当前位置: 仪器信息网 > 行业主题 > >

各部位表面粗超度

仪器信息网各部位表面粗超度专题为您整合各部位表面粗超度相关的最新文章,在各部位表面粗超度专题,您不仅可以免费浏览各部位表面粗超度的资讯, 同时您还可以浏览各部位表面粗超度的相关资料、解决方案,参与社区各部位表面粗超度话题讨论。

各部位表面粗超度相关的资讯

  • 坐标测量机上的全自动表面粗糙度测量
    雷尼绍的创新REVO® 五轴测量系统又添新品 &mdash SFP1,它首次将表面粗糙度检测完全整合到坐标测量机的测量程序中。 SFP1表面粗糙度检测测头的测量能力从6.3至0.05 Ra,其采用独特的&ldquo 单一平台&rdquo 设计,无需安装手持式传感器,也不需要将工件搬到价格昂贵的表面粗糙度专用测量仪上进行测量,既降低了人工成本又缩短了检测辅助时间。坐标测量机用户现在能够在工件扫描与表面粗糙度测量之间自动切换,一份测量报告即可呈现全部分析数据。 高质量表面粗糙度数据 SFP1表面粗糙度检测测头作为REVO五轴测量系统的一个完全集成选件,提供一系列强大功能,可显著提升检测速度和灵活性,令用户受益。 测头包括一个C轴,结合REVO测座的无级定位能力和特定测针,该轴允许自动调整测头端部的任意角度来适应工件,确保获得最高质量的表面粗糙度数据。SFP1配有两种专用测针:SFS-1直测针和SFS-2曲柄式测针,它们在测量程序的完全控制下由REVO系统的模块交换架系统 (MRS) 选择。这不仅有助于灵活测触工件特征,还兼具全自动数控方法的一致性。 SFP1表面粗糙度检测测头为平滑式测尖,含钻石成份的测尖半径为2 &mu m,它按照I++ DME协议,通过雷尼绍的UCCServer软件将Ra、RMS和原始数据输出到测量应用客户端软件上。原始数据随后可提供给专业的表面分析软件包,用于创建更详细的报告。 表面粗糙度检测测头自动标定 传感器校准也通过坐标测量机软件程序自动执行。新的表面粗糙度校准块 (SFA) 安装在MRS交换架上,通过SFP1检测测头进行测量。软件然后根据校准块的校准值调整测头内的参数。 更多信息 详细了解雷尼绍的坐标测量机测头系统与软件,包括全新的坐标测量机改造服务。
  • 海峡两岸完成首次表面粗糙度测量能力验证
    记者12月25日从福建省计量科学研究院获悉,历时2个月的两岸首次表面粗糙度能力验证在福州结束,结果为“满意”。   本次验证由福建省计量科学研究院为主导实验室,与台湾工研院量测中心按照“ISO 3274”、“ISO 4288”、“ISO 11562”和“ISO 4287”要求进行量值比对,结果表明双方测量结果吻合程度较好,能力实验数据结果为“满意”。   表面粗糙度的大小,对工业、制造业中机械零件的耐磨性、抗腐蚀性、密封性、接触刚度、测量精度等使用性能具有很大的影响。随着两岸制造业、加工业自动化程度的提高,表面粗糙度的测量面临新的挑战。   福建省计量科学研究院官员称,通过比较两岸表面粗糙度值测量是否准确、可靠和一致,考察两岸表面粗糙度检定装置仪器设备水平、检定员素质和技术水平,可为促进两岸标准和产品技术规范的统一提供科学的计量保障。   2009年12月22日,台湾海峡交流基金会和大陆海峡两岸关系协会共同签署《海峡两岸标准计量检验认证合作协议》,闽台先行先试,由台湾计量工程学会和福建省计量测试学会今年2月26日签署《计量交流与合作意向书》,搭建起计量机构、人员、学术、技术与信息交流的平台。
  • 轻松实现粗糙表面样品拉曼成像 ——EasyNav拉曼成像技术包
    HORIBA新推出的拉曼成像技术包——EasyNavTM,融合了NavMapTM、NavSharpTM 和 ViewSharpTM三项革命性应用设计,能够让您便捷导航、实时聚焦、自动定位,轻松实现粗糙表面样品拉曼成像。1NavMapTM快捷导航、定位样品作为一种新的视频功能,NavMapTM可同时显示全局样本和局部放大区域的显微图像,这意味着您可以直接在全局图像上移动,并在局部放大图上鉴别出感兴趣的样品区域。便捷实时导航▼NavMapTM视图2NavSharpTM实时聚焦,获取清晰导航图像在您导航定位样品的同时,NavSharpTM可实时聚焦任意形貌样品,使样品始终处于佳聚焦状态,进而获取清晰样品表面图像。佳聚焦状态,增强用户体验▼ 使用/不使用NavSharpTM的区别3ViewSharpTM构建3D表面形貌图获取焦平面拉曼成像图在粗糙表面样品拉曼成像过程中,ViewSharpTM 可以获取样品独特的3D形貌图,确保样品实时处于佳聚焦状态,反映样品处于焦平面的显微图像。由于不依赖拉曼信号进行实时聚焦,拉曼成像速度要远远快于从前。使用/不使用ViewSharpTM的区别NavMapTM、NavSharpTM及ViewSharpTM技术各有优势,不仅可以单独使用,也可以综合起来,满足用户的不同测试需求,EasyNavTM拉曼成像技术包的功能已经在多种样品上得到实验和验证。晶红石样品的3D表面形貌图晶红石样品的3D拉曼成像图全新 EasyNavpTM 能够兼容 HORIBA 的 LabRAM HR Evolution 及 XploRA 系列拉曼光谱仪,功能更强大,使用更便捷。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 《原子力显微镜测量溅射薄膜表面粗糙度的方法》等标准发布
    9月30日,中国国家标准化管理委员会公布《原子力显微镜测量溅射薄膜表面粗糙度的方法》等70项标准。其中与科学仪器及相关检测所涉及的标准摘选如下:
  • AFSEM™ 小试牛刀——SEM中原位AFM定量表征光子学微结构表面粗糙度
    近期,老牌期刊刊载了C. Ranacher等人题为Mid-infrared absorption gas sensing using a silicon strip waveguide的文章。此研究工作的目的是发展一种能够与当代硅基电子器件方便集成的新型气体探测器,探测器的核心部分是条状硅基光波导,工作的机理是基于条状硅基波导在中红外波段的倏逝场传播特性会受到波导周围气氛的变化而发生改变这一现象。C. Ranacher等人通过有限元模拟以及时域有限差分方法,设计了合理的器件结构,并通过一系列微加工工艺获得了原型器件,后从实验上验证了这种基于条状硅基光波导的器件可以探测到浓度低至5000 ppm的二氧化碳气体,在气体探测方面具有高的可行性(如图1、图2)。 图1:硅基条型光波导结构示意图图2:气体测试平台示意图参考文章:Mid-infrared absorption gas sensing using a silicon strip waveguide值得指出的是,对于光波导来说,结构表面的粗糙程度对结构的固有损耗有大的影响,常需要结构的表面足够光滑。传统的SEM观测模式下,研究者们可以获取样品形貌的图像信息,但很难对图像信息进行量化,也就无法定量对比不同样品的粗糙度或定量分析粗糙度对器件特性的影响。本文当中,为了能够准确、快捷、方便、定量化地对光波导探测器不同部分的粗糙度进行表征,C. Ranacher等人联系到了维也纳技术大学,利用该校电镜中心拥有的扫描电镜专用原位AFM探测系统AFSEM™ (注:奥地利GETec Microscopy公司将扫描电镜专用原位AFM探测系统命名为AFSEM,并已注册专用商标AFSEM™ ),在SEM中选取了感兴趣的样品部分并进行了原位AFM形貌轮廓定量化表征,相应的结果如图3所示,其中硅表面和氮化硅表面的粗糙度均方根分别为1.26 nm和1.17 nm。有了明确的量化结果,对于不同工艺结果的对比也就有了量化的依据,从而可以作为参考,优化工艺;另一方面,对于考量由粗糙度引起的波导固有损耗问题,也有了量化的分析依据。图3:(a) Taper结构的SEM形貌图像;(b) Launchpad表面的衍射光栅结构的SEM形貌图像;(c) 原位AFM表征结果:左下图为氮化硅层的表面轮廓图像,右上图为硅基条状结构的表面轮廓图像;(d) 衍射光栅的AFM轮廓表征结果通过传统的光学显微镜、电子显微镜,研究者们可以直观地获取样品的形貌图像信息。不过,随着对样品形貌信息的定量化表征需求及三维微纳结构轮廓信息表征的需求增多,能够与传统显微手段兼容并进行原位定量化轮廓形貌表征的设备就显得愈发重要。另一方面,随着聚焦电子束(FEB,focused electron beam)、聚焦离子束(FIB,focused ion beam)技术的发展,对样品进行微区定域加工的各类工艺被越来越广泛地应用于微纳米技术领域的相关研究当中。通常,在FIB系统当中能够获得的样品微区物性信息非常有限,如果要对工艺处理之后的样品进行微区定量化的形貌表征以及力学、电学、磁学特性分析,往往需要将样品转移至其他的物性分析系统或者表征平台。然而,不少材料对空气中的氧气或水分十分敏感,往往短时间暴露在大气环境中,就会使样品的表面特性发生变化,从而无法获得样品经过FIB系统处理后的原位信息。此外,有不少学科,需要利用FIB对样品进行逐层减薄并配合AFM进行逐层的物性定量分析,在这种情况下需要反复地将样品放入FIB腔体或从FIB腔体中去除,而且还需要对微区进行定标处理,非常麻烦,并且同样存在样品转移过程当中在大气环境中的沾污及氧化问题。有鉴于此,一种能够与SEM或FIB系统快速集成、并实现AFM原位观测的模块,就显得非常有必要。GETec Microscopy公司致力于研发集成于SEM、FIB系统的原位AFM探测系统,已有超过十年的时间,并于2015年正式推出了扫描电镜专用原位AFM探测系统AFSEM™ 。AFSEM™ 基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM轮廓测试(图4、图5)。另一方面,通过选择悬臂梁的不同功能型针(图6、图7),还可以在SEM腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。对于联用系统,相信很多使用者都有过不同系统安装、调试、匹配过程繁琐的经历,或是联用效果差强人意的经历。不过,对于AFSEMTM系统,您完全不必有此方面的顾虑,通过文章下方的视频,您可以看到AFSEM™ 安装到SEM系统的过程十分简单,并且可以快速的找到感兴趣的样品区域并进行AFM的成像。图4:(左)自感应悬臂梁工作示意图;(右)AFSEMTM与SEM集成实图情况 图5:AFSEMTM在SEM中原位获取骨骼组织的定量化形貌信息 图6:自感应悬臂梁与功能型针(1) 图7:自感应悬臂梁与功能型针(2)目前Quantum Design中国子公司已将GETec扫描电镜专用原位AFM探测系统AFSEM™ 引进中国市场。AFSEM技术与SEM技术的结合,使得人们对微观和纳米新探索新发现成为可能。
  • 静态容量法比表面及孔径分析仪的优点
    北京精微高博科技公司是行业领导者,分部位于上海,是中国规模最大、最具权威及实力的氮吸附比表面及孔径测试仪的研制、生产及销售的厂家,连续五年全国销量第一,是国家认定的高新技术企业,是我国多种动态氮吸附仪的创造者,被誉为&ldquo 中国氮吸附仪的开拓者&rdquo ,受到国家科技部和北京市科委高度重视并给予了引进高端人才的进京指标,技术实力雄厚。 精微高博在全体团队的努力下,自主创新推出的高端产品已经赶超了国际先进水平,具有不用于动态法比表面积仪器的优点: (1)静态容量法是在真空条件下改变氮气的压力,通过压力传感器直接测量氮压力,排除了其它因素带来的影响,而动态法要通过氮气和氦气相对量的改变以及二者流量的调节才能得到; (2)容量法样品的吸附与脱附过程是在静态下进行并达到吸附平衡,符合理想的吸附平衡条件,而动态法仅为相对的动态平衡; (3)静态容量法样品在吸附与脱附过程中,固定于液氮杜瓦瓶中,不像动态法每测一个压力点样品管都需要进出液氮杯一次,静态法不但节省了时间,而且大大减少了液氮的消耗; (4)只用氮气,不用氦气,而且氮气的消耗也极少,大大减少了测试的成本; (5)静态容量法每测一个压力点只需2分钟左右,而且可以根据需要测量很多点,例如多点BET比表面可测定6~20点以上,孔径分布测定可选25~100个点,测量的点数多有利于测量精度和可靠性的提高,相比之下,动态法多点BET比表面只测定5点左右,孔径分布测定只测10个点左右,而且在测量相同点数的条件下,静态法更节省时间; (6)在进行孔径分布测试时,静态容量法具有更显著的优势,其一,动态法受热导检测器灵敏度及流量调节精度的限制,孔径测试范围较小,一般在2~100nm,而静态容量法测试范围一般可达到0.5~400nm;其二,动态法不能测试出完整的等温曲线,而且测量的点数少,对孔径分布的分析比较粗糙,而静态容量法可以完整地测试等温吸附曲线和等温脱附曲线,实现对孔径分布比较精确的分析,而且能得到样品全面的吸附特性,进而可对样品的吸附类型和孔结构作出判断;其三,只有静态法才有可能对微孔进行定量分析; (7)静态容量法的仪器可以实现真正的全自动控制,包括不需要中途人为补充液氮,而且运行、控制、数据采集与处理、以及计算机操作,均更为简便、流畅、可靠和智能化,只要把试验条件输入计算机,试验过程全部自动完成,同步得到全部试验结果; (8)样品的预处理可同机甚至同位进行,利用主机的真空条件和单独的温控装置,使预处理更为充分,操作更为简便,测试结果更为可靠。
  • 应用分享 | 激光扫描显微镜用于测量锂电池集流体的表面粗糙度
    小至手机和运动手环,大至各种电动汽车,锂离子电池都是其中的关键能源供给装置。锂离子电池重量轻,能量密度大,循环使用寿命长,且不会对环境造成污染。对于锂离子电池来说,电容量是衡量电池性能的重要指标之一。锂离子电池电极的材料主要有铝(正电极)和铜(负电极)。在充电和放电期间,电子转移发生在集流体和活性材料之间。当集流体和电极表面之间的活性材料电阻过大时,电子转移的效率降低,电容量就会减少。若集流体的金属箔的表面粗糙度过大,则会增加集流体和电极表面之间的活性材料电阻,并降低整体电容量。 集流体(左图:铝 右图:铜)如何进行锂电池负极集流体的铜箔粗糙度测定呢? 奥林巴斯提供非接触式表面粗糙度测量的解决方案: Olympus LEXT 3D激光扫描显微镜 奥林巴斯 OLS5000 激光共焦显微镜使用奥林巴斯 OLS5000 激光共焦显微镜,能够通过非接触、非破坏的观察方式轻松实现3D 观察和测量。仅需按下“Start(开始)”按钮,用户就能在亚微米级进行精细的形貌测量。 锂电池负极集流体的铜箔粗糙度测定使用奥林巴斯 OLS5000 显微镜测量粗糙度时,用户会得到以下三种类型的信息:粗糙度数据,激光显微镜3D彩色图像和高度信息以及光学显微镜真实彩色图像。这让使用人直观的看到粗糙度数据。同时,使用人可以从数据中了解集流体表面的状态。通过观察这些图像,也可以观察到实际的表面形貌。产品优点与特点 非接触式:与接触式粗糙度仪不同,非接触式测量可确保在测量过程中不会损坏易损的铜箔。这有助于防止由于样品损坏而导致的数据错误。专用物镜:LEXT OLS5000使用专用的物镜,因此您可以获得在视场中心和周围区域均准确的数据。平面数据拼接:数据可以水平拼接,从而可以在大区域上采集数据。由于拼接区域的数据也非常准确,因此与传统的测量方法相比,可以更高的精度获取电池集流体的粗糙度数据。超长工作距离:载物台水平范围为300 mm×300 mm使您可以测量较大的样品,例如汽车电池中的集流体,也不需要制备样品就可以在显微镜下观察。OLS5000显微镜的扩展架可容纳高达210毫米的样品,而超长工作距离物镜能够测量深度达到25毫米的凹坑。在进行这两种测量时,您只需将样品放在载物台上即可。
  • 岛津应用:药物片剂表面的异物分析
    在药物的质量管理中,次品的产生原因分析是一项十分重要的工作。虽然异物和污染物的大小和形状不同,最佳的分析方法也存在差异,但在分析药物片剂的缺陷部位时多会用到红外显微镜。 本文使用自动缺陷分析系统 AIM-9000 对药物片剂表面的异物进行了定性分析。在市售的药物片剂表面上发现了微小的异物。使用 AIM-9000 的大视野相机观察片剂的图像。异物的大小约为 100 μm,该异物的测量方法包括:①在固定各片剂的状态下通过直接 ATR 法测量,②用针等采样后通过透射法或ATR 法测量的两种方法。采用显微镜和大视野相机对异物进行观察,研究最佳方法。异物的观察图像异物暴露于片剂表面时采用 ATR 法,掩埋于内部时、或难以与 ATR 晶体接触时采用透射法测量,由此完成了对异物的定性。通过使用 Micro Vice Holder 和 Diamond cell 等配件,能对各种状态的异物进行分析。 了解详情,敬请点击《药物片剂表面的异物分析》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 在线会议预告:比表面积分析
    会议概况主题:了解比表面积测试讲师:Jack G. Saad 全球技术培训与支持经理 -麦克仪器公司时间:2020年5月12日 ,21:00至22:00费用:免费扫码报名:本次网络研讨会中,我们探索并比较了三种测定粉体比表面积的技术。这些技术是:-气体吸附BET法-空气渗透法-根据激光衍射和密度数据计算此外,这些技术还提供了有关粉体的其他有用信息,包括孔隙率,密度和粒度。会议预告主题:多相催化剂:化学吸附和程序升温法讲师:Luca Lucarelli博士 技术应用顾问-麦克仪器公司时间:2020年5月19日 ,21:00至22:00费用:免费关于麦克仪器公司麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和一流内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。咨询热线:400-860-5168转0677
  • 瑞典百欧林携手大昌华嘉开拓表面张力仪中国业务
    瑞典百欧林携手大昌华嘉开拓表面张力仪中国业务2016-06-29 瑞典百欧林瑞典百欧林科技有限公司与专注于亚洲地区的市场拓展服务领导者大昌华嘉签订合作协议,为瑞典百欧林的先进仪器表面张力仪开拓中国市场。大昌华嘉科技事业部为瑞典百欧林提供全方位的市场拓展服务,以确保充分开拓表面张力仪产品在中国的业务。大昌华嘉在中国庞大、完善的售前和售后网络,与高校、科研及各类政府、企业客户的良好合作关系是瑞典百欧林选择大昌华嘉作为在中国地区的合作伙伴的原因。 “我们很高兴能与大昌华嘉在中国建立合作关系。他们的专业知识,以及长期以来的成熟的客户关系,使我们相信大昌华嘉是支持我们业务增长的绝佳合作伙伴,从而使更多的客户能够从我们的创新解决方案中获益。”瑞典百欧林分析仪器副总裁Johan Westman说道。大昌华嘉中国区科技事业部总经理Oliver Hammel进一步谈道“百欧林选择与我们建立了充满前景的合作关系,我们感到非常自豪,因为我们拥有系统化的市场发展策略以及我们的行业和服务专家。此次战略合作配合了百欧林的尖端技术以及大昌华嘉的市场准入和应用专业知识,这将会促使双方的持续盈利增长。“ 关于大昌华嘉大昌华嘉是一家专注于亚洲地区,在市场拓展服务领域处于领先地位的集团。正如“市场拓展服务”一词所述,大昌华嘉致力于帮助其他公司和品牌拓展当前市场及新兴市场业务。总部位于瑞士苏黎世的大昌华嘉是一家全球性企业,自2012年3月在瑞士证券交易所上市。大昌华嘉在全球36个国家设有770个营运地点 --其中740个分布于亚洲地区,拥有28,300名专业员工。2015年,大昌华嘉的销售净额为101亿瑞士法郎。大昌华嘉于1865年成立,凭借深厚的瑞士传统背景,公司在亚洲开展业务历史悠久,深深植根于亚太地区的社会和企业界。大昌华嘉科技事业部是领先的市场拓展服务提供商,提供基建投资产品和分析仪器的技术解决方案。大昌华嘉科技事业部的强势业务领域涵盖制造和生产、能源、研究、分析仪器、食品和饮料、重金属和基建设施,其服务组合包括市场准入研究与咨询、市场营销、销售、应用工程、售后服务以及项目融资。科技事业部在18个国家设有75个分支机构,拥有约1370名员工- 其中包括500名服务工程师。2015年,大昌华嘉科技事业部的净销售额为3.722亿瑞士法郎。 关于瑞典百欧林瑞典百欧林科技有限公司是一家先进科研仪器生产商,在北欧的瑞典,丹麦和芬兰都有主要产品的研发和生产基地。我们为用户提供高科技、高精度的科研设备,可用于表界面、材料科学、生物科学、药物开发与诊断等研究领域。我们同时专注于用户的技术和应用支持,以及科技的发展与进步。我们的产品均基于最先进的测量技术,而这些技术,或为我们专利,或为我们特有,或在长期科研与发展中占主导地位。我们的核心战略是,通过寻找具有广阔商业前景的科研领域,来应用我们的产品与技术。目前,百欧林的用户已遍布全球70多个国家和地区。 我们的产品:Attension: 界面科学与材料技术的表面张力测试Q-Sense: 纳米尺度分子界面以及相互作用研究 KSV NIMA: 单分子层薄膜的构建与表征工具Sophion: 基于细胞离子通道功能检测的高通量全自动膜片钳
  • 150万!辽宁省检验检测认证中心计划采购激光全息表面粗糙度轮廓仪
    一、项目基本情况项目编号:JH22-210000-18483项目名称:购置激光全息表面粗糙度轮廓仪包组编号:001预算金额(元):1,500,000.00最高限价(元):1,500,000采购需求:查看合同履行期限:合同生效后4个月内到货并安装调试完毕且验收合格(具体以甲乙双方签订的合同为准)需落实的政府采购政策内容:促进中小企业、促进残疾人就业、支持监狱企业、支持脱贫攻坚等相关政策等本项目(是/否)接受联合体投标:否二、供应商的资格要求1.满足《中华人民共和国政府采购法》第二十二条规定。2.落实政府采购政策需满足的资格要求:无,本项目允许进口产品投标且采购的设备满足《政府采购促进中小企业发展管理办法》第六条第二款内容,故不具备专门面向中小企业采购的条件。3.本项目的特定资格要求:如果投标人所投产品为进口产品,须投标人提供制造商或国内总代理出具的销售授权书或产品销售代理证书。三、政府采购供应商入库须知参加辽宁省政府采购活动的供应商未进入辽宁省政府采购供应商库的,请详阅辽宁政府采购网 “首页—政策法规”中公布的“政府采购供应商入库”的相关规定,及时办理入库登记手续。填写单位名称、统一社会信用代码和联系人等简要信息,由系统自动开通账号后,即可参与政府采购活动。具体规定详见《关于进一步优化辽宁省政府采购供应商入库程序的通知》(辽财采函〔2020〕198号)。四、获取招标文件时间:2022年07月11日 08时00分至2022年07月18日 17时00分(北京时间,法定节假日除外)地点:线上获取方式:线上售价:免费五、提交投标文件截止时间、开标时间和地点2022年08月02日 13时30分(北京时间)地点:辽宁轩宇工程管理有限公司(沈阳市皇姑区黄河南大街56号中建峰汇广场A座801室)六、公告期限自本公告发布之日起5个工作日。七、质疑与投诉供应商认为自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,向采购代理机构或采购人提出质疑。1、接收质疑函方式:线上或书面纸质质疑函2、质疑函内容、格式:应符合《政府采购质疑和投诉办法》相关规定和财政部制定的《政府采购质疑函范本》格式,详见辽宁政府采购网。质疑供应商对采购人、采购代理机构的答复不满意,或者采购人、采购代理机构未在规定时间内作出答复的,可以在答复期满后15个工作日内向本级财政部门提起投诉。八、其他补充事宜1.投标文件递交方式采用线上递交及现场备份文件递交同时执行并保持一致,参与本项目的供应商须自行办理好CA锁,如因供应商自身原因导致未线上递交投标文件的按照无效投标文件处理。具体操作流程详见辽宁政府采购相关通知。2.关于电子标评审的相关要求详见辽财采函〔2021〕363号“关于完善政府采购电子评审业务流程等有关事宜的通知”。电子文件报送截止时间同递交投标文件截止时间(即开标时间),解密为30分钟。如供应商未按照规定的时限响应按照无效投标文件处理。3.请供应商自行准备笔记本电脑并下载好对应的CA认证证书带至开标现场进行电子解密(开标现场不提供wifi)。同时供应商须自行准备好备份投标文件于递交投标文件截止时间前递交至代理机构处,如未递交备份文件的按照投标无效处理,供应商仅提交备份文件的而没有进行网上递交的投标文件的,投标无效。关于具体的备份文件的格式、存储、密封要求详见招标文件。九、对本次招标提出询问,请按以下方式联系1.采购人信息名 称:辽宁省检验检测认证中心地 址:沈阳市皇姑区崇山西路7号联系方式:024-312662632.采购代理机构信息:名 称:辽宁轩宇工程管理有限公司地 址:沈阳市皇姑区黄河南大街56号中建峰汇广场A座8楼联系方式:024-31918388-357邮箱地址:312353927@qq.com开户行:中国光大银行沈阳黄河大街支行账户名称:辽宁轩宇工程管理有限公司账号:364901880000244643.项目联系方式项目联系人:闫冠吉、刘甲峰电 话:024-31918388-357
  • 问传统求新知——用扫描电镜揭开铝电解抛光表面的各向异性纳米图案的神秘面纱
    金属的电解抛光,是一种传统而常用的表面处理技术,通过可控的电化学反应使金属表面溶解(凸起部分溶解速度快)来降低表面粗糙度。利用电解抛光技术,可以获得纳米级粗糙度的镜面光泽表面,而且可以去除前序机械加工遗留的表面和亚表面损伤层。不过,不为一般仅使用该技术的研究者注意的是,在一定的电化学条件下,电解抛光后的金属表面会出现纳米级的图案(pattern),其中对金属铝的研究较多。研究者发现,金属铝(Al)经短时间电解抛光处理后,表面会出现周期或特征周期为几十至一百多纳米的有序条纹状(stripe)、六边顶角状(hexagon)及点状(dot)等多种有序或无序图案。这一现象,已经引起了研究者对其在金属表面微纳工程、微纳模板加工、微纳电子学等领域应用的关注。研究者已经开始深入挖掘纳米图案形成的机理,关键是揭示材料表面结构和界面电化学行为决定纳米图案类型及周期的物理化学规律。但是,目前已经发表的研究,缺少对多晶和单晶铝表面纳米图案形成行为的系统实验研究,定性的多定量的少,零散的多系统的少,难以用来检验和改进现有的表面纳米图案形成理论。其中一个被长期忽略的关键问题,就是铝表面结构差异导致的纳米图案的各向异性。哈尔滨工业大学化工与化学学院的甘阳教授和他指导的博士生袁原(论文第一作者)、张丹博士、杨春晖教授及机电学院的张飞虎教授,首次采用电子束背散射衍射(EBSD)对电解抛光后的多晶铝和单晶铝进行了定量的表面晶体学取向分析,并采用蔡司的Sapphire Supra 55场发射扫描电镜(FE-SEM)和原子力显微镜(AFM)对纳米图案的类型(type)和周期(size)进行了系统表征和量化分析,揭示了铝电解抛光表面纳米图案的类型和周期对于表面结构和晶体学取向的依赖性的规律。同时,基于表面物理化学的理论框架,对结果进行了深入分析和讨论,定性解释了大部分的实验结果,并指明了下一步的研究方向。研究结果近期以长文形式发表于电化学领域的国际知名期刊Journal of the Electrochemical Society,国际同行评审专家认为该工作是对本领域的重要贡献。甘阳教授课题组首先对多种铝样品的电解抛光表面纳米图案进行了系统的研究:1)多晶铝(polycrystalline Al)中不同取向的晶粒;2)切割角可控的系列单晶铝(monocrystalline Al)样品。通过EBSD测试获得晶粒表面的晶体学取向图,并结合定位SEM表征,他们发现,铝电解抛光表面纳米图案对晶面取向具有依赖性(如图1所示为多晶样品中三个毗邻的晶粒)。(背景知识:描述铝表面晶体学取向的EBSD反极图三角(IPF triangle)中,可划分为围绕三个低指数晶面方向(primary direction,主取向)的晶体学主取向区域—[101] //ND,[001] //ND和[111]//ND,单个晶粒或单晶的表面取向偏离主取向的角度称为取向差角(misorientation angle)。)通过对数十个不同取向的多晶晶粒的逐一定位SEM表征,他们发现了一系列未被报道过的现象(图2):1)纳米图案类型和周期对晶面取向的依赖性是否显著取决于所属的主取向区域;2)在同一主取向区域内,纳米图案类型和周期随着取向差角的改变呈现渐变性规律;3)对于具有相同取向差角但偏向不同主取向的晶面,纳米图案类型和周期也发生变化;4)在两个或三个主取向的交界处,纳米图案类型和周期基本相同。他们进一步测试和分析了一系列取向差角可控的单晶铝样品(图3),证实了上述多晶样品的结果,并揭示出目前尚难以解释的单晶和多晶样品间的图案周期性大小的差异问题(图4)。图1 (a)电解抛光多晶Al样品的EBSD分析IPF图,(b)放大后的IPF图和IPF三角显示三个相邻的A、B、C晶粒及其所属的主取向区域和各自的晶面取向差角值,(c)三个晶粒的定位SEM形貌图像,相邻晶粒被晶界隔开并交于一点,(d–f)三个晶粒的AFM形貌图像和细节放大图及FFT分析图,(g–i)为对应AFM图中白线段的线轮廓分析图。图2 (a)电解抛光后不同晶面取向的多晶铝晶粒在IPF三角中的位置图,(b–y)不同晶粒表面的SEM形貌图和对应的FFT分析图(SEM图上均给出了取向差角和图案的周期)。图3 (a)不同晶面取向的单晶铝样品在IPF三角中的位置图,(b–s)电解抛光后不同单晶样品表面的SEM形貌图和对应的FFT分析图(SEM图上均给出了取向差角和图案的周期)。图4(a,b)单晶和多晶样品的表面纳米图案周期(L)随取向差角(θ)变化的L–θ图,上方刻图轴给出了三个主取向区域内与θ对应的所属表面的表面台阶宽度(w)。(c,d)单晶和多晶样品的各晶面在IPF三角中的对应位置图。L–θ图和IPF三角中的几条连线,表示的是连接了近似位于延某个主取向辐射出去的直线上的若干晶面(及IPF三角中的若干对应的点)。为了解释实验结果,他们建立了一系列不同取向晶面的表面原子排列的“平台–台阶”模型(图5),还特别关注了更复杂的“平台–台阶–扭折”表面结构(图6)。尽管尚没有考虑表面驰豫、重构等的影响,他们根据表面结构特征随取向差角的变化规律,解释了实验观察到的纳米图案类型和取向差角的关系。比如,在一个主取向区域内,随着取向差角的增大,表面台阶宽度逐渐减小而不是突变,界面能的变化也应该呈现渐变的特性,这就解释了纳米图案的类型随取向差角改变的渐变现象。此外,在两个或三个主取向区域的交界处,大取向差的晶面的表面结构(平台宽度和台阶处的原子排列)很相似,所以导致纳米图案的类型基本相同。而不考虑上述结构特征,就很难解释实验上观察到的现象。图5(a–f)[001]和[101]//ND主取向区域内6个不同取向差角的晶面的表面“平台–台阶”结构模型的正视图和侧视图。表面单胞用红色平行四边形或矩形表示。(g)6个晶面在IPF三角中的位置图。图6 (a–c)[001]//ND主取向区域内3个取向差角相等但偏向不同方向的晶面的表面“平台–台阶–扭折”结构模型的正视图。表面单胞用红色平行四边形表示,特别给出了平均台阶宽度。(d)3个晶面在IPF三角中的位置图。图7 在电解抛光过程中吸附分子在不同平台宽度“平台–台阶”表面的扩散和脱附行为差异的示意图。(a)宽平台表面;(b)窄平台表面。他们基于表面结构影响电化学溶解和界面分子吸附、扩散行为的理论框架,对文献中现有的“吸附–溶解”理论进行了深化,进一步提出了表面平台宽度和台阶位点的数量会影响电解抛光液中的表面吸附分子(如乙醇)在表面的扩散(以扩散系数表征)和吸脱附(脱附速率常数)行为。取向差角越大,平台宽度越窄(台阶密度也越大),分子在表面的扩散障碍越大,但同时脱附也更困难,这二者的竞争导致图案的周期先增加并逐渐达到峰值后减小。以外,他们还提出了一套结合SEM测量和图像的FFT处理的分析步骤,以此为基准来准确确定准无序纳米图案的平均周期大小,有效避免了单点测量的较大偏差。以上研究工作,对铝及其它金属(如Ti,Ta,Zn,W)及合金的电解抛光表面纳米图案化研究具有普通意义。甘阳教授课题组正在继续深入研究更多实验因素的影响、图案演化的计算机模拟及理论模型的建立,力图全面揭示金属电解抛光表面纳米图案的形成机理。该研究得到了国家自然科学基金重点项目、国家重点研发计划项目等的资助。恭喜哈尔滨工业大学化工与化学学院甘阳老师课题组使用蔡司场发射扫描电镜做科学研究,取得丰硕的科研成果!
  • 合金焊接质量保证,合金表面油脂污染度焊接清洁度检测方案
    翁开尔是析塔清洁度仪独家代理商,欢迎致电咨询析塔清洁度仪在合金焊接上的技术应用。汽车轻量化成为使命,汽车制造商越发对轻质材料情有独钟,以寻求降低能耗和最小化腐蚀风险。汽车设施从钢转向铝材,这些铝材组件是需要焊接冲压或机加工的。然而,将钢焊接技术应用于铝焊接时,事情就不是那么简单了。虽然铝焊接本身是最主要的任务,但必须满足一个前提条件——保证焊接铝材表面的清洁度。对于从钢焊接工艺过渡到铝焊接工艺的设施,焊接前的表面处理是必须考虑的因素。不单单对于汽车制造而言,对精密工具制造、造船、轨道交通、航天航空、大型机械制造等行业的焊接准备中都会清洁钢和铝表面。这也意味着过去从不需要零件清洗机的工厂将不得不将零件清洗系统集成到他们的制造过程中,在焊接前确保零件表面足够干净,以此确保焊接良品率。┃ 铝与钢焊接焊接钢和铝之间的根本区别在于铝具有更高的电阻和熔化温度。熔池中较高的温度会产生足够的热能来增加氢的溶解度和扩散率。如果零件表面存在污染物,容易导致焊缝出现气孔或开裂。┃ 铝污染物的主要类型从大规模零售制造铝到达焊接工作室,铝会暴露在几种主要类型的污染物中。这些污染物如下: 油或者油脂 墨水 润滑脂 颗粒污垢许多东西在焊接前都会弄脏和污染铝,这种污染物的存在会对焊接质量产生严重的持久影响。这就是为什么在焊接前对铝件进行清洗的原因。如果铝件表面不够干净,在焊接的过程中,则容易出现烟灰,焊缝未熔合,不确定的电弧和附加电阻等现象。┃ 清洁表面对焊接的重要性在精细化制造要求下,清洁度一定意义上决定了焊接的质量。清洁的表面助于实现成功焊接:00001. 一致性:清洁焊接材料在制造实验室中提供了一定程度的一致性,并允许您将铝用作焊接性能的控制变量。00002. 无孔隙率:孔隙率是由碳氢化合物或氧化等污染物焊接到金属中引起的金属表面质量缺陷。如果金属变得有多孔,它会形成结构较差的接头,如果金属在焊接部位有足够的多孔,则该接头甚至可能因此而失效。但如果铝是干净的,焊缝就不会有隐藏的缺陷,接头应该能按预期工作。00003. 高强度:因为没有污染物,所以用纯铝进行的焊接比用受污染的铝或含有氧化铝的铝进行的焊接具有更高的抗拉强度。由于金属焊缝在建造后承担着建造项目的整体安全性和耐久性的责任,因此所使用的焊缝必须尽可能坚固,以防止意外的结构损坏。┃析塔清洁度仪是检测铝件表面清洁情况的重要仪器在焊接铝件前,往往需要对铝件进行脱脂去除水分和残留污染物,以及采用激光清洗或机械清洗氧化层。那么怎样的清洗程度铝件才算干净呢?德国析塔清洁度检测仪可以有效量化金属件表面清洁情况,更好的保证激光焊接质量,减少激光焊接缺陷。焊接气孔会降低坚固性和密封性,下图显示在激光焊接前使用析塔清洁度仪对工件表面进行清洁度检测,当工件表面清洁度高于65%,焊接气孔数量明显降低,当工件表面清洁度低于65%时,焊接气孔数量明显增加。 德国析塔SITA表面清洁度仪采用共焦法原理,通过光源发射出最佳波长的UV光检测金属表面的污染物,内置的传感器精准探测污染物引起的荧光强度,该荧光强度的大小取决于基材表面有机物残留情况,从而能精准量化检测金属表面清洁度。德国析塔SITA清洁度测试仪可以广泛运用在焊接接头质量、安全气囊点火装置的焊接组件等方面,工件表面污染物会影响焊接质量,焊接气孔会导致泄露,因此在焊接工艺前检测工件表面清洁度非常有必要,可以有效降低焊接次品率。
  • 【瑞士步琦】基于喷雾干燥技术的表面增强拉曼光谱研究进展
    基于喷雾干燥技术的表面增强拉曼光谱研究进展水污染是一个全球性问题,威胁着人类健康并损害生态系统的健康。水污染物含有多种对人体健康和生态系统产生不利影响的重金属和有机化合物,需要及时发现和分析以维持环境,同时可以尽量减少对人类健康的危害和对生态系统健康的损害。水样中重金属的检测常用检测方法如下原子吸收光谱法(AAS)阳极溶出伏安法(ASV)电感耦合等离子体质谱法(ICP-MS)电化学检测除了以上常用检测方法外,还可以利用喷雾干燥方法结合拉曼光谱技术-表面增强拉曼光谱(SERS)来测定水中污染物。SERS 技术是一种简便、快速进行有机化合物痕量分析的技术。与传统的拉曼光谱相比,它可以获得信号得到显著增强的拉曼光谱。SERS 中的拉曼增强发生在两个或多个聚集的金属纳米颗粒的连接处,即所谓的热点;贵金属纳米颗粒的聚集程度是 SERS 中拉曼信号增强效果的关键决定因素。喷雾干燥法是将储存溶液中的微小液滴雾化,研究者可以通过改变液滴的大小和液滴内纳米颗粒的浓度来控制纳米微粒的聚集程度。纳米微粒的形成是由于液滴内部溶剂蒸发的结果(图1)。同时,喷雾干燥法也可以在不添加表活物质的情况下制备纳米微粒。该方法获得的纳米微粒可以在使用中将探针分子困在热点中,获得比使用传统 SERS 衬底的方法更有效的信号增强效果。在使用传统 SERS 方法时,通常需要通过将待分析溶液滴到衬底上的方式使探针分子分散到热点附近。也可以将 SERS 制备成溶胶,在测试过程中需要添加表面活性剂,这导致在目标物质信号被放大的同时,表面活性剂的拉曼信号也被放大,会干扰测试。而采用喷雾干燥法制备的纳米微粒可避免这些情况的发生。▲图1,用于制备纳米银微粒的喷雾干燥系统示意图本研究采用喷雾干燥方法制备纳米微粒用于探针分子的痕量分析。首先,研究者采用定制化的喷雾干燥系统制备纳米微粒。之后研究制备的银纳米微粒的大小如何影响探针分子(罗丹明B)的 SERS 信号。最后,我们雾化了银纳米粒子和探针分子罗丹明 B 的预混合溶液,以促进探针分子在热点的捕获,从而进一步增强探针分子拉曼信号。1材料在本研究中选择银纳米颗粒(AgNPs)。购买主粒径为 30 nm的AgNP颗粒(Ag Nanocolloid H-1, Mitsubishi Materials Corporation),用超纯水(18.2 MΩ cm)稀释,得到 0.01wt% 和 0.1wt% AgNP 溶胶。罗丹明 B (RhB)作为探针分子。所有材料均未经进一步提纯使用。2采用喷雾干燥法制备 AgNP 微粒用含有 AgNP 的雾化液滴制备用于 SERS 测试的 AgNP 微粒。实验装置示意图如图1所示。液滴雾化使用了一个定制的系统,该系统带有加压双流体喷嘴。当加压气体被引入时,液体样品通过喷嘴内出现的负压被吸入系统。在喷嘴内形成一层液体膜,然后在剪切应力的作用下分解成液滴。在雾化之前,将超纯水与 AgNPs 溶胶混合,以进一步稀释溶胶中任何浓度的潜在污染物。使用氮气作为干燥气和雾化气,将雾化后的液滴从喷嘴输送到加热区。再以 4.5 L/min 的流量将 N2 气体引入加热区,将雾化后的液滴加热至 150℃,促进溶剂蒸发,使 AgNP 气溶胶干燥。雾化系统总流量为 6.9 L/min,液滴停留时间为 0.93s。最后,使用定制的冲击器将干燥气溶胶形式的 AgNPs 沉积在直径为 14mm 的铜制圆形基板上。撞击喷嘴直径为 1mm,因此 AgNPs 以 17L/min 的流速加速撞击。在 SERS 实验前,将沉积的 AgNP 在常温常压下保存 24h。本次共制备四种不同粒径的 AgNPs 微粒,并对其在 SERS 分析中的敏感性进行了检验。雾化 0.01wt.% 的溶胶得到的 AgNP 微粒粒径最小,雾化 0.1wt.% 的溶胶得到的 AgNP 微粒粒径最大。溶胶中 AgNP 的浓度直接影响单个液滴中 AgNPs 的数量。此外,采用差分迁移率分析仪对制备的四种 AgNPs 微粒进行颗粒度分析,四种微粒的平均粒径分别为 48、86、151 和 218nm。3SERS 分析将制备的四种不同大小的 AgNPs 微粒用于微量罗丹明 B 溶液的 SERS 信号获取。 将 100μL 一定浓度的罗丹明 B 标准水溶液滴在铜基底上制备的 AgNP 微粒上。采用 532nm 激光器,在激光功率为 0.157mW,曝光时间为 1s 的条件下获得 SERS 谱图。每个样品在不同位置获得十几张 SERS 光谱。利用数据处理软件对所得光谱进行背景减除,并获得罗丹明 B 位于 1649 cm&minus 1 处的峰强度。4尺寸和形态表征图2 显示了用浓度分别为 0.01wt% 和 0.1wt% 的 AgNg 溶胶喷雾制备的微粒的尺寸分布。可以看到二者的平均尺寸分别约为 38nm 和 66nm,前者微粒的大小与纯 AgNP 颗粒(~ 30nm)的大小大致一致,这证明前者微粒中主要为纯 AgNP 颗粒。后者微粒增大可归因于 AgNPs 浓度的增加,即溶胶浓度的增加。这表明由 0.1wt% 溶胶喷雾干燥得到的微粒中有聚集。由此可知,用该喷雾干燥系统得到的微粒大小可通过气溶胶浓度的大小控制。▲ 图2,由 0.01wt%、0.1wt% 和 0wt% 的纳米银溶胶喷雾干燥获得的纳米银微粒的粒径大小▲ 图3,沉积后纳米银微粒的SEM图像和尺寸分布。(a, e) 48 nm, (b, f) 86 nm, (c, g) 151 nm, (d, h) 218 nm图3 的 SEM 图像分别显示了在未添加探针分子(即RhB)情况下沉积在铜板上的四种纳米银微粒的相应尺寸分布。由 0.01wt% 的纳米银溶胶喷雾干燥获得的微粒形成了亚单层膜(图3a),颗粒的平均测量尺寸为 48nm(图3e),与制备溶胶前的纯颗粒尺寸(30nm)和气溶胶颗粒尺寸(38nm)基本一致,这表明滴在铜板上的纳米银微粒并未明显聚集。如 图3f 和 图3g 所示 3b 和 3c 的纳米银微粒的尺寸为 86 和 151nm。由 0.1wt% 溶胶制备得到的纳米银微粒形成了更大的球形聚集体(图3d),尺寸为 218nm (图3h),是气相测量中发现的 AgNP 气溶胶(图2)的两倍多。气相测量和 SEM 观察之间的这种尺寸差异可能归因于颗粒反弹效应。只有大的 AgNPs 微粒才能更好地沉积,因为微粒与基底之间的接触面积较大,所以具有较高的附着力。最终使用两种浓度的溶胶和 DMA,我们制备了四种不同尺寸的微粒:48、86、151 和 218 nm。5拉曼增强效果与微粒尺寸大小有关图4 显示了不同浓度的罗丹明 B(分别为 10&minus 6、10&minus 8 和 10&minus 10 M),用四种纳米银微粒(尺寸分别为 48、86、151 和 218nm 时)获得的 SERS 光谱。在罗丹明浓度为 10&minus 6 M 时,采用四种纳米银微粒获得的谱图在 500-1700 cm&minus 1 处都均能清晰地观察到罗丹明 B 的所有特征峰(图4a)。表1 列出了罗丹明 B 的拉曼特征峰归属。其中,1649 cm&minus 1 处的 C-C 伸缩振动信号最为强烈,因此被用作计算 AEF,用于评价拉曼信号的增强情况。在未采用 SERS 增强时,没有观察到罗丹明 B 的特征峰(图4a),这证实了纳米银微粒对罗丹明 B 的拉曼信号起到了增强作用。▲ 图4,(a) 10&minus 6 M, (b) 10&minus 8 M, (c) 10&minus 10 M 浓度下罗丹明 B 溶液的 SERS 光谱。箭头表示罗丹明 B 的拉曼特征峰(表1)表1,罗丹明 B 的主要特征峰及特征峰归属拉曼位移(cm-1)特征峰归属1199C-C 键的伸缩振动1281C-H 键的弯曲振动1360芳香基 C-C 键的弯曲振动1528C-H 键的伸缩振动1649C-C 键的伸缩振动6AgNPs 溶胶和探针分子混合后喷雾干燥图4 和 图5 表明,尺寸为 86nm 的 AgNP 微粒是信号增强效果是最好的。研究者又过在喷雾干燥前将罗丹明 B 溶液与 AgNP 溶胶进行预混合(即采用预混合雾化途径),制备微粒。进一步探索了微粒的拉曼增强效果。图6显示了浓度为 10&minus 6、10&minus 8 和 10&minus 10 M 的罗丹明 B 溶液在 86nm AgNP 微粒中的 SERS 光谱。▲图5,粒径为 48、86、151和 218nm 的 AgNP 微粒在 浓度为 10-6 和 10-8 M 罗丹明 B 的 AEF 值。部分测试未获得罗丹明 B 特征峰,因此未计算 AEF 值▲图6 采用 AgNP 溶胶与罗丹明 B 预混后获得的微粒对浓度分别为(a) 10&minus 6 M, (b) 10&minus 8 M, (c) 10&minus 10 M 的罗丹明 B 溶液进行信号放大获得的 SERS 光谱▲图7 喷雾干燥制得 86nm 纳米银颗粒后加入罗丹明 B 溶液和罗丹明 B 溶液与 86nm 纳米银微粒预混后喷雾干燥后的 AEF 值▲图8 (a)喷雾干燥后滴入罗丹明B溶液 (b)罗丹明B 溶液与微粒预混后喷雾干燥7结论本研究采用喷雾干燥方法制备高灵敏度的纳米银微粒。使用定制的系统制备了粒径为 48、86、151 和 218nm 的 AgNP 微粒。滴入10&minus 6 M 罗丹明 B 溶液后,48、86、151 和 218nm AgNP 微粒的 AEF 值分别为 2.4 × 103、4.2 × 103、3.3 × 103 和 4.0 × 103,而滴入 10&minus 8 M 罗丹明 B 溶液后,86和 151nm 微粒的 AEFs 为 3.4 × 104 和 2.2 × 104。我们发现 86nm 的 AgNP 微粒是本研究中最敏感的纳米结构。与 218nm AgNP 微粒相比,86nm AgNP 微粒的拉曼增强效果更好,这是由于高浓度溶胶制备的 AgNPs 微粒中电子云变形,降低了它的拉曼增强效果。在喷雾干燥前将罗丹明 B 溶液与 AgNP 溶胶预混后获得的拉曼增强效果较喷雾干燥后加入罗丹明 B 溶液更强。在测试浓度为 10&minus 6 M 和 10&minus 8 M 的罗丹明 B 溶液时,预混后喷雾干燥得到 86nm 微粒的 AEF 值分别为 5.1 × 104 和 3.7 × 106。该方式获得的 AEF 值分别是喷雾干燥后加入方式的 12 倍和 110 倍。该方法应该是更适合用于环境污染物痕量分析的方法。8文献引用Chigusa M. etc. Development of spray‐drying‐based surface‐enhanced Raman spectroscopy. Scientific Reports (2022)12:4511雷尼绍公司总部位于英国,自上世纪九十年代 开始提供显微拉曼光谱仪,是最早的商用显微拉曼供应商之一,一直在拉曼光谱领域是公认的领导者。雷尼绍为一系列应用生产高性能拉曼系统,具有完备的光谱产品系列:inVia 系列显微共焦拉曼光谱仪、 RA802 药物分析仪、 RA816 生物组织分析仪、Virsa 高性能光纤拉曼系统、Raman-AFM 联用系统接口、 Raman-SEM 联用系统等。 凭借优越的产品性能及完善的售后服务, 雷尼绍光谱产品系列极大地提高了客户的研发能力和科研水平,被广泛应用于高校科研和制药、材料、新能源、光伏等多个领域研发中。瑞士步琦公司是全球旋转蒸发技术的市场领先者,并且在中压分离纯化制备色谱,平行反应,喷雾干燥仪和冷冻干燥仪,熔点仪,凯氏定氮仪和萃取仪以及实验室/在线近红外等方面是全球市场主要的供货商。我们相信通过提供高质量的产品和优质的服务,我们能给广大的客户在研究开发创新和生产上提供强有力的支持。我们的所有产品均符合“Quality in your hands” (质量在您手中) 理念。我们始终致力于开发坚固耐用、设计巧妙、便于使用的产品与解决方案,以便满足客户的最高需求。凭借小型喷雾干燥仪 B-290 和 S-300,瑞士步琦巩固了其 40 多年来作为全球市场领导者的地位。实验室喷雾干燥仪融合卓越的产品设计与独特的仪器功能,可为用户提供极佳的使用体验。使用实验室喷雾干燥仪可安全处理有机溶剂;S-300 配备的自动模式可节省大量时间,让整个实验过程调节和可重现性更高;远程控制可以带来极致的灵活性,同时方法编程让操作变得对用户更友好。
  • 应用 | 定向有机玻璃表面能与黏结强度研究
    摘要酸处理和等离子处理后定向有机玻璃表面粗糙度和表面极性增加,同时表面润湿性能得到改善,使黏结强度分别上升了14%和22%;而过渡层预处理提高了基材表面能,处理后定向有机玻璃表面极性与TPU相近,降低了界面张力,明显改善界面黏结性能,黏结强度由4.44kN/m上升至23.61kN/m。研究背景轻度交联和定向研磨赋予了定向有机玻璃(stretched acrylicsheet)更为优异的力学性能、抗裂纹扩展性能和光学性能,使其强度高、韧性优良,具有良好的耐热性和耐久性,因此成为航空透明件的主要材料。定向有机玻璃与热塑性聚氨酯(TPU)中间层作为航空有机层合结构透明件的关键材料,二者间界面的黏结强度是影响有机层合透明件在工程应用中可靠性的重要因素。实验部分接触角测试:采用德国KRÜ SS接触角测量仪测量液体在固体表面上的接触角。每次滴液2μL,在样品表面稳定30s后读取结果。取10个接触角平均值作为此液体在该表面的接触角。所有测量均在室温(25 ℃)下进行。测试液体使用去离子水、二碘甲烷和乙二醇,测试液体表面能参数如表1所示。 表面能计算:根据Van Oss理论,对表面能有贡献的除了色散力外还有极性作用力,并将极性部分视为电子给体与电子受体之间的相互作用。因此表面能分为Lifshitz-vander Waals分量γLW和Lewis酸碱分量γAB(分为Lewis酸分量γ+和Lewis碱分量γ-)。固体的表面能γS和液体的表面能 γL可分别表示为: 固液之间界面张力γSL与固体的表面能和液体的表面能的关系为: 根据杨氏方程,可得: 表面能作为衡量润湿性能的重要参数,固体表面能可以通过测量一系列测试液体在固体表面上的接触角,通过上述方程就可以计算。结果与讨论由于界面的形成、结构和稳定会受到多种物理、化学因素的影响,目前没有单一黏结理论可以解释所有的黏结现象。但不论是何种黏结机理,都要求黏结的二者具有良好的润湿性能。将结合在一起的两相分开所需力做的功称之为Wa,为: 式中:γ1, γ2分别为两相表面能;γ12为两相间界面张力。从粘附功公式可知,增大两相表面能或者降低两相之间界面张力都可以提高黏结强度。不同预处理方法处理的定向有机玻璃基材和TPU胶片表面接触角测试结果如表2所示。由红外结果可知,酸处理和等离子处理后与水接触角定向有机玻璃表面C=O极性基团含量增加,亲水性增加,酸处理和等离子处理后水接触角减小;且酸处理和等离子处理后表面粗糙度增加,有利于接触角的降低。而过渡层处理后,样品表面疏水基团-(CH₂ )-含量增加,表面粗糙度下降,故水接触角增加。 根据表2的接触角结果计算得到的各材料表面能,结果见表3。TPU表面能较处理前后定向有机玻璃都低,说明TPU作为中间层材料可以在定向有机玻璃表面铺展,且处理后样品表面能增加,更有利于TPU在表面的铺展和吸附。由表3中参数可知定向有机玻璃和TPU都属于极性聚合物,且呈现出明显的Lewis碱特性。定向有机玻璃的极性源于侧链上的酯基;而TPU的极性来自于主链上的氨基甲酸酯基、醚键等基团。材料γAB大小差异与极性基团在分子结构中所处位置有关。高聚物的极性大小可通过偶极矩来判断,极性基团活动性越好,高聚物极性越大。TPU的线性主链上氨基甲酸酯基和醚键酯键能形成分子内氢键,使得极性下降。由红外结果可知,经酸处理和等离子处理后,定向有机玻璃表面含氧基团数量增加,故表面能极性分量γAB增大。而过渡层界面相较于定向有机玻璃表面具有更多的-(CH₂ )-基团,柔性优于定向有机玻璃,有利于降低界面张力;同时过渡层界面的表面自由能极性分量与TPU胶片相近,由润湿理论所述当黏结剂与被黏体的极性相匹配时,界面张力最小;且处理后表面能增加,由粘附功公式可知,过渡层处理同时增加了表面能并降低了界面张力,有利于提高TPU与定向有机玻璃之间的黏附功。小结(1)酸处理和等离子处理在提高定向有机玻璃表面粗糙度的同时增大了基材的表面张力,增加了表面极性,提高了黏结界面处分子间相互作用力,从而改善了TPU在基材表面的黏结性能。但界面处物理吸附力对提高黏结强度效果有限,经酸处理和等离子处理后定向有机玻璃与TPU黏结强度分别提高了14%和22%。(2)过渡层处理大幅度改善了定向有机玻璃与TPU的黏结性能。这是由于形成了与定向有机玻璃和TPU具有一定化学相容性的柔性界面,同时与TPU极性匹配,增大表面能并降低了界面张力。过渡层处理后黏结强度由4.44 kN/m上升至23.61 kN/m。(3)比较三种预处理方法对定向有机玻璃表面性能的影响以及与TPU间黏结强度差异,相较于增加表面粗糙度和物理吸附作用,改善界面的极性匹配性和化学相容性对提高TPU与定向有机玻璃间的黏结性能更具优势。本文有删减,详细信息请参考原文。
  • 【综述】碲锌镉衬底表面处理研究
    碲锌镉(CZT)单晶材料作为碲镉汞(MCT)红外焦平面探测器的首选衬底材料,其表面质量的优劣将直接影响碲镉汞薄膜材料的晶体质量以及成品率,故生产出外延级别的碲锌镉衬底表面是极其重要的。目前,碲锌镉单晶片的主要表面加工处理技术包含机械研磨、机械抛光、化学机械抛光、化学抛光以及表面清洗。其中,机械研磨、机械抛光以及化学机械抛光工艺都会存在磨料残留、磨料嵌入、表面划痕较多、粗糙度较高等一系列问题,要解决这些问题需要对相应的表面处理技术进行了解和掌握,包括表面处理技术的基本原理以及影响因素。近期,昆明物理研究所的科研团队在《红外技术》期刊上发表了以“碲锌镉衬底表面处理研究”为主题的文章。该文章第一作者为江先燕,通讯作者为丛树仁高级工程师,主要从事红外材料与器件方面的研究工作。本文主要从碲锌镉表面处理工艺及表面位错缺陷揭示两个方面对碲锌镉衬底的表面处理研究进行了详细介绍。表面处理工艺碲锌镉单晶作为生长外延碲镉汞薄膜材料的首选衬底材料,要求其表面不能存在机械损伤及缺陷密度大于10⁵ cm⁻²的微观缺陷,如线缺陷、体缺陷等。衬底表面的机械损伤可通过后期的表面处理工艺进行去除[18],而微观缺陷只能通过提高原材料的纯度以及合理调控晶体的生长过程方能得到有效改善。经垂直梯度凝固法或布里奇曼法生长出的低缺陷密度的碲锌镉体晶会先被切割成具有固定方向(如(111)方向)和厚度的碲锌镉晶片,然后再经过一系列的表面处理工艺才能用于碲镉汞薄膜的生长。通常情况下,碲锌镉晶片会经历机械研磨、机械抛光、机械化学抛光及化学抛光等表面处理工艺,通过这些工艺处理后的晶片才能达到外延级水平,因此本部分主要详细介绍上述4种表面处理工艺。机械研磨机械研磨工艺的研磨机理为:加工工件与研磨盘上的磨料或研磨剂接触时,工件表面因受到形状不规则磨料的挤压而产生破裂或裂纹,在加工工件与研磨盘的相互运动下,这些破裂的碎块会随着不规则磨料的滚动而被带离晶片表面,如此反复,从而达到减薄晶片厚度及获得低损伤表面的加工目的,机械研磨装置及磨削原理示意图如图1所示。图1 机械研磨装置及研磨机理示意图碲锌镉体晶切割成一定厚度的晶片后首先经历的表面处理工艺是机械研磨工艺。机械研磨的主要目的是去除机械切割对晶片表面造成的损伤层,从而获得一个较低损伤的晶片表面。表面处理工艺中,机械研磨还可细分为机械粗磨和机械细磨,两者的主要区别在于所使用的磨料粒径不一样,粗磨的磨料粒径大于细磨的磨料粒径。机械细磨的主要目的是去除机械粗磨产生的损伤层,同时减少抛光时间,提高工艺效率。研究报道,机械研磨产生的损伤层厚度通常是磨料粒径的3倍左右。影响机械研磨工艺对加工工件研磨效果的因素有磨料种类、磨料粒径及形状、研磨盘类型、磨料与溶剂的配比、磨料滴速、研磨盘转速、工件夹具转速以及施加在加工工件上的压力等。磨料种类一般根据加工工件的物理及化学性质(如强度、硬度、化学成分等)进行合理选择。常用于机械磨抛的磨抛料有MgO、Al₂O₃、SiC及金刚石等,其中,为了避免在碲锌镉衬底上引入其他金属杂质,MgO和Al₂O₃这两种研磨剂很少在碲锌镉表面处理工艺上进行使用,使用最多的是SiC和金刚石两类磨料。磨料的形状可分为规则(如球状、棒状、长方体等)和不规则(如多面体形状)两类,如图2所示。通常情况下,磨料形状越不规则,材料去除速率越快,同时造成的表面损伤也大,反之,磨料越规则,去除速率越慢,但造成的表面损伤也越小。图2 不规则磨料及规则磨料的扫描电镜图毛晓辰等人研究了这3种不同形状磨料对碲锌镉衬底机械研磨的影响。当磨粒形状为板片状时,材料的去除模型将不再遵从李岩等人提出的“不规则磨料研磨去除模型”,即三体磨粒去除模型,如图3(a)所示,而是会发生变化。基于此,毛晓辰等人提出了如下的去除模型,即:当磨粒为板片状时,磨粒以一定的倾斜角度平躺于磨盘表面,如图3(b)所示,当加工工件(晶片)与磨盘发生相互运动时,磨粒被短暂的固定在磨盘表面,形成二体磨粒,板片状磨粒便以其片状边缘对加工工件表面进行磨削,最终实现去除材料的目的。图3 不规则磨料及板片状磨料去除机理示意图常见的研磨盘类型可简单分为开槽和不开槽两类,如图4所示,开槽和不开槽研磨盘对晶片研磨效果的影响如表1所示。图4 磨盘示意图表1 开槽和不开槽研磨盘对晶片研磨效果的影响机械抛光机械抛光工艺的抛光机理为:加工工件与柔性抛光垫上的抛光粉或抛光颗粒接触后,工件表面将受到形状不规则的抛光颗粒的挤压而产生破裂或裂纹,在加工工件与抛光盘的相互运动下,这些破裂的碎块会随着不规则抛光颗粒的滚动而被带离晶片表面,反复如此,从而达到降低加工工件表面粗糙度和获得光亮、平整表面的目的。抛光粉是一种形状不规则且粒径很小的微纳米级颗粒,故而对加工工件造成的表面损伤较小且加工后的工件表面像镜面一样光亮。抛光垫的柔韧性削弱了抛光颗粒与加工工件表面的相互磨削作用,从而进一步降低了抛光颗粒对工件表面的损伤。机械抛光装置及抛光原理示意图如图5所示。图5 机械抛光装置及抛光原理示意图机械抛光的主要目的是去除机械研磨工艺对晶片表面造成的损伤层,同时降低晶片表面粗糙度和减少表面划痕,获得光亮、平整的表面。影响机械抛光工艺对加工工件表面抛光效果的因素有抛光粉种类或者抛光液种类、抛光粉粒径大小及形状、抛光垫种类、抛光盘转速、工件夹具转速、施加在工件上的压力、抛光液滴速以及抛光时间等。图6所示为碲锌镉晶片经不同厂家生产的同种抛光液机械抛光后的表面形貌图,如图所示,在相同的抛光条件下,不同厂家生产的抛光液的抛光效果差别较大。因此,机械抛光工艺中对抛光液的合理选择是极其重要的。图6 不同厂家生产的同种抛光液的机械抛光表面抛光粉的粒径大小和形状主要影响加工工件的表面质量和材料去除速率,通常,粒径越大以及形状越不规则,则材料的去除速率越快,表面质量也越差,如表面粗糙度大、划痕多等;反之,则去除速率慢,表面质量好。抛光垫具有贮存抛光液及去除抛光过程产生的残留杂质等作用,抛光垫的种类(或材质)也是影响工件抛光效果的主要因素之一。图7为目前一些常见抛光垫的表面纹理及根据仿生学理论研究设计的抛光垫表面纹理图,主要包括放射状纹理、栅格状纹理、同心圆状纹理、放射同心圆复合状纹理、螺旋状纹理及葵花籽状纹理。图7 抛光垫表面纹理图化学机械抛光化学机械抛光工艺的抛光机理为:加工工件表面与抛光垫上的抛光液接触后,将同时受到来自抛光液中的不规则抛光颗粒的挤压作用和强氧化剂的腐蚀作用,即工件表面同时受到机械作用和化学作用。化学机械抛光的主要目的包括去除工件表面损伤层、降低表面粗糙度、消除或减少表面划痕以及工件表面平坦化等。影响化学机械抛光工艺对加工工件表面抛光效果的因素有机械作用和化学作用的协同情况、抛光粉种类、抛光粉粒径大小及形状、氧化剂种类及浓度、抛光垫种类、抛光盘转速、工件夹具转速、施加在工件上的压力、抛光液滴速以及抛光时间等。抛光粉的粒径大小及形状、抛光垫的种类(或材质)、抛光垫的使用时长、抛光盘转速、工件夹具转速、施加在工件上的压力大小以及抛光时间等因素对工件抛光效果的影响原理与机械抛光工艺中所述影响原理类似。化学抛光化学抛光工艺的抛光机理为:当加工工件与抛光垫上的化抛液接触后,化抛液中的氧化剂将对工件表面进行腐蚀,在抛光垫与工件表面的相互运动作用下,工件表面上的损伤层以及浅划痕等都会被去除,得到光亮、平整且无任何划痕及损伤的外延级衬底表面。化学抛光工艺中使用的抛光液只包含氧化剂和溶剂,没有磨料颗粒或抛光颗粒。同时,对工件进行化学抛光时,没有对工件施加额外的压力,只有抛光夹具的自身重力。因此,化学抛光工艺中几乎不涉及到机械作用,只有纯化学腐蚀作用。化学抛光工艺的装置及抛光原理如图8所示。图8 化学抛光装置及抛光原理示意图化学抛光的主要目的是去除化学机械抛光或机械抛光工艺对晶片表面造成的损伤层,并同时为生长碲镉汞薄膜提供新鲜、洁净、无损的外延级表面。影响化学抛光工艺对加工工件表面抛光效果的因素有氧化剂种类及浓度、抛光垫种类、抛光盘转速、抛光夹具自重、化抛液滴速以及抛光时间等。表面位错揭示与硅等几乎无缺陷的单晶材料相比,碲锌镉单晶材料具有较高的位错密度(10⁴~10⁵/ cm⁻²)。目前,观察位错的主要手段是化学腐蚀法,虽然透射电子显微镜法(TEM)也能对材料的位错进行检测,但因其具有设备成本太高、制样非常困难、视场太小等原因而无法作为常规的位错检测手段。化学腐蚀法因具有成本低、制样简单、操作简单且所观察的视场较大等优势而成为了目前主要的表面位错检测手段。碲镉汞薄膜主要是通过在碲锌镉衬底的(111)面和(211)面上外延得到,因此,要求碲锌镉衬底表面不能存在损伤及大量的微观缺陷。衬底表面的损伤主要来自于表面处理工艺,而微观缺陷如沉淀物、位错、空位等则是在晶体生长过程中产生的。事实上,表面损伤对应的是晶格的周期性被破坏,即晶体表面形成大量的位错。所以,对于外延衬底而言,不管是损伤还是微观缺陷,只要超过一定的数量都会直接影响碲镉汞外延薄膜的质量,故而需要对碲锌镉衬底表面的缺陷(包括损伤和微观缺陷)进行检测,从而筛选出优质的外延级衬底。如上所述,化学腐蚀法是目前最常用的位错检测手段,因此这部分主要介绍用于揭示碲锌镉表面位错缺陷的腐蚀液。(111)A面位错揭示腐蚀液1979年,K. Nakagawa等人报道了一种可用来揭示碲化镉(111)A面位错缺陷的化学腐蚀液,其组分为20 mL H₂O:20 mL H₂O₂:30 mL HF。(111)和(211)B面位错揭示腐蚀液1995年,W. J. Everson等人报道了一种可用于揭示碲锌镉(111)和(211)B面位错缺陷的化学腐蚀液,其组分为6 mL HF: 24 mL HNO₃:150 mL C₃H₆O₃(乳酸),即体积比为1:4:25。由于这种化学腐蚀液是W.J.Everson首次提出并验证其有效性的,所以作者将这种腐蚀液命名为“Everson腐蚀液”。其他晶面位错揭示腐蚀液1962年,M. Inoue等人报道了一种可揭示碲化镉(CdTe)不同晶面上位错缺陷的EAg腐蚀液,EAg腐蚀液的组成为10 mL HNO₃ : 20 mL H₂O : 4 g K₂Cr₂O₇ 😡 g AgNO₃总结与展望本文主要从碲锌镉表面处理工艺及表面位错揭示两个方面对碲锌镉衬底的表面处理工艺研究进行了详细介绍。表面处理工艺主要包括机械研磨、机械抛光、化学机械抛光以及化学抛光,研磨或抛光工艺中的参数选择直接影响最终的衬底表面质量。碲锌镉衬底的表面位错缺陷主要通过Everson或Nakagawa两种化学腐蚀液进行揭示,Everson腐蚀液主要揭示碲锌镉(111)B面的位错缺陷,Nakagawa腐蚀液主要揭示(111)A面的位错缺陷。另外,随着碲镉汞红外焦平面探测器技术的发展,碲锌镉衬底的尺寸逐渐增大,这意味着获得外延级碲锌镉衬底表面将会更加困难,这对晶片表面平整度、晶片面型控制及表面清洗等都提出了更高的技术要求。因此,如何在现有的基础上探索出适用于大尺寸碲锌镉衬底的表面处理技术是至关重要的,这也是接下来亟待解决的技术问题和努力的方向。
  • 应用 | 木材疏水表面的构建
    KRÜ SS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜ SS研究背景天然木材内因含有羟基等亲水基团,导致其吸水后产生膨胀、开裂、腐朽、变形等问题。一些环境因素,如湿度和酸雨,严重影响木材的耐用性和使用性能,对木制品造成损坏。将仿生疏水概念引入木材表面改良领域,在构建疏水表面的同时也赋予木材自清洁、耐化学性等特性,可提高木材在恶劣条件下的稳定性和耐久性,延长木材的使用寿命。本研究选择人工林杨木来制备疏水表面,通过自组装在木材表面构建TA-Fe III复合涂层,利用TA-Fe III复合涂层的高粘附性和二次反应活性将Ag+还原为Ag纳米颗粒沉积在木材表面,设计构建了物理化学特性稳固型木材疏水表面,并对其表面形貌结构、接触角及疏水表面的稳固性进行测试表征。 疏水木材的制备过程实验方法与仪器:本文采用KRÜ SS DSA25接触角分析仪DSA25S接触角分析仪图片结果与讨论1.接触角测试如图1所示,处理前后木材表面接触角的变化。未改性木材表面的接触角为52.0°,这是由于木材表面的有大量亲水基团和丰富的孔隙结构,使木材表现出较强的亲水性,随着接触时间延长,接触角迅速下降,水滴很快渗入到木材中。经过疏水处理的木材试样,在180s内均保持在138.0°以上,表现出了优异的疏水性能。随着自组装次数的增加,TA-Fe III/木材试件的接触角从138.2°增加到了143.7°,TA-Fe III/Ag/木材试件的接触角从142.3°增加到了146.7°。在相同的处理次数下,TA-Fe III/Ag/木材试件的接触角高于TA-Fe III/木材试件,证明Ag纳米颗粒在木材表面沉积构建了良好的表面粗糙度,使得木材表面疏水性能得到明显提高。图1 木材改性前后的接触角2.化学耐久性测试疏水木材表面的耐化学性是影响疏水表面的重要因素。研究表明,强酸、强碱、有机溶剂浸泡等恶劣环境下都会影响疏水木材的疏水效果,使得木材表面接触角降低,逐渐丧失疏水性能。将疏水木材分别浸没于不同的化学试剂中 ( pH=2. 0的HCI溶液,pH=12. 0的NaOH溶液,正己烷,丙酮,乙醇,DMF) 中24h,在紫外光照射以及用开水煮沸后,疏水木材接触角均高于135. 0°(图2) ,说明在恶劣环境下,疏水木材依然可以具有优异的稳定性和耐久性。将疏水木材进行超声清洗,木材表面的接触角几乎无变化,证明疏水涂层和木材间有稳固的粘合性能。以上结果证明,所制备的疏水木材即使在恶劣、严苛的条件下,也可以保持良好的疏水性,也证明了该疏水涂层的化学耐久性和环境稳定性。 图2 疏水木材耐化学性测试结论本研究基于TA-Fe Ⅲ多次自组装在木材表面构建疏水表面,在温和、环保且不会破坏试件本身的条件下,将涂层完全覆盖于基材表面。多次自组装和利用复合涂层二次反应活性还原Ag+粒子、接枝疏水长链,可以使得木材表面被涂层完全覆盖,并逐步完善木材表面的粗糙度,使得木材表面具有更加优异的疏水性能。随着自组装次数的增加,TA-Fe III /木材试件的接触角从138. 2°增加到了143.7°,TA-Fe III/Ag /木材试件的接触角从142.3°增加到了146.7°。此外,构建的仿生疏水表面具有优异的化学耐久性和环境稳定性,即使在经过恶劣环境后,疏水木材接触角均高于135.0°,依然可以保持优异的疏水性能。参考文献[1]傅敏,李明剑,何文清等.基于TA-Fe~Ⅲ还原Ag离子构建木材疏水表面[J].化学研究与应用,2023,35(01):75-82.
  • 烟用热熔胶及其粘接材料表面性能的研究
    研究背景近年来,随着我国工业自动化进程的不断加快,热熔胶由于具有环保、固化速度快等特点,其发展取得显著成效。与此同时,高装饰包装材料的应用不断扩大,对热熔胶的粘接性能提出了新的挑战。卷烟工业中对烟支的“软包硬化”包装材料便是其中之一。烟支包装材料的正面和背面均为光滑平面,使用EVA或聚烯烃热熔胶对其进行粘接,经常出现开胶、粘接不牢等问题。 为了扩大EVA热熔胶的应用范围,提高其在难粘材料上的应用,本文采用OWRK法测定热熔胶及其原料、烟用包装材料在常温下的表面能,初步讨论烟用包装材料的表面能,热熔胶原料表面能与热熔胶表面能的关系,最后结合粘接力学数据,讨论材料表面能与粘接性能的关系。 实验方法仪器:Drop Shape Analyzer-DSA25接触角测量仪,德国KRÜSS有限公司方法:将热熔胶或原料分别放在隔离纸上,放入烘箱中30min(150℃)后取出,室温冷却至少2h,选择表面平整处,裁剪成2 cm × 1cm 样品,备用。将上述样品放在DSA25平台上,使用去离子水和二碘甲烷两种液测定接触角,然后进行表面能及分量的计算。 file:///C:/Users/Thinkpad/AppData/Local/Temp/ksohtml10020/wps961.jpg 结果与讨论1.包装材料包装材料的接触角、表面能及其分量见表1。表1 烟用包装材料数据表 烟用包装材料在生产过程中,其表面处理工艺有一定的不同,纸箱表面的瓦楞纸需要加入大量的疏水剂和施胶剂(如疏水性淀粉胶等),为提高强度防止吸水后变软,所以其与水的接触角大于90°,实测在103.5°,二碘甲烷则体现完全润湿,无法测定其接触角。 普通条盒纸和软包硬化纸均是以白卡纸为基材,具有一定的强度,表面进行不同处理更加考虑其外观性及手感。普通条盒纸的正反面与水的接触角远低于软包硬化纸,同时,前者正面与二碘甲烷的接触角同样低于后者正面的。前者正面的表面能及其分量均高于后者正面,条盒白卡纸正面表面能44.7mN/m,软包硬化纸正面31.5mN/m。因此,普通条盒纸为易粘接材料,而软包硬化材料属于难粘接材料。 2.烟用热熔胶主要原料烟用热熔胶主要原料的接触角、表面能及其分量见表2。表2 烟用热熔胶主要原料数据表 增粘树脂的表面能在42.0 ~61.4mN/m,属于高表面能材料,用于提高热熔胶的粘接性。由表2可知,1#~4#原料为烟用热熔胶主体树脂,均为乙烯的共聚物。值得注意的是,在相同条件下,低醋酸乙烯含量的聚醋酸乙烯与乙烯共聚树脂对纤维类基材的粘接性要优于高醋酸乙烯含量。
  • 商用表面增强拉曼光谱传感器面世
    据每日科学网日前报道,新加坡研究人员利用黄金纳米阵列开发出适于商业应用的高性能表面增强拉曼光谱传感器。   表面增强拉曼光谱技术(SERS)是在印度科学家拉曼1928年发现拉曼散射现象的基础上发展起来的。利用拉曼光谱技术可以非常方便地鉴定物质成分,现已成为探测界面特性和分子间相互作用、表征表面分子吸附行为和分子结构的有效工具,广泛应用于癌症诊断和食品检测等领域。不过,由于很多分子直接通过拉曼光谱无法检测出信号,需要通过拉曼增强技术,将这些分子吸附在纳米金属表面,在特定波长的激光照射下,利用表面增强拉曼光谱传感器检测出待检物质。   新加坡科技研究院(A*STAR)材料工程研究所的研究人员制造出一种非常密集且有规律的黄金纳米阵列,在自组装和传感等方面具有独特的优点。此外,他们还成功将该纳米阵列置于光纤端头涂层中,使得该技术有望在遥感监测危险废弃物方面具有广泛的应用前景。   研究人员在涂有自聚物纳米粒子的表面进行纳米阵列的自组装,较小的黄金纳米粒子会自发附着。仅仅依靠涂层和吸附这些简单的过程,就可稳定高产地形成小于10纳米的纳米簇。通过调整聚合物的规模和密度等特征,研究人员可以调节纳米簇的大小和密度,使表面增强拉曼散射达到最大化。该技术的效率非常高:涂满100毫米直径的晶片,或200光纤端头,仅需要不超过10毫克的聚合物和100毫克的黄金纳米粒子,而聚合物和纳米粒子均可低成本大量生产。   由于纳米阵列的形成过程完全是自组装过程,因此该技术不需要专门的设备或特定的无尘室,非常适合低成本商业化生产。目前该技术已在新加坡、美国和中国申请了专利。
  • 2013 全国表面分析科学会议主题报告
    仪器信息网讯 2013年8月20-21日,&ldquo 2013 全国表面分析科学与技术应用学术会议暨表面分析国家标准宣贯及X 射线光电子能谱(XPS)高端研修班&rdquo 在北京举行。   X射线光电子能谱仪(XPS)与俄歇电子能谱(AES)是重要的表面分析技术手段。XPS在分析材料的表面及界面微观电子结构上早已体现出了强大的作用,它可用于材料表面的元素定性分析、半定量分析、化学状态分析,微区分析以及深度剖析(1-2nm)等。俄歇电子能谱(AES)主要检测由表面激发出来的俄歇电子来获取表面信息,它不仅能定性和定量地分析物质表界面的元素组成,而且可以分析某一元素沿着深度方向的含量变化。   此外,还有二次离子质谱,辉光放电光谱、扫描探针显微镜以及全反射X射线荧光光谱等表面分析技术。 会议现场   与会专家介绍了这些分析技术在电子器件、半导体、高分子材料、纳米材料、催化剂、薄膜材料等领域的应用情况。其中以XPS方法为主。 王金淑 谢芳艳   在电子器件、半导体领域的应用,北京工业大学王金淑采用X射线光电子能谱法对添加不同含量的氧化镧掺杂钼粉的性能以及可用于电真空器件的镧钼阴极的表面元素状态进行了研究。中山大学谢芳艳利用XPS为主要研究手段,研究了半导体器件能级结构、电极功函数调制、界面电荷转移和扩散、修饰层作用与器件寿命等问题。 郝建薇 田云飞   在橡塑材料、塑料分析中的应用,北京理工大学郝建薇利用XPS以45° 掠角表征了硅橡胶/乙烯-乙烯乙酸(MVPQ/EVA28,VA含量28%)共混材料耐油耐热测试前后样品表面C、O、Si元素浓度的变化 采用变角XPS分别以10° 、45° 及80° 掠角表征了以上共混材料耐热老化前后样品表面元素浓度随深度的变化。四川大学田云飞采用X射线光电子能谱对微等离子体处理后的工程塑料聚苯硫醚材料表面进行分析,并与Ar离子刻蚀后的材料表面进行了对比。 殷志强 吴正龙   X射线光电子能谱(XPS)在分析薄膜化学组分及其分布中有着重要的作用。清华大学殷志强介绍了表面分析技术在玻璃真空管太阳集热器和能效薄膜研究中的应用。北京师范大学吴正龙介绍了超薄氧化硅薄膜包覆纳米铜的SERS 基体的初步研究。 刘义为 陆雷   广东东莞新科技术研究开发有限公司刘义为利用AES表征了微区超薄类金刚石薄膜的性质和厚度测量、SP2含量、界面分析等。中国工程物理研究院陆雷利用SEM、AFM、AES和XPS对铍薄膜的表面形貌、O含量、Be薄膜同Cu基片间的扩散现象进行了研究。 严楷 王江涌   清华大学严楷运用俄歇电子能谱、原子力显微镜等分析方法,研究经过低地球轨道环境模拟装置对Au/Cu/Si薄膜样品进行紫外辐照处理的Au/Cu复膜表面和界面结构变化,追踪表面形态和界面层产物的分布,分析原子扩散过程。汕头大学王江涌介绍了溅射深度剖析的定量分析及其应用的最新研究进展。 高飞 叶迎春   原位分析也是XPS技术的一个研究热点。南京大学高飞认为准原位XPS(Ex-situ)分析在一定程度上可以解决常规XPS分析中的&ldquo Pressure Gap&rdquo 的问题,结合相关表征手段,可以成为探究催化剂在反应条件下反应过程的有利工具。   中国石化上海石油化工研究院叶迎春利用近常压原位XPS研究了介孔氧化铈和棒状氧化铈负载贵金属在水煤气转化反应中氧化铈产生氧空位的能力。并通过原位XPS研究结合WGS催化反应数据,认识了Cu-Fe3O4-Al2O3催化剂在不同预处理条件下发生的不同化学过程。 钟发春 程斌   还有中国工程物理研究院钟发春利用XPS研究了PBX炸药、固体推进剂及锆粉点火剂的表面元素组成和结构特性 利用XPS的线扫描功能研究了不同老化时间的固体推进剂特征元素从推进剂-衬层的表面元素变化趋势 并利用XPS-MS联机技术可用于研究固体炸药材料在激光作用下的降解行为。北京化工大学程斌介绍了XPS在高分子材料鉴别、高分子共聚/共混物组成测定、高分子材料表面改性研究方面的应用。 邱丽美 徐鹏   中国石化石油化工科学研究院邱丽美利用XPS研究了稀土在分子筛笼内外的存在比例对催化性能的影响。国家纳米中心徐鹏介绍了分别将纤维状样品压片在金属In和导电胶带上进行测试,对XPS谱图的影响分析。 王海   XPS、AES、SIMS等表面分析技术因具有较强的基体效应而通常被认为是半定量的分析方法,很难对材料表面化学组成进行准确定量。因此,表面分析的量值溯源问题再国际上日益受到关注。中国计量科学研究院王海介绍说:&ldquo 我国的表面分析计量研究始于&lsquo 十一五&rsquo 期间,目前已参加了2项关键比对和3项研究性比对,都取得了不多不错的成绩。&rdquo 张增明 张毅   此外,中国科学技术大学张增明利用紫外可见分光光度计及光谱椭偏仪测量了薄膜样品在300-1000nm波长范围内的正入射时的透射谱,及68° 、78° 入射时的椭偏参数谱,并经过综合分析精确测定了不同薄膜的厚度及光学常数。薄膜厚度经过原子力显微镜测试及X射线反射等不同方法验证准确有效。   辉光放电光谱技术是基于惰性气体在低气压下放电的原理而发展起来的光谱分析技术。与其他表面分析技术如俄歇电子能谱(AES)、二次离子质谱(SIMS)相比,具有分析速度快,分析成本低等优势。宝钢集团张毅利用辉光放电光谱,通过光源条件实验,确定了最佳分析参数 选用多种基体标准样品,通过溅射率校正建立了标准工作曲线,定量分析钢铁材料表面纳米级薄膜或镀层中元素的含量及其元素分布状况。(撰稿:秦丽娟)   相关新闻:2013 全国表面分析科学与技术应用学术会议举行   X 射线光电子能谱(XPS)高端研修班在京举办   2013全国表面分析科学会议上的仪器厂商
  • 铝表面超疏水涂层的疏冰性研究
    在低温条件下,室外设备的冻结已经成为一个严重的问题。特别是电路线、道路、飞机机翼、风力涡轮机等基础设施部件结冰对经济和生命安全造成了严重影响。铝(Al)及其合金具有重量轻、稳定性好、韧性高等优点,广泛应用于各个工业领域。然而,酸雨会腐蚀金属基底,冰雨会对铝结构造成严重的冰积。疏冰性被认为是通过保持基底表面尽可能无水和降低冰晶与基底之间的粘附力来延缓或减少冰在表面的积累。超疏水(SHP)表面由于其拒水和自清洁特性而具有疏冰性。Tan等通过水热反应在Al表面形成机械坚固的微纳结构,然后用十六烷基三甲氧基硅烷修饰形成SHP表面。其中水接触角(WCA)和滑动角(SA)采用光学接触角仪进行测量,水滴为10µ L。该SHP表面在酸性和碱性环境中都表现出令人印象深刻的疏水性,并表现出显著的自清洁和疏冰性能。图1. (a)裸铝、(b)铝表面微纳和(c)十六烷基三甲氧基硅烷改性SiO2微纳表面的WCA值。(d)不同酸碱溶液在SHP表面静置1min后的静态接触角。(e)在SHP表面静置30min后的水滴(红色1.0,透明7.0,黑色14.0,附有pH试纸)图片。(f)在不同溶液中浸泡30min后的耐酸碱性测试(左)和静态WCA(右):水(上),0.1 M HCl(中),0.1 M NaOH(下)涂层的润湿性主要受两个因素的影响:表面粗糙度和表面能,润湿性可以通过静态WCA可视化。裸铝(图1(a))、具有微纳米SiO2表面的氧化铝(图1(b))和SHP表面(图1(c))的WCA值分别为87°、134°和158°。WCA值的显著变化说明了微纳结构和十六烷基三甲氧基硅烷对SHP表面的重要性。同时,SHP表面的SA值小于5°。SHP表面也采用不锈钢和合金材料(Supplementary Movie 1)。根据Nakajima等人的报道,大的WCA和低的SA预计会导致液滴从表面滚落。图1(d)为pH 1.0 ~ 14.0溶液在SHP表面的静态WCA: WCA在148°~ 158°之间,当pH值接近7.0时,WCA值较大。图1(e)为SHP表面水滴形状(体积约60 μL, pH 1.0 ~ 14.0)。30分钟后形状没有变化。这显示出良好的耐酸性或碱性溶液。图1(f)进一步说明了SHP涂层的耐酸碱性能。左图为实验方法,右图为水(154°)、0.10 M HCl(142°)、0.10 M NaOH(143°)浸泡30 min后的WCA。这些结果表明,SHP涂层在各种酸性/碱性环境下都具有良好的性能。图2. 裸铝和SHP Al的WCA和SA在结冰状态下,进一步测量5次重复实验的WCA和SA,结果如图2所示。SHP表面的WCA约为154°,SA小于8°,而裸露Al表面的WCA约为85°,SA大于10°。因此,在SHP铝表面获得了良好的疏冰性。参考文献:[1] Tan, X., Wang, M., Tu, Y., Xiao, T., Alzuabi, S., Xiang, P., Chen, X., Icephobicity studies of superhydrophobic coating on aluminium[J]. Surface Engineering, 2020, 37(10), 1239–1245.
  • 小科普:肺功能和肺泡表面活性物质
    存在于肺泡内液气界面的肺表面活性物质的生理意义有:防止肺水肿、维持大小肺泡的稳定性和降低吸气阻力。肺表面活性物质还有减弱表面张力对肺毛细血管中液体的吸引作用,防止液体渗入肺泡(肺水肿)。根据Laplace定律,P=2T/r(P是肺内的压力,T是肺泡表面张力,r是肺泡半径)。假设大、小肺泡的表面张力一样,那么肺泡内压力肺泡半径成反比,大的肺泡,压力小;小的肺泡,压力大。如果这些肺泡彼此连通,小肺泡塌陷,大肺泡膨胀,肺泡将失去稳定性。但实际并未发生这种情况,这因为肺泡存在着表面活性物质→降低肺泡表面张力→防止小肺泡的塌陷+防止大肺泡的膨胀破裂,保持大小肺泡的稳定性,有利于吸入气在肺内得到较为均匀的分布。此外,肺泡表面活性物质能降低表面张力,即促进肺扩张→降低吸气阻力。肺弹性阻力使肺具有回缩倾向,故成为肺扩张的弹性阻力,肺组织的弹性阻力仅约占肺总弹性阻力的1/3,而表面张力的约占2/3。因此,表面张力对肺的张缩有重要的作用。肺弹性阻力的来源:肺弹性阻力来自肺组织本身的弹性加回缩力和肺泡内侧的液体层同肺泡内气体之间的液-气界面的表面张力所产生的回缩力。肺充气时,在肺泡内衬液和肺泡气之间存在液-气界面,从而产生表面张力。球形液-气界面的表面张力方向是向中心的,倾向于使肺泡缩小,产生弹性阻力。肺泡表面活性物质由肺泡Ⅱ型细胞合成并释放,分子的一端是非极性疏水端,另一端是极性亲水端,是复杂的脂蛋白混合物,主要成分是二棕榈酰卵磷脂(DPPC)。DPPC分子垂直排列于液-气界面,单分子层分布在液-气界面上,并随肺泡的张缩而改变其密度。肺泡表面活性物质的密度越大,降低表面张力的作用越强。成年人患肺炎、肺血栓时,表面活性物质减少→表面张力↑→肺泡塌陷→肺不张。初生儿因缺乏表面活性物质,发生肺不张和肺泡内表面透明质膜形成,造成呼吸窘迫综合症,导致死亡。现在已可应用抽取羊水并检查其表面活性物质含量的方法,协助判断发生这种疾病的可能性,采取措施,加以预防。例如,如果含量缺乏,则可延长妊娠时间或用药物(糖皮质类固醇)促进其合成。
  • 北京表面分析专业委员会成立
    仪器信息网讯 2014年10月31日,北京理化分析测试技术学会表面分析专业委员会(以下简称&ldquo 委员会&rdquo )在清华大学理科楼D203会议室举行了成立仪式,之后进行了小型的技术交流,20余名从事表面分析技术研究与应用的人员参加了此次活动。 北京表面分析专业委员会成立现场   材料表面的成分、结构、化学状态等与内部有明显的不同,而表面特性对材料的物理、化学等性能影响很大。随着材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业及环境领域等高新技术的迅猛发展,对于表面分析技术的需求日益增多。同时,由于最近几十年超高真空、高分辨和高灵敏电子测量技术的快速发展,表面分析技术也有了长足进步。目前,全球已经开发了数十种常用的表面分析技术,如X射线光电子能谱(XPS)、俄歇电子能谱(AES)、二次离子质谱(TSIMS)、辉光放电光谱(GD)、扫描探针显微镜(STM)等。   北京理化分析测试技术学会秘书长桂三刚先生祝贺委员会成立 高校分析测试中心研究会理事长李崧教授祝贺委员会成立   国内表面分析技术起步于80年代,广泛应用于基础科研、先进材料研制、高精尖技术、装备制造等领域。北京地区拥有大型表面分析仪器设备20多台,从事专业表面分析相关工作的人员有50多人,大量分布于各大高校、科研院所。迫切需要搭建学术和技术交流服务平台,以促进表面分析技术的发展和应用,壮大表面分析科学研究队伍,繁荣我国表面科学技术。   在北京理化分析测试技术学会、高校分析测试中心研究会等组织的支持下,清华大学朱永法教授、北京师范大学吴正龙教授、中科院化学所刘芬研究员、清华大学姚文清教授等表面分析科学骨干人员的努力下,北京表面分析专业委员会于今天正式宣告成立。 朱永法教授报告&ldquo 委员会成立背景范围目标及拟开展的活动&rdquo   朱永法教授出任委员会第一届理事长,吴正龙教授、刘芬研究员、姚文清教授为副理事长,北京大学谢景林教授、北京化工大学程斌教授、中国计量科学研究院王海研究员、中石化石油化工科学研究院邱丽美高工为理事。   委员会以团结北京地区有关分析测试单位和分析测试工作者,促进我国分析测试科学技术的普及、开发和提高 为表面分析领域的学术交流、技术培训、标准宣贯等搭建良好的平台为宗旨。   委员会将以全国微束分析标准化技术委员会表面分析技术委员会、国家大型科学仪器中心-北京电子能谱中心为开展活动的依托单位。今后计划开展学术交流、技术培训服务 国家标准宣贯活动 实验室间交流比对等活动。 姚文清报告&ldquo 表面分析在材料中的应用&rdquo 吴正龙报告&ldquo XPS分析中样品损伤问题 与会代表合影
  • 第十届表面分析技术应用论坛暨表面化学分析国家标准宣贯会第一轮通知
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第十届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将于2023年6月19日举行。论坛以线上会议形式,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。主办单位:国家大型科学仪器中心-北京电子能谱中心;全国微束分析标准化技术委员会表面化学分析分技术委员会;中国分析测试协会高校分析测试分会;北京理化分析测试学会表面分析专业委员会;仪器信息网承办单位:仪器信息网扫码报名会议日程报告时间报告题目报告嘉宾9:00-12:00主持人姚文清(清华大学/国家电子能谱中心副主任)9:00-9:20致辞李景虹(清华大学/国家电子能谱中心/中国分析测试协会高校分析测试分会 院士/主任/主任委员)9:20-10:00待定韩晓东(南方科技大学 教授)10:00-10:40原位红外技术研究光催化界面机制陈春城(中科院化学所 研究员)10:40-11:20基于XPS-SEM的表面分析联用技术和应用葛青亲(赛默飞世尔科技(中国)有限公司 资深应用专家)11:20-12:00重新认识月球表面过程:嫦娥五号月壤的制约李阳(中国科学院地球化学研究所 副主任/研究员)12:00-14:00午休全体观众14:00-17:10主持人刘芬(中科院化学所/表面化学分析分技术委员会秘书长)14:00-14:40待定赵丽霞(天津工业大学 教授)14:40-15:20二次离子质谱(SIMS)质量分辨的测量李展平(清华大学分析中心 高级工程师)15:20-15:50待定北京艾飞拓科技有限公司15:50-16:30国际标准ISO 24417:2022《表面化学分析 辉光放电光谱法分析铁基表面的金属纳米膜》的制定张毅(宝山钢铁股份有限公司中央研究院 教授级高级工程师)16:30-17:10待定孙洁林(上海交通大学 研究员)报名链接:https://www.instrument.com.cn/webinar/meetings/bmfx2023/会议联系会议内容:管编辑,17862992005,guancg@instrument.com.cn会议赞助:刘经理,15718850776,liuyw@instrument.com.cn
  • 第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会第二轮通知
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将以线上会议形式于2022年6月14-15日举行,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。主办单位:国家大型科学仪器中心-北京电子能谱中心全国微束分析标准化技术委员会表面化学分析分技术委员会中国分析测试协会高校分析测试分会北京理化分析测试学会表面分析专业委员会仪器信息网会议主题:能源化学与碳中和本次会议的特邀嘉宾有:中国科学院院士、清华大学化学系学术委员会主任、国家电子能谱中心主任、清华大学分析中心主任李景虹教授;国家杰出青年基金获得者、国家电子能谱中心常务副主任、清华大学朱永法教授;国家杰出青年基金获得者、国家“万人计划”科技创新领军人才、英国皇家化学会会士、中国科学院理化技术研究所光化学转化与功能材料重点实验室主任张铁锐研究员;中国催化青年奖获得者、北京大学化学与分子工程学院马丁教授;国家杰出青年基金获得者、科技部重点研发计划项目负责人、湖南大学王双印教授;国家杰出青年基金获得者、长江学者特聘教授、国家万人计划科技创新领军人才、英国皇家化学会会士、中国科学技术大学熊宇杰教授;国家电子能谱中心副主任、清华大学分析中心正高级工程师姚文清;国家大型科学仪器中心上海无机质谱中心主任、上海市分析测试协会理事长、中国科学院上海硅酸盐研究所公共技术中心主任卓尚军研究员;中科院化学所分析测试中心电子能谱组负责人、高级工程师赵志娟;科技部变革性技术专项咨询专家、中国科学技术大学黄文浩教授。会议日程:6月14日 9:00-16:456月15日 9:00-11:45会议报名:线上会议,免费报名参会,进入会议官网报名或扫描以下二维码报名会议官网:https://www.instrument.com.cn/webinar/meetings/bmfx2022
  • 一轮通知 | 第十一届表面分析技术应用论坛暨表面化学分析国家标准宣贯会
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第十一届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将于2024年8月5-6日举行。论坛以线上会议形式,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。1. 主办单位国家大型科学仪器中心-北京电子能谱中心全国微束分析标准化技术委员会表面化学分析分技术委员会中国分析测试协会高校分析测试分会北京理化分析测试学会表面分析专业委员会仪器信息网2. 会议时间2024年8月5日-6日3. 会议形式仪器信息网“3i讲堂”平台4. 会议日程报告时间报告题目报告嘉宾表面分析技术与应用专场主持人:朱永法 教授9:00-9:50表面等离子体电化学显微成像清华大学李景虹 院士9:50-10:30Hydrogen Evolution via Interface Engineered Nanocatalysis新加坡国立大学陈伟 教授10:30-11:00基于原位XPS-Raman的表面分析联用技术和应用赛默飞11:00-11:30待定岛津11:30-12:10待定重庆大学周小元 教授午休表面分析技术与应用专场主持人:姚文清 研究员14:00-14:40有机共轭半导体可见光催化光水解产氢研究清华大学朱永法 教授14:40-15:10待定艾飞拓15:10-15:50气-液微界面化学成像表征及理化特性复旦大学张立武 教授15:50-16:20待定厂商报告16:20-17:00光电子能谱与能源半导体界面华东师范大学保秦烨 教授17:00-17:40待定电子科技大学董帆 教授表面化学分析国家标准宣贯专场主持人:刘芬 秘书长09:00-09:40GB/T 42518-2023 锗酸铋(BGO)晶体 痕量元素化学分析 辉光放电质谱法中科院上海硅酸盐所卓尚军 研究员09:40-10:10待定厂商报告10:10-10:50GB/T 42360-2023 表面化学分析 水的全反射X射线荧光光谱分析中石化石油化工科学研究院有限公司邱丽美 研究员10:50-11:20待定厂商报告11:20-12:00GB/T 43661-2024表面化学分析 扫描探针显微术 用于二维掺杂物成像等用途的电扫描探针显微镜(ESPM,如SSRM和SCM)空间分辨的定义和校准中山大学陈建 教授5. 参会方式本次会议免费参会,参会报名请点击:https://www.instrument.com.cn/webinar/meetings/bmfx2024/ (内容更新中)报名二维码6. 会议联系会议内容:张编辑 15683038170(同微信) zhangxir@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 聚焦表面分析与新能源新材料——“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”在重庆召开
    p    strong 仪器信息网讯 /strong 2017年5月20日,“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”在重庆召开。此次会议由西南大学、重庆大学、赛默飞主办,170多位来自科研院校、以及企业的专家用户参加了此次会议。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/12b30bf7-a060-4205-9d34-a5d5caceaec8.jpg" style=" " title=" 现场1.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/0390c36c-c9b0-41e3-b0cb-ee7138a40ade.jpg" style=" " title=" 现场2.jpg" / /p p style=" text-align: center " 会议现场 /p p   随着我国材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业、生物医药及环境领域等高新技术的迅猛发展,表面分析技术在过去的几十年中有了长足进步,在科学研究领域作用日益增长。“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”正是在这一背景下召开的一个多学科交叉的学术交流会议。 /p p   李长明院士首先代表主办方热情欢迎与会者的到来。在致辞中,李长明院士指出,当今社会的发展离不开新能源的出现和先进能源技术的使用,发展新能源、改善环境污染状况,也是全世界全人类共同关心的问题。此次大会的主题“新能源”即利用新技术新材料进而开发利用的替代性能源,我们期待先进洁净能源技术的持续发展。 /p p   根据国务院印发的《“十三五”国家战略性新兴产业发展规划》纲要,“十三五”期间国家将大力推动新能源汽车、新能源和节能环保产业快速壮大,加快生物产业创新发展步伐,超前布局战略性产业,促进战略性新兴产业集聚发展。而新能源、新材料的发展离不开对其相互作用反应机理的研究,这就使得表面分析技术变得非常关键。此次会议的召开促进了新能源、功能材料利用表面分析技术进行表征以及表面分析技术的最新研究进展及应用的交流与探讨。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/2eac8953-362b-4a2a-8b73-975e8fc3bca3.jpg" title=" Kevin Fairfax.jpg" / /p p style=" text-align: center " 赛默飞表面分析业务总监Kevin Fairfax先生致辞 /p p   Kevin Fairfax先生致辞中介绍了赛默飞以及其材料科学部门的发展情况。2016年赛默飞共收入182.7亿美元,研发支出为7.548亿美元,在全球用于55000多名员工,旗下有thermo scientific、applied biosystem、Invitrogen、Fisher scientific、unity labservices五大品牌。 /p p   而2016年赛默飞收购FEI,为公司带来了业界领先的电子显微技术,让赛默飞在材料科学和结构生物学领域“如虎添翼”,使得赛默飞的材料科学部门能够提供多模式、多尺度的工作流。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/3df60b65-7978-4426-b75c-1f8839e42b0c.jpg" title=" 李长明.jpg" / /p p style=" text-align: center " 西南大学李长明院士致辞后做大会报告 /p p style=" text-align: center " 报告题目:材料功能化及在高效能源转换中的应用 /p p   能源是人类下个100年面临的十大问题之首,李长明院士指出:能源是人类社会存在与发展的基石、是经济发展与人类文明进步的基本约束条件,而如何提高能源转换效率是绿色新能源研究的一个重要课题。在报告中李长明院士介绍了其团队在微纳尺度功能化材料、锂/纳高功率电池、生物燃料电池、锂/纳离子电池、新型太阳能电池、细菌燃料电池等多个研究方向的研究成果。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/51c36be8-1dac-4659-a592-53ab972c9daa.jpg" title=" 杨秀荣.jpg" / /p p style=" text-align: center " 中国科学院长春应用化学研究所杨秀荣院士做大会报告 /p p style=" text-align: center " 报告题目:基于生物质与非贵金属的新能源材料研究 /p p   全球能源消耗面临着巨大危机,据2013年全球能源消费统计,石油只能再用45年、煤还能用200年,同时石油、煤等传统能源造成的环境污染也日趋严重。因此开发具有应用潜能的清洁能源具有重要意义。杨秀荣院士及其团队一直在进行基于生物质与非贵金属的新能源材料研究。在此次报告中,杨秀荣院士介绍了其团队将木耳等不同菌类植物衍生碳用做超级电容器材料、微生物衍生杂原子掺杂碳用于电催化氧还原和超级电容器等研究方面的工作进展。 /p p    span style=" color: rgb(31, 73, 125) " 更多精彩报告内容见后续报道。 /span /p p   据赛默飞表面分析及常量元素分析中国区商务经理汪霆先生介绍,赛默飞一直坚持每年举行表面分析技术交流会,而此次的会议更加用心,为仪器分析方法研究人员与科研人员搭建了交流平台。科研人员在此更加了解了表征方法的最新进展,为未来在科研工作中获得更好的研究成果打下基础 而仪器分析方法研究人员在此开拓了眼界,为未来可能的科研工作埋下伏笔。今年的会议聚焦的是新能源与生物功能材料领域,明年将会聚焦其他热门领域。此次会议的举办也是赛默飞承担作为一家大型企业的社会责任、促进了相关技术的交流。   /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/ea917f84-96f6-47e5-9964-3150260b6eac.jpg" title=" 赛默飞展示.jpg" / /p p   在会场一角,赛默飞展出了台式X射线衍射仪、手持XRF分析仪等仪器以及相关解决方案,引起了与会者的关注。 br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/dd6796c2-4319-46f5-bdf3-23d734110336.jpg" title=" 合影.jpg" / /p p style=" text-align: center " 与会者合影 /p p br/ /p
  • 应用:通过表面能表征等离子体对聚合物表面的处理效果
    研究背景等离子体处理是聚合物表面改性的一种常用方法,一方面等离子体中的高能态粒子通过轰击作用打断聚合物表面的化学键,等离子体中的自由基则与断开的化学键结合形成极性基团,从而提高了聚合物表面活性;另一方面,高能态粒子的轰击作用也会使聚合物表面微观形貌发生改变 。本文提出通过等离子体处理提高 PP的胶粘接强度。利用KRÜ SS光学接触角测量仪DSA100分析了等离子体处理对于PP表面的接触角、自由能的影响。利用胶粘剂将 PP薄膜与铝箔粘接到一起,采用T剥离强度试验方法对PP的胶粘接强度进行了测试,结果表明等离子体处理可以显著提高 PP的胶粘接强度。DSA100型液滴形状分析仪试验样品制备由于PP薄膜表面可能会有油污、脱模剂等残留物,本文采用超声清洗方法对其表面进行实验前的处理。结果与讨论1.PP表面接触角系统分析了等离子体改性的射频功率和处理时间对于PP表面接触角的影响。首先,将处理时间恒定为 120 s,射频功率分别选取了 80 W、120 W、180 W、240 W 和300 W。如图1(a) 所示,PP表面经等离子体处理后,去离子水和二碘甲烷的接触角均有较明显的下降。当射频功率超过120 W时,接触角下降趋势缓慢,此时去离子水的接触角由99.08°降到了79.25°,二碘甲烷的接触角则由69.31°降到了59.39°。当射频功率达到300 W时,去离子水的接触角为 74.88°,二碘甲烷的接触角为55.88°。去离子水属于极性溶液,它的接触角越小表明PP表面润湿性越好,PP与胶粘剂的粘接强度将越高。 图1.薄膜表面接触角的变化其次,将射频功率恒定为 80 W,处理时间分别为30 s、60 s、120 s、300 s和600 s,PP表面的接触角与处理时间的关系如图1(b)所示。可见,随着处理时间的增长,接触角逐渐减小。当处理时间长于120 s时,接触角变化缓慢,此时去离子水的接触角由 99.08°降到了77.39°,二碘甲烷的接触角由69.31°降到了56.05°。结合上述两个实验结果,本文选择射频功率120 W和处理时间120 s作为后续的PP等离子体改性工艺参数数值。2.PP表面自由能本文采用Owens二液法 ,通过测量去离子水和二碘甲烷在 PP表面的接触角,计算出PP表面的自由能。PP表面自由能与射频功率和处理时间的关系如图2所示。从图中可以看出,PP在等离子体处理后,色散分量和极性分量均有所提升,其中极性分量的提升更显著,PP的表面自由能得到了较大提高。经计算,未经等离子体处理的 PP表面色散分量、极性分量和自由能分别为18.68 mJ/m 2 、12.12 mJ/m 2 、30.8 mJ/m 2 ,经等离子体处理后的PP表面色散分量、极性分量和自由能分别为22.27mJ/m 2 、26.64 mJ/m 2 、48.91 mJ/m 2 。即,经等离子体处理后,PP表面色散分量增加了 19.22%,极性分量增加了119.8%,自由能增加了58.8%。可见,PP表面自由能的提高主要归因于极性分量的增加,而极性分量的增加则是由于等离子体处理使得PP表面形成了极性基团,从而有助于提高PP的胶粘接强度。 图2.PP表面自由能3.PP胶接强度根据T剥离强度试验记录的最大剥离力和最小剥离力计算得到平均剥离力(FT),而剥离强度(σT)为 式中:B为测试样品的宽度 ,本文测试样品的宽度为25 mm。在剥离过程中,可以看到胶粘剂形成的胶膜完全保留在铝箔表面,证明胶粘剂对铝箔的粘附性远高于对PP薄膜的粘附性,即通过该实验测试到的剥离强度为PP与胶粘剂之间的粘接强度。未改性的 PP薄膜和改性后的PP薄膜的剥离力与剥离长度的关系曲线如图3所示,由于夹持位置的差异,PP薄膜与铝箔之间开始出现分离的位置稍有不同。在二者刚出现分离时,剥离力较大,之后剥离力逐渐下降并保持稳定。根据上述公式可以计算出,未改性的PP薄膜最小剥离强度为588 kN/m,最大剥离强度为 661.2 kN/m,平均剥离强度为 624.8 kN/m;与之对应,改性后的PP薄膜最小剥离强度为734 kN/m,最大剥离强度为810.8 kN/m,平均剥离强度为775.2 kN/m。即,PP薄膜经过等离子体改性处理后最小剥离强度提高了24.83%,最大剥离强度提高了22.63%,平均剥离强度提高了24.07%。 图3.剥离长度和剥离力的关系结论本文从接触角、表面自由能等方面揭示了等离子体处理提高PP材料胶粘接强度的机理。实验结果表明,经过等离子体改性处理后,PP表面由疏水性变为亲水性,去离子水的接触角由99°减小到了75°,PP表面自由能由31 mJ/m 2 增大到了49 mJ/m 2 ,同时PP表面整体上变得凸凹不平,且出现了大量纳米级凸起和凹坑。PP表面发生的这些化学和物理变化共同作用,使得PP的胶粘接强度提高了24%。参考文献隋裕,吴梦希,刘军山.等离子体处理对于聚丙烯胶粘接强度的影响[J].机电工程技术,2023,52(01):30-32.
  • 晶圆表面缺陷检测方法综述【下】
    上接:晶圆表面缺陷检测方法综述【上】4. 基于机器学习的晶圆表面缺陷检测机器学习主要是将一个具体的问题抽象成一个数学模型,通过数学方法求解模型,求解该问题,然后评估该模型对该问题的影响。根据训练数据的特点,分为监督学习、无监督学习和半监督学习。本文主要讨论这三种机器学习方法在晶圆表面缺陷检测中的应用。机器学习模型比较如表2所示。表 2.机器学习算法的比较。分类算法创新局限监督学习KNN系列对异常数据不敏感,准确率高。复杂度高,计算强度高。决策树-Radon应用Radon以形成新的缺陷特征。过拟合非常熟练。SVMSVM 可对多变量、多模态和不可分割的数据点进行高效分类。它对多个样本不友好,内核函数难以定位。无监督学习多层感知器聚类算法采用多层感知器增强特征提取能力。取决于激活函数的选择。DBSCAN可以根据缺陷模式特征有选择地去除异常值。样本密度不均匀或样本过大,收敛时间长,聚类效果差。SOM高维数据可以映射到低维空间,保持高维空间的结构。目标函数不容易确定。半监督学习用于增强标记的半监督框架将监督集成学习与无监督SOM相结合,构建了半监督模型。培训既费时又费时。半监督增量建模框架通过主动学习和标记样本来增强模型性能,从而提高模型性能。性能取决于标记的数据量。4.1. 监督学习监督学习是一种学习模型,它基于该模型对所需的新数据样本进行预测。监督学习是目前晶圆表面缺陷检测中广泛使用的机器学习算法,在目标检测领域具有较高的鲁棒性。Yuan,T等提出了一种基于k-最近邻(KNN)的噪声去除技术,该技术利用k-最近邻算法将全局缺陷和局部缺陷分离,提供晶圆信息中所有聚合的局部缺陷信息,通过相似聚类技术将缺陷分类为簇,并利用聚类缺陷的参数化模型识别缺陷簇的空间模式。Piao M等提出了一种基于决策树的晶圆缺陷模式识别方法。利用Radon变换提取缺陷模式特征,采用相关性分析法测度特征之间的相关性,将缺陷特征划分为特征子集,每个特征子集根据C4.5机制构建决策树。对决策树置信度求和,并选择总体置信度最高的类别。决策树在特定类别的晶圆缺陷检测中表现出更好的性能,但投影的最大值、最小值、平均值和标准差不足以代表晶圆缺陷的所有空间信息,因此边缘缺陷检测性能较差。支持向量机(SVM)在监督学习中也是缺陷检测的成熟应用。当样本不平衡时,k-最近邻算法分类效果较差,计算量大。决策树也有类似的问题,容易出现过度拟合。支持向量机在小样本和高维特征的分类中仍然具有良好的性能,并且支持向量机的计算复杂度不依赖于输入空间的维度,并且多类支持向量机对过拟合问题具有鲁棒性,因此常被用作分类器。R. Baly等使用支持向量机(SVM)分类器将1150张晶圆图像分为高良率和低良率两类,然后通过对比实验证明,相对于决策树,k-最近邻(KNN)、偏最小二乘回归(PLS回归)和广义回归神经网络(GRNN),非线性支持向量机模型优于上述四种晶圆分类方法。多类支持向量机在晶圆缺陷模式分类中具有更好的分类精度。L. Xie等提出了一种基于支持向量机算法的晶圆缺陷图案检测方案。采用线性核、高斯核和多项式核进行选择性测试,通过交叉验证选择测试误差最小的核进行下一步的支持向量机训练。支持向量机方法可以处理图像平移或旋转引起的误报问题。与神经网络相比,支持向量机不需要大量的训练样本,因此不需要花费大量时间训练数据样本进行分类。为复合或多样化数据集提供更强大的性能。4.2. 无监督学习在监督学习中,研究人员需要提前将缺陷样本类型分类为训练的先验知识。在实际工业生产中,存在大量未知缺陷,缺陷特征模糊不清,研究者难以通过经验进行判断和分类。在工艺开发的早期阶段,样品注释也受到限制。针对这些问题,无监督学习开辟了新的解决方案,不需要大量的人力来标记数据样本,并根据样本之间的特征关系进行聚类。当添加新的缺陷模式时,无监督学习也具有优势。近年来,无监督学习已成为工业缺陷检测的重要研究方向之一。晶圆图案上的缺陷图案分类不均匀,特征不规则,无监督聚类算法对这种情况具有很强的鲁棒性,广泛用于检测复杂的晶圆缺陷图案。由于簇状缺陷(如划痕、污渍或局部失效模式)导致难以检测,黄振提出了一种解决该问题的新方法。提出了一种利用自监督多层感知器检测缺陷并标记所有缺陷芯片的自动晶圆缺陷聚类算法(k-means聚类)。Jin C H等提出了一种基于密度的噪声应用空间聚类(DBSCAN)的晶圆图案检测与分类框架,该框架根据缺陷图案特征选择性地去除异常值,然后提取的缺陷特征可以同时完成异常点和缺陷图案的检测。Yuan, T等提出了一种多步晶圆分析方法,该方法基于相似聚类技术提供不同精度的聚类结果,根据局部缺陷模式的空间位置识别出种混合型缺陷模式。利用位置信息来区分缺陷簇有一定的局限性,当多个簇彼此靠近或重叠时,分类效果会受到影响。Di Palma,F等采用无监督自组织映射(SOM)和自适应共振理论(ART1)作为晶圆分类器,对1种不同类别的晶圆进行了模拟数据集测试。SOM 和 ART1 都依靠神经元之间的竞争来逐步优化网络以进行无监督分类。由于ART是通过“AND”逻辑推送到参考向量的,因此在处理大量数据集时,计算次数增加,无法获得缺陷类别的实际数量。调整网络标识阈值不会带来任何改进。SOM算法可以将高维输入数据映射到低维空间,同时保持输入数据在高维空间中的拓扑结构。首先,确定神经元的类别和数量,并通过几次对比实验确定其他参数。确定参数后,经过几个学习周期后,数据达到渐近值,并且在模拟数据集和真实数据集上都表现良好。4.3. 半监督学习半监督学习是一种结合了监督学习和无监督学习的机器学习方法。半监督学习可以使用少量的标记数据和大量的未标记数据来解决问题。基于集成的半监督学习过程如图 8 所示。避免了完全标记样品的成本消耗和错误标记。半监督学习已成为近年来的研究热点。图8.基于集成的半监督学习监督学习通常能获得良好的识别结果,但依赖于样本标记的准确性。晶圆数据样本可能存在以下问题。首先是晶圆样品数据需要专业人员手动标记。手动打标过程是主观的,一些混合缺陷模式可能会被错误标记。二是某些缺陷模式的样本不足。第三,一些缺陷模式一开始就没有被标记出来。因此,无监督学习方法无法发挥其性能。针对这一问题,Katherine Shu-Min Li等人提出了一种基于集成的半监督框架,以实现缺陷模式的自动分类。首先,在标记数据上训练监督集成学习模型,然后通过该模型训练未标记的数据。最后,利用无监督学习算法对无法正确分类的样本进行处理,以达到增强的标记效果,提高晶圆缺陷图案分类的准确性。Yuting Kong和Dong Ni提出了一种用于晶圆图分析的半监督增量建模框架。利用梯形网络改进的半监督增量模型和SVAE模型对晶圆图进行分类,然后通过主动学习和伪标注提高模型性能。实验表明,它比CNN模型具有更好的性能。5. 基于深度学习的晶圆表面缺陷检测近年来,随着深度学习算法的发展、GPU算力的提高以及卷积神经网络的出现,计算机视觉领域得到了定性的发展,在表面缺陷检测领域也得到了广泛的应用。在深度学习之前,相关人员需要具备广泛的特征映射和特征描述知识,才能手动绘制特征。深度学习使多层神经网络能够通过抽象层自动提取和学习目标特征,并从图像中检测目标对象。Cheng KCC等分别使用机器学习算法和深度学习算法进行晶圆缺陷检测。他们使用逻辑回归、支持向量机(SVM)、自适应提升决策树(ADBT)和深度神经网络来检测晶圆缺陷。实验证明,深度神经网络的平均准确率优于上述机器学习算法,基于深度学习的晶圆检测算法具有更好的性能。根据不同的应用场景和任务需求,将深度学习模型分为分类网络、检测网络和分割网络。本节讨论创新并比较每个深度学习网络模型的性能。5.1. 分类网络分类网络是较老的深度学习算法之一。分类网络通过卷积、池化等一系列操作,提取输入图像中目标物体的特征信息,然后通过全连接层,根据预设的标签类别进行分类。网络模型如图 9 所示。近年来,出现了许多针对特定问题的分类网络。在晶圆缺陷检测领域,聚焦缺陷特征,增强特征提取能力,推动了晶圆检测的发展。图 9.分类网络模型结构图在晶圆制造过程中,几种不同类型的缺陷耦合在晶圆中,称为混合缺陷。这些类型的缺陷复杂多变且随机性强,已成为半导体公司面临的主要挑战。针对这一问题,Wang J等提出了一种用于晶圆缺陷分类的混合DPR(MDPR)可变形卷积网络(DC-Net)。他们设计了可变形卷积的多标签输出和一热编码机制层,将采样区域聚焦在缺陷特征区域,有效提取缺陷特征,对混合缺陷进行分类,输出单个缺陷,提高混合缺陷的分类精度。Kyeong和Kim为混合缺陷模式的晶圆图像中的每种缺陷设计了单独的分类模型,并通过组合分类器网络检测了晶圆的缺陷模式。作者使用MPL、SVM和CNN组合分类器测试了六种不同模式的晶圆映射数据库,只有作者提出的算法被正确分类。Takeshi Nakazawa和Deepak V. Kulkarni使用CNN对晶圆缺陷图案进行分类。他们使用合成生成的晶圆图像训练和验证了他们的CNN模型。此外,提出了一种利用模拟生成数据的方法,以解决制造中真实缺陷类别数据不平衡的问题,并达到合理的分类精度。这有效解决了晶圆数据采集困难、可用样品少的问题。分类网络模型对比如表3所示。表3. 分类网络模型比较算法创新Acc直流网络采样区域集中在缺陷特征区域,该区域对混合缺陷具有非常强的鲁棒性。93.2%基于CNN的组合分类器针对每个缺陷单独设计分类器,对新缺陷模式适应性强。97.4%基于CNN的分类检索方法可以生成模拟数据集来解释数据不平衡。98.2%5.2. 目标检测网络目标检测网络不仅可以对目标物体进行分类,还可以识别其位置。目标检测网络主要分为两种类型。第一种类型是两级网络,如图10所示。基于区域提案网络生成候选框,然后对候选框进行分类和回归。第二类是一级网络,如图11所示,即端到端目标检测,直接生成目标对象的分类和回归信息,而不生成候选框。相对而言,两级网络检测精度更高,单级网络检测速度更快。检测网络模型的比较如表4所示。图 10.两级检测网络模型结构示意图图 11.一级检测网络模型结构示意图表4. 检测网络模型比较算法创新AccApPCACAE基于二维主成分分析的级联辊类型自动编码。97.27%\YOLOv3-GANGAN增强了缺陷模式的多样性,提高了YOLOv3的通用性。\88.72%YOLOv4更新了骨干网络,增强了 CutMix 和 Mosaic 数据。94.0%75.8%Yu J等提出了一种基于二维主成分分析的卷积自编码器的深度神经网络PCACAE,并设计了一种新的卷积核来提取晶圆缺陷特征。产品自动编码器级联,进一步提高特征提取的性能。针对晶圆数据采集困难、公开数据集少等问题,Ssu-Han Chen等首次采用生成对抗网络和目标检测算法YOLOv3相结合的方法,对小样本中的晶圆缺陷进行检测。GAN增强了缺陷的多样性,提高了YOLOv3的泛化能力。Prashant P. SHINDE等提出使用先进的YOLOv4来检测和定位晶圆缺陷。与YOLOv3相比,骨干提取网络从Darknet-19改进为Darknet-53,并利用mish激活函数使网络鲁棒性。粘性增强,检测能力大大提高,复杂晶圆缺陷模式的检测定位性能更加高效。5.3. 分段网络分割网络对输入图像中的感兴趣区域进行像素级分割。大部分的分割网络都是基于编码器和解码器的结构,如图12所示是分割网络模型结构示意图。通过编码器和解码器,提高了对目标物体特征的提取能力,加强了后续分类网络对图像的分析和理解。在晶圆表面缺陷检测中具有良好的应用前景。图 12.分割网络模型结构示意图。Takeshi Nakazawa等提出了一种深度卷积编码器-解码器神经网络结构,用于晶圆缺陷图案的异常检测和分割。作者设计了基于FCN、U-Net和SegNet的三种编码器-解码器晶圆缺陷模式分割网络,对晶圆局部缺陷模型进行分割。晶圆中的全局随机缺陷通常会导致提取的特征出现噪声。分割后,忽略了全局缺陷对局部缺陷的影响,而有关缺陷聚类的更多信息有助于进一步分析其原因。针对晶圆缺陷像素类别不平衡和样本不足的问题,Han Hui等设计了一种基于U-net网络的改进分割系统。在原有UNet网络的基础上,加入RPN网络,获取缺陷区域建议,然后输入到单元网络进行分割。所设计的两级网络对晶圆缺陷具有准确的分割效果。Subhrajit Nag等人提出了一种新的网络结构 WaferSegClassNet,采用解码器-编码器架构。编码器通过一系列卷积块提取更好的多尺度局部细节,并使用解码器进行分类和生成。分割掩模是第一个可以同时进行分类和分割的晶圆缺陷检测模型,对混合晶圆缺陷具有良好的分割和分类效果。分段网络模型比较如表5所示。表 5.分割网络模型比较算法创新AccFCN将全连接层替换为卷积层以输出 2D 热图。97.8%SegNe结合编码器-解码器和像素级分类层。99.0%U-net将每个编码器层中的特征图复制并裁剪到相应的解码器层。98.9%WaferSegClassNet使用共享编码器同时进行分类和分割。98.2%第6章 结论与展望随着电子信息技术的不断发展和光刻技术的不断完善,晶圆表面缺陷检测在半导体行业中占有重要地位,越来越受到该领域学者的关注。本文对晶圆表面缺陷检测相关的图像信号处理、机器学习和深度学习等方面的研究进行了分析和总结。早期主要采用图像信号处理方法,其中小波变换方法和空间滤波方法应用较多。机器学习在晶圆缺陷检测方面非常强大。k-最近邻(KNN)、决策树(Decision Tree)、支持向量机(SVM)等算法在该领域得到广泛应用,并取得了良好的效果。深度学习以其强大的特征提取能力为晶圆检测领域注入了活力。最新的集成电路制造技术已经发展到4 nm,预测表明它将继续朝着更小的规模发展。然而,随着这些趋势的出现,晶圆上表面缺陷的复杂性也将增加,对模型的可靠性和鲁棒性提出了更严格的挑战。因此,对这些缺陷的分析和处理对于确保集成电路的高质量制造变得越来越重要。虽然在晶圆表面缺陷分析领域取得了一些成果,但仍存在许多问题和挑战。1、晶圆缺陷的公开数据集很少。由于晶圆生产和贴标成本高昂,高质量的公开数据集很少,为数不多的数据集不足以支撑训练。可以考虑创建一个合成晶圆缺陷数据库,并在现有数据集上进行数据增强,为神经网络提供更准确、更全面的数据样本。由于梯度特征中缺陷类型的多功能性,可以使用迁移学习来解决此类问题,主要是为了解决迁移学习中的负迁移和模型不适用性等问题。目前尚不存在灵活高效的迁移模型。利用迁移学习解决晶圆表面缺陷检测中几个样品的问题,是未来研究的难题。2、在晶圆制造过程中,不断产生新的缺陷,缺陷样本的数量和类型不断积累。使用增量学习可以提高网络模型对新缺陷的识别准确率和保持旧缺陷分类的能力。也可作为扩展样本法的研究方向。3、随着技术进步的飞速发展,芯片特征尺寸越来越小、越来越复杂,导致晶圆中存在多种缺陷类型,缺陷相互折叠,导致缺陷特征不均匀、不明显。增加检测难度。多步骤、多方法混合模型已成为检测混合缺陷的主流方法。如何优化深度网络模型的性能,保持较高的检测效率,是一个亟待进一步解决的问题。4、在晶圆制造过程中,不同用途的晶圆图案会产生不同的缺陷。目前,在单个数据集上训练的网络模型不足以识别所有晶圆中用于不同目的的缺陷。如何设计一个通用的网络模型来检测所有缺陷,从而避免为所有晶圆缺陷数据集单独设计训练模型造成的资源浪费,是未来值得思考的方向。5、缺陷检测模型大多为离线模型,无法满足工业生产的实时性要求。为了解决这个问题,需要建立一个自主学习模型系统,使模型能够快速学习和适应新的生产环境,从而实现更高效、更准确的缺陷检测。原文链接:Electronics | Free Full-Text | Review of Wafer Surface Defect Detection Methods (mdpi.com)
  • 【技术知识】表面张力仪在电镀行业中的应用
    以往电镀液的更换或何时再添加接性剂(如促进剂),是以经验值或时间来决定,如此做法是无法量化数据化,不知所以然的做法。电镀液中除了含有欲镀上之金属离子,电解质,错合剂外尚有有机添加剂(光泽剂,结构改良剂,润湿剂),其中润湿剂是影响被镀物(导线架,铜箔基板,构装基板)与金属离子,光泽剂之类等物质之间附着力好坏。镀膜易剥离是因接口活性剂选用不对或是浓度不对所造成。表面张力仪在电镀行业中的应用介绍01如何选定附着力好的电镀液主要是电镀液供货商配方问题,使用者可依供货商所提供电镀液实际去镀看看结果如何而选定,选定后以这新电镀液去测量表面张力值,以这个值当进料检验标准值。电镀液效果好坏还有因选用电镀设备有关,如使用何种电源供应器,选用何种电源供应器技术原理,是整个电镀设备的技术关键点。02制程中电镀液表面张力监控理论上电镀液表面张力愈小,表示电镀液愈容易渗入小缝隙里面,愈容易在被镀物表面润湿,也就是愈容易使用金属离子镀上去。但在品质与经济效益需取得平衡点,故表面张力值需控制在哪一点,这必须有赖使用者去抓。因每一家所考虑的都不一样,故无一定标准。但有一CMC(CriticalMicelleConcentration)点需先抓出来,因为超过CMC点后,表面张力反而不会改变,不但没达到预期效果且浪费接口活性剂。在CMC点之前的任何表面张力值,选一点你们认为制程上的,作为监控的标准值。当CMC点与标准值定下来后,再定时作电镀液取样量测。03结论假设金属离子(欲镀物)浓度是在控制范围内,但因无法渗入较小缝隙内,会造成缝隙内厚度不均匀甚至没镀到,或因润湿性不好除了厚度不均匀外,更是造成易剥离主要原因。表面张力计与底材表面自由能分析仪界面科学领域中,有一物化性质很值得去了解与应用它,尤其在精密化学,半导体,光电等新兴科技产业,在研发,制程改善和品保方面常会碰到界面上瓶颈问题,但因人们没深入去了解此一物化现象,似懂非懂,没有很清晰建立起正确观念,这些观念就是液体表面张力,固体表面自由能与表面自由能分布,和润湿功在实务解释应用上所代表的意义如何,因而无法利用这些观念去发现问题之所在,以谋求解决之道。只要把这物化性质清晰了解后,配合表面张力计和底材表面自由能分析仪的数据,相信可以解决许多表面张力方面的问题。相关仪器A1200自动界面张力测定仪基于圆环法(白金环法),测量各种液体的表面张力(液-气相界面)及液体的界面张力(液-液相界面)。分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成,是相关行业考察产品质量的重要指标之一。广泛用于电力、石油、化工、制药、食品,教学等行业。执行标准适应标准:GB/T6541
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制