当前位置: 仪器信息网 > 行业主题 > >

高盐基质

仪器信息网高盐基质专题为您整合高盐基质相关的最新文章,在高盐基质专题,您不仅可以免费浏览高盐基质的资讯, 同时您还可以浏览高盐基质的相关资料、解决方案,参与社区高盐基质话题讨论。

高盐基质相关的资讯

  • 颜宁与高帅合作新作出炉!冷冻电镜助力揭示药物调控钙离子通道分子机制
    论文题为“Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels”(《索非布韦和碘胺酮药物联用阻断L型钙离子通道引起严重不良作用的分子机制》),通过高分辨冷冻电镜、结合细胞活性、分子模拟等实验,揭示了丙肝特效药索非布韦与抗心律失常药碘胺酮联合使用产生严重副作用的分子机制,为开发更加安全的丙肝治疗药物奠定了结构基础,为药物副作用临床研究带来新的启示。高帅和美国普林斯顿大学博士后姚霞博士为共同第一作者,高帅和颜宁为共同通讯作者。索非布韦作为靶向丙肝病毒NS5B聚合酶的药物使得丙肝的治愈率达到近乎百分百,碘胺酮为抗心律失常药物主要通过抑制心脏的离子通道发挥作用。索非布韦与碘胺酮联合用药后,发现患者出现严重的心律过缓现象,甚至出现一例死亡的病例,深入研究后发现索非布韦或其类似物可以增强碘胺酮对L型钙离子通道的抑制作用。通过高分辨冷冻电镜结构发现,碘胺酮主要通过疏水作用结合在钙离子通道开放窗位点,其叔胺基团指向离子孔与索非布韦的磷酸基团存在静电相互作用,将索菲布韦稳定在离子孔里面,阻碍钙离子的通过。此外我们通过细胞实验发现索非布韦与碘胺酮存在协同抑制作用,与二氢吡啶类降血压药物(尼菲地平等)抑制无协同作用,与心血管药物维拉帕米存在竞争性抑制作用,我们通过结构分析解释了这两种心血管药物不产生类似副作用的原因。更重要的是,我们通过分子对接技术发现,仅需要改变索非布韦的磷酸手性就可以打破分子之间的相互作用,提高抗丙肝药物的安全性。这是继2021年7月Nature、2022年4月Cell Research发表靶向钙离子通道的镇痛药物齐考诺肽,抗晕动症药物桂利嗪药物作用机制以来,高帅在该领域的又一系统性、突破性进展,展现了结构生物学对药物研发、药物评价的积极作用,为新型创新药的研发奠定了重要的结构基础。
  • 国外知名学术期刊改审稿机制:网络公开审稿
    学术期刊审稿机制的完善与否对提升学术期刊的办刊水平及促进学术繁荣具有重要意义。学术期刊的审稿机制包括两个方面:其一,高水平审稿专家的遴选机制 其二,专家公正审稿的保障机制。从实际的操作层面来看,后一机制更为重要,因为审稿工作是对学术成果内容和形式的全面审查和评价,专家在审稿过程中是否能够秉持客观公正的立场是保障审稿质量的关键。   当前中国学术期刊的审稿机制   当前中国的学术期刊多实行&ldquo 三审制&rdquo ,即编辑初审、专家二审、主编(或编委会)三审的审稿机制。&ldquo 学术乃天下之公器&rdquo ,对学术论文的权威评价自然应该由全球各领域最优秀的专家担任审稿人,但由于语言、专业及办刊条件等方面的限制,中国的学术期刊很难做到在全球范围内遴选审稿人。自然科学的学术期刊一般会把待审稿件送至全国或全省范围内的同行专家审阅。为了使科技期刊的编辑更方便地遴选审稿专家,相关机构曾专门编撰有《中国高等学校自然科学学报审稿人名录》《中国科学技术论文评审专家名典》《西北地区高校审稿专家名录》(自然科学类)《上海市高校科技论文评审专家名录》等工具书。另外,各自然科学学术期刊的编辑还经常通过相关专业学会的推荐、作者推荐以及在&ldquo 中国知网&rdquo &ldquo 万方数据库&rdquo 等大型数据库中通过主题词、关键词查询等手段获得审稿专家的信息。为保障专家的公正审稿,当前中国的学术期刊采取的措施主要有:单向或双向匿名审稿、在审稿单上设计具体的论文评价指标、在期刊上登载审稿专家名录等。   相比自然科学类的学术期刊,由于学科边界的相对模糊及学科之间更多的相通性,人文社会科学类的学术期刊更多地由办刊单位的学者担任审稿专家,尤其是对于具有较强学术实力的单位来说,更是如此。当然,目前也有不少人文社会科学类的学术期刊通过外聘编委委员等方法来实现审稿专家的高层次化、多样化。同时,人文社会科学类学术期刊的编辑在稿件的初审环节对稿件的筛选能力也更强一些。   国外学术期刊的审稿机制   国外知名的学术期刊在审稿专家的遴选方面更为灵活,如《科学》杂志有一个专门的审稿委员会,由来自全世界各地100多名顶尖科学家组成,他们负责审定提交到《科学》的各类论文的重要性和可信度。投稿论文通过编委会的审查之后再交由外部专家进行匿名评议。这些外部专家则分布在全世界数十个国家,人数达万名,其中不乏诺贝尔奖获得者。英国《自然》杂志的审稿人60%在美国,30%在西欧,10%在其他地区。《英国医学杂志》的审稿人有2500多人,也遍布世界各国。   至于专家的审稿方式,除了当前普遍实行的单向匿名审稿和双向匿名审稿之外,值得注意的是随着信息化的发展,发达国家近来出现了一种新的审稿方式:公开审稿。如《英国医学杂志》在调查研究的基础上, 对过去实行的双向匿名审稿进行重新思考并开始实行公开审稿。即编辑部将来稿在网上公开,同时将审稿人的姓名告诉作者, 作者和读者都能在网上看到审稿人的评审意见,并与审稿人对话和交流。论文最后发表时将审稿人的名单列在文章之后。在这种审稿机制下,不只是审稿人和作者之间互相知道彼此的身份,可以平等地互相探讨学术问题,社会上任何对此问题有研究专长的学者都可以就此发表自己的学术见解。公开审稿的实质是编辑部借助网络信息技术为作者、审稿人及广大学者搭建了平等对话的平台,使大家在科学面前完全平等。这种审稿机制的优点在于面对全球无数双专业人士的挑剔眼光,审稿人会更谨慎、负责、具体、客观地提出自己的观点或意见。在此过程中,投稿人也能由此得到帮助和提高。   中国学术期刊审稿机制的发展趋势   当前中国的学术期刊有几千种。相比发达国家,在整体办刊水平较为落后的背景下,不断改进审稿机制是提高学术期刊的办刊水平和促进学术进步的重要举措。在审稿专家的遴选方面,当前中国的学术期刊基本上能够依据自身的办刊条件选择合适的审稿专家。为保障专家的公正审稿,中国的学术期刊界近年来普遍推行了单向或双向匿名审稿。这是为克服人情因素对公平审稿的影响而推行的有效举措。通常情况下,匿名审稿可以使专家抛却诸多顾虑,在较为平静的心态下公正地对待审稿件作出专业的评判。但任何事物都有其两面性,匿名审稿也同时有其难以克服的局限:   其一,在某些学科领域(如史学),部分专家长期从事某项研究,且该项研究除他之外学界很少有人涉足。对于这类专家的投稿,审稿人甚至单凭题目就可以猜到作者的身份。还有一些稿件,审稿人可以通过文中透露的一些信息猜测到作者的身份。在此情况下,匿名审稿就没有太多实质意义。   其二,匿名审稿其实质是赋予了审稿人在秘密状态下对别人的研究工作作出专业判断的权利。有学者认为这就好比是一个制度不全的法庭,&ldquo 被告&rdquo 在无法辩解的情况下,法官就作出了不明不白的判决。这话虽然刺耳,但学术研究应该是学界共同参与、共同提高的过程,这种审稿专家单向性的评判对于学术的提升意义确实有限。   其三,在匿名审稿机制下,审稿专家主要依靠其专业能力和道德自觉对待审稿件作出评判。审稿专家是否能够公平地评审稿件并作出专业判断缺乏外部的监督制约机制。比如当审稿专家时间有限时,他就有可能会为完成审稿任务而仓促给出结论。个别审稿人甚至有可能会出于私利,剽窃、压制作者的研究。有权利就有责任,审稿专家是否能秉公行事,社会应对其行为有相应的激励或制约措施。   相比匿名审稿,前述发达国家近期出现的公开审稿则可以在相当程度上避免这些弊端。在公开审稿的机制下,审稿过程的三大主体&mdash &mdash 编辑、审稿人与作者同时处于社会的全程监督之下,这些学术共同体的成员自然会珍惜自己的荣誉和公信力。例如,对编辑来说,会在选择审稿专家及编排稿件的过程中更为谨慎、负责和自律 对于作者来说,在学术期刊联网的条件下,他们若有一稿多投或其他学术不端行为,在其文章正式发表之前,广大网民就有可能发现并及时处理 秉公审稿的专家也能在更广的范围内扩大其学术影响力。当然,在此过程中,审稿专家、作者及广大读者平等的沟通交流也会促进学术的进步。   公开审稿的推行需要一定的条件。最基础的技术条件是建立一个网络平台,编辑、作者和读者均能根据各自的角色充分利用这一平台。另外,在公开审稿机制下,编辑、作者与审稿专家是否能自觉遵守学术规范及学术公德,除了社会监督这个无形的压力之外,还需要社会信用体系中的奖惩机制发挥应有的作用。审稿环节中相关各方是否遵守了学术诚信的规范,这是一个学者诚信记录的重要组成部分。正像学者在一般社会生活中的诚信表现一样,社会相关各方将会依据其审稿过程中的诚信行为给予其相应的激励或制约。因此,社会信用体系的建立与完善也是公开审稿制度运行的重要保障。   笔者认为,不论是匿名审稿还是公开审稿,其目的都是为了保障审稿的公正。当前,中国的学术期刊界普遍实行匿名审稿自然有其合理性。但从未来的发展趋势看,在中国社会信用(含科研信用)体系逐步建立完善、学术共同体成员更为重视自身信誉的时候,公开审稿当是促进学术进步的更佳选择。
  • 韩春雨事件:撤稿验证科学界“自净”机制
    p   备受关注的韩春雨基因编辑论文争议事件近日有了结果,韩春雨团队在英国著名学术刊物《自然》子刊《自然?生物技术》网站上发表撤稿声明。“施普林格?自然集团”大中华区总裁安诺杰告诉新华社记者:“此次撤稿展现并证明了科研群体对于维护科学发现过程基本规律的承诺。” /p p   确实,这次撤稿首先证明了科学界的“自净”机制,也说明了媒体舆论监督的价值,以及学术研究的复杂性。 /p p   科学能够“自净” /p p   “国际科学界有‘自净’机制”,北京大学生物学家饶毅对新华社记者表达了与安诺杰相似的观点。 /p p   一项研究有了数据、形成论文并通过同行评议发表,通常意味着得到了国际科学界的初步承认。但这并不是终点,论文发表后,各国同行会根据论文中的描述来重复实验,如果不能经受这一检验,研究成果就会受到质疑。 /p p   韩春雨团队2016年5月在《自然?生物技术》上发表的关于一种新型基因编辑技术NgAgo的论文就是如此。这篇论文因其所宣称成果的重要性而引发巨大关注,各国同行纷纷跟进。但一两个月后就出现质疑,如澳大利亚国立大学的研究人员加埃唐?布尔焦在网上公开发文表示,他不能重复韩春雨论文中描述的实验,并且在与许多同行的讨论中得知他们也无法重复该实验,因此“我对NgAgo技术有严重的怀疑”。 /p p   2016年11月,《自然?生物技术》就此发表“编辑部关注”。今年初又有消息说韩春雨团队提供了新的数据,但杂志最终认定:“我们判定韩春雨及同事提供的最新数据不足以反驳大量与其初始发现相悖的证据。我们现在确信韩春雨的撤稿决定是维护已发表科研记录完整性的最好做法。” /p p   “维护已发表科研记录完整性”,正是科学界的“自净”机制。论文等科研记录是科学交流的基础,它们必须真实可靠。为了维护这一点,许多科研人员跟在“先行者”后进行没有名利的重复验证。正如《自然?生物技术》社论所说:“那些进行可重复性研究的人,其付出的努力往往得不到回报——这样的工作单调乏味,没有资金支持,还吃力不讨好。”但正是这种对真理的追求让科学不断前进。 /p p   媒体可以监督 /p p   “这显示了论文发表后的同行评议在全天候媒体时代的重要性”,《自然?生物技术》在社论中提到了这一事件中媒体的重要性。社论说,“这无疑是一篇中国去年被报道最多的论文”,开始时媒体大量报道原论文所宣称的重要成果,而质疑声出现后也很快引起媒体注意,“有关该初始报告有效性的正反两方面的声音开始交锋”。显然,媒体在这一事件中发挥了舆论监督作用。 /p p   饶毅也是网络科学媒体“知识分子”的主编,在韩春雨论文发表后,“知识分子”率先报道了论文中所宣称成果的重要性。在质疑声出现后,“知识分子”又刊登了多篇质疑的文章,保持了客观公正。 /p p   “新闻的常规是很快报道事情的重要进展,科学新闻的国际标准是请多个专家读论文后发表评论。但即使这样有时也不能判断其中的问题。好在对科学研究的判断还有时间的考验——同行的重复和验证。”饶毅说。 /p p   的确,新闻的时效性和科学验证的长期性之间存在矛盾,这就要求媒体报道时理解科学验证的特点。《自然?生物技术》社论认为:“这篇NgAgo论文也显示了社交媒体的利与弊。显然,这些平台对于迅速提醒广大科学界留意该论文可能存在的问题发挥了重要作用。但是它们也抬高了人们的预期,以为有关这篇论文的问题是直截了当,可以快速解决的。然而,关于NgAgo的各种问题是无法在几个星期或几个月内就能澄清的,这是有原因的。即使是简单的实验也需要花费数周来准备、实施、分析和解决出现的问题。” /p p   定性不应仓促 /p p   韩春雨团队在《自然?生物技术》刊登的撤稿声明是英文,《自然》方面提供的译文是:“由于科研界一直无法根据我们论文提供的实验方案重复出论文图4所示的关键结果,我们决定撤回这项研究。”不过韩春雨团队也表示:“我们会继续调查该研究缺乏可重复性的原因,以提供一个优化的实验方案。” /p p   韩春雨工作的河北科技大学也声明说,韩春雨团队一直在进行深入的实验研究工作。鉴于该论文已撤稿,学校决定启动对韩春雨该项研究成果的学术评议及相关程序。 /p p   可见,虽然论文的关键成果不能被重复导致撤稿,但各当事方还是在以学术的方式讨论这个问题,并没有仓促定性。 /p p   美国乔治城大学神经科学系教授吴建永说,许多科研人员都有过学术失误,“我个人有过多次体会,自己认为百分之百对的事,实际是错的。我没有因为学术错误被捧上天,或被批得身败名裂,都是一种幸运。” /p p   当然,如果最终调查证实这不是学术失误而是学术不端,也必然会受到相应处理。就在7月27日,中国科技部、教育部、卫生计生委、自然科学基金会、科协等机构联合公布《肿瘤生物学》107篇论文撤稿事件处理结果,其中有的研究人员被认定无过错,一些研究人员被认定不同程度存在过错并追究责任。 /p p   这正是以“实事求是”的态度处理学术问题的最好体现。 /p
  • 科研人员构建“分子阻塞”超分子机制高阻尼凝胶材料
    近年来,凝胶材料因其灵活可调的力学特性和丰富的功能,受到了各领域研究者的极大关注。然而,凝胶材料往往因溶剂的迁移而具有较低的稳定性,容易溶胀或干燥变形,已经成为制约凝胶材料深入应用的瓶颈难题。尽管已经开发了多种策略来提高凝胶的稳定性,然而,从热力学角度来看,如果凝胶中溶剂的含量偏离了聚合物的平衡溶胀状态,溶剂将不可避免的发生迁移。因此,若要准确控制凝胶中的溶剂含量,保持高稳定性,需要有效抑制溶剂迁移的动力学过程。基于“分子阻塞”超分子机制的有机凝胶构建思路。(论文课题组供图)机械互锁作用通过分子结构中的几何关系将不同的分子连接起来,这使得非共价连接的分子,能够保持稳定的聚集状态。西安交通大学化学学院“智能高分子”团队吴宥伸副教授和张彦峰教授,从机械互锁超分子原理中汲取灵感,提出了“分子阻塞”超分子机制,利用溶剂分子与交联网状结构之间的尺寸差异带来的阻滞,有效抑制溶剂在凝胶内的迁移。通过设计和合成分子尺寸超过1.4 nm的液态支链柠檬酸酯(branched citrate ester, BCE),并将这种大体积分子作为溶剂与交联聚脲原位聚合,制备获得系列新型“分子阻塞”凝胶。“分子阻塞”凝胶具有与普通聚合物或弹性体相媲美的卓越稳定性,可储存10个月而无任何形貌或力学性能改变,并能耐受高温烘烤,保持质量和性能的稳定。特别是“分子阻塞”凝胶的杨氏模量能够在1.3 GPa至30 kPa的大范围内连续调控,变化幅度达到创纪录的43000倍,有效覆盖了现有交联树脂、塑料、弹性体和凝胶的范围。同时,“分子阻塞”效应作为一种非共价耗散机制,赋予了凝胶材料独特的粘弹性力学特性,使其具有高阻尼,达到和超过了商业化的聚氨酯和聚脲材料。上述研究成果,近期发表于《先进材料》,西安交通大学化学学院为第一单位,西安交通大学生命学院为合作单位。论文第一作者为化学学院吴宥伸副教授,论文通讯作者为化学学院副院长张彦峰教授。这一研究受到了国家自然科学基金和西安交通大学分析测试中心的支持。
  • 科研攻坚不停歇!华东师大袁小兵/潘逸萱课题组揭示先天恐高反应神经机制
    沃的研究所这是一档关注“生命科学行业变化”的专题栏目。我们将从合作伙伴入手,每一期研究和解读一家科研机构或科研课题组、实验室的背后故事、相关方法论、使用的工具等等,帮助科研从业者获得启发和思考。本期【沃的研究所】对话主人公:尚蔚,博士研究生,华东师范大学生命科学学院袁小兵/潘逸萱课题组重要成员,本篇论文第一作者。恐高,其实跟我们每个人都息息相关。恐高反应会发生在每一个人身上,而恐高症患者会表现出对高度的非理性恐惧,即使暴露在很低的高处或者仅联想到高处时都会表现出对高度的非理性恐惧,这可能会对日常工作及生活带来一定的影响。那恐高反应究竟是如何产生的?科学界是如何解释这一现象?又该如何克服呢?2024年5月3日,华东师范大学生命科学学院袁小兵/潘逸萱团队在国际权威学术期刊Nature Communications 发表题为 A non-image-forming visual circuit mediates the innate fear of heights in male mice 的研究论文,他们对先天恐高反应开展研究,意外发现小鼠大脑中的非成像视觉系统诱发了恐高反应。 本期【沃的研究所】,我们将对话文章的第一作者尚蔚博士,一起深入了解小鼠先天恐高反应背后的神经机制。 逐层攻破技术瓶颈为探索恐高神经机理寻找靶点 尚蔚博士所在的课题组选择了广泛存在的生理视觉高度失衡的恐高来开展,他们首先建立行为学范式,细致观察小鼠在高台上的表现。曾有心理物理学家提出过这样一个假说,认为当人在高处时,随着人体与最近的静止物体之间的距离不断地增加,此时视觉提供的平衡信息会与前庭和躯体感觉系统提供的信息发生冲突,个体就容易出现晕眩的感觉,同时此时身体摆动幅度的增大,个体也会更容易感受到坠落,而这种对坠落的害怕会诱发个体的恐高情绪。根据心理物理学家的假说,尚博所在的课题组对视觉前庭和躯体感觉系统的作用进行了探究,发现视觉在恐高反应中发挥了主导作用。小鼠在高台上会出现类似于人类的恐高反应 课题组又参考了与视觉相关的先天恐惧行为学范式,通过视觉刺激(Looming Visual Stimuli )来寻找可能参与调控恐高的核团。最后通过光纤记录和化学遗传等手段来调控目标核团和神经环路连接,观察小鼠在行为学实验中的表现是否会有所不同,进一步发现小鼠大脑中存在两条神经环路,在调控先天恐高反应中发挥相反的作用。这项研究成果的发表有利于帮助人们理解人类的恐高现象,并为后续恐高反应的神经机制研究提供了思路,也为后续药物开发提供了一些帮助。但由于目前神经科学领域对“恐高”的研究还十分有限,已有的研究主要集中在流行病学调查和影像学方面。尚博介绍道:“刚开始的时候我们完全不知道到底要怎么来研究恐高,以及如何建立一个比较可靠的行为学范式,而且提出评估恐高程度的指标也是经历了不断的修改,基本一切都是未知的;另一方面,我们组确实不是做行为和神经环路机制的,所以对技术和思路也不熟,包括研究过程中有一部分是需要去做前庭系统,我对前庭系统非常陌生。”为了观察小鼠的恐高表现,他们需要多次制作高台,尚博笑着说:“那段时间我们不是在买亚克力,就是在买亚克力的路上,淘宝的订单截图可以拉很长。”为了了解前庭系统,尚博甚至鼓起勇气联系了交大六院耳鼻喉科的师兄,后又经过导师的介绍,到上海交大交流学习了一段时间,才慢慢克服了这些技术难题。“在我看来,合作真的是非常重要,这项研究也是大家共同努力的结果!”尚博说。截至目前,这项研究还在继续。 无心插柳,顺应偶然性机遇蕴含在变化之中 谈及当时是怎么想到要研究这个课题,尚博笑言:“这还真的挺有趣的,确实是无心插柳柳成荫的故事。”说起来,尚博所在的课题组主要的研究方向其实是孤独症谱系障碍以及神经发育。尚博最开始加入团队的时候,主要对孤独症谱系障碍风险基因的神经机制展开研究。可是当时的课题进展并不顺利,实验结果也不稳定。但也正是在这一次次的挫败中,课题组偶然间发现,实验小鼠在旷场实验中的自发运动量和焦虑水平都没什么变化,在高架O迷宫中却表现得特别焦虑,对高度的刺激非常敏感。他们又开始查阅文献、探究基因突变小鼠异常恐高的原因……“确实没想到当初那个课题能发展到现在这样。”尚博说。一次偶然,课题组开始了对恐高症的研究;又一次机缘巧合,课题组开始了与瑞沃德的合作。“其实在第一轮投稿的时候,我们已经通过化学遗传的方法发现了腹侧外侧膝状核(vLGN),特别是其中的抑制性 GABA 能神经元,还有 vLGN 到下游中央导水管周围灰质(Periaqueductal gray, PAG)参与调控恐高。但因为化学遗传没能实时观察到神经元对高度刺激的响应,所以审稿人明确提出希望我们可以补充光纤记录的实验。”说来也巧,刚好在补实验阶段,实验室就有一台瑞沃德的光纤记录系统。尚博所在实验室里的瑞沃德光纤记录系统 “我们用瑞沃德光纤记录系统做了对照实验,发现确实取得了很好的结果。而且我们原来第一轮投出的内容,它使用到的技术其实比较单一,在后面补实验增加了光纤记录这样在神经环路领域比较常用的技术,得到了导师的认可,这也对于我们这一项成果的发表有很大的帮助。”尚博在交谈中也对瑞沃德光纤记录系统表达了认可:“瑞沃德的光纤系统操作简单,使用方法也比较容易学习,分析软件也十分方便,可以快速给出想要的图,同时还可以计算线下面积、叠加不同个体的数据,对我们的实验有很大的帮助。”“在我看来瑞沃德是国内做得很好的品牌了,我也很开心看到国产的仪器近年来做得越来越好了,大家就有更多的选择。”该研究使用光纤记录检测了腹侧外侧膝状核(vLGN)脑区GABA能神经元和外侧/腹外侧导水管周围灰质(l/vlPAG)脑区谷氨酸能神经元的钙信号变化 “其实我们还挺幸运的,文章只返修了一轮。”尚博感慨道。采访过程中,尚博不止一次说起:“我认为自己一直都是一个比较幸运的人。”在尚博的自述中,她说到,高考、考研都比较顺利,父母愿意支持自己的选择,师兄会手把手带着她做实验、交流科研思路,师妹们会鼎力支持课题的进展,导师们也会在大家做实验情绪爆炸的时候给予足够的鼓励……“所以我真的觉得自己是很幸运的人。”尚博课题组合照(从左到右依次为尚蔚、袁小兵教授、谢双翼、潘逸萱副研究员、冯文博) 发现了吗?伟大的成就,其实并没有所谓的可复制的成功脚本,它们往往没有经过周密的计划便诞生。不管是做实验,还是生活,我们不时地顺应偶然性,也不见得是坏事。就像尚博所说的:“意外真的常有发生,一切都在你的计划之内,是非常小概率的事件,所以你要时刻地根据实际情况来灵活调整自己的方案或者计划,多一些Plan B。”不管是“无心插柳”,还是“有心栽树”,幸运会不断出现在你努力的路上!我们也祝福尚蔚博士及团队在自己热爱的领域里勤耕不辍! 如果您想了解尚蔚博士课题组同款瑞沃德多通道光纤记录系统长按识别下方二维码进行预约我们将会有专业人员与您联系▽
  • 就发了5篇SCI!老凡尔赛如何用高内涵阐明神经细胞分化机制(下)
    David Schaffer是加州大学伯克利分校(University of California, Berkeley)的化学和生物分子工程、生物工程和神经科学教授,在那里他还担任伯克利干细胞中心(Berkeley Stem Cell Center)主任和QB3-Berkeley主任。David实验室致力于了解生物学和探索干细胞的治疗潜力,尝试用组织工程学控制干细胞的能力并用于疾病治疗。他们致力于发现新的信号通路,并解释和实现这些信号的生物网络的计算和实验分析,最终将这些信号整合到生物材料微环境中以实现最优的干细胞控制。多能干细胞的可扩展和分化可以极大地受益于许多生物学应用,包括细胞替代治疗、疾病建模、体外器官形成和药物筛选。David实验室是PerkinElmer高内涵的老用户,自2018年开始,陆续基于PerkinElmer的高内涵系统发表了5篇文章,包括一篇Cell Report,一篇Science Advances。在6月份的推送《就发了5篇SCI!老凡尔赛如何用高内涵阐明神经细胞分化机制(上)》中,我们已经分享了David实验室建立的2D神经分化体系,此次,我们来分享3D神经干细胞研究体系。《High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates》于2020年8月发表于Science Advanced杂志,该工作系统性的构建了3D神经分化研究方法,建立高通量3D培养平台,用于系统地筛选1200种不同剂量、持续时间、动力学和信号组合的培养条件,寻找能从人多能干细胞(hPSCs)分化出少突胶质细胞祖细胞和中脑多巴胺能神经元的条件并确定关键因子。该研究揭示了以前未被发现的, Wnt、维甲酸和sonic hedgehog信号对细胞分化的复杂作用,这可能揭示了人类中枢神经系统发育中新的关键机制。该研究的发现有助于一些神经类疾病的细胞替代疗法(cell replacement therapies (CRTs))的优化。首先,少突胶质前体细胞OPC的体外分化过程见上图,在3D培养条件下,要经过复杂的诱导过程,PSC细胞才能够分化成为OPC细胞,而这一过程如何规范化如何可控,正是神经系统类基本细胞替代疗法最关心的问题,作者就针对这一过程展开了筛选。上图为作者筛选体系示意图,该体系将细胞悬浮在3D水凝胶中的微柱芯片压印到含有隔离介质条件的互补微孔芯片上,然后芯片被悬空培养在800nl培养介质的微孔中,经过一段时间的培养,该微流控板直接用PerkinElmer高内涵系统进行成像和分析。这样,在培养基中加入不同成分,就能够筛选不同剂量和时间的组合。作者共筛选了1200个组合培养条件,共计4800个独立样本,同时消耗的试剂体积不到相应96孔板格式的0.2%。这是一个非常高效的筛选体系。接下来,作者进行了各个关键因素多维度的筛选,筛选的表型为各个分化时期OPC的不同标记物,如Olig2、Tuj1、Nkx2.2等,这些标记物的成像和定量都是通过PerkinElmer高内涵系统完成的。这些多维度筛选的关键因素包括:接种细胞密度对早期分化过程的影响RA,SHH和 Wnt三个信号通路的组合效应3种信号通路抑制剂和拮抗剂的组合效应,IWP-2(Wnt通路抑制剂)、GANTT61(SHH通路拮抗剂)、DAPT(Notch通路拮抗剂)RA和SAG处理不同时间的影响之后,作者拟合了广义线性模型,将Olig2、Nxk2.2和Tuj1的表达和共表达与本研究涉及的12个培养参数中的单个输入参数以及它们之间的132个成对相互作用关联起来。并发现,RA是对Olig2和Nkx2.2表达影响最大的参数之一,特别是第0天和第1天和第4天和第10天剂量控制至关重要。此外,该分析确定了两种培养参数(第0-2天高剂量的RA+第4-10天高剂量的SAG,GANT剂量的增加+CHIR持续时间的延长)以协同方式相互作用以促进OPC分化的情况。最后,作者还用该模型筛选了hPSC细胞分化成tyrosine hydroxylase+mDA神经细胞的过程,也找到了该过程的重要调控因素,描述了该过程的可控性操作方法。这部分内容由于篇幅不再展开,感兴趣的同学请阅读原文。综上本文建立了一个很好的3D神经细胞分化研究体系,该体系基于高内涵成像与分析系统,能够在作者设计的微芯片上,同时分析神经细胞分化过程中诸多因子的作用。作者也借助该体系,详细的分析了两种神经细胞分化过程中关键因子是如何作用的,这些发现对于神经系统疾病的细胞替代疗法的过程设计尤其重要。在本文中,PerkinElmer高内涵系统包揽了所有的成像和分析工作,在作者自行设计的微芯片上灵活自如,对各种芯片和孔板有极强的包容性,实在是不可缺少的筛选小助手啊!参考文献Riya Muckom , XiaopingBao, et al, High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates. Sci Adv. 2020 Aug 7 6(32): eaaz1457.
  • 黄超兰、高福等研究发现新冠病毒发病机制的成果荣登《自然通讯》2020年热门阅读榜单
    仪器信息网讯 自新冠病毒(SARS-CoV-2)出现至今,人类一直处在认知它的路上。在2020年底时,有一研究发现,新冠病毒在早期主要体现为免疫抑制,发展到后期重症会有较强的免疫应答,有部分患者会引发炎性风暴。这一发现,为临床药物治疗带来了新的认知。  2020年11月17日,北京大学医学部精准医疗多组学研究中心主任黄超兰团队,与中国科学院院士高福团队在Nature Communications(《自然通讯》)期刊线上发表论文《Immune suppression in the early stage of COVID-19 disease》。该研究发现,早期的新冠感染患者存在着显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两个阶段”模式:第一阶段涉及免疫系统抑制、紧密连接受损以及大规模的代谢紊乱 第二阶段涉及部分免疫应答激活,可能进一步导致细胞因子风暴和器官损伤的发生。  相关链接:https://www.nature.com/articles/s41467-020-19706-9  研究团队使用定量蛋白质组学分析了来自新冠感染病例、健康供体和非新冠肺炎病例的尿液样本。分子变化表明免疫抑制和紧密连接受损发生在新冠病毒感染的早期。如果将新冠肺炎患者进一步细分为中度和重度类型显示,在重症患者中出现了活化的免疫应答。研究者提出这种不寻常的病毒感染的发病机制“两个阶段”的机制,并为将来的机理和治疗研究提供了真实可靠的资源。因此该文章也荣登了2020年《自然通讯》的年度热门阅读榜单前50。(图片来源黄超兰教授)
  • 黄超兰与高福团队等合作发现早期新冠病毒感染主要为免疫抑制并或存在“两阶段”机制
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 仪器信息网讯 /strong 由SARS-CoV-2病毒感染引起的新冠肺炎(COVID-19)已成为全球性的大流行病,行之有效的治疗干预措施对疫情的控制至关重要。然而到目前为止,新冠病毒感染后的发病机制尚未明确。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 近日,北京大学医学部精准医疗多组学研究中心主任黄超兰团队,与中国科学院院士高福团队开展协同研究,发现早期的新冠感染患者存在着显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式:第一阶段涉及免疫系统抑制、紧密连接受损以及大规模的代谢紊乱;第二阶段涉及部分免疫应答激活,可能进一步导致细胞因子风暴和器官损伤的发生。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 290px " src=" https://img1.17img.cn/17img/images/202011/uepic/723e26ac-d907-4070-8b61-a007fcd73ab1.jpg" title=" 640.png" alt=" 640.png" width=" 600" height=" 290" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 相关研究成果以“Immune suppression in the early stage of COVID-19 disease& nbsp ”& nbsp 为题于11月17日线上发表在Nature Communications期刊上。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 相关链接: a href=" https://www.nature.com/articles/s41467-020-19706-9" target=" _blank" strong https://www.nature.com/articles/s41467-020-19706-9 /strong /a /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 372px " src=" https://img1.17img.cn/17img/images/202011/uepic/3555c641-eba3-436f-b4b6-d688a06653ef.jpg" title=" 640-1.png" alt=" 640-1.png" width=" 600" height=" 372" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" text-align: justify text-indent: 2em " 新冠病毒感染的“两阶段”机制 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 研究者对来自健康志愿者,COVID-19患者和非COVID-19肺炎患者的尿液样本开展了基于DIA-PASEF方法的定量蛋白质组学分析。结果显示,与健康志愿者和非COVID-19肺炎患者相比,共有1986个蛋白在COVID-19患者体内发生显著变化,其中下调蛋白比上调蛋白的总数多出十倍,大量参与免疫应答和紧密连接形成的蛋白均呈现下调状态。 br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/12ba1692-4daf-4197-a5c2-9a3e370a424c.jpg" title=" 2.jpeg" alt=" 2.jpeg" / /p p style=" text-align: center " span style=" text-align: justify text-indent: 2em " 基于DIA-PASEF方法的定量蛋白质组学分析流程 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 为深入探索新冠肺炎的疾病进展机制,研究者将COVID-19患者划分为轻中症组和重症组。进一步的研究结果表明,免疫应答在疾病进展早期呈现抑制状态,在疾病进展晚期则表现出一定程度的上调。值得关注的是,与当前研究一致,近期陆续发表的多篇文章均报道COVID-19的临床症状主要呈现为免疫抑制,危重症患者有可能进一步出现“高炎症高细胞因子”症状1-3。 br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 322px " src=" https://img1.17img.cn/17img/images/202011/uepic/a2e2a58d-cd96-4a03-aae5-259c7205564d.jpg" title=" 3.png" alt=" 3.png" width=" 600" height=" 322" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" text-align: justify text-indent: 2em " 轻中症患者呈现免疫应答抑制(a)和重症患者呈现免疫应答上调(b) /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 此次,黄超兰主任领衔的多组学中心团队与高福院士领衔的多学科团队紧密合作,充分利用前沿的高通量DIA定量蛋白质组学技术,用高质量的数据为全面解读COVID-19患者的临床症状提供了可靠的重要分子基础和机制信息,有助于未来进一步探索优化的临床治疗方案设计。本研究示范了临床,前沿技术和基础学科的深度交叉融合。双方团队也在此课题基础上继续开展协同创新研究,持续为抗击新冠病毒做出多方面的贡献。本次研究得到中国疾病预防控制中心(CDC)和首都医科大学附属北京佑安医院的大力支持。北京大学医学部精准医疗多组学研究中心主任黄超兰教授,中国科学院高福院士,北京大学医学部精准医疗多组学研究中心陈扬副研究员,中国疾病预防控制中心病毒病预防控制所谭文杰教授为本文的共同通讯作者;北京大学医学部精准医疗多组学研究中心田文敏博士、张楠同学,首都医科大学附属北京佑安医院院长金荣华教授,首都医科大学附属北京佑安医院科技处冯英梅处长,北京大学医学部精准医疗多组学研究中心王思媛博士为本文的共同一作。 /p p br/ /p
  • 1150万!基质辅助激光解析电离飞行时间质谱、X射线衍射仪等采购项目
    项目一:一、项目基本情况项目编号:OITC-G230312008项目名称:北京大学医学部基质辅助激光解析电离飞行时间质谱招标采购项目预算金额:530.0000000 万元(人民币)最高限价(如有):530.0000000 万元(人民币)采购需求:包号货物名称数量简要技术规格是否允许采购进口产品采购预算1基质辅助激光解析电离飞行时间质谱1套选购一台适合生物大分子研究的基质辅助激光解析电离飞行时间质谱仪。主要用于多糖、蛋白质、核酸、聚合物等大分子的分子量测定,多层次结构分析如序列鉴定、测序、翻译后修饰等以及质谱成像。鉴于生物样品来源稀缺,仪器各相关配置和性能应该与其相配合。要求仪器硬件方面分辨率高、稳定性好、灵敏度高、操作便利。公司在国内有较强的技术支持和维修力量,响应迅速(24小时)。是530万元投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。 具体技术要求详见招标公告所附附件(即,本招标文件第六部分)。合同履行期限:合同签订后120天(国内供货)或者L/C后180天(进口免税)。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月07日 至 2023年09月14日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:登录“东方招标”平台(http://www.oitccas.com/)注册并购买。方式:登陆“东方招标”平台(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京大学     地址:北京市海淀区学院路38号        联系方式:凌老师; 010-82801359      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯; 010-68290508;010- 68290530            3.项目联系方式项目联系人:凌老师电 话:  010-82801359项目二:一、项目基本情况项目编号:西交采招(2023)224项目名称:扫描隧道显微镜预算金额:400.0000000 万元(人民币)最高限价(如有):400.0000000 万元(人民币)采购需求:详见西安交通大学采购与招标信息网(cgb.xjtu.edu.cn)。合同履行期限:合同签订后300天内本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月07日 至 2023年09月20日,每天上午8:00至12:00,下午12:00至18:00。(北京时间,法定节假日除外)地点:详见西安交通大学采购与招标信息网(cgb.xjtu.edu.cn)。方式:详见西安交通大学采购与招标信息网(cgb.xjtu.edu.cn)。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:西安交通大学     地址:西安市碑林区兴庆南路10号交大出版大厦19层采购办办公室        联系方式:联系方式: tender@xjtu.edu.cn,咨询QQ群:367046737      2.项目联系方式项目联系人:曹昆电 话:  caokun.2015@mail.xjtu.edu.cn项目三:一、项目基本情况项目编号:N5100012023002366项目名称:2023年高温原位X射线衍射仪采购项目采购方式:公开招标预算金额:2,200,000.00元采购需求:详见采购需求附件合同履行期限:采购包1:合同签订240天内完成供货、安装、调试和技术指标验收。本项目是否接受联合体投标:采购包1:接受联合体投标二、获取招标文件时间:2023年09月08日至2023年09月14日,每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间)途径:项目电子化交易系统-投标(响应)管理-未获取采购文件中选择本项目获取招标文件方式:在线获取售价:0元三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西南石油大学地址:四川省成都市新都区新都大道8号联系方式:028-830323442.采购代理机构信息名称:成都盈合工程项目管理有限公司地址:成都市高新区天府大道中段530-2号东方希望天祥广场B座12楼10号联系方式:028-61397250、028-61397251转6103.项目联系方式项目联系人:翁先生电话:028-61397250、028-61397251转610
  • 中国学者揭示肿瘤组织中T细胞高表达PD-1的新机制
    p   在国家自然科学基金项目(项目编号:81530080,81661128007, 81773062, 81788101)等资助下,中国医学科学院基础医学研究所黄波教授课题组揭示了具有干性的肿瘤再生细胞利用色氨酸代谢途径启动肿瘤组织中T细胞PD-1表达上调的机制。相关结果以“Tumor-Repopulating Cells Induce PD-1 Expression in CD8+ T Cells by Transferring Kynurenineand AhR Activation”(肿瘤再生细胞通过犬尿氨酸转移以及芳香烃受体激活诱导CD8+ T细胞表达PD-1)为题,于2018年3月12日在Cancer Cell(《癌症· 细胞》)上在线发表。黄波为文章的通讯作者,中国医学科学院基础医学研究所、临床免疫中心刘玉英副研究员及中国医学科学院基础医学研究所博士研究生梁晓雨和董文茜为共同第一作者。 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/noimg/9fd5759f-c0c0-4d5f-a0d6-af4081a93b96.jpg" title=" 001.jpg" / /p p style=" text-align: center " 图. TRC诱导激活CD8+ T细胞高表达PD-1的机理 /p p   肿瘤免疫治疗是是当前肿瘤研究的热点领域之一,通过利用免疫细胞、免疫分子直接或间接杀伤肿瘤细胞,以控制或清除肿瘤,被认为是人类战胜癌症的希望所在。肿瘤免疫治疗主要依赖活化的T细胞杀伤肿瘤细胞,然而,免疫检查点(checkpoint)分子PD-1(programmed cell death protein 1,程序性死亡受体1)具有重要的免疫抑制功能,在肿瘤组织中的T细胞表面表达上调,通过传递抑制信号阻止T细胞活化。因此,如果能阻断PD-1信号,就能够使T细胞重新活化。目前针对免疫检查点PD-1的治疗性抗体已在临床肿瘤患者的免疫治疗中取得了巨大成功,然而,PD-1抗体药物价格昂贵,且副作用大。因此,寻找PD-1的小分子阻断剂成为当前肿瘤免疫治疗药物研发的重要方向,但困难在于肿瘤组织中的T细胞PD-1分子表达上调的机理尚未完全清楚。 /p p   色氨酸作为一种必需氨基酸,其在体内不仅通过代谢生成5-羟色胺和褪黑素等重要活性分子,而且能够通过吲哚胺-2,3-双加氧酶(indoleamine 2,3-dioxygenase,IDO)催化产生犬尿氨酸(kynurenine, Kyn)直接激活胞浆转录因子芳香烃受体(aryl hydrocarbon receptor, AhR)。黄波教授课题组前期研究发现,高成瘤性的肿瘤再生细胞(Tumor repopulating cells,TRC)中,IDO-Kyn-AhR通路非常活跃,而T细胞释放的免疫因子IFN-γ则进一步激活此通路,诱导TRC进入休眠(Nat Commun. 2017 8:15207) 另外该课题组还发现抗病毒的免疫因子IFN-β同样激活此通路,并更强地诱导TRC休眠(J Clin Invest. 2018 128:1057-1073)。T细胞可以通过IDO-Kyn-AhR通路调控TRC,TRC是否反过来也可以调节T细胞呢?对此,课题组通过将活化的T细胞和肿瘤细胞共培养,发现活化的T细胞不但无法杀死TRC,反而上调PD-1表达,提示TRC能够调节T细胞PD-1的表达。进一步研究发现,T细胞释放的IFN-γ促进TRC显著上调色氨酸转运蛋白以及IDO,使得色氨酸大量进入TRC并代谢为Kyn Kyn被TRC释放到细胞外后,通过T细胞膜表面的Kyn转运子,又进入到T细胞内,从而激活T细胞的AhR,AhR入核后直接结合PD-1启动子,启动PD-1的表达(如图)。该研究发现,在理论上加深了当前对肿瘤免疫的认识,而且有望发展新的肿瘤免疫治疗策略。 /p
  • 言能践行 极致交付
    professional and perfect service言能践行 极致交付 7月12日杭州发布了有历史记录以来最早的高温红色预警,接下来连续一周40℃以上的气温让杭州冲上热搜,网友笑称热过火焰山。 室外骄阳似火,兰友科技杭州生产研发基地内为近期的项目也是如火如荼地进行发货前的最后准备工作。 兰友科技始终坚持极致交付的客户服务理念,每一台设备在发货前都会在研发生产中心进行至少300个样品的全面测试,测试内容涵盖从设备的全流程运行是否流畅,到噪声除尘效果是否达标;从设备外观每一处是否有磕碰沾污,到每一颗螺丝材质、尺寸是否符合安装工艺;从所有出厂证明、检查报告,到毛巾、水桶等清洁工具是否配备齐全;坚持每台fasp-05系列产品都使用成本至少5倍于物流发货的专车发货,规避运输过程中转运对设备货物造成丢失、损坏以及涉疫的风险。 兰友科技力争在用户交付的齐套性、实用性、便捷性、安全性等各个方面做到尽善尽美。fasp-05完成出厂前所有测试之后静待发货生产人员正在给设备各关键部件进行防撞保护fasp-05d 主机已完成内部包装 7月15日早上6点,杭州室外温度已达33℃,兰友科技生产服务部全体成员已集结完毕,准备fasp-05d产品的打包工作。 为了在货车限行时间之前完成装车,各岗位人员有序地进行每一项工作,熟练的操作,默契的配合,使得这次发货非常顺利,豆大的汗珠打湿了衣服,为小伙子们点赞! 早上10点的气温已达39℃,历时3个多小时的奋战,这套fasp-05d型全自动土壤样品制备系统和其他大小包装共13箱货物终于顺利上车,该项目的售后安装服务工程师也已准备就绪前往机场,启程奔赴客户现场!专注而努力,豆大的汗珠顺着脸颊流下,衣服已被汗水浸湿全套fasp-05d产品包装完毕,整装待发。 以前兰友科技的设备外包装需要请专门的包装公司到发货场地来现场制作木板包装箱,不仅费时费力,专车抵达用户现场后,还会给用户增加处理木板垃圾的负担,为了达到既能保障设备运输安全,又能响应国家低碳环保的号召,兰友科技专门设计并制作了一整套专门用于fasp-05系列产品主机和辅机的易拆卸可回收的环保包装,该包装包括承重木托,支撑铝架以及防撞木板。两名安装人员在30分钟内就能完成主机和辅机的快速包装,到达目的地后,仅使用扳手即可快速完成拆卸,可使用物流将拆卸下来的木板和配件运送回公司,用于下一个发货项目;既无需等待外包公司人员上门包装,也帮助用户解决了木板处理的问题,还可减少不必要的木板材料浪费。这套包装方式并已成功应用于北京、上海、新疆、湖南、福建等多个项目,稳定性、便捷性得到了充分验证。 每一台设备都是带着兰友人对土壤样品制备工作的热爱和敬意奔赴用户现场的,fasp系列产品在以往所有已经交付的项目中,都是通过层层严苛的验收流程检验,用户和专家对产品的使用和改进提出了非常多有建设性的意见和建议,如此高标准严要求对于fasp系列产品来说是难得的实战性挑战和机会,因此,每一套fasp产品在顺利通过验收后不但得到了用户专家的充分肯定,同时设备实用性、创新性、稳定性等方面也得到了更大的提升和突破。 兰友科技将一如既往地践行“极致交付”的客户服务理念,为用户提供优质的产品和服务!
  • 实验室废物污染严重 必须建立有效机制
    “实验室产生的污染物常常被人们忽视,其实,实验室排放物往往是严重的污染源。而目前,这一领域尚处于法律监控盲区。”据新华社报道,在刚刚召开的吉林省政协会议上,有政协委员呼吁重视实验室污染问题。   实验室污染日益引起关注   实际上,近几年来,实验室污染不断成为各级人大代表和政协委员关注的话题。   浙江省的代表和委员曾透露,某实验室做蛋白质含量分析实验时,有害气体不经处理即排放,使周围居民咳嗽不止。   广西的委员也在提案中谈到:有的实验室有通风设备,可通风口直接对着窗外 有废液缸,可废液还是直接倒入下水道 解剖动物甚至在厕所里完成,实验完了一冲了之。   去年全国两会上,还有人大代表提出,针对某高校的调查表明,该校16个院系中有12个院系下属实验室存在污染物排放,比例为75% 其中危险废物占国家危险废物名录所认定的47大类中的28类,比例高达59.6%。   实验室废物处理也是科研人员自己关注的话题。在一些活跃着实验室工作人员的专业网络论坛上,《科学时报》记者看到不少网友讨论这一话题。比如,有的人发帖子说:“我们是一个地级市,没有专门的废液处理机构,对甲醇等废液,环保局让我们拉到省城处理,费用太高,现在只能偷着倒入下水道。”跟贴的人有的批评这样做不对,也有的说:“情况差不多,我们也存在这个问题,比较头疼。”“我们也是,都是往下水道倒的,这样太危险了,但是没有办法。”还有的网友说,因为所在实验室常常把废液直接倒入下水道,管道都被腐蚀坏了,甚至直接污染地下水。   来自学校实验室的调查数据   2004年,当时的国家环保总局曾下发了《关于加强实验室类污染环境监管的通知》。但是《科学时报》记者上周从国家环保部污染防治司了解到,目前,我国还没有专门针对实验室废物处理的环保法规。“如果属于危险废物就按照危险废物(相关法规)来管理,其他类别的废物就按其他类别废物(相关法规)管理。”该司的工作人员说,“国家对于危险废物有专门的管理程序,必须交给有资质的废物处理公司。”他还介绍说,环保部和教育部曾经合作进行过相关的调研工作。   2008年,教育部教学仪器研究所成立了“学校化学教学实验废液问题的研究”课题组,选取北京大学、湖南大学、首都师范大学的化学实验教学中心以及分布在各地的10所普通高中为代表,进行了废液量的调查。   教学仪器研究所负责该课题研究的彭实告诉《科学时报》记者,在此之前环保部门缺乏可以说明问题的相关数据。“我们想实际调查一下学校产生污染物的种类和数量,帮助环保部门摸摸情况,为相关费用的投入、政策的制定以及基础设施的建设提供参考。”   这一研究首先完全依据讲义和教材上叙述的实验内容和参加实验人数,统计了理论上的污染物数量和种类。又作了一年的实证调查,让各个学校统计实际收集了多少废液,与理论数据进行对比。   这项研究还对1000多名来自16所“211工程”大学的化学教师、实验员、做化学实验的本科生以及600多名来自130所中学的化学教师进行了问卷调查。研究者还走访调查了国内若干所大学。   结果表明,我国高校和高中化学教学实验所产生的废液,绝大部分是需要回收处理的危险废液。就危险废液量(不包括洗涤液)而言,根据统计结果估算,各高校化学实验教学中心的危险废液规模大约在每年几百至几千升 普通高中学校校均危险废液产量大约为每年100~600升。废液以重金属、不含卤有机废液、废酸为主。根据这一研究结果,再考虑我国的学校数量,仅来自学校实验室的废液总量已经不容忽视。   而且该研究尚未包括科研实验的废液数据。   彭实等人的这项研究还指出:2005年国家环保总局和教育部联合发布《关于加强高等学校实验室排污管理的通知》以后,一些高校开始重视相关工作。但是,多数高校还是没有建立健全完备的废液管理机制,也缺少专项经费支持。而且由于整个社会处理危险废物的设施不完备,使得废液回收渠道不够畅通。师生们对废液的识别、分类以及处理方法等相关知识缺乏全面系统的了解,监管不够严格,少数师生的环保意识和责任意识不强。这些原因导致了废液的回收和处理还很不完全。而且,总的来说,高校交给专业处理公司处理的绝大多数是废弃化学试剂,真正意义上的实验废液并不多。高中的实验废液基本处于放任自流状态,行政主管部门没有明确的要求和规定。   经费从哪里来   “经费是各个学校都提出的问题。”彭实说。   南开大学环境科学与工程学院的副教授李铁龙谈起实验室废物处理时也表示:“这是个很费钱的工作。”   实验室的污染包括生物性污染、化学污染和放射性污染。李铁龙告诉《科学时报》记者,目前国内对实验室废物处理研究很少。“实验室废物的特点是种类多样,成分复杂,变化特别大。不像一般的工业废水是特定的污染物,特定的排放时间和排放量。科研人员经常每天做不同的实验项目,今天出来的物质和明天出来的物质是不一样的,有的甚至是相克相生的。   很难用特定的模式去处理它,处理起来难度非常大,成本也很高。”李铁龙说,这也导致了一些单位在这件事情上“睁只眼闭只眼”。   南开大学是彭实向记者推荐的在实验室废物处理上做得较好的国内大学。该校前几年新建的综合实验楼设置了专门的排水系统,与生活废水排水管道区分开来,并在地下室建立了专门的废水处理站。   武汉大学也是国内较早自己建立废水处理站的高校。该校环保办公室的工作人员告诉记者,他们的废水处理站现在每年还接受当地环保部门的检测。   李铁龙参与了南开大学综合实验楼废水处理工程的设计工作。他坦承,由于实验室废液的复杂性,“我们的处理成本比一般的工业废水处理成本高多了”。   有的高校从每个课题的经费中收取一定比例的废物处理费,作为实验中心处理废物的专项费用,彭实觉得这个方法不错,值得学习。她建议行政主管部门在实验室废物管理问题上形成机制。“其实有的高校实验中心的经费非常多,但是却没有专门的实验废液处理的经费名目,他们希望行政主管部门能在这些方面理顺了。”   也有的专家建议,实验室废液处理应享受政府环保待遇。为解决目前实验室废液处理成本过高,回收处理积极性不高的问题,各级政府应仿效香港特区政府的做法,给予实验废液处理企业正确的定位,明确其公益性而非营利性。并与垃圾处理厂和污水处理厂一样,政府给予补贴,以减轻学校和研究机构的经费负担,调动治污积极性。   重要的是管理和机制   在采访中,彭实和李铁龙都谈到,日本在实验室污染控制方面做得最好,在这一方面我国和日本“差得很远”。   但是日本并非胜在技术。李铁龙认为,对于实验室污染控制而言,“技术是次要的,重要的是管理和机制”。“我们前两年向天津环保部门建议,对实验室排放进行统一的监管,实验室废物属于危险废弃物,需要国家强制管理”。   据彭实了解,地方环保局对实验室的监管目前还主要靠各个单位的登记上报。也就是说,国内目前还主要靠科研机构和高校“自觉”。   据彭实介绍,关于废弃物,在日本有较完善的法律法规,相关教育和科研机构也被归入其约束范畴,使得对实验室废液的管理有法可依,有章可循。比如,日本高校大多设有综合管理环境事务的机构,称为环境保护中心,中心根据相关法律法规,制定管理规章和细则,使实验室废液管理能够有效开展。她建议相关行政主管部门尽快制定实验室危险废物管理办法和分类标准。记者在网上论坛也看到不少人询问是否有相关的国家标准和规定,这样才便于操作。   彭实和李铁龙都建议将实验室的排水管道改造纳入学校的基本建设规划里去。“只有管道独立才能有效处理和监测,监测达标后才能排放到公共排水管道里去。我国实验室的管道大多数与生活废水管道不分,环保部门也没办法监测。”日本大多数实验室的排水系统与生活废水的排水系统彼此分开,实验室废水有单独的排放口。“日本有的学校一旦发现污染物超标,就给实验楼停水。我国有的学者早在上世纪80年代初到日本进修时,发现人家已经这样做了。”彭实说。   日本的另外一条经验是废液处理要源头化。彭实等人在研究报告中指出,发生源的废液性质是最明确的,如若排入管道后再分析处理,或搬运到较远的地方处理,难免会造成处理时间、人力、物力以及费用的增加。针对目前我国的国情,在产生废液的实验室利用简易的废液处理装置对废液进行及时处理,将那些在实验室无法处理的废液委托有资质的专业公司处理,是比较现实可行的。   但是彭实也谈到我国实验室的危险废物处理还需要解决出口的问题。“因为整个国家的社会配套设施不完备,就算实验室认认真真收了,也面临把危险废弃物交给谁的问题。”她说,在调查中,有的单位反映:“以前还有公司收走,现在就让我们留在学校里存着。已经存了很多了,找不到出口。”   “这些问题不是一朝一夕能够解决的,但只要重视,去做,慢慢就能得到解决。”彭实说。
  • iCAP RQplus ICP-MS轻松应对高盐卤水直接进样分析的挑战
    常见的高盐卤水为氯化钠水溶液,溶解度高达 25%。盐水能够应用于各种工业领域,比如在环境监测研究中(例如,碱性水或海水),因此受到了广泛的关注。随着电动汽车 (EV) 和可持续能源储存的快速发展,另一种需要分析盐水的重要应用已然出现,也就是地下卤水。地下卤水1和富锂矿物以及岩石2是满足全球迅速增长的锂需求的重要来源。虽然盐水是丰富的且相对容易获取的锂源,但是,在开采时必须考虑气候变化、相关环境风险和原材料供应的潜在影响。因此,应准确评估盐水中的锂含量和常见杂质含量。另外,从盐水中提取稀土元素 REE 也是盐水的一个重要应用,因此通常也要测试REE含量 ,常见的REE元素主要指镧系元素,这些元素在盐水中的浓度极低(通常为 ngL-1 水平)。测试难点 😫 固溶物含量高:通常高于 0.5% w/v,高盐样品显著影响仪器的灵敏度,导致内标漂移;😫 盐分高:容易在锥孔、矩管中心管、雾化器喷嘴积盐,造成堵塞,增加了系统维护以及不必要的停机时间;😫 手动稀释:通常高盐样品采用手动稀释,必然会耗时费力。别慌!赛默飞解决方案已加载完毕! 1仪器参数设置 👉 仪器:iCAP RQplus ICP-MS图1 RQplus ICP-MS外观图👉 配置:采用配有 AGD 功能的 iCAP RQplus ICP-MS 进行测试,避免了手动稀释。Thermo Scientific&trade Qtegra&trade (ISDS) 软件中设置有三种不同的稀释模式选项,可在创建 LabBook 时由用户进行直观选择(图2)。除 AGD 技术之后,同时采用氩气加湿技术,氩气加湿器(pergo,Elemental Scientific (ESI))会显著改善砷和硒等高电离电位元素的分析性能,消除基体效应对回收率造成的潜在影响。图2.Qtegra ISDS 采集参数(点击查看大图)👉 仪器参数:表1为仪器分析参数。使用通过 Qtegra ISDS 软件提供的默认自动调谐程序优化测量模式。表1.仪器配置和操作参数2数据采集和数据处理 Qtegra ISDS 软件提供仪器控制(自动调谐、校准等)以及数据采集、处理和报告等一系列功能,包括一系列的质量控制测试功能,充分体现软件的人性化设计。此外Qtegra 软件具有 Thermo Scientific&trade Hawk&trade 仪器状态监测系统的功能(图3),使用户能够监测进样系统所有部件的使用情况,从而有助于通过全面维护计划提高仪器正常运行效率。图3 Qtegra 软件的Hawk仪器状态监测系统(点击查看大图) 3样品制备 ●在 100 g 2% v/v HNO3中溶解 25 g 纯 NaCl ,制备含有 25% w/w NaCl 的盐水溶液。●使用混合酸稀释剂(2% v/v HNO3 和 0.5% v/v HCl)和多元素标准品(SPEX&trade CertiPrep&trade )制备所有空白样、校准标准品、基体加标和质量控制 (QC) 溶液。 4灵敏度和线性 表2总结了获得的仪器检出限 (IDL) ,以及研究中34种元素的相关系数 (R2),IDL 是对校准空白样进行十次重复测量所得到的标准差的三倍。由于分析溶液没有手动稀释,这意味着 IDL 直接等同于方法检测限 (MDL)。值得一提的是,这些方法检出限已包含了 AGD稀释功能的换算系数。表2.所有目标分析物的校准结果、MDL和内标物(上下滑动查看) 5基体评估 图4显示了在分析 0.5%-4.0% 的盐水溶液过程中加标回收率的结果。典型回收率在 80%-120% 的范围内,这些结果证明,使用 AGD可显著降低基体的影响。图4.含有 0.5% - 4.0% w/w NaCl.的模拟盐水样品的 25 µ gL-1 加标回收(点击查看大图) 连续吸入一小时内高浓度盐水溶液后,对进样系统进行目视检查,如预期的那样,基质导致样品和截取锥表面已形成盐份沉积(图5A),特别值得提出的是,正是由于嵌片技术的使用,这些积盐形成的位置均分布于截取锥的基座部分,而锥尖部分极为少见,这是其它非嵌片技术截取锥无法实现的,图5B是按照建议程序完成清洁过程之后的截取锥图像,基质沉积物很容易被洗净,即可用于继续进行分析。图5.在 (A) 之前和清洁 (B) 之后运行盐水分析的所有序列后的截取锥情况(15小时内约200个盐水基质样品) 6长期稳健性测试 为了模拟高通量分析,分析了大批含有 2.5% w/w 盐水溶液的样品。分析的溶液总数为150份(包括120份未知样品、30份校准物和QC 检查溶液),总分析时间需要约9小时。所有34个元素的全部 CCV 相对标准差表明回收率良好 (86%-119%),批次内的相对标准差为 ±3.5%。图6提供了直接从 Qtegra ISDS 软件中获得的截图,突出显示了批次运行时间内 QC 检查的高稳定响应。图6.34个元素的 QC 校准验证结果(点击查看大图) 此外,34个目标元素的加标回收率均在 80%-120%内。图7特别强调了镧系(浓度通常低于 1 µ gL-1 的一组分析物)的加标回收率。为了模拟实际条件,以仅 0.1 μgL-1 和 0.2 μgL-1 的水平进行加标回收率测试,即使在较低浓度水平下,也获得了出色的结果。图7.在9小时分析中,使用 2.5% w/w 盐水样品获得的 0.1 μgL-1 和 0.2 μgL-1 REE 加标回收率测试结果(点击查看大图)本文总结Thermo Fisher iCAP RQplus ICP-MS 的 AGD 功能,允许实验室能够在高盐溶液等挑战性样品中进行准确、可靠的元素分析。对大量不同浓度的盐水样品中的34个元素进行的分析证明该方法具有以下优势:😎 可通过自动调谐程序完全优化 AGD 稀释比模式,使仪器适用于高通量实验室操作。😎 AGD 最高稀释设置允许吸入高达 25% w/w 的盐水样品,并可获得卓越的 MDL,同时消除了费力的手动样品稀释需求,加速样品通量。😎 在一个包含120份 2.5% w/w 盐水溶液样品的批次中,获得了良好的 CCV 回收率和加标回收率,证明了方法具有高可靠性。😎 使用单一He KED 模式用于所有分析物,实现较高的灵敏度并消除干扰,确保提供出色的仪器检出限和线性响应。😎 Hawk 仪器健康监测助手,提供有关仪器性能和耗材状态的信息,确保日常操作和长期仪器监测,促进可靠、稳健分析。
  • 晋陕豫三省检验检疫部门达成合作机制
    7月6日,晋陕豫黄河金三角检验检疫合作机制备忘录在山西运城正式签署,在随后举行的新闻发布会上,记者获悉,在国家质检总局的大力支持下,黄河金三角区的产品进出将享受最大便捷,企业通关成本将得以有效降低,对于该区域防范质量安全风险,改善投资环境将起到重要的推动作用。   晋陕豫黄河金三角地区位于山西、陕西、河南三省交界地带的黄河沿岸,包括运城市、临汾市、渭南市和三门峡市。黄河金三角处于我国中西部结合带和欧亚大陆桥重要地段,是实施西部大开发战略和促进中部地区崛起战略的重点区域,在我国区域发展格局中具有重要地位。   为了贯彻落实国务院批复精神,支持黄河金三角区域加快开放,经国家质检总局同意,山西、陕西、河南三地检验检疫部门率先行动,主动作为,及时跟进,于今天正式签署&ldquo 晋陕豫黄河金三角检验检疫合作机制备忘录&rdquo ,以晋陕豫黄河金三角区域为纽带,进一步加强三方检验检疫合作,共同推动晋陕豫黄河金三角区域外向型经济发展。   据悉,晋陕豫黄河金三角区域内的出入境检验检疫部门涉及山西、陕西、河南三个直属检验检疫局,目前在四市范围分别设立了侯马、运城、渭南、三门峡四个分支机构,具体负责金三角区域内的全部出入境检验检疫业务。   据介绍,合作三方将以建立黄河金三角区域检验检疫工作联动机制为核心,在区域出口优势农产品生产加工基地建设、区域产业承接发展重点项目落地服务机制、便利化通关协调共享机制、区域动植物疫情疫病联防联控机制、支持区域外包业、旅游业发展服务机制、区域内检测资源共享和科研合作机制、跨区域企业扶助机制、出入境产品检验检疫信息互通机制、重大事项统筹协调机制、打击违法违规行为的联动机制、协同宣传机制等11个主要方面展开合作。   据了解,质检部门是第一个出台区域合作措施支持晋陕豫黄河金三角发展的政府部门。备忘录的签署将对黄河金三角区协同推进改革开放产生积极意义。通过探索建立检验检疫工作区域协调机制,构建提升质量、保障安全、促进发展的检验检疫一体化把关服务格局,将形成可复制、可推广的改革经验,为黄河金三角一体化发展提供强大动力。
  • 解决方案 | 应用Empore™金属螯合树脂固相萃取柱建立高盐样品中铅金属离子的检测方法
    前言Empore&trade 金属螯合树脂固相萃取柱,其螯合剂或配体包含两个或多个电子供体原子,它们可以与单个金属离子形成配位键,然后用连续的供体原子形成一个包含金属离子的环,这种环状结构被称为螯合物,这个名字来源于希腊语单词Chela,意为龙虾的大螯。Empore&trade 金属螯合树脂固相萃取柱基于上述金属离子的螯合原理,当样品溶液通过Empore&trade 金属螯合树脂时,溶液中的金属离子被选择性地吸附出来,利用这种选择性吸附功能可从大体积的基质中富集金属离子,也可以从复杂的有机或无机基质中选择性分离金属离子。本文参照《GB 5009.12-2023 食品安全国家标准食品中铅的测定》,利用Empore&trade CHELAT固相萃取柱(10mm/6mL,货号:98-0604-0701-6EA)及MPREP-SPE08手动固相萃取装置进行净化,再用原子吸收光谱仪(配石墨炉原子化器,及铅空心阴极灯)或ICP-MS进行检测,建立了一种对高盐样品中铅金属离子进行固相萃取净化的前处理方法,此方法的回收率及平行性良好,适用于高盐样品中铅金属离子的检测。1、实验过程1.1 仪器与试剂LabMS 3000电感耦合等离子体质谱仪,北京莱伯泰科仪器股份有限公司;LabAA 2000原子吸收光谱仪,北京莱伯泰科仪器股份有限公司;UltraWAVE超级微波消解系统,北京莱伯泰科仪器股份有限公司;微波消解赶酸器,北京莱伯泰科仪器股份有限公司;MPREP-SPE08手动固相萃取装置,货号:PZ0008,北京莱伯帕兹检测科技有限公司;硝酸(高纯),默克密理博公司;乙酸铵(优级纯),国药集团化学试剂有限公司;无水乙酸钠(优级纯),国药集团化学试剂有限公司;Empore&trade CHELAT固相萃取柱(10mm/6mL,货号:98-0604-0701-6EA),北京莱伯帕兹检测科技有限公司;铅金属离子标准溶液100mg/L(产品编号: BW30095-100-20),坛墨质检标准物质中心;铑金属离子标准溶液100mg/L(产品编号: BW30063-100-C-50),坛墨质检标准物质中心。1.2 铅系列标准溶液的配制分别移取100mg/L的铅金属离子标液0、2、5、10、20、40、50μL置于100mLPP刻度管中并以2%的硝酸溶液定容至刻度,得到质量浓度为0μg/L、2μg/L、5μg/L、10μg/L、20μg/L、40μg/L、50μg/L的铅标准系列溶液。1.3 实验部分1.3.1 样品制备准确移取酱油试样0.50mL于微波消解罐中,加入5mL硝酸,按照微波消解的操作步骤消解试样(消解条件参见表1),冷却后取出消解罐,在微波消解赶酸器上于140℃~160℃赶酸至近干。消解罐放冷后,将消化液转移至25mL容量瓶中,用2mol/L的乙酸钠溶液洗涤消解罐3次,合并洗涤液于容量瓶中并用2mol/L的乙酸钠溶液定容至刻度,混匀备用。同时做试剂空白试验。表1 超级微波消解升温程序1.3.2 铅的分离过程1)固相萃取柱的活化吸取10mL1%硝酸液以5mL/min的流速过柱(Empore&trade CHELAT固相萃取柱,10mm/6mL,货号:98-0604-0701-6EA),然后分别用5mL水和5mL1mol/L乙酸铵溶液以5 mL/min的流速过柱。2)铅的吸附与解吸分别吸取试剂空白液和1.3.1消解后的样液25 mL,以约5mL/min的流速过柱,然后用5mL1 mol/L乙酸铵溶液过柱洗涤,再用10mL水分两次洗去乙酸铵溶液,最后用10mL1%硝酸洗脱,收集洗脱液,备测。1.3.3石墨炉原子吸收光谱测定条件仪器条件参见表2。表2 石墨炉原子吸收光谱测定条件1.3.4 ICP-MS分析仪器达到稳定后,以空白溶液和含有适当浓度的Al、Be、Ce、Co、Cu、Li、Mg、Mn、Ni、Pb、Tb、Zn的混合标准溶液作为性能检查液对仪器参数进行优化选择。以铑做仪器内标,在仪器的分析过程中仪器内标进样管始终插入内标溶液中,依次将仪器的样品管插入各个浓度的铅标准溶液中测定标准曲线点,取3次测量结果的平均值制作标准曲线。测定样品时,将仪器的样品管插入试样中,从标准曲线上计算得出相应的浓度,扣除样品空白,计算出铅的含量。2、实验结果表3 铅金属离子的测定结果3、结论本实验使用Empore&trade CHELAT固相萃取柱(10mm/6mL,货号:98-0604-0701-6EA,北京莱伯帕兹检测科技有限公司)对高盐样品中铅金属离子进行固相萃取净化处理,再通过原子吸收光谱仪(配石墨炉原子化器,及铅空心阴极灯)和ICP-MS进行检测。分析对比检测结果发现,该固相萃取柱对铅金属离子具有较高吸附能力,且可以去除NaCl和KCl的干扰。本实验中采用的固相萃取方法简便、快速,适用于高盐样品中铅金属离子检测时的样品处理。4、参考文献GB 5009.12-2023 食品安全国家标准 食品中铅的测定
  • 上海有机所等在高活性天然产物生物合成中发现新自抗性机制
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   GyrI-like蛋白广泛存在于原核与真核生物中,并被注释为小分子结合蛋白。近期,中国科学院上海有机化学研究所生命有机化学国家重点实验室唐功利课题组与周佳海课题组以及瑞士洛桑联邦理工学院袁曙光合作,以抗肿瘤抗生素谷田霉素(YTM)和CC-1065为研究对象,报道了GyrI-like家族的一个亚家族蛋白具有水解YTM和CC-1065环丙基的特性,且这类酶能够赋予微生物对YTM和CC-1065的抗性。相关研究成果在线发表于《自然· 通讯》( i Nat.Commun. /i 2017, DOI: 10.1038/s41467-017-01508-1)。 /p p   谷田霉素家族化合物是一类来源于微生物、含有环丙烷药效团的高活性天然产物,目前包括YTM、CC-1065和多卡霉素。这些化合物主要是对细胞内的遗传物质DNA进行烷基化修饰,从而达到杀死细胞的目的(IC50为pM级)。唐功利课题组长期以来致力于谷田霉素家族化合物的生物合成研究,此次发现是继克隆了YTM和 CC-1065的生物合成基因簇,以及揭示 DNA 糖苷酶 YtkR2开启DNA修复机制以来取得的又一突破。 /p p   该研究得到了国家自然科学基金委、上海市科委、中科院战略性先导科技专项的资助。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171211356416650773.jpg" src=" http://img1.17img.cn/17img/images/201712/uepic/87622366-468a-46b7-99e7-63c86a510812.jpg" / /p p style=" text-align: center " GyrI-like家族环丙基水解酶赋予微生物对YTM和CC-1065的抗性 /p
  • 聚焦高盐食品中重金属检测——食品中重金属检测技术交流暨标准方法解读会召开
    p style=" margin-top: 10px text-indent: 2em text-align: justify " strong 仪器信息网讯 /strong 2019年5月14日,由中国检验检疫科学研究院检验检疫技术培训中心(以下简称:中国检科院培训中心),与德国耶拿分析仪器股份公司联合主办的“‘检科学院’论坛:食品中重金属检测技术交流暨标准方法解读会”在京召开。70余名来自海关、政府检测机构、第三方实验室等的从事食品检测的相关技术人员参与了此次会议。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 596px height: 351px " src=" https://img1.17img.cn/17img/images/201905/uepic/349fcf75-cfd5-46cc-a381-4bd03c66a334.jpg" title=" 会议现场.jpg" alt=" 会议现场.jpg" width=" 596" height=" 351" / /p p style=" margin-top: 10px text-align: center text-indent: 0em " 会议现场 /p p style=" margin-top: 10px text-indent: 2em text-align: justify " 此次会议的目的是促进科学知识的传播,加强技术交流。会议由中国检科院培训中心副主任彭涛主持。 /p p style=" margin-top: 10px text-indent: 2em text-align: justify " 彭涛首先对中国检科院培训中心作了简要的介绍:中国检科院培训中心隶属于中国检验检疫科学研究院,是专门从事检验检疫技术培训的部门。中心搭建了完善的课程体系,通过与政府机构、科研院所、行业协/学会、高等院校、第三方检测机构及相关企业紧密合作,为建设专业化市场监管队伍提供技术支撑,为行业发展培养高素质人才,致力于打造国内一流的高技能专业技术人才的培养平台。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201905/uepic/c6f5f59f-f7c3-4ae9-a0b4-0c68f60bc24a.jpg" title=" 刘志楠.jpg" alt=" 刘志楠.jpg" width=" 600" height=" 400" / /p p style=" margin-top: 10px text-align: center " 中国检科院培训中心副主任彭涛 /p p style=" margin-top: 10px text-indent: 2em text-align: justify " 介绍结束后的技术交流环节,深圳海关食检中心高级工程师颜治、新仪微波产品经理赵立强、天津海关动植物与食品检验中心实验室副主任肖亚兵、德国耶拿分析仪器股份公司应用工程师程雪华分别带来了精彩的报告。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201905/uepic/c642a29f-7c80-4617-b0ed-76963ddc7dd6.jpg" title=" 颜治.jpg" alt=" 颜治.jpg" width=" 600" height=" 400" / /p p style=" margin-top: 10px text-align: center " 深圳海关食检中心高级工程师颜治 /p p style=" margin-top: 10px text-align: center " 报告题目:食品中重金属元素检测技术 /p p style=" margin-top: 10px text-indent: 2em text-align: justify " 颜治简要介绍了重金属检测中常用的前处理和仪器分析方法,剖析了几种方法的优缺点和在检验中可能遇到的问题,并用他在检测过程中的实例进行经验交流。 /p p style=" margin-top: 10px text-indent: 2em text-align: justify " 近几年,社会对婴幼儿配方食品中重金属问题关注度有增无减,但婴幼儿配方食品基质复杂,前处理方式不同会直接影响其检测结果。采用干灰化方法处理婴幼儿配方食品是食品检验中常用的方法。颜治提出,采用标准方法(干灰化)处理某些婴幼儿配方食品,在某些情况会使检测的铁、锌含量偏低。他举例说:某婴幼儿配方米粉,添加的营养强化剂为氧化锌,采用标准方法(干灰化)处理后,检测锌含量明显低于标签值。在灰化步骤后进行加硝酸蒸干,再灰化溶解定容的方法,检测依然低于标签值。采用压力罐消解/微波消解方法,检测值与标签值吻合。颜治建议:添加相同营养强化剂,可能因为工艺不同,导致测定结果偏低,采用压力罐消解/微波消解方法,结果会比较理想。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 593px height: 395px " src=" https://img1.17img.cn/17img/images/201905/uepic/7c7d1aeb-ad6f-4364-b5a4-326e483d9168.jpg" title=" 赵立强.jpg" alt=" 赵立强.jpg" width=" 593" height=" 395" / /p p style=" margin-top: 10px text-align: center " 新仪微波产品经理赵立强 /p p style=" margin-top: 10px text-align: center " 报告题目:食品重金属检测的前处理技术交流 /p p style=" margin-top: 10px text-indent: 2em text-align: justify " 赵立强在对海能仪器和新仪微波的发展历程和产品作了简要的介绍后,对食品样品检测前处理方法进行了具体的讲解,包括:不同的消解方式,以及消解时各种试剂的用量。他特别提到了处理食品样品时添加氢氟酸的情况,可能会有不溶的氟化钙产生,不利于后期的检测。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 595px height: 396px " src=" https://img1.17img.cn/17img/images/201905/uepic/c323bfd3-75a7-49ce-a1db-92fd06fbec1d.jpg" title=" 肖亚兵.jpg" alt=" 肖亚兵.jpg" width=" 595" height=" 396" / /p p style=" margin-top: 10px text-align: center " 天津海关动植物与食品检验中心实验室副主任肖亚兵 /p p style=" margin-top: 10px text-align: center " 报告题目:高盐食品中重金属检测解决方案 SN/T4887-2017、SN/T4888-2017标准解读 /p p style=" margin-top: 10px text-indent: 2em text-align: justify " 高盐食品中重金属检测一直是食品中重金属检测领域的难题。目前国内外的解决方式有:基体改进剂法、有机溶剂萃取法、基体匹配法(标准加入法)和直接稀释法,但这些方法都有其弊端的存在,不能彻底解决检测中的难题。肖亚兵采用分离富集技术,将待测物与基体分离,通过一定的富集后再进行检测。利用亚氨基二乙酸型螯合树脂的吸附特性,对待测的铅、镉、铜进行吸附,洗脱,再进行检测,可以脱去高盐基质。运用该方法对高盐或高共存基体干扰的食品进行了检测,加标回收率:90.6 % - 98.9 %,RSD:1.7 % - 8.0 %,对酱油质控样进行了检测,结果准确。 /p p style=" margin-top: 10px text-indent: 2em text-align: justify " 通过国家质检总局项目和天津市科技支撑重点项目,该方法已制定行业标准:出入境检验检疫行业标准SN/T4887-2017出口高盐食品中镉的测定、SN/T4888-2017出口高盐食品中铅的测定。肖亚兵还对标准所用的装置进行了详细的解读。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 594px height: 396px " src=" https://img1.17img.cn/17img/images/201905/uepic/3a1a3dcc-45b7-4bae-9984-db353023396a.jpg" title=" 程雪华.jpg" alt=" 程雪华.jpg" width=" 594" height=" 396" / /p p style=" margin-top: 10px text-align: center " 德国耶拿分析仪器股份公司应用工程师程雪华 /p p style=" margin-top: 10px text-align: center " 报告题目:准确检测食品中高盐样品的分析方法 /p p style=" margin-top: 10px text-indent: 2em text-align: justify " 程雪华在报告中总结了高盐样品重金属分析中存在的困难。在光谱质谱分析检测中,高盐样品中的氯化钠基体、共存元素等会对检测结果造成很大的干扰,样品中待测元素含量低,受干扰后很难准确定量。针对高盐食品分析,依据新的行业标准,耶拿公司推出高盐食品分析新方案:全自动重金属固相萃取法。该方法是一种无机萃取方法,通过富集洗脱的方式,将待测元素与基体分离,可彻底去除基体干扰。萃取后的样品可进样至ICP-MS、AAS等仪器,高效准确的分析高盐样品中的重金属。程雪华还在报告中介绍了采用此方法对高盐食品、海水等样品测试的实例,都极大的消除了高盐基质对待测元素的干扰。 /p p style=" margin-top: 10px text-indent: 2em text-align: justify " 会议后,参会人员受邀参观德国耶拿公司北京应用实验室。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 608px height: 405px " src=" https://img1.17img.cn/17img/images/201905/uepic/ecfb47f7-fa0a-4de6-9d31-b5e0e55d00b8.jpg" title=" 参观1.jpg" alt=" 参观1.jpg" width=" 608" height=" 405" / /p p style=" margin-top: 10px text-align: center " 耶拿应用工程师在为参会人员讲解 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 603px height: 402px " src=" https://img1.17img.cn/17img/images/201905/uepic/686c5da2-0cec-48b1-8735-4f71c217c2f0.jpg" title=" 参观2.jpg" alt=" 参观2.jpg" width=" 603" height=" 402" / /p p style=" margin-top: 10px text-align: center " 耶拿应用工程师现场演示5%氯化钠溶液中的铅的在AAS上的测试 /p p br/ /p
  • 盈盛恒泰国产质构仪用于乳膏延展性测试
    软膏剂(Ointments)是系指药物与适宜基质均匀混合制成,具有一定稠度的半固体外用制剂。软膏具有一定粘稠度,而且可以根据药物与基质的混合程度不同分为溶液型和混悬型软膏。药物在基质中的分散状态存在差异,溶液型软膏的药物颗粒非常小,可共熔或溶解于基质中;而混悬型的软膏,其药物颗粒大小高于溶液型,通常为细粉状,可以均匀分散混合在基质中。乳膏制剂就是将药物混合分散在乳状液型的基质中,最后形成了均匀混合而成的半固体制剂。乳膏剂可以根据所使用的乳化剂的不同,分类为油包水型乳膏与水包油型乳膏两种。常用的油包水型乳膏有羊毛脂和脂肪醇,水包油型乳膏有钠皂和脂肪醇硫酸钠类等。这类药物的配方属于水油乳化、固液分散的多相体系,从药物配方来看,配方本身的稳定性存在很大差异,这就为数字化表征带来了挑战。从力的微观角度,表征药物制剂的原料质量、配方稳定性、制剂涂抹特性、延展性等以及质量的一致性评价,对药物制剂的设计,处方组成,制备工艺等具有重要意义。盈盛恒泰ENS系列国产质构仪可用于软膏乳膏等的延展性测试。盈盛恒泰ENS系列国产质构仪优势特点高精度:能够精确测量,提供准确的测试数据。自动化:采用软件自动化控制测试流程,减少人为误差,提高测试效率。可靠性:经过严格的质量控制和测试验证,符合相关标准,确保仪器的可靠性和稳定性。数据分析:能够对测试数据进行分析和记录,为质量控制和产品改进提供依据。
  • Nature子刊 | 重大进展!黄超兰/高福等团队合作发现早期新冠病毒感染主要为免疫抑制并或存在“两阶段”机制
    p   由SARS-CoV-2病毒感染引起的新冠肺炎(COVID-19)已成为全球性的大流行病,行之有效的治疗干预措施对疫情的控制至关重要。然而到目前为止,新冠病毒感染后的发病机制尚未明确。2020年11月17日,北京大学医学部精准医疗多组学研究中心主任黄超兰教授,中国科学院高福院士,北京大学医学部精准医疗多组学研究中心陈扬副研究员,中国疾病预防控制中心病毒病预防控制所谭文杰教授共同通讯在Nature Communications 在线发表题为“Immune suppression in the early stage of COVID-19 disease ”的研究论文,该研究发现早期的新冠感染患者存在着显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式:第一阶段涉及免疫系统抑制、紧密连接受损以及大规模的代谢紊乱 第二阶段涉及部分免疫应答激活,可能进一步导致细胞因子风暴和器官损伤的发生。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/03a9fd0b-c50d-48d2-9462-dfc8553b77bc.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   研究者对来自健康志愿者,COVID-19患者和非COVID-19肺炎患者的尿液样本开展了基于DIA-PASEF方法的定量蛋白质组学分析。结果显示,与健康志愿者和非COVID-19肺炎患者相比,共有1986个蛋白在COVID-19患者体内发生显著变化,其中下调蛋白比上调蛋白的总数多出十倍,大量参与免疫应答和紧密连接形成的蛋白均呈现下调状态。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/71653982-dffb-46b0-ab80-f39ea6ec6e9f.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center "   图1. 新冠病毒感染的“两阶段”机制 /p p   为深入探索新冠肺炎的疾病进展机制,研究者将COVID-19患者划分为轻中症组和重症组。进一步的研究结果表明,免疫应答在疾病进展早期呈现抑制状态,在疾病进展晚期则表现出一定程度的上调。值得关注的是,与当前研究一致,近期陆续发表的多篇文章均报道COVID-19的临床症状主要呈现为免疫抑制,危重症患者有可能进一步出现“高炎症高细胞因子”症状【1-3】。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/ae059008-5bed-4388-a3ba-f0cfc58e570c.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center "   图2. 基于DIA-PASEF方法的定量蛋白质组学分析流程 /p p   此次,黄超兰主任领衔的多组学中心团队与高福院士领衔的多学科团队紧密合作,充分利用前沿的高通量DIA定量蛋白质组学技术,用高质量的数据为全面解读COVID-19患者的临床症状提供了可靠的重要分子基础和机制信息,有助于未来进一步探索优化的临床治疗方案设计。本研究示范了临床,前沿技术和基础学科的深度交叉融合。双方团队也在此课题基础上继续开展协同创新研究,持续为抗击新冠病毒做出多方面的贡献。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/f89a5f05-4055-45e8-ad0f-4b2620348c2b.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center "   图3. 轻中症患者呈现免疫应答抑制(a)和重症患者呈现免疫应答上调(b) /p p   本次研究得到中国疾病预防控制中心(CDC)和首都医科大学附属北京佑安医院的大力支持。北京大学医学部精准医疗多组学研究中心主任黄超兰教授,中国科学院高福院士,北京大学医学部精准医疗多组学研究中心陈扬副研究员,中国疾病预防控制中心病毒病预防控制所谭文杰教授为本文的共同通讯作者 北京大学医学部精准医疗多组学研究中心田文敏博士、张楠同学,首都医科大学附属北京佑安医院院长金荣华教授,首都医科大学附属北京佑安医院科技处冯英梅处长,北京大学医学部精准医疗多组学研究中心王思媛博士为本文的共同一作。 /p p   原文链接: a href=" https://www.nature.com/articles/s41467-020-19706-9" _src=" https://www.nature.com/articles/s41467-020-19706-9" https://www.nature.com/articles/s41467-020-19706-9 /a /p p br/ /p p   在12月7日上午举行的 strong 第十一届质谱网络会议(iCMS 2020) /strong 上, strong 北京大学医学部精准医疗多组学研究中心黄超兰教授 /strong 将做主题为“ strong Discovery of Multiple Signaling Roles of CD3e by Targeted-IP-Multiplex-Light-Absolute-Quantitative Mass Spectrometry (TIMLAQ-MS) /strong ”的报告,欢迎预约聆听: /p p    a href=" https://www.instrument.com.cn/webinar/meetings/iCMS2020" _src=" https://www.instrument.com.cn/webinar/meetings/iCMS2020" https://www.instrument.com.cn/webinar/meetings/iCMS2020 /a /p p br/ /p
  • NanoTemper用户之声 | 探访中国农业大学-植物应答盐碱胁迫的分子机制
    引 言2023年,NanoTemper正式开通了用户之声系列活动,目的是为了分享更多用户的实际应用案例和心得体会,希望能帮助到更多的研究者解决问题。在生命科学领域,微量热泳动(MST)技术已被广泛及高度应用到各项行业,而Monolith分子互作检测仪凭借其优异表现,不断助力科研人员在CNS上发表优质的重磅文献近百篇。本期,我们采访到了来自中国农业大学的杨永青副教授,针对他们的植物应答盐碱胁迫的分子机制这个研究方向进行了深入采访。如果您在分子互作方面同样遇到一些问题,不妨试试MST技术,希望带给大家给多的启发和帮助。来自用户的反馈 NanoTemper 用户介绍 中国农业大学姓名:杨永青 副教授在用仪器:Monolith分子互作检测仪Q1用户背景介绍杨永青副教授从2001-2006年在北京林业大学读博士。2006-2010年在北京生命科学研究所做博士后,2010年进入中国农业大学工作。主持和参与国家自然科学基金重点项目,面上项目,国际合作项目,国家科技部973项目和农业部转基因专项等。获得授权专利4项。在Mol Plant,Nat Commun,Plant Cell,New Phytol和JIPB等高水平学术期刊上发表SCI论文30余篇。Q2请介绍一下您的研究内容我们长期从事植物应答盐碱胁迫的分子机制。盐碱胁迫会引起离子胁迫和渗透胁迫。离子胁迫是影响植物产量的主要因素。植物通过SOS途径将细胞内盐离子外排出去,SOS蛋白的转运依赖于质子ATPase建立的质子梯度,但具体如何调控机制不清楚。因此,我们主要研究的方向是植物应答盐碱胁迫下离子平衡调控的具体机制,并取得了突破性进展。我从2013年左右了解到Monolith,大概统计了一下,近几年发表的文章中,至少有7篇用到了MST技术进行互作研究。在进行抗盐碱机制研究中,会涉及到质子泵,离子运输和信号传递等,进行的互作检测的分子类型也很丰富,包括蛋白质与蛋白质,蛋白质和有机小分子,蛋白与无机离子等,这些互作都可以在Monolith上完成快速检测。Q3请问Monolith分子互作检测仪如何满足您的研究需求?在盐碱胁迫的机制研究中,会涉及到很多类型的分子,如蛋白和蛋白,蛋白和小分子,甚至是蛋白和无机离子的互作,都可以使用MST技术完成检测,而且MST的样品用量少,可以大大减少实验时蛋白提取的工作量。比如说在进行Ca2+蛋白传感器SCaBP3蛋白参与碱胁迫响应的分子机制文章投稿时,The plant cell的reviewer提出需要证明SCaBP3与质膜H+-ATPase AHA2的互作,并且推荐ITC的方法。我们在进行ITC检测尝试时发现,该方法需要大量的蛋白,但每次蛋白的提取量为1-2mg,只可以做1-2次ITC实验,且无法进行重复。而MST方法检测的蛋白用量少,进行一次MST实验,仅需要18ng AHA2和200μg SCaBP3,节约大量样本和时间成本,因此我们采用了MST完成了该组互作实验,并顺利发表文章。使用MST检测SCaBP3和AHA2 C的互作https://doi.org/10.1105/tpc.18.00568Q4您认为Monolith分子互作检测仪有哪些优点?分子互作检测方法对蛋白用量非常少,比如在进行蛋白SCAB和磷脂分子PI3P的Kd检测2时,MST实验仅需要10nM, 160μL的SCAB-蛋白,也就是130ng。这组研究同时进行了PLO(Protein-lipid overlay assay)实验,但该实验流程较为复杂:需要1小时进行干膜,1小时进行SCAB蛋白孵育, 然后通过进行2小时的免疫印迹的方法检测,操作熟练的情况也需要4小时。但每次MST检测也只要15min,这项研究中涉及到两组,也就是检测只需要30min即可完成。因此,MST这种方法极大的提高了实验效率。MST检测SCAB1与磷脂分子PI3P的亲和力https://doi.org/10.1093/plcell/koab264Q5您对NanoTemper售后服务的印象?NanoTemper技术团队一直能与我们进行快速地交流,及时解答问题。每年都会有线上和线下不同专题的培训活动,能够让实验室一届届学生快速掌握MST的实验流程,迅速开展相关实验,我们十分满意。
  • 关于公开征求《海南省建立健全生态产品价值实现机制实施方案(征求意见稿)》意见的公告
    为深入推进国家生态文明试验区建设,加快推动我省建立健全生态产品价值实现机制,进一步贯彻落实中共中央办公厅、国务院办公厅印发的《关于建立健全生态产品价值实现机制的意见》,我厅起草了《海南省建立健全生态产品价值实现机制实施方案(征求意见稿)》,现向社会公开征求意见,并将有关事项公告如下: 一、意见征集时间 2020年9月10日—2020年9月15日 二、意见反馈方式 信函地址:海南省海口市美兰区美贤路9号海南省生态环境厅808室 电子邮箱:zhc_sthjt@hainan.gov.cn 电话:0898-66216320 联系人:海南省生态环境厅 徐心玫 附件:《海南省建立健全生态产品价值实现机制实施方案(征求意见稿)》海南省生态环境厅2020年9月10日
  • 高福、颜宁、锁志刚等华人科学家入选美国科学院院士
    p   北京时间4月30日,美国科学院(the National Academy of Sciences,NAS) 公布新入选的院士名单,共有100名美国本土科学家以及25名外籍科学家入选。 /p p   其中,中国疾控中心主任、国家自然基金委副主任高福和普林斯顿大学教授、结构生物学家颜宁当选为美国科学院外籍院士,洛克菲勒大学教授、HHMI研究员Jue Chen(陈珏)与哈佛大学工程与应用科学学院锁志刚(Zhigang Suo)当选为美国科学院院士。 /p p   值得一提的是,今年新当选的院士名单中,约40%是女性学者,创下了历年之最。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 四名华人学者为新晋院士 /strong /span /p p span style=" color: rgb(255, 0, 0) " strong /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/ed5af399-2852-4579-9567-615ec8887425.jpg" title=" 微信图片_20190504131406_副本.jpg" alt=" 微信图片_20190504131406_副本.jpg" / /p p   美国科学院外籍院士高福 /p p   高福,中国科学院院士院士,病原微生物与免疫学家,英文名:George Fu Gao,“国家杰出青年基金”获得者,“国家973项目”首席科学家,中国疾病预防控制中心主任。高福1983年毕业于山西农业大学,1986 年北京农业大学获硕士学位,1994 年英国牛津大学获博士学位。先后在加拿大卡尔加里大学、英国牛津大学,美国哈佛大学/ 哈佛医学院从事博士后研究工作。2001-2004年任英国牛津大学讲师、博士生导师、 研究组长。2004-2008年任中国科学院微生物研究所所长。2011年4月任中国疾病预防控制中心副主任,2017年7月起任中国疾病预防控制中心主任。现为中国科学院大学医学院院长、中国疾病预防控制中心主任、国家自然科学基金委员会副主任。高福的主要研究方向为病原微生物跨种间传播机制与分子免疫学,主要从事T细胞识别、流感病毒等囊膜病毒侵入的分子机制、禽流感等动物源性病原跨种间传播的机制研究等。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/92abbb79-d9c2-4aab-a66d-a7da12f49864.jpg" title=" 微信图片_20190504131417_副本.jpg" alt=" 微信图片_20190504131417_副本.jpg" / /p p   美国科学院外籍院士颜宁 /p p   颜宁,结构生物学家,“长江学者奖励计划”特聘教授。本科毕业于清华大学生物系,普林斯顿大学分子生物学博士,在普林斯顿大学分子生物学系做博士后研究。2007年回国担任清华大学医学院教授、博导,成为清华历史上最年轻的教授和博导。2017年,颜宁离开待了10年的清华大学,成为普林斯顿大学分子生物学系首位雪莉· 蒂尔曼(Shirley M. Tilghman)终身讲席教授。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/a86a8314-2e30-47c3-b411-6e7f89e7b87c.jpg" title=" 微信图片_20190504131421_副本.jpg" alt=" 微信图片_20190504131421_副本.jpg" / /p p   美国科学院院士Jue Chen /p p   Jue Chen(陈珏),结构生物学家,洛克菲勒大学WILLIAM E. FORD讲席教授,霍华德· 休斯医学研究所(HHMI)研究员。Jue Chen于1993年在俄亥俄大学获得化学本科学位,1998年在哈佛大学取得获得生物化学博士学位。之后分别在哈佛大学以及贝勒医学院从事博士后研究工作。2002年入职普度大学,在普度大学相继担任助理教授(2002-2007),副教授(2007-2011)、教授(2011-2014)。在此期间,她还入选HHMI研究员(2008-)。2014年加盟洛克菲勒大学。她的主要研究方向为细胞膜中转运蛋白的结构和功能。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/d321787a-0ea0-40e4-85c3-55de9699259a.jpg" title=" 微信图片_20190504131426_副本.jpg" alt=" 微信图片_20190504131426_副本.jpg" / /p p   美国科学院院士锁志刚 /p p   锁志刚(Suo Zhigang),美国工程院院士,哈佛大学教授,1985年锁志刚毕业于西安交通大学力学系,之后赴美留学。1989 年在哈佛大学获博士学位后即任教于加州大学圣芭芭拉分校,1997 年起任普林斯顿大学教授,2003-2006 任哈佛大学Gordon McKay 讲席教授,2006年起任哈佛大学Allen E. and Marilyn M. Puckett 讲席教授。2002年受聘西安交大“长江学者” 讲座教授。 任美国机械工程师协会(ASME)应用力学执行委员会委员,美国理论与应用力学学会理事。与高华健、卢天健、黄永刚一同被称作华人固体力学界“两健两刚”。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 美国科学院中的华人学者 /span /strong /p p   截止到2019年,共有超过100名华人、华裔科学家当选为美国科学院院士以及外籍院士,其中包括李政道、杨振宁、丁肇中等华人诺贝尔奖得主,也包括丘成桐、陶哲轩这两位华人菲尔兹奖得主。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/7aa6056a-9aa0-4d4f-a16e-f38fc6dd52e6.jpg" title=" 微信图片_20190504131430_副本.jpg" alt=" 微信图片_20190504131430_副本.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/fabae9a0-f388-414f-8e7f-fe01e884f958.jpg" title=" 微信图片_20190504131434_副本.jpg" alt=" 微信图片_20190504131434_副本.jpg" / /p p   第一位当选美国科学院外籍院士的华人科学家是“中国生理学之父”——林可胜,在1942年当选为美国科学院外籍院士之后,林可胜在1955年加入美国国籍,因此他在1956年又转为美国科学院院士。而第一位当选美国科学院院士的华人科学家则是“中国的居里夫人”——吴健雄,她于1958年当选为美国科学院院士。 /p p   新中国成立后,第一位当选为美国科学院外籍院士的大陆科学家为数学家华罗庚,这之后,夏鼐、谈家桢、周光召以及贾兰坡等中国学术界的元老相继被选为美国科学院外籍院士。曾任中国卫生部部长的分子生物学家陈竺于2003年当选为外籍院士,杂交水稻专家袁隆平也于2006年当选为外籍院士。 /p p   今年当选为外籍院士的结构生物学家颜宁的导师施一公则于2013年当选为美国科学院外籍院士。值得一提的是,由于杨振宁、姚期智以及蒲慕明这三位美国科学院院士放弃了美国国籍,他们也自动转为美国科学院外籍院士。 /p p   新中国成立以来当选美国科学院外籍院士的大陆科学家名单 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/199d69b8-612a-4949-82e0-8ef93250864e.jpg" title=" 微信图片_20190504131441_副本.jpg" alt=" 微信图片_20190504131441_副本.jpg" / /p p   2004年,当时只有41岁的王晓东当选为美国科学院院士,他也因此成为了新中国培养出来的第一位美国科学院院士,而第二位则要等到2009年,那一年,社会学家谢宇当选为美国科学院院士,成为了美国科学院院士以及外籍院士中唯一一位华人社会学家,此后又有24位在大陆接受教育的科学家当选为美国科学院院士。 /p p   以下为历年在大陆接受教育后当选为美国科学院院士(不含外籍院士)名单: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/8083d728-69eb-4b32-a970-3314cdfcef54.jpg" title=" 微信图片_20190504131448_副本.jpg" alt=" 微信图片_20190504131448_副本.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 关于美国科学院 /span /strong /p p strong span style=" color: rgb(255, 0, 0) " /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/b97497d7-3358-4422-b696-6000d2aa7b84.jpg" title=" 微信图片_20190504131453_副本.jpg" alt=" 微信图片_20190504131453_副本.jpg" / /p p style=" text-align: center " 图片:赵亚杰 /p p   美国国家科学院成立于1863年,是一个非盈利、非政府组织。入选该院的院士是美国乃至世界学术界最高的荣誉之一。入选者不需要自行申请,而是基于其在原创研究中所做出的突出且持续的贡献,新院士由现任院士在每年四月举行的美国科学院年会上投票选出。每年将会有100名国籍为美国的新院士被选出,与此同时还有最多有25名的外籍院士被选出来。目前美国科学院院士总产生2347名院士,其中约有487名为外籍院士。截止2018年,他们中有190人曾获得过诺贝尔奖。 /p
  • 836.6万元!三峡大学获批重大仪器项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”
    据三峡大学网站信息,三峡大学于近日接到国家自然科学基金委通知,获批国家重大科研仪器研制项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”。该项目由李建林教授主持申报,直接经费836.6万元,执行期限五年。该类型项目是三峡大学自建校以来首次获批,也是三峡大学受国家自然科学基金项目单项资助额最高的项目。项目面向高坝大库工程安全运行,研发模拟库岸边坡复杂条件耦合作用的试验系统,形成库岸边坡水岩与动力剪切耦合作用重大科学装置,解决库岸边坡岩体复杂库水和应力环境耦合作用的准确模拟的“卡脖子”问题,为岸坡岩体在复杂水力环境和应力耦合作用下的损伤劣化机制分析提供良好的试验平台,弥补国内在库岸边坡岩体水-岩作用试验研究中专用仪器设备的不足,有助于了解在水库蓄水条件下库岸再造的机理,对已建和在建的大中型水库,特别是库水深度达到100m以上的大型水库岸坡意义重大,同时,可以在水工隧洞、水封油库、地下开采、能源存储等水-力耦合作用相关的工程中推广应用。预期研究成果服务于“自然灾害防治九大工程”和“提高防灾减灾救灾和急难险重突发公共事件处置保障能力”等国家战略目标需求,对于保证水电工程的安全和有效运营以及库区人民的生命财产安全、航道安全和社会公共安全均有重要意义,有助于提升我国地质灾害防治技术水平和创新能力。
  • 科学家提出“固态溶剂法”制备混合基质膜
    南京工业大学教授金万勤团队在分离膜领域取得新进展,提出“固态溶剂法”制备出超薄超高掺杂量的混合基质膜。9月22日,相关研究成果在线发表在《科学》上。  据介绍,膜技术具有分离能耗低等优势,但其发展普遍受限于渗透性和选择性的制约关系,将高性能无机填料掺杂在聚合物中制备混合基质膜,有望突破这一瓶颈,成为近年来国际研究前沿。然而,面临填料团聚和界面缺陷的重大挑战,混合基质膜仍未大规模应用。金万勤团队是国际上较早开展混合基质膜研究的团队之一,长期以来一直致力于解决这两大难题。  “我们提出将聚合物作为固态溶剂,溶解填料的前驱体并将其涂覆在多孔载体表面形成超薄膜层,而后将聚合物中的前驱体原位转化成填料。”论文第一作者、南京工业大学博士陈桂宁介绍,区别于传统的“合成填料—分散填料—填料与聚合物混合”制备混合基质膜的复杂工艺,该方法仅需在聚合物中溶解高含量前驱体,即可实现高含量填料的均匀超薄化掺杂,同时以填料为主体相的新型混合基质膜结构有利于填料之间形成贯穿孔道,为分子提供超快传输通道。  实验表明,“固态溶剂法”制备的混合基质膜厚度仅为50纳米,填料掺杂量高达80%以上,实现了膜渗透性和选择性数量级的提升。基于超薄膜层和填充的贯穿筛分孔道,该混合基质膜表现出类无机膜(纯填充相)的优异分离性能,氢气/二氧化碳分离性能高出现有聚合物膜和混合基质膜1~2个数量级。  “‘固态溶剂法’主要依靠聚合物膜的加工制备技术,因此易于放大制备成超薄的平板型和中空纤维型混合基质膜。”论文的共同通讯作者、南京工业大学教授刘公平说,该方法适用于不同类型的填料和聚合物基质,表现出良好的规模化制备前景与膜材料普适性。  “研究首次从实验上证明了超薄超高掺杂混合基质膜的可行性,也为发展基于纳米材料的超薄分离膜及功能涂层提供了新思路和理论技术基础。”论文通讯作者金万勤介绍,该混合基质膜在碳捕集等过程极具应用潜力,有望助力我国双碳战略目标的实施。在国家重点研发项目的资助下,团队正在开展混合基质膜的放大制备与应用技术研究。
  • 最严奶粉配方注册制细则出炉 设立高“门槛”
    2016年8月12日下午,国家食药监总局公布了舆论俗称的“最严奶粉配方注册制细则”。根据新规定,无论是国产品牌还是“洋奶粉”,每个企业原则上不得超过3个配方系列9种产品配方。  有关文件属于征求意见阶段,分别包括:《婴幼儿配方乳粉产品配方注册申请材料项目与要求(试行)(征求意见稿)》及《婴幼儿配方乳粉产品配方注册现场核查要点及判断原则(试行)(征求意见稿)》。  首先,我们先粗略过一下那个申请材料的文件。  根据这份草拟中的规定,奶粉企业要对奶粉配方进行注册,需要提交多达10个申请材料项目的文件,它们分别是:  婴幼儿配方乳粉产品配方注册申请书   申请人主体资质证明文件   原辅料的质量安全标准   产品配方   产品配方研发报告   生产工艺说明   产品检验报告   研发能力、生产能力、检验能力的证明材料   其他表明配方科学性、安全性的材料   标签和说明书样稿及其声称的说明、证明材料。  按照新规定的要求,奶粉产品名称由商品名称和通用名称组成,每个产品只能有一个产品名称,申请注册的进口婴幼儿配方乳粉可以同时标注英文名称,英文名称应与中文名称有对应关系。  同时,上述文件重申,同一系列不同适用月龄的产品,其商品名称应相同。根据产品的适用月龄,通用名称应为婴儿配方乳(奶)粉(0-6月龄,1段)、较大婴儿配方乳(奶)粉(6-12月龄,2段)或者幼儿配方乳(奶)粉(12-36月龄,3段)。  此外,“洋奶粉”还需要额外提交3个证明材料,才能让旗下的进口产品获得中国的配方注册资格,包括获得国家出入境检验检疫部门进口婴幼儿配方乳粉境外生产企业注册的证明材料 由境外申请人常驻中国代表机构办理注册事务的,提交《外国企业常驻中国代表机构登记证》复印件 境外申请人委托境内代理机构办理注册事务的,提交经过公证的授权委托书原件及其中文译本,以及受委托的代理机构营业执照复印件。  在产品配方的规定上,新规拟规定,产品名称中有动物性来源的,应当在配方组成中标明使用的生乳、乳粉、乳清(蛋白)粉等乳制品原料的动物性来源。同一乳制品原料有两种以上动物性来源的,应当标明各种动物性来源原料所占比例。  此前,关于标称是羊奶粉的产品中加入牛奶乳清的讨论喋喋不休,有关新规似乎能堵住这个“漏洞”。  最值得注意的是,是要求寻求注册配方的奶粉商提交“产品配方研发报告”,这个门槛很有可能把没有研发能力的企业挡在门外。我们来看看新规打算怎么“玩”。  首先,这个报告要求阐述产品配方特点、配方原理、研发目的、筛选过程、研发情况等,以及母乳研究情况和市场调查研究情况。看到这里,应该可以明白为什么近年来这么多大型奶粉企业会高调做母乳研究了吧。  第二,需要奶粉商证明配方科学性、安全性的充足依据。新规定给出了7类资料可以作为依据的,它们分别是:试验资料、相关国内外法规标准、营养指南或专著、营养数据资料、其他相关研究文献及长期上市食用历史资料。  具体来说,试验资料为婴幼儿喂养试验资料或针对性动物试验资料 相关国内外法规标准包括与申报配方相关的国内外相关法规和标准以及研究资料 营养指南或专著应为国内外权威医学、营养学机构或学会、协会等所发布的营养指南或专著 营养数据资料应具有代表性 研究文献应权威、充分并且直接相关,临床研究文献涉及的受试人群应与配方设计的目标人群一致,临床试验研究结果支持喂养效果 长期上市食用历史资料应为5年以上跟踪评价资料,并且未出现过群体性不适反应。  这还没有完,最后企业被要去拿出研发与论证报告,说明所选用的食品原料和食品添加剂的来源、在配方中的作用以及种类和用量与国家相关法律、法规、标准等相符合的情况等,以及产品上市后,营养、安全方面的跟踪评价方案。目测,这些都是非常专业和细致的工作,需要严谨应对。  对于那些希望能“物尽其用”、让旗下企业悉数拿下3个注册配方名额的雄心勃勃的奶粉商来说,以下是它们需要关心的部分——申请人申请注册2个以上同年龄段产品配方时,阐述申请注册配方与申请人同年龄段其他配方相比具有的特点及明显差异。  今天,食药监总局列出了3个配方差异性需要遵循的原则,以避免企业在演绎时“天马行空”,这包括:  产品配方及其差异性的基础为母乳研究情况   产品配方主要原料所提供的宏量营养素,如蛋白质、脂类、碳水化合物组分具有明显差异   可选择性成分营养特性的选择具有明显差异。  此外,值得注意的是,当奶粉商要对产品配方延续注册申请时,其中一个要求是递交产品营养、安全方面的跟踪评价情况,包括五年内产品生产(或进口)、销售、监管部门和企业抽验情况总结,对产品不合格情况的说明,以及五年内产品不良反应情况总结等。这意味着,如果奶粉频繁登上不抽检的合格榜单,那么̷̷  说完申请材料要求后,下面我们再回过头来看现场核查的要求。之前,小食代报道过,在中国奶粉配方注册制拿到WTO审议的时候,国外代表关注最多的问题是这个注册制和生产注册会不会重复,包括现场核查是不是又得再来一遍,从而要企业投入大量时间和精力。  下面,我们就来看看今天揭晓的奶粉配方注册制下的现场核查要求。  根据今天披露的文件,对于已受理婴幼儿配方乳粉产品配方注册申请的生产企业试制样品要现场进行核查工作。现场核查项目分为以下这些:  生产能力(包括生产车间和生产布局)  质量控制情况(包括组织结构、质量管理体系、质量管理制度、不符合情况处理、生产过程控制、工艺文件、关键控制点、采购制度、采购文件)  检验能力(包括组织机构、检验制度、实验室布局、检验设施、仪器和设备)  研发能力(包括研发机构、研发制度、研发人员基本情况)  样品试制情况(包括参与试制的人员、研发情况、试制设备、检验设备、食品原料和食品添加剂、试制过程与申请材料的一致性、试制记录)  其它需要核查的内容  根据上述草拟中的规定,当全部项目的核查结论均为符合的,核查单位做出通过现场核查的决定 当任何一个至四个项目核查结论为基本符合的,申请人应对基本符合项进行整改,整改应在10日内完成,申请人认为整改到位的,由当地省级食品药品监督管理部门予以核查确认并签字,核查单位做出通过现场核查的决定 当任何一个项目的核查结论为不符合或者五个以上项目为基本符合、逾期未完成整改或整改不到位的,核查单位做出不予通过现场核查的决定。  食药监总局今天表示,对于这两个配套文件有什么意见的,有关单位和社会各界人士可在9月10日前向它提出修改意见。根据早前公布的安排,10月1日是企业的品牌和配方开始注册的时间。  根据业内人士的普遍预计,新政的出台将让目前中国2500-3000多个奶粉配方大幅减少80%。 以下为公布原文:总局办公厅关于公开征求《婴幼儿配方乳粉产品配方注册管理办法》相关配套文件的意见  《婴幼儿配方乳粉产品配方注册管理办法》已于2016年6月6日发布,为做好婴幼儿配方乳粉产品配方注册工作,国家食品药品监督管理总局组织起草了相关配套文件,包括《婴幼儿配方乳粉产品配方注册申请材料项目与要求(试行)(征求意见稿)》和《婴幼儿配方乳粉产品配方注册现场核查要点及判断原则(试行)(征求意见稿)》,现公开征求意见。  有关单位和社会各界人士可在2016年9月10日前,通过以下方式提出修改意见:  一、通过信函将意见寄至:北京市西城区宣武门西大街26号院2号楼国家食品药品监督管理总局食品安全监管一司(邮编10053),并在信封上注明“婴幼儿配方乳粉产品配方注册配套文件征求意见”字样。  二、通过电子邮件将意见发送至:longjie@cfda.gov.cn。  三、通过传真将意见传至:010-63600357。  附件:1.婴幼儿配方乳粉产品配方注册申请材料项目与要求(试行)(征求意见稿).doc  2.婴幼儿配方乳粉产品配方注册现场核查要点及判断原则(试行)(征求意见稿).docx  食品药品监管总局办公厅  2016年8月9日
  • 微生物检测培养基质量控制问答
    微生物检测培养基质量控制问答1、培养基灭菌后成份会有所蒸发减少,如何处理这个问题?答:正常情况下蒸发量较少,可忽略不计。2、培养基融化后出现浑浊是有哪些方面的原因引起的?应如何避免?答:可能的情况有:1. 培养基配置用水不符合规定;2. 灭菌过程温度升温慢或降温慢;3. 培养基储存不当;4. 融化时沸腾时间较长等。3、准备好的培养基有效期如何验证?答:定期取出培养基验证其无菌性,促生长能力等方面。4、培养基配制好灭菌后,在高压容器中保温降至50℃左右,可不可行?答:建议最-好不要,避免过度受热。5、脱水培养基对湿度是否有要求?多少适宜?答:按要求室温干燥环境储存即可。6、培养基pH值测定温度在25℃,这个温度应怎么控制?答:可水浴控制培养基温度。7、配制培养基过程中,按说明书称定量,加规定的纯化水,煮沸溶解,为了避免煮沸过程总减少水分,是否要在配制过程适当增加水?答:可适量增加,自己掌握。8、商品培养基一定要当天配当天用吗?可否在一周内用完?答:不是即配即用的培养基的话,储存的当,可以使用。9、称量培养基时,注意不要吸入粉末,这粉末是指何物?答:就是你所称量的干粉培养基 ,因为培养基的粉末对呼吸道有刺激作用,而且培养基中的某些成分,如亚硒-酸盐、叠氮-化钠、乙酰胺等,长期吸入并在体内累积到一定量会对人体健康有危害。所以培养基配制称量需做好个人防护,且最-好选择少粉尘环保型颗粒培养基。10、煮培养基,用不锈钢锅在电磁炉上煮可行?硫乙醇培养基是否要煮沸?如何煮沸?用不锈钢锅在电磁炉上煮沸可行吗?可不可以水浴煮沸呢?答:硫乙醇应煮沸,量大时,我实验室用不锈钢锅在电磁炉上煮沸。不建议水浴煮沸,因为水浴煮沸琼脂粉很难溶,导致琼脂分装不均匀,前段分装的琼脂含量少,后段分装的琼脂含量高,导致有的管或瓶中的FT凝固。11、如培养基在高压灭菌器中温度需自然下降20度才开盖吗?答:高温灭菌器有安全阀,温度下降到安全阀可打开时将培养基取出室温冷却,各型号灭菌器安全开盖温度不尽相同。12、平板涂布和平板划线培养基表面水分过多,菌落蔓延如何解决?答:对于采用表面接种形式培养的固体培养基,应先对琼脂表面进行干燥:揭开平皿盖,将平板倒扣于烘箱或培养箱中(温度设为25℃~50℃);或放在有对流的无菌净化台中,直到培养基表面的水滴消失为止。注意不要过度干燥。商品化的平板琼脂培养基应按照厂商提供的说明使用。
  • Science:​颜宁/闫创业合作解析固醇感受器分子机制
    SREBP( sterol regulatory element-binding protein)信号通路通过一系列负反馈机制调控着细胞内固醇类物质的稳态。SREBP 是一类可以结合 sterol 调控元件序列的转录因子,属于 basic-helix-loop-helix leucine zipper (bHLH-zip) 家族。哺乳动物中,SREBP 有三种不同的形式,分别是 SREBP-1a, SREBP-1c 和 SREBP-2。SREBP-1 系列主要负责脂肪的从头合成,a 和 c 在不同的组织中的表达谱不一样;SREBP-2 主要负责胆固醇的代谢和稳态【1,2】。在未激活状态下,SREBP 的 N-terminal 转录因子结构域和 C-terminal 调节结构域由两个跨膜结构域相连,像发卡一样卡在 ER 膜上,并且两端结构域此时都面对着胞质,而连接两个跨膜结构域的 loop 大概有 30 个氨基酸在 ER 的内腔(图 1)。SREBP 的 C-terminal 结构域组成型的结合 Scap (SREBP cleavage-activating protein) 蛋白的 C 端 WD40 结构域。在 WD40 结构域前,Scap 蛋白还包含 8 个跨膜结构域,其中 S2-S6 是固醇感受器结构域(sterol-sensing domain, SSD)【1-3】(图 1)。当 sterol 比较丰富时,Scap 和另一个 ER 上的膜蛋白 Insig-1/2 (insulin-induced gene) 相互作用,此时 Scap 和 SREBP-2 也相互结合在 ER 的膜上。Scap 和 Insig 的结合需要胆固醇或胆固醇的类似物参与,比如 25-hydroxycholesterol (25HC)。当 sterol 水平下降时,Insig 和 Scap 不再相互作用,此时 Scap 会经历一系列结构变化去暴露出它的膜泡转运信号「MELADL」,于是 Scap 拽着 SREBP-2 一起,会在 COPII 介导的囊泡运输作用下从 ER 转运到高尔基体。一旦到了高尔基体,SREBP-2/Scap 复合物就会遇到活化的蛋白酶,S1P (site-1 protease) 和 S2P。S1P 首先会把 SREBP 两个跨膜结构域的 loop 切断,将 SREBP 分成两个部分,此时每一部分仍然有一个跨膜结构域保留在膜上。随后 S2P 会继续在连接 SREBP N 端结构域的跨膜区切割,于是 SREBP 的 N 端转录因子结构域被释放,然后进核启动相关基因的表达【1-3】(图 1)。图 1. SREBP 信号通路简化示意图 尽管这条信号通路已经发现了几十年,但是具体的结构信息和分子机制仍然尚未被完全阐述。2021 年 1 月 15 日,Science 杂志在线发表了来自颜宁和闫创业合作发表,题为 A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols 的研究长文,通过冷冻电镜技术, 解析了人源 Scap 和 Insig-2 包含 25HC 分子的复合物结构,揭示了固醇类分子调节 SREBP 信号通路的分子机制。为了阐明该信号通路分子机制,在此前,一些低等物种的同源结构也有被陆续解析。比如,来自古细菌的 S2P MjS2P 的晶体结构【4】,分枝杆菌 Insig 同源结构 MvINS【5】,和来自酵母的 SREBP 和 Scap C 端结构域的同源蛋白,Sre1【6】和 Scp1【7】。SSD 结构域在很多蛋白中可见,并且有很多工作已经揭示了 SSD 的结构信息,比如 Niemann-Pick type C (NPC1), Patched 1 (Ptch1), NPC1L1, 和 Dispatched 蛋白的冷冻电镜结构【8-13】。尽管如此,在 SREBP 信号通路中,25HC(或其他类固醇分子)的结合位点和 Scap 与 Insig 的相互作用机制仍然未知。此外,此前报道显示 Insig 结合 25HC 而不是胆固醇,然而 Scap 却只能结合通过它的内腔结构域(Loop1)结合胆固醇。为了更加清晰的阐述相关分子机制,作者结合生化和冷冻电镜技术,解析了 Scap_Insig-2_25HC 三者的复合物结构。结构中,跨膜结构域的平均分辨率 3.7 Å。Scap 的 SSD 和 Insig-2 的所有跨膜区结构都被解析,其中 25HC 分子像三明治一样夹在 Scap 的 S4-S6 部分和 Insig-2 的 TM3/4 之间(图 2)。图 2. Insig-2 和 Scap 包含 25HC 的复合物结构结构显示,Scap 的 S4 中间「解旋」状态部分对于 25HC 的结合和 Insig 相互作用至关重要。Scap 的跨膜结构域与 NPC1 和 Ptch1 类似,但是 Scap 在 S4 区域有一个特别之处 —Scap 的 S4 在中间「断开」形成了一个类似解旋的扭结,使 S4 分成了两个半个的 helix,S4a 和 S4b (图 2)。但在 NPC1 和 Ptch1 的相应区域是完整的。正是由于这个扭结,使得 S4a 向 SSD 内倾斜,给配体的结合腾出了空间。结构和生化实验证明,S4 螺旋的不连续对于配体的结合和与 Insig-2 的相互作用不可或缺。Insig-2 的结构与此前解析的 MvINS 结构类似。在 MvINS 的晶体结构中,一个内源的 diacyl-glycerol (DAG) 分子插入在 TM1/2/3/5 的中心口袋中。结构类比之后,发现在 Insig-2 的相应区域也有类似的口袋,此前的结构预测该口袋也是用来装固醇类配体的【5,14】。但是,通过解析的结构发现,尽管在相应的区域确实存在一个相似的口袋,但是在口袋内没有观察到任何的电子密度。进一步发现,25HC 实际上是结合在 Scap 和 Insig-2 的相互作用界面。而对于在口袋附近进行氨基酸突变也不会明显影响 25HC 依赖的 Scap-Insig-2 相互作用(图 3),进一步证实了口袋并非结合配体的位置。图 3. Insig-2 上的口袋对 25HC结合的影响总的来说,结合整个结构和生化实验结果,文章较完整的揭示了 Scap 和 Insig-2 之间以 25HC 依赖的方式的跨膜相互作用分子机制(图 4)。尽管如此,依然还有很多问题需要被解决。比如为什么有了配体的结合后,Scap 的构象就会阻止 MELADL motif 被囊泡的识别,不被转运至高尔基体?在 Scap 上,以胆固醇依赖的方式进行构象改变的 Loop1 是否会耦连 S2 和 S4 的运动?单独的 Scap 和 Insig 结构又长得怎么样?等等一些问题,不是这一个结构可以解释的,不过该结构给这些未来更复杂的问题提供了一定的线索和启示。图 4. 简化的分子机制模型颜宁、闫创业为论文共同通讯作者,西湖大学博士后鄢仁鸿、清华大学博士生曹平平、宋闻麒为本文的共同第一作者。冷冻电镜数据分别在国家蛋白质科学中心(北京)清华大学冷冻电镜平台和西湖大学冷冻电镜平台收集,清华大学高性能计算平台和西湖大学超算中心分别为本研究的数据处理提供了支持。
  • NCB | 卞修武/刘光慧/张维绮/曲静等合作揭示老年新冠肺炎患者肺损伤机制
    新型冠状病毒(SARS-CoV-2)导致的新冠肺炎(COVID-19)已经引发全球大暴发,严重危害人类生命健康。据统计,住院死亡病例中70%以上为年龄超过65岁的老年人。与年轻群体相比,老年群体感染SARS-CoV-2后更易发展为重症和危重症,甚至死亡。肺是SARS-CoV-2感染和损伤的主要靶器官,严重肺损伤导致呼吸衰竭是COVID-19患者主要死因。COVID-19肺和其他脏器损伤机制研究已经不乏报道,但是基于老年患者尸检样本的肺组织病理与肺单细胞信息密切关联的多重损伤分子机制研究尚缺乏,对于老年患者更易出现重症和危重症的细胞和分子基础的认识远远不足。2021年12月8日,陆军军医大学(第三军医大学)第一附属医院(西南医院)卞修武研究组、中国科学院动物研究所刘光慧研究组、中国科学院北京基因组研究所张维绮研究组和中国科学院动物研究所曲静研究组合作,于Nature Cell Biology杂志在线发表题为A single-cell transcriptomic landscape of the lungs of patients with COVID-19 的研究论文。研究结合病理学和高通量单细胞核转录组和蛋白质组等技术,深度解析了老年COVID-19患者肺组织的细胞和分子病理表型组特征,进一步认识了COVID-19肺损伤的关键细胞和分子机制、建立了肺衰老与COVID-19损伤的科学联系,为提高重症和危重症诊治水平提供了科学依据。通过对COVID-19患者肺病变及其异质性的详细分析,研究人员发现肺两种上皮细胞脱落和凋亡的升高、炎症损伤与免疫反应的过度、不同血管内皮细胞的变化、凝血功能紊乱以及细胞表型转化与肺纤维化的加剧等事件是COVID-19肺病理的关键损伤过程和分子特征。进而,结合COVID-19患者肺组织的多维组学分析,研究人员首次发现肺组织的加速衰老是COVID-19的新型病理事件。具体而言,与年龄匹配的对照肺组织相比,老年COVID-19患者肺组织中的衰老标志物(p16、p21、p53)、衰老相关分泌表型因子(IL-6)、DNA氧化损伤标记物(8-OHdG)等均呈现上调表达,且核纤层蛋白(LAP2)和异染色质蛋白(HP1g)表现为加速缺失。这些均提示SARS-CoV-2感染可诱发肺组织细胞的加速衰老。为进一步明确细胞类型特异的基因表达变化,研究人员利用高精度单核转录组测序技术,系统揭示了包括肺部上皮细胞、内皮细胞、基质细胞和免疫细胞4种主要细胞大类,28种不同细胞类型的病理相关基因表达特征。对于肺上皮细胞而言,研究发现SARS-CoV-2感染导致上皮细胞凋亡和功能紊乱,主要表现为肺表面活性物质减少及粘液分泌增多,这可能与气体交换障碍及肺部低氧血症密切相关。此外,研究人员鉴定了一类Ⅱ型肺泡上皮细胞(AT2)向Ⅰ型肺泡上皮细胞 (AT1) 分化过程中的过渡态细胞类型(AD.inter),其具有损伤相关瞬时祖细胞(DATP)的特征。这类细胞亚群在COVID-19肺组织中大量聚集,可能是介导COVID-19肺上皮细胞缺失及损伤加剧的原因之一。进一步,研究人员通过对免疫细胞亚群的分析发现,肺泡及肺间质中促炎性巨噬细胞(M1 alveolar macrophages,M1 interstitial macrophages)增加,这些细胞可能通过释放大量的促炎细胞因子加重弥漫性肺泡损伤。针对于血管内皮细胞的分析结果显示,SARS-CoV-2感染可能导致内皮损伤及凝血程序的启动。此外,研究人员还发现COVID-19肺组织中富集了一群介于肺毛细血管内皮 (Cap.EC.g) 和肺泡气体交换毛细血管内皮(Cap.EC.a)之间的毛细血管中间态细胞(Cap.EC.i),这些细胞高表达血管内皮炎症和损伤相关基因,可能介导了内皮细胞分化特征的紊乱及COVID-19肺的内皮病变。此外,结合人肺成纤维细胞的研究模型,研究人员发现HIF-1A的激活及FOXO3的表达沉默可能是成纤维细胞向肌成纤维细胞(介导肺纤维化的主要细胞类型)转变的关键驱动因素。这些发现为COVID-19肺损伤的发生发展提供了新型生物标志物和潜在干预靶标。附图:示意图显示该研究揭示的上皮细胞衰老、脱落、凋亡升高、过度炎症反应、凝血和纤维化加剧是COVID-19肺的主要病理表型特征,也是全身系统性免疫损伤的“发源地”和“主战场”。该研究报道了COVID-19患者肺组织的多维组学全景图谱,系统解析了COVID-19患者肺组织中多种细胞类型的疾病变化规律,加深了人们对COVID-19患者肺组织多种结构病变和功能减损的认识。更为重要的是,研究首次鉴定了COVID-19患者肺的加速衰老表型。考虑到衰老细胞累积对器官退行的驱动作用,该研究为SARS-CoV-2感染导致的老年人致死率增加及预后的多种后遗症提供了可能的解释。此外,研究团队前期发现维生素C(一种可延缓人干细胞衰老的化合物)可抑制炎症因子诱导的新冠病毒受体蛋白ACE2的表达(Cell Research, 2020),提示衰老干预策略可能是减轻新冠肺炎器官损伤的潜在防治手段。该研究为阐明COVID-19发病机制以及老年群体中新冠肺炎高重症率的原因提供了重要线索,并为发展新冠肺炎及老年群体愈后后遗症的干预策略提供了新思路。相关数据已上传至衰老多组学数据库Aging Atlas(https://bigd.big.ac.cn/aging/index)。该研究由中科院动物研究所、陆军军医大学(第三军医大学)第一附属医院、首都医科大学宣武医院、中科院北京基因组所(国家生物信息中心)、中国医学科学院老年医学研究所等机构合作完成。陆军军医大学第一附属医院卞修武院士、中科院动物所刘光慧研究员、中科院北京基因组研究所(国家生物信息中心)张维绮研究员、中科院动物所曲静研究员为共同通讯作者。中科院动物研究所(现单位为首都医科大学宣武医院)王思研究员、陆军军医大学第一附属医院姚小红副教授、中国科学院动物研究所马帅副研究员、陆军军医大学第一附属医院平轶芳教授、中科院北京基因组研究所(国家生物信息中心)范艳玲助理研究员、中国科学院动物研究所孙淑慧助理研究员等合作者为共同第一作者。原文链接:https://www.nature.com/articles/s41556-021-00796-6.pdf
  • 我国科学家揭示去泛素化酶OTUD1抑制肠炎发生新机制
    中国科学院微生物研究所刘翠华团队长期致力于病原感染与宿主免疫调控方面的研究,在病原感染免疫以及蛋白泛素化等翻译后修饰调控机制等方面取得了一系列成果,先后在Nature Immunology、Molecular Cell、Nature Communications、Autophagy、Proc Natl Acad Sci、Cellular & Molecular Immunology、EMBO reports等杂志发表系列研究工作,为结核病(TB)等疾病防治提供了多种新思路和潜在新靶点。  炎症性肠病(IBD)是一类因免疫反应失调所致的反复发作的慢性肠道炎症性疾病,包括溃疡性结肠炎(UC)和克罗恩病(CD),多发于结肠和回肠末端。近几十年来,中国乃至全球的IBD发病率呈明显上升趋势,且目前临床上尚未找到有效根治IBD的治疗方案。肠道免疫系统能通过多种细胞和分子机制维持肠道免疫稳态,其紊乱可能导致多种炎症和免疫性疾病乃至肿瘤的发生。深入探寻肠道免疫微环境稳态的调控机制将为IBD等肠道免疫性疾病的防治提供新的分子标识。OTUD1 作为一种重要的去泛素化酶可调控自身免疫性疾病、病毒和真菌感染以及肠癌发生,但其在肠道炎症性疾病中的作用及调控机制尚不清楚。  近期,刘翠华团队与军事科学院军事医学研究院张令强研究员团队的最新合作研究揭示:去泛素化酶OTUD1能与RIPK1结合并通过去除其627位赖氨酸的K63多聚泛素化修饰,阻碍RIPK1对下游信号分子NEMO的招募及NF-κB信号通路的激活,进而抑制肠道免疫细胞中促炎细胞因子(包括TNF-α、IL-6和IL-1β等)的产生及肠炎发生(图1)。该研究发现葡聚糖硫酸钠(DSS)处理可诱导小鼠结肠组织中OTUD1的表达升高。通过在Otud1敲除小鼠中构建DSS结肠炎模型,发现Otud1敲除促进了小鼠肠道组织中促炎细胞因子的产生和肠炎发生。  同时,小鼠骨髓移植实验也证明了髓系细胞表达的OTUD1对肠炎的抑制作用是必不可少的。进一步的机制探寻发现LPS能诱导OTUD1启动子区域的低甲基化从而促进OTUD1的高表达。之后OTUD1与RIPK1相互作用并通过去除RIPK1的627位赖氨酸的K63多聚泛素链,从而抑制其对NEMO的招募以及NF-κB信号通路的激活。该研究还发现相比于健康人群,UC患者肠道粘膜中OTUD1的表达更低,并且与UC相关的OTUD1 G403V突变体丧失了抑制RIPK1介导的NF-κB信号激活和肠炎发生的能力。  综上,该研究揭示了去泛素化酶OTUD1通过去除RIPK1的K63多聚泛素链而抑制肠道免疫细胞中NF-κB通路介导的促炎细胞因子的产生进而抑制肠炎发生的分子机制,表明以OTUD1-RIPK1信号轴为靶点的免疫干预可能是治疗IBD的有效途径,该研究为肠道炎症性疾病的防治提供了潜在的干预新靶点。图1:去泛素化酶OTUD1抑制肠炎发生的机制示意图  相关结果已在线发表于Cellular & Molecular Immunology,题为“The deubiquitinase OTUD1 inhibits colonicinflammation through suppressing RIPK1-mediated NF-κB signaling”。军事科学院军事医学研究院的吴波博士,中科院微生物研究所的博士研究生强丽华,清华大学-军事科学院联合培养博士研究生、中科院微生物研究所的客座研究生张勇以及军事科学院军事医学研究院的付业胜博士为本文共同第一作者,中科院微生物研究所的刘翠华研究员和军事科学院军事医学研究院、国家蛋白质科学中心(北京)的张令强研究员为本文共同通讯作者。苏州大学生物医学研究院的郑慧教授为本研究提供了Otud1敲除小鼠。该研究受到了国家生物安全特别项目、国家自然科学基金、中科院战略先导科技专项和蛋白质组学国家重点实验室等联合资助。  文章链接:https://www.nature.com/articles/s41423-021-00810-9
  • 低压比例阀高盐升级组件
    方案索引对于LC-20A、LC-30A、LC-16系列低压梯度系统,高盐流动相可能导致四元低压梯度比例阀中走有机相的电磁阀损坏或闭合不严,增加了仪器故障率,高盐升级组件HSK解决了这一问题。低压比例阀高盐升级组件LPGE Update Kit for High Salt Mobile phase(P/N HSK-00020-01)01四元低压比例阀被广泛使用对于高效液相色谱来说,四元低压比例阀因其有四种溶剂,既可两两组合组成二元梯度洗脱,也可以选择三种溶剂或四种溶剂组成三元或四元梯度系统,还可以选择其中的某一种或多种溶剂来用于分析后自动冲洗色谱柱,因此深受广大用户喜爱。同时,四元低压比例阀可以在单个液相泵上升级加装,成本优势明显。02高盐流动相时有机相比例阀易损坏缓冲盐水溶液、甲醇、乙腈等等都是常见的液相色谱流动相。对于老型号四元低压梯度的液相系统,当使用高浓度缓冲盐和有机相作为流动相分析时,因有机相和高盐流动相交界的位置会有盐结晶析出,该盐晶体如不能及时复溶则会导致盐粒析出、阀闭合不严、流动相比例不准,压力波动、基线波动、分析结果异常等现象,而且也会影响低压比例阀的寿命,影响仪器单向阀、柱塞杆、柱塞密封垫等消耗品的寿命,影响色谱柱的使用寿命。03解决方法:高盐升级组件岛津低压比例阀高盐升级组件采用新型材料阀组件,改变之前四个电磁阀水平放置在同一个水平面的方式,而是把阀A&D放在底层,阀B&C放在上层,利用有机相、水相及盐晶的密度差,使盐晶体下沉并尽快复溶,从而解决上述问题。工作原理低压比例阀的4个电磁阀两个位于不同的水平高度,A&D 用于水相(高密度)在低水平位置,其中D推荐纯水;B&C 用于有机相(低密度)在高水平位置,流路中缓冲盐如果析出,由于重力下沉,被D路和A路中的水溶解。从而解决缓冲盐晶体进入流路的问题。产品优势1 ► 耐高盐:对于之前因高盐导致比例阀过早损毁的用户,可选择该组件直接升级。2 ► 升级方便:对于单泵用户,也可以通过追加该组件、控制电路板、混合器、脱气机升级成四元低压梯度洗脱。适用范围用于岛津LC-20A,LC-30A,LC-16系列低压比例阀的升级。订货说明
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制