当前位置: 仪器信息网 > 行业主题 > >

工艺问题

仪器信息网工艺问题专题为您整合工艺问题相关的最新文章,在工艺问题专题,您不仅可以免费浏览工艺问题的资讯, 同时您还可以浏览工艺问题的相关资料、解决方案,参与社区工艺问题话题讨论。

工艺问题相关的资讯

  • 关于召开微反应流动化学工艺与微反应加氢工艺应用研讨会的通知
    微反应流动化学技术因能够解决化工危险合成反应而称其为绿色合成工艺。其具有强传热和传质特性和反应体积小,而使其具备本质安全性。并可平行放大,具备安全生产、易于控制、提高收率,减少三废的特点,为化学合成工艺带来革命性的变化。将为制药、化工行业转型升级,提升创新能力,为实现绿色发展提供有效的技术手段,目前已有部分企业成功改造升级,并带来极可观的社会效益和经济效益。 目前在我国尚属新工艺推广阶段,只有少数几家大企业应用了此项工艺,并取得了极好的效果。目前绝大多数的企业都有强烈意愿应用此工艺,但不知如何开展?也不知本企业的反应类型如何做流动化改造?近两年来,由于江浙长三角一带的做流动化改造的企业较多,相关的行业会议也多是在江浙一带举办,从未在西部地区举办,但川渝地区制药、化工企业众多,且很多企业有强烈学习意愿。为帮助相关从业人员了解和交流先进的微反应流动化学技术及设备应用,提升化工和医药工业生产的效能,中国化工企业管理协会医药化工专业委员会联合四川省分析测试服务中心定于2019年12月13日—15日在成都举办“微反应流动化学工艺与微反应流动加氢工艺应用研讨会”。届时将邀请行业专家从技术选择、工艺设计、设备选型、运行维护和应用实例进行系统交流研讨,展示和交流先进的微反应流动化学技术及设备应用,为参会代表创造更多的对接合作交流机会。请各有关单位积极派员参加,现将有关事项通知如下:会议主题微反应流动化学工艺与微反应流动加氢工艺应用研讨会会议组织主办单位:中国化工企业管理协会医药化工专业委员会 四川省分析测试服务中心协办单位:欧世盛(北京)科技有限公司时间地点时 间:2019年12月13日-15日(13日全天报到)地 点: 成都大成宾馆(成都市人民南路二段34号)会议费用会务费:1800元/人(含会议资料、茶歇、午餐、晚宴、礼品、证书等),食宿统一安排,费用自理。会议内容(一)微反应流动化学技术的研究和应用现状:1、微反应流动化学技术研究与应用化进程;2、微反应流动化学系统的放大和集成技术的研究;3、微反应流动化学技术在化工过程强化的实际应用及例证;4、微反应流动化学技术在医药行业的研究应用;5、微反应流动化学技术在农药行业的研究应用;6、微反应流动化学技术在染颜料行业的研究应用;7、微反应流动化学技术在纳米材料合成等领域的研究应用;8、微反应流动化学技术应用行业热点问题;(二)微反应系统及微通道研究的热点与难点:1、微反应系统中的系统自动控制技术应用;2、微反应系统中催化剂的壁载或填充技术应用;3、微反应系统的微反应器防腐技术应用;4、微通道内流动与强化换热特性研究;5、微通道反应器制环酯草醚中间体的应用研究;6、微通道萃取器在产品生产以及降低废水中COD的应用;(三)、微反应技术与微反应器的行业应用与研究:1、微反应器在医药行业的研究应用;2、微反应器在农药行业的研究应用;3、微反应器在纳米材料合成等领域的研究应用;4、医药行业微反应工艺系统的优化设计研究;5、纳米材料合成等领域微反应工艺系统优化设计;6、染颜料行业微反应工艺系统的优化设计研究;7、农药行业微反应工艺系统的优化设计研究;8、绿色化工过程中微化工技术的实际应用;(四)微换热器研究与工艺优化中的验证及工艺开发应用:1、微换热器的研究现状和应用;2、微尺度下的传热特性;3、微换热器的结构优化研究;4、微换热器的可靠性与应用优点;5、微换热器的验证及工艺开发等;(五)流动化学技术的行业应用与研究:1、连续流动反应器的优势与前景;2、连续流动化学实现绿色化工、绿色制药的有效解决方案;3、渗透汽化技术的发展状况及在化工、制药领域的使用情况;4、连续流动化学在药物合成中的应用;5、流动化学的连续工艺技术;6、流动合成系统在制药、化工等有机合成领域应用;7、连续流动反应器在化工制药工艺安全案例;演讲嘉宾拟邀请嘉宾(不分排名先后):陈光文 中国科学院大连化学物理研究所研究员;郭 凯 南京工业大学生物与制药工程学院院长、教授;夏春年 浙江工业大学药学院教授;张志华 广东省微化工工程技术研究中心主任;孙铁民 沈阳药科大学制药学院教授;张吉松 清华大学化学工程联合国家重点实验室研究员;鄢冬茂 沈阳化工研究院新材料所总监所长助理;程 荡 复旦大学微通道应用技术联合实验室执行负责人;万 力 华东理工大学化工学院副教授;金英泽 欧世盛(北京)科技有限公司CEO;(其他相关专家报告继续预约中,敬请持续关注!)论文征集 本次大会将面向全国征集与主题相关的学术报告、论文、案例成果,印刷会刊(论文集)作为会议资料,请拟提交论文的人员在12月8日前将论文发至99416838@qq.com信箱。要求论文字数不超过5000字,文件格式为word文档。参会人员1、医药、农药、染颜料等精细化工行业相关企业技术负责人。2、纳米材料合成等领域相关企业技术负责人。3、设备、技术供应商。4、政府、协会、检测机构、研究所及高等院校等。联系方式联系人:张静 手 机:400-178-1078邮 箱:99416838@qq.com 联系人:李亭
  • 英特尔2025 年工艺路线图
    英特尔或在2025年夺回制程技术领先地位在英特尔的路线图中,该公司在向新制造工艺过渡方面取得了重大进展。Intel 7和Intel 4已经完成,Intel 3、20A 和 18A 将在未来几年推出。Intel 7是该公司的 10nm 工艺,Intel 4是其 7nm 工艺。这些名称可能会产生误导,但芯片中的纳米测量现在大多是营销术语。Intel 4 是近期的趋势,用于 Meteor Lake,它主要采用这种工艺制造。然而,它是第一个使用极紫外光刻技术的处理器,可以实现更高的产量和面积缩放,从而提高能效。Intel 3 是 Intel 4 的后续产品,旨在用于数据中心,预计每瓦性能将提高 18%。Intel 20A 将与 Arrow Lake 处理器一起首次亮相,采用 PowerVia 和 RibbonFET 技术,每瓦性能比 Intel 提高 15%。Intel 18A 是最先进的节点,预计将于 2024 年下半年开始生产,每瓦性能将提升 10%。英特尔去年在 Raptor Lake Refresh 发布会上推出了 Meteor Lake 笔记本电脑处理器,并再次更新了该公司于 2021 年首次发布的制程节点路线图。在那张路线图中,该公司表示希望在四年内实现五个节点,这是多年来其他公司从未实现过的。英特尔自己的路线图指出,它的目标是在 2025 年实现“工艺领先”。按照英特尔的标准,工艺领先意味着每瓦性能最高。在笔者分析英特尔的路线图时发现,Lunar Lake 完全没有被涵盖。它不在路线图之内,原因很简单,Lunar Lake 不是采用英特尔的任何工艺生产的。Lunar Lake 由台积电生产,尽管它应该是第一款采用Intel 18A 生产的芯片。Lunar Lake 本质上是 Meteor Lake 的后续产品,混合了台积电 N3B 和台积电 N6。未来,英特尔将重新采用英特尔的制造工艺,但 Lunar Lake 今年已外包给台积电。英特尔 2025 年前的路线图在上述路线图中,英特尔已完成向Intel 7和Intel 4的过渡,Intel 3、20A 和 18A 将在未来几年内推出。作为参考,Intel 7是该公司对其 10nm 工艺的命名,Intel 4是其对其 7nm 工艺的命名。这些名称的来源(尽管有人可能会认为它们具有误导性),尽管Intel 7是基于 10nm 工艺制造的,但其晶体管密度与台积电的 7nm 非常相似。Intel 4也是如此,WikiChip 实际上得出的结论是,Intel 4的密度很可能略高于台积电的 5nm N5 工艺。话虽如此,20A 和 18A 的情况就变得非常有趣了。据说 20A(该公司的 2nm 工艺)是英特尔实现“工艺平价”的阶段,并将在 Arrow Lake 上首次亮相,这也是该公司首次使用 PowerVia 和 RibbonFET,然后 18A 将是 1.8nm,同时使用 PowerVia 和 RibbonFET。有关更详细的细分,请查看下面制作的图表。英特尔路线图在平面 MOSFET 时代,纳米测量更为重要,因为它们是客观测量,但转向 3D FinFET 技术已将纳米测量变成了单纯的营销术语。Intel 7Intel 7 以前被称为 Intel 10nm Enhanced SuperFin(10 ESF),后来该公司将其更名为 Intel 7,本质上是为了与制造业其他领域的命名惯例保持一致。虽然有人可能会说这是误导,但芯片中的纳米测量目前只不过是一种营销手段,而且这种做法已经持续了很多年。Intel 7 是英特尔使用深紫外光刻 (DUV) 的最后一项工艺。Intel 7 曾用于生产 Alder Lake、Raptor Lake 以及最近宣布的与 Meteor Lake 一起推出的 Raptor Lake Refresh。然而,Meteor Lake 是在 Intel 4 上生产的。Raptor Lake Refresh 很可能是Intel 7的最后一款产品,英特尔承诺未来将转向新的工艺节点。由于 Meteor Lake 搭载在Intel 4上,我们不太可能看到任何在此制造节点上运行的新芯片。Intel 4Meteor Lake大部分都是基于 Intel 4 制造的。Meteor Lake 新 CPU 的计算机 Tile 是基于 Intel 4 制造的,但图形 Tile 是基于 TSMC N3 制造的。这两个 Tile(以及 SoC Tile 和 I/O Tile)使用英特尔的 Foveros 3D 封装技术集成。然而,与Intel 4相比,一个重大变化是,它是英特尔首次利用极紫外光刻技术的制造工艺。这可以实现更高的产量和面积缩放,从而最大限度地提高能效。正如英特尔所说,与Intel 7相比,Intel 4的高性能逻辑库面积缩放是Intel 7的两倍。这是该公司的 7nm 工艺,再次类似于业内其他制造厂所称的 5nm 和 4nm 工艺的能力。到目前为止,Intel 4看起来取得了成功,而 Core Ultra 是英特尔的一大变革……至少在Acer Swift Go 14中是如此。英特尔在这方面的进展将特别有趣,但笔者预计英特尔在 CPU 生产方面可能不再处于劣势。Intel 3Intel 3 是 Intel 4 的后续产品,但预计性能功耗比 Intel 4 提升 18%。它拥有更密集的高性能库,但目前仅针对数据中心使用,包括 Sierra Forest 和 Granite Rapids。目前你不会在任何消费级 CPU 中看到这个。笔者对这个节点了解不多,但考虑到它更注重企业,普通消费者不必太在意它。Intel 20A英特尔知道,在制造工艺方面,它在某种程度上落后于其他行业,并且它计划在 2024 年下半年推出并生产用于其 Arrow Lake 处理器的 Intel 20A。这也将首次推出该公司的 PowerVia 和 RibbonFET,其中 RibbonFET 只是栅极全场效应晶体管 (GAAFET) 的另一个名称(由英特尔起)。台积电正在将其 2nm N2 节点转向 GAAFET,而三星正在将其 3nm 3GAE 工艺节点转向 GAAFET。PowerVia 的特别之处在于它允许在整个芯片中进行背面供电,其中信号线和电源线被分离并分别进行优化。使用正面供电(目前业界的标准)时,由于空间原因,存在很大的瓶颈,同时也可能引发电源完整性和信号干扰等问题。PowerVia 将信号线和电源线分开,理论上可以实现更好的供电。背面供电并不是一个新概念,但多年来它一直是个难题。如果你考虑到 PowerVia 中的晶体管现在处于电源和信号之间的夹层中(晶体管是芯片中最难制造的部分,因为它们最有可能出现缺陷),那么在你已经为其他部分投入资源之后,你正在生产芯片最难的部分。再加上晶体管是 CPU 中产生大部分热量的地方,现在你需要通过一层电源或信号传输来冷却 CPU,你就会明白为什么技术很难做好。据称,该节点的每瓦性能比Intel 3 提高了 15%。据报道,英特尔第 15 代 Arrow Lake 将采用这一工艺制造,这意味着PC电脑应该在今年首次体验到它。英特尔18A英特尔的 18A 是迄今为止最先进的节点,它将于 2024 年下半年开始生产。这将用于生产未来的消费级 Lake CPU 和未来的数据中心 CPU,每瓦性能提升高达 10%。目前还没有太多关于它的细节被分享,它在 RibbonFET 和 PowerVia 上的投入翻了一番。Panther Lake 将以这个工艺节点首次亮相,采用 Cougar Cove P-Cores。自该节点首次亮相以来,唯一的变化是它最初应该使用高 NA EUV 光刻技术,但情况已不再如此。部分原因是英特尔的 18A 节点推出时间略早于最初预期,该公司将其推迟到 2024 年底而不是 2025 年。由于生产 EUV 光刻机的荷兰公司 ASML 仍在 2025 年推出其首款高 NA 扫描仪 (Twinscan EXE:5200),这意味着英特尔必须在 2024 年跳过它。顺便说一句,对于任何 EUV,公司都必须求助于 ASML,所以没有其他选择。英特尔仍有望在 2024 年下半年开始生产 18A。英特尔的路线图雄心勃勃现在您了解了英特尔今年和明年的路线图,可以说它绝对是雄心勃勃的。英特尔自己将其宣传为“四年五个节点”,因为他们知道这有多么令人印象深刻。虽然您可能预料到在此过程中可能会出现一些小问题,但自英特尔于 2021 年首次公布该计划以来,唯一的变化是将Intel 18A提前到更早的发布时间。其他一切都保持不变。此后,该公司宣布将推出 18A-P,随后还将推出英特尔 14A 和 14A-E。其中,P 代表性能改进,E 代表功能扩展。这些都着眼于未来,直到 2027 年,但表明英特尔有宏伟的计划,不仅要赶上,还要主导其余的竞争对手。英特尔是否会继续保持其渐进式的增加还有待观察,但该公司唯一需要做出的改变是比预期更早推出其最先进的节点,这是一个好兆头。虽然目前尚不清楚英特尔在更先进的工艺方面(尤其是当它达到 RibbonFET 时)是否会成为台积电和三星的强大竞争对手。Meteor Lake 是一个良好的开端,大家都迫不及待地想看看英特尔还有什么准备。
  • 【网络会议】:临床试验药品的除菌过滤工艺验证——默克密理博生物制药工艺基础课堂十二
    【网络会议】:临床试验药品的除菌过滤工艺验证&mdash &mdash 默克密理博生物制药工艺基础课堂十二 【讲座时间】:2015年06月18日 10:00 【主讲人】:刘秋琳 (毕业于上海交通大学微生物学硕士学位,2010年加入默克密理博,现任生物制药工艺市场部无菌技术咨询及验证专员,主要负责与无菌产品相关的工艺技术问题,及与无菌过滤、一次性系统、病毒去除、超滤等工艺相关的验证和法规问题。) 【会议介绍】 与大规模生产和上市药品比较,临床试验药品所面临附加的挑战和复杂性,有更大的产品交叉污染和混淆的风险。因此,与用市售药品治疗的患者相比,参与临床试验的对象暴露于更高的风险。关于临床试验药品的除菌过滤工艺验证,旨在最大限度地降低该风险。 本次讲堂内容主要给大家介绍一下在早期研发阶段如何进行临床试验药品除菌过滤验证,有哪些法规要求以及关键操作方面的详细建议。 ------------------------------------------------------------------------------- 1、报名条件:只要您是仪器网注册用户均可报名参加。 2、报名并参会用户有机会获得100元手机充值卡一张哦~ 3、报名截止时间:2015年06月18日 12:00 4、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1446 5、报名及参会咨询:QQ群&mdash 379196738
  • 沃特世与赛多利斯联手,助力生物工艺科学家加速克隆筛选和工艺开发
    强强联手精诚合作,共同探索质谱方法在新型治疗药物分析中的应用沃特世公司(纽约证券交易所代码:WAT)和赛多利斯集团(德国DAX指数代码:SRT:GR)近日共同宣布,双方将携手为生物工艺科学家打造能直接获取高质量质谱(MS)数据的工具,推动加快生物制药工艺开发并提高其准确性。通过此次合作,沃特世BioAccord LC-MS系统将作为新型生物工艺分析仪与赛多利斯Ambr多并行生物反应器系统实现数据联通,提供有关原料药、相关分析物和细胞培养基的质谱信息。该组合可以在提高准确性的同时大幅提升从克隆筛选到生物工艺优化等各项任务的完成速度。图. Waters BioAccord LC-MS系统 (左)、Sartorius Ambr 15系统(右)据Evaluate Pharma的报告显示,2020到2025年生物制药市场的年复合均增长率(CAGR)约为10%,已成为整个制药市场中增长最快的细分领域。推动这种快速增长的是各种高度复杂的新型生物制剂正以远远快于以往的速度争相上市。因此,为了开发出更加质高价优的创新药物,生物制药生产商比以往任何时候都更加需要充足的上游分析数据来监控药品属性和生物工艺效率。 沃特世公司制药和生物医学研究业务高级总监Davy Petit先生表示:“沃特世和赛多利斯都致力于用出众的流程和分析工具帮助生物制药行业的客户解决各种问题。通过At-line分析获取通用质谱数据,这将对克隆筛选和工艺开发大有助益,这些数据有助于生物工艺工程师加快工作流程,大幅增强其在制定关键决策时的信心。在生物工艺科学家手中,我们的技术得以结合运用,加之Sartorius Ambr生物反应器系统已有的可观用户群,这能大幅缩短开发各种药物和疫苗所需的时间。”赛多利斯集团细胞培养技术产品管理负责人Mario Becker先生表示:“Ambr系统与简单易用的Waters BioAccord LC-MS At-line分析系统相结合,能够为生物工艺科学家节省大量时间,加速克隆筛选和上游工艺开发。在细胞系、培养基和工艺开发过程中的任何点上,至关重要的MS数据越紧密地被送达至所需之处,Ambr产生的样品越多地被进行质量属性检测,我们为生物工艺科学家描绘出的药物产品质量特征就越完整。这样的工艺控制、监测和产品质量检测手段最终有望全面整合到生产环境中。”高效易用,协助非质谱专家快速获取质谱数据 生物制剂由活细胞生成,而活细胞需要使用诸如Sartorius Ambr的高通量生物反应器系统进行培养。细胞培养工序结束时,需要从细胞残留物中分离出蛋白质,将采样送至中心实验室,再由分析科学家使用专业的液相色谱-质谱(LC-MS)仪器进行检测。取决于中心分析实验室的工作量、可用设备、任务优先级和人员配备情况,这个过程往往需耗时2到4周甚至更长时间。沃特世与赛多利斯联手推出的这款技术整合产品,旨在将这一耗时长达一个多月的过程缩短至两天甚至更短,同时将更多掌控权交到生物工艺科学家手中,协助他们获取有关原料药和细胞培养基样品的可靠质谱数据。赛多利斯的Ambr系列多并行生物反应器在业内表现出色,从细胞筛选到工艺优化,在上游工艺中的各个早期环节都能助科学家们一臂之力。Waters BioAccord系统是一款占空间非常小的LC-MS仪器,易于操作,可作为供At-line分析使用的台式生物工艺分析仪。它带有预置分析方法、采用引导式工作流程,还具备自动校准和自动调谐功能,即便完全没有质谱使用经验的人也能在数分钟内采集到高质量质谱数据。产品供应情况感兴趣的客户请咨询沃特世公司John_Gebler@waters.com或赛多利斯集团Ian.Ransome@Sartorius.com 其他参考资源- 详细了解赛多利斯-沃特世达成合作的相关信息- 详细了解配备ACQUITY Premier的Waters BioAccord系统- 详细了解Sartorius Ambr多并行生物反应器系统 关于赛多利斯(www.sartorius.com) 赛多利斯集团是生命科学研究和生物制药行业的领先国际合作伙伴。该集团的实验室产品及服务板块为生物制药企业以及各类科研机构提供创新的实验室设备和消耗品,致力于满足制药、生物制药公司以及学术研究机构领域的研究和质量控制需求。生物工艺解决方案板块推出了广泛的产品组合,专注于一次性解决方案,帮助客户安全高效地制造生物技术药物和疫苗。该集团平均每年以两位数的速度增长,并积极收购互补技术,以实现产品组合的常规扩展。在2020财年,该公司实现约23.4亿欧元的销售收入。截至2020年底,该集团约60个制造和销售基地总计雇佣近11,000名员工,为全球客户提供服务。 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)是全球先进的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。沃特世公司在35个国家和地区直接运营,下设14个生产基地,拥有7,400多名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有六百多名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。
  • 制药生产工艺核查拉开帷幕
    12月23日,国家食药监总局药品审评中心发布《关于对已上市药品生产工艺信息登记模板公开征求意见的通知》。通知发布了中药、化学药品和生物制品的生产工艺信息登记模板(征求意见稿),这暗示着国家食药监总局对药品的生产工艺核查要正式开始了!  生产工艺核查风暴开启!  早在今年8月11日,国家食药监总局发布《关于开展药品生产工艺核对工作的公告》(征求意见稿),要求药品生产企业自公告发布之日起对每个批准上市药品的生产工艺(中药为制法)开展自查,排除质量安全隐患。药企应于2016年10月1日前完成自查并上报自查情况。  根据当时的公告,对于药企的自查结果,应分别采取以下处理措施:  1、实际生产工艺与批准生产工艺一致  药品生产企业应将自查情况报告与药品生产工艺等资料一并归档,作为监管部门开展日常监管、现场核查的备查资料。  2、实际生产工艺与批准生产工艺不一致  要求开展充分的研究验证。  生产工艺变化对药品质量不产生影响的,药品生产企业应按照《药品注册管理办法》提出补充申请。  生产工艺变化对药品质量产生影响的,企业应立即停产。  药品生产企业应于2017年6月30日前完成在产品种生产工艺的研究验证、提交补充申请等相关工作,其他暂不生产品种应于2017年12月31日前完成上述工作 未按时完成的,应停止生产。  停产大潮要来了?  从以上信息看来,此次公布中药、化学药品和生物制品的生产工艺信息登记模板,是为了让药企在2017年6月30日前完成在产品种生产工艺的研究验证、提交补充申请等相关工作提前做准备。只有半年的时间,对于药企而言,如果被查实际生产工艺与批准生产工艺不一致,将很可能面临停产的处理。  有业内人士表示,因为药企当初申报一种药品时,其工艺流程等是按照实验室的数据上报的。在实际投入生产时,由于环境和设备的变化,药品的稳定性可能会出问题,这时药企就不得不对工艺做调整,从而获得相对正确的数据应对飞检以及其他各种检查。  此外,在新版GMP的软、硬件要求和严格的飞检下,对于制药企业而言,利润剧减也是必须直面的问题。很多中小药企一旦正规操作,在利润面前就显得完全没有竞争力。因此,就有了简化生产流程、篡改生产工艺等不合规行为。这些问题,在本轮生产工艺核查风暴中都很可能会被暴露。  如今,在国家食药监总局各种飞检下,大力打击药品生产工艺问题过程中,肯定会有不少药企在飞检严查中暴露问题,在即将到来的2017年,会迎来大批药企的停产大潮吗?我们拭目以待。  附:生产工艺信息登记模板(生产工艺信息基本要求)  中药生产工艺信息基本要求:  1.提供完整的生产工艺。生产工艺描述应与工艺规程内容一致,应能使经过培训的专业技术人员根据申报的生产工艺可以完整地重复生产过程,并制得符合其质量标准要求的产品。详细的生产工艺可附后(必要时可以图表的形式表示)。  2. 应根据实际生产所用的生产线和生产设备,存在多个生产线的情况应按生产线分别列出,明确商业生产批量范围。  3.根据实际生产情况,明确各步工序的规模范围以及收率范围。  4.按单元操作过程描述工艺,明确投料量、操作流程、工艺参数和范围、生产过程质控的检测项目及限度。  5.在描述各单元操作时,建议根据剂型特点及具体品种的实际情况撰写,并关注以下内容:  1)前处理:明确药材(饮片)前处理的方法和条件,明确处理后饮片(药粉等)的保存时间和条件等。  2)提取:明确提取方法及条件,提取用溶媒的种类、用量,提取次数,提取温度、时间,提取液过滤的方法及条件等。  3)浓缩:明确浓缩的方法、条件,如温度、压力的范围,浓缩过程允许的最长受热时间等。明确浓缩液的相对密度,明确浓缩液或浸膏的得率范围。  4)纯化:明确纯化的方法及条件,详述相关工艺参数。  5)干燥:明确干燥的方法、条件及设备等,明确得率范围。  6)制剂工艺:明确制剂处方,详述成型工艺的方法及参数,包括原辅料的加入方法、条件和投料顺序,以及成型方法及条件等。  6.其他事项  1)对于不连续工序,应注明物料的存放条件及允许存放时间。  2)对于无菌制剂,应详细描述原辅料的预处理、直接接触药品的内包装材料等的清洗、灭菌、除热原等 详细描述除菌/灭菌的工艺过程及参数,包括灭菌温度、灭菌时间和目标F0值,初滤及精滤的滤材种类和孔径、过滤方式、滤液的温度与压差、流速等。  3)企业需填写实际生产批量,如有多个批量,可增加数据列。如单个表格无法容纳,可按当前格式新增表格。  化学药品生产工艺信息基本要求:  1.提供完整的反应式和生产工艺。生产工艺描述应与工艺规程内容一致,应能使经过培训的专业技术人员根据申报的生产工艺可以完整地重复生产过程,并制得符合其质量标准的产品。  2.应采用与商业生产一致的生产线和生产设备,存在多个生产线的情况应按生产线分别列出,批量应在商业生产批量范围内。  3.按商业生产规模投料 并注明各步工序的规模及收率范围。  4.按单元操作过程描述工艺,包括各单元操作的反应方程式,所用物料的投料量及投料比(或摩尔比),工艺操作、工艺参数及参数的控制范围、生产过程质控(包括反应终点控制)的检测项目、方法及限度,中间体的检测项目、方法及限度。  5.在描述生产工艺各单元操作时,注意:  (1)对于非化学合成原料药,可根据其工艺特点,参照上述要求对工艺步骤及操作进行详细的描述。  (2)对于不连续下个工序,应注明存放条件及允许存放时间。  (3)对于无菌原料药,应详细描述相关物料的无菌处理、除菌/灭菌的工艺过程及控制参数。  6. 企业需填写实际生产批量,如有多个批量,可增加数据列。如单个表格无法容纳,可按当前格式新增表格.
  • 会议邀请丨2020艾贝泰生物工艺研讨会(12.8)
    会议介绍 随着近两年来生物制药的蓬勃发展,特别是国内生物制药企业PD-1、生物类似药陆续上市,一次性生物反应器技术日渐成熟,中国生物制药行业中更多的项目从上游工艺开发进入了工艺放大优化和生产阶段。例如在一次性技术的条件下如何实现工艺的稳健性和技术转移;在这个过程中,如何做好大分子药物生产的培养基与细胞系的开发和优化;如何采用QbD理念,有效的实施一次性技术评估一次性组件的生物相容性,保证其完整性;如何更高效率实现分批补料培养工艺的放大生产;如何跟进灌流工艺的脚步等一系列问题一直引发业内同行的深思。 带着这些问题,2020艾贝泰生物工艺研讨会将围绕上游生产之工艺开发、放大和优化。旨在助力专业的生物工艺人士更好地理解上游细胞培养工艺,提高表达量、增加产量、节约成本、让工艺更稳健。邀请业内知名技术专家分享专题演讲,为上述顾虑解决提供思路。我们期待您的关注与参与! 时间:12月8日地点:上海浦东绿地铂骊酒店 会议介绍 随着近两年来生物制药的蓬勃发展,特别是国内生物制药企业PD-1、生物类似药陆续上市,一次性生物反应器技术日渐成熟,中国生物制药行业中更多的项目从上游工艺开发进入了工艺放大优化和生产阶段。例如在一次性技术的条件下如何实现工艺的稳健性和技术转移;在这个过程中,如何做好大分子药物生产的培养基与细胞系的开发和优化;如何采用QbD理念,有效的实施一次性技术评估一次性组件的生物相容性,保证其完整性;如何更高效率实现分批补料培养工艺的放大生产;如何跟进灌流工艺的脚步等一系列问题一直引发业内同行的深思。 带着这些问题,2020艾贝泰生物工艺研讨会将围绕上游生产之工艺开发、放大和优化。旨在助力专业的生物工艺人士更好地理解上游细胞培养工艺,提高表达量、增加产量、节约成本、让工艺更稳健。邀请业内知名技术专家分享专题演讲,为上述顾虑解决提供思路。我们期待您的关注与参与! 时间:12月8日地点:上海浦东绿地铂骊酒店 会议日程 08:30-09:00 会议签到09:00-09:10 欢迎致辞与介绍罗林,总经理,艾贝泰09:10-09:40中国生物制药行业工艺研发的机会和挑战罗顺,创始人兼董事长,澳斯康生物制药&健顺生物09:40-10:10国内外双特异性抗体产业发展现状与趋势王明晗,总裁兼首席执行官,凡恩世生物10:10-10:40生物药GMP生产的控制策略戚波,总经理,亿一生物10:40-11:00 茶歇11:00-11:30生物工艺中的自动取样方案孙卫华,应用专家,艾贝泰11:30-12:00 新冠抗体细胞株构建策略讨论加速CMC开发张峥,细胞株构建部副主任,药明生物12:00-13:30 商务交流与午餐13:30-14:00 ICB:Future of BiomanufacturingChris Hwang,首席技术官,创胜集团14:00-14:30生物创新药产业化的药学开发策略魏紫萍,共同创始人&董事长&CEO,百力司康14:30-15:00中国生物药报产的质量管理要求现状与趋势李孟捷,质量总监,三生国健15:00-15:30Applikon智能化工厂的解决方案赵洪,项目经理,艾贝泰15:30-16:00茶歇 16:00-16:30动物细胞培养技术及其未来发展谭文松,教授,华东理工大学16:30-17:00圆桌讨论:中国生物药生产制造技术的发展现状及未来发展面对的挑战----如何推动生物医药生产技术的创新、促进创新生产技术在中国的探索与应用讨论嘉宾:下午会议发言嘉宾17:00-17:30 抽奖活动&会议结束 报名方式 点击链接报名:https://www.wjx.cn/jq/97534567.aspx或者发送报名信息到:carrie@applitechpharma.com会议免费、含午餐,报名成功后,我们将发送确认邮件到您的邮箱联系方式 Carrie艾贝泰市场部活动负责人邮箱:carrie@applitechpharma.com 12月9-10日,第四届中国生物制药创新与前沿技术峰会(BIFT2020)将在浦东绿地铂骊酒店举行,参加艾贝泰研讨会的客户同样享有听会权利。———————————————————————————————————————— (BIFT2020)峰会背景从实验室到产业化,探索中国生物药的创新与商业化之路 生物药研发是一个高投入,长周期,大风险的行业,近年来,在中国政府的大力支持下,通过持续引进具有丰富海外经验的生物技术人才,中国生物科技产业迎来了巨大的发展机遇。2019年,首个国产生物类似药利妥昔单抗和首个国产阿达木单抗获批上市;9个细胞治疗产品和4个基因治疗产品临床试验申请获得CDE受理。投融方面,去年我国生物药领域共产生融资75.51亿元,7家生物药创新企业赴港IPO,其中抗体药融资额占比超60%高达49.57亿元、细胞和基因治疗20.29亿元。 2020年是中国生物药领域蓬勃发展的一年,也是法律法规、监管体系不断完善的一年。随着一些领先企业PD-1/PD-L1为代表的创新药陆续获批上市,中国生物药市场正在向商业化全速前进,相信更多药企将从IND进入BLA阶段。然而,新药研发、临床研究、工艺开发以及产业化发展仍存在诸多阶段性挑战。 为帮助药企解读最新国内外药政法规,审评与监管政策,助力加速企业研发,临床申报与上市,推动中国生物药的产业化发展,GECEvents携手知名行业协会等机构将与2020年12月在上海举办第四届中国生物制药创新与前沿技术峰会(BIFT2020)。峰会将致力于为立足创新前沿、取得突破性进展的生物科技公司,制药公司,细胞或基因治疗公司的同仁们提供思想碰撞的平台。 本次会议以“从实验室到产业化,探索中国生物药的创新与商业化之路”为主题,汇聚海内外行业领军人士,会议将围绕生物药国际前沿趋势,最新法规政策,新型治疗性生物制品(双/多抗、ADC、细胞制品、基因治疗病毒制品)的设计,抗体工程、临床方案设计与申报;下一代细胞与基因治疗的创新与CMC开发;生物药领先工艺开发、分析与验证;生物药建厂策略与质控等问题进行深入探讨。将为您带来生物药从研发到上市全周期的最新动态与前沿技术,提供高品质交流机会,推动生物药商业化发展。 主要议题 ●肿瘤免疫性抗体的全球研发策略及进展●创新药物单抗、双抗、ADC, PD-1等热门靶点概述●双特异性抗体创新药研发与产业化●新一代抗体偶联药物的开发进展●细胞与基因治疗从技术创新到产业和和商业化的探索●国内外前沿疗法的突破-基因编辑、溶瘤病毒、AAV基因治疗在肿瘤、罕见病●生物药的大规模生产: 质量与经济性的平衡●从批次模式到连续生物工艺:病毒过滤如何适应连续工艺●一次性灌装系统在连续生产中生中的应用● 人工智能技术, 数字化,自动化与模块化厂房的应用与实践 记得关注我们,获取研讨会及BIFT高峰论坛的最新消息! 更多会议详情请访问:https://mp.weixin.qq.com/s/sSdcNDuQq9ylzRWSLJjG8A
  • 无菌工艺保障技术研讨会,诚邀参与!
    2016年6月22日 杭州站 杭州维景国际酒店 | 百合厅 杭州上城区平海路2号 近几年,“毒疫苗事件”、“注射剂不良反应事件”等问题药品的报道屡见不鲜,令人心惊,药品的安全问题已成为人类生命安全健康发展的重大事件。药品生产工艺中的无菌保证和风险控制,日益成为制药企业和法规机构关注的重点,如何才能生产出“安全药”、“放心药”值得所有制药人深思。 为了更好帮助制药企业深刻理解药品安全体系的重要性,建立稳定可靠的质量控制体系,始终如一的生产出“安全药”“放心药”,赛多利斯将携手业内资深专家,在杭州、成都、济南三大城市巡回举办“无菌工艺保障技术研讨会”。 研讨会期间,不仅有业内资深GMP认证专家分享在无菌药品GMP认证过程中的一些常见问题及相应的解决方案;还有欧洲资深技术专家分享无菌保证的关键工艺设备(过滤器)的质量保证体系、应用与合规性解读,并从风险控制和法规要求的角度对成功应用案例、完整性测试解决方案以及工艺验证进行剖析;更有国内知名制药企业生产质量专家的实战经验分享。研讨会主题:无菌药品GMP认证常见问题及分析解决全面的质量保证体系——从膜生产到终端过滤器基于PDA技术报告的无菌性法规要求眼用制剂生产的风险控制策略用于全面质量保证的完整性测试解决方案疫苗终端过滤及灌装工艺的安全保障无菌工艺中的过滤应用和成功案例符合法规要求的赛多利斯文件包如何考虑过滤工艺验证演讲嘉宾:吴军: 培训讲师, 国家CFDA高级研修学院韦志华: 质量保证部验证经理, 北京科兴生物制品有限公司万志强: 技术支持主管, 雅培眼力健(杭州)制药有限公司Petra Motzkau: 亚太区验证服务总监, 赛多利斯集团Dr. Christian Boecking: 亚太区验证项目高级经理, 赛多利斯集团Ulrich Br?utigam: 过滤技术产品亚太市场总监, 赛多利斯集团Dr. Magnus Stering: 完整性测试解决方案全球产品经理, 赛多利斯集团沈亮: 法规事务经理, 赛多利斯中国任雪芸: 中国区市场经理, 赛多利斯中国会议日程:2016年6月22日 杭州站 杭州维景国际酒店 | 百合厅 杭州上城区平海路2号立即在线报名:http://survey.sartorius.com.cn/jq/8578842.aspx赛多利斯将携最强无菌技术的劲爽踏夏而来,与您共同探讨分享最新的理念,最优的技术,最丰富的经验!盛夏时节,杭州首站开启,未完待续~七月成都站、济南站,我们同样衷心期待您的到来!活动咨询:更多活动信息,请咨询当地销售或市场部张女士 电话:021-68785302 E-mail:wenji.zhang(at)sartorius-stedim.com赛多利斯中国 电话:400.920.9889 / 800.820.9889传真:021.68782332邮箱:info.cn@sartorius.com官网:www.sartorius.com.cn 扫一扫,关注赛多利斯官方网站、微博和微信,了解最新资讯:
  • 危险工艺项目如何落地?这里或许有您想要的答案!
    在我国化工行业飞速发展的过程中,化工工艺取得了长足进步,然而,在化工生产过程中出现的一系列安全问题也开始被社会各界所关注。对于化工行业来说,要想获得更长远的发展,就必须使危险化工工艺生产过程的安全性得到更多的保障,促使更多项目得以落地。险! 识别风险?难! 难在哪里?破! 如何破局?带着这些问题,化工邦将于2021年9月28日举办一场“困境与破局:危险工艺项目落地”的直播,特别邀请了来自康宁反应器技术有限公司、浙江美阳国际工程设计有限公司以及上海翊员科技有限公司的三位重磅嘉宾,一起在线上与您探讨关于风险评估、工艺优化、工程设计、合理合规等问题,助力危险工艺项目落地。直播信息主题:困境与破局:危险工艺项目落地主持人:林晓洋 化工邦创始人兼CEO 嘉宾: 马俊海 康宁反应器技术有限公司 高级工程师&区域商务总监 郑志能 浙江美阳国际工程设计有限公司副总经理 员文权 上海翊员科技有限公司 合伙人&技术总监 时间:2021年9月28日 (周二) 19:00-20:30 嘉宾介绍康宁反应器技术有限公司■ 高级工程师&区域商务总监简介毕业于中国药科大学药物化学专业,硕士研究生。在校期间从事天然产物藤黄酸全合成的部分课题研究。曾就职于绿叶思科,东南药业从事药物合成的研究工作。2013年加入康宁公司,现任康宁反应器技术区域商务总监。具有丰富的微通道反应器技术项目评估、工艺开发、平台建设、培训等经验,目前已经成功协助实施了多个工业化项目。 郑志能■ 浙江美阳国际工程设计有限公司■ 副总经理 简介曾任职浙江新和成、浙江新赛科药业、上海新健医药化工设计有限公司、参与过浙江博腾药业年产248吨抗艾滋病、抗丙肝和抗糖尿病医药中间体项目、宣城美诺华药业有限公司投资6亿元,建设原料药(API)项目(一期381吨)、安徽美诺华药物化学有限公司投资2亿元年产400吨原料药技改项目、安庆汇辰药业有限公司,投资8亿元高端原料药、医药中间体项目等等重大项目。员文权■ 上海翊员科技有限公司■ 合伙人&技术总监简介上海翊员科技有限公司合伙人&技术总监,擅长EHS 与过程安全管理,包括过程安全管理(PSM)、工艺危害分析(HAZOP, What-if, LOPA)、定量风险评价、 SIL选择与验证、运行工厂的危害识别与控制(OPHR)、应急响应、开车前安全检查(PSSR)、变更管理、反应风险评估与控制、粉尘爆炸、静电危害控制、EHS管理体系建立与改进、EHS法律法规、化学品安全、工业卫生等。曾任辉瑞制药全球 EHS 部门高级 EHS 经理,负责亚太区供应商管理,并为辉瑞内部过程安全专家,及就职于拜耳、ERM、高达 (Golder)等多家全球知名跨国公司,从事过程安全管理及EHS工作13年。员先生获得了美国注册安全工程师(CSP),美国化工过程安全中心(CCPS)认证过程安全专家,Exida 注册功能安全专家(CFSE),美国注册工业卫生师(CIH),美国注册危险物质管理师(CHMM)及中国注册安全工程师(CSE)。 参与方式关注康宁微信公众号,输入“928”,报名参加!
  • 重庆研究院污水处理新型工艺研究取得进展
    近日,中国科学院重庆绿色智能技术研究院提出一种面向能量回收和物质回收的新型污水处理工艺。相关研究成果以Integrated anaerobic and algal bioreactors: a promising conceptual alternative approach for conventional sewage treatment为题,发表在Bioresource Technology上。  现有的污水生物处理工艺采用异养菌、硝化菌和聚磷菌为主要功能微生物。计量学表明,这些微生物对应的生物过程必然产生大量的危害性的剩余污泥和消耗大量的能耗。因此,这两个问题是现有活性污泥法的基本问题,不能通过采用精准曝气或化学解偶联等手段消除。  科研团队采用厌氧膜生物反应器回收污水中有机物携带的能量,将其转化为电力以满足反应器自身的能耗需求,同时产生CO2以供给后续藻反应器中的藻类使用。在厌氧膜生物反应器后,在藻反应器中使用高附加值藻类同步吸收水中的氮磷。藻反应器的出水即可经过消毒后排入自然水体或使用进一步的技术处理以实现中水回用。藻类反应器中产生的大量藻类可在单独的反应器中经诱导产生高附加值的化合物后,再进行一定的加工程序即可成为具备商业价值的产品。  与现有高能耗、高剩余污泥产量、高资金投入的活性污泥法相比,新型污水处理工艺具备技术及经济优势:显著降低温室效应气体排放并具备良好的水处理效果;回收有机物中的能量,具备从污水中进行物质回收的能力;显著降低剩余污泥的产量;经济效益为正。  该工艺由重庆研究院提出并完成论证工作。研究工作得到中科院青年创新促进会的支持,并获得瑞士洛桑联邦综合技术大学、重庆大学、攀枝花学院的协助。  论文链接
  • 利穗:“下游工艺技术转化与清洗验证”开始报名!
    俗话说,一年之计在于春,今天小穗就来个2016春季好货提前爆。本年度我们依旧邀请了重磅大咖针对大家最关心的工艺转化和清洁验证带来全国巡讲 。 以下四个城市的小伙伴有福了:深圳、上海、长春、北京。 在隆重介绍本季巡回讲座之前,大家可以先回顾去年10月在天府之国成都举办的“下游工艺技术转化与清洗验证”,现场座无虚席,气氛热烈。 成都讲座现场图 此次春季巡回讲座,特邀演讲嘉宾:GMP &生命科学领域资深专家罗健中博士,拥有超过20 年的生物工艺研发,实验室及GMP车间的设计、实施及验证经验。为新加坡首个GMP生物制药生产项目的先驱团队的重要成员。 同时,利穗科技国际市场总监林明益先生将做公司产品介绍。林明益先生具有超过30年的生命科学和生物制药行业从业 经验,掌握从实验室到生产规模的蛋白纯化技术,熟悉生物工艺开发 和符合cGMP的生物制品和工艺控制,熟悉生物制剂和疫苗的下游纯化工艺开发。 主题:“下游工艺技术转化与清洗验证” 议程安排:题目:下游工艺技术转化下游工艺技术转化 什么是下游工艺技术转化 下游工艺技术转化项目管理 下游工艺技术转化中的关键因素 下游工艺技术转化中的典型问题 清洗验证(一) 为什么要进行清洗验证 法规监管要求 清洁验证程序的关键要素 验证主计划 清洗过程关键工艺参数 清洗验证(二) 清洗验证方案的开发 可接受的残留限量 下游工艺设备 层析柱 验证生命周期 报名方式:请将公司名称、姓名、职务、联系方式、邮箱发送到市场部邮箱:sales@lisui.net ,或可以直接电话报名:0512-69369998 Lisurescience 联系方式: 吴婷婷 18362618085 利穗期待与您相约3月下旬,不见不散!
  • 【报名】2021年的首场冻干工艺培训课程---广州站
    【报名】2021年的首场冻干工艺培训课程---广州站 冻干工艺可以显著提高药品稳定性、改善产品储存条件、延长产品效期,因此广泛应用于药品和食品行业。进行冻干工艺摸索之前以及过程中,如果有一套完整的理论体系进行指导,将会大大缩短研发人员工艺摸索的时间,以及解决冻干过程中遇到的问题。主办方: Azbil Telstar Technologies.S.L.U 上海昊扩科技发展有限公司本课程适合人群:冻干相关从业人员 研发 & 生产地点: 广州 时间:4月16日(星期五) 主讲人:康 瑜“冻干工艺之家” 主理人TELSTAR 实验室设备 大中华区负责人欧洲冻干理论体系传播人:连续八年在中国组织和推广“冻干工艺理论体系”的传播,组织超过50场研讨会。培训冻干人员近3000人次。“TELSTAR 中国冻干工艺实验室” 负责人IPPM冻干工程师认证班,主讲讲师 此次课程,总时长为8小时,会对以下内容进行详细讲解:1、冻干的基本概念:深入解析冻干过程中用到的主要基本概念。冷冻干燥、水、温度和热、物质聚集形态、蒸汽压、溶液的冷冻过程、真空、平均自由路径。这些基本概念,是做冻干工艺开发的基础。深入理解了这些概念,才能开始我们的冻干工艺开发工作:看得懂冻干过程中各个参数所代表的意义;同行用一样的语言体系交流;能够读懂冻干方面的文献;2 . 冻干的基本过程:这里对冻干的整个过程做一个系统的梳理:上料、预冻、一次干燥、二次干燥、反填气体、压塞、下料。同时分析冻干过程中,水的变化、真空是如何分工控制的、样品浓度、干燥速度等。这里有所有冻干方面的通识:冻干产品初始浓度是多少;每瓶装载高度是多少;那些指标是冻干产品的关键质量指标,以及控制的关键点等3. 冻干过程中的温度测量:详细介绍温度探头各种类型、产品温度测量发生偏差的原因,以及升华界面温度获取的原理以及在实际设备上的应用。冻干工艺开发过程中,产品温度是指导我们工艺开发的航标。但是你读取到的产品温度,是真实的产品温度么; 同一板层不同位置产品温度分布规律是怎样的;我们如何获得更准确的产品温度;如何更好的利用我们读取到的产品温度数据。4、真空测量和真空控制:分别介绍皮拉尼真空计和电容式真空计的工作原理、优缺点及适合的应用。分别介绍上游真空控制和下游真空控制的原理、优缺点及适合的应用。真空度(压力)才是一次干燥过程中控制产品温度的主因不同的压力计,给我们的数据分别代表什么意义;寻找一次干燥终点快速、又便宜的方法是什么;我的设备,压力波动为何这么大。如何调整;5、预冻:讲解预冻阶段可执行的操作如退火、SOAK。用实验数据显示快冻、慢冻对冰晶大小以及一次干燥速率的影响。预冻阶段导致的问题,可能是整个冻干过程中难解决的问题有那些预冻方法,我们可以尝试和操作;退火的方法、温度、时间如何确定;快冻、慢冻,对我的产品会有什么影响;6、冻干工艺摸索和过程工具的结合:详细列出预冻阶段可进行的操作以及对硬件的要求、一次干燥温度测量、真空测量、一次干燥终点判断方法、二次干燥终点判断方法。每一个硬件,都可以给你不同的过程数据。从而解决一些特定的问题。同时详细讲解冻干机硬件每个组件的工作模式以及协作原理。7、冻干工艺实验室:以"TELSTAR 冻干工艺实验室"为模板,介绍一个标准冻干工艺实验室所配备的硬件设备。我们在实验室,是如何只需要几次实验,即可确定出一个可以放大的冻干工艺曲线的。具体的方法,一步步教你做。8、如何设计一个初始的冻干工艺,如何优化冻干工艺:给你一个简单且规范的方法,设计出一个冻干工艺。分析一次干燥过程中:产品关键温度、层板温度、腔体真空、升华速率四个变量之间的关系。小白入手,只需知道产品的关键温度,即可为产品设计出一条初始的冻干工艺曲线9、用近似空间设计的方法Qbd一步步教你中试放大:逐一列出影响中试放大的各个因素,并提供一定程度的解决办法。用对设备,储备好知识体系。到了这个阶段,你只需要一步步跟着做。10、冻干产品常见外观问题及解决方法结壳、爬壁、蛋糕裂开、蛋糕飞升、塌陷、回融、中间有断层、飞粉等告诉你每个问题产生的原理,以及具体解决方法11、提高冻干IVD产品的稳定性,我们需要怎么做IVD产品因为其特殊的处方和包材,使得这类产品或者冻干工艺难以设计,或者冻干后产品的稳定性不佳带你看见风险点,以及提出解决方案对以上内容有了准确和深入的理解,搭建好了一个系统的框架。我们在实际工作过程中,只需要在每个模块里补充更多的实践以及更多深入细节的学习(文献)即可。我们给大家一个“手电筒”,照进冻干的“黑匣子”。心 中 有 地 图 手 里 有 方 法往期课程回顾:帮助深入理解在实验中遇到的各种问题,从而剥离出解决问题的具体方法。TELSTAR 集团简介TELSTAR 1963年成立于西班牙的巴塞罗那。1964年生产出其应用于制药行业的工业型冻干机。为欧洲三大工业型冻干机供应商之一。至今已有55年冻干机的生产历史。2001年,在位于巴塞罗那的总部建立冻干工艺实验室。18年来为客户提供上千个样品的冻干工艺设计、优化,冻干工艺放大和验证服务。积累丰富的经验,并形成了一套自己完整的理论体系。 培训中的所有实验曲线及数据,皆为冻干实验室的实验数据。2020年,在上海建立 TELSTAR 冻干工艺实验室: 买了不少稀罕的设备,欢迎大家来参观~冻干工艺培训教材编写人简介 Robert Bullich 博士   Robert Bullich 博士是TELSTAR 集团冻干研发实验室的创立人和负责人,拥有16年冻干工艺研究经验。Robert Bullich 博士在实际工作了,累计了广泛的冻干研发实际经验,曾经为以下产品成功开发和和设计过冻干配方:  胃保护剂::奥美拉唑, 潘多拉唑,埃索美拉唑  抗生素:哌拉西林, 三唑巴坦, 万古霉素, 伏立康唑,  细胞毒素:丝裂霉素, 吉西他滨 ,抑那通等  食品工业:投身于多种冻干制品配方开发,如 El Bulli餐厅,水果、鱼、肉 Zafron餐厅,乳酸菌、牛奶、Celler de Can Roca餐厅  器官移植:皮肤,肌腱  原料药:多种环糊精,叔丁醇作为溶剂的特利加压素的 原料药冻干  过敏制剂:多个配方  疫苗:多个配方     血液衍生品:纤维蛋白原,一些因子  试剂:多个配方 课程时间:04 月16 日 (周五一天)课程地点:广州市 亚洲国际大酒店课程费用:2000元/人 详情关注“昊扩科技”微信公众号
  • 【干货分享】浅谈氨法脱硫工艺中稀释抽取式湿度计对工艺控制的帮助
    前言在CEMS(烟气连续排放监测) 系统中,湿度测量往往由于传感器寿命短,校准困难等问题,大多数情况下,工艺操作人员都对其测量数据存疑,很少从工艺角度分析数据的准确性,分析结果也几乎不会用于工艺控制的参考。稀释抽取式湿度计,由于在样品抽取时已经完成了大比例的稀释,样气中的湿度和颗粒物含量都极低,所以其运行条件好,传感器寿命长,且方便校零。在氨法脱硫工艺的实际使用中,稀释法烟气连续排放监测系统中配置的抽取式湿度计,因其良好的性能和极少的维护量,既能满足法规要求的污染物排放监测功效,又能帮助工艺人员实现对氨法脱硫工艺的运行优化控制。氨法脱硫工艺原理氨法脱硫工艺的原理简单讲,就是向烟道内加入适量的NH3(氨)、H2O、O2等物质,经过物理吸收、化学反应等复杂过程后,将烟气中含有的SO2去除,实现SO2的减排。其主要的化学反应如下:1)中和:SO2+H2O=H2SO3(亚硫酸) NH3+H2O=NH3H2O(氨水)2NH4OH+H2SO3=(NH4)2SO3(亚硫酸铵)+2H2O(NH4)2SO3+2H2SO3=2NH4HSO3(亚硫酸氢铵)+H2O2)氧化:2(NH4)2SO3+O2=2(NH4)2SO42NH4HSO3+O2=2NH4HSO4NH4HSO4+NH3H2O =(NH4)2SO4+H2O2NH4OH+SO3=(NH4)2SO4+H2O湿度叠加是造成抽取式湿度计结果出现偏差的主要原因在氨法脱硫工艺中,排放口的烟气工艺温度一般都控制在50℃左右。如果采用直插式的湿度计测量烟道中的湿度,且工艺控制中 NH3H2O处于过量状态(这种工艺控制是不合规的),低温环境,又处于稳定工况,此时 NH3H2O以稳定的液态形式存在。直插式湿度计的测量结果仅仅是气态水的含量值,而烟气中的 NH3H2O对湿度计测量不会产生示值影响。但是,对于抽取式的湿度计来讲,根据HJ76-2017的要求,其取样探头、取样探杆等需要加热(120℃以上)。当工艺控制中NH3H2O过量了,烟气中部分NH3H2O被抽取到经过加热的探头、探杆后,由于温度的升高,NH3H2O很容易分解,生成气态的NH3和H2O。其反应原理如下:这时到达湿度计检测传感器的实际湿度是烟气中的实际湿度和NH3H2O分解产生的湿度之和,这就导致其测量结果出现系统性的偏差。抽取式湿度计可快速判断喷氨量的投用情况,为工艺提供控制参考这里分享两个测试案例:例一. 陕西某氨法脱硫排放口测试NH3.H2O明显过量的情况下,现场对抽取式探头的加热温度进行人为调整,温度从50℃~150℃~50℃顺序进行变化。在工况稳定时,发现湿度会随温度升高而升高,随温度的降低而降低,直到控制温度和烟气温度接近后,湿度不会再变化,大约12%左右,其过程见下面测试趋势图:点击查看大图在测试过程中,我们同时用便携的直插式湿度计进行了同步比对。期间直插式湿度计的示值一直保持在11%左右,没有出现明显上升和下降。我们的稀释抽取系统所配置的湿度计,检测的是水气的体积比,而体积浓度的特点是其测量结果不会随温度的变化而变化。但实际的测试中却出现了湿度随温度变化的现象,那么这个变化是怎么产生的呢?通过分析,我们认为其主要原因是过量的 NH3H2O,在样品稀释抽取过程中因为加热而出现了结合水的分解,产生了湿度叠加,造成湿度计示值增加。例二. 广东某氨法脱硫排放口测试在这个现场,我们没有调整探头等的加热温度,其温度一直保持在145℃,但工艺调整了NH3.H2O的喷入量,从下面的趋势明显看出,当NH3升高时,湿度也在升高,当NH3下降时,湿度也在下降,并且完全同步,至此,可以得出结论,湿度的升高就是NH3.H2O分解产生的湿度叠加的结果。点击查看大图相信文章看到现在,会有人提出一个质疑:抽取式湿度计测量不准确,它所测湿度值叠加了 NH3H2O的加热释放湿度,不能用于折干计算。
  • 用动态粉末测试方法优化湿法造粒工艺
    湿法造粒是口服固体制剂生产经常采用的加工工艺,目标是将通常细而粘的活性成分和辅料加工成更均匀、自由流动的颗粒,方便下游加工。 具有理想特性的颗粒可以有效改善加工性能,包括提高生产量,赋予片剂所需的关键属性等。但是,这意味着湿法造粒制成的粒子通常只是半成品,而非最终产品,从而产生了一个问题,即:如何控制造粒工艺,获得最终能生产出良好片剂的粒子?在第一种情况下,有必要确定潮湿颗粒可测定的参数,以便用来量化粒子属性的差异。 本文描述了全球粉末表征技术领先企业富瑞曼科技和制药加工解决方案主要供应商GEA Group(基伊埃集团)公司双方进行的联合实验研究。本实验采用了基伊埃的ConsiGma? 1连续高剪切湿法造粒及干燥系统,用于造粒,并运用富瑞曼科技的FT4粉末流变仪?进行动态粉体测试。所获得的结果显示了如何根据动态测定潮湿颗粒的结果,来预测成品片剂的属性。研究结果突出表明,动态粉体测试作为一种有价值的工具,可用于加速优化湿法造粒工艺、改善对加工的认识和控制,并对连续加工方法的开发提供支持。湿法造粒的目的和挑战 湿法造粒通常用来改善压片混合工艺的特性,使得粒子在压片过程中拥有优化的加工属性,赋予片剂所需的优点。目的是形成均匀的颗粒,提高压片产量,并使片剂拥有所需的关键品质属性,如重量、硬度以及崩解性能等。 在湿法造粒时,配混料的活性成分、辅料组份和水混合在一起,形成均匀的颗粒。然后,这些均聚体或者粒子得到干燥、研磨、润滑等进一步加工,形成压片机所需的理想喂入材料。这些喂入材料的特性可以通过调节各种加工参数,包括水的含量、粉末喂入速度、螺杆速度等有可能产生影响的造粒等环节来进行控制。通过调节一个或者更多的变量,调节粒子属性,确保粒子在压片机中处于理想的性能状态。 但是,要生产出具有规定属性的粒子,需要认识这些关键的加工参数会对粒子产生何种影响,同时还必须认识粒子属性和最终片剂之间的关系。通过以下实验,可以看出动态粉末测试将如何帮助实现这些目标。动态粉末测试概述 动态粉末测试是对运动中的粉体而非静态粉体进行测量, 并直接测定了松体的流动特性,这有助于在非常接近真实加工环境的状态下对粉体进行表征。可以测得经混合、处于低应力状态、充气甚至呈流体状态下粉体样本的动态特性,以精确模拟加工环境,获得给定工艺条件下直接相关的数据。 当刀片沿着规定路径旋转通过粉体样本时,测量作用于刀片上的扭矩及力,以衡量动态粉末特性。当刀片向下穿过样本时,测得基本流动能(BFE)。它反映了粉体穿过挤出机或喂料机时,在受力状态下的流动特性。比能(SE)测量的则是刀片向上运动时粉体的特性,直接反映了低压环境下,如粉体在重力状态下自由流经模具时的行为特征。加工参数对湿法造粒粒子特性影响的研究 富瑞曼科技和基伊埃集团进行了一项研究,用以确定湿法造粒粒子的动态流动特性是否与片剂的硬度的特性相关。通常情况下,片剂硬度对片剂质量起关键作用。试验采用了基于ConsiGma 25连续高剪切粒子和干燥原理的实验室设备ConsiGma1。 这套系统包含具有专利的连续高剪切造粒及干燥机,可以加工几十克至五公斤、甚至更多的样本。 在该系统上进行的研究有利于促进高效的产品和工艺开发,系统停留时间少于30秒。用ConsiGma1生产的潮湿、干燥的粒子由FT4粉体流变仪进行了表征。 实验项目的第一阶段,对不同造粒条件,如不同含水率、粉体喂入速度和造粒机螺杆速度等状态下的粒子属性进行了评估测试,测试的是基于乙酰氨基酚(APAP)及磷酸氢钙(磷酸二钙)这两种粉体配方的模型。系统地改变了加工参数,并测量了所得到的潮湿粒子的BFE。图2显示的是以不同螺杆速率生产出来的APAP配方粒子的BFE随含水量变化的关系。 收集到的APAP配方数据显示,如果螺杆速度保持不变,则随着含水量增加,BFE也升高。当含水率相同时,低螺杆速度同时会产生高BFE的粒子。两种趋势都会出现,因为高含水量、低螺杆速度,造成喂料多,可能生产出更大、密度更高、粘结性更强、对刀片运动阻力相对更高的粒子。数据同样显示,当含水率为11%、 螺杆速度为600rpm时,所生产的粒子的BFE与采用螺杆速度为450rpm、含水率为8%的粒子的BFE相当。这项发现非常重要,因为它表示,具有相似特性的粒子可以采用不同加工条件获得。 图3显示,含水量和螺杆速度分别保持15%和 600rpm不变,当干燥粉末喂入造粒机的速度降低时,DCP配方制成的粒子的BFE显著增加。 其它数据表明,可以通过降低喂入速率,以更低的含水率得到相同BFE的粒子。如,含水15%、螺杆速度约为 18kg/小时的粒子的特性与含水25%、喂入速度为25kg/小时的粒子相近。结合APAP配混料的研究,结果显示,可以通过加工条件的不同组合来得到具有相同特性的特定粉体。 表1列出了,生产具有不同属性的两组粒子所采用的不同工艺参数。条件1和条件2获得的潮湿颗粒的BFE值约为2200mJ,而条件3和条件4获得的BFE值约为3200mJ。 在下列加工工艺,包括干燥、研磨、润滑等阶段的每一步都测量了粒子的BFE,以改善加工性能。本研究中所采用的流动助剂是硬脂酸镁。在所有这些阶段,不同组的相对BFE值保持不变,第3、4组的BFE值一直高于1、2。 图4模拟了加工过程每一阶段的粒子流动特性。条件3和4显示,干燥后的BFE值有所上升,因为,与条件1和2状态下的粒子相比,条件3和4状态下的粒子相对尺寸大、密度高、机械强度高。 研磨后,尽管粒子密度、形状和韧度差异依然存在,但尺寸更为接近。这也使得BFE的观察结果显得有理可据。这些差别在润滑后保持不变,状态1、2和3、4之间的差别明显。 这些结果清楚表明,可以在各种不同的加工条件下,加工出用BFE衡量的、具有特定流动特性的粒子。这些测试显示,BFE值可用于湿法造粒加工产品和工艺的开发, 但同时也会产生问题,即BFE值是否可以进一步用以预测压片机内的粒子行为,以及,更重要的是,BFE是否可以与片剂关键品质属性直接相关。在粒子动态特性与片剂质量之间建立相关性 采用相同的工艺参数,在压片机中对四批潮湿粒子进行了干燥、研磨、润滑。然后测量了片剂的硬度。图5 为片剂硬度与不同阶段粒子流动性的关系。 结果显示,BFE和片剂的硬度与湿态和干燥的粒子有关,而且与它们的变化极其有关。与潮湿粒子和润滑粒子有关是比较容易理解的。尽管两者的相关性不如它与干燥、研磨过的粒子来得明显。所观察到的润滑过的粒子之间差异性和相关性差应归因于硬脂酸镁的整体影响。 这个数据综合反映了粒子在不同加工阶段的流动性(用BFE进行表征)与最终粒子关键质量属性(此处指硬度)之间存在的直接关系。这意味着,一旦特定的BFE与更理想的片剂硬度相关,就可用于推动对湿法造粒工艺进行的优化。结果表明,假如潮湿粒子能够获得目标BFE,最终以硬度衡量的片剂质量就可得到保障。这为提高产品和工艺开发效率,并且,不管是分批还是连续造粒工艺,都能获得更好的工艺控制路径,创造了机会。面向未来今天,采用传统的批次加工方法依然占支配地位,但业内很多人预期,未来大量的产品会采用连续加工。本文中,富瑞曼科技和基伊埃集团共同为将这一理想变成现实向前迈进了一大步。文章揭示了通过采用不同的工艺条件,有望获得特定的片剂属性,并且指出,动态粉末特性如流动性与最终产品的特性直接相关。 本文最初于2014年3月刊登于《医药制造》杂志。结束 图 图1:FT4粉末流变仪?的基本工作原理。测量刀片(或叶片)在穿过样本时遭遇的阻力,量化所测量粒子或粉末松体的流动特性。图2:为APAP配方制备的粒子的BEF随着含水量的增加以及螺杆速度的下降而增加。图3:为DCP配方制备的粒子的BFE随着喂入速率的下降而显著上升。图4:在造粒的不同阶段BFE变化明显,但不同组的粒子之间会存在明显差异。Figure 5: A strong correlation is found between the BFE of the granules and final tablet hardness图5:粒子BFE和最终片剂硬度之间存在很强的关联度Table 1: Four different processing conditions used to make two distinct groups of granules表1:两组明显不同的粒子采用的4种不同加工条件
  • 定了!这7种危化品工艺技术设备要淘汰
    近日,应急管理部制定发布《淘汰落后危险化学品安全生产工艺技术设备目录(第二批)》(以下简称《目录》),明确淘汰7项危化品落后工艺技术设备,包含工艺技术4项、设备设施3项,自文件公布之日起有关新(扩)建项目严格禁用。淘汰落后工艺技术包括:(1)酸碱交替的固定床过氧化氢生产工艺,设为禁止类,要求新(扩)建项目禁用,现有项目五年内改造完毕;(2)有机硅浆渣人工扒渣卸料技术和敞开式浆渣水解技术,设为禁止类,要求新(扩)建项目禁用,现有项目二年内改造完毕;(3)间歇碳化法碳酸锶、碳酸钡生产工艺(使用硫化氢湿式气柜的),设为禁止类,要求新(扩)建项目禁用,现有碳酸锶间歇碳化法生产工艺一年内改造完毕,现有碳酸钡间歇碳化法生产工艺二年内改造完毕;(4)间歇或半间歇釜式硝化工艺,设为限制类,要求硝基苯等27种化学品禁用,二年内改造完毕。  淘汰落后的设备包括:(1)无冷却措施的内注导热油式电加热反应釜(油浴反应釜、油浴锅),设为限制类,要求涉及重点监管危险化工工艺的反应釜禁止,在役设备一年内更换完毕;(2)油库的内浮顶储罐采用浅盘式或敞口隔舱式内浮顶,设为禁止类,要求取得危险化学品经营许可证的油库禁用,在役设备二年内改造完毕;(3)单端面机械密封离心泵和填料密封离心泵(液下泵除外),设为禁止类,要求甲A类、极度危害、高度危害和操作温度超过自燃点的危险化学品禁用,在役设备三年内更换完毕。《目录》实施工作要求各地区加强宣传引导,通过多种方式进行宣贯,组织企业对照《目录》自查,摸清底数、建立台账,确保应改尽改、能改快改,对逾期未完成的依法查处。组织专家加强指导帮扶,“一企一策”提升改造质量,督促企业做好改造期间安全生产工作,防止改造过程中发生事故。与化工老旧装置安全整治、高危工艺自动化改造等工作协同发力,抓好化工和危险化学品安全生产治本攻坚三年行动任务落实,以高水平安全保障高质量发展。据悉,2020年10月,应急管理部印发《淘汰落后危险化学品安全生产工艺技术设备目录(第一批)》(应急厅〔2020〕38号),推动淘汰了一批落后危险化学品安全生产工艺技术设备。但近年来,涉硝化工艺、过氧化氢生产等企业陆续发生一些典型事故,造成了重大人员伤亡和财产损失,深刻暴露出当前一些企业依然存在本质安全水平低、安全风险高的工艺技术和设备设施。同时,随着近年来新工艺、新技术、新装备的不断研发应用,业内已经有了更加安全、先进、可靠的替代工艺技术或设备,为进一步淘汰落后工艺技术设备创造了有利条件。应急管理部有关负责人表示,《目录》的出台是推动提升化工企业本质安全水平的有力抓手,通过刚性约束推动有关不符合安全要求的企业加大安全投入,从根本上消除事故隐患、从根本上解决问题,进一步防范化解危险化学品重大安全风险。今年是化工和危险化学品安全生产治本攻坚三年行动的开局之年,制定发布《目录》是三年行动方案中的一项重要措施。各地区要强化统筹组织,与化工老旧装置安全整治、高危工艺企业自动化改造等工作协同发力推进,加快推动三年行动方案任务落实,以高水平安全保障高质量发展。2020年10月,应急管理部印发了《淘汰落后危险化学品安全生产工艺技术设备目录(第一批)》,淘汰的落后工艺技术和设备12项。其中,工艺技术4项,主要包括使用氨冷冻盐水的氯气液化工艺、用明火加热的涂料用树脂生产工艺、常压固定床间歇煤气化工艺、常压中和法硝酸铵生产工艺;设备8项,主要包括敞开式离心机,多节钟罩的氯乙烯气柜,煤制甲醇装置气体净化工序三元换热器,未设置密闭及自动吸收系统的液氯储存仓库,采用明火高温加热方式生产石油制品的釜式蒸馏装置,开放式(又称敞开式)、内燃式(又称半密闭式或半开放式)电石炉,无火焰监测和熄火保护系统的燃气加热炉、导热油炉,液化烃、液氯、液氨管道用软管。
  • 专家约稿|微电子大马士革工艺的发展现状
    微电子大马士革工艺的发展现状赵心然中科芯集成电路有限公司随着“摩尔定律”逼近物理极限,前道晶圆制造的特征尺寸发展进程变慢,后道布线能力的升级成为提升集成电路密度的关键,而大马士革工艺是晶圆级再布线技术下一阶段需要引进的重要工艺,不仅可以将线宽/线距从PI-Cu 5/5 μm缩减到亚微米级别,还可以利用SiO2基介质材料加工工艺进一步提升再布线层的可靠性,甚至可以推进混合键合先进封装技术的加速落地。针对大马士革工艺,本文将对其工艺原理、流程、难题与突破进展进行总结,便于在封装领域中落地,将会为后道制造更精细的再布线提供新的思路。1 前言半导体产业初期,都是以铝(Al)作为互连材料,后来为了减小互连线的电阻、减轻电子“跳线”现象、避免电迁徙效应,IBM公司首先提出了以铜(Cu)作为互连材料,由于该工艺方法与2500多年前的叙利亚大马士革城铸剑工艺有异曲同工之妙,故以“大马士革”(Damascene)命名。大马士革工艺已经被广泛应用到了微电子工业中,大致思路是,先利用离子刻蚀、光刻蚀等技术在硅片上刻蚀好沟槽和通孔,然后将Cu电镀进入凹陷的硅片中,最后用化学机械抛光(CMP)将多余的Cu磨平,获得嵌有Cu线路的平整硅片。这种镀铜思路最早应用于前道PCB板上Cu线路的制造,虽然目前的工艺极限可以实现4 nm以下线宽,但28 nm被认为是收益最高的线宽,后来大马士革逐渐被中道和后道封装工序采用,来生产比引线键合、倒装、再布线+凸点等方法更加精细的封装系统。一方面,大马士革工艺的布线尺寸可以做到很小,目前已经可以做到几纳米的Cu线宽和焊盘,这是引线焊点、植球/植柱等毫米、微米级连接点所不能比的,这样就可以实现更高密度的互连;另一方面,它不仅可以用来制造2D方向上的沟槽,还可以制造3D方向上的通孔,这对2.5D/3D封装技术的发展也有促进作用。利用了大马士革的最具有代表性的封装技术就是Xperi公司的混合键合(Hybrid bonding),利用极其光滑的表面上的分子间作用力,直接将两个布有大马士革Cu线路的硅片“面对面”相互连接,这种工艺巧妙避开了植球/植柱、转接板、底填胶、引线等各类键合中间物体,在一定程度上模糊了前道和后道的界限。综上,大马士革工艺的精度直接影响了各类3D封装的精度,对微电子工艺一体化至关重要,是未来先进封装必不可少的一个环节,所以研究开发高精度大马士革工艺是很有意义的。2 大马士革工艺当芯片特征尺寸(线宽)达到25 μm以下时,会产生Cu线路间寄生效应,阻容(RC)耦合增大,信号传输延迟、串扰噪声增强、功耗增大、发热增加,器件频率受到抑制。线路之间的介质介电常数(k)对解决上述问题很关键,k值由公式k=Cd/(ε0A)计算,其中ε0为真空电阻率8.85×10-12 F/m,C为电容,A为电极面积,d为膜厚,均使用国际单位。为了减少寄生电容,现在经常使用多孔SiO2、掺氟SiO2(FSG)、掺氟聚酰亚胺(F-PI)等低介电常数材料(Low-k材料)。对于k值是否足够低,业界有以下定义:广义上,k低损耗、低漏电流、高击穿场强、尺寸稳定性、各向异性力学高附着力、高硬度、低应力、高机械强度热学高热稳定性、低热膨胀率、高热导率化学低释气量、耐腐蚀性、不与金属反应、低吸水性通俗地讲,大马士革工艺就是在Low-k介电材料上刻蚀出凹痕并电镀Cu的过程,并不会刻蚀较深的Si晶圆。IBM最早的大马士革工艺称为铜质双重镶嵌,所谓“双重”,即需要刻蚀出通孔和沟槽两种形状,在这两种形状中溅射Ti、Cu种子层,再电镀出Cu互连线,故该工艺也常被称为“双大马士革”(Dual-damascene)。通孔用于垂直方向的互连,直径小;沟槽用于平面方向的互连,直径大。此处的通孔与硅通孔技术(TSV)不同,大马士革刻蚀的是以SiO2为主要成分的介电层材料,而TSV刻蚀的是Si晶圆,由于Low-k介电层很薄,所以大马士革通孔的深度远不及TSV通孔。大马士革工艺有三种路径选择:1)先通孔后沟槽;2)先沟槽后通孔;3)自校准同步沟槽通孔。其中,2、3两种路径分别因为沟槽中的光刻胶堆积效应和校准工艺难度大而被逐渐淘汰,目前应用最广的是第一种先通孔后沟槽的工艺路径,该路径中沟槽刻蚀是最困难的。如图2-1所示,Cu线上方一般会有两层Low-k介电材料,中间夹有一层阻挡层用于更好地刻蚀出沟槽。整个刻蚀流程为,先在Low-k介电材料表面涂覆PR胶,曝光显影后,干法刻蚀穿透表面硬阻挡层和中间阻挡层直达底部SiN阻挡层,然后重新涂覆一层PR胶,使通孔中保留少量PR胶,刻蚀出沟槽,最后洗去PR胶。中间的阻挡层方便通孔和沟槽的分步刻蚀。图2-1 先通孔后沟槽的刻蚀方法示意图当前上海华力微电子有限公司还发展出了一体化刻蚀方法(All-in-one,AIO)[1],即把上述流程中的通孔刻蚀、去除光刻胶、沟槽刻蚀三个步骤合为一体,在同一道工序中完成,具体工艺流程如图2-2所示,其优点是仅需要3步即可完成,与传统的先通孔后沟槽的工艺质量相比,其在小平面控制、光刻胶选择比、通孔边缘粗糙度等方面也有着较大的优势。图2-2 一体化刻蚀方法示意图目前大马士革工艺对光刻精度的要求越来越高,由于Low-k材料是多孔材料,质地较软,容易在高能量的刻蚀下出现侧壁弯曲、阶梯、栅栏等缺陷,故对射频能量、气体流量、压力的控制要求极高,需要经过大量理论计算和实验才能摸索出最优化的光刻条件。不只是光刻,整个大马士革工艺中存在着各种各样的难题,电镀、清洗、等离子体刻蚀、磨平抛光等各个环节都需要精雕细琢,才有助于实现高质量、高可靠性的电路互连,也为大马士革工艺在封装领域的应用奠定良好的基础。以下介绍各类前沿难题与突破,综合论述大马士革在应用时要重点关注的问题。3 难题与突破3.1 低电阻通孔制备难题[2]与沟槽布线相比,大马士革通孔线宽更窄,所以很容易产生更大的电阻,对电信号传输造成损耗。为了解决通孔电阻过高的问题,IMEC的Marleen等人将通孔制备为下半部是钨(W)上半部是Cu的复合型金属通孔。如图3-1(a)~(c)所示,通孔的深度为70 nm,介质层采用SiOCH低介电材料,k值为3.0,使用CVD沉积SiC阻挡层,最终获得的通孔线宽/线距为16/16 nm。图3-1(d)为该结构的电阻值,在相同的通孔直径下,W-Cu复合型通孔电阻值明显低于纯Cu通孔,在通孔直径为10 nm时,W-Cu通孔电阻仅为Cu通孔的一半。该工作还对Wu-Cu复合型通孔的热储存性能做了验证,在200℃的N2气氛下保持150 h后可以储存热量1000 h,证明了该结构的可靠性很高。该工作为微电子布线的材料创新提供了新思路。图3-1 W-Cu复合型大马士革通孔制备方法与电阻效果3.2 电迁移失效难题[3]越细小的Cu线宽和线距,越容易出现电子迁移现象。这种现象的原理是,当电流通过Cu线时,会使Cu原子发生迁移,迁移方向与电子移动方向相同,导致的问题称为失效现象,包括两方面:1)移动的Cu原子原来的位置留下了空洞,导致开路,通常以电阻增加10 %作为判定失效的标准;2)移动的Cu原子在其他地方停留,造成连线间的短路,短路会造成严重的逻辑功能紊乱,现象更加明显。迁移路径分为2种,如图3-2所示,下方金属线1宽较大,上方金属线2线宽较小,中间存在通孔,当电子由上至下迁移(金属线2至金属线1)称为顺流电迁移,电子由下至上(金属线1至金属线2)称为逆流电迁移。顺流迁移失效规律单一,更容易检测和改善,但逆流迁移失效原因复杂,不容易改善。2013年,上海交通大学针对电迁移问题,优化了大马士革结构的工艺参数,该工作就是专门针对逆流迁移失效展开研究,并寻找到了改善失效问题的方法。该实验所刻蚀的Low-k材料为SiCOH,阻挡层为SiCN,种子层为TaN/Ta+Cu(其中含Ta材料起到了粘结作用),整个结构Cu线宽为45 nm。图3-2 逆流电迁移截面示意图图3-2中还标记了大马士革结构的重要参数,可将4个参数归纳为2种深径比,有关通孔的深径比W1 = HD/D1,和有关沟槽的深径比W2 = HT/D2。逆流迁移失效的位置通常有2种,通孔底部和通孔斜面。一方面,如果种子层过厚,通孔会提前封口,在底部形成空洞,发生底部失效,经常发生在晶圆边缘;另一方面,如果溅射种子层的方向过于竖直,不利于在通孔斜面(侧壁)上积累种子层,那么斜面上就容易形成空洞,发生斜面失效。经实验与仿真,研究得出结论,减小W1和W2可以有效改善2种失效现象,具体的方法是:1)减小Low-k介质层总厚度HD;2)减小沟槽深度HT;3)增大通孔上方直径D2。当W1低至4.67,W2低至1.85时,可有效避免失效问题。3.3 电镀添加剂优化[4]上海集成电路研发中心有限公司的曾绍海等人在2018年针对电镀铜添加剂进行了研究。电镀添加剂涉及3种试剂,加速剂A,抑制剂S,平坦剂L。根据文献报道,加速剂A通常使用的是聚二硫二丙烷磺酸钠[bis-(3-sodiumsulfopropyl disulfide),简称SPS],SPS可以在铜沉积的电化学反应中参与到电荷转移步骤中,加速电荷转移过程,此外,SPS还可以在表面形成硫化物,加速Cu沉积时晶核的形成。抑制剂S通常使用的是氯离子Cl-和聚乙二醇(PEG),其中PEG可以在阴极表面阻挡活性位的暴露,而吸附在阴极上的Cl-有助于增强PEG的这种阻挡作用[5]。平坦剂L通常使用的是乙二胺四乙酸二钠(EDTA-2Na),因为EDTA含有2个自由电子对,4个亲水羧基基团,这种结构有助于阴极表面催化析氢反应的进行,析氢的气体张力对电镀层的抛光是至关重要的[6]。该工作使用了多种添加剂配方,探究3种成分的比例对Cu电镀层质量的影响,实验结果表明,抑制剂S的比例过高会引起Cu镀层应力的升高,平坦剂L的比例过高会增加Cu镀层内的杂质含量,也会增加Cu镀层的应力,过高的应力不利于Cu镀层的可靠性。最终,A3/S9/L2为最佳的添加剂配方,300℃下的封装级电迁移测试结果达到可靠性要求,大于10年。如图3-3所示,该工作还展示了SRAM产品55 nm技术双大马士革工艺的版图,通孔直径70 nm,沟槽宽度150 nm,电镀设备为12英寸Sabre品牌设备。图3-3 SRAM产品版图和TEM图像3.4 Ni污染现象[7]2019年,上海华力集成电路制造有限公司的陈敏敏等人研究了金属Ni污染对大马士革刻蚀过程的影响。在干法、湿法刻蚀过程中,很多化学试剂中含有成分为金属Ni的杂质,超标的Ni会严重影响刻蚀图形形貌,如图3-4所示,在光刻前用含Ni的清洗剂和无Ni清洗剂处理后的大马士革腔体形貌有很大区别,Ni的污染导致了光刻时聚合物颗粒的形成。该工作详细讨论了Ni污染的机理:金属Ni与CO气氛反应生成Ni(CO)4,会降低PR胶的刻蚀率,造成光刻胶的残留,然后会生成聚合物杂质。虽然我们使用的接触式光刻机不会涉及CO气体,该工作提出的反应机理也只是推测,理由源于文献的引证,缺乏确凿的证据,但仍然要警惕Ni单质会直接影响刻蚀速率的可能性,对于目前的光刻工艺还是有一定的指导意义。图3-4 (a) Ni污染的腔体;(b) 无污染腔体的SEM图像该工作为目前中道线工艺优化提供了一个思路:刻蚀形貌不理想有可能是原料纯度问题。原材料的纯度虚报在工业生产中屡见不鲜,只有通过购买后二次检测才能获得更真实的原材料信息。原材料成分精确的检测方法有:电感耦合等离子体质谱分析(ICP-MS),原子发射光谱分析(OES),X射线荧光分析(XRF)等。而我们常用的电镜能谱(EDX)精度较低,X射线衍射(XRD)、X射线光电子能谱(XPS)、红外光谱(FTIR)等方法检测对象较局限,不推荐用于原料成分的精细检测。3.5 等离子体损伤难题[8]2019年,中科院大学的赵悦等人从天线扩散效应出发,提出了改善大马士革等离子体损伤的方法。干法刻蚀和Low-k材料沉积的过程需要使用到等离子体技术,但高能量的等离子体会导致充电损伤,降低体系的可靠性。其原理是福勒-诺德海姆(FN)隧穿过程,由于等离子体携带高能光子,当光子能量超越Low-k材料的禁带宽度时,会令材料的电子从价带跃迁至导带,形成短路,所有Cu连线作为一个等势体,会从各个方向收集Low-k介电材料的电荷,所以收集电荷的面积大于连线上表面面积,从而增大了从Cu流向栅极的电流,使栅氧化层可靠性降低。这种电流放大的效应就是天线扩散效应。该工作展示了大马士革工艺的介质层结构,如图3-5所示,各金属层间介质为Low-k材料FSG与一层SiN阻挡层,而最上面是正硅酸乙酯TEOS。TEOS为常用的简单介质层,因为上表面并不需要考虑寄生电容,只需要起到防氧化、防腐蚀作用即可,TEOS完全水解后会形成极细的SiO2,起到保护作用。与FSG相比,上表面的TEOS层不容易被等离子体损伤,原因有:1)PECVD沉积时,TEOS使用的是He气氛,FSG使用的是N2气氛,N2激发的光子更容易诱发损伤;2)TEOS沉积时的腔体压强往往比FSG沉积的压强大很多,能有效缓冲离子轰击。图3-5 大马士革介质层结构示意图该工作提出了有效的等离子体损伤改善方法,一方面需要尽量减少单层的Cu面积,把大面积的Cu布线利用通孔分成多层布线(跳线法);另一方面需要增加电流泄放路径,连接到保护二极管结构,如图3-6所示。故在前期的设计阶段就要充分考虑天线扩散效应,在天线比计算中引入扩散比,增强系统的可靠性。图3-6 电流泄放路径示意图3.6 CMP选择比难题[9]大马士革工艺的表面磨平抛光是一项难题,尤其近年来热门的Hybrid bonding技术要求表面足够光滑才能实现键合,目前使用的磨平技术是化学机械抛光(CMP)。2017年,Merhej等人研究了大马士革工艺中金属与介电材料CMP过程的重要参数:材料去除率(MRR),表示一种材料在CMP过程中去除的速率,单位nm/min。如图3-7,该工作在SiO2介电层中嵌入了Au互连线,最小线宽70 nm,深度50 nm,整个流程与传统的光刻工艺相同,构造了一层单大马士革结构。要想得到第8步Au-SiO2共存的光滑平面,必须要使用最优化的Au和SiO2相对的MRR之比。该工作的CMP分为2步,分别是第7步的多余Au去除,这步只涉及纯Au表面,和第8步Au-SiO2共存表面的抛光。经过实验验证,得到了最优化的CMP参数,涉及4个重要因素:1)时间,纯Au去除60 s,Au-SiO2抛光180 s;2)压力,P = 300 g/cm2;3)转速,Vpad = 50 rpm,Vhead = 40 rpm;4)浆料流量,Dslurry = 25 mL/min。最后可得Au的MRR为 40 nm/min,SiO2的MRR为20 nm/min,故Au/SiO2去除选择比为2。使用原子力显微镜(AFM)对表面粗糙度进行表征,所得结果RMS roughness为1.06 nm。该结果对提升本地CMP工艺能力有很大的参考价值。图3-7 70 nm线宽Au-SiO2大马士革工艺流程图4 发展建议与展望虽然大马士革工艺目前已有了很多突破,但仍有诸多难题有待解决,例如,FSG和SiO2刻蚀的方法在其他Low-k介质层材料中的普适性问题、电镀添加剂配方对于多种线宽的普适性问题以及CMP原位实时的粗糙度检测问题等。大马士革工艺的能力依然有很大的提升空间。大马士革在前道生产中应用广泛,在后道封装领域应用较少,但随着前道后道一体化的推进,我们开发大马士革工艺是有必要的,综合上述难题及研究进展,我们开发大马士革工艺应该重点从3个方面入手:1)刻蚀能力,我们目前只有Si刻蚀相关的技术,需要配备SiO2、FSG、F-PI等介电材料刻蚀相关的设备及原材料;2)电镀能力,我们目前拥有湿法电镀的技术,但仍需要结合大马士革的工艺需求对电镀添加剂成分进行优化;3)CMP能力,我们尚无较好的CMP设备,对粗糙度的检测也只用到了台阶仪,应考虑引入CMP设备及AFM表征渠道。大马士革工艺的开发将有利于混合键合技术的开发,是该技术中不可缺少的一环,更有利于增加前道与后道工艺的兼容性,扩大产品订单的种类。大马士革工艺与目前中道线的刻蚀-电镀技术有相似之处,可以在中道线的基础上增添或升级必要的设备,不用从头建立新的产线,具有较高的可行性。近年来,中科芯努力耕耘CPU、FPGA、DSP、存储器、微系统等领域,“十三五”期间在CPU、FPGA、DSP、存储器、DDS、微系统及封装技术领域都取得了显著的成绩,在“十四五”规划中也对相关重点发展方向提出了更高的要求。未来所制造的芯片性能会越来越强大,与之共存的是,芯片之间的互连密度也将迅速攀升。从晶圆制造栅极尺寸14 nm开始,前道工艺节点的演化已经开始变慢,与此同时,封装层面的布线尺寸进步开始加速,从50/50 μm的再布线线宽/线距迅速缩小到5/5 μm,并向着1/1 μm以下的趋势发展。届时,常规的晶圆级PI-Cu布线已经很难满足工艺需求,必须将大马士革布线技术引进至后道封测产线,配合更加精细的焊盘尺寸,实现芯片与封装基板之间的Si基互连。虽然低k值的SiO2介质层成本比PI高,但可靠性和制造灵活性也是PI介质层不可比拟的,各种先进封装技术将在SiO2介质工艺的支撑下实现完美兼容,例如,TSV转接板、内嵌桥芯片、带核基板等部分的组装,都将克服PI旋涂工艺的困难,利用SiO2-CVD沉积的方式,与各类功能性芯片进行灵活的异构集成。由此可见,大马士革布线工艺是后道先进封装技术发展的关键环节之一,而在此方面中科芯具有较大的优势,由于中科芯具备设计-制造-封测-组装全产业链,拥有较为成熟的前道晶圆制造和后道封测工艺基础,将前后道进行技术融合将有利于促进大马士革工艺在后道的落地,全面提升中科芯芯片产品的性能。参考文献:[1] 盖晨光. 40nm一体化刻蚀工艺技术研究. 半导体制造技术, 2014, 39: 589-595.[2] M. H. van der Veen,O. V. Pedreira, N. Heylen, et al. Exploring W-Cu hybrid dual damascene metallization for future nodes, 2021 IEEE International Interconnect Technology Conference, 2021: 6-9.[3] 唐建新, 王晓艳, 程秀兰, 45 nm双大马士革Cu互连逆流电迁移双峰现象及改善, 半导体技术, 2013: 153-158.[4] 曾绍海, 林宏, 陈张发等, 55 nm双大马士革结构中电镀铜添加剂的研究, 复旦学报(自然科学版), 2018, 57: 504-508.[5] M. Tan, J. N. Harb, Additive behavior during copper electrodeposition in solutions containing Cl-, PEG, and SPS, J. Electrochem. Soc., 2003, 150: C420-C425.[6] S. Mohan, V. Raj, The effect of additives on the pulsed electrodeposition of copper, T. I. Met. Finish., 2005, 83: 194-198.[7] 陈敏敏, 张年亨, 刘立尧, 金属镍污染对大马士革刻蚀的影响, 中国集成电路, 2019, 244: 57-87.[8] 赵悦, 杨盛玮, 韩坤等, 大马士革工艺中等离子体损伤的天线扩散效应,半导体技术, 2019, 44: 51-57.[9] M. Merhej, D Drouin, B. Salem, et al, Fabrication of top-down gold nanostructures using a damascene process, Microelectron. Eng., 2017, 177: 41-45.
  • 首届工业研讨会拟探讨工艺设备效能议题
    新加坡,2009年7 月30日 – 在化工、石化、油气生产及提炼等重要领域的加工企业中,工艺设备效能始终是一个备受关注的问题。受当前经济滑坡和企业面对减低“碳足迹”社会责任而必须采取更多环保措施的双重影响,企业的利润空间受到了严峻的挑战。为了更好地应对这些挑战,同时也为了提高设备运转的稳健性、安全性和可靠性,新加坡展览有限公司特组织举办首届工业总线和无线技术研讨会,定于2009 年12月3日至4日在新加坡新达城国际会议中心举行。   企业效益产生于经过高效能设计并能长期稳定运转的工艺设备,而效能设计则基于工业总线技术,即采用一个全数字化的工业网络系统进行实时分布控制,双向联结微机控制系统和各种现场设备。总线部署的优点充分体现在设备安装、维护和试运转的整个过程中。用户可以使用总线技术连同无线网络远程存取状态和诊断信息,通过连续监控采取预测性维护措施,并通过减少点到点布线和互连设备实现显著的成本节约。   “工业总线和无线技术研讨会”由行业领袖所设计,旨在为装置设计和运转领域的各级专业人员提供有益的帮助。会议将探讨总线技术对设备互通性的严峻挑战和日益依赖无线架构而产生的问题。届时,工业和技术专家将针对各种总线和无线技术的实施案例发表他们的深刻见解。   为期两天的本届研讨会将由两个专业论坛组成,即设备运转与维护论坛和控制系统与设计论坛,两个会议同时进行。专家小组由主要工业机构、技术供应商和技术用户的高层人士组成,他们负责制定会议日程并确保议题的高度关联性和全面性。   专家小组成员   小组主席   Kang Thian Jian, Past President, Instrumentation and Control Society (ICS), Managing Director, Global Head of Electrical, Instrumentation & Control, System Manufacturing and Project Management, Hyflux Ltd   小组共同主席   Jonas Berge, ECT (EDDL Cooperation Team)   Charles Cheong, President, Field Device Tool Group Singapore   Andreas Agostin, President, Fieldbus Foundation Marketing Society (Singapore)   Dr David Matsumoto, President, Singapore Section, International Society of Automation (ISA)   Dominique Chabauty, President, PROFIBUS Association South East Asia   Kwong Kok Chan, General Manager, Environment, QA & Special Projects, Senoko Power Ltd   Sachin Gupta, President, Wireless Industrial Networking Alliance Asia Pacific (WINA)   本届“工业总线和无线技术研讨会”将与亚洲领先的工艺工程、控制仪器和科学器材展览会CIA2009 连决举行。该展览会由 ControlsAsia2009、InstrumentAsia2009 和 AnaLabAsia2009 三部分组成,定于 2009 年12 月1日至4日在新加坡新达城国际会议中心举行。   若要获得详细信息,请浏览网站 www.cia-asia.com。
  • EZ 系列铁/锰在线分析仪在自来水过滤工艺中的应用
    EZ 系列铁/锰在线分析仪在自来水过滤工艺中的应用哈希公司EZ6000 痕量金属分析仪当前痛点铁和锰的浓度突变通常可以用于表征自来水处理过程中砂滤工艺的性能。常规的实验室分析仪铁和锰的过程有延时的特点,难以高效准确的用于指导砂滤工艺的管理和维护。解决方案Hach EZ系列分析仪能够测量多达8个样品流,短时间内提供关于铁或锰的连续检测数据。丹麦的研究人员正在利用相关产品从根本上设计水处理的过滤工艺。相关效益当进行过滤器反清洗时,Hach EZ系列分析仪能够提供快速、及时的数据或报警,从而能够优化工艺流程,令宕机时间最小化;保护水质且降低成本。能够避免潜在的水质风险,自来水厂也能够更好的评估新的过滤器性能和相关技术。 Hach® EZ 系列在线比色原理分析仪能够为用户全天候检测各种参数。自来水工艺中的铁和锰是非常重要的两个指标参数,接下来就针对这两个指标的在线监测提供一份应用案例分析报告。1.背景铁和锰通常并存于地表水、地下水等水源中,但锰的浓度通常要低得多。锰天然存在于土壤、大多数地表水和地下水中,由于其在酶的作用中扮演一定的角色,锰元素成为了许多生命体的基本元素。对人类来说,锰的最大来源通常是食物。胃肠道吸收的锰由身体调节以维持体内锰的平衡,因此通过口服获得的锰通常被认为是毒性较小的元素之一。然而根据最近的研究,饮用水中的锰的参考值一直有待商榷。中国大陆针对饮用水的锰含量限值为 0.1mg/L。铁是地壳中一种丰富的金属,主要以氧化物的形式存在。铁离子 Fe2+和Fe3+很容易与含氧和含硫化合物化合,形成氧化物、氢氧化物、碳酸盐和硫化物。铁也是人体必需的微量元素,它在血液和酶中起着至关重要的作用。自来水中的铁和锰河流中的铁浓度通常较低,一般为 0.7 mg/L。处于厌氧的地下水中铁通常以 Fe2+的形式存在,浓度通常为 0.5-10 mg/L,但个别极端浓度可能高达 50 mg/L。饮用水中的铁含量通常低于 0.3 mg/L,这也是中国饮用水标准中铁含量的限值。但在使用铁盐作为絮凝剂的国家以及在配水管网中使用铸铁、钢和镀锌铁管的国家,其饮用水的铁含量可能更高。2.五大监测缘由居民抱怨自来水的变色、异味和固形物是公众投诉饮用水的最常见原因。铁和锰一方面是异味和变色的原因之一,另一方面它们也是变色和异味等问题关键的预警参数。处理这些投诉以及进行调查和实施补救措施的成本可能非常高。浊度在自来水厂中是最常见的预警指标,通过浊度分析仪的报警信号,工作人员可以采取措施将混浊的水从配水管网中分流出来,避免进一步问题升级。但浑浊可能是由各种问题引起的,而铁和锰的增多是由特定问题引起的,因此监测有助于查明原因并给出合适的缓解措施。健康风险铁和锰对健康的危害很小,但是细菌会导致腐蚀并使铁浓度升高从而出现与细菌相关的风险。对人类来说,铁的致死剂量是体重的200-250mg/kg,该剂量会导致大量的胃肠道出血,但铁中毒是非常罕见的,通过饮用饮用水的铁摄入量通常很低,不大会引发健康问题。不过,氧化铁被认为是金属和半金属的有效清除剂,这有可能会导致砷含量的增加,众所周知,砷是一种具有高健康风险的元素。政府监管许多政府或组织(包括饮用水供应商和饮料行业)在相关法规或标准中都会针对铁和锰的最大浓度做相关规定。1998 年 11 月 3 日的关于人类饮用水质量的欧盟饮用水指令98/83/EC表示:就最低要求而言,用于人类饮用的水应是健康和清洁的:(a)不含任何微生物和寄生虫,不含任何数量或浓度的对人体健康构成潜在危险的物质,(b)满足附录 I 里 A 和 B 部分中规定的最低要求。在附录 1 里 C 部分“参数指标”中包括了标准锰含量为0.05mg/L 和铁为 0.2 mg/L。不过之前的大部分指标参数已被移至附录四,该附主附录要涉及消费者的信息。理由是指标参数不提供与健康相关的信息,而是提供消费者感兴趣的信息(如味道、颜色和硬度)。对于那些使用铁盐作为磷酸盐去除混凝剂的废水处理厂,排放批准中也会包括对铁(通常为总铁)含量的限制。美国环保署已经确定了影响饮用水美观但不会对人类健康造成危害的污染物的二级最大污染水平(SMCLs)。SMCLs 不是联邦强制执行的,公共水处理设施不一定非要对其进行监测除非所属州有相关要求。SMCLs规定的铁含量为0.3mg/L,潜在的外观问题包括锈色,沉淀物,金属味,以及红色和橙色的水染色。SMCLs 里的锰含量为 0.05 mg/L,潜在的外观问题为黑棕色,黑色染色 和苦涩的金属味。美国环保署认为,如果这些污染物存在于水中并超出了标准,这些污染物可能会导致人们停止使用来自公共供水系统的水,即使水实际上是可以安全饮用的。因此,二级标准被制定出来以向公共水系统提供一些关于如何将这些化学物质去除到低于大多数人会注意到的水平的指导。此外,一些动物也会拒绝饮用这些气味或者颜色有异常的水源。结垢和腐蚀 处理蒸汽或冷却水的工业装置所使用的铸铁管道和设备易受多种腐蚀机制的影响。机械和 化学腐蚀可以从钢表面剥离和溶解铁,而这种未结合的铁可以沉积在水处理系统的其他点的表 面上,从而导致进一步的腐蚀。通过监测水样中铁的含量能够及时了解管道或锅炉的腐蚀情况 或针对性处理。 降低成本 对于使用铁盐作为絮凝剂的水处理厂来说,这些化学物质可能会带来巨大的成本。因此,尽管使用足够的混凝剂来去除固体很重要,但铁盐也不能被过量投放,因为这样会使过滤器过载,并将残留的铁盐留在水中,这将导致处理成本上升。3.持续监控-工作原理HACH® EZ 系列分析仪采用在线比色技术,能够准确可靠地测量关键水质参数。智能,自动化的操作和功能有助于提高分析仪的的分析性能。最小化停机时间并无需操作员干预。机器清洗是自动的,校准和验证频率都可以由用户设置。EZ1000 系列能够同时测量最多 8 个样品流。这样就降低了每个采样点的成本,但是在下达指令时需要保证指令精准详细。EZ1000 铁分析仪使用 TPTZ 试剂,其在反应时会形成很深的蓝紫色,以此测量溶解铁(II)、铁(III)和总溶解铁(II+III),循环时间为 15 分钟,标准测量范围为 0-1 mg/L。但可以通过校准曲线的设置或稀释功能来测量低浓度(0-0.1mg/L)或高浓度(0-10mg/L)的样品。EZ1000 锰分析仪使用甲醛肟法在 450nm 处测量溶解的锰 Mn(II),标准测量范围为 0-1 mg/L Mn,量程同样可以有多种可选,循环时间为 10 分钟。如果客户对于总铁或总锰的含量比较关注,可以选择 EZ2000 系列对应的总铁或总锰分析仪。EZ2000 系列分析仪具有一个内部样品消化装置,能够在分析前提供一个额外步骤用于消解不溶性或复合型金属,从而达到总铁或总锰的分析。4.连续监测的优点一般来说,实验室分析水质指标数据具有较高的可信度。然而,在采样和传递结果之间存在一个时间延迟,并且偶尔采样可能会因为错过了浓度峰值而监测不出风险。在线分析仪由于取样的及时性和分析时间较短的特点,因而能够大大降低这种风险。此外,EZ 系列分析仪提供标准的 4-20mA 信号输出并配有报警程序,正常情况下在量程内的异常浓度都可以被监测到,并将报警信号发送至控制中心。5.连续监测的优点在一个由丹麦环境保护局资助,VIA大学管理的研究和开发项目中,研究人员正在通过重新思考饮用水的生产过程来重新设计水处理方案。该项目的合作伙伴包括Aarhus Water,Vandcenter Syd,Vand&Teknik,Amphi-Bac,Dansk Kvartsindustri 和 NIRAS。该项目的目标是建立一个小而优的自来水厂,其主要特点有:更强大的处理能力 更高的生产效率较短的启动时间 节省能源改善水质在丹麦,饮用水的供应主要来自地下水。政府的立场是饮用水应来自纯净的地下水,这些纯净的水只需要通过简单的通风处理、pH 调整,然后过滤即可进行输送至居民家中。砂滤工艺在丹麦已经使用了 100 多年,该过滤器开发项目的结果将于 2020 年在 IWA 水大会(丹麦)上公布。世界各地的水处理厂普遍采用砂滤器,砂滤器有助于去除悬浮固体和病原体,改善味道和颜色而无需额外的化学物质。这些砂滤器需要通过定期反洗来保持最佳性能,反冲洗能够清除集聚的颗粒并提高流速。然而,反洗过程会打断水处理过程。因此有必要进行监测以优化过滤性能。目前较普遍的做法是针对浊度和流速进行检测,不过化学指标的分析能够为流程情况提供更深入的了解。2018 年,丹麦实施了新的饮用水法规以符合欧盟关于参数、采样频率和采样地点的相关法规。在此之前要求针对出厂水(下限)和用户终端出水进行监测。欧盟法规调整后,用户终端出水不仅需要监测还针对铁和锰这两项指标设置了限值,具体为铁:0.2 mg/L,锰:0.05 mg/L。传统的做法是不定时的采集样本,随后送至实验室分析各项参数水平,当然这也包括铁和锰。如果通过指标数据表明滤池中的污染物无法通过反冲洗来去除,则有必要对滤料进行更换,更换滤料意味着该条生产线的停机,因此是一项耗时耗财的步骤。为更加准确高效的评估和监测滤池工艺的性能,该项目研究者通过在线监测滤池水样中铁和锰的浓度水平,为更加准确掌握滤池工艺状态,他们还对不同滤料层间的水样进行分析。该项目应用的产品有 HACH® EZ1024 总溶解铁(Fe(II) 和 Fe(III))分析仪,HACH® EZ1025 二价锰分析仪。这些仪器于 2018 年 11 月安装,每小时采样四次。项目初始,每台仪器被设置为每小时从过滤器入口和出口分别抽取两个样品。通过与实验室结果对比发现两者具有良好的相关性。 EZ1024 总溶解性铁(II+III)分析仪工作现场组件:A-工业面板 PC,B-高精度微型泵,C-取样泵,D-排水泵,E-光度VIA 大学的项目经理,高级副教授 Loren Ramsay 说:“监测是饮用水处理研究的重要组成部分。为了保证监测的正确性,必须在处理过程中的多个位置进行频繁的测量。使用具有多通道功能的在线铁锰自动分析仪非常适合我们的需求。我们相信我们的项目成果对整个饮用水处理行业来说都非常有用。”6.总结随着传感器技术的进步,连续监测和实时控制系统有助于优化水行业内的各种处理工艺。在提高工艺性能的同时也可以降低相关成本。随着 HACH® EZ 系列在线分析仪的不断优化和进步,如今不仅能实时评估进厂及出厂水的铁锰含量,更重要的是通过对铁锰含量的实时监测侧面反映滤池工艺的性能和状态,这对于更加高效的安排和管理滤池反冲洗操作大有帮助。此外,正如丹麦的案例所展示的一样,锰和铁的连续监测有助于开发新的改进过滤系统。END
  • 可持续化学和工艺的未来:人工智能、数据和硬件的融合
    本期推文主要编译整理了 Xin YeeTai 等发表在 Energy and AI 的综述《可持续化学和工艺的未来:人工智能、数据和硬件的融合》(The future of sustainable chemistry and process: Convergence of artificial intelligence, data and hardware)。论述了在工业 4.0 的背景下,可持续的化学过程可能会成为一个智能实验室,将网络物理系统与先进的人工智能和稳健的检测技术连接起来。它还将创建一个闭环系统,包括合作和协调机器、自我决策系统、自主问题解决和学习系统。此外,还讨论了闭环系统在可持续化学过程中的发展前景和关键挑战。可再生能源发电和绿色合成的可持续化学是一个及时的研究课题,其愿景是在不损害子孙后代的情况下满足当前需求。在工业 4.0 时代,可持续化学和过程正经历着从连续流系统到下一层级操作的剧烈转变,例如通过将人工智能、数据和硬件集成到网络物理系统中的协作和协调机器、自决策系统、自主和自动问题解算器。由于物理空间和网络空间之间缺乏融合,开环系统面临着数据隔离、周期时间慢和资源管理不足等挑战。新兴的研究致力于加速这些循环,通过增材制造、内置在线监测和人工智能减少多步骤过程和实时表征之间的时间。最终目标是同时提出可持续化学过程中的工艺配方、流程合成和分子表征,每个步骤同时发送和接收数据。这一过程被称为“闭环”,它将潜在地创建一个具有高度集成系统的未来实验室,并生成一个面向服务的平台,用于端到端同步、自进化、反向分子设计和自动科学发现。该观点提供了一种方法,分别通过人工智能和增材制造,结合内置在线监测,分别理解网络和物理系统。此外,还讨论了闭环系统在可持续化学过程中的发展前景和关键挑战。01 引言可持续化学过程是一个科学概念,它寻求在不牺牲资源和环境的前提下满足当前的需求。近年来,连续流化学的发展势头日益强劲,从基本的实验室技术发展到实践中复杂的多步骤工艺。与传统的间歇系统相比,它具有搅拌快、传热快、反应时间控制有效、对有毒和高活性化学品实验安全等优点。此外,连续流化学可以更快地发现绿色化学产品和合成路线,大大减少了实验室和工业规模的污染物排放。连续流化学是实验室里的微型连续装置。它被认为是可持续化学工艺从科学研究向工程生产规模化发展的垫脚石。以层流为基础的燃料电池是可持续化学过程的一个显著例子,它利用液体燃料作为可持续资源,在微通道中持续产生能量,并产生水作为副产品,而不会对环境产生负面影响。此外,太阳能是一种巨大的、可靠的、实际上用之不竭的能源,具有均匀的辐照,可以很容易地与连续流反应器集成在一起,在流太阳能电池中产生化学能和电能,如产生单重态氧和去除水中的有毒成分。可持续化学过程的概念也体现在碳捕获和利用上,即以微胶囊或微流体装置的形式持续捕获温室气体,然后转化为绿色合成产品。第四次工业革命,又称工业 4.0,正在形成一种演变,其影响已遍及各个行业,尤其是制造业。在工业 4.0 的背景下,可持续的化学过程可能会成为一个智能实验室,将网络物理系统与先进的人工智能和稳健的检测技术连接起来。它还将创建一个闭环系统,包括合作和协调机器,自我决策系统,自主问题解决和学 习系统。可持续化学过程的智能实验室的目标是通过适应“即插即用”的原则,以尽可能快的速度完全灵活的生产。鲁棒的传感技术可以灵活地嵌入到多步反应和分离过程中进行实时监测。因此,3D 打印提供了最佳的解决方案,因为其灵活和可定制的独特属性,使“即插即用”的原则快速实现。此外,在智能实验室中采用数据驱动策略,可以提高灵活性和智能制造水平。这一策略在很大程度上取决于数据的质量和数量,这可以通过利用先进的传感技术通过内置在线监测过程来保证。此外,智能实验室也被称为“黑暗实验室”、“熄灯实验室”或“无人实验室”,不需要人力。[来源:曼森生物视频号] 曼森无人化实验室检测全流程自动化,实现检测全流程黑灯作业它运用人工智能实践预测、自动化和自主、自行为和自决策的方法,在可持续化工过程中进行智能控制、调度、设计、过程控制质量和维护。例如,巴斯夫正在实施工业 4.0,将 3D 打印应用于现场设施、连接系统以及用于过程管理和控制以及虚拟工厂调试的先进预测和分析模型。施耐德电气采用了 3D 打印、先进的人工智能和先进的传感器,使生产率提高了 2-7%,能源利用率提高了 30%,运营成本降低了 50%。将增材制造、先进 AI 和鲁棒传感器应用于工业规模工艺,在提高工艺效率、能源利用率和成本效益方面显示出显著的势头。如前所述,AI、数据和硬件是智能实验室的基础模块。人工智能是对人类智能的一种模拟,它被编程在机器中,使它们能够像“科学家”一样思考和行动,比如学习和解决问题。在可持续化工过程中,神经网络、机器学习和遗传算法等人工智能算法是监测、优化和控制中常见的数据驱动方法。因此,将先进的传感技术嵌入到多步骤过程中进行在线监测,可以保证数据的质量和数量,这是数据驱动方法的主要关注点。通过内置在线方法,可以获得化学过程的实时数据,如反应物使用量、产品收率以及操作条件,如 pH、温度和压力,这些都是离线分析技术无法获得的。在线方法直接测量工艺流程,不需要去除或转移样品,而在线方法自动分析样品材料,不需要分配工艺。将先进的传感技术集成到反应室需要灵活的硬件设计,这可以通过增材制造(AM)方便。AM 也被称为 3D 打印,是一种绿色制造技术,从数字输入建立三维物理输出,而不需要传统的工具。该定制工具为需要定制、灵活性和设计复杂性的应用程序提供了优势。AM 在燃料电池、流动化学等能源产生装置中的应用也得到了广泛的讨论。除此之外,人们还非常希望将人工智能、数据和硬件结合到实验室规模的研究中,以简化之后的升级过程。到目前为止,许多工作已经分别讨论了智能工厂的网络和物理系统。网络系统指的是人工智能和数据的融合,数据通过先进的感知技术产生,并被人工智能算法用于执行任务,如在云空间的自我优化和预测。相比之下,物理系统描述了智能实验室的硬件,如多步反应器、分离器和检测技术,它们可以通过 AM 技术实现物理集成,用于内置在线监测。在这样的网络和物理系 统中,如果没有 AM,网络系统的鲁棒性将受到低自定义能力与强大的检测技术 连接的阻碍,从而导致构建可靠模型的高质量数据的丢失。另一方面,如果没有 人工智能,物理系统将只能执行实时监控,而没有智能反馈和控制,限制了物理 系统的可扩展性和功能。因此,人工智能、数据和硬件的融合可以实现智能可持 续化学的物理和虚拟意义。02 通过增材制造和在线监测实现的智能物理系统这里的物理系统指的是用于反应器、分离器和先进检测等可持续化学过程的智能实验室的硬件。由于对实时信息的需求,有必要通过增材制造将它们集成到外壳和套管中,以便进行内置在线监测。AM 可以减少生产集成先进检测的定制反应室的周期时间。这种无与伦比的方法可以鼓励研究人员执行一种更迭代的方法,在现有的硬件中嵌入特定的几何形状。因此,可以根据工艺的要求,立即修改设计。此外,它还可以避免有价值但寿命较短的中间体检测的损失。目前,各种检测技术,如温度监测、光谱学和成像,已通过 3D 打印用于在线监测在可持续化学应用中得到了报道。例如,Monaghan 通过超声波添加剂制造(UAM)开发了多材料结构光谱学,将纤维药物嵌入金属微反应器中,用于 B维生素烟酰胺和荧光素的现场监测,如图 1 A 所示。通过启用 AM 的现场监测,研究人员可以从反应物的使用中获得实时数据,而使用离线分析技术无法看到产品形成和中间体生成。Maier 等人通过选择性激光熔化(SLM)开发了带有在线氧传感器的不锈钢反应器。这被证明是研究格氏试剂在流动中氧化的一种有前途的方法。这两项工作都表明了 AM 技术在制造高度复杂的金属器件方面的稳健性,这些器件适用于可持续化学过程中的高温高压应用,同时在更自由的设计中保持高精度的测量。在空气污染监测的另一个应用中,熔融灯丝制造(FFF)用于制造带有嵌入式半导体空气质量传感器的光催化气相反应器,该传感器测量电阻变化。这种 3D 打印气体传感器采用廉价的方法制造,并配有现成的组件,如光催化过滤器和模数转换器。采用 AM 技术还可以安装更强大的检测单元,并改进系统性能评估。例如,在燃料电池系统中,电流密度和功率密度是评估性能的标准实时信息。采用熔融沉积模型(FDM)在高温聚合物电解质燃料电池上嵌入电子顺磁共振(ERP)光谱,用于阴极电导率测量。Polyjet 技术提供了一种快速且经济高效的方法,当使用商业 X 射线计算机断层扫描仪提供的低强度 X 射线进行水分布可视化(图 1 B)时,设计足够小的夹具,以实现良好的信噪比,否则很难通过常规机加工制造。这项工作突出了使用鲁棒传感器实时监测层流燃料电池的机会。Menzel 等人通过 FDM 提出了一个 3D 打印化学合成系统,包括反应器、分离器、压力调节器和泵,如图1 C所示,该系统为多步化学合成创建了一个完整的连续流系统。 在低成本 3D 打印技术上对耐高温和耐化学腐蚀的聚合物(如聚醚醚酮)进行 3D 打印,为可持续化学过程中的高温和腐蚀应用创造了机会。图 1 (A)UAM 池光谱测量示意图,其特征是垂直于微流控通道嵌入涂层光纤,用于分析荧光素溶液 (B)具有三维打印池支架和流场夹具的 X 射线计算机断层扫描系统内的可视化设置 (C)使用三维打印反应器、泵、BPR 和膜分离器曼森人工智能自动化实验室产品随着互联网技术的不断革新以及人工智能、大数据时代的到来,信息技术在各个领域日益渗透,借助先进信息技术与前沿管理理念打造智慧实验室,成为未来发展的必经之路。在此创新变革浪潮之下,曼森生物全自动化检测检验实验室解决方案从精益化、智能化、持续化三大方向持续深化创新,为实验室的运营管理与未来发展带来无限可能,成为助力实验室实现自我革新的新引擎。NO.1高通量发酵平台平行生物反应器:由华东理工大学生物反应器国家重点实验室和国家生化工程技术研究中心张嗣良教授技术团队研发的平行生物反应器,区别于传统的生物反应器,具有高度平行性(同步性和重现性),利于高校实验室和企业研发实验室使用。NO.2液体处理机器人全自动分液机器人:采用协作机器人进行分装液体,通量高、速度快、灵活性大、兼容试管、离心管、三角瓶、蓝盖瓶、容量瓶、微孔板等多种形式容器,特别是可以分装接触皿将液体自动定量分装到各种容器中。梯度稀释机器人:样品的梯度稀释、复制和重排组合,适用于试管间、孔板间稀释;有吹吸混匀功能。可以同时稀释4种样品。NO.3四通道平板分装仪四通道平板分装仪:该设备拥有智能操控、分装准确、可自定义分装参数等特点,可以同时分装1-4种培养基。仪器启动后无需管理,自动进行培养基的分装及平皿堆叠,可大幅度减少操作人员工作量,是实验室分装平板培养基的优选设备。未完待续参考文献:Xin Yee Tai, Hao Zhang , Zhiqiang Niu, et al. The future of sustainable chemistry and process:Convergrnce of artificial intelligence,date and hardware. Energy and AI 2 (2020) 100036文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
  • 2012年广州化工工艺研发及PAT技术交流会
    由梅特勒托利多自动化化学仪器部联合天津大学国家工业结晶工程技术研究中心共同举办的&ldquo 2012年广州化工工艺研发及PAT技术交流会&rdquo ,于2012年9月12日广州大华酒店顺利召开。 来自全国各地24家单位63位代表参加了本次会议。 其中包括:广州拜耳材料科技有限公司、广州汉方现代中药研究开发有限公司、深圳市健康元药业集团股份有限公司、暨南大学、广东省工程技术研究所、广东省中医研究所、深圳沃兰德药业有限公司、广州百花香料股份有限公司、展辰涂料集团股份有限公司、广东立国制药有限公司、广东省广州市永信药业有限公司、佛山市隆信医药科技有限公司、广州高露洁有限公司、广东药学院、广西中医药大学、广州龙沙研究开发中心、广州威尔曼新药研发有限公司、广州白云山化学制药厂、丽珠集团丽珠制药厂、广东罗浮山国药股份有限公司、中山大学、亨斯迈纺织染化(中国)有限公司、广州化学试剂厂、广东康美药物研究院有限公司等单位。 会上,天津大学国家工业结晶工程技术研究中心副主任龚俊波博士、梅特勒托利多自动化化学部技术应用顾问万欢先生以及郑乾女士就以下各个议题展开讨论:过程分析技术(PAT)在药物结晶中的应用、药物晶体形态学控制策略、制药工业中的结晶研发思路、结晶工艺研发的PAT工具、RC1反应量热技术及其在工艺过程安全评估和放大的应用、EasyMax/OptiMax的介绍和应用、ReactIR实时在线反应分析技术对间歇或流动化学工艺的开发和优化、FBRM/PVM实时在线颗粒分析技术及其在工艺研发的应用。与会代表对会议主办方提供这样一个交流平台表示感谢,并期待举办下次培训会。 梅特勒托利多公司自动化化学仪器部作为主办方长期与化工工艺方面具有国内高学术水平的研究单位和机构保持良好的合作关系,例如上海医药工业研究院、天津大学、华东理工大学等。希望通过研讨会的方式,让国内更多相关人士了解国外先进的产品和技术,同时提供量身定做的解决方案,为研发人员解决实际的问题。
  • EZ 系列铁/锰在线分析仪在自来水过滤工艺中的应用
    EZ6000 痕量金属分析仪当前痛点铁和锰的浓度突变通常可以用于表征自来水处理过程中砂滤工艺的性能。常规的实验室分析仪铁和锰的过程有延时的特点,难以高效准确的用于指导砂滤工艺的管理和维护。解决方案Hach EZ系列分析仪能够测量多达8个样品流,短时间内提供关于铁或锰的连续检测数据。丹麦的研究人员正在利用相关产品从根本上设计水处理的过滤工艺。相关效益当进行过滤器反清洗时,Hach EZ系列分析仪能够提供快速、及时的数据或报警,从而能够优化工艺流程,令宕机时间最小化;保护水质且降低成本。能够避免潜在的水质风险,自来水厂也能够更好的评估新的过滤器性能和相关技术。 Hach® EZ 系列在线比色原理分析仪能够为用户全天候检测各种参数。自来水工艺中的铁和锰是非常重要的两个指标参数,接下来就针对这两个指标的在线监测提供一份应用案例分析报告。1.背景铁和锰通常并存于地表水、地下水等水源中,但锰的浓度通常要低得多。锰天然存在于土壤、大多数地表水和地下水中,由于其在酶的作用中扮演一定的角色,锰元素成为了许多生命体的基本元素。对人类来说,锰的最大来源通常是食物。胃肠道吸收的锰由身体调节以维持体内锰的平衡,因此通过口服获得的锰通常被认为是毒性较小的元素之一。然而根据最近的研究,饮用水中的锰的参考值一直有待商榷。中国大陆针对饮用水的锰含量限值为 0.1mg/L。铁是地壳中一种丰富的金属,主要以氧化物的形式存在。铁离子 Fe2+和Fe3+很容易与含氧和含硫化合物化合,形成氧化物、氢氧化物、碳酸盐和硫化物。铁也是人体必需的微量元素,它在血液和酶中起着至关重要的作用。自来水中的铁和锰河流中的铁浓度通常较低,一般为 0.7 mg/L。处于厌氧的地下水中铁通常以 Fe2+的形式存在,浓度通常为 0.5-10 mg/L,但个别极端浓度可能高达 50 mg/L。饮用水中的铁含量通常低于 0.3 mg/L,这也是中国饮用水标准中铁含量的限值。但在使用铁盐作为絮凝剂的国家以及在配水管网中使用铸铁、钢和镀锌铁管的国家,其饮用水的铁含量可能更高。2.五大监测缘由居民抱怨自来水的变色、异味和固形物是公众投诉饮用水的最常见原因。铁和锰一方面是异味和变色的原因之一,另一方面它们也是变色和异味等问题关键的预警参数。处理这些投诉以及进行调查和实施补救措施的成本可能非常高。浊度在自来水厂中是最常见的预警指标,通过浊度分析仪的报警信号,工作人员可以采取措施将混浊的水从配水管网中分流出来,避免进一步问题升级。但浑浊可能是由各种问题引起的,而铁和锰的增多是由特定问题引起的,因此监测有助于查明原因并给出合适的缓解措施。健康风险铁和锰对健康的危害很小,但是细菌会导致腐蚀并使铁浓度升高从而出现与细菌相关的风险。对人类来说,铁的致死剂量是体重的200-250mg/kg,该剂量会导致大量的胃肠道出血,但铁中毒是非常罕见的,通过饮用饮用水的铁摄入量通常很低,不大会引发健康问题。不过,氧化铁被认为是金属和半金属的有效清除剂,这有可能会导致砷含量的增加,众所周知,砷是一种具有高健康风险的元素。政府监管许多政府或组织(包括饮用水供应商和饮料行业)在相关法规或标准中都会针对铁和锰的最大浓度做相关规定。1998 年 11 月 3 日的关于人类饮用水质量的欧盟饮用水指令98/83/EC表示:就最低要求而言,用于人类饮用的水应是健康和清洁的:(a)不含任何微生物和寄生虫,不含任何数量或浓度的对人体健康构成潜在危险的物质,(b)满足附录 I 里 A 和 B 部分中规定的最低要求。在附录 1 里 C 部分“参数指标”中包括了标准锰含量为0.05mg/L 和铁为 0.2 mg/L。不过之前的大部分指标参数已被移至附录四,该附主附录要涉及消费者的信息。理由是指标参数不提供与健康相关的信息,而是提供消费者感兴趣的信息(如味道、颜色和硬度)。对于那些使用铁盐作为磷酸盐去除混凝剂的废水处理厂,排放批准中也会包括对铁(通常为总铁)含量的限制。美国环保署已经确定了影响饮用水美观但不会对人类健康造成危害的污染物的二级最大污染水平(SMCLs)。SMCLs 不是联邦强制执行的,公共水处理设施不一定非要对其进行监测除非所属州有相关要求。SMCLs规定的铁含量为0.3mg/L,潜在的外观问题包括锈色,沉淀物,金属味,以及红色和橙色的水染色。SMCLs 里的锰含量为 0.05 mg/L,潜在的外观问题为黑棕色,黑色染色 和苦涩的金属味。美国环保署认为,如果这些污染物存在于水中并超出了标准,这些污染物可能会导致人们停止使用来自公共供水系统的水,即使水实际上是可以安全饮用的。因此,二级标准被制定出来以向公共水系统提供一些关于如何将这些化学物质去除到低于大多数人会注意到的水平的指导。此外,一些动物也会拒绝饮用这些气味或者颜色有异常的水源。结垢和腐蚀 处理蒸汽或冷却水的工业装置所使用的铸铁管道和设备易受多种腐蚀机制的影响。机械和 化学腐蚀可以从钢表面剥离和溶解铁,而这种未结合的铁可以沉积在水处理系统的其他点的表 面上,从而导致进一步的腐蚀。通过监测水样中铁的含量能够及时了解管道或锅炉的腐蚀情况 或针对性处理。 降低成本 对于使用铁盐作为絮凝剂的水处理厂来说,这些化学物质可能会带来巨大的成本。因此,尽管使用足够的混凝剂来去除固体很重要,但铁盐也不能被过量投放,因为这样会使过滤器过载,并将残留的铁盐留在水中,这将导致处理成本上升。3.持续监控-工作原理HACH® EZ 系列分析仪采用在线比色技术,能够准确可靠地测量关键水质参数。智能,自动化的操作和功能有助于提高分析仪的的分析性能。最小化停机时间并无需操作员干预。机器清洗是自动的,校准和验证频率都可以由用户设置。EZ1000 系列能够同时测量最多 8 个样品流。这样就降低了每个采样点的成本,但是在下达指令时需要保证指令精准详细。EZ1000 铁分析仪使用 TPTZ 试剂,其在反应时会形成很深的蓝紫色,以此测量溶解铁(II)、铁(III)和总溶解铁(II+III),循环时间为 15 分钟,标准测量范围为 0-1 mg/L。但可以通过校准曲线的设置或稀释功能来测量低浓度(0-0.1mg/L)或高浓度(0-10mg/L)的样品。EZ1000 锰分析仪使用甲醛肟法在 450nm 处测量溶解的锰 Mn(II),标准测量范围为 0-1 mg/L Mn,量程同样可以有多种可选,循环时间为 10 分钟。如果客户对于总铁或总锰的含量比较关注,可以选择 EZ2000 系列对应的总铁或总锰分析仪。EZ2000 系列分析仪具有一个内部样品消化装置,能够在分析前提供一个额外步骤用于消解不溶性或复合型金属,从而达到总铁或总锰的分析。4.连续监测的优点5.连续监测的优点
  • 【康宁线上讲座第二期】连续流工艺开发实用案例分享
    最近几场微反应器技术线上会议,让朋友们对微反应连续流技术有了一定的认识,但也问题多多。? 微反应能做有固体参与的反应吗?? 反应中产生气体怎么办?? 微反应是否只能做反应速度快的反应?? 反应物粘度大能做吗?? 微反应无缝放大是真的吗?? 如何判断一个传统工艺是否适合连续流?? 究竟如何来开发连续流工艺? 谢谢第一期参会的代表给我们的反馈,问题我们都收集到了。3月17日晚上8点,就让我们来聊一聊这些事。 主办单位:康宁反应器技术有限公司会议时间:2020年3月17日20:00-21:00会议形式:网络微信会议演讲嘉宾: 马俊海 高级工程师&区域商务总监,康宁反应器技术有限公司马俊海,毕业于中国药科大学药物化学专业,硕士研究生。在校期间从事天然产物藤黄酸全合成的部分课题研究。曾就职于绿叶思科,东南药业从事药物合成的研究工作。2013年加入康宁公司,现任康宁反应器技术区域商务总监。具有丰富的微通道反应器技术项目评估、工艺开发、平台建设、培训等经验,目前已经成功协助实施了多个工业化项目。本次会议的主要议题:? 康宁G1反应器系列介绍(设计、传质、换热、材料、配套)? 如何判断反应在连续流中的可行性? 连续流工艺参数设计与传统的区别? 连续流反应中固体的处理(固体参与、生成固体)及案例? 连续流反应中气体的处理(气体参与、产生气体)及案例? 微反应器中粘度的处理(范围)及案例? 微反应工艺的放大效应 如何报名1. 关注微信公众号:康宁反应器技术2. 打开3月9日发布的文章“康宁反应器技术线上讲座第二期来啦!”3. 识别文中二维码经行报名 系列讲座预告 我们一直在组织和优化康宁微反应器技术系列讲座。下列议题正在准备中,如有您关心的议题,请关注我们的会议发布。如果您感兴趣的议题不再此列中,请来信告诉我们,康宁会根据您的需求组织会议。? 连续流工艺开发实用技术及案例分享? 连续流工艺开发及放大? 康宁反应器技术工业化案例分享? Zaiput连续分离及在线核磁技术? 连续流技术在药物研发中和生产中的应用? 连续流技术在农药研发及生产中的应用? 连续流技术在硝化及加氢反应中的应用? 连续流技术在光化学及卤化反应中的应用 会议免费,会议将以微信群或直播的形式进行。早日报名入群,即使错过会议时间,也可进群学习。具体会议内容以实际安排为准。敬请关注康宁反应器技术微信平台的信息发布。 关注康宁反应器技术微信平台,了解更多会议及案例分享!
  • 微通道连续流工艺中输送不准?点开解锁第二法!
    观至最后,文末有惊喜微通道连续流工艺探索中,您是否有遇到如下一些问题:questionsl 实际流速与设定流速不符合需要不断矫正怎么办?l 实验重复性不好,结果时好时坏怎么办?l 输送过程中有晶体析出造成泵液故障实验停滞怎么办?l 泵着泵着堵塞又堵心怎么办?l ??????让EMO为您抽丝剥茧,正本清源第二期 :说好的安好便是晴天,为什么总是阴晴圆缺?在流体工艺中,影响泵在输送物料过程中使用效果的最首要的因素是什么?我们走访了合全药业,天津凯莱英,南京药石,浙江普洛家园药业等著名CRO,CDMO企业的流体化学部门技术人员。答案不谋而合——流量稳定在同一个设计工艺下,输送的流量稳定性决定了实验结果的差异。而流量稳定靠什么参数指标来评判呢? 流量精密度!——是指在规定条件下,同一个设定流速下,经过多次取样测定所得测定流速结果之间的接近程度,代表了测定的重现性。流量精密度又可以从三个层次来考察:重复性、中间精密度、重现性。1. 重复性:在一组测量条件下(包括相同测量程序、相同操作者、相同测量系统、相同操作条件和相同地点),在短时间段内对同一或相似被测对象重复测量。2. 中间精密度:是指处于重复性条件与重现性条件之间的条件下得到的精密度。3. 重现性:是指不同实验室之间不同分析人员测定结果的精密度。当分析方法将被法定标准采用时,应进行重现性试验。衡量流量精密度的指标——相对标准偏差RSD,也可以称作流量变异系数CV相对标准偏差(RSD)=标准偏差(SD)/计算结果的算术平均值(X)*100%RSD(CV)可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。变异系数越小,变异(偏离)程度越小,风险也就越小。反之,变异系数越大,变异(偏离)程度越大,风险也就越大。例如,高效液相色谱法测定含量或效价时:当含量限度50.0%时,相对标准偏差不得超过1.0%;当含量限度20.0~50.0%时,相对标准偏差不得超过5.0%;标准偏差(SD)即各个测量数据偏差的平方和除以数据个数减1的平方根。由于式中对单个数据偏差平方后,较大的偏差更能突出地反映出来,所以标准偏差能更好地说明数据的离散程度,在实际使用中更加常见。参考资料来源:百度百科-相对标准偏差泵的流量标准差公式我们用EMO-AP-10K这个型号来展示一下我们的流量实测曲线:EMO-AP-10K的流量精准度检测结果如下精确可靠地执行设计实验中所需的流量实验重复可靠性99%希望我们的EMO-AP系列产品可以帮助您解决连续流工艺中遇到的输送不准问题下一期微通道领域哪些问题是大家最关心的呢?可以联系我们,若被小编收录,还有惊喜礼品哦~不容错过~
  • 耐驰新式稀土合金研磨工艺
    p   电动时代带来了新的挑战,必须由人和材料共同掌握。现今,钕-铁-硼基磁体被用于需要小体积和低重量的强磁领域。这些所谓的稀土磁体可确保原材料的资源节约,驱动器的重量减轻以及永磁体所需的更长的使用寿命。然而,它们比传统磁体制造起来更复杂。永磁体质量和性能的一个决定性因素是具有窄粒度分布的原材料,具有最低可能部分最细(& lt 2μm)和最粗(& gt 8μm)颗粒。 br/ !--2μm)和最粗(-- /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/97d6fb8c-07eb-4535-b9c2-0253250e1af6.jpg" title=" Rare Earth Alloys.jpg" alt=" Rare Earth Alloys.jpg" width=" 400" height=" 226" border=" 0" vspace=" 0" style=" width: 400px height: 226px " / /p p   NETZSCH公司为这一应用问题提供创新性解决方案,并正在申请下游分类稀土粉末磨削工艺的专利。该工艺的设计促进了喷射式粉碎机和超细分级机的发展,在惰性气体环境下操作,敏感的Nd-Fe-B-化合物或其他稀土合金可被可靠地研磨成细粉末,从而获得窄粒度分布和确定的粒径上限限制,并具有可重复的结果。 /p p   通过使用NETZSCH m-Jet,这种螺旋喷射式粉碎机与动态空气分级机的组合,可获得与气体喷射器负载无关的最高可再现细度。与流化床喷射研磨机或目标研磨机相比,m-Jet的决定性优势是可以自动排除难以磨削的组分。这发生在m-Jet的操作期间且仅需几秒钟时间。研磨机中的过压确保难以磨削的组分被输送到过滤器中。以这种方式,绝对没有由粗产品颗粒和/或这些有问题的组分污染产品输送管线而引起的问题。此外,由于设计上的差异,m-Jet研磨阶段的产品含量比具有相同研磨气体量的流化床喷射研磨机低20至25倍。同时,由于研磨室的体积较小,导致产品更换期间产品损失量极低。除此之外,实际上在设备启动和停止期间几乎不会出现产品通量的波动,尤其是粒度分布的波动。另外,不会发生单个合金组分的选择性研磨。 /p p   集成在m-Jet中的动态空气分级器保证了明确界定的研磨产品的最大粒度。在随后的步骤中,通过用NETZSCH高效精细分级机m-Class对研磨材料进行分级,分离出不希望的最细颗粒,以获得具有确定窄粒度分布的粉末。与d10值为1.54μm的研磨物相比,后续分级产物的d10值为2.03μm,& lt 1μm超细微粒的比例几乎为0.0%。在额外分级后,d90/d10值也从3.6改进至2.6(每项d50=3.0μm)。 /p p   使用上述方法生产的原材料的较高等级反映在用它们制造的磁体的质量上。与仅由研磨粉末制成的磁体相比,由分级粉末制成的稀土磁体具有更高的矫顽磁场强度和显着改善的拐点强度。因此,它们更适合用于应对未来的挑战,其特征在于在恒定通量下逐渐增加的小型化趋势。 /p p br/ /p
  • H-Flow-加氢工艺的发展
    一、连续化加氢工艺的进程 加氢反应是原料药、染料和农药等行业普遍需要进行的反应过程。该反应过程通常采用高压加氢釜,具有操作繁琐、过程危险性高和收率低等问题。科学家们一直在尝试开发更为安全高效的连续化加氢工艺来替代目前的釜式加氢工艺。其中,微反应加氢技术的出现为解决这类问题提供了很好的技术方案。MIT的Jensen教授课题组最早于2001年提出了微填充床加氢的概念,具有催化剂无需分离,传质传热效率高和过程安全可控的特点,该技术路线得到了越来越多的关注。但是,该技术涉及气液固三相反应过程,流动和传递过程复杂,装置控制困难,工程放大难度大。因此,在该领域的研究进展十分缓慢。实验室研究和工业化鲜有报道。二、连续化微反应加氢的解决之路清华大学化工系的张吉松研究员在博士期间师从我国微反应器研究的先驱骆广生教授,2015年在MIT的Jensen教授课题组进行博士后研究,对微填充床反应器内的气液流动和传质行为做了大量的基础研究,并于2017年回国后开始了微填充床加氢的工业化过程。其团队开发的微反应加氢技术在2018年成功在某医药企业得到应用。目前,已实现了硝基,脱苄基,双键和还原胺化等多个加氢反应的工业化,加氢装置的单套产能达到100~200吨产品/年。加氢反应时间从高压加氢釜(10~20h)降低到微填充床内的1~3min。催化剂消耗量为釜式工艺的1/5~1/10。该技术使加氢过程变得更为安全、高效和绿色。 在张老师微反应加氢技术的基础上,欧世盛公司同该团队密切合作,共同推出了全自动加氢反应仪这一战略性成果。该仪器可用于实验连续微反应加氢工艺开发和催化剂筛选,同时,该仪器的放大版本可以实现通风橱内的加氢产品公斤级定制生产。通过该仪器开发的实验室加氢工艺可以直接对接清华团队进行工业放大。全自动加氢反应仪在该仪器的开发中,欧世盛公司首次开发了微型全自动气液分离装置(图1),可以在反应过程中根据不同流速不同压力实时控制液位,使气液充分分离,又根据系统需要开发了全自动控制的自动背压阀(图2),实现反应体系压力的控制。此两项专利技术有效的保证了微型加氢装置的过程控制和不同条件下的批次产品保障。另外,欧世盛公司还开发了仪器的整机控制软件(图3),在触摸式显示屏上可以直观的显示所有检测点并调控相应反应控制点,包括气体流量、压力,液体流量、压力,反应温度的调节,气液分离器的液位高度、控温快捷键、液体进料流量质量校准系统(图4)等等,使用户能够快速上手并操作。鉴于众多用户的实验室不方便使用氢气钢瓶,欧世盛公司还特别开发了高压氢气发生器,压力可达5MPa,气体流量300ml/min。与加氢装置一并放在通风橱内联机工作。 图1 图2 图3三、连续微反应加氢的效果
  • 【瑞士步琦】对蒸发工艺产生巨大影响的小秘诀
    对蒸发工艺产生巨大影响的小秘诀实验室级的旋转蒸发仪作为一款基础的样品前处理设备,无需太多的诀窍和工艺摸索,就可以完成绝大多数样品的高效浓缩。但是当我们放大到工业级的旋转蒸发仪时,不管是蒸发时间,样品性质的缺陷还是能耗方面的问题,都会被放大好几倍。今天我们会给大家带来几个工业级旋转蒸发仪的小秘诀,帮助大家了解如何全方位优化蒸发工艺。问如何节约更多能耗?答合理设置冷却温度冷却的秘诀温度差(冷却 - 蒸汽)至少 10°C(最好是 20°C)出口冷却温度至少比蒸汽温度低 5°C冷却介质的冰点比设定温度低 10°C使用随附的蒸汽温度传感器测量蒸汽温度。使用选购的冷却温度传感器测量冷却剂出口温度。问如何节约更多的时间?答应用自动化技术提高时间效率定时器:到达设定的时间后,旋转自动停止,系统切换至待机模式,加热停止,且水浴锅自动降低。自动方法:编程并存储不同的方法 (SOP)。应用程序:从任意位置通过智能手机或平板电脑对过程进行监测。蒸馏完成或出现错误时将收到推送通知。自动结束:当蒸发烧瓶内没有溶剂或预设时间已过时自动停止蒸馏。溶剂库和动态蒸馏:如果要蒸发的溶剂是已知溶剂,使用溶剂库选择溶剂,然后系统将为您完成剩下的工作。借助于动态蒸馏技术,系统将根据水浴和冷却循环机的实际值调整应用的真空(即使尚未达到设定的水浴和冷却循环机温度)。问如何选择正确的冷凝器配置?答选择匹配特定应用的玻璃器皿玻璃配置在每个浓缩和纯化步骤中都至关重要,其选择极大依赖于所需的应用(产品、溶剂或任何限制因素)。问如何根据具体应用调整工艺?答针对每个产品类型应用不同的操作方式取决于具体的产品,可以优化操作方式以发挥系统的最大功效:高粘度样品或粉末的干燥:保持低旋转速度,以防止产品粘附到烧瓶上。紫外光敏产品:使用选购的琥珀色烧瓶以过滤紫外光。起泡样品:使用泡沫传感器可检测上升的泡沫,并触发短时曝气脉冲来消除泡沫。问如何利用旋转蒸发仪执行冷萃取?答考虑多功能紧凑型仪器考虑使用可在一台仪器上实现多种可能性的工业级旋转蒸发仪。例如,配备冷萃取玻璃器皿的工业旋转蒸发仪 R-220 Pro Extraction可以执行蒸馏和冷萃取,而无需在有限空间内安装两台仪器。问如何优化工艺?答为你的工作流程设置理想的压力最佳压力速率对蒸发性能有积极的影响。利用以下诀窍测定理想压力值:缓慢开始。逐渐将压力降至所需的设定值,以避免暴沸或起泡。选择正确的工作压力 - 使用溶剂表或集成的溶剂库查找相应溶剂的建议值。保持压力一致- 压力突变将导致蒸馏停止或导致暴沸。拥有真空控制界面的系统可避免此类事件发生。确保真空泵有很好的抽吸能力,以便快速达到设定的真空值。问如何避免蒸馏初期出现问题?答通过正确的方式开始蒸馏,取得良好开端要顺利地开始蒸馏,遵循以下程序:抽真空通过进料阀吸取样品至蒸发瓶尺寸的 ¹ /3 至 &half 容积缓慢开始旋转将蒸发瓶深深浸没在液体中,以增加蒸发瓶的外壁有效加热面积根据具体应用将旋转速度设定至尽可能高的水平如果对我们其他产品的工艺优化感兴趣,请通过下方联系方式联系我们,了解更多。也可以关注我们的公众号,我们会定期发布更多实用的小诀窍。
  • 方案 | IKA HABITAT 生物反应器助理疫苗制备工艺
    /// 德国IKA HABITAT 细胞生物反应器,是新型流感疫苗制备工艺的好拍档。全球每年因季节性流感病毒感染,约造成300-500万例重症和29-65万例死亡,对人类社会造成的损失无疑是巨大的,破坏力也是灾难性的。一波接一波的甲流疫情不断考验着人类免疫系统对病毒的抵抗能力,甲流高效药磷酸奥司他韦可以帮助人们在流感病毒入侵期间进行治疗,而让人体尽早认识流感病毒才可达到预防传染的效果。流感疫苗是预防流感有效的方式。早期流感疫苗的制备路线病毒灭活疫苗是最为经典和传统的疫苗。20世纪40年代,科学家在鸡胚中研制出第一个全病毒灭活疫苗,并在20世纪50年代发展成至今仍在使用的鸡胚生产灭活流感疫苗的成熟工艺。全病毒灭活疫苗可激发个体产生良好的免疫反应,但全病毒疫苗会有热原性和不良副作用的问题。为克服这些问题,新型疫苗不断被推出,像亚单位流感疫苗的问世就进一步提高了疫苗的安全性,降低了疫苗的反应原性。流感疫苗的现代工艺方案鸡胚培养流感病毒的方法虽发展较早,但此类疫苗可能会引起接种者过敏反应,且连续的病毒传代有可能产生不可预期的抗原位点突变,进而导致抗原性改变,从而降低疫苗效力。20世纪50年代末,开发了基于细胞培养的疫苗生产技术。常用细胞包括鸡胚细胞,MDCK(犬肾细胞)、Vero细胞(绿猴肾细胞)等。流感疫苗的开发从传统鸡胚培养平台逐步转向细胞培养平台。IKA HABITAT 生物反应器疫苗制备的好拍档德国IKA HABITAT 细胞生物反应器,是新型流感疫苗制备工艺的好拍档。HABITAT 优势特点:HABITAT 生物反应器集成搅拌、温控、pH监测、DO监测、补料、取样、进气、尾气冷凝、液位监测、消泡监测等全部功能,并可对实验数据进行实时图谱展示,具备警报功能、pH/DO自动控制和内置电极校准程序,并可在断电后自动重启,实时保存数据和导出数据。罐体多规格可选,500ml-10L,有单壁和夹套罐体形式,满足不同应用需求罐体材质为高硼硅酸盐玻璃,接触样品的金属部件为316L不锈钢,全部经电抛光处理易清洁罐体及传感器(消泡电极除外)可置于高压灭菌器内进行灭菌,可重复使用可选配罐盖安装支架,用于2L以上罐盖配件的安装和拆卸控制塔前端有状态指示灯,可辅助监控搅拌、pH、DO、温度、消泡和液位等参数的变化情况,有异常会出现红色警示特别的新型chaotic mixing混沌混合方式,可加速底物的混合效率集成的4个Watson Marlow 泵,方向和速度可调,方便泵入和泵出不同的液体(如酸,碱,消泡剂,补料试剂)内置 4 个质量流量控制器用于供气控制:N2、O2、空气和 CO2 等10.4英寸大屏平板电脑,内置软件,操作友好,用户可将平板拿在手中对参数进行设置调整关于 IKAIKA 集团是实验室前处理、分析技术、 工业混合分散技术的市场先驱。电化学合成仪、磁力搅拌器、顶置式搅拌器、分散均质机、混匀器、恒温摇床、恒温混匀器、移液器、研磨机、旋转蒸发仪、恒温循环器/水浴/油浴、加热锅、加热板、粘度计、量热仪、生物反应器、发酵罐、化学合成釜、实验室反应釜等相关产品构成了IKA 实验室前处理与分析技术的产品线;而工业技术主要包括用于规模生产的混合设备、分散乳化设备、捏合设备、以及从中试到扩大生产的整套解决方案。IKA 还与世界著名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。我们致力于为客户提供更好的技术, 帮助客户获得成功。IKA 成立于1910年,集团总部位于德国南部的Staufen,在美国、中国、印度、马来西亚、日本、巴西、韩国、英国、波兰等国家都设有分公司。 艾卡(广州)仪器设备有限公司,是IKA 集团于2000年在广州设立的全资子公司,为中国区客户提供产品技术和服务支持。
  • 台积电最新工艺推进计划
    在台积电2022年技术论坛上,台积电公布了7nm至2nm先进制程,以及包括射频/连网性、CMOS影像感测、MEMS和电源管理在内的特色工艺的现状与规划等。其中,2nm工艺将在2025年量产。台积电表示,过去两年COVID-19加速了数字化转型,且随着电子装置变得更智能、更高度连接,面对更具智能性的边缘装置和大规模运算能力的需求,高能效、低能耗变得对边缘装置尤为重要,而结构性增⻓导致了先进和成熟工艺制程供不应求。因此,台积公司不断增加研发投资,以提供最好的技术,并持续扩大对先进工艺制程和成熟工艺制程产能的投资。2nm工艺将在2025年量产以稳定和可预测的速度提供领先业界的技术发展,强化每个工艺技术的性能、功耗和密度(PPA),同时保持设计规则的兼容性,以实现硅智财的再利用,是台积电在先进技术方面的目标。具体来看台积电的工艺推进计划:7纳米家族:台积公司采用N7和N6技术的客户产品组合不断扩大,从智能手机、CPU、GPU和XPU,延伸至射频和消费电子应用。2022年底以前,产品设计定案的累积数量将超过400。5纳米家族:台积公司的5纳米技术已经进入量产的第三年,支持智能手机、5G、AI、网络和高性能计算产业的产品应用。台积电将大量生产的经验不仅应用于良率的提高,还应用于性能、设计规则和芯片密度的提升。通过持续提升N5和N4技术,预计到今年年底将有超过150个产品设计定案。目前,台积电已经将N4、N4P和N4X技术加入其5纳米家族,为即将到来的5纳米产品提供持续的PPA升级。据悉,从N5到N4X,性能提升了15%,芯片密度提高了6%,同时保持设计规则的兼容性,以实现设计再利用、更多功能和更佳的规格提升。2021年,台积电推出了半导体技术针对汽⻋产业应用的升级N5A,计划在今年第三季通过AEC-Q100 Grade-2认证。3纳米家族:台积电3纳米工艺技术持续采用FinFET半导体结构,并认为此工艺的性能和技术成熟度将最能够满足产业的需求。N3工艺按计划顺利推进,将于2022年下半年量产,N3E将随后于2023年下半年量产。今年,台积电在3纳米技术上推出了TSMC FINFLEXTM架构这一创新,它结合了工艺制程和设计的创新,提供了极致的设计弹性,从而优化高性能、低功耗或达到两者的平衡。它提供了显著的芯片设计优势和弹性,为产品创新提供了强大的平台。我们知道,减少鳍片数量对提升PPA至关重要。台积公司的FINFLEX创新是一个关键性的突破,通过混合不同的组件高度,在一个设计区块中实现不同的组件高度。TSMC FINFLEX架构将3纳米家族技术的产品性能、功率效率和密度进一步提升,让芯片设计人员能够在相同的芯片上利用相同的设计工具来选择最佳的鳍结构支持每一个关键功能区块,分别有3-2鳍、2-2鳍、以及2-1鳍结构可供选择,其特性如下:• 3-2鳍-最快的频率和最高的效能,满足最高要求的运算需求• 2-2鳍-高效性能,在性能、功率效率和密度之间取得良好的平衡• 2-1鳍-超高的功效、最低的功耗、最低的漏电和最高的密度FINFLEX创新使N3E实现了从N5的全一代微缩,为移动和HPC应用提供了完整的平台支持,并将具有更强的性能、功率和较低的工艺制程复杂性。2纳米家族:在过去的15年中,台积电一直在研究纳米片(nanosheet)晶体管,并相信N2是导入纳米片晶体管的合适工艺制程,将速度和功率提升全一代,协助客户保持竞争力。目前,N2的开发按计划顺利推进,预计于2025年量产。在纳米片晶体管和设计技术协同优化(DTCO)的帮助下,台积电N2的性能和功率优势提升了一代。相较于N3E,在相同功耗下速度提升10-15%,或在相同速度下功耗降低25-30%。由于纳米片晶体管具有卓越的低Vdd性能,N2在正常Vdd及相同的功耗下,性能提高了15%,在较低的Vdd(0.55V)下,优势扩大到26%。在N2之后在未来,台积电对于N2之后的发展持乐观态度,特别是在新型晶体管结构、新材料、持续微缩和新导体材料方面的创新。多年来,标准半导体架构的演变已经从平面式晶体管转至鳍式场效晶体管(FinFET),并将再次发展到纳米片晶体管。甚至在纳米片之外,台积电看到包括CFET(垂直堆栈的nFET和pFET)在内的许多可能的方向。除此之外,台积电还期待在2D材料、1D碳纳米管等方面的突破,在不断微缩的同时,克服芯片移动性方面的挑战。未来,台积公司将继续探索晶体管架构,并利用2D材料和碳纳米管等新材料。为了解决关键工艺制程的间距缩小问题,台积电在N7+开始利用EUV曝光设备和多重曝刻技术。未来,台积电将在2024年引进High-NA EUV曝光设备,以开发客户所需的相关基础架构和曝刻解决方案,以支持创新。写在最后除了上述台积电在先进工艺上的推进发展,台积电在特殊工艺上同样投入诸多。据了解,近年来,台积电在特殊技术的投资的复合年增⻓率超过64%,几乎是过去投资速度的三倍。在接下来的几年内,预计会进一步扩增其特殊工艺产能。根据台积电预计,到2025年,特殊工艺产能增加近50%。台积电持续通过智能化制造的创新,提高生产力和最大化产出。过去三年,台积电的资本支出增加了超过一倍,从2019年低于150亿美元,增加至2021年的300亿美元,再到2022年的400至440亿美元,为先进工艺制程、成熟工艺制程和3DFabric建置产能。台积电在南京兴建的新的28纳米晶圆厂预计于今年第四季度开始量产。同时,其在美国亚利桑那州的晶圆厂正在兴建中,预计于2024年量产5纳米工艺。台积电还在日本熊本新建厂线并扩大规划产能,以提供12/16纳米和28纳米家族技术的晶圆制造服务,预计于2024年开始量产。
  • 梅特勒托利多:化工工艺过程安全培训会
    一、 会议主题化工工艺热风险的评估、设计本质安全的工艺 开放式的培训形式为您提供一个学习交流平台,使您在今后的实验室、工厂及工艺过程等研究工作中获得新的理念、新的技术和新的方法。 诚邀化工、医药行业的化学家、化学工程师和技术人员共同参与。 二、 主办单位南京理工大学梅特勒托利多 自动化化学部 三、时间和地点时间:2011年8月23-24日地点:上海齐鲁万怡大酒店(上海浦东新区东方路838号, 距离地铁2号、4号、9号、6号线世纪大道站步行5分钟, 电话:021-68867886) 我要报名 四、培训会内容主题1 危险性物质及其主要危险性 主题2 化学物质燃爆危险性的系统测试与评估技术主题3 化工工艺热安全的基础知识主题4 化工工艺热危险性的评估、案例分析及评估报告的制作主题5工艺安全–在研发和生产中的应用和系统建立主题6量热仪在工艺过程安全评估和放大的应用主题7 应用于危险反应监控和评估的PAT工具 五、主要报告人简介陈网桦-南京理工大学教授,博士生导师。全国高等学校安全工程教学指导委员会学科建设分委员会委员;中国兵工学会爆炸与安全专业委员会副主任委员;工业与信息化部安全生产专家组综合组成员;中国安全生产协会安全评价工作委员会专家组成员;江苏省安全生产专家组成员;《中国安全科学学报》编委。主要研究领域为化工工艺热危险性分析与控制、爆炸与安全防护、安全评价技术。从2000 年至今,主要围绕各种危险化学物质的安全(尤其是热安全问题)进行研究。从2004 年至今在国内较早地开展化学反应过程热危险性的分析与控制研究。目前在化工工艺热安全领域,合作出版《安全原理与危险化学品测评技术》及《化工工艺热安全-风险评估与工艺设计》(译著),发表/合作发表论文数十篇,已培养博、硕士研究生近10 名。 顾虹-上海亿法医药科技有限公司前总经理,博士长期从事医药化学研发领域的工作,在工艺研发、工艺优化和放大、质量控制及生产经营方面具有长达18 年丰富的技术和管理经验。1995 年,顾博士在Malli-nckrod Medical 公司完成了博士后研究项目后,加入了该公司,从事医药成像制剂领域的研究工作。1999 年加入Mallinckrodt Pharmaceutical公司,担任高级研究科学家/项目经理, 负责工艺开发, 优化, 安全评估,工程设计以及工业化生产管理的工作。2005 年加入药明康德新药开发有限公司,曾担任药明康德总公司的运营副总裁及合全药业总经理。组建了工艺安全评估及原料药放大和生产的团队。 刘慧敏-梅特勒托利多自动化化学部高级技术应用顾问,博士毕业于天津大学,获得化工工艺博士学位,2006~2007年在美国南伊利诺伊大学博士后研究,目前为梅特勒托利多高级技术应用顾问。 六、参会费用国内代表1000元(亿法医药科技公司开具咨询费发票) 国外代表200美元 七、会务组联系方式郑乾 女士; 刘慧敏 博士电话:13917414182 或13761558639Email:Cathy.zheng@mt.com;Selina.liu@mt.com传真:021-61917547梅特勒托利多自动化化学部上海市桂平路589号200233
  • 北方华创“承载装置及半导体工艺设备”专利公布
    天眼查显示,北京北方华创微电子装备有限公司“承载装置及半导体工艺设备”专利公布,申请公布日为2024年5月7日,申请公布号为CN117987807A。本申请公开了一种承载装置及半导体工艺设备,涉及半导体装备领域。一种承载装置,包括:承载件、第一气道和限位组件;承载件设有用于容纳晶圆的容纳槽,容纳槽的槽底面为承载面;第一气道的出气口位于承载面上,用于通气,以使晶圆悬浮;容纳槽的边缘处设有多个滑道,多个滑道围绕容纳槽的周向排布,承载件内设有多个第二气道,多个第二气道与多个滑道分别连通;限位组件包括用于与晶圆的外缘周面抵接的多个限位件,多个限位件一一对应地滑动连接于多个滑道,通过向第二气道内通气,使限位件朝向或背离容纳槽的中心可移动。一种半导体工艺设备,包括上述承载装置。本申请能够解决托盘与晶圆的间隙不重复导致晶圆的圆周膜厚不均匀等问题。
  • 工艺详解 | 关于PCR诊断试剂的冻干思考
    聚合酶链式反应 (PCR) 是分子生物学中广泛使用的一种方法,用于制作特定DNA片段的多个拷贝。PCR能够使特定目标/测试样本的少量(低至单个拷贝)DNA以指数方式扩增,以生成数千到数百万个拷贝的特定DNA片段。如果目标样品是RNA,也可以添加前体逆转录过程 (RT-PCR)。RT过程首先将RNA转化为DNA,然后通过PCR过程对DNA进行扩增。 以下是经典PCR方法中涉及的典型试剂和组分以及它们各自所起的作用:1、核苷酸(例如:三磷酸核苷,dNTP)——是用于制造新DNA的分子构件,即“原材料”;2、酶I. (Taq) DNA聚合酶——驱动DNA复制过程所需的酶;II.逆转录酶——将目标RNA转化为DNA所需的酶;3、引物——合成DNA寡核苷酸所需的短的单链DNA/RNA片段,有专门设计以适配目标 DNA区域的侧翼。它们为DNA合成提供了起点。一般需要两个引物,分别用于目标区域的两侧;4、检测探针或染料I. 探针——荧光标记的寡核苷酸结合每个引物的下游区域。一般需要两种不同的探针,当它们都连接到特定的DNA片段时则会发出荧光,以在扩增过程中提供可检测的指示信号;II. 染料——在DNA存在时会发出荧光,以在扩增进行时提供可检测的指示信号;5、‍‍其他赋形剂,‍‍如MgCl2辅因子、pH缓冲液、甘露醇、海藻糖、BSA、PEG2000等;6、目标DNA/RNAI. 对于诊断试剂盒,指的是试剂盒正在检测并准备复制的目标DNA(来自病毒、细菌等);或者从被测样品中进行提取(如果可行的话);II. 用于研究/实验室工作——要复制的特定DNA。PCR方法存在的处理挑战PCR 方法存在许多处理挑战。各个组分需要在96孔板或“鸡尾酒”离心管中进行准确组合。这些组分都需要冷藏,并且保质期也相对较短,同时交叉污染会是一个大问题。更糟糕的是,工作台移液错误也会造成麻烦。 图1:PCR“鸡尾酒”管标准PCR过程需要特定的热循环重复加热/冷却反应试管30-40个循环,以实现DNA的扩增过程。扩增仪也应该有一个荧光计来监测扩增的目标DNA。另外还有一些更新的扩增方法,例如环介导 (LAMP) 和重组酶聚合酶扩增 (RPA) ,这些方法是等温过程,不需要热循环和使用特殊设备。 图2:PCR扩增热循环仪最新的技术则是将试剂加载到微流体通道/芯片上。以更少量的试剂和更低热量有望实现更快和更精确的温度循环,从而产生更快的结果。 图3:微流控PCR芯片PCR&冷冻干燥冷冻干燥已成为PCR过程的一个重要流程,主要用于单个试剂和*产品检测试剂盒的生产。研究表明,PCR 扩增效率通常不会由于单个试剂或PCR诊断试剂盒使用了冻干而受影响。虽然冻干可能会使探针的荧光强度略有下降,但并不影响整个测量过程。冻干PCR产品追求1-3%的*水分含量。建议通过 Karl-Fisher 滴定法测量水分。冻干PCR 试剂和诊断试剂盒具有很强的吸湿性。从冻干机中取出产品时,必须小心避免暴露在环境湿气中。湿度受控的房间或隔离设备可用于减缓水分的再吸收。对于产品的储存和运输,试剂必须密封在防潮容器中,例如铝袋。冷冻的聚合酶和逆转录酶可能含有高达50%的甘油作为冷冻保护剂和稳定剂。甘油不利于冻干,因为它会干扰水分的去除,从而影响产品的稳定性和结构。因此冻干时要注意首选不含甘油的试剂。冻干PCR 用于PCR试剂的冻干设备须知由于测量的试剂样品量以微升为单位,一批次冻干PCR试剂中的总水分含量非常小。冷冻干燥机设计不需要具有1:1的搁板表面与冰冷凝器表面积比,因为这主要用于高水分、散装液体或西林瓶应用。当产品样本大小在微升范围内时,是很难使用产品探针的。因此在工艺开发时,皮拉尼/电容压力计压力差比较法是更为推荐的干燥终点工具。如果冻干机配备隔离阀且能够实现自动开启和关闭,也可以使用压力升法进行测试。另外,冻干机中的制冷系统也应考虑*优化(与常识保留冗余的设计理念相反),较小的压缩机可以大大减少室内热量的消耗。这意味着对于电压和能源占用较小。风冷的中试型冻干机型号更适用于中等批量的诊断试剂的生产和研发,这避免了对冷却水设施的需求,因为冷却水设施对于大部分PCR试剂盒生产场地而言中可能并不容易获取。SP Scientific VirTis Ultra系列冻干机非常适合诊断应用。它以紧凑的配置提供超过2平方米的搁板面积。这使得客户在样品处理中具有很大的灵活性。 图4:SP VirTis Ultra 中试和小型生产冻干机PCR诊断检测试剂盒的冻干工艺须知冻干PCR诊断试剂盒的明显优势是消除了试剂盒冷藏运输和储存的冷链依赖,延长了其可用保质期。96孔板是用于PCR诊断试剂盒的标准配置。相比较手动进样这种繁琐的操作,使用自动化液体灌装设备,除了更快的装载时间和更高的吞吐量外,它还提供更好的过程控制和可重复性。在批量装载到冻干机的过程中,控制产品的蒸发和产品温度会是一个问题,特别是对于具有较大批量的较大装置,完全装载需要比较长的时间。对搁板进行预冷上会降低上述问题带来的影响。如果加载到芯片或微流体通道上,那么蒸发和传热又会是一个大问题。冻干过程取决于足够的热量传递到产品中。大多数96孔是塑料管,底部与冷冻干燥机搁板接触的表面积很小。在冷冻干燥过程中可以使用铝制冷却块来增加传导热传递。 图5:用于 96 孔的铝质传热模具对流传热在冻干中也很重要,因为它可以帮助产品在货架上更均匀地分配热量,减轻由辐射传热差异引起的边缘效应。在产品支持的前提下,使用更低的真空度(例如:100mTorr 而不是60mTorr)将提供更均匀的对流传热。然而,许多PCR试剂的塌陷温度非常低,因此冻干过程中设置较高的压力可能并不总是可行的。可以在配方中添加赋形剂,提高塌陷温度,以允许更高的压力设置。这样做的其他好处包括使配方更容易转移到其他可能无法实现非常低真空设置的冻干机(减少工艺放大的风险),以及减少阻塞流现象发生的概率。出于信号校准的目的,诊断试剂盒通常包含不含目标DNA/RNA的阴性对照混合物和含有目标DNA/RNA的阳性对照混合物。除了包含测试样品的混合物之外,还分析对照样品,并比较荧光信号以确定患者样品是阳性还是阴性。处理阳性对照样品的一个问题是冻干机内部存在交叉污染的高风险。因此建议客户分别使用多个冻干机,阳性对照始终在同一设备中进行处理。单个PCR试剂源材料的冷冻干燥除了延长保质期和避免对供应冷链的需求外,实验室使用冻干PCR试剂的其他好处包括:● 更稳健的工艺,更高的可靠性和更少的批次变化,因为冷冻干燥大大降低了实验室工作台移液错误和污染的可能性;● 避免多次冻融循环的破坏性影响;● 减少设置和处理时间;● 减少过期产品的浪费,降低运输和储存成本。为方便起见,预配制的冻干PCR“Master-Mix”试剂目前也可在市面上进行购买,它可以通过消除实验室工作台上的一些混合步骤来提高通量。主混合物通常包含核苷酸、酶、辅因子和缓冲液。冻干微珠一些 PCR 试剂供应商在实验室实验中采用的一种常见方法是提供冷冻干燥的试剂预混珠,在冻干之前使用专门的设备用液氮冷冻。 图6:冻干 PCR 微珠在冻干之前使用液氮预冻试剂存在权衡取舍。极快的冷冻速度可*限度地减少冷冻浓度效应,例如pH变化。然而,它也会带来非常小的冰晶尺寸,这会导致在干燥过程中对蒸汽流动的阻力更大并且干燥时间更慢。PCR的小样本量可以降低这方面的影响,但需要冻干机提供更冷的搁板温度和更低的真空度来防止珠子在初级干燥过程中熔化。此外,珠子必须保持冷冻。可以使用冷藏的冷盘来辅助。冷冻干燥机搁板也需要预冷,以避免产品在抽真空之前熔化。要注意的是在产品室门在真空下密封之前,预冷冻搁板会导致环境条件下结霜。冷冻干燥的颗粒或珠子通常放置在PCR管中,然后密封在防潮袋中。综上所述,PCR诊断试剂的冻干需要考虑多种因素,其中包括商用原料的类型和冻干机的选用。莱奥德创可以为客户提供一站式诊断试剂冻干工艺解决方案,从配方的设计到商业化生产阶段均可为客户提供快速、可靠的委托服务。LYO INNOVATION 莱奥德创冻干科技,赋能创新Lyo technology enables innovation 关于莱奥德创:上海莱奥德创生物科技有限公司由德祥科技有限公司创办,专注于提供先进的冻干设备应用和制剂开发相关服务。德祥科技有限公司服务冻干行业十余年,在涉及冷冻干燥领域的工艺开发/工艺优化/商业化等各方面拥有丰富的经验,迄今为止已为500+客户提供冻干设备及相关服务。客户产品类型涵盖:蛋白、抗体、ADC、疫苗、核酸、多肽、脂质体、IVD、食品等领域。依托与合作伙伴美国SP Scientific和英国Biopharma Group的紧密合作,掌握领先的冻干理念与技术,使用独家先进的冻干设备和软件致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Mission :莱奥德创冻干工场专注于提供先进的冻干设备应用和制剂开发相关服务,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Vision :做冻干工艺的创新者,为生物医药开发提供最*制剂产品解决方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制