灵敏度, 该传感器应用于杨梅酮的分析。
  • 天津兰力科:芦丁在碳纳米管修饰电极上的电化学性质研究
    制备了多壁碳纳米管修饰玻碳电极(MWNT/GC) ,并研究了芦丁在MWNT/GC 上的电化学行为. 研究表明,MWNT/GC 对芦丁的氧化具有明显的电催化作用. 用循环伏安法对芦丁浓度进行了测定,其氧化峰电流与芦丁的浓度在0.0000005 ~0.0001mol/L 范围内呈良好的线性关系,线性相关系数为0.9918.
  • 天津兰力科:碳纳米管电极对水溶液中苯酚的电化学氧化处理
    制作了多壁碳纳米管电极,并将其应用于苯酚的氧化处理上. 结果发现有很好的氧化峰出现在电位窗口内,峰电流在一定范围内与苯酚的浓度成良好的线性关系. 长时间恒电位氧化实验表明,能克服传统碳电极的缺点,电极表面没有积垢,电极的重现性较好,可以逐渐将苯酚氧化.
  • 天津兰力科:吲哚美辛在单壁碳纳米管修饰电极上的电化学行为
    运用伏安法研究了吲哚美辛在单壁碳纳米管修饰电极上的电化学行为。在0.1mol/L HAc2NaAc 缓冲溶液(pH 4. 5) 中, 吲哚美辛于0.91 V (vs . SCE)电位处有一个峰形很好的氧化峰。与裸玻碳电极相比, 吲哚美辛在修饰电极上的电位正移了约30mV , 峰电流增加了近10 倍, 表明该修饰电极对吲哚美辛有较强的电催化作用。搅拌条件下开路富集2 min , 氧化峰电流与吲哚美辛在0.00000055~0.000011mol/L 浓度范围内呈良好的线性关系, 检出限为0.00000011mol/L 。该方法可用于药剂中吲哚美辛的分析。
  • 球磨机用于研究低碳多内璧纳米管的结果
    自1991年首次发现了纳米管,新形式的碳纳米管广泛地引起了学者们的注意。近期,人们的焦点汇集到了制备小纳米管,如小于1um。常用的方法有超声波切割法和STM电压法。但是这些方法的缺点是无法制备毫克级的样品。 本文着重介绍了使用德国Fritsch公司的P0--微型振动球磨机,通过一种简单的新方法制备毫克级的带有敞开末端的“短碳纳米管”。这种方法主要是通过使用德国Fritsch公司的P0--微型振动球磨机,采用玛瑙的研磨碗和研磨球,在不同的金属催化剂中进行乙炔分解,通过强烈的撞击作用来实现的。 实验证明:德国Fritsch公司的P0--微型振动球磨机是制备带有敞开末端的多内壁纳米管行之有效的简单方法。催化裂解多内壁纳米管可以获得“短碳纳米管”。平均的长度为:0.7-0.9um。并且在整个的研磨过程中,可以获得非常均匀的纳米管,即使研磨的时间为120h,也没有其他形式的纳米管。 纳米管最终的长度取决于根据直径不同的纳米管裂解程度,以及使用不同型号德国Fritsch公司的球磨机,如:P0-微型振动球磨机,P4-可变速率比行星式高能球磨机,P5-四罐行星式高能球磨机,P7-微型行星式高能球磨机,P23-微型球磨机。 具体的研磨粉碎实验方法及相关实验数据,欢迎您来电话与北京飞驰科学仪器有限公司取得联系。
  • 天津兰力科:基于多壁碳纳米管修饰的葡萄糖生物传感器
    用循环伏安法在玻碳电极表面电沉积了一层稳定的甲苯胺蓝聚合物膜,以此作为电子传递介体,结合多壁碳纳米管、壳聚糖(CHIT) 、葡萄糖氧化酶( GOD) 混合包埋制备出一种新型葡萄糖生物传感器. 实验结果显示,用此法制备的传感器对葡萄糖的线性响应范围为5. 0 ×10 - 6 ~2. 0 ×10 - 2 mol/ L ,线性相关系数为0. 996 9 ,检测限为1 ×10 - 6 ,响应时间为3. 2 s ,并具有抗尿酸、抗坏血酸等干扰的特点.
  • 单壁碳纳米管复合膜电极电催化氧化山莨菪碱
    制备以水作为分散剂的单壁碳纳米管—刚果红(SCNTWs-CR)的化学修饰电极,研究山莨菪碱在该修饰电极上的电化学行为和电化学动力学性质.结果表明:该修饰剂对山莨菪碱的氧化具有显著的电催化作用;山莨菪碱的氧化过程是一个不可逆的双电子双质子过程,其在该修饰电极上的扩散系数、速率常数分别为6.49×10-2cm2/s,6.52×10-3mol/(L?s).基于实验优化分析条件,建立直接测定山莨菪碱的电化学定量分析方法,该方法的线性范围为1.73×10-5~5.17×10-5 mol/L和6.31×10-5 ~1.14×10-4 mol/L,检出限为1.74×10-6mol/L,同支电极的相对标准偏差(RSD)为3.66!.该方法也可用于山莨菪碱的含量测定.
  • 使用Pyris 1热重分析仪(TGA)表征批量生产的单壁碳纳米管产品
    单壁碳纳米管(SWCNTs)被用于高分子基体材料中时可赋予材料独特的机械、热和电性能1。由于其高导电性能和大表面积的特性而被用于制备导电高分子复合物、薄膜、改进型锂离子电池和超级电容。独特的光学性能使其可用作显示器、太阳能电池和新兴固态照明技术的电极。有些SWCNT品种具有半导体特性而适用于逻辑器件、非易失性存储单元、传感器和防盗标签领域2。制造SWCNT的不同方法得到的是碳同素异形体和其它生产产品的混合物。热重分析仪(TGA)已被证明是一种表征这类混合物的有用工具,这种方法通过在空气气氛下以5?C/min的加热速度来分析样品的重量损失。
  • 天津兰力科:碳纳米管/ 纳米二氧化钛- 聚苯胺载铂复合电极微分脉冲法测定葡萄糖
    研究了多壁碳纳米管/纳米二氧化钛- 聚苯胺载铂(CNT/nanoTiO2 - PAn - Pt)复合电极对葡萄糖的电催化氧化作用。以015 mol/L KOH水溶液为底液,采用微分脉冲法在- 015 - 012V电位区间扫描,在- 0133V( vs, SCE)附近产生的氧化电流峰灵敏度高且峰型好,故以此峰为定量峰。葡萄糖浓度在1125 ×10 - 2 ~ 110×10 - 5 mol/L与峰电流呈良好的线性关系,线性相关系数为0199881, 检出限为510 ×10 - 6mol/L。加入0106m mol/L的抗坏血酸或013m mol/L的尿酸(模拟人血成份)均不干扰葡萄糖的测定。该电极对模拟血液中葡萄糖的测定,结果令人满意。
  • Plasma 3000型全谱电感耦合等离子体原子发射光谱测定碳纳米管复合磷酸铁钠正极材料中的Na、Fe、P元素的含量
    目前,关于碳纳米管复合磷酸铁钠正极材料成分的分析方法有重量法、分光光度法和滴定法等,这些方法几乎都有分析程序长、操作较复杂、只可单元素测定的缺点。因此本文选用国产全谱扫描电感耦合等离子体发射光谱仪Plasma 3000,具有可同时测定多种元素、分析速度快,检出限低并且精密度良好,动态范围宽等特点。
  • 拉曼光谱+脂质纳米管+作为碳质电极材料的TERS表征
    本文报告了脂质纳米管 (LNTs) 作为碳模板用于制造纳米结构的 TERS 表征。据悉,这些脂质纳米管 (LNTs) 是最小的具有表面图案的有机模板。TERS 成像能够以数十纳米的空间分辨率识别 LNTs 的化学特征。
  • 【EmStat3Blue电化学应用】吲哚-3-乙酸便携式电化学传感器,基于自组装MXene和多壁碳纳米管复合修饰丝网印刷电极
    吲哚-3-乙酸(IAA)作为一种典型的植物激素,可以调节植物细胞的分裂、生长和分化等生物活性。在本文中,通过自组装程序制备了一种 MXene和多壁碳纳米管复合材料,并在丝网印刷电极 (SPE) 上对其进行了改性,从而构建了一种无线便携式电化学传感器。通过循环伏安法研究了 IAA 的电化学研究,并且可以观察到其不可逆的氧化过程。在SPE修饰电极上实现了 IAA 优异的电分析方法,该方法具有较宽的检测范围为 0.05-125.0 μmol/L和较低的检测限(16.7 nmol/L)。将该传感器用于豌豆幼苗不同部位的IAA含量分析,结果满意。
  • 纳米碳材料作为填料的分散方法的优化
    在众多类型的膜材料中,醋酸纤维素(Cellulose Acetate-CA)是最古老的材料之一,改性后的CA具有生物相容性好、脱盐性好、电位通量高、韧性好、成本相对较低等特点,使其仍然是一种非常有前景的材料。最近,混合基质膜材料(Mixed Matrix Membrane Materials-MMMS)受到高度重视,这主要归功于它们在增加机械稳定性、较低的塑化和抑制降解等方面的性能改进。纳米碳材料作为合适的填料在最终混合基质制备的膜上产生了新的先进性能。碳纳米管(CNTs),包括单壁和多壁SWCNTs和MWCNT碳纳米管、氧化石墨烯和石墨烯纳米板结构(GO,GNPS)目前处于膜技术用填料的第一线,可提高最终膜材料的各项物理化学性能。本论文使用高纯度碳纳米管、醋酸纤维素和二丙酮醇制备了混合基质膜,并研究了分散方法(主要是超声和转子-定子系统)对混合基质稳定性的影响,以及最终膜结构特性的影响。
  • 纳米颗粒-纳米管机械性能(F-D曲线)测量
    该实验演示了一种新的探针逼近方式——力挠曲谱线方式测量纳米线及纳米管的杨氏模量的方法。原子力显微镜应用
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制