当前位置: 仪器信息网 > 行业主题 > >

高性能聚酰亚胺树脂

仪器信息网高性能聚酰亚胺树脂专题为您整合高性能聚酰亚胺树脂相关的最新文章,在高性能聚酰亚胺树脂专题,您不仅可以免费浏览高性能聚酰亚胺树脂的资讯, 同时您还可以浏览高性能聚酰亚胺树脂的相关资料、解决方案,参与社区高性能聚酰亚胺树脂话题讨论。

高性能聚酰亚胺树脂相关的资讯

  • DEA测试聚酰亚胺的固化
    聚酰亚胺是一种高性能塑料,通常是热塑性的,有时也可以发生固化。聚酰亚胺具有非常高的力学性能、化学稳定性和热稳定性,常用在复杂的应用场合,比如替代金属和玻璃,作为耐高温材料、耐润滑油、汽油、耐化学腐蚀材料等。有些应用场合需要对聚酰亚胺树脂的固化温度和时间有着充分的了解。测试条件:温度范围:30...300°C传感器:IDEX,梳妆结构,电极间距115μm升降温速率:2、10、20K/min测试气氛:空气频率:10KHz结果讨论:图1 固化过程的离子粘度变化图2 固化动力学模型拟合在测试起始阶段,由于温度升高样品软化造成离子粘度略微降低,随后样品开始固化离子粘度开始升高。中途离子粘度有短暂的下降,之后又继续升高,这表明样品存在二步固化反应,最终固化后的离子粘度相比于初始阶段增加了4个数量级(图1)。使用Thermokinetics软件对三次不同升温速率下的测试数据计算得到动力学模型。此处树脂固化模型为三步连续反应:A→B→C→D,且每步反应都是自催化反应,模型拟合与测量数据之间的相关系数高达0.999(图2)。
  • 用细菌制造出高性能绝缘纳米纸
    中国科学技术大学俞书宏院士团队研制出了一种高性能纤维素基纳米纸材料,其在极端条件下仍可保持优异的机械和电绝缘性能。相关成果日前发表于《先进材料》。 复合纳米纸的的制备与结构示意图 中国科大供图随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线环境、原子氧和高低温交替环境等,已经成为今后深入探索的主要障碍。在这些极端环境下,材料的物理化学特性会发生变化,严重时甚至会导致重要设备和装置的损坏。在传统材料当中,金属和陶瓷本身具有出色的机械性能和对极端环境的耐受性,但金属材料面临密度过高重量过大的问题,而陶瓷材料则面临脆性和难以加工等问题。聚合物具有轻质和可塑的特点,但目前大多数聚合物基复合材料在极端环境长期服役会产生高温软化和低温脆性等问题。因此,设计和制备一种能长期在极端环境下服役的高性能防护材料是材料领域面临的难题之一。在大自然中,珍珠母的“砖-泥”结构为其提供了极好的力学性能。近年来,这种精巧的有序结构的其他功能(如隔水、隔氧以及对能量场的均匀分散等)也逐渐成为研究热点。受天然珍珠母“砖-泥”结构的启发,在此次工作中,研究人员首先采用气溶胶辅助生物合成方法,利用细菌产出的纤维素纳米纤维将分散的合成云母纳米片均匀而紧密地缠结得到复合水凝胶,然后通过热压的方式,得到最终的仿珍珠母结构的纳米纸材料。得益于纳米纸内部精细的“砖-泥”结构和连续三维网络,该纳米纸表现出高强度、高模量、高韧性、可折叠性和抗弯曲疲劳性等优异的力学性能。同时,材料内部的“砖-泥”结构充分发挥了云母的高介电强度,从而赋予了该纳米纸较高的电击穿强度。与纯纤维素纳米纸相比,该复合纳米纸的耐电晕寿命显著提高,甚至超过了商用聚酰亚胺薄膜。此外,该项研究报道的高性能纤维素基纳米纸在高低温交替、紫外线和原子氧等极端条件下,仍表现出优异的综合性能,这为未来人们对极端环境的探索提供了一个极好的防护材料选择。
  • 树脂类填料的分类
    树脂通常有两部分组成:一部分为聚合单体和交联剂通过聚合反应生成的具有三维空间的网络骨架,这部分也被称为树脂骨架;另一部分为连接在骨架上的特殊功能基团。其中三维骨架类型和结构决定树脂主要的物理性能,如稳定性、孔结构、密度、溶胀度等;而三维骨架上连接的特殊官能团则在应用时对吸附何种物质起决定性作用。根据骨架上连接的官能团的类型和性质树脂可分为以下几种:非离子型树脂这类树脂中不含特殊的离子和官能团,与其他物质作用时主要依靠分子间的范德华力,而不形成化学键,对不同物质的吸附选择性主要依靠被吸附分子的极性确定。非离子型树脂对弱极性和非极性的有机化合物有很强的吸附作用,这类树脂广泛应用于药物分离、色素提取等领域。金属离子配位型树脂金属离子配位型树脂的骨架上带有特殊的配位基团和配位离子,可以与金属离子进行络合反应,使两者之间形成配位键,树脂与被吸附物质间通过配位键相互作用而吸附到树脂上的,该吸附过程为化学吸附。这类树脂也称为螯合树脂,多用于水溶液过渡金属离子的选择性分离与富集。螯合树脂的官能团是含有一个或多个配位原子的功能基团,可进行配位的原子都具有提供电子对的性质,常见配位原子主要为 O、N、S、P 等元素的原子。这些原子和被吸附物质作用时都可提供配位的孤电子对,因此螯合树脂也可根据配位原子的种类,分为氧配位型螯合树脂、氮配位型螯合树脂、硫配位型螯合树脂等。含有氧原子的螯合官能团有:—OH(醇、酚)、—COOH(羧酸)、—O—(醚、冠醚)、—CO—(醛、酮、醌)、—COOR(酯、盐)、—NO2(硝基)、—NO(亚硝基)等;以氮为配位原子的螯合官能团有:—NH(胺)、2C=NH(亚胺)、C=N—R(席夫碱)、C=N—OH(肟)、—CONH2(酰胺)、—N=N—(偶氮)等。离子型树脂 离子型树脂的骨架上所连的管能团是一种或几种具有化学活性的官能基团,其在水溶液中能离解出某些阳离子(如H+或 Na+)或阴离子(如OH-或Cl-),解离之后骨架上所带的离子基团可以与不同反离子通过静电引力发生作用,将带有相反电荷的离子型物质吸附到树脂上。在水溶液中与其他离子基团作用时,由于竞争性吸附,原来配对的反离子被新的离子取代。树脂中化学活性基团的种类决定了树脂的主要性质和类别。根据交换的离子,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂,阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类。离子型树脂带的强酸性官能团有磺酸基(—SO3H),这种官能团在碱性、中性,甚至在酸性介质中都有交换功能;弱酸性的官能团有羧基(—COOH)或磷酸基(—PO(OH)2),这些官能团只有在pH=5~6,碱性或接近中性的介质中才有离子交换能力;强碱性官能团有季胺基团(NR3),这种官能团在酸性、碱性、中性介质中都可进行离子交换;弱碱性的官能团有伯胺(—NH2)、仲胺(—NHR)和叔胺(—NR2),这几种官能团只有在中性或酸性介质中进行离子交换。此外,树脂也可按化学结构分为极性和非极性树脂。非极性树脂是指由非极性单体聚合而成,如二乙烯苯为单体聚合而成的树脂。极性树脂又可分为强极性、极性和中极性树脂。强极性树脂是含有吡啶基、氨基官能团的树脂;中极性树脂一般有含酯基、羰基的单体聚合而成;极性树脂通常是含有酰氨基、亚砜基、氰基的单体聚合而成。
  • 橡树岭国家实验室《ACS AMI》:高能球磨法有效提高硅基材料的循环性能
    碳酸乙烯酯(VC)和聚环氧乙烷(PEO)被认为是硅(Si)的固态电解质界面(SEI)的功能剂,已知VC和PEO分别作为电解质添加剂和SEI组分有助于硅基锂离子电池的稳定性。在这项工作中,橡树岭国家实验室的研究人员通过用VC和PEO高能球磨Si颗粒的简便方法实现了共价表面功能化。热重分析、X射线光电子能谱和魔角自旋核磁共振(MAS NMR)光谱表明,添加剂与Si颗粒结合明显,MAS NMR显示Si−R或Si−O−R基团,证实了在VC或PEO中研磨后Si的官能化。与纯Si制备的电极相比,通过VC和PEO球磨的硅负极材料制成的电极的拉曼图谱显示Si和碳导电添加剂的分布更均匀。此外,与纯Si的半电池相比,与VC研磨的Si在半电池和全电池中都表现出更好的电化学性能,高出的容量超过200mAh g−1。相关研究成果以“Functionalized Silicon Particles for Enhanced Half- and Full-Cell Cycling of Si-Based Li-Ion Batteries”为题发表在ACS Applied Materials & Interfaces上。硅基锂离子电池(LIB)在锂化和脱锂过程中,Si发生严重的体积变化(~300%),对应于Li15Si4合金的形成,这导致Si的粉碎和不稳定的SEI。此外,SEI在循环过程中也会发生溶解,因此,研究者不断寻求方法来最小化Si体积膨胀的影响,并有效地调整Si表面的SEI,从而提高电池性能。获得硅负极稳定SEI的最常见方法之一是在电解质中使用牺牲型添加剂,如碳酸氟乙烯酯(FEC)和碳酸乙烯酯(VC)。这两种添加剂通过与其他碳酸盐和羧酸盐化合物一起形成交联的聚环氧乙烷(PEO)型物质,从而在硅表面上形成聚合物膜,这种PEO型物质的存在与良好的容量保持率和高库仑效率有关。除了直接改变硅表面的SEI之外,另一种用于最小化与硅相关的断裂和容量衰减的方法是使用纳米颗粒,该尺度下的硅体积变化相对减小,防止颗粒粉碎,但硅纳米级颗粒由于其高表面积,与电解质的反应性也更高。因此,粒径和相关副反应之间的平衡对于减轻电极开裂和电解质连续分解都很重要。预计应变引起断裂的硅颗粒的临界直径通常在300至150nm之间。利用VC和PEO的稳定性,作者将这些材料直接结合到Si表面有助于提高SEI的界面稳定性。高能球磨已被有效地用于硅材料来制备亚微米或纳米颗粒,以及用于锂离子电池负极的Si基复合材料/合金和结构。在这项工作中,作者采用高能球磨作为唯一步骤,通过将添加剂(VC和PEO)添加到新切割和暴露的Si中来实现Si的颗粒尺寸减小和表面功能化。研究了VC和PEO对研磨后Si的影响以及对其电化学性能的影响,具有VC功能化颗粒的硅基电池的比容量明显增加。使用传统的聚丙烯酸(PAA)和聚酰亚胺型(P84)粘结剂制备电极,与常见的PAA相比,聚酰亚胺粘结剂对硅基锂电池性能提高有更明显的效果。使用DLS、PALS、TGA、XPS、拉曼映射和魔角自旋核磁共振谱(MAS NMR)对粉末和电极进行表征,揭示了功能化硅对加工和界面性能的重要影响。这项工作首次报告了通过简单的高能球磨法用VC对Si表面进行功能化,增强了硅基锂离子电池的性能。(文:李澍)图1 高能球磨前后粒度变化图2 高能和低能球磨对Si颗粒的粒度、分散指数和团聚的影响示意图图3 纯硅粉末和用VC和PEO研磨的硅的C1s光谱图4 Si粉末的固态MAS NMR谱图5 使用PAA和P84粘结剂的的Si电极的XPS光谱图6 (a)纯Si、(b)Si-VC、(c)Si-PEO电极与PAA粘结剂的拉曼光谱;(d)具有P84(聚酰亚胺)粘结剂的纯Si电极
  • “十二五”863新材料“高强耐高温高分子专用料低成本制备技术”项目通过验收 ?
    p   高性能树脂基先进结构材料具有性能可设计、疲劳性能好、耐腐蚀、多功能一体化等优点。随着电子电器、汽车、医疗、化工、航空航天等行业的发展对高性能树脂基先进结构材料提出了新的要求,如高强度、耐高温等。“十二五”期间,863计划重点支持了高强耐高温高分子专用料低成本制备技术开发,通过制备新型单体、优化聚合工艺、选择高性能助剂、合金化/复合化及调整加工工艺,低成本开发高强耐高温高分子专用料,以满足电子电器、汽车、医疗、化工、航空航天等行业对高性能树脂基先进结构材料的需要,提升高分子材料领域的市场竞争力,推动高分子产业的持续发展。今年7月,“高强耐高温高分子专用料低成本制备技术”项目在北京通过验收。 /p p   “十三五”期间,为满足经济社会发展和国防建设对材料的重大需求,提升我国材料领域的创新能力,引领和支撑战略性新兴产业发展,科技部制定了《“十三五”材料领域科技创新专项规划》(简称《规划》)。为解决先进结构材料设计、制备与工程应用的重要科学技术问题,研究高性能纤维及复合材料、高温合金、高端装备用特种合金、海洋工程用关键结构材料等关键材料和技术,《规划》将“先进结构与复合材料”列为发展重点之一,并对高性能高分子结构材料进行了布局,重点发展高性能聚醚酮、聚酰亚胺、聚芳硫醚酮(砜)、聚碳酸酯和聚苯硫醚材料,耐高温聚乳酸、全生物基聚酯、氨基酸聚合物等新型生物基材料,高性能合成橡胶等。 /p p br/ /p
  • 特种工程塑料高温性能分析:超高温热变形维卡温度的测定(MAX.500℃)
    首先,让我们来了解一下什么是工程塑料?Whats”工程塑料,是指一类具有良好物理性质、机械性能、耐磨性、耐腐蚀性、绝缘性、耐热性、耐寒性、耐老化性等特点的高性能塑料材料。这些材料可以承受较高的温度和压力,具有较好的机械强度和耐用性,相对于传统的通用塑料具有更高的综合性能和更广泛的应用范围,相对于金属材料更轻、更薄、更能耐受高温,因此在工业和科技领域中被广泛应用并逐步成为发展趋势。例如常见的用于制造发动机内罩、轴承的聚醚酮(PEEK)、用于制造耐高温的薄膜、涂料,防火织物的聚酰亚胺(PI)、用于制造餐具、耐酸碱的管道阀门的聚苯硫醚(PPS)等。在工程和科研领域中,材料高温下性能的精确测定对材料研究和产品设计至关重要。如果工程塑料材料在实际使用中耐热性不好,就可能会出现以下问题:Question”1)部件变形或软化:在高温环境下,超级工程塑料可能会失去其结构稳定性,导致部件变形或软化,影响其性能和寿命。2)减弱耐久性:高温环境可能会导致超级工程塑料的分子结构发生变化,从而降低材料的耐久性和使用寿命。3)失去机械强度:高温环境可能会导致超级工程塑料的机械强度减弱,从而影响其承载能力和抗冲击性能。4)失效:如果超级工程塑料的耐热性能不好,那么在高温环境下,部件可能会失效,从而影响整个系统的性能和安全性。这些问题的出现会影响整个机械设备的性能和寿命。此外,还可能会对人员和环境造成安全隐患,例如部件失效引发事故、释放有害气体等。因而在使用工程塑料时,必须考虑其耐热性能,并根据实际使用情况选择适合的材料。表征高分子复合材料耐温性能的一个重要指标是热变形温度。但随着高性能聚酰亚胺塑料和各种纤维增强材料的研制和发展,由于其材料本身性能优越,通用仪器很难满足其测试要求。目前国内测定材料热变形的设备大多采用油介质加热,最高测定温度不超过300℃。同时由于加热时介质油的挥发和分解,产生大量的油烟,极易造成环境污染和人员中毒。通用热变形测试仪由金属材料加工制造,高温时,金属自身变形量增大,会对测试材料变形量产生影响,得到的材料热变形数据并不能反应材料的真实性能。而安田精机的高温热变形温度测定仪在测试材料的高温性能方面具有突出的优势。出色的高温稳定性和机械性能安田精机的高温热变形测试设备采用石英材质制作支架、测试台和压头等部位,该材质能够在高达500℃的极端温度下保持卓越的性能,设备最高测试温度可以达到500℃,同时可选择更换维卡测试头,支持维卡测试。【已知石英材质的热膨胀系数是5.6x10-7/℃,而SUS304不锈钢材质是17.3x10-6/℃,这意味着在同样高的温度下石英材质更不容易变形】精密的温度控制和实时监测加热方式放弃使用介质油加热,而选用更加环保安全、便捷经济的空气加热,为了保证温度分布均匀,各测试台的空气隔室是独立的,各自具备温控功能,能够均衡升温;防样条碳化功能为保护试样在高温下不发生碳化,测试过程中可以注入氮气保护,氮气可以将氧气排出,由于其自身具有惰性,可以降低塑料的氧化速度;安田精机的高温热变形温度测定仪可广泛应用于材料科学、汽车制造、航空航天和能源等领域。其卓越性能、高温范围、精密温度控制和广泛的应用领域为特种工程塑料高温性能分析提供了解决方案。感兴趣的朋友欢迎私信我们了解!更多精密物性设备,尽在仕家万联!
  • 安徽省首批次新材料研制需求清单公布
    近日,安徽省经济和信息化厅公布《安徽省首批次新材料研制需求清单(2022年版)》。该清单是导向性的,相关企业应根据市场需求、先进性等确定研制材料性能具体目标。各地在新材料“双招双引”、研发、推广应用等方面,要统筹有关政策和资金,综合、精准施策,进一步促进安徽省新材料产业创新发展。安徽省首批次新材料研制需求清单(2022年版)(执行期2022年-2024年)一、先进钢铁材料高性能船舶用钢、海洋工程用钢、新型热成形钢板、高性能轴承钢、弹簧用钢、高温渗碳齿轮钢、超强合金钢丝、耐热钢、取向硅钢超/极薄带、高强抗疲劳05Cr17Ni4Cu4Nb沉淀硬化钢、高性能钼镍钢金属粉末材料、航空航天用铸造镍基高温合金、超纯净气门用渗氮弹簧线材、超强淬回火合金丝材、建筑结构用高强抗震耐蚀耐火钢。二、先进有色金属材料航空用高性能型材、高性能车用铝合金薄板、动力电池集流体用铝箔、软包电池用铝塑膜、新型镁合金挤压板(棒、型)材、高频微波覆铜板、高密度覆铜板、高频高速基板用压延铜箔、引线框架铜合金带材、高性能高精度铜合金丝线材、高性能铜镍锡合金帶箔材、电子、汽车等行业用高性能铜镍硅合金,高因瓦合金箔、铜铝复合材料、高纯铜和铜合金靶、铝合金焊丝、高强高导铬锆铜、超细晶强化铜镁合金、超细晶硬质合金棒材、医疗CT机X射线管(球管)阳极靶盘材料、稀有金属涂层材料、新型硬质合金材料。三、先进化工材料聚芳醚砜、聚苯硫醚、光学级聚甲级丙烯酸甲酯、生物基呋喃聚酯、生物基聚酰胺树脂、生物基聚氨酯、TDE85特种环氧树脂、高端基聚异丁烯、聚双环戊二烯、聚己二酸/对苯二甲酸乙二醇酯、高频高速通讯高端覆铜板用碳氢树脂、覆铜板用功能化低分子聚苯醚、光学薄膜用丙烯酸涂层树脂、光刻胶用树脂、非隔热型阻燃有机玻璃、医疗输液管用热塑性弹性体TPE材料、三醋酸纤维素及膜、液晶聚合物材料及薄膜、光谱纯/纤维级/拉膜级聚乳酸树脂、聚乳酸双向拉伸薄膜、高灼热丝无卤阻燃PC材料、膨化聚四氟乙烯密封材料、热转印碳带用聚酯薄膜、纳米级高分散性炭黑、VOCs回收膜、高性能水汽阻隔膜、双极膜电渗析膜、水性防火阻燃(保温)涂料、水性超支化环氧导静电涂料、环保型荧光颜料、耐蒸煮酞菁蓝、高效复合铜基催化剂、高性能自动变速箱油、高性能油膜轴承油、风电机组专用润滑油、生物基润滑油、镁合金切削液。四、先进无机非金属材料生物医药用中性硼硅玻璃包装材料、高强透明微晶玻璃、石英玻璃、高档电熔β-Al2O3耐火材料、高性能陶瓷基板、高频高速通信用高性能硅基玻璃粉、高纯氧化铝、电子级绢云母、新型耐候性矿物质阻燃材料、功能土壤处理材料。五、高性能纤维及复合材料高回弹耐磨包覆型TPE复合材料、特种树脂基吸波蜂窝材料、氮化物基陶瓷复合材料、无粘结相碳化钨金属陶瓷材料、辊压机辊套用铁基合金复合耐磨材料、铜钢、铜铝复合材料,特种树脂预浸料、反应型聚烯烃纤维复合增强材料、风电叶片用碳纤维复合材料、电子级低介电玻璃纤维及制品、超净排放高性能覆膜滤料、聚四氟乙烯纤维及滤料、超薄电子基布、高强度连续玄武岩纤维。六、稀土功能材料AB型稀土储氢合金、高性能钕铁硼磁体、钕铁硼热压磁体、高性能各向异性粘结磁体(粉)、汽车尾气催化剂及相关材料、MnZn宽频电磁吸收体材料、高性能金刚石工具稀土合金粉末材料、铈锆稀土基复合氧化物、稀土抛光材料。七、先进半导体材料和新型显示材料碳化硅单晶衬底、碲锌镉晶体衬底、锑化镓晶体、锑化铟晶体、超高纯锗单晶、光刻胶及其关键原材料和配套试剂、宽幅TFT偏光片用PVA光学基膜、超薄柔性玻璃、柔性显示盖板用透明聚酰亚胺薄膜、特种气体、光掩膜板、化学机械抛光液、高纯化学试剂、低温无铅玻璃封装浆料、电子封装用钨铜、钼铜热沉复合材料,高性能半导体封装用键合丝、微球材料、OCA光学胶、透明电致发光膜、透明柔性导电膜材料、半导体量子点材料、先进半导体材料前驱体、增亮膜,扩散膜、高激光损伤阈值减反膜、高强度、高导电、高速固化新型电子胶,低相位差保护膜、高性能有机发光显示材料及中间体、单体,量子点材料、靶材。八、新型能源材料新能源复合金属材料、燃料电池全氟质子膜、反光釉料、透明耐紫外聚乙烯醋酸乙烯树脂及封装胶膜、大颗粒四氧化三钴、高纯四氧化三锰、三元材料(镍钴铝酸锂、镍钴锰酸锂)及前驱体、氧化亚硅负极材料、高性能硅炭负极材料、碲化镉发电玻璃。九、前沿材料超材料、石墨烯导电浆料、石墨烯-纳米银线复合柔性透明导电膜、3D打印聚乳酸树脂、3D打印用合金粉末、球形非晶粉末、铁基宽幅超薄纳米晶带材、铪钨纳米热喷涂材料、超细碳化钨粉末、铜基微纳米粉体材料、电触头材料用纯铜粉。
  • CEM公司发布TRT-DCA SpheriTide新型固相多肽合成树脂
    CEM公司,一个全球领先的微波多肽合成仪和试剂生产商,很高兴给大家介绍一种新的专为碳端为羧酸的多肽进行固相多肽合成设计的所需通用树脂。通过使用三苯甲二氯乙酸类连接基(TRT-DCA),这种新型的树脂免除了第一个氨基酸在多肽合成中的预装载。相比与传统连接基做这类合成,TRT-DCA允许任何氨基酸的简单连接,避免了需要存储全部20种预装的树脂,同时对水解仍保持较高的稳定性。曾经,往羧基端连接基上连接第一个氨基酸是非常困难的,因为需要羟基作为亲核试剂(比如Wang树脂,HMPA树脂)。需要特定的条件,同时会产生副反应,包括差向异构化,二肽的形成,和不完全的偶联。因此,使用酸性连接基的树脂通常已经连接了第一个氨基酸。作为超高酸敏感的连接基(2-Cl-trityl, trityl)的一个优势,提供了一个更容易偶联的氯化物结构,然而这种结构对于水解非常敏感,对于长期使用来说,稳定性有限。 TRT-DCA连接基类似于酸敏感树脂,但提供一个对水解更稳定的结构。在连接第一个氨基酸之后,多肽合成过程中一直保留一个三苯甲基连接基。相比较Wang/HMPA连接基,三苯甲基庞大的空间结构有利于最小化二酮哌嗪和3-(1-哌啶基)丙氨酸构型的形成。 此外,三苯甲基的高酸敏感特性使得可以用适当的切割液,切割得到一个全保护的多肽序列。 高酸敏感树脂的使用通常仅限于温和的温度,以防过早的从树脂上解离。最近,CEM出台了一个新的基于碳二亚胺缩合剂的方法,可以在90° C下,基于高效固相多肽合成技术(HE-SPPS)使用三苯甲基树脂得到更高的多肽产率。这个方法被发现可以增加多肽的纯度,超越现有的任何活化方法,在高温下也能提供诸如磷酸化多肽的敏感序列。总之,新的TRT-DCA SpheriTide?树脂和新的碳二亚胺耦合方法使得多肽化学家充分利用该酸敏树脂对羧基肽进行高效固相多肽合成。 CEM商务开发主任Jonathan M. Collins说:“TRT-DCA SpheriTide树脂和新开发的碳二亚胺耦合方法的结合对于高温下简化和改善多肽合成是非常有用的,这不仅免除了购买预装树脂的需要,而且通过树脂自保护防止副反应的发生,提高了多肽的纯度。”CEM的Liberty Blue? Peptide Synthesizer 现在包括一个连接TRT-DCA SpheriTide树脂的自动化标准方法。Trityl-DCA SpheriTide树脂现在可以在线购买。 CEM公司,一家坐落在美国北卡罗莱纳马修斯的公司,是一个为世界顶级实验室提供科学解决方案的世界级领先供应商。公司在英国,德国,意大利,法国,和日本均拥有子公司并有全球分销商网络。CEM为生命科学、分析实验室和过程控制领等域设计和制造先进仪器。公司的产品广泛应用与许多行业,包括制药、生物技术、化学和食品加工、以及科研。 更多详情,请联系培安公司:电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288Email: sales@pynnco.com 网站:www.pynnco.com
  • 重磅!《石化和化学工业发展规划(2016-2020年)》印发 未来五年石化行业发展目标明确
    《石化和化学工业发展规划(2016-2020年)》近日印发,《规划》在经济发展、结构调整、创新驱动、绿色发展和两化融合等五个方面明确了发展目标,并提出了实施创新驱动战略、促进传统行业转型升级、发展化工新材料、促进两化深度融合、强化危化品安全管理、规范化工园区建设、推进重大项目建设、扩大国际合作等八项主要任务,部分内容如下:  “十三五”部分石化化工产品市场需求预测  “十三五”期间,在稳步推进新型城镇化和消费升级等因素的拉动下,石化化工产品市场需求仍将保持较快增长。2015年我国城镇化率约为56%,预计到2020年将超过60%,超过5000万人将从农村走向城市,新型城镇化和消费升级将极大地拉动基础设施和配套建设投资,促进能源、建材、家电、食品、服装、车辆及日用品的需求增加,进而拉动石化化工产品需求持续增长。同时,2020年我国将全面建成小康社会,居民人均收入将比2010年翻一番,社会整体消费能力将增长120%以上,居民消费习惯也将从“温饱型”向“发展型”转变,对绿色、安全、高性价比的高端石化化工产品的需求增速将超过传统产业。代表性石化化工产品消费量及需求预测如下表:    “十三五”石化化工行业规划目标  “十三五”期间,石化和化学工业结构调整和转型升级取得重大进展,质量和效益显著提高,向石化和化学工业强国迈出坚实步伐。  1.经济发展目标。“十三五”期间石化和化学工业增加值年均增长8%,销售利润率小幅提高,2020年达到4.9%。  2.结构调整目标。传统化工产品产能过剩矛盾有效缓解,烯烃、芳烃等基础原料和化工新材料保障能力显著提高,环境友好型农药产量提高到70%以上,新型肥料比重提升到30%左右,形成一批具有国际竞争力的大型企业集团、世界级化工园区和以石化化工为主导产业的新型工业化产业示范基地,行业发展质量和竞争能力明显增强。  3.创新驱动目标。科研投入占全行业主营业务收入的比重达到1.2%。产学研协同创新体系日益完善,在重点领域建成一批国家和行业创新平台,突破一批重大关键共性技术和重大成套装备,形成一批具有成长性的新的经济增长点。  4.绿色发展目标。“十三五”末,万元GDP用水量下降23%,万元GDP能源消耗、二氧化碳排放降低18%,化学需氧量、氨氮排放总量减少10%,二氧化硫、氮氧化物排放总量减少15%,重点行业挥发性有机物排放量削减30%以上。  5.两化融合目标。企业两化融合水平大幅提升,实现信息化综合集成的企业比例达到35%。石化化工智能工厂标准体系基本建立,在石化、煤化工、轮胎、化肥等领域建成一批石化智能工厂和数字车间。建成若干智慧化工园区,开展石化化工行业工业互联网试点。  主要任务和重大工程  (一)实施创新驱动战略  完善以企业为主体、市场为导向、产学研用相结合的产业技术创新体系,加强产学研用纵向合作,强化工艺技术、专用装备和信息化技术的横向协同,大力推进集成创新,构建一批有影响力的产业联盟。在化工新材料、精细化学品、现代煤化工等重点领域建成国家和行业创新平台。围绕满足国家重大工程及国计民生重大需求,支持开展互联网“双创”平台建设,着力突破一批共性关键技术和成套装备。加快化工新材料等新产品的应用技术开发,注重与终端消费需求结合,加快培育新产品市场。加强知识产权保护,加大人才培养和引进,营造“大众创业、万众创新”的良好社会氛围。  ???专栏1 技术创新重点领域及方向  强化行业标准 加强工程塑料、特种化学品等化工新材料标准化工作,强化新一代环保型化学品(高效低毒农药、安全型染料、环保型涂料和胶粘剂、绿色轮胎等)标准制定,加快绿色产品、企业、园区评价标准研究。结合“一带一路”建设,加强在橡胶、塑料、化肥、涂料等领域的国际标准研制工作。  重大关键核心技术 加快无汞催化乙炔??font??法氯乙烯、丁二烯直接氢氰化合成己二腈、乙烯羰基合成制甲基丙烯酸甲酯、氯丙烯直接氧化法合成环氧氯丙烷、节能和高安全性轮胎设计与制造、功能膜及组件制备和应用、高含盐和含酚污水处理、甲醇制芳烃、合成气制聚酯级乙二醇、单系列10亿方/年合成气甲烷化、甲噻诱胺等农药系列新品种、树脂基复合材料设计制造技术、高强碳纤维稳定工业化生产等技术的产业化和推广应用。推进合成气直接制烯烃、甲烷直接转化制烯烃等技术的研发。  重大成套技术和装备 原油和成品油在线调和成套设备,百万吨级对二甲苯吸附分离成套装备,30万吨/年及以上聚乙烯异向双转子连续混炼挤压造粒机组,百万吨级低阶煤提质(热解)成套装备,日处理煤3000吨及以上大型粉煤气化炉、日处理煤4000吨及以上水煤浆气化炉,年产百万吨以上氨合成、甲醇合成成套技术装备,特大型高效智能化空分压缩机组,大型天然气压缩机、高压冷箱、大型防爆电机等天然气液化成套设备等。???  (二)促进传统行业转型升级  严格控制尿素、磷铵、电石、烧碱、聚氯乙烯、纯碱、黄磷等过剩行业新增产能,对符合政策要求的先进工艺改造提升项目应实行等量或减量置换。探索建立落后产能法制化、市场化退出机制,引导企业开展并购重组,发挥市场优胜劣汰的竞争机制和倒逼机制,充分利用安全、环保、节能、价格等措施,推动落后和低效产能退出,为先进产能创造更大的市场空间。利用清洁生产等先进技术改造提升现有生产装置,降低消耗,减少排放,提高综合竞争能力和可持续发展能力。加强应用研发,开拓传统产品应用消费领域,扩大消费量。强化品牌意识,提高产品质量,健全品牌管理体系,打造一批知名度、美誉度较高的国际知名品牌。整合优化生产服务系统,重点发展科技服务、研发设计、工程承包、信息服务、节能环保服务、融资租赁等现代生产性服务业,为行业提供社会化、专业化服务。  专栏2 传统化工提质增效工程  氯碱 全面淘汰高汞触媒乙炔法聚氯乙烯生产装置,适度开展乙炔—二氯乙烷合成氯乙烯技术推广应用,加快研发无汞触媒,减少汞污染物排放。推广零极距、氧阴极等节能新技术应用,降低行业能耗。鼓励发展高端精细氯产品,提高耗氯产品的副产氯化氢综合利用水平。  纯碱 在有条件的地区推广全卤制碱技术。  电石 推进乙炔化工新产品、氧热法电石炉、炉气高附加值化工利用、余热综合利用等新技术研发和推广应用,加大石灰氮用作低毒绿色农药和肥料推广力度。  无机盐 开发推广先进的清洁生产技术,发展食品级、电子级无机盐精细产品,加强高温煅烧等无机盐常用工艺的尾气余热利用。  涂料 加强环保型涂料产品的研发和推广应用,加快航空航天等高端领域用特种涂料的开发和产业化,推广全密闭一体化涂料清洁生产工艺。  染料 加强染料及其中间体的清洁生产工艺和先进适用的“三废”治理技术的研发和推广应用,改进染料应用技术和配套助剂,提升染料行业的服务增值水平。  轮胎 发展航空子午胎、绿色子午胎、农用子午胎等高性能轮胎以及低滚动阻力填料、超高强和特高强钢丝帘线、高分散白炭黑及其分散剂等配套原料,推广湿法炼胶及充氮高温硫化等节能工艺,建设轮胎试验场。  专栏3 农用化学品优化升级工程  化肥 氮肥行业要调整原料和动力结构,发展烟煤、褐煤等低阶煤制化肥,原则上不再新建以无烟块煤和天然气为原料的合成氨装置 依托产业优势开发、打造碳一化工等新的产业链条 大力拓展氮肥产品的工业应用。磷肥行业要打造精细磷化工、湿法磷酸精制及深加工等新的产业链条 加强低品位磷矿的利用 提高磷矿伴生资源的综合利用水平。钾肥行业要加大海外钾资源开发力度,提高资源保障能力 提高钾矿伴生资源综合利用水平。鼓励开发高效、环保新型肥料,重点是增效肥料、缓(控)释肥、水溶肥、液体肥、中微量元素肥等 综合原料、市场和物流因素,优化化肥产业布局,推动产能向能源产地或棉粮主产地集中。  农药 发展高效、安全、经济、环境友好的农药品种,进一步淘汰高毒、高残留、高环境风险农药产品,优化农药产品结构 发展环保型农药制剂以及配套的新型助剂,重点发展水分散粒剂、悬浮剂、水乳剂、微胶囊剂和大粒剂,替代乳油、粉剂和可湿性粉剂 推进农药包装物回收及无害化处理 开发推广农药及其中间体的先进清洁生产工艺和先进适用污染物处理技术,提升农药生产的环保水平 加快具有自主知识产权的农药新品种创制和产业化。开拓卫生用农药等非农用农药市场 推进农药企业兼并重组,提高产业集中度。  专栏4 绿色发展工程  清洁生产 实施挥发性有机物(VOCs)综合整治,加快涂料、胶粘剂、农药等领域有机溶剂替代和生产过程密闭化改造。开发推广光气等高毒原料替代技术,推广催化加氢、绝热硝化等清洁生产工艺。淘汰含铅涂料、根据国家履行国际公约总体计划要求进行淘汰的高风险产品,以及平炉法工艺生产高锰酸钾、间歇焦炭法生产二硫化碳、有钙焙烧法生产重铬酸钠等高污染工艺。  循环经济 推进磷石膏、氟石膏、造气炉渣、电石渣、碱渣等固体废物综合利用,鼓励利用焦炉气、电石炉气、黄磷尾气等生产化学品。开发推广煤化工、染料、农药等行业废水治理及再利用技术。开发推广废旧塑料、轮胎等有机物的回收利用技术。推进二氧化碳在驱油、合成有机化学品、微藻培养等方面的应用示范。加强高温和强放热工艺装置余热综合利用。加强可降解塑料等绿色产品的开发和推广应用。  节能技术装备 加快推广超重力场传质技术、超临界萃取技术等节能技术,加快推广稀土永磁无铁芯电机、电动机用铸铜转子、高能效等级的中小型三相异步电动机、锅炉水汽系统平衡及热回收工艺设备、高效换热器、低温余热发电用螺杆膨胀机、乏汽与凝结水闭式回收设备等节能装备。  (三)发展化工新材料  围绕航空航天、高端装备、电子信息、新能源、汽车、轨道交通、节能环保、医疗健康以及国防军工等领域,适应轻量化、高强度、耐高温、稳定、减震、密封等方面的要求,提升工程塑料工业技术,加快开发高性能碳纤维及复合材料、特种橡胶、石墨烯等高端产品,加强应用研究。提升为电子信息及新能源产业配套的电子化学品工艺技术水平。发展用于水处理、传统工艺改造以及新能源用功能性膜材料。重点开发新型生物基增塑剂和可降解高分子材料。  专栏5 化工新材料创新发展工程  工程塑料 提升聚芳醚酮/腈、PCT/PBT树脂、聚苯硫醚、工程尼龙、聚酰亚胺等生产技术,加快开发长碳链尼龙、耐高温尼龙、非结晶型共聚酯(PETG)、高性能聚甲醛改性产品等。  氟硅材料 推进苯基有机硅单体产业化进程,重点发展高端氟、硅聚合物(氟、硅树脂,氟、硅橡胶)、含氟功能性膜材料和高品质含氟、硅精细化学品(高纯电子化学品、含氟、硅表面活性剂、含氟、硅中间体等),加快发展低温室效应的消耗臭氧层物质(ODS)替代品。  高性能纤维 重点发展高强和高模碳纤维、对位芳纶、超高分子量聚乙烯纤维、聚苯硫醚纤维、聚酰亚胺纤维、聚对苯二甲酸丙二醇酯纤维等高端产品。重点突破高强碳纤维的低成本、连续稳定、规模化生产技术,加快高强中模、高强高模级碳纤维产业化突破。加快发展纤维级聚苯硫醚、生物法丙二醇和聚对苯二甲酸丙二醇酯树脂等配套原料。  功能性膜材料 重点开发面向石化化工、冶金、生物工程等领域的高性能分离膜,提高氯碱工业用离子膜膜电阻和跨膜电压等性能,达到世界先进水平。促进燃料电池膜及工业用高性能双极膜装备实现产业化。开发用于酸碱回收的低成本高性能渗析和电渗析设备并实现产业化应用。发展中高端锂离子电池隔膜、软包装膜材料、聚氟乙烯(PVF)和聚偏氟乙烯(PVDF)背板膜、含氟质子交换膜和薄膜晶体管-液晶显示器(TFT-LCD)用偏光片。  电子化学品 发展集成电路用电子化学品,重点发展248nm和193nm级光刻胶、PPT级高纯试剂和气体、聚酰亚胺和液体环氧封装材料。发展印制电路板用特种环氧树脂、聚酰亚胺树脂、热固性聚苯醚树脂等为刚性板配套的特种树脂,以及为柔性板配套的聚酰亚胺薄膜、特种聚酯薄膜和导电涂料等。发展平板显示用液晶材料。发展为新能源电池配套的双氟磺酰亚胺锂等新型电解质、氟代碳酸乙烯酯等新型电解液溶剂。  生物基材料 推进生物基增塑剂替代邻苯类增塑剂。加快发展生物基聚合物如聚羟基脂肪酸酯(PHA)、聚碳酸亚丙酯(PPC)、生物基二元酸二元醇共聚酯、生物基多元醇及聚氨酯、生物基尼龙等。低成本纤维素乙醇及其下游生物基乙烯等重大品种取得实质性进展,实现对石油原料的部分替代。  3D打印材料 加快开发3D打印用光敏树脂以及聚醚醚酮、碳纤维增强尼龙复合材料(200℃以上)、彩色柔性塑料、PC-ABS材料等耐高温高强度工程塑料。提升光固化成型(SLA)、熔融沉积成型(FDM)、激光选区烧结(SLS)、三维立体打印(3DP)、材料喷射成型等3D打印工艺技术水平。  (四)促进两化深度融合  建立石化和化学工业智能车间、智能工厂以及智慧化工园区标准应用体系,加快智能工厂和智慧化工园区试点示范。推动工业互联网、电子商务和智慧物流应用,实现石化和化学工业研发设计、物流采购、生产控制、经营管理、市场营销等全链条的智能化,大力推动企业向服务型和智能型转变。  培育石化和化学工业与互联网融合发展新模式。构建面向石化生产全过程、全业务链的智能协同体系。在炼化行业,重点推进原油调和、石油加工、仓储物流、销售服务供应链的协同优化。建立健全化肥、农药、涂料等生产监督及产品追溯系统,采用物联网、射频识别、物品编码等信息技术,推进生产企业商品编码体系建设,建立产品追溯数据库。积极开展“互联网+农资”活动,鼓励生产企业建立农户基础信息库,提高农化服务水平,实现供需协同。推广农资电商等商业新模式。  专栏6 石化化工智能制造工程  标准应用体系 围绕材料性能和质量控制、安全生产和节能减排、物料管理和产品流通等,加快制修订一批数据采集、传输、交换及接口标准和信息安全标准、智能监测监管标准、电子标签编码及应用标准。制定石化和化学工业智能工厂标准体系。  智能工厂示范 在石化和化工行业建成80家以上智能工厂,提升企业在资源配置、工艺优化、过程控制、产业链管理、质量控制与溯源、能源需求侧管理、节能减排及安全生产等方面的智能化水平。  工业互联网开发与应用 建设石化和化工行业互联网标准化体系,大力推进具有自主知识产权的工业平台软件研发,包括工业云平台、工业大数据平台、三维数字化平台、物联网接入平台、生产优化工具等。开发具有自主知识产权的智能手持终端,用于移动巡检、移动作业、有毒有害气体监测、应急指挥、智能仓储等。  培育智慧物流和电子商务 支持现货交易平台等第三方大型电子商务行业平台发展壮大,创新商务模式。鼓励行业协会、电商公司、农资生产企业联合建立农资电子商务平台。推动化工产品物流信息化发展。  (五)强化危化品安全管理  加强产业发展与城市建设的规划衔接,优化危险化学品规划与布局,推进城镇人口密集区危险化学品生产企业搬迁改造。加快淘汰高风险产品及工艺,提高危险工艺的自动化控制水平和企业安全管理水平。实施全球化学品统一分类和标签制度(GHS),建立全产业链的危险化学品安全监管综合信息平台,启动危险化学品全生命周期管理试点,提升危险化学品本质安全水平。  专栏7 危险化学品本质安全水平提升工程  危险化学品生产企业搬迁改造 推动位于城镇人口密集区内,安全、卫生防护距离不能满足相关要求和不符合城乡规划的危险化学品生产企业搬迁改造。  智能化改造 鼓励危险化学品企业进行信息化、智能化改造,提高本质安全水平。  综合监管平台建设 按照统一标准、规范和模型对危化品全生命周期数据以及各部门监管所需数据进行集成和存储,建设国家级化学品数据中心,建成覆盖全流程的危化品安全监管应用体系。  实施全球化学品统一分类和标签制度(GHS) 加强部际协调,制修订GHS相关法律法规和标准,加强对企业实施GHS的监督管理。  (六)规范化工园区建设  加强化工园区的规划建设,科学布局化工园区。建立化工园区规范建设评价标准体系,开展现有化工园区的清理整顿,对不符合规范要求的化工园区实施改造提升或依法退出。开展化工园区和涉及危险化学品重大风险功能区区域定量风险评估,科学确定区域风险等级和风险容量。支持化工园区开展智慧化工园区试点。  专栏8 化工园区改造提升工程  改善园区安全环保水平的公用工程 建设专业危险化学品处置消防站、污水处理厂、危险化学品废弃物处置设施、公共管廊、公共事故应急池、危化品车辆管理设施(包含危化品车辆专用停车场和危化品车辆道路监管设施)等。  应急响应和救援指挥中心 建设园区监测预警系统(包含基于危化品车辆管理设施的封闭式园区管理系统)、应急响应系统和应急救援指挥中心等。  安全、环保一体化风险管理的智慧化工园区 基于物联网、大数据、云计算技术,整合园区内外关键资源信息的智慧管理系统、以及辅助以上系统正常运行所需的基础设施等。  新型工业化产业示范基地 建成5-8个以石化和化工为主导产业、具有全球影响力的新型工业化产业示范基地,建成一批有产业竞争力的化工特色产业基地。  (七)推进重大项目建设  综合考虑资源供给、环境容量、安全保障、产业基础等因素,有序推进七大石化产业基地及重大项目建设,增强烯烃、芳烃等基础产品保障能力,提高炼化一体化水平。加快现有乙烯装置升级改造,优化原料结构,实现经济规模,提升加工深度,增强国际竞争力。加快推动芳烃项目建设,弥补供应短板。在中西部符合资源环境条件地区,结合大型煤炭基地开发,按照环境准入条件要求,稳步开展现代煤化工关键技术工程化和产业化升级示范,着力提升资源利用和环境保护水平,提高装置竞争力,促进煤炭资源清洁高效利用。  专栏9 基础产品强化保障工程  烯烃 加快推进重大石化项目建设,开展乙烯原料轻质化改造,提升装置竞争力。开展煤制烯烃升级示范,统筹利用国际、国内两种资源,适度发展甲醇制烯烃、丙烷脱氢制丙烯,提升非石油基产品在乙烯和丙烯产量中的比例,提高保障能力。  芳烃 按照国家石化产业布局方案要求,加快石化芳烃产业发展 积极促进煤制芳烃技术产业化,推进原料路线多元化 促进芳烃-乙二醇-聚酯一体化产业基地建设。  有机原料 加快乙二醇、苯乙烯、丙烯腈等产品发展,提高有机原料保障能力 推进原料路线多元化,稳步发展非石油基乙二醇 加快推广清洁生产工艺,推进有机原料绿色工艺改造,重点推进环氧丙烷、环氧氯丙烷、甲基丙烯酸甲酯等产品的工艺路线改进,加大节能减排力度。  (八)扩大国际合作  深入推进实施“一带一路”战略,支持国内企业参与海外资源的勘探与开发,重点推进油气资源开发、北美页岩气制甲醇和乙烯及下游衍生物、钾肥和轮胎生产基地建设,在有条件的地区实现就地加工转化,形成上下游一体化的战略合作产业链。鼓励骨干企业通过投资、并购、重组等方式获得化工新材料和高端专用化学品生产技术,强化技术消化,促进国内产业升级。发挥我国在煤化工、轮胎、化肥、盐化工、农药、染料等领域的业务技术和生产经验优势,加快国内优势产能与“一带一路”沿线国家的合作,实现产品就地销售,开拓新兴市场。加大石化化工技术装备国际推广力度,推进石化化工企业、装备制造企业、工程设计企业开展业务合作,打造利益共同体,通过石化化工项目建设、重大工程技术装备总承包等方式,带动国产技术装备“走出去”。加快工程服务输出,支持有实力的企业在当地配套建设化工园区、物流基地,形成全方位对外合作的新格局。  专栏10 “一带一路”国际合作工程  产能合作 重点推动轮胎等高比例出口行业和氯碱等产品不易运输、市场区域化行业扩大国际产能合作。轮胎行业重点在东南亚等天然橡胶主产地或市场潜力较大的地区推进产能合作。氯碱行业主要在印尼、缅甸、哈萨克斯坦等兼具能源优势和区域市场优势的地区加强产能合作。氮肥、煤化工等行业重点在越南、印尼、孟加拉等兼具资源和市场优势的东南亚和南亚地区推进产能合作。  资源合作 积极推动油气、天然橡胶、钾矿资源合作,加快老挝、乌兹别克斯坦等海外钾肥基地建设,力争到2020年使海外钾肥基地产量达到120万吨,显著提升我国钾肥的国内外综合保障能力。天然气化工主要在俄罗斯、中东等具资源优势的地区推进产能合作。  技术合作 推动炼化、煤化工、氯碱、化肥等行业开展国际技术合作,鼓励进一步开拓海外技术和工程服务市场,使产能合作、资源合作和技术合作形成合力,带动技术、装备“走出去”,建设海外化工园区。
  • 邀请函:KRÜSS诚邀您参加2022复合材料界面论坛
    KRÜSS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜSS展会信息界面是决定复合材料性能的关键因素,是复合材料研究领域的焦点问题。“2022 复合材料界面论坛”重点聚焦碳纤维、芳纶纤维、聚酰亚胺纤维、碳纳米管纤维、玻璃纤维、陶瓷纤维、玄武岩纤维、植物纤维等高性能纤维增强复合材料的界面,主要围绕复合材料界面微观结构及其表征、界面微观力学、界面结构与界面行为之间的关系以及它们对材料宏观性能的影响等研究领域展开。KRÜSS诚邀您参加2022复合材料界面论坛会议时间:2022.8.11 - 12展位号:A03会议地址:宁波华侨温德姆至尊豪廷大酒店(浙江省宁波市海曙区柳汀街230号)典型应用通过接触角分析树脂和纤维浸润性树脂的表面张力分析通过表面能分析纤维和树脂的粘结强度基于OWRK模型的粘结效果评价等离子处理后表面能比较应用背景界面是决定复合材料性能的关键因素。树脂与纤维增强体的良好浸润是获得高质量复合材料界面的首要前提,对于树脂基复合材料而言,增强纤维与树脂基体之间的浸润性好坏对复合材料性能影响很大。一般来说,浸润性好、界面粘结强度就比较高。如果浸润性不好,界面上就容易留有空隙。因此,要制备高性能的复合材料,对增强材料的浸润性研究是十分必要的。
  • 北方华创“晶圆卡盘和晶圆加工方法”专利公布
    天眼查显示,北京北方华创微电子装备有限公司“晶圆卡盘和晶圆加工方法”专利公布,申请公布日为2024年7月16日,申请公布号为CN118352289A。 背景技术高分子聚合物在微电子制造中有广泛的应用,例如:聚酰亚胺(PI)是一种综合性能良好的有机高分子材料,耐高温达400℃以上,并具有高绝缘性能,103Hz下的介电常数4.0,属于低介电常数材料,被广泛用于微电子制造领域:1、聚酰亚胺容易与氧气、NaOH等发生化学反应而被刻蚀掉,因此可被用作牺牲层来制备微机械系统(MEMS)中的悬空结构;2、利用聚酰亚胺的绝缘性能可用作电路之间的钝化层,如先进封装中的重新布线(RDL)技术,可将聚酰亚胺光敏改性后光刻制备图案化结构并避免不同电路之间互连;3、利用聚酰亚胺的低介电常数特性,可减少电路中的寄生电容,用于高频电子器件中的线路钝化。再如:光刻胶是一类具有光敏特性的高分子聚合物,在光照下其结构发生改性,可以被显影液剥离(正性光刻胶)或者保留(负性光刻胶),利用光刻胶的光敏特性可以将光刻板上的图形转移到晶圆上,再通过干法刻蚀或者薄膜生长等工艺将图案固定下来,最后光刻胶需要被去除。在上述应用中,常常需要等离子体干法刻蚀对高分子聚合物进行处理。例如:采用聚酰亚胺来实现先进封装中的重新布线技术时,需要等离子体干法刻蚀对聚酰亚胺表面进行改性处理,增大粗糙度和亲水性,以保证电镀重新布线金属时药液可以完全浸润整个晶圆;再如:利用光刻胶做干法刻蚀的掩膜后的去除过程中,由于光刻胶经过干法刻蚀后发生改性,难以使用溶剂溶解的方法进行湿法去除,而需要进一步利用等离子体去胶机进行去除。尤其是在扇出型封装中,晶圆的基底常采用树脂等聚合物制作,进而在制作晶圆的过程中,晶圆容易发生翘曲。当基底有翘曲时,刻蚀过程中的电荷积累引起的放电效应会严重影响刻蚀工艺结果,甚至导致刻蚀工艺停止而失败。发明内容本发明提供了一种晶圆卡盘和晶圆加工方法,涉及晶圆的刻蚀技术技术领域,为解决翘曲的晶圆在等离子刻蚀时易放电打火的问题而设计。晶圆卡盘包括边缘卡盘和中心卡盘,边缘卡盘分布在中心卡盘的至少一个径向的外侧,边缘卡盘传动连接有边缘卡盘驱动装置以调节边缘卡盘的高度。本发明提供的晶圆卡盘可以避免晶圆的边缘打火受损。
  • 高分子科学走向国际前沿 凝胶色谱仪等仪器推广功不可没
    1983年,化学所高物实验室,钱人元先生(右二)和中科院化学所高分子物理实验室的同事们讨论聚丙烯丙纶纺丝的工作PI 薄膜复合膜生产线  从上世纪50年代到今天,中国高分子科学从无到有、从弱到强,这与中科院化学所的贡献密不可分。  化学所是国内最早开展高分子科学与材料研究的科研单位之一。早在建所之初,高分子科学就成为化学所的主要学科方向之一。六十年来,化学所重视基础研究,不断拓展研究领域,按照国民经济和国防科技需求,在高分子化学、高分子物理和高分子材料等重要学科前沿和应用领域开展了系统的创新性研究,有力地促进了高分子学科的发展。  高分子科学“从无到有”  上世纪50年代,新中国成立之初,我国高分子工业刚刚起步。1956年,中科院化学所成立,时任上海有机化学研究所副所长的王葆仁带领多名研究人员迁入化学所,成立了高分子研究室。这便是如今高分子物理与化学国家重点实验室的前身。  中科院化学所副所长王笃金告诉《中国科学报》记者说:“研究人员围绕当时国家最迫切的需要开展科技创新,完成了我国高分子学科从无到有的过程。”  在高分子物理方面,研究人员建立并推广了测定高分子最基本的结构参数—分子量和分子量分布的方法,逐渐延伸到高分子溶液性质、高分子链结构与表征等方向。高分子化学方面,聚甲基丙烯酸甲酯、聚己内酰胺、离子交换树脂等成为主要研究方向之一。此外,常温/高温凝胶色谱仪、气相渗透仪、沸点升高仪、裂解色谱仪等科研仪器,也逐步实现了批量生产并推广到许多科研机构,对提升我国高分子科学整体水平发挥了引领作用。凝胶色谱仪(来自互联网)热裂解-色谱/质谱联用仪(来自互联网)  助力国家重大任务  化学所的高分子科学研究从成立起,就重点服务于国家重大任务。为国家“两弹一星”的研制,化学所老一辈科学家开展了酚醛树脂、环氧树脂以及推进剂、黏结剂的研制。上世纪60年代,在“任务带学科”的思想指导下,开展了“复合材料”与“感光材料”两大领域的研究。  2001年,为了满足国家高新技术产业,尤其是航天、航空、空间、微电子等发展的需要,高技术材料实验室在化学所组建。  高性能有机硅材料是航空、航天、电子等高技术领域必不可少的关键材料之一。化学所先后在国内率先研究并开发了甲基乙烯基和苯基硅橡胶、耐油硅橡胶、高强度硅橡胶等重要高性能有机硅材料。自主研制的系列耐高温硅橡胶、系列空间级硅橡胶也达到国际先进水平,为我国“载人航天”等重大工程作出了贡献。  据了解,该实验室还在耐高温聚酰亚胺、耐烧蚀防热酚醛树脂、特种环氧树脂等高分子材料领域取得了具有重要影响的研究成果,形成了近百种系列化货架产品,支撑着我国高新技术领域中许多重要工程型号的研制与发展。  与世界科学前沿并行  60年来,高分子科学在中科院化学所生根发芽,在多个领域已实现与世界科学前沿并行。  最近,高分子科学方向得到持续稳定的发展。高分子化学作为化学所的主要研究方向之一,已在共轭高分子的设计、合成和光电性能研究,有机聚合物电子学和光子学等研究方面在国际上产生重要影响。高分子物理研究主要集中在高分子单链结构、动态性质以及与界面相互作用、各种散射技术在高分子中的应用等领域。高分子理论与模拟研究则集中在聚合物结晶动力学、软凝聚态物理理论等方面。  此外,研究人员在聚合物太阳能电池、高分子仿生材料等方面也取得了诸多新进展。基于坚实的科学基础,化学所在高分子材料领域开展了丰富的成果转化工作,为国民经济作出了贡献。例如,在辽宁营口向阳化工厂实现了聚丙烯催化剂的产业化,同时,科研人员开发出具有我国自主知识产权的三代聚丙烯纤维制造技术,使我国衣着用化纤新品种丙纶的开发处于国际前列,创造了巨大的经济效益和社会效益。  展望未来,化学所的高分子科学将继续坚持高分子化学、高分子物理和高分子材料等研究领域的创新性研究,继续为化学科学的发展做出不懈努力,继续为国家经济建设和国防建设所作出卓越贡献。
  • 气相色谱柱性能下降的原因,你造吗?
    色谱柱断裂01 聚酰亚胺涂层断裂:聚酰亚胺涂层可保护易断但具弹性的熔融石英管。可能原因:柱温箱持续的加热或冷却、柱温箱风扇的震动以及把色谱柱绕在圆形柱架上对管线造成压力,最终在薄弱处发生断裂;聚酰亚胺涂层受刮擦或磨损会出现薄弱点,如色谱柱挂钩和标签、GC柱温箱的金属边缘、色谱柱切割器以及实验室实验台上的各种物品都带有锋利的尖duan或边缘。02 色谱柱自身断裂:这种情况比较少见,一般来说,较大直径的色谱柱容易断处理,0.45-0.53mm内径的色谱柱时要比处理0.18-0.32mm内径的色谱柱应更加小心,防止断裂。已断裂的色谱柱并非不能用。如果已断裂的色谱柱持续处于高温下或在高温下运行多个升温程序,则将十分容易损坏。已断裂色谱柱的后半段暴露在高温的氧中会迅速损坏固定相。而色谱柱的前半段因有载气通过仍会保持完好。如果已断裂的色谱柱未经加热而是仅在高温或含氧的环境下暴露很短时间,则其后半段将不会受到任何严重损坏。热损坏当色谱柱使用温度超出色谱柱的温度上限,就会加速固定相和管线表面的损坏。这样会造成色谱柱的过分流失,活性组分峰形拖尾,以及/或降低柱效(分离度)。即使色谱柱受到热损坏,仍然可使用。把色谱柱从检测器上卸下来。在色谱柱的恒温温度极限下,将其加热8-16小时。把色谱柱接到检测器的一端截10-15cm。按正常情况安装色谱柱并进行老化。色谱柱通常不能恢复到原来的性能,但仍可使用。在热损坏之后色谱柱的寿命会缩短。需要注意的是,当有氧存在时会大大加速热损坏。对有泄漏或载气中氧含量较高的色谱柱进行过度加热可快速并永jiu性地损坏该色谱柱。氧损坏氧是许多毛细管GC柱的大敌。在室温或近于室温的温度下,不会损坏色谱柱,但随柱温的升高色谱柱将被严重损坏。通常,对于极性固定相,较低的温度和氧浓度条件下,就可发生严重损坏。长时间暴露在氧中才会出现氧损坏的问题。短时间暴露在氧中(如注射空气或快速取下隔垫螺母)不会有什么问题。载气流路(例如气路、接头、进样器)中的泄漏才是暴露在氧中的源头。随着色谱柱的加热,会很快地损坏固定相。这样会造成色谱柱的过量流失,活性组分峰形拖尾,以及/或降低柱效(分离度)。其征兆与热损坏相似。不幸的是发现氧损坏之时色谱柱已经受到严重的破坏,在不太严重的情况下,色谱柱仍可使用,但性能有所下降。在严重的情况下,色谱柱将完全不能使用。化学损坏相当少的化合物能损坏固定相。不挥发的化合物(例如,盐)进入色柱谱中通常会降低其性能,但不会损坏固定相。使用溶剂冲洗色谱柱通常可消除残留并恢复色谱柱的性能。应该避免进入色谱柱的主要化合物是无机或矿物酸和碱。据报道只有全氟酸是可以损坏固定相的有机化合物。包括:三氟乙酸、五氟丙酸和七氟丁酸。它们需在高浓度(例如1%或更高)时才有破坏作用。大多数问题发生在不分流进样或大口径直接进样的过程中,其中大量的样品会沉积在色谱柱前端。色谱柱被污染在毛细管GC中色谱柱被污染是很常见的问题。通常,受污染的色谱柱虽然没有损坏,但却不能再使用。一般来说有两种基本的污染物:非挥发性污染物和半挥发性污染物。非挥发性污染物或残留不会被洗脱,将积聚在色谱柱中。半挥发性污染物或残留会积聚在色谱柱内,但最终会被洗脱出去。建议不要使用长时间加热(通常称为烘烤色谱柱)的方法来处理受到污染的色谱柱。因为烘烤色谱柱可能会把某些污染物残留变成不能溶解的物质而无法通过溶剂清洗将它们从色谱柱中去除。如果出现这种情况,通常就无法再恢复色谱柱了。有时可将色谱柱切割为两段,后半段可能仍可使用。在色谱柱的恒温极限下烘烤色谱柱时,时间应不超过1–2个小时。
  • 中科院院士黄志镗逝世 享年88岁
    中国科学院院士、中国科学院化学研究所研究员、著名有机化学家和高分子化学家黄志镗先生,因病医治无效,于2016年11月13日凌晨4时54分在北京逝世,享年88岁。  黄志镗1951年毕业于上海同济大学化学系,1951年至1956年在中国科学院上海有机化学研究所工作,任研习员、助理研究员,1956年至今在中国科学院化学研究所工作,历任助理研究员、副研究员、研究员,历任课题组长、研究室主任等职,并曾任所学术委员会主任。1958年前主要从事有机硅化合物和高分子的研究,1958年后则主要从事交联型高分子的研究,曾涉及环氧树脂、酚醛树脂等,为航天技术防热材料做出了贡献。在交联型聚酰亚胺和合成三嗪交联的新型耐高温高分子上有所创新。80年代起进行杂环化学的研究,系统研究杂环烯酮缩胺的合成及反应,合成了1500个以上的新杂环化合物,与国内外有关研究单位协作进行生物活性试验,以筛选药物及农药。其后又开展杯芳烃化学的研究,在合成和包合性能等方面皆取得有意义的结果。已发表论文约200篇。曾获全国科学大会奖,国家发明三等奖,国家自然科学三等奖,中国科学院自然科学一等奖等多项奖励。曾任《高分子学报》、《高分子通报》、《化学进展》、《中国化学快报》、《塑料工业》等刊物的顾问编委、主编或编委等职。
  • 上海禾工塑料粒子行业水分仪技术交流培训
    日前,上海禾工在广东东莞群安塑胶实业有限公司安排了一场安调培训、技术交流会,东莞群安塑胶生产的离子型中间膜可广泛的应用在光伏、航天、国防、建筑、汽车等众多领域。 而在生产过程中。如果使用水分含量过多的塑料粒子进行生产,则会产生一些加工问题,并最终影响成品质量,如:表面开裂、反光,以及抗冲击性能和拉伸强度等机械性能降低等。因此,水分含量的控制对于生产高质量的塑胶产品是至关重要的。 在之前的很多产品选购指南中也提到,如果需要检测的塑料样品水分含量在0.1%以上,加热温度在200度以内,而且加热之后除了水分之外没有其他挥发性成分,可以选择方便快捷的加热失重法水分测定仪器,如果这三个条件有一个不符合您的测量要求,那么就建议选择卡尔费休滴定的测水方法,而且,一定要选择带卡式加热炉的卡尔费休滴定仪器。在离子型中间膜生产中东莞群安塑胶选择了禾工AKF-PL2015C卡尔费休塑料粒子专用水分测定仪,在仪器的培训过程中,禾工技术员在现场协助客户使用AKF-PL2015C塑料粒子专用水分仪检测了四组数据,根据计算结果得出平均值及RSD值较好。 卡式炉测定塑料水分含量建议温度ABS/160℃已内酰胺/100-120℃环氧树脂/120℃三聚氰胺甲醛树脂/160℃尼龙6(尼龙66)160-230℃苯酚甲醛树脂/200℃聚苯稀酰胺/200℃聚酰胺/160-230℃聚碳酸二酰亚胺/150℃聚碳酸酯/140-160℃聚酯/140-240℃聚醚/150℃聚异丁烯/250℃聚酰亚胺/160℃聚甲酯/160℃聚对苯二甲酸乙二醇酯/180-200℃聚乙烯/200℃聚甲基丙烯酸甲酯/180℃聚丙烯/160-200℃聚苯乙烯/120℃聚氨酯/180℃多乙酸乙烯酯 /170℃聚乙烯醇缩丁醛PVB/150℃聚四氟乙烯PTFE/250℃橡胶塞/250℃哇橡胶/250℃软PVC /140-160℃苯乙烯丙烯酸酯/170℃特氟隆/250℃对苯二酸酯 /150℃尿素甲醛酯 /100℃
  • 大湾区特色新材料论坛——集成电路材料产业创新发展论坛在深召开
    仪器信息网讯 2023年7月7-10日,由中国材料研究学会主办的中国材料大会2022-2023在深圳国际会展中心举行。据悉,本届中国材料大会系首次在深圳举办,大会聚焦前沿新材料科学与技术,设置77个关键战略材料及相关领域分会场。7月9日,由深圳市科技创新委员会、深圳市宝安区人民政府、中国科学院深圳先进技术研究院指导,中国材料研究学会主办,深圳先进电子材料国际创新研究院、上海集成电路材料研究院承办的“中国材料大会2022-2023大湾区特色新材料论坛——集成电路材料产业创新发展论坛”在深圳国际会展中心南宴会厅A(二层)顺利召开。广东省委常委、副省长、中国科学院院士 王曦 致辞深圳市市委常委、市政府党组成员 郑红波 致辞中国科学院深圳先进技术研究院院长 樊建平 致辞广东省委常委、副省长王曦,深圳市委常委、市政府党组成员郑红波,中国科学院深圳先进技术研究院院长樊建平出席活动并致辞。来自北京、上海、江苏、广州、深圳等地的企业和科研机构、高校代表参加论坛交流。签约仪式随后,活动现场,深圳先进电子材料国际创新研究院与宝安区“专精特新”联合创新中心、优质“链上企业”联合创新中心等共计22家企业在现场完成签约仪式,将进一步发挥各自优势,整合研发与产业资源,推动务实合作。签约仪式结束后,会议进入报告环节。报告人:彭孝军 院士(中国科学院)报告题目:先进光刻材料及其思考据介绍,激发波长从可见光波长逐步向高能的短波长发展,成为光刻胶发展的主流趋势。未来发展5 nm以下的分节点,急需发展13.5nm的极紫外光(EUV)光刻技术。极紫外彻底改变了传统光刻系统,具有空前的挑战性。如:极紫外光对C、H、N、S等传统有机化合物元素的吸收截面极小,接近透明,没有吸收就难于获得能量而被激发,不能发生高效率的光刻反应;传统光刻胶由光致产酸剂+有机聚合物组成,由于质子扩散,分辨率难于提升,后者分子量太大,难于实现2-3 nm的分辨;EUV光子能量增大到92 eV,进入辐射化学领域,基础研究不足;而相同功率的极紫外光(13.5 nm)的光子数仅为深紫外(ArF,193 nm)光子数的7%,这对光刻胶的灵敏度提出了更高要求报告人:俞跃辉 董事长(上海硅产业集团股份有限公司)报告题目:大硅片的国产化路径探讨和展望硅片,尤其是国际主流的300 mm大硅片,长期制约着国内半导体产业的发展。报告中,俞跃辉介绍了上海硅产业集团一路走来的发展历程。在硅产业集团子公司上海新昇的带领下,国内硅片行业突破了300 mm硅片的技术壁垒,未来,硅产业集团作为行业领头羊,将面向国家战略,引领国内硅片技术领或前治,扩大产业规模,开拓新领或,驱动集成电路材料产业链国产化进程。报告人:陈贻和 副总经理(礼鼎半导体科技(深圳)有限公司)报告题目:集成电路封装载板发展趋势报告介绍了2010-2022年中国半导体的发展,中国封装载板产值只有全球的7%,自制缺口巨大。据介绍,2020-2022年封装载板需求旺盛,主要原因来自产品结构的变化。未来封装载板发展趋势分为两方面,FCBGA载板朝向细线路、高层数、大尺寸发展,FCCSP载板朝向细线路、微型孔、薄型化发展。报告人:汤昌丹 总经理(深圳瑞华泰薄膜科技股份有限公司)报告题目:高性能PI薄膜的应用与技术发展趋势据介绍,聚酰亚胺是综合性能最好的聚合物材料之一,即是高等级绝缘、高速轨道交通、柔性电子、航天航空、集成电路与半导体等领域的战略性基础材料,迫切需求国产化替代,打破卡脖子问题;同时也是5g/6g高频高速、新能源(风、光、储、复合集流体)、新能源汽车、新型显示等新兴领域迫切需求的创新材料。报告中,汤昌丹结合产业发展与市场需求,带来高性能聚酰亚胺在集成电路等高技术领域中应用与展望。报告人:林耀剑 副总裁(江苏长电科技股份有限公司)报告题目:智能运算系统中的一站式封装解决方案及材料关注半导体封装是电子产品制造中的一个重要环节。本质上是芯片成品技术,其主要对芯片起到中介互连、物化保护和散热管理的作用。随着技术的进步,封装在向微系统化方向发展以集成创新、提升性能和扩展应用。而材料在各先进封装的研发制造和应用中起到极其关键的作用。报告中,林耀剑介绍和探讨了长电科技先进封装中的散热增强功率封装、SiP、晶圆级封装、以及2.5D芯粒封装技术的特征制造和结构以及关键材料关注点。报告人:严斌 高级技术专家 (深圳市中兴微电子技术有限公司)报告题目:先进封装材料(基板材料&散热材料)报告中,严斌介绍了先进封装材料的发展趋势。据介绍,随着产品复杂度提升和功能多样化,芯片Die size尺寸越来越大,封装尺寸逐步增大,基板层数逐渐增多;大尺寸封装需要更低的CTE材料,保证更平整的翘曲表现;高速信号要求非常低损耗的材料,保证高性能;同时,大尺寸芯片伴随着高功耗高功率密度的产生,带来极具挑战的散热需求;因而对芯片散热材料提出了更高的要求;低热阻,高导热的散热材料(热界面材料TIM1,高导热Lid材料)。报告人:杨云春 董事长(北京赛微电子股份有限公司)报告题目:对传感器材料发展趋势的期望传感器材料正在向金属氧化物的方向发展,然而其高灵敏度只能在较高的温度下实现。作为工业界,杨云春希望学术界能够就如何将其与其他材料如金属纳米颗拉、纳米薄膜,纳米管甚至石墨烯相结合进行研究,进而利用其电化学的特殊优势,提高传感器材料的表面积与体积比,提高传感器的灵敏度,并显著降低基于传感器的工作温度。报告人:杨之诚 董事长(深南电路股份有限公司)报告题目:面向各类应用的半导体封装基板材料发展趋势及研究近年来,国内半导体行业已从传统消费类向数据中心、超算、汽车电子、AI人工智能、光电传输等领域转型突破,芯片设计从轻薄化、小型化向高可靠性、高密度、复杂结构等方向升级。杨之诚表示,国内基板厂也同步在存储、射频、处理器FCCSP及FCBGA等产品上逐步实现精细线路、高多层结构、高速传输等关键技术突围,并需要同步推动上下游产业链薄弱环节如基板制造设备、配套材料等相关技术能力补强和提升,有效支撑国内lC设计公司产品迭代诉求。报告人:傅铸红 总经理(广东华特气体股份有限公司)报告题目:电子特气工艺及产品介绍电子气体,是指用于半导体及其他电子产品生产的气体,与传统的工业气体相比,电子气体特殊在气体的纯净度极高。电子气体在半导体材料成本中是仅次于硅片的第二大材料种类,年需求量增长超过15%,国产化率超过35%。报告中,傅铸红介绍了电子气体的种类、应用、市场规模、生产工艺、配套技术等相关情况。报告人:郭贵琦 总经理(广州新锐光掩模科技有限公司)报告题目:集成电路制造用光掩模研究与应用光掩模是半导体核心工艺——光刻的最关键器件。郭贵琦表示,光掩模是芯片制造的关键,在芯片制造中承上启下,芯片设计数据是信息安全的重中之重;光掩模将向高精度、大规模纯商业方向发展,产业链整合尤为重要;需要建立规范化高端光掩模研发生产基地,完善良性循环发展模式,成为自我发展功能、可持续发展潜能和可复制性效能的集研、学、产用于一体的产业基地;市场寡头垄断严重,国产替代正当其时。报告人:潘杰 总经理(宁波江丰电子材料股份有限公司)报告题目:突破核心技术,打造核心竞争力,为全球产业链提供确切性——中国超高纯材料及溅射靶材产业化新进展报告中,潘杰主要分享了江丰电子创业以来的主要成就。据介绍,江丰电子攻破了全球最领先的5纳米工艺核心技术,是台积电等国际一流半导体制造企业的主要供应商,圆满完成28-14nm技术节点超高纯溅射靶材的国产化替代,打破依赖国外进口的局面,产品大量出口,全球市场份额超过24%,位居世界第二,形成了对国际市场的影响力,获得了国家技术发明二等奖、“制造业单项冠军”等荣誉,并在深交所成功上市。报告人:孙蓉 院长(深圳先进电子材料国际创新研究院)报告题目:集成电路高端材料国产化路径—实践与探索(以封装电子材料为例)孙蓉在报告中介绍了国内电子化学品及先进电子封装材料的产业发展现状,其次提出了先进电子封装材料领域的几个关键“根问题”,介绍了高分子树脂合成与纯化、无机填料表面改性、异质界面调控、聚合物流变学、原位分析检测与服役可靠性等方面的研究进展。在此基础上介绍了芯片级底部填充胶、芯片级热界面材料、积层胶膜材料、晶圆级光敏聚酰亚胺、液态塑封料、临时键合胶等几种高端电子封装材料的研发与产业化进展。报告人:曹勇 总监(深圳市鸿富诚新材料股份有限公司)报告题目:鸿富诚高性能碳基导热垫片介绍5G时代的来临,电子元器件逐步向高功率、高集成、微型化方向发展,由此带来了严重的散热问题。曹勇表示,过多的热量如果不能及时传递到冷却端,就会导致设备出现故障,降低使用寿命。因此,开发更高性能热界面材料逐步成为未来发展的趋势和挑战。报告中,曹勇介绍了鸿富诚碳纤维和石墨烯高性能碳基导热垫片。报告人:黄嘉晔 市场部部长(上海集成电路材料研究院)报告题目:我国集成电路材料技术研发的现状与思考黄嘉晔在报告中首先介绍了全球集成电路材料产业情况和中国集成电路材料产业情况,之后介绍了上海集成电路材料研究院。据介绍,集材院是由中国科学院上海微系统与信息技术研究所、上海硅产业集团发起成立,聚焦集成电路村底材料、工艺材料以及产业关键技术的研发与产业化,为集成电路材料发展提供坚实的创新策源。报告最后,黄嘉晔建议,在大湾区,由深圳先进电子材料国际创新研究院牵头,上海集成电路材料研究院协同,建设聚焦封装材料的创新联合体。报告人:朱朋莉 研究员(深圳先进电子材料国际创新研究院)报告题目:纳米填料增强环氧基复合材料在芯片封装中的应用研究纳米填料增强环氧基复合材料因具有低应力、低膨胀、高填充率、高介电、高粘结强度等综合特性,被广泛用作底部填充胶、环氧塑封料、覆铜基板等,以充当超大规模集成电路封装结构中的关键支撑材料。目前,物联网(IoT)、人工智能和5G通讯等高端应用领域的迅猛发展对芯片的处理速率、互连密度、功耗和稳定性提出了巨大的挑战,在此推动下,大尺寸、薄型化、窄间距、三维堆叠及高度集成化的芯片封装成为后摩尔时代集成电路发展的必然趋势。由此对作为支撑结构的环氧基复合材料性能提出的更高需求,如电子级球形二氧化硅的粒度级配、分布形态、表面化学状态等,是影响芯片封装可靠性首当其冲的问题。基于此,朱朋莉从纳米复合材料中微观的相界面出发,通过改变电子级球形二氧化硅填料的表面物理化学状态,设计了不同性质和结构的界面相,并系统研究了界面相的存在对芯片级封装材料—底部填充胶性能的影响规律,解决了底部填充胶在芯片应用过程中的诸如粘度、填充性、应力调节、焊球保护、芯片失效等问题,为高端电子封装材料的开发提供指导。报告人:吴蕴雯 副教授(上海交通大学)报告题目:电沉积金属微纳结构调控及在三维互连中的应用近年来由5G高速通讯引领的元宇宙、区块链、自动驾驶、远程医疗等万物互联技术正在蓬勃发展,其中先进集成电路的发展是实现当代信息技术飞跃的基石。然而在后摩尔时代,由于先进集成电路制程工艺逐渐逼近物理极限,通过芯片三维集成是延续摩尔定律的必经路径。在三维集成技术中,互连是信号传输的主要载体,以微凸点键合和硅通孔技术为主的铜互连技术主要采用电化学沉积的方法进行微纳图形制备。随着三维集成密度不断提高,集成电路互连面临强度、导电性、可靠性等多方面的挑战,通过调节电沉积工艺及添加剂体系实现铜互连微观结构的调控是构筑高密度互连的关键。吴蕴雯基于电沉积铜微纳米结构调控,实现了具有优异物理性能的微凸点、硅通孔互连技术,为推动高密度三维互连技术提供技术思路和理论基础。
  • 我国科学家制出绝缘纳米新材料
    合肥5月25日电近日,中国科学技术大学俞书宏院士团队研制出一种高性能纤维素基纳米纸材料,其在极端条件下仍可保持优异的机械和电绝缘性能。相关成果日前发表于《先进材料》。随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线环境、原子氧和高低温交替环境等,成为今后深入探索的主要障碍。在极端环境下,材料的物理化学特性会发生变化,严重时甚至会导致重要设备和装置的损坏。在传统材料当中,金属和陶瓷本身具有出色的机械性能和对极端环境的耐受性,但金属材料面临密度过高重量过大的问题,而陶瓷材料则面临脆性和难以加工等问题。聚合物具有轻质和可塑的特点,但目前大多数聚合物基复合材料在极端环境长期服役会产生高温软化和低温脆性等问题。因此,设计和制备一种能长期在极端环境下服役的高性能防护材料是材料领域面临的难题之一。在大自然中,珍珠母的“砖-泥”结构为其提供了极好的力学性能。近年来,这种精巧的有序结构的其他功能(如隔水、隔氧以及对能量场的均匀分散等)逐渐成为研究热点。受天然珍珠母“砖-泥”结构的启发,研究人员首先采用气溶胶辅助生物合成方法,利用细菌产出的纤维素纳米纤维将分散的合成云母纳米片均匀而紧密地缠结得到复合水凝胶,然后通过热压的方式,得到最终的仿珍珠母结构的纳米纸材料。得益于纳米纸内部精细的“砖-泥”结构和连续三维网络,该纳米纸表现出高强度、高模量、高韧性、可折叠性和抗弯曲疲劳性等优异的力学性能。同时,材料内部的“砖-泥”结构充分发挥了云母的高介电强度,从而赋予了该纳米纸较高的电击穿强度。与纯纤维素纳米纸相比,该复合纳米纸的耐电晕寿命显著提高,甚至超过了商用聚酰亚胺薄膜。此外,该项研究中的高性能纤维素基纳米纸在高低温交替、紫外线和原子氧等极端条件下,仍表现出优异的综合性能,这为未来人们对极端环境的探索提供了一个极好的防护材料选择。
  • 仪器情报,科学家制备表征新兴高性能多晶薄膜!
    【科学背景】随着材料科学和纳米技术的迅速发展,二维(2D)晶体材料作为一种重要的研究对象,因其独特的结构和性质而引起了科学家的广泛关注。尤其是在柔性电子、光电子以及分离等领域的应用,对于开发具有高强度、韧性和弹性的2D薄膜材料提出了迫切需求。然而,传统的2D晶体材料通常是多晶的,含有许多晶界,这导致其易碎和脆性,严重限制了其在柔性器件中的应用。共价有机框架(COF)作为一种新兴的2D晶体材料引起了人们的关注。COF由有机节点和连接物通过共价键构建而成,具有周期性和多孔结构。然而,现有的COF材料通常以不可加工的粉末形式存在,或者以部分晶化的片状材料或不连续薄膜的形式出现。这些材料存在着脆弱易碎、裂纹沿晶界传播严重等问题,严重限制了它们的应用范围。为了解决这些问题,中山大学郑治坤教授团队提出了使用线性小分子作为牺牲中介来引导2D COF的聚合和结晶的新方法。通过选择亚胺键连接的COF,并利用具有较高反应性的烷基双胺为中介,可以促进COF相邻结晶颗粒在晶界处的纠缠,从而增加薄膜的弹性。此外,选择聚丙烯酸作为聚合物表面活性剂来辅助界面合成,进一步优化了薄膜的制备过程。通过这一研究,研究者们成功地制备出了高度结晶且具有弹性的2D COF薄膜,其力学性能得到了显著改善。【科学图文】在本研究中,为了制备高度结晶且具有弹性的2D COF薄膜,研究人员采取了一系列实验步骤。首先,他们使用了5,10,15,20-四(4-氨基苯基)-21H,23H-卟啉(节点)和2,5-二羟基对苯二甲醛(连接物1)进行反应,形成了2DCOF-1(图1a)。在此过程中,通过在水中添加二乙烯三胺作为中介,以及利用聚丙烯酸在水表面促进节点的积聚和组装,最终得到了具有高度均匀性的2DCOF-1薄膜。傅立叶变换红外和拉曼光谱表明了亚胺键的形成以及节点和连接物的完全消耗。将薄膜沉积到铜网格上后,显微镜观察到除了与镊子接触导致的一个破裂区域外,其他区域均被完全覆盖(图1c)。扫描电子显微镜和原子力显微镜进一步证实了薄膜的结构和均匀性,显示了不同颗粒通过晶界连接而成的结构,晶界呈现出明亮的对比度,而整个薄膜的颗粒和边界形态非常相似。这些结果表明,通过所采取的实验方法,研究人员成功地制备了高度结晶的2DCOF-1薄膜,并且该薄膜具有较高的机械韧性和均一性。图1. 2DCOF-1薄膜的合成方案及形貌。为了了解二维COF薄膜的晶界结构和微观特性,作者首先假设形成了涉及交织结构的晶界,并计算得到了晶胞参数(图2a)。接着,通过广角X射线衍射(GIWAXS)观察到了清晰而多重的反射,表明薄膜具有高结晶度。尤其是在平面方向,反射被很好地索引,并呈现出简单的四方晶格,支持了模拟的交织结构在平面上的周期性。在垂直方向上也观察到了清晰的反射,给出了层间距的信息,进一步证实了交织结构的存在(图2b)。此外,通过缝合畸变校正的高分辨透射电子显微镜(AC-HRTEM)图像,观察到了薄膜的微观结构。图像显示,薄膜由单晶颗粒组成,并通过傅立叶滤波进一步确认了这一结论。这些结果表明,二维COF薄膜具有复杂的晶界结构和高度有序的微观排列,这为其在力学性能和应用方面的研究提供了重要参考(图2c)。图2. 2DCOF-1薄膜的结晶度和晶界结构。作者进行了一系列实验,以探究二维COF薄膜的聚合和结晶过程。首先,通过广角X射线衍射技术监测了反应过程中薄膜的结晶情况。在6小时的反应时间内,观察到了局部结晶的开始信号,但整体呈现无定形状态;而在7小时处,形成了多晶薄膜,反射环明显。随着反应时间的延长,反射的强度逐渐增加,反映了薄膜的整体结晶度逐渐提高。此外,AC-HRTEM提供了微观的图像,显示了不同颗粒重新取向的过程,以及单晶颗粒尺寸的逐渐增大和晶界数量的减少。通过对比实验,发现未使用二乙烯三胺的对照实验中形成了具有层间无序的薄膜,并且薄膜厚度在不同区域间变化较大。而使用其他化合物作为中介的对照实验也证实了交织晶界的形成。这些实验结果揭示了二维COF薄膜的聚合和结晶过程,为理解其形成机制提供了重要线索(图3)。图3. 2D COF-1 薄膜的反应时间依赖性结构分析。图4展示了2DCOF-1薄膜的力学性能。通过在悬浮的薄膜上进行AFM纳米压痕实验,结果显示薄膜具有高韧性和弹性,加载和卸载曲线之间没有明显差异,表明薄膜在铜网上没有滑动。当薄膜被压痕直至破裂时,裂纹迅速扩散并大部分区域反弹回初始位置,表明薄膜存在能量消耗路径,可能是由于交织晶格的来回滑动。与此相反,对照实验显示2DCOF-1-A薄膜遇到严重的裂纹扩展。此外,薄膜的能量损失系数在70%和80%应变时均小于10%,并且在反复加载和卸载周期中保持稳定,表明了薄膜的高稳定性和韧性。通过对六个不同样品的力-位移曲线进行拟合,计算出薄膜的弹性性能和断裂应力,结果显示其平面弹性模量和断裂强度均远高于先前报道的晶体和多孔材料。这些实验结果表明了2DCOF-1薄膜具有优异的力学性能,展示了其作为有机二维COF纯晶膜的潜在应用前景。图4. 2DCOF-1薄膜的机械性能。【科学结论】本研究为克服传统2D晶体脆弱性提供了新思路。通过引入无定形聚合物中常见的交织结构,我们成功地将高强度、高韧性和高弹性引入了亚胺键多晶膜中,实现了这些膜的整体性能的显著提升。这一研究不仅为解决2D晶体材料的脆弱性问题提供了新途径,还揭示了从无定形材料中借鉴结构和性能的潜力。这种方法为多晶材料引入新的特性和应用打开了新的可能性,不仅可以加强现有材料的性能,还有望为新型应用的发展提供有力支持。这一创新将有助于推动材料科学领域的发展,为开发更加功能强大的材料和应用打开了新的前景。参考文献:Yang, Y., Liang, B., Kreie, J. et al. Elastic films of single-crystal two-dimensional covalent organic frameworks. Nature (2024). https://doi.org/10.1038/s41586-024-07505-x
  • 聚醚醚酮(PEEK)树脂材料的中压恒流泵研制成功
    我公司成功研制泵头、流路材料是聚醚醚酮(PEEK)树脂材料的中压恒流泵。 TBP-k 系列恒流泵(PEEK泵、柱塞泵、耐腐蚀泵、中压泵、输液泵)采用聚醚醚酮(PEEK)树脂这种性能优异的特种工程塑料,PEEK不溶于浓硫酸外的几乎所有溶剂。TBP-k 系列恒流泵可以广泛用于化工、石化、煤炭、染料、精细化工、科研、环保、农药、制药、食品等行业,满足以上行业恒压恒流精确输送酸碱腐蚀性液体。 主要特点 &bull 耐酸碱溶剂腐蚀:采用PEEK特种工程塑料、红宝石、氧化锆陶瓷 &bull 压力脉动小:双柱塞结构,宝石球寿命长; &bull 流量精确:进口宝石柱塞和宝石,误差小; &bull 内建过压保护和流量校正系统 ; &bull 电脑控制:通过 RS232 接口与电脑通讯 &bull 大屏幕液晶显示; &bull 排气装置:有效除去输送液体中的气泡。
  • 重点新材料首次应用示范目录2021版有哪些变化?
    新材料是指新出现的具有优异性能或特殊功能的材料,或是传统材料改进后性能明显提高或产生新功能的材料。新材料的发现、发明和应用推广与技术革命和产业变革密不可分。加快发展新材料,对推动技术创新,支撑产业升级,建设制造强国具有重要战略意义。基于此,2016年12月30日,工业和信息化部、发展改革委、科技部、财政部以工信部联规〔2016〕454号印发《新材料产业发展指南》。该《指南》分产业背景、总体思路、发展方向、重点任务、保障措施5部分。《指南》提出,重点任务是:突破重点应用领域急需的新材料;布局一批前沿新材料;强化新材料产业协同创新体系建设;加快重点新材料初期市场培育;突破关键工艺与专用装备制约;完善新材料产业标准体系;实施“互联网+”新材料行动;培育优势企业与人才团队;促进新材料产业特色集聚发展。为贯彻落实《新材料产业发展指南》,做好重点新材料首批次应用保险补偿机制试点工作,工信部从2017年开始发布《重点新材料首批次应用示范指导目录》。对于新材料推广应用中存在的特殊风险,保监会会根据目录中的产品提供定制化的新材料产品质量安全责任保险产品。符合条件的申请企业,可申请中央财政保费补贴资金。目录按照《新材料产业发展指南》对新材料的划分方法,分为先进基础材料、关键战略材料和前沿新材料三大类,每个大类里面又细分小类。其中,与化工紧密度较高的是先进基础材料中的先进化工材料以及关键战略材料中的高性能纤维和新型能源材料。2021年12月31日,工信部发布《重点新材料首批次应用示范指导目录(2021年版)》,自2022年1月1日起施行。《重点新材料首批次应用示范指导目录(2019年版)》同时废止。时隔两年,这次2021版《示范目录》相较于2019版有很大变化。《重点新材料首批次应用示范指导目录》2019与2021版材料种类统计此次2021版目录对重点新材料的分类进行了更多的优化:1、对先进基础材料大类下的先进钢铁材料按照其应用领域进行了细分,划分为海洋工程用钢、交通装备用钢、能源装备用钢、航空航天用钢、电子信息用钢和其他;2、取消了先进基础材料大类中其它材料的分类,不再细分该部分材料;3、关键战略材料新增了生物医用及高性能医疗器械用材料。从两个版本的目录材料种类统计对比可以看出,2019版囊括了331种新材料、而2021版304种材料。相比于2019版,新版目录删除了217种材料名称,保留了114种材料名称,新增了191种材料名称。(注:2019版目录中,“柔性显示盖板用透明聚酰亚胺”出现两次,保留的114中新材料在2021版仅为113种,合计304种)可以看出,本次新版修订变化巨大,新增材料品类占比达63%。“柔性显示盖板用透明聚酰亚胺”重复出现两次那么这些新增材料品类和删除材料品类主要分布哪里呢?通过对两次版本进行对比发现,1、先进基础材料新增130种材料,保留68种材料品类,新增品类占比达66%。值得注意的是,先进基础材料下的先进钢铁材料全部替换为新的材料品类,这可能是新版目录变化最大的部分。2、关键战略材料新增44种材料,保留38种材料品类,新增品类占比达54%。关键战略材料主要部分为高性能纤维及复合材料和先进半导体材料和新型显示材料,其中高性能纤维及复合材料新增品类占比67%,变化较大,而先进半导体材料和新型显示材料新增品类占比50%。值得注意的是,此次新增的生物医用及高性能医疗器械用材料共包含4种材料,其中的海藻纤维及应用、微创介入医疗中空纤维管在2019版目录隶属于高性能纤维及复合材料。3、前沿新材料新增17种新品类,保留7种材料品类,新增品类占比达71%,变化较大。 整体来看,先进基础材料下的先进钢铁材料是本次《示范目录》变化最大的部分,不仅明确了分类,更是修改其中全部的材料品类。除此之外,目录种的部分材料品类虽然保留,但其性能要求却修改了,或细化性能要求,或提高性能指标。更多信息内容请到工信部或点击下方链接下载并查阅目录。附件:重点新材料首批次应用示范指导目录(2021年版).pdf_免费下载_其他资料_资料中心_仪器信息网 (instrument.com.cn)
  • AEM:正、负极界面工程并行实现高性能锂硫全电池
    导读对高能量密度和高倍率储能系统的需求不断增加,推动了电池领域的进一步发展,其中锂硫电池(LSB)展现出巨大的应用前景。受益于硫(S)和锂(Li)之间的多电子和多相转化,LSB具有超高的理论比容量和高比能量密度。但锂硫电池目前存在严重的多硫化物穿梭、硫正极氧化还原动力学缓慢以及锂负极不可逆枝晶生长等问题。 成果简介鉴于此,Nature Communications上发表了一篇题为“Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries”的文章。滑铁卢大学 Linda F. Nazar教授等人采用非原位/原位技术揭示了Zn2+与质子嵌入化学之间的竞争,并开发了一种混合共晶电解质来减轻Zn枝晶生长。关键创新近期Advanced Energy Materials期刊上发表了一篇题为“Interfacial Engineering on Cathode and Anode with Iminated Polyaniline@rGO-CNTs for Robust and High-Rate Full Lithium–Sulfur Batteries”的论文。该工作提出了正极和负极双界面工程策略,对于正极,亚胺化聚苯胺(iPANI)用于实现能量工程以诱导中能级吸附多硫化物,并催化硫物种的氧化还原转化,并通过iPANI自组装到集成支架上实现形态工程通过还原氧化石墨烯(rGO)和碳纳米管(CNT),即iPANI@rGO-CNT。对于负极,iPANI@rGO-CNT复合材料的高导电性和亲锂性以及多孔纳米结构有利于锂离子的均匀沉积,显著防止锂枝晶的生长。借助iPANI@rGO-CNT纳米反应器的协同效应,所制备的LSB具有出色的倍率性能和出色的循环寿命。核心内容解读在制备iPANI@rGO-CNT过程中,PA作为促进该反应的催化剂和iPANI链最终质子化亚胺的稳定剂发挥着至关重要的作用,可加速LiPS的扩散和转化(图1a)。在将锂金属沉积到该主体中作为负极后,具有高导电性和亲锂亚胺键的多孔iPANI@rGO-CNT主体可以形成均匀的电场,从而调节均匀的Li沉积并抑制枝晶生长(图1b)。【图1】iPANI@rGO-CNT纳米反应器在全LSB中的作用机制。a)促进硫物种转化和锂负极b)调节锂沉积的亲锂主体的示意图。透射电子显微镜(TEM)(图2d、e)和能量色散X射线光谱元素映射图像(图2f)进一步证实了iPANI分布良好的纳米结构阵列。【图2】iPANI@rGO-CNT主体的形态和结构特征。a,b)横截面SEM,c)iPANI@rGO-CNT纳米孔内的连续iPANI阵列,d)TEM,e)iPANI箭头的HRTEM图像,以及f)iPANI@rGO-的元素映射图像CNT的主体。g)iPANI@rGO-CNT、PANI@rGO-CNT和rGO的拉曼图案和h)FTIR曲线。i)iPANI@rGO-CNT和PANI@rGO-CNT中胺键和亚胺键的比例。iPANI@rGOCNT、PANI@rGO-CNT和rGO主体的化学结构和组成通过拉曼、傅立叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)测量进行研究(图2g、2h)。为了更好地比较交联前后的PANI状态,对PANI@rGO-CNT和iPANI@rGO-CNT进行了高分辨XPS。图2i中计算并总结了几种亚胺和胺键相应的比例。通过密度泛函理论(DFT)计算,从理论上进一步研究了这些亚胺和胺键对LiPS的吸收能力(图3a-3c)。【图3】催化机理的理论和实验研究。a)Li2S8在不同官能团上的计算吸附能。iPANI@rGO-CNT的b)基态S0和激发态T1之间的电荷密度差异和c)基态S0和激发态T1的LiPS吸附能。d)在Li2S6溶液中浸泡12小时后不同主体的紫外-可见光谱。e)iPANI@rGO-CNT吸附Li2S6后N 1s的高分辨率XPS光谱(其他峰)。f)具有不同正极的LSB的穿梭电流曲线。g,h)具有不同正极Li2S6对称电池的扫速下的CV曲线。i)Li2S8/四甘醇二甲醚溶液在2.05 V下在不同表面上的恒电位放电曲线。为了验证假设,进行了可视化吸附测量,以使用rGO-CNT支架和超级P(SP)作为基准来研究iPANI@rGO-CNT对LiPS的强锚定作用。在6小时和12小时后,iPANI@rGOCNT使深黄色Li2S6溶液脱色更彻底,该结果与紫外-可见光谱中吸附测量的变化趋势一致(图3d)。还进行了XPS测量(图3e)以研究iPANI@rGO-CNT对LiPS的吸附机制,表明其和LiPS之间存在强烈的相互作用。进行电化学测量以研究iPANI@rGO-CNT增强的硫物种转化的氧化还原动力学。图3f显示了iPANI@rGO-CNT在所有测量的正极中的最小穿梭电流,揭示了LiPS的极好的锚定效应和抑制多硫化物穿梭。此外,先后进行了不同扫描速率的循环伏安图(CV)测试,以证明硫氧化还原动力学(图3g,h)。为了直观地说明具有可逆转化的亚胺键对增强氧化还原动力学的积极影响,进行了Li2S成核测试(图3i)。显然,iPANI@rGO-CNT比rGO-CNT和SP提供更大的容量,表明更有效的Li2S成核和更好的氧化还原动力学。随后,组装电池以探索其催化转化活性。如图4a、b中的循环伏安法(CV)曲线所示,S-iPANI@rGO-CNT电池显示出最大的响应峰值电流、最小的极化电压和第一还原峰起始电位上移。此外,在所有扫速下,S-iPANI@rGO-CNT正极的积分面积都大于S-rGO-CNT正极的积分面积,说明S-iPANI@rGO-CNT正极具有更高的硫利用率。与S-rGO-CNT相比,S-iPANI@rGO-CNT电池显示出较小的Tafel斜率(图4c-4e)。这些结果表明,iPANI@rGO-CNT有效地加快了固-液和液-固转化率,并具有良好的可逆性。此外,研究了不同样品中的锂离子扩散系数,并在图4f-h中进行了总结。图4i显示处于T1状态的S-iPANI@rGO-CNT正极在自由能图中从S8到Li2S的所有转化步骤都具有低能垒,进一步证实了iPANI@rGO-CNT可以催化硫物种转换效率更高。【图4】LSB与各种主体的反应动力学研究。a)S-rGO-CNT和b)S-iPANI@rGO-CNT正极在0.1到0.5 mVs−1的扫速下的CV曲线。从c)Li2S8到L2Sn(2≤6)、d)L2Sn到Li2S和e)Li2S到Li2Sn的转化反应的Tafel图,在0.1 mV s−1下具有不同的电极。f-h)不同正极的Li扩散特性通过CV峰值电流与扫速平方根的关系图。i)S8转化为Li2S的自由能。为了直观地观察iPANI@rGO-CNT主体对锂枝晶生长的限域作用,利用光学显微镜原位监测运行过程中负极表面的形貌变化(图5a、b)。基于有限元方法,进行COMSOL Multiphysics仿真以模拟局部电流密度和整体电场分布,以揭示3D有序纳米孔结构的影响(图5c-e)。显然,与均匀导电iPANI聚合物互连的极其有序的纳米孔导电结构可以有效降低局部电流密度,从而超越二维平面对应物的性能。根据Sand的时间模型推断,降低局部电流密度会抑制初始枝晶的形成。另一方面,iPANI@rGOCNT主体在初始锂沉积和随后的循环中保持均匀电场,从而使锂离子流动均匀并抑制枝晶生长(图5d)。【图5】iPANI@rGO-CNT对枝晶生长抑制作用的实验和模拟研究。a,b)裸锂(a)和Li-iPANI@rGO-CNT(b)负极表面形貌的原位光学显微镜图像。c)iPANI@rGOCNT支架中局部电流密度分布的模拟。d)iPANI@rGO-CNT电极和e)Li成核过程中裸Li电极的电场分布模型。f)AFM图像和g)iPANI@rGO-CNT支架的放大AFM图像。h)KPFM图像和i)iPANI@rGO-CNT支架的放大KPFM图像。j)使用裸锂和Li-iPANI@rGO-CNT负极的对称电池在1 mA cm-2电流密度和1 mAh cm-2容量下的比较循环稳定性。k)Li-iPANI@rGO-CNT负极对称电池与其他复合负极在不同电流密度下的循环寿命。通过模拟实际工作条件进行反复剥离/沉积测试,以探索iPANI@rGO-CNT的耐久性并评估其对锂枝晶的抑制作用,如图5j所示。这些结果表明,即使在高电流密度下,优异的亲锂性和结构稳定性也有助于锂的均匀沉积,从而缓解锂金属的枝晶生长问题。为了证明具有均匀电流密度的亲锂纳米孔结构在锂负极保护中的优越性,列出了近期研究工作的循环性能以供比较(图5k)。对由S-iPANI@rGO-CNT正极和Li-iPANI@rGO-CNT负极制造的Li-S全电池进行了全面的电化学性能评估。图6a-6c的结果表明,可逆转变降低了LiPS的转化能垒,纳米孔结构抑制了Li枝晶的生长,进而导致氧化还原动力学增强。进行了电化学阻抗谱(EIS)测试以进一步揭示S-iPANI@rGO-CNT电极电荷转移特性的潜在原因(图6d)。与其他电极相比,S-iPANI@rGO-CNT电极具有最小的初始电荷转移电阻并促进了锂离子扩散动力学。【图6】全LSB电化学性能。a)S-iPANI@rGO-CNT||Li-iPANI@rGO-CNT电池的CV曲线。b)S-iPANI@rGO-CNT||Li-iPANI@rGO-CNT、S-iPANI@rGO-CNT||裸锂电池、S-rGO-CNT||Li-iPANI@rGO-CNT电池和S-rGO-CNT||裸锂电池的首圈CV曲线曲线。c)恒电流充放电曲线。d)初始EIS图。e)在不同电流密度下的倍率性能。f,g)长循环寿命和相应库仑效率的比较。h)S-iPANI@rGO-CNT||Li-iPANI@rGO-CNT在高硫负载下的面容量。i,j)在0.5 C的第一个循环期间,S-iPANI@rGO-CNT正极的原位拉曼光谱。k)Li-S软包电池持续点亮LED指示灯。S-iPANI@rGO-CNT||Li-iPANI@rGO-CNT电池表现出最佳的倍率性能。在低电流密度下极高的初始容量接近于先前工作的电池性能,在0.05 C时具有高能量密度,突出了该电池的巨大潜力。同时,在将电流密度切换回0.2 C时可以恢复1009.6 mAh g−1的更高比容量,这表明有效抑制LiPS穿梭和锂枝晶生长可以显著提高电池的可逆性(图6e)。在各种电流密度下研究了循环性能,以探索具有可逆调节的有机氧化还原催化剂的3D纳米反应器的可持续性,以实现氧化还原动力学,如图6f、6g所示。还制造了具有4 mg cm−2高载量的复合S正极(图6h),S-iPANI@rGO-CNT||Li-iPANI@rGO-CNT电池在0.2 C下表现出出色的循环性能,提供742.5 mAh g−1的高初始比容量,100次循环后仍保持606.6 mAh g−1。这些结果证实了通过3D可逆调节纳米反应器改善氧化还原动力学的可行性。此外,进行了原位Raman测量以原位监测可溶性Li2Sn在充电/放电过程中的转化过程(图6i,j)。为了评估电极的实际性能,使用准备好的软包电池测量了LED的发光性能(图6k)。成果启示综上所述,通过具有可逆内置催化剂的3D纳米反应器探索正极和负极的界面工程,以此抑制LiPS穿梭并调节锂枝晶生长。纳米孔内丰富的亚胺键为LiPS和锂离子提供了足够的吸附和催化位点。作为硫复合正极的主体,LiPS(锂化/阴离子态)内置的–NH+=/–NH+–键的可逆电子重排降低了LiPS的转化能垒,从而加速了LiPS的催化和转化。作为锂复合负极的主体,极其均匀的电荷传输路径提供了均匀的电场并实现了高锂离子通量,从而实现了平稳的锂沉积,并显著抑制了锂枝晶。受具有内置催化作用的3D结构的青睐,所制备的iPANI@rGO-CNT主体赋予Li-S全电池出色的倍率性能和极好的循环寿命。3D有序纳米反应器的内置催化策略可以通过实现具有高能量密度的LSB的潜在商业价值来带来美好的未来。
  • 化育新材 继往开来|北化新材料高峰论坛暨新材料校友会成立大会成功召开
    春暖花开,相约上海!4月8日-9日,北京化工大学新材料高峰论坛暨北化新材料校友会成立大会在上海大船酒店圆满召开。本次会议采用线下+线上直播的方式进行,近300名来自海内外各地的北化学子赴约而至,携手近5000名线上校友,共同见证北化新材料校友会的诞生!作为北京化工大学校友企业,北京信立方科技发展股份有限公司(旗下网站:仪器信息网,我要测网)荣誉当选北京化工大学新材料校友会第一届理事会副理事长单位,北京信立方科技发展股份有限公司董事长唐海霞女士当选北京化工大学新材料校友会第一届理事会副会长,仪器信息网CEO赵鑫先生当选北京化工大学新材料校友会第一届理事会副秘书长。上海线下会议现场章品书校友主持会议受大会委托,由埃米空间创始人、新材料校友会拟任副会长、研03级校友章品书主持会议,隆重介绍了与会各位领导与嘉宾,并对大家的到来表示衷心的感谢和诚挚的欢迎。上海奉贤区副区长厉蕾致辞上海奉贤区副区长厉蕾在致辞中表示,奉贤意为“敬奉贤人,见贤思齐”,首先代表奉贤区人民政府向莅临论坛的各位专家、北化校友表示诚挚的欢迎,向本次高峰论坛的胜利召开、北化新材料校友会的成立表示热烈的祝贺。厉区长介绍了奉贤区正在全力打造的美丽大健康、新能源、新材料、数字新经济等四大主导产业的发展进展,并向各位北化校友发出诚挚邀请,希望大家能够常来奉贤看看,探讨合作,共享奉贤的发展机遇。北京化工大学党委副书记甘志华致辞北京化工大学党委副书记甘志华在致辞中,首先代表学校依次感谢了奉贤区政府、兄弟校友会、兄弟相关行业协会、校友企业对北化新材料校友会的大力支持。甘书记感谢在新材料领域不断奋斗的广大北化校友,校友们怀着强烈的事业之心、创新之心、报国之心,推动成立北化新材料校友会,诠释了北化校训“宏德博学、化育天工”的精神,也展示了北化学子的创业才干和报国情怀。最后表示,北京化工大学将通过北化新材料校友会平台,进一步加强与广大校友联系、为校友们的全面发展提供全方位服务。中国化工企业管理协会副会长张恭春致辞、赠送诗词墨宝中国化工企业管理协会副会长、84级校友张恭春代表中国化工企业管理协会对本次新材料高峰论坛的开幕、北化新材料校友会的成立表示热烈祝贺。张会长表示,自己从业几十年来,亲身经历了我国化工行业发展壮大的伟大历程。我国已成为当今世界第一化工大国,但化工产业由大变强依旧任重道远。化工新材料是战略性基础性产业,是国际高科技竞争的关键领域制高点,也是我们的短板。而北化新材料校友会的成立将凝聚起一大批校友的优质资源,开辟出一条崭新的行业赛道,架起了通往行业竞争制高点的金色的桥梁。最后,张会长填词一首,并赠送墨宝祝贺北化新材料校友会成立!上海市新材料协会秘书长何扣宝致辞上海市新材料协会秘书长何扣宝在致辞中,代表上海新材料协会对北化新材料校友会的成立和新材料高峰论坛的成功举办表示热烈祝贺。何秘书长表示,北化新材料校友会的成立将进一步促进从事新材料相关行业校友之间的相互沟通与交流,也促成校友与母校之间的创新与合作。必将有效助推我国新材料产业的发展和突破卡脖子技术的研究与产品开发。最后,希望上海新材料协会与北化新材料校友会加强交流,相互学习,相互推进,共同为国家新材料产业的发展作出我们的努力和贡献。上海开伦投资集团有限公司党委书记、董事长宋鲁军致辞上海开伦投资集团有限公司党委书记董事长、93级校友宋鲁军在致辞中表示,作为北化校友,开伦投资集团非常荣幸能够承办本次大会。开伦集团主要经营方向是资产管理、投资、招商引资、金融贸易等五大板块。奉贤正处在高速发展的良好机遇,适逢北化新材料校友会的成立,希望大家认识奉贤、熟悉奉贤,在奉贤的这块热土上成就大家的另一番事业,而开伦集团也一定服务好校友,为校友的交流联络做好平台服务。北京化工大学新材料校友会正式成立接下来,大会进入北化新材料校友会成立仪式环节。首先,北京化工大学国内合作处处长、校友会总会秘书长何雨骏介绍了北京化工大学校友总会情况。接着,北京化工大学国内合作处副处长、校友总会副秘书长刘宏伟宣读北化新材料校友会批复文件。经大会审议表决,选举通过了北化新材料校友会第一届会长、执行副会长、副会长、理事、秘书长、副秘书长人选,并举行聘书颁发仪式。北京化工大学国内合作处处长、校友会总会秘书长何雨骏介绍了北化校友总会情况北京化工大学国内合作处副处长、校友总会副秘书长刘宏伟宣读新材料校友会成立批复文件北京化工大学新材料校友会授旗仪式校领导向北化新材料校友会第一届会长、执行副会长、副会长、理事颁发聘书北京化工大学新材料校友会第一届会长、执行副会长名单如下:会长:武德珍执行副会长:孙艳军、聂俊、李冰、包雷、申富强、何建全向北化新材料校友会第一届理事会秘书处人员颁发聘书聘书颁发仪式结束后,进行了兄弟校友会和兄弟院校致贺环节,上海财经大学创业与投资校友会会长郑峥嵘、北京化工大学美国校友会副会长王笃源分别送上祝贺词。上海财经大学创业与投资校友会会长郑峥嵘祝贺词北京化工大学美国校友会副会长、83级校友王笃源致辞江苏先诺新材料科技有限公司董事长武德珍当选会长并做履职发言授旗受聘和致贺环节后,新当选的82级校友武德珍会长发表了履职讲话。她首先感谢了领导和校友的信任,很荣幸和光荣担任首届北化新材料校友会会长,并代表北化新材料校友会对各位领导嘉宾和各位校友的到来表示热烈欢迎,对为校友会成立付出辛勤劳动的领导、校友老师和工作人员表示衷心的感谢。北京化工大学是各位校友的根,也是大家工作和事业的起点,新材料校友会的成立,为大家从事新材料产学研工作的广大校友搭起了与母校沟通的桥梁,也搭建起了校友之间的信息交流、资源共享、合作共赢、联络感情的平台,标志着北化新材料校友会筹建工作取得了阶段性的成果。北化新材料校友会成立后,将严格遵守校友会章程,遵循“化育新材、继往开来”的主旨,团结和带领校友会成员积极进取,不断加强校友之间校友跟学校之间的联系。加强合作,协同共进,共同推动我国新材料产业发展。北京化工大学新材料校友会成立大会参会人员合影留念4月8日晚宴后,近百位校友围炉夜谈,围绕如何办好新材料校友会,大家积极献计献策,畅所欲言北京化工大学新材料高峰论坛成功举办成立仪式后,大会邀请十余位新材料杰出校友、业内知名专家就大家关心的行业热点痛点难点、园区落地等主题依次为大家作精彩报告。上海市奉贤区经委主任、促投办主任张贤上海市奉贤区经委主任、促投办主任张贤首先对上海市奉贤区产业进行了推介。上海奉贤区聚焦美丽大健康、新能源汽配、数智新经济、化学新材料等新兴产业,拥有亿元商务楼宇、十亿级产值企业、百亿级工业园区、千亿级产业集群,更为特色的新材料高科技产业打造了上海化工新材料产业新高地。为扶持产业发展,奉贤区陆续出台了一系列创新发展、金融支持、人才激励等政策,建立了全要素、立体化政策体系,持续优化营商环境。上海骐杰碳素有限公司副总经理张国强校友企业上海骐杰碳素有限公司副总经理张国强,作为入园企业代表,分享了企业经验。骐杰自成立至今,依托一个中心、三个基地、三个赛道(热场材料、摩擦材料、储能材料),一直在国产化的道路上前行。目前,已拥有百项专利,并获得了国家专精特新小巨人、高新技术企业、高新技术成果转化百佳企业等荣誉称号。报告中,张总分享了骐杰发展历程与成长经验,并表示愿意为校友会平台的发展作贡献。北京化工大学科学技术发展研究院副院长朱保宁北京化工大学科学技术发展研究院副院长朱保宁介绍了北化促进科技成果转化情况。近年来,北京化工大学面向世界科技前沿、经济主战场、国家重大需求、人民生命健康等取得了一系列突出的科技成果,获得国家科技奖励32项、省部级和社会力量奖励264项,并建立了全局化、层次化、专业化的科技成果转移转化服务体系,推动化工新材料行业良性循环。朱保宁从特色学科方向、突出科技成果、科技成果转化服务工作等方面详细介绍了北化在促进科技成果转化方面取得的进展。北京化工大学材料科学与工程学院党委书记赵静北京化工大学材料科学与工程学院党委书记赵静介绍了材料科学与工程学院情况。学院于1958年建校时创办,是我国最早建立的以高分子(聚合物)材料为特色,兼顾复合材料、无机非金属材料和金属材料协同发展的材料类院系。六十年发展至今,已形成了“人才培养-基础研究-技术创新-工程应用-社会服务”五位一体的材料学科特色创新体系;材料学为国家重点学科,高分子化学与物理为国家重点(培育)学科;材料科学与工程学科在全国第四轮学科评估中位列A类(排名前10%),进入“绿色化学化工及材料”一流学科群重点建设行列。中国合成树脂协会理事长郑垲中国合成树脂协会理事长、74级校友郑垲分享了合成树脂行业产业现状及趋势。目前,我们合成树脂行业整体水平与发达国家相比,还有相当大的差距。全球的高端市场,几乎被国外所垄断,美国、日本和西欧占据了新材料市场的70%。因此,我国需培育一批具有全球竞争力的世界一流企业和石化基地;并积极采用新技术、新工艺、新设备,提高装置的效率和工艺水平以及产品的技术含量;努力降低能耗物耗,降低原料所占成本的比例,同时,也要注重新材料研发及产品的应用性能提高、同时赋予产品绿色可持续的生态特性、改进服务手段;并且需要全面提升现代化管理水平和核心竞争能力,推进行业健康发展。中国石油和化学工业联合会化工新材料专委会秘书长卜新平中国石油和化学工业联合会化工新材料专委会秘书长、研01级校友卜新平分享了化工新材料产业现状及发展趋势。近年来,我国化工新材料产业体系不断健全,产业规模持续扩大;技术创新能力不断增强,光伏级EVA,光学级PMMA、193纳米光刻胶等多个领域有新突破;中石油、中石化、万华化学、盛虹等一批专业化工新材料企业迅速崛起;上海化工园区、宁波石化经济开发区、南京化工园区等一批专业化工新材料园区迅速成长;BASF、诺利昂、英国威格斯等外资企业持续加大我国化工新材料市场布局;在产业政策的引导下,化工新材料投资热情高。但是,还存在结构性矛盾突出,高端供应不足;关键原辅料及特种装备存在瓶颈,产业链一体化程度有待提高;核心技术受制于人;市场主体小而分散;部分产品存在投资过热等问题。国瓷材料创始人、CTO宋锡滨特邀嘉宾国瓷材料创始人、CTO宋锡滨分享了如何应对外部环境对新材料产业的影响,对新材料产业的现状和差距进行了分析,讲述了外部环境对新材料产业的影响,并给出新材料产业的高质量发展建议:政府方面,应注重顶层设计,全国统筹,集群化发展,注重战略布局、系统规划,建立国家实验室,加强技术创新、打通应用创新,提升技术竞争力和战略竞争优势;产业方面,应符合新材料高质量发展的规律,符合新材料科技成果转化的原理,符合材料、工艺、设备协同性的原则,符合技术优势与收益性相结合的逻辑,重视新材料产业相关人才的建设,坚持长期主义和极致主义的理念等。中科院化学所赵永生研究员2022年未来科学大奖得主、中科院化学所研究员、研00级校友赵永生为大家分享了有机微纳激光材料与器件的相关研究。首先从有机微纳谐振腔的可控组装与加工、有机材料激发态过程两方面介绍了有机微纳激光的研究进展。接着讲解了团队在有机微纳电泵浦激光方面的探索,针对有机材料的发光依赖激子,激子形成慢、消耗快,难以实现粒子数反转等关键难点,采用“开源、节流”等解决方案取得一定进展。最后展示了有机微纳激光在显示领域的系列应用案例及应用展望。江苏集萃光敏电子材料研究所有限公司董事长聂俊江苏集萃光敏电子材料研究所有限公司董事长聂俊校友分享了光刻胶产业现状及趋势。光刻是半导体制造中最重要的工艺环节,占芯片制造时间的40-50%,占制造成本的30%。在7nm 制程的EUV技术成熟之前,ArFi光刻胶仍是市场主流,占比高达36.8%。2022年全球光刻胶市场规模约为23亿美元,我国光刻胶市场规模 5.6 亿美元。2022年我国高端半导体用光刻胶占比仅约为3%。当前,光刻胶还需解决如何控制合成高稳定性高分子、光化学反应等科学问题,以及超纯化处理及检测、长期稳定性及批次稳定性、工程化设备、工程化管理等工程问题。江苏先诺新材料科技有限公司董事长武德珍江苏先诺新材料科技有限公司董事长武德珍分享了高性能PI纤维产业现状及趋势。当前,国外PI薄膜、树脂、工程塑料等产品规模和性能都处于领先水平,并对我国展开技术封锁。纤维是聚酰亚胺材料中难点最多、难度最大的研究和技术方向,国际上只实现了普通型PI纤维的产业化,而高强高模型PI纤维始终未获得工程化和产业化突破。先诺自成立以来,聚焦高性能聚酰亚胺纤维的研发、生产和销售,为国内高性能纤维产业发展持续助力。最后,武德珍会长也结合自己创业经历,分享了从科研到产业化的个人感想与建议。中科院福建物构所吴立新研究员中科院福建物构所研究员、84级校友吴立新分享了高性能光固化3D打印树脂制造进展。现阶段,光固化3D打印设备正朝着高速、高精、高粘方向发展,3D打印材料也正朝着低收缩、高性能和功能化发展。吴立新团队聚焦高性能3D打印树脂,取得了一系列成果,包括突破光固化树脂弹性不足的技术瓶颈,获得拉伸强度26.9MPa且断裂伸长率1750%的高弹高强光敏树脂等。接着,北京化工大学国家科技园管委会办公室主任张国彬、DT新材料创始人&CEO张立生、汇银投资创始人&董事长陈锐华、北京中检启迪私募基金管理有限公司总经理刘涛等多位校友依次为大家进行了有关创新创业的主题分享。北京化工大学国家科技园管委会办公室主任张国彬分享主题:共聚优势资源,共建双创平台,共谋高质量发展,共赢精彩未来特邀嘉宾DT新材料创始人、CEO张立生分享主题:中国新材料产业发展现状及科技成果转移转化汇银投资创始人、董事长、95级校友陈锐华分享主题:北化新材料创投联盟赋能加速新材料创新北京中检启迪私募基金管理有限公司总经理、97级校友刘涛分享主题:化育新材料杯北化新材料校友创新创业大赛介绍北京化工大学新材料校友会会长武德珍作大会总结发言会议最后,北京化工大学新材料校友会会长武德珍作总结发言,再次感谢了各位嘉宾带来的精彩报告,这些报告为北化新材料校友会的成立添加了更加浓郁的交流氛围。同时也再次感谢了大会筹备背后会务组所有人员,大家夜以继日的无私奉献为这次会议的成功举办打下坚实基础,也希望大家能够一如既往地支持北化新材料校友会的工作,让校友会能够越办越好。北化新材料校友会也将为大家做好服务,大家一起为北京化工大学的未来发展共同添砖加瓦。至此,本次大会圆满结束。会场外景:大船酒店,象征着新材料校友会这艘大船已经乘风破浪,扬帆起航!
  • 一文了解|五大材料热性能分析方法
    | 热分析简介热分析的本质是温度分析。热分析技术是在程序温度(指等速升温、等速降温、恒温或步级升温等)控制下测量物质的物理性质随温度变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化,即P = f(T)。按一定规律设计温度变化,即程序控制温度:T = (t),故其性质既是温度的函数也是时间的函数:P =f (T, t)。| 材料热分析意义在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。| 常用热分析方法解读根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,常用的热分析方法包括热重分析法(TG)、差示扫描量热法(DSC)、静态热机械分析法(TMA)、动态热机械分析(DMTA)、动态介电分析(DETA)等,它们分别是测量物质重量、热量、尺寸、模量和柔量、介电常数等参数对温度的函数。(1)热重分析(TG)热重法(TG)是在程序温度控制下测量试样的质量随温度或时间变化的一种技术。应用范围:(1)主要研究材料在惰性气体中、空气中、氧气中的热稳定性、热分解作用和氧化降解等化学变化;(2)研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣、吸附、吸收和解吸、气化速度和气化热、升华速度和升华热、有填料的聚合物或共混物的组成等。原理详解:样品重量分数w对温度T或时间t作图得热重曲线(TG曲线):w = f (T or t),因多为线性升温,T与t只差一个常数。TG曲线对温度或时间的一阶导数dw/dT 或 dw/dt 称微分热重曲线(DTG曲线)。图2中,B点Ti处的累积重量变化达到热天平检测下限,称为反应起始温度;C点Tf处已检测不出重量的变化,称为反应终了温度;Ti或Tf亦可用外推法确定,分为G点H点;亦可取失重达到某一预定值(5%、10%等)时的温度作为Ti。Tp表示最大失重速率温度,对应DTG曲线的峰顶温度。峰的面积与试样的重量变化成正比。实战应用:热重法因其快速简便,已经成为研究聚合物热变化过程的重要手段。例如图3中聚四氟乙烯与缩醛共聚物的共混物的TG曲线可以被用来分析共混物的组分,从图1中可以发现:在N2中加热,300~350℃缩醛组分分解(约80%),聚四氟乙烯在550℃开始分解(约20%)。影响因素:(a)升温速度:升温速度越快,温度滞后越大,Ti及Tf越高,反应温度区间也越宽。建议高分子试样为10 K/min,无机、金属试样为10~20K/min;(b)样品的粒度和用量:样品的粒度不宜太大、装填的紧密程度适中为好。同批试验样品,每一样品的粒度和装填紧密程度要一致;(c)气氛:常见的气氛有空气、O2、N2、He、H2、CO2 、Cl2和水蒸气等。气氛不同反应机理的不同。气氛与样品发生反应,则TG曲线形状受到影响;(d)试样皿材质以及形状。(2) 静态热机械分析 (TMA)热机械分析,是指在程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量物质的膨胀系数和相转变温度等参数。应用范围:静态热机械分析仪主要用于对无机材料、金属材料、复合材料及高分子材料(塑料、橡胶等)的热膨胀系数;玻璃化转变温度;熔点;软化点;负荷热变形温度;蠕变等进行测试。实战应用:(a)纤维、薄膜的研究:可测定其伸长、收缩性能和模量及相应的温度,应力-应变分析、冷冻和加热情况下应力的分析;(b)复合材料的表征,除纤维用TMA研究外,复合材料的增强,树脂的玻璃化转变温度Tg、凝胶时间和流动性、热膨胀系数等性质,还有多层复合材料尺寸的稳定性、高温稳定性等都可以用TMA快速测定并研究;(c)涂料的研究:可了解涂料与基体是否匹配及匹配的温度范围等;(d)橡胶的研究:可了解橡胶在苛刻的使用环境中是否仍有弹性及尺寸是否稳定等。影响因素:(a)升温速率:升温速率过快样品温度分布不均匀(b)样品热历史(c)样品缺陷:气孔、填料分布不均、开裂等(d)探头施加的压力大小:一般推荐0.001~0.1N(e)样品发生化学变化(f)外界振动(g)校准:探头、温度、压力、炉子常数等校准(h)气氛(i)样品形状,上下表面是否平行应用(3) 差示扫描量热法(DSC)原理:差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。差示扫描量热法有补偿式和热流式两种。试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。图4中展示了典型的DSC曲线。应用范围:(1)材料的固化反应温度和热效应测定,如反应热,反应速率等;(2)物质的热力学和动力学参数的测定,如比热容,转变热等;(3)材料的结晶、熔融温度及其热效应测定;(4)样品的纯度等。影响因素:(a)升温速率,实际测试的结果表明,升温速率太高会引起试样内部温度分布不均匀,炉体和试样也会产生热不平衡状态,所以升温速率的影响很复杂。(b)气氛:不同气体热导性不同,会影响炉壁和试样之间的热阻,而影响出峰的温度和热焓值。(c)试样用量:不可过多,以免使其内部传热慢、温度梯度大而使峰形扩大和分辨率下降。(d)试样粒度:粉末粒度不同时,由于传热和扩散的影响,会出现试验结果的差别。(4) 动态热机械分析(DMA)动态热机械分析测量粘弹性材料的力学性能与时间、温度或频率的关系。样品受周期性(正弦)变化的机械应力的作用和控制,发生形变。应用范围:动态热机械分析仪主要用于对无机材料、金属材料、复合材料及高分子材料(塑料、橡胶等)的玻璃化转变温度、负荷热变形温度、蠕变、储能模量(刚性)、损耗模量(阻尼性能)、应力松弛等进行测试。DMA基本原理:DMA是通过分子运动的状态来表征材料的特性,分子运动和物理状态决定了动态模量(刚度)和阻尼(样品在振动中的损耗的能量),对样品施加一个可变振幅的正弦交变应力时,将产生一个预选振幅的正弦应变,对粘弹性样品的应变会相应滞后一定的相位角δ,如图5所示。DMA技术把材料粘弹性分为两个模量:一个储存模量E´,E´与试样在每周期中贮存的最大弹性成正比,反映材料粘弹性中的弹性成分,表征材料的刚度;而损耗模量E",E"与试样在每周期中以热的形式消耗的能量成正比,反映材料粘弹性中的粘性部分,表示材料的阻尼。材料的阻尼也成为内耗,用tanδ表示,材料在每周期中损耗的能量与最大弹性贮能之比,等于材料的损耗模量E"与贮能模量E´。DMA采用升温扫描,由辅助环境温度升温至熔融温度,tanδ展示出一系列的峰,每个峰都会对应一个特定的松弛过程。由DMA可测出相位角tanδ、损耗模量E"与贮能模量E´随温度、频率或时间变化的曲线,不仅给出宽广的温度、频率范围的力学性能,还可以检测材料的玻璃化转变、低温转变和次级松弛过程。例如损耗峰能够代表某种单元运动的转变,图6为聚苯乙烯tg随温度变化的曲线,从图中可以推断峰可能为苯基绕主链的运动;峰可能是存在头头结构所致;峰是苯环绕与主链连接键的运动。影响因素:升温速率、样品厚度、有无覆金属层,夹具类型等(5) 动态介电分析(DETA)动态介电分析是物质在一定频率的交变电场下并受一定受控温度程序加热时,测试物质的介电性能随温度变化的一种技术。介电分析原理:具有偶极子的电介质,在外电场的作用下,将会随外电场定向排列。偶极子的极化和温度有关并伴随着能量的消耗。一般以介电常数(ε)表示电介质在外电场下的极化程度,而介电损耗(D)则表示在外电场作用下,因极化发热引起的能量损失。偶极子在外电场作用下的定向排列也会随外电场的去除而恢复杂乱状态。偶极子由有规排列回复到无规排列所需的时间称“介电松弛时间T”,按德拜理论:(其中:η介质粘度,a分子半径,K玻尔兹曼常数,T温度K)。松弛时间和分子的大小、形状以及介质的粘度有关。而式中tgδ损耗角正切,ε0静电场下介电常数;ε∞光频率下的介电常数。由此见,ε、tgδ都是和松弛时间τ有关的物理量,因此也和分子的结构、大小、介质粘度有关,这就是利用介电性能研究物质分子结构的依据。由(a)(b)两式可以证明,当时,ε´有极大值,f0称“极化频率”。即当外电场频率为极化频率时,介电损耗极大。应用范围:这一技术已被广泛地应用于研究材料电介质的分子结构、聚合程度和聚合物机理等。从应用对象讲,有聚丙烯酸甲酯、聚氯乙烯、聚酰胺、聚酰亚胺、聚苯乙烯、酚醛、环氧、聚蜡等热塑性和热固性树脂。此外还有耐高温树脂中的聚苯枫、聚苯并咪唑,生物化合物中的蛋白质等。其具体应用也包括增强塑料、模压材料、涂料、粘合剂、橡胶甚至玻璃、陶瓷等金属氧化物。在实验室中,DETA可作为粘弹性研究的有力工具,如动态机械性能和热机械性能测试。在工业生产中,它可应用于树脂制造、质量控制、预固化和固化程度控制等。| 结语该文针对热分析技术的概念入手分析,从五个方面:热重分析法、差示扫描量热法、静态热机械法、动态热机械分析、动态介电分析,简要论述了材料测试中几种典型的热分析方法。热分析已有百年的发展历程,随着科学技术的发展,热分析技术展现出新的生机和活力,不断发展进步。
  • 综述 | 石墨烯导热研究进展
    摘要:石墨烯具有目前已知材料中最高的热导率,在电子器件、信息技术、国防军工等领域具有良好的应用前景。石墨烯导热的理论和实验研究具有重要意义,在最近十年间取得了长足的发展。本文综述了石墨烯本征热导率的研究进展及应用现状。首先介绍应用于石墨烯热导率测量的微纳尺度传热技术,包括拉曼光谱法、悬空热桥法和时域热反射法。然后展示了石墨烯热导率的理论研究成果,并总结了石墨烯本征热导率的影响因素。随后介绍石墨烯在导热材料中的应用,包括高导热石墨烯膜、石墨烯纤维及石墨烯在热界面材料中的应用。最后对石墨烯导热研究的成果进行总结,提出目前石墨烯热传导研究中存在的机遇与挑战,并展望未来可能的发展方向。关键词:石墨烯;热导率;声子;热界面材料;悬空热桥法;尺寸效应1 引言石墨烯是具有单原子层厚度的二维材料,因为其独特的电学、光学、力学、热学性能而备受关注。相对于电学性质的研究,石墨烯的热学性质研究起步较晚。2008年,Balandin课题组用拉曼光谱法第一次测量了单层石墨烯的热导率,观察发现石墨烯热导率最高可达5300 W∙m−1∙K−1,高于石墨块体和金刚石,是已知材料中热导率的最高值,吸引了研究者的广泛关注。随着理论研究的深入和测量技术的进步,研究发现单层石墨烯具有高于石墨块体的热导率与其特殊的声子散射机制有关,成为验证和发展声子导热理论的重要研究对象。对石墨烯热导率的研究很快对石墨烯在导热领域的应用有所启发。随着石墨烯大规模制备技术的发展,基于氧化石墨烯方法制备的高导热石墨烯膜热导率可达~2000 W∙m−1∙K−1。高导热石墨烯膜的热导率与工业应用的高质量石墨化聚酰亚胺膜相当,且具有更低成本和更好的厚度可控性。另一方面,石墨烯作为二维导热填料,易于在高分子基体中构建三维导热网络,在热界面材料中具有良好应用前景。通过提高石墨烯在高分子基体中的分散性、构建三维石墨烯导热网络等方法,石墨烯填充的热界面复合材料热导率比聚合物产生数倍提高,并且填料比低于传统导热填料。石墨烯无论作为自支撑导热膜,还是作为热界面材料的导热填料,都将在下一代电子元件散热应用中发挥重要价值。本文综述了石墨烯热导率的测量方法、石墨烯热导率的研究结果以及石墨烯导热的应用。首先介绍石墨烯的三种测量方法:拉曼光谱法、悬空热桥法和时域热反射法。然后介绍石墨烯热导率的测量结果,包括其热导率的尺寸依赖、厚度依赖以及通过缺陷、晶粒大小等热导率调控方法。随后介绍石墨烯导热的应用,主要包括高导热石墨烯膜、石墨烯纤维及石墨烯导热填料在热界面材料中的应用。最后对石墨烯导热研究的发展进行展望。2 石墨烯热导率的测量方法由于石墨烯的厚度为纳米尺度,商用的测量设备(激光闪光法、平板热源法等)无法准确测量其热导率,需要采用微纳尺度热测量方法。常见的微纳尺度传热测量技术包括拉曼光谱法、悬空热桥法、3𝜔法、时域热反射法等几种。下面将重点介绍适用于石墨烯的热导率测量方法。2.1 拉曼光谱法单层石墨烯热导率是研究者最感兴趣的话题。2008年,Balandin课题组最早用拉曼光谱法测量了单层石墨烯的热导率。单层石墨烯由高定向热解石墨(HOPG)经过机械剥离法得到,悬空于刻有沟槽的SiNx/SiO2基底上,悬空长度为3 μm。测量时,选用拉曼光谱仪中波长为488 nm的激光同时作为热源和探测器,光斑大小为0.5–1 μm。激光对石墨烯产生加热作用导致石墨烯温度升高,而石墨烯拉曼光谱的G峰和2D峰随温度产生线性偏移,从而可以得到石墨烯的升温。利用热量在平面内径向扩散的傅里叶传热方程,可以得到石墨烯的平面方向内热导率。通过这一方法,测得石墨烯热导率测量结果为(5300 ± 480) W∙m−1∙K−1,是已知材料中热导率的最高值。拉曼光谱法第一次实现了单层石墨烯热导率的测量,但是其测量过程中存在较大的误差,导致不同测量结果存在差异:材料热导率由傅里叶传热方程计算得到,其中材料的吸收热量Q和升温ΔT两个参数都难以准确测量。首先,测量过程中采用了石墨块体的光吸收6%作为吸热计算的依据,与单层石墨烯在550 nm的光吸收率2.3%存在较大差异,导致测量结果可能被高估一倍左右。其次,升温ΔT通过石墨烯拉曼光谱G峰和2D峰的红移或反斯托克斯/斯托克斯峰强比计算得到,两者随温度变化率较小,需要较高的升温(ΔT ~ 50 K),导致难以准确测量特定温度下的热导率。基于拉曼光谱法,研究者不断改进测量技术,降低实验误差。在早期测量中由于石墨烯下方的SiNx基底热导率较低,约为5 W∙m−1∙K−1,在传热模型中将SiNx视为热沉存在一定误差。后来,Cai等通过在带孔的SiNx/SiO2薄膜表面蒸镀Au的方式,提高了石墨烯的接触热导,满足了热沉的边界条件,同时用功率计实时测量了石墨烯的吸收功率。同时,由于石墨烯覆盖在SiNx/SiO2薄膜上有孔和无孔的区域,可以分别测量悬空石墨烯和支撑石墨烯的热导率。张兴课题组使用双波长闪光拉曼方法,引入两束脉冲激光,周期性地加热样品并改变加热光与探测光的时间差,这样做可以将加热光和探测光的拉曼信号分开,为准确测量样品温度提供了新思路。在后续的研究中,拉曼光谱法也被应用于h-BN、MoS2、WS2等二维材料热导率的测量。2.2 悬空热桥法悬空热桥法是利用微纳加工方法制备微器件并测量纳米材料一维热输运的常用方法,多用于纳米线、纳米带、纳米管热导率的测量。微器件由两个SiNx薄膜组成,每个SiNx薄膜连接在6个SiNx悬臂上,并且沉积有Pt电极用作温度计,两个薄膜分别作为加热器(Heater)和传感器(Sensor),样品悬空加载薄膜上,电极通电后加热样品,通过电极电阻的变化测量样品的升温,从而计算热导率。Seol等最早将这一方法应用在石墨烯热导率的测量中,石墨烯被制备成宽度为1.5–3.2 μm,长度为9.5–12.5 μm的条带,覆盖在厚度为300 nm的SiO2悬臂上,两端连接在四个Au/Cr电极上作为温度计,测量得到SiO2衬底上的单层石墨烯热导率为600W∙m−1∙K−1。SiO2衬底上石墨烯热导率低于悬空石墨烯热导率及石墨热导率,是因为ZA声子和衬底间存在较强的声子散射。悬空热桥法的挑战在于如何将石墨烯悬空于微器件上,避免转移过程中出现石墨烯脱落、破碎的问题 。Li 课题组通过聚甲基丙烯酸甲酯(PMMA)保护转移法首先实现了少层石墨烯热导率的测量:首先将机械剥离法得到的少层石墨烯转移到SiO2/Si衬底上,然后旋涂PMMA作为保护层,用KOH溶液刻蚀SiO2并将PMMA/石墨烯转移至悬空热桥微器件上,再利用PMMA作为电子束光刻的掩膜版,通过O2等离子体将石墨烯刻蚀成指定大小的矩形进行测量。Shi课题组利用异丙醇提高了石墨烯的转移效率,测量了悬空双层石墨烯的热导率。Xu等进一步改良了实验工艺,通过“先转移,后制备悬空器件”的方法实现了单层石墨烯热导率的测量:首先将化学气相沉积(CVD)生长的单层石墨烯转移到SiNx衬底上,再利用电子束光刻和O2等离子体将石墨烯刻蚀成长度和宽度已知的条带,然后沉积Cr/Au在石墨烯两端作为电极,最后用KOH溶液刻蚀使其悬空。这一方法的优势在于避免了PMMA造成污染,但是对操作和工艺都提出了很高的要求。悬空热桥法也被应用于h-BN、MoS2、黑磷等二维材料热导率的测量。基于悬空热桥法,李保文课题组进一步发展了电子束自加热法,利用电子束照射样品产生加热,消除通电加热体系中界面热阻造成的误差。2.3 时域热反射法时域热反射法(Time-domain thermoreflectance,TDTR)是一种以飞秒激光为基础的泵浦-探测(pump-probe)技术,由Cahill课题组于2004年基于瞬态热反射方法提出,常用来测量材料的热导率和界面热导。在时域热反射法测量中,一束脉冲飞秒激光被偏振分束镜分为泵浦光和探测光,泵浦光对待测材料进行加热,探测光测量材料表面温度的变化。泵浦光和探测光之间的光程差通过位移台精确控制,并在每一个不同光程差的位置进行采样,得到材料表面温度随时间变化的曲线,这一曲线与材料的热性质有关。通过Feldman多层传热模型进行拟合,得到材料的热导率。实际测量中 通 常 在 材 料 表 面 沉 积 一 层 金 属 作 为 传 热 层(transducer),利用金属反射率(R)随温度(T)的变化关系(dR/dT),通过探测金属反射率的变化检测材料表面温度变化。时域热反射方法的优点在于能够同时测量材料沿c轴和平面方向的热导率,并且能够得到不同平均自由程声子对于热导率的贡献。Zhang等利用这一方法同时测量了石墨烯沿ab平面和c轴方向的热导率,发现石墨烯沿c轴方向的声子平均自由程在常温下可达100–200 nm,远高于分子动力学预测的结果。测量不同厚度的石墨烯(d = 24–410nm)表现出c轴方向热导率随厚度增加而增加的现象,常温下的热导率为0.5–6 W∙m−1∙K−1,并且随着厚度增加而趋近于石墨块体的c轴热导率(8 W∙m−1∙K−1) 。这一现象反映出,在常温下石墨烯c轴方向热导率是由声子-声子散射主导,为探讨石墨烯的传热机理提供了实验支撑。时域热反射方法的局限在于难以测量厚度较小的样品,这是因为当热流在穿透样品后到达基底,需要将基底与样品之间的界面热阻、基底的热导率作为未知数在传热模型中进行拟合,造成误差较大。对于块体石墨,时域热反射方法测量平面方向热导率为1900 ± 100 W∙m−1∙K−1,与Klemens的预测结果一致。对于厚度为194 nm的薄层石墨,测量热导率为1930 ± 1400 W∙m−1∙K−1,误差明显增大。Feser等通过调控光斑尺寸改变传热模型对石墨平面方向传热的敏感度,利用beam offset方法测量了HOPG热导率。Rodin等将频域热反射(FDTR)与beamoffset的方法结合起来,同时准确测量了HOPG的纵向和横向热导率。Chen课题组发展了无传热层(transducer less)的二维材料热导率测量方法,这种方法既可以采取FDTR频域扫描的测量方式,也可以与beam-offset方法结合,提高对平面方向热导率测量的准确度。这些测量方法为薄层材料热导率测量提供了可能的技术路径,即通过对待测样品的物理结构设计(transducerless)和传热模型设计(调控光斑尺寸与测量频率),选择性地增加对平面方向热导率的敏感度,使得即便在样品很薄、热流穿透的情况下,多引入的未知数在传热模型内具有较小的敏感度,从而实现少层/单层石墨烯平面方向热导率的测量。时域热反射法也被应用于黑磷、MoS2、WSe2等二维材料热导率的测量。基于时域热反射方法发展出频域热反射(FDTR)、two-tint、时间分辨磁光克尔效应(TR-MOKE)等测量方法以提高测量准确度。以上主要总结了石墨烯热导率的常用微纳尺度测量技术,包括拉曼光谱法、悬空热桥法和时域热反射法,不同方法的主要测量结果汇总于表1。表 1 石墨烯热导率测量主要研究结果值得注意的是,部分悬空热桥法测量的热导率显著偏低,是由于PMMA污染抑制了石墨烯声子散射。当样品厚度在微米尺度时,可通过激光闪光法进行测量,这种方法常用于块体石墨和湿化学方法制备的石墨烯薄膜,对于经过热处理还原和石墨化的石墨烯薄膜,激光闪光法测量热导率在1100–1940 W∙m−1∙K−1,热导率的差别主要来自石墨烯薄膜的制备工艺。受限于篇幅,我们将四种测量方法的示意图及主要原理汇总于图1,关于微纳尺度热测量的详细总结可参考相应综述文章。图 1 常见热测量方法示意图3 石墨烯热导率的研究进展石墨烯的热传导主要由声子贡献。和金刚石类似,石墨烯在平面方向由强化学键C―C键构成,并且由于碳原子较轻,具有极高的声速,从而在平面方向具有和金刚石相当的热导率(~2000W∙m−1∙K−1) 。关于石墨烯热传导的主要声子贡献来源,学界的认知随着研究的更新而发生变化。最早,人们预期石墨烯传热主要由纵向声学支(LA)和横向声学支(TA)贡献,这两支声子的振动平面都是沿石墨的ab平面方向。这样的预期是合理的,因为另一支横向声学支(ZA)声子的振动平面垂直于ab平面,而石墨烯作为单原子层材料,垂直平面的振动困难。而且ZA声子的色散关系是~ω2,在q →0时声速迅速减小为0,因而对石墨烯热导率几乎不产生贡献。后来,Lindsay等7通过对玻尔兹曼方程进行数值求解发现,由于单层石墨烯的二维材料特性,三声子散射中与ZA声子关联的过程受到抑制,这一规则被称为“选择定则(Selection rule)”。基于这一原因,ZA声子散射的相空间减小了60%;同时,考虑到ZA声子的数量较多,ZA声子实际成为了单层石墨烯中热导贡献最大的一支,占比约为70%。随着计算方法的进步,研究者对石墨烯中声子传导的理解逐步加深。Ruan课题组在考虑四声子散射的条件下计算了单层石墨烯的热导率,由于ZA声子数量多,导致由ZA声子参与的四声子散射过程多,通过求解玻尔兹曼输运方程(BTE)发现,ZA声子对于单层石墨烯热导率的贡献实际约为30%。Cao等通过分子动力学计算发现,考虑高阶声子散射时ZA声子对石墨烯热导率的贡献将降低。另外,第一性原理计算表明石墨烯中存在水动力学热输运和第二声现象,以及实验测量和分子动力学计算中发现石墨烯存在的热整流现象,都使得石墨烯的声子输运研究不断更新。下面针对理想的单层石墨烯单晶材料讨论其热导率的依赖关系。3.1 石墨烯热导率的厚度依赖石墨烯作为单原子层材料,表现出不同于石墨块体的声子学特征。很自然地产生一个问题,随着石墨烯的原子层数增加,石墨烯会以何种形式、在何种厚度表现出接近石墨块体的热学性质。前文Lindsay等的工作从计算角度给出了解释,在多层石墨烯和石墨中,三声子散射与原子间力常数的关系不同于单层石墨烯,导致选择定则不再适用,ZA声子的散射变大,热导率下降。这一趋势可以从图2a中明显观察到,当石墨烯的厚度从单原子变为双原子层时,ZA声子贡献的热导率大幅下降,石墨烯整体热导率降低。随着原子层数目增加,热导率持续下降。对于原子层数在5层及以上的石墨烯,其热导率已十分接近石墨块体。这一趋势也与Ghosh等对悬空石墨烯热导率的测量结果一致,在原子层数超过4层之后,石墨烯热导率接近块体石墨(图2c)。而对于放置在基底上的支撑石墨烯和上下均有基底的夹层石墨烯(Encased),热导率随层数变化没有明显规律,这主要是因为ZA声子与基底相互作用,对热导率的贡献低于悬空石墨烯,而ZA声子与基底相互作用的强度随原子层数增加而变化,导致热导率随层数变化表现出不同规律(不变或增大) 。研究石墨烯本征热导率仍需对少层及单层石墨烯热导率进行测量,对样品制备和实验测量都具有很大挑战。图 2 石墨烯热导率的尺寸效应3.2 石墨烯热导率的横向尺寸依赖由傅里叶传热定律,材料热导率,其中Cv为材料体积比热容,v为声子群速度,l为声子平均自由程。对于给定的温度,热容与声速均为定值,因而材料热导率主要由声子平均自由程决定。通常情况下,块体材料在三个维度上的尺寸都远大于声子平均自由程,声子为扩散输运,声子平均自由程主要由声子-声子散射确定,是材料固有的性质,表现出热导率与横向尺寸无关。但是对于石墨烯而言,由于制备待测样品的长度在微米级,与平面内声子平均自由程相当,存在弹道输运现象,表现出石墨烯的热导率与横向尺寸存在依赖关系。石墨烯平面方向声子平均自由程可通过计算得到。Nika等通过第一性原理计算分别对LA和TA声子求得Gruneisen参数,得到石墨烯平面方向声子平均自由程在10 μm左右,即石墨烯尺寸小于10 μm时会表现出明显的热导率随尺寸增加而增加现象(图2b)。后续计算表明,在考虑三声子过程和声子-边界散射角度的情况下,石墨烯热导率在横向尺寸L小于30 μm时遵循log(L)增加的规律,在横向尺寸为30 μm左右时达到最大值,并随横向尺寸增加而下降。检验计算结果需要对不同尺寸的单层石墨烯进行热导率测量,这对实验操作的精细度提出了极高要求。Xu等利用悬空热桥法测量了不同长度(300–9 μm)的单层石墨烯热导率,观察到其热导率随长度增加而单调增加。测量结果与分子动力学预测的热导率随长度以log(L)趋势增加的结果相符,证明了石墨烯作为二维材料的热性质(图2d)。但是作者也没有排除另外两种可能:(1)低频声子随尺寸增加而被激发,对传热贡献较大;(2)石墨烯尺寸增加改变三声子散射的相空间,影响选择定则7。由于石墨烯作为二维材料的特性,以及声子平均自由程较大、热导率较高,仍然需要进一步的理论和实验探究以深入挖掘石墨烯热导率随横向尺寸变化的物理原因。在实际应用的单晶及多晶石墨烯材料中,热导率的影响因素还包括晶粒尺寸、缺陷、同位素、化学修饰等,相关研究及综述已有报道。4 石墨烯导热的应用上一节中介绍了石墨烯具有本征的高热导率,从理论计算和实验测量中均得到了验证。上述实验测量中,研究者往往采用机械剥离法和CVD法制备石墨烯,这两种方法制备的样品具有质量高、可控性强的特点,适用于研究石墨烯的本征性质。但是,由于机械剥离法和CVD法制备石墨烯具有产量低、制备周期长、难以规模化等特点,不适用于石墨烯的宏量制备。相对应地,通过还原氧化石墨烯、电化学剥离等湿化学方法可以大批量制备石墨烯片,石墨烯片通过片层间的化学键作用可形成石墨烯膜、石墨烯纤维、石墨烯宏观体等三维结构,从而可实际应用于导热场景。4.1 高导热石墨烯膜的应用石墨烯薄膜可用作电子元件中的散热器,散热器通常贴合在易发热的电子元件表面,将热源产生的热量均匀分散。散热器通常由高热导率的材料制成,常见散热器有铜片、铝片、石墨片等。其中热导率最高、散热效果最好的是由聚酰亚胺薄膜经石墨化工艺得到的人工石墨导热膜,平面方向热导率可达700~1950 W∙m−1∙K−1, 厚度为10~100 μm,具有良好的导热效果,在过去很长一段时间内都是导热膜的最理想选择。在此背景之下,研究高导热石墨烯膜有两个重要意义,其一,是由于人工石墨膜成本较高,且高质量聚酰亚胺薄膜制备困难,业界希望高导热石墨烯膜能够作为替代方案。其二,是由于电子产品散热需求不断增加,新的散热方案不仅要求导热膜具有较高的热导率,也要求导热膜具有一定厚度,以提高平面方向的导热通量。在人工石墨膜中,由于聚酰亚胺分子取向度的原因,石墨化聚酰亚胺导热膜只有在厚度较小时才具有较高的热导率。而石墨烯导热膜则易于做成厚度较大的导热膜(~100 μm),在新型电子器件热管理系统中具有良好的应用前景。因此,石墨烯导热膜的研究也主要沿着两个方向,其一,是提高石墨烯导热膜的面内方向热导率,以接近或超过人工石墨膜的水平。其二,是提高石墨烯导热膜的厚度,扩大导热通量,同时保持良好的热传导性能。以下将从这两方面分别讨论。4.1.1 提高石墨烯膜热导率的关键技术高导热石墨烯薄膜的常见制备方法是还原氧化石墨烯。首先通过Hummers法得到氧化石墨烯(GO,graphene oxide)分散液,然后通过自然干燥、真空抽滤、电喷雾等方法得到自支撑的氧化石墨烯薄膜,并通过化学还原、热处理等方法得到还原氧化石墨烯(rGO)薄膜,最后通过高温石墨化提高结晶度,得到高导热石墨烯薄膜。影响高导热石墨烯膜热导率最重要的因素是组装成膜的石墨烯片的热导率,主要由氧化石墨烯的还原工艺决定。由于氧化石墨烯分散液的制备通常在强酸条件下进行,破坏石墨烯的平面结构,同时引入了环氧官能团,造成声子散射增加。氧化石墨烯的还原工艺对还原产物的结构、性能影响较大,因而需要选择合适的还原工艺制备石墨烯导热膜。氧化石墨烯膜在1000 ℃热处理后可以除去环氧、羟基、羰基等环氧官能团,但是石墨烯晶格缺陷的修复仍需更高温度。Shen等通过自然蒸干的方式制备了氧化石墨烯薄膜,并通过2000 ℃热处理的方式对氧化石墨烯薄膜进行石墨化,C/O原子比由石墨烯薄膜的2.9提高到石墨化后的73.1,X射线衍射(XRD)图谱上石墨烯薄膜11.1°峰完全消失,26.5°的峰宽缩窄,对应石墨(002)方向上原子层间距为0.33 nm,测量热导率为1100 W∙m−1∙K−1,热导率优于由膨胀石墨制备的石墨导热片。Xin等用电喷雾方法制备大尺寸氧化石墨烯薄膜并在2200 ℃下高温还原,得到热导率为1283 W∙m−1∙K−1的石墨烯导热膜,通过SEM截面图观察发现具有紧密的片层排列结构,且具有较好的柔性。通过拉曼光谱、XPS和XRD表征可以看出,2200 ℃为氧化石墨烯还原的最适宜温度,当还原温度更高时,石墨烯的电导率和热导率提升不再显著(图3)。4.1.2 提高石墨烯膜厚度的关键技术制备较厚的石墨烯导热膜也是研究者关心的课题。理论上讲,增加石墨烯膜的厚度只需刮涂较厚的氧化石墨烯薄膜即可。但实际操作中存在如下问题:(1)刮涂厚膜的成膜质量不高。由于氧化石墨烯分散液的浓度较低(低于10% (w)),除氧化石墨烯外其余部分均为水,需要长时间蒸发。氧化石墨烯片层与水分子以氢键相互作用,蒸发时水分子逸出,使得氧化石墨烯片层之间通过氢键形成交联,在表面形成一层“奶皮”状的薄膜。这层薄膜使氧化石墨烯分散液内部的水分蒸发减慢,且导致氧化石墨烯片层取向不一致,降低成膜质量。(2)难以通过一步法得到厚膜。由于氧化石墨烯分散液浓度较低,无论刮涂、旋涂还是喷雾等方法都无法一次制备厚度为~100 μm的氧化石墨烯薄膜。Luo等研究发现,氧化石墨烯薄膜在蒸干成形后仍然可以在去离子水浸润的情况下相互粘接,出现这种现象是因为氧化石墨烯片层在水的作用下通过氢键彼此连接,使得氧化石墨烯薄膜可以像纸一样进行粘贴起来。Zhang等利用类似的方法将制备好的氧化石墨烯薄膜在水中溶胀并逐层粘贴,经过干燥、热压、石墨化、冷压之后,得到厚度为200 μm的超厚石墨烯薄膜,热导率为1224 W∙m−1∙K−1,通过红外摄像机实测散热效果优于铜、铝及薄层石墨烯导热膜(图4)。目前制备百微米厚度高导热石墨烯薄膜的研究相对较少,除了溶胀粘接的方法之外,还可以通过电加热、金属离子键合等方法实现氧化石墨烯薄膜的搭接,有望为制备百微米厚度高导热石墨烯膜提供新思路。石墨烯导热膜的部分研究成果总结于表2中。图 4 百微米厚度石墨烯导热膜的制备、表征与热性能测试
  • 北京化工大学汪晓东教授AFM:基于相变材料的“三明治”结构新型红外隐身材料
    热红外隐身材料可通过降低表面红外发射率或温度,实现目标物体的红外隐身功能。然而,随着红外探测仪器的精准度不断提高,对红外隐身材料的要求也越来越高,通过降低红外发射率或表面温度的单一调控方式已无法满足高温物体的红外隐身需求。近日,北京化工大学材料学院汪晓东教授团队报道了一种基于MXene膜、交联聚酰亚胺气凝胶及其与赤藓糖醇复合的三明治结构功能复合材料,将低发射率、热温调控、隔热相结合,实现了高温目标物体的长效红外隐身。该研究成果以“Long-Term Infrared Stealth by Sandwich-Like Phase-Change Composites at Elevated Temperatures via Synergistic Emissivity and Thermal Regulation”为题发表在国际学术期刊《Advanced Functional Materials》。该论文的第一作者为北京化工大学材料学院硕士生敬建伟,通讯作者为刘欢副教授和汪晓东教授。该课题得到了中央高校基本科研基金和国家自然科学基金的资助。在此三明治结构复合体系中,最下层为各向异性聚酰亚胺气凝胶层,其特殊的层状堆叠结构和极低的热导率,可隔绝高温物体大部分热量的传输;中间层为气凝胶相变复合材料层,利用赤藓糖醇的高显热和潜热吸收,保证复合体系的动态温度调节能力;最上层为MXene膜,其在3~5 μm和8~14 μm两个大气窗口波长范围内的平均发射率分别仅为0.315和0.253,为体系表面提供了极低的红外发射率。图1 三明治结构复合材料示意图及MXene膜的制备流程与性能最下层的聚酰亚胺复合气凝胶为多层状堆叠的微观结构,有利于平行通道方向上的热量传递,阻碍垂直于通道方向的传热(导热率低于43.5 mWm-1K-1),进而提升隔热效果。气凝胶高的孔隙率(大于88%)和耐高温稳定性(热分解温度高于500 ℃),为其在高温隔热领域的长期应用提供了保障。图2 聚酰亚胺气凝胶的基本特性中间层的聚酰亚胺气凝胶/赤藓糖醇相变复合材料的过冷度大,且具有较高的熔融焓(315 J/g以上),能够在高温下吸收大量热量,在极低温度下予以释放。相变复合复合材料高过冷和高焓值的特性恰好与高温热伪装应用相契合。热红外成像结果显示,低发射率有助于高温物体表面保持稳定的低热辐射温度;气凝胶阻碍了热量向外扩散与传递;相变复合材料有效减缓了表面温度的快速升高。图3 聚酰亚胺气凝胶相变复合材料的基本特性及红外隐身性能三明治结构复合材料在250、300、350、400和450 ℃的热台上加热2.5小时,其表面的红外探测温度仅为38.6、43.2、49.7、53.7和66.1 ℃,显著降低了高温目标的热辐射温度。此外,MXene膜在X-波段的总电磁屏蔽效能为65.58 dB,约72.3% 的入射电磁波通过MXene膜时被衰减,赋予三明治结构复合材料优异的电磁干扰屏蔽性能。此项研究为实现高温目标物的长效红外隐身提供了一种有效的途径。图4 三明治结构复合材料的高温红外隐身及电磁屏蔽性能原文链接:https://doi.org/10.100 2 /adfm.202309269
  • 新型高性能基因编码的环磷酸腺苷荧光探针
    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学光学与分子影像研究中心研究员储军课题组在《自然-通讯》(Nature Communications)上,发表了题为A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging的研究论文,报道了高性能基因编码的环磷酸腺苷(cAMP)荧光探针及其应用。  cAMP是细胞内关键第二信使,可整合来自多种G蛋白偶联受体(GPCR)的信号,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。与非基因编码探针(染料和材料类)相比,基因编码探针具有低毒性、低背景、可遗传、可定位特定细胞亚结构或特定细胞等优点,在生命科学基础研究中具有优势。然而,现有的50多个基因编码的cAMP荧光探针或灵敏度低(荧光变化最大只有1.5倍),或荧光亮度较暗,较难监测活体中微弱的内源性cAMP变化,限制了生理和病理状态下cAMP分子调控机理和功能的研究。  为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,研究得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针(G-Flamp1)。晶体结构显示G-Flamp1探针的连接肽具有独一无二的结构:其中一个连接肽是一个非常刚性的 β-strand 结构,这在其他晶体结构已知的环化重排荧光蛋白探针中是不存在的,为开发其他高性能探针提供了新思路和新方法。  在体外实验中,结合/未结合cAMP的G-Flamp1有不同发色团环境。G-Flamp1在450 nm(单光子)或者900-920 nm(双光子)激发下,动态范围达最大,即ΔF/F0约为13。G-Flamp1与cAMP亲和力适中,其解离常数Kd值为2.17 μM。G-Flamp1可在亚秒时间分辨率上检测cAMP动态变化。在培养细胞中,该探针均匀分布在细胞质和细胞核中,本底荧光亮度介于同类探针cAMPr和Flamindo2之间。G-Flamp1探针在活细胞中的动态范围达到了12倍,是目前少数几个动态范围在10倍以上的荧光蛋白探针之一。同时,该探针具有良好的特异性和可逆性(图1)。  研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,而后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化(图2),暗示不同子区域可能在联想性学习中起着相对独立的作用。  为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性(图3)。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。  研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高(图4);该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。综上,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。  该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步阐释cAMP信号的调控和功能奠定了基础。结合高内涵药物筛选平台,该探针将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。  研究工作得到国家重点研发计划、国家自然科学基金等项目的资助,并获得北京大学、中科院神经科学研究所、中山大学附属第五医院、美国堪萨斯州立大学、华中科技大学等的支持。
  • 围观!2021年度中国化学会高分子奖项评选结果揭晓
    按照中国化学会“高分子基础研究王葆仁奖”、“高分子科学创新奖”、“高分子青年学者奖”的实施条例,中国化学会高分子学科委员会于2021年第三季度,开展了2021年度中国化学会高分子奖项的评选活动。评选结果如下:一、中国化学会高分子基础研究王葆仁奖(一名)孙俊奇吉林大学获奖文章:基于聚合物复合物的自修复与可修复聚合物材料高分子学报,2020,8,791-803。个人简介:孙俊奇,吉林大学化学学院、超分子结构与材料国家重点实验室教授,国家杰出青年科学基金获得者。1992-1996年就读吉林大学化学系,并获得高分子科学与工程学士学位。2001年于吉林大学获得理学博士学位,期间在德国慕尼黑大学技术物理系进行了1年的博士联合培养。2002年-2003年在日本理化学研究所从事博士后研究。2003年9月受聘吉林大学教授、博士生导师,2010年受聘吉林大学“唐敖庆特聘教授”。入选2015年度科技部中青年科技创新领军人才和2018年度国家“万人计划”领军人才,2020年入选中国化学会会士,2003全国优秀博士论文获得者,并荣获中国化学会青年化学奖(2007年)和第十届中国化学会-巴斯夫公司青年知识创新奖(2019年)。2020年担任美国化学会Langmuir 杂志副主编。主要研究方向为具有修复、循环利用与降解性能的超分子聚合物材料。 二、中国化学会高分子科学创新奖(五名)中国化学会高分子科学创新奖,下设“中国化学会高分子科学邀请报告荣誉奖”和“中国化学会高分子科学创新论文奖”。1. 中国化学会高分子科学邀请报告荣誉奖(一名)李志波青岛科技大学获奖文章:有机磷腈碱催化环内酯开环聚合制备可降解聚酯研究进展高分子学报,2020,8,777−790。个人简介:李志波,青岛科技大学教授、博士生导师。1998年、2001年中国科学技术大学获学士和硕士学位,2006年美国明尼苏达大学化学系获博士学位,然后在UCLA生物工程系做博士后研究,2008年到中科院化学所工作,2015年到青岛科技大学工作至今。2012 年获国家杰出青年基金支持,2015年获山东省泰山学者优势学科团队领军人才支持并入选国家百千万人才工程,2016年获批“享受国务院颁发政府特殊津贴”人员,2018年入选英国皇家化学会会士和科技部创新领军人才计划,2019年入选第四批国家“万人计划”。作为第一完成人获得山东省自然科学二等奖1项,发表SCI论文230余篇。目前担任Chinese Journal of Polymer Science和Polymer Chemistry副主编;任第30届中国化学会高分子学科委员会委员,第30届中国化学会副秘书长、理事。主要从事可降解高分子的可控合成、结构与性质表征以及相关应用研究。 2. 中国化学会高分子科学创新论文奖(四名)顾军渭西北工业大学获奖文章:Thermally Conductive and Insulating Epoxy Composites by Synchronously Incorporating Si-sol Functionalized Glass Fibers and Boron Nitride FillersChinese Journal of Polymer Science,2020,7,730-739.个人简介:顾军渭,西北工业大学化学与化工学院教授、博士生导师,英国皇家化学会会士。2002~2010年在西北工业大学获高分子材料与工程学士,材料学硕士、博士学位,2011年加入西北工业大学。主要从事导热高分子及其复合材料研究。发展了基于液晶基元、多重氢键和拓扑结构设计合成本征高导热高分子基体的新策略;开发了“原位聚合-静电纺丝-高温模压”法等制备导热高分子复合材料的新方法;提出并建立了各向异性高分子复合材料的导热模型和经验方程,开发了表征界面热障及其界面处声子散射的新方法。获2020年度高等学校科学研究优秀成果奖(科学技术)技术发明二等奖(排名2/6)、中国复合材料学会青年科学家奖等学术奖励。陈昶乐中国科学技术大学获奖文章:A Phenol-containing α-Diimine Ligand for Nickel- and Palladium-Catalyzed Ethylene PolymerizationChinese Journal of Polymer Science,2019,10,974-980个人简介:陈昶乐,现为中国科技大学化学与材料科学学院教授。2005年获得中国科技大学学士学位, 2010年获得美国芝加哥大学博士学位。在美国西北大学进行博士后研究之后,2011年7月起在美国塞拉尼斯公司担任Scientist II,2013年初到中国科技大学工作。陈昶乐博士已在Nat. Rev. Chem., Nat. Commun., Angew. Chem. Int. Ed.等国际期刊上作为通讯作者发表SCI论文100余篇。申请专利60余项,其中43项授权。陈昶乐博士于2012年入选“国家杰出人才计划”,于2015年获得国家自然科学基金优秀青年基金,于2016年获得日本高分子学会“International Leading Young Scientist Award”,以及中国化学会青年化学奖;于2019年获得高分子成型加工及其产业发展“新锐创新奖”,入选中国青年化学家元素代言人(镍元素) ,于2020年获得IUPAC Young Polymer Scientist Award;于2020年入选国家杰出青年科学基金。彭慧胜复旦大学获奖文章:One-step Production of Continuous Supercapacitor Fibers for a Flexible Power TextileChinese Journal of Polymer Science,2019,8,737-743.个人简介:彭慧胜,复旦大学高分子科学系教授和系主任。他1999年获得东华大学高分子材料专业学士学位,2003年获得复旦大学高分子化学与物理专业硕士学位,2006年获得美国Tulane大学化学工程与生物分子工程专业博士学位,博士毕业后在美国Los Alamos国家实验室从事研究工作,2008年回到复旦大学先进材料实验室和高分子科学系工作至今。他主要在高分子纤维器件领域开展研究,在Nature等学术期刊上发表了300多篇论文,出版了2部关于高分子纤维器件的专著;获授权国内外发明专利79项,其中36项实现了转让转化;与一批中外企业合作,开发出系列纤维器件方向产品。作为第一完成人,获得国家自然科学二等奖。许华平清华大学获奖文章:含硫/硒动态共价键强弱的测定高分子学报,2020,2,205-213.个人简介:许华平,清华大学化学系教授。本科和博士均就读于吉林大学化学学院,导师为张希院士。2004年至2005年,在比利时鲁汶大学交流学习一年。2006年至2008年在荷兰Twente大学从事博士后研究。2008年后在清华大学化学系工作,2014年起为清华大学化学系教授。2011年获得“中国化学会青年化学奖”。2014年获国家自然科学基金委“杰出青年科学基金”资助。入选中组部“万人计划”青年拔尖人才和“万人计划”领军人才。2017年起担任美国化学会ACS Biomaterials Science & Engineering副主编。主要从事动态响应含硒/碲高分子的研究。三、中国化学会高分子青年学者奖(九名)雷霆北京大学获奖文章:共轭高分子的多级组装高分子学报,2019, 50(1), 1-12.个人简介:雷霆,北京大学材料科学与工程学院研究员,博士生导师。于2008年和2013年在北京大学化学与分子工程学院获得学士和博士学位;2013-2018年在斯坦福大学化工系从事博士后研究。2018年3月加入北京大学担任课题组长开展科研工作。自独立工作以来,主要致力于有机高分子功能材料和柔性器件的研究,通过发展新型有机高分子半导体材料和离子电子混合导体材料,实现了有机高分子功能材料在有机热电器件和生物传感领域的应用,为发展高性能柔性生物电子器件提供了新材料和新方法。曾获得菁青化学新锐奖、北京市科技进步二等奖(排名第三)、教育部自然科学一等奖(排名第四)等。胡蓉蓉华南理工大学获奖文章:Aggregation-induced Emission-active Hyperbranched Poly(tetrahydro -pyrimidine)s Synthesized from Multicomponent Tandem PolymerizationChinese Journal of Polymer Science,2019, 37(4), 428-436.个人简介:胡蓉蓉,华南理工大学材料科学与工程学院教授、博士生导师。2007年于北京大学化学与分子工程学院获得学士学位;2011年于香港科技大学化学系获得博士学位;之后在香港科技大学化学系任研究助理;2014年加入华南理工大学开展科研工作。主要致力于高分子合成方法学研究,通过结合有机化学和高分子化学,发展了系列多组分聚合新反应,并合成了系列功能高分子材料,包括开发了炔的多组分聚合,合成了结构新颖、功能独特、富含杂原子的聚合物;提出了多组分串联聚合策略,高效构筑了序列可控高分子和聚芳杂环等;发展了单质硫的无催化多组分聚合,实现室温下从工业硫磺向含硫功能高分子的一步转化。获国家自然科学优秀青年科学基金和中国科协青年人才托举工程等项目资助,任Polymer Chemistry期刊副主编,获2019年中国化学会青年化学奖。王占华四川大学获奖文章:含双重动态键的可重加工及室温自修复聚氨酯弹性体高分子学报,2019, 50(5), 527-534.个人简介:王占华,四川大学副研究员,博士生导师。2002年-2011年就读于吉林大学化学学院,分别取得本科和博士学位,2012年-2016在美国南密西西比大学、克莱门森大学及荷兰瓦赫宁根大学从事博士后研究,2016年7月加入四川大学任副研究员开展研究工作,主要研究方向为动态高分子及其复合材料。发现了基于伯胺的脲键在大分子网络中的动态特征并发展了系列可自修复、重加工、降解回收的热固性聚脲及其复合材料。入选四川省天府峨眉计划特聘专家、四川省学术技术带头人后备人选及四川大学百人计划学者,博士论文提名2013年全国百篇优秀博士论文。张先宏北京化工大学获奖文章:Preparation of Ultralow Molecular Weight Poly(vinyl chloride) with Submicrometer Particles via Precipitation PolymerizationChinese Journal of Polymer Science,2019, 37(7), 646-653.个人简介:张先宏,北京化工大学材料科学与工程学院副教授。本科及博士毕业于北京化工大学材料科学与工程学院,2016-2018年,在北京化工大学化学与工程学院从事师资博士后研究工作。科研工作主要从事高性能聚合物材料的合成制备与应用开发,通过新型单体的结构设计与功能集成,进行聚合物材料的合成制备与性能调控。发展的氯乙烯沉淀聚合技术,为开发高性能和高附加值的聚氯乙烯系列产品具有重要的意义。王淑萌中国科学院长春应用化学研究所获奖文章:基于咔唑和3,3′-二甲基二苯醚共聚物主链的红光热活化延迟荧光聚合物的合成与表征高分子学报,2019, 50(7), 685-694.个人简介:王淑萌,中国科学院长春应用化学研究所副研究员。2010年于山东大学材料科学与工程学院获得理学学士学位,2016年于中国科学院大学获得理学博士学位,之后在中国科学院长春应用化学研究所高分子物理与化学国家重点实验室开展研究工作。主要致力于有机高分子印刷显示材料与器件的研究开发,发展了主链扭曲结构和主链非共轭结构两类高分子热活化延迟荧光材料的构建策略,开发出多层结构器件、无额外能量损失器件和激基复合物主体器件等高性能溶液加工器件结构,实现了高分子热活化延迟荧光材料外量子效率以及溶液加工器件功率效率的突破。2021年入选中国科学院青年创新促进会会员。成梦娇北京化工大学获奖文章:精准宏观超分子组装高分子学报,2020, 51(6), 598-608.个人简介:成梦娇,北京化工大学教授、博士生导师。2010年和2015年在北京化工大学分别获得学士学位和博士学位,获CSC-DAAD博士后奖学金(25人/年)资助后,赴德国明斯特大学从事博士后研究。主要从事精准宏观超分子组装的研究,面向高性能超分子材料的制备,提出了人工智能辅助的自纠错策略,解决了全自动精准组装的难题;发展了引力/斥力协同策略,实现了平行大规模精准组装;提出了磁场/超分子作用协同策略,实现了高精度组装,制备了高强高韧材料。曾获得国家自然科学基金委优秀青年科学基金、北京市科技新星计划等项目资助。任Supramolecular Materials期刊编委,中国生物工程学会青年工作委员会委员。鲍雨西南交通大学获奖文章:聚乙二醇生物相容性与结合水关系的单分子力谱研究高分子学报,2020, 51(7), 754-761.个人简介:鲍雨,西南交通大学机械工程学院讲师,硕士生导师。本科和博士分别于2010年与2015年毕业于西南交通大学材料科学与工程学院,2015-2017年在复旦大学高分子科学系开展博士后研究,随后加入西南交通大学。主要研究方向为单分子纳米力学,一直以来致力于以高分子主链本征弹性为基准,量化分子结构、键接方式、外界环境等因素对高分子单链力学行为的影响。从单分子层面解析了高分子结构与性质的关系,为合理设计和改性高分子提供了新思路。翟磊中国科学院化学研究所获奖文章:Thermal Expansion Behavior of Poly(amide-imide) Films with Ultrahigh Tensile Strength and Ultralow CTEChinese Journal of Polymer Science,2020, 38(7), 748-758.个人简介:翟磊,男,1985年生,中国科学院化学研究所副研究员。2007年毕业于青岛科技大学获得学士学位,2012年中国科学院化学研究所高分子化学与物理专业获得博士学位,2012~2017年于中海油研究总院任高级工程师、项目高级主管,2018年起在中国科学院化学研究所极端环境高分子材料重点实验室工作. 主要从事高性能聚酰亚胺材料的基础与应用研究,围绕柔性显示、电子、微电子、航空航天等应用需求与技术挑战,先后开展了透明、介电、膨胀、导热、粘接等功能性聚酰亚胺材料的结构与性能研究,建立了系统的分子设计、合成方法、制备工艺以及聚集态结构的调控规律,发展了聚酰亚胺溶液低黏化与低温酰亚胺化新方法. 以第一或通讯作者发表论文20余篇,获国家发明专利近20项,目前已与多家企业合作致力于专利成果的转化及技术产业化。李乙文四川大学获奖文章:Ultrasmall Nanoparticle ROS Scavengers Based on Polyhedral Oligomeric SilsesquioxanesChinese Journal of Polymer Science,2020, 38(11), 1149-1156.个人简介:李乙文,四川大学高分子科学与工程学院与高分子材料工程国家重点实验室研究员,博士生导师。分别在中国科学技术大学(2008)和美国阿克伦大学(2013)获得本科与博士学位,随后在美国加州大学圣地亚哥分校从事博士后研究。2016年加入四川大学开始独立研究工作,主要致力于人造黑色素材料和多酚功能材料的基础与转化研究,通过发展新的材料化学策略将黑色素的部分性能进行了有效提升,使之能在部分工业场景下逐步取代传统高黑度材料,自主设计并在川投产了首条黑色素材料生产线(10吨/年)。担任中国青年科协理事会理事,以及Giant, Chin. Chem. Lett.,《高等学校化学学报》(两刊)等杂志的(青年)编委。
  • 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
    扫描电镜优秀论文赏析|基于强 p-p 堆积效应的具有大内置电场的层堆积聚酰亚胺用于快速锂离子存储海南大学材料科学与工程学院 陈文参赛论文:Layer stacked polyimide with great built-in electronic field for fast lithium-ion storage based on strong p-p stacking effect发表期刊:Energy Storage Materials根据参与储能反应的活性氧化还原官能团的不 同,有机电极材料 可分为导电聚合物、有机硫化合物、有机自由基和羰基化合物。其中羰基化合物因电化学活性高、原料 丰富等特点受到广泛研究。然而羰基化合物电极在碱金属离子电池中应用时通常易 溶于液体电解质且电导率差。因此,人们采取了各种策略来改善这些问题,包括聚合、盐化、与导电碳材料 形成复合材料 、优化电解质选择等。聚酰亚胺因具有优异的耐溶剂性、热力 学稳定性和可灵活编程的聚合物结构,被视为潜在的锂离子电池(LIBs)有机正极材料 。然而,PI 链的导电性差、易 缠结和团聚,导致离子扩散缓慢、电子转移不 良和反应不 充分,难以在高电流密度下有效达到其理 论容量 。本文成功获得了基于 π‑ π 堆积效应的层堆积聚酰亚胺正极(NT‑ U)。NT‑ U 具有较大的分子偶极矩,这是由 PI 中的强电负性基团诱导,并通过 π‑ π 堆积结构进一步增强,这有助于形成更大的内置电场(BIEF)。这种高度结晶的 PI 中的强 BIEF 在加速电荷传输动力 学和提高 LIBs 的电化学性能方面起着至关重要的作用,这些发现为基于偶极和 BIEF 机制构建 PIs 正极以实现快速高效的储能提供了新的见解。 试验过程 典型的合成工艺是将 2mmol 萘‑ 1,4,5,8‑ 四羧酸二酐(NTCDA)和 2mmol 尿 素分别溶解于 20 mL N‑ 甲基吡咯烷酮(NMP)中。完全溶解后,将两种单体溶液转移至圆底烧瓶中,在 N2 气氛下于 180 ℃ 搅拌回流 8h。冷却至室温后,通过真空过滤分离初步固体,并用 NMP 洗涤数次以除去可溶性低聚物。当滤液完全无色时,收集不 溶性固体产品并在 110 ℃ 真空干燥箱中干燥过夜。最后,在 N2 气氛下于 300 ℃ 退火 8h 获得 NT‑ U 粉末。使用相同程序合成 NT‑ E,但将尿 素替换为乙二胺(EDA)。本文分别使用乙二胺和尿 素作为二胺连接体,通过简单的缩合步骤制备了 NT‑ E 和 NT‑ U 两种 PI 材料 。通过 FTIR 光谱证实了 NT‑ U 和 NT‑ E 样品的成功制备。与单体分子相比,这两种 PI 都具有良好的热稳定性和在液体电解质中的优异的耐溶剂性。使用飞纳台式扫描电镜能谱一体机 Phenom ProX 拍摄了 NT‑ E 和 NT‑ U 样品的形貌,并在图 1a 和 c 中进行 了展示。NT‑ E 聚合物(图1a)显示出由随机颗粒组成的不 规则形貌。相反,NT‑ U (图1c)呈现出明显的层状晶体结构,表明这两种 PI 都是通过纳米片结构自组装的。图1 扫描电镜(SEM)图像与超声后 AFM 图像随后,结合 DFT 计算和电化学测试,详细揭示了 NT-U 和 NT-E 的电子和锂离子传输行为。NT-E 和 NT-U 阴极的第一次循环 CV 曲线在 0.1mV s-1 下记录。NT-U 显示出以 2.32V 为中心的宽阴极峰,比 2.21V 的 NT-E 更强、更尖锐。有机材料与其电子结构高度相关。NT-E 和 NT-U 电极在 50Ma g-1 下的初始三条放电/充电曲线如图所示。NT-U 在 ~2.4V 下提供了平坦的放电平台,与 CV 测试非常一致。但 NT-E 呈现出倾斜的放电曲线。NT-U 的平坦放电平台可归因于 C=O 键从尿素单元的吸电子特性,这降低了氧化还原活性羰基的电子密度,促进了稳定输出电势的形成。第一次循环中的放电曲线表明,NT-U 电极可以提供 152mAh g-1 的高初始放电比容量,而 NT-E 只能释放 31mAh g-1 的比容量。这种显著差异可能归因于两种 PI 的不同晶体和电子结构。因此,通过密度泛函理论(DFT)研究了NTCDA、NT-E 和 NT-U 的电子结构,结果如图所示。根据分子轨道理论,最低未占分子轨道(LUMO)能量与电子亲和力和有机电极材料的电势有关。NTCDA 显示出最低的 LUMO 能级(-4.00eV),但该单体在有机液体电解质中的显著溶解度意味着其用作阴极材料是不现实的。NT-U 显示出明显低于 NT-E(-3.48eV)的 LUMO 能级(-3.74eV),表明 LIBs 中可能有更高的放电电势。这与 CV 测试非常一致。此外,与 NT-E 相比,NT-U 在 HOMO 和 LUMO 能级之间表现出更小的能隙(Eg=3.49eV),这表明其具有更好的电子导电性和在 LIBs 中释放更高的阴极材料有效容量的潜力。与 NT-E 相比,NT-U 聚酰亚胺具有更强、更宽的吸收能力,表现出其最大的 π-电子共轭体系。测量聚酰亚胺的光学间隙(Eg)。NT-U(2.70eV)的Eg比NT-E(2.81eV)窄,表明其具有更好的电子导电性。图3。(a) NT-E 和 NT-U 在 0.1mV s-1 下的第一个循环的 CV 曲线。(b)NT-E和(c)NT-U 在 50mA g-1 下的充电和放电曲线。(d) NTCDA、NT-E 和 NT-U 的分子结构、HOMO/LUMO 能级和轨道分布结合 DFT 计算和实验结果,本文提出了一种用于 LIBs 的具有 BIEF 的 NT‑ U 正极机理 ,如图 6 中的示意图所示。由于尿 素连接基团具有很强的亲电性,从萘核心到酰亚胺取代基都可以观察到分子内极化。这种分子内极化通过层堆叠的 π‑ π 效应增强,导致 NT‑ U 中形成更强的 BIEF,从而显著增强了这种电极材料 的电荷传输性能。相比之下,非晶态的 NT‑ E 具有小的偶极矩和微弱的 BIEF,导致导电性差。因此,与 NT‑ E 相比,NT‑ U 表现出更 好的电化学动力 学和优异的性能。本文还进行 了不 同电压下 NT‑ U 聚酰亚胺在第一个循环过程中微观外观的演变。如图所示,NT‑ U 颗粒(原始)表面光滑,表面覆盖着大量 导电炭⿊ 。当放电至 1.5V 时,颗粒表面逐渐变得粗糙,这可能是由于锂的嵌入过程,形成了 NT‑ UxLi 化合物;当充电至 3.5V 时,越来越多地出现表面光滑的 PI 晶体,几乎没有出现表面粗糙的 PI 颗粒。不 同电压下 NT‑ U 聚酰亚胺在第一个循环过程中 SEM 微观外观的演变结果分析根据原位 FTIR 和原位 XPS 分析,锂原子通过烯醇化反应引入到 NT‑ U 分子中:C=O → C–O–Li。然而,DFT 计算表明,4 个锂原子开始由两个相邻亚胺基团的羰基共享。随着锂化过程的继续,相邻的尿 素单元和亚胺部分的羰基又共享了 2 个锂原子。图中的表格显示了每个锂化过程的结合能。简而言之,NT‑ U 电极的锂化机理 可以描述为一个 3 电子过程,其中 2 个锂原子首先与亚胺部分的 C=O 基团反应,第三个锂原子与相邻尿 素单元和亚胺部分的羰基结合。这些结果表明,循环过程中的锂化/脱锂过程导致 NT‑ U 晶体结构的周期性变化。因此,NT‑ U 保持高度结晶的结构,在放电/充电循环过程中经历周期性的可逆变化,表明作为正极表现出良好的长期性能。结论综上所述,筛选出低成本尿 素作为连接剂,通过一步缩聚反应构建聚酰亚胺有机电极材料 (NT‑ U)。与非晶态聚酰亚胺(NT‑ E)相比,NT‑ U 电极在 500mA g‑ 电流密度下可实现 165mA h g‑ g‑ 循环的高可逆容量 。通过原位 XRD、非原位 FTIR、非原位 XPS 和 DFT 计算等多种技术,对 NT‑ U 的储能机理进行了评估。尿素的规则平面结构和电负性羰基赋予 NT-U 高度堆叠的结构和更大的分子偶极矩,这导致在PI材料中形成强内建电场(BIEF)。NT‑ U 的 π‑ π 堆积效应使离域电子云重叠,增强了电子的转移。此外,BIEF 有效地加速了锂离子和电子在 PI 内的传输。 NT‑ U 的层状堆叠结构与 BIEF 相结合,可实现快速的反应动力 学和令人满意的电池性能。这项工作为利用 BIEF 灵活设计 PI 作为锂离子存储有机正极材料 提供了新的见解。
  • 总投资超17亿!深圳新建项目购置电镜、PCR等3000余台仪器设备
    近日,深圳市发展和改革委员会公示一批深圳市战略性新兴产业扶持计划拟资助项目,77个项目将获近5亿元资助。其中,67个项目建设内容都列出了仪器设备购置计划,涉及生物医药、新材料、海洋经济、集成电路、超高清显示、智能网联汽车、智能装备制造等领域。据不完全统计,67个项目仪器设备购置清单包括高效液相色谱-质谱联用仪、电感耦合等离子体质谱、气相色谱、高分辨核磁共振谱仪、原位显微红外光谱仪等分析仪器,疲劳试验机、步入式环境箱、热重分析仪、热阻仪等物性测试仪器,激光跟踪仪、二次元测量仪、三维光学轮廓仪等几何量测量仪器,信号发生器、示波器、数字电桥、频谱分析仪等电子测量仪器,高分辨场发射透射电镜、双聚焦离子束显微镜、扫描电镜等高端显微镜,倒置显微镜、流式细胞仪、荧光定量PCR仪、多功能酶标仪、细胞分析仪、高通量测序仪、小动物近红外二区成像仪、生物分子相互作用分析仪等生命科学仪器,以及全自动固晶机、IC测试系统、自动封装系统等集成电路专用设备,共计3000余台(套)。详情如下:序号建设单位和项目名称起止年限主要建设内容总投资(万元)产业领域1深圳大学附属华南医院深圳市多模态融合医学智能诊断技术工程研究中心2022.1-2024.12改建场地2000平方米,购置深度学习计算机器、高效液相色谱-质谱联用仪、生物3D打印机等仪器设备13台(套),建设病例样本库、基于多模态数据的疾病辅助诊疗系统与多模态融合式网络辅助诊断平台。1300生物医药2深圳万和制药有限公司深圳市新型口服固体制剂工程研究中心组建项目2021.1-2023.12改建场地2000平方米,购置动态胃肠道体外模拟消化系统、全自动发酵设备、高效液相色谱仪等设备仪器14台(套),建设洁净粪菌滴丸实验室、多层滴丸技术开发平台、超微丸缓控释口服固体制剂技术开发及检测验证平台。1252.1生物医药3国药集团致君(深圳)制药有限公司深圳市儿童药物制剂工程研究中心组建项目2022.1-2024.12改建2850平方米场地,购置实验室信息化系统、压片机、多功能流化床8台(套),建设制剂研发放大与产业化技术平台、仿制药一致性评价研究中心、缓控释制剂技术平台。1500生物医药4深圳市真迈生物科技有限公司深圳市单分子测序平台及应用工程研究中心2021.8-2024.6在现有场地3000平方米基础上,购置全自动玻璃清洗机、半自动键合机、倒置研究型显微镜等设备47台(套),建设单分子基因测序性能优化平台、单分子基因测序临床应用开发平台、单分子测序试剂生产平台。1290生物医药5深圳艾欣达伟医药科技有限公司深圳市抗肿瘤靶向前药工程研究中心组建项目2021.1-2023.12改建1421.54平方米场地,购置高效液相色谱仪、流式细胞仪、荧光定量PCR仪等设备仪器35台(套),建设药物合成实验室、药效评价实验室、制剂研究实验室、分析实验室和中试放大实验室。2647.6生物医药6中国科学院深圳先进技术研究院深圳市灵长类转化医学工程研究中心组建项目2021.10-2024.9在现有场地2800平方米的基础上,购置灵长类精细运动和行为分析仪、睡眠行为分析仪、灵长类组织高精度荧光显微镜等仪器设备26台(套),建设灵长类动物基因工程药物开发平台、灵长类动物脑和免疫疾病药效评价平台。1250生物医药7深圳清华大学研究院深圳市骨科植入器械工程研究中心组建项目2022.1-2024.12改建场地500平方米,购置疲劳试验机、研磨机、多功能酶标仪等设备仪器9台(套),建设生物材料实验室、生物力学实验室、生物摩擦学实验室和生物学工程化平台。1250生物医药8深圳迈瑞生物医疗电子股份有限公司深圳市一体化核酸检测系统工程研究中心组建项目2021.6-2024.6改造现有场地1300平方米,购置全自动核酸检测一体机、冷冻干燥机、荧光定量PCR仪等设备仪器23台(套),建设PCR试剂、核酸提取试剂开发专有技术实验室、防污染研究、多通道荧光检测研究、多重PCR算法研究等专有技术实验室、可靠性与工程化研究实验室。1432生物医药9中国农业科学院农业基因组研究所深圳市杂交马铃薯工程研究中心组建项目2022.1-2024.12新建2400平方米玻璃温室、2400平方米薄膜温室,改建400平方米保温棚,购置气雾培装置、穴盘播种机、种子丸粒化机等设备仪器253台(套),建设马铃薯遗传转化平台、马铃薯雾培薯生产平台。。1250生物医药10深圳市新阳唯康科技有限公司深圳市药物晶型制剂创新技术工程研究中心2021.10-2024.10改建场地2000平方米,购置溶出仪、气相色谱仪、高效液相色谱仪等设备仪器19台(套),建设创新药物晶型制剂研发和应用平台。1400生物医药11深圳市康宁医院(深圳市精神卫生研究所、深圳市精神卫生中心)深圳市精神疾病精准诊疗技术工程研究中心2021.1-2023.12在现有1000平方米场地基础上,购置液质联用仪、全自动染色体核型分析系统、高速激光共聚焦扫描显微镜等设备仪器11台(套),建设精神类疾病的分子诊断平、细胞遗传学检测平台、药物基因组学检测平台、影像学诊断平台等。。2000生物医药12深圳赛保尔生物药业有限公司深圳市慢性肾病创新药物工程研究中心组建项目2021.10-2023.9在现有830平方米场地基础上,购置制备系统、稳定性分析、细胞分析仪等设备仪器12台(套),搭建建立中国仓鼠卵巢细胞(CHO)细胞的大规模培养生产平台、长效促红细胞生成素(EPO)的研发平台、药物质量检测控制体系和全面检测平台。1750生物医药13深圳泰乐德医疗有限公司深圳市心脑血管疾病预测与预防工程研究中心组建2021.11-2024.11改扩建现有1000平米,购置超灵敏蛋白标志物及蛋白组学检测系统、三重四级杆液质联用仪、全自动液滴数字PCR系统等设备仪器41台(套),建设蛋白组学检测平台、基因检测平台、生化免疫检测平台和质谱检测平台。1300生物医药14亚能生物技术(深圳)有限公司深圳市遗传基因检测工程研究中心组建项目2022.1-2024.12在现有场地1100平方米的基础上,购置微滴式数字PCR系统、荧光定量PCR仪(AB 7500)、荧光定量PCR仪(AB QuantStudio 5)3台(套),建设覆盖地中海贫血、遗传性耳聋、脊髓性肌萎缩症、血友病的基因检测试剂及其配套的自动化设备的研发技术平台。500生物医药15深圳职业技术学院深圳市海洋活性物质工程研究中心组建项目2022.1-2024.12改建场地600平方米,购置自动过柱机、超高速溶剂蒸发工作站、循环制备液相色谱仪等设备仪器56台(套),建设海洋活性物质发现和作用机制研究平台、海洋活性物质合成和结构优化平台、海洋活性物质规模化制备和成药性评价研发平台。1500生物医药16南方医科大学深圳医院深圳市肠菌移植工程研究中心2021.7-2024.7在现有1000平方米场地基础上,改建600平方米的场地,购置色谱质谱红外三联用分析仪、高通量测序仪、高分辨核磁共振谱仪等设备仪器7台(套),建设肠道菌株资源库及生物样本库、肠菌移植临床研究体系、肠菌移植基础和产品研发体系。1300生物医药17深圳市眼科医院深圳市眼科学技术与应用工程研究中心组建项目2022.1-2024.12改建场地500平方米,购置超广角眼底相机、眼前节光学相干断层扫描仪、扫频光学生物测量仪等仪器设备4台(套),建设高端眼科医疗设备硬件开发平台、产学研结合创新平台、国际窗口及技术交流平台。1250生物医药18深圳裕策生物科技有限公司深圳市肿瘤精准免疫诊疗转化医学工程中心2022.1-2024.12在现有1428平方米场地基础上,购置多色免疫组化检测平台、荧光条形码多重基因分析系、数字空间表达平台等27台(套),建设多重荧光免疫组化平台、数字基因定量平台、数字式空间多靶标分析平台和特异性T 细胞筛选平台。1500生物医药19深圳惠泰医疗器械股份有限公司深圳市心脏电生理介入医疗器械工程研究中心组建项目2021.10-2023.9改建场地1437平方米,购置心脏灌流系统、微电极阵列记录系统、高灵敏相机等设备仪器17台(套),建设心脏电生理实验室、心脏离体灌注平台、心脏电生理三维高精度标测平台、心脏电生理三维高精度标测工程转化平台、心肌消融/缺血病理分析平台和医院联合服务平台。1300生物医药20深圳市儿童医院深圳市深度感染AIE诊疗转化工程中心组建项目2022.1-2024.12改建场地1500平方米,购置小动物近红外二区成像仪、近红外二区荧光光谱仪、飞秒激光器等仪器设备4台(套),建设立仿生纳米材料抗菌应用平台、可吸收抗菌医用敷料应用平台。1500生物医药21中国科学院深圳先进技术研究院深圳人工诊疗微生物自动化合成工程研究中心提升2021.10-2024.9改建场地600平方米,购置液滴微流控细胞分选仪、高通量流式拉曼分选仪、多色激光器等设备仪器11台(套),建设实验室信息管理与数据采集、分析、学习平台,自动化显微成像及基因元件量化表征平台及基因元件量化表征平台,自动化微生物代谢产物表征平台。1250生物医药22北京大学深圳医院(北京大学深圳临床医学院)深圳骨科疾病再生技术工程实验室提升项目2022.4-2025.3在现有场地500平方米的基础上,购置干细胞3D生物反应器、体外冲击波疼痛治疗系统、荧光显微镜等设备仪器12台(套),建设再生技术临床转化和应用研究平台,椎间盘移植研究平台和干细胞技术研究平台。1300生物医药23深圳市第二人民医院(深圳市转化医学研究院)免疫基因治疗工程实验室(提升)2021.7-2024.6改建场地2000平方米,购置全自动血液组分分离系统、全自动核酸提取系统、高通量活细胞实时成像检测仪等设备仪器4台(套),建设基础研究室、临床应用研究室、项目研发室、生物样本库、医学信息平台、人才培养服务中心、技术推广室、企业孵育服务中心。1165生物医药24中国科学院深圳先进技术研究院深圳市介入手术机器人及其诊疗关键技术与工程实验室提升2021.11-2024.12在现有场地1000平方米的基础上,购置激光跟踪仪及配套设备、血管体模型、肺部动态体模、可调谐激光器等仪器设备37台(套),建设血管内光声成像系统研发平台、介入器械端部触觉感知技术研发平台、穿刺手术机器人研发平台、血管介入手术机器人研发平台等平台。1250生物医药25深圳华大生命科学研究院深圳市人体肠道微生态检测与干预工程实验室提升2021.11-2024.10改建场地500平方米,购置机械搅拌发酵罐、倒置显微镜、真空冷冻干燥机等设备仪器12台(套),建设微生物筛选/分离/纯化新技术平台、功能菌株高通量挖掘平台和活体生物药高通量功能研究验证平台。1400生物医药26深圳大学深圳海洋藻类生物开发与应用工程实验室提升项目2022.1-2024.12在现有场地3000平方米的基础上,购置全自动克隆挑选系统、全自动液体处理系统、高速冷冻孔板离心机等设备仪器5台(套),建设经济微藻高通量筛选平台、经济微藻天然产物高效表达平台。1210生物医药27深圳开立生物医疗科技股份有限公司深圳市医学超声成像系统产业化工程实验室提升项目2021.10-2023.10新建场地1280平方米,购置宽带功率放大器、步入式环境箱、快速温变试验箱等仪器设备40台(套),建设洗消实验室、可靠性实验室、电磁兼容实验室、安规实验室、机械实验室等实验室。1490生物医药28深圳市新产业生物医学工程股份有限公司MAGLUMI X8超高速全自动化学发光免疫分析仪产业化建设2021.1-2023.12新建场地13000平方米,购置CCD视觉检测与装盘模块、液相色谱串联质谱仪、电感耦合等离子体质谱等设备仪器761台(套),建设1条全自动化学发光免疫分析仪生产线。项目建成达产后实现全自动化学发光免疫分析仪年产能2000台,年产值20000万元。6840生物医药29深圳麦科田生物医疗技术股份有限公司血栓弹力图分析系统产业化项目2021.1-2023.12改建场地4000平方米,购置生物分子相互作用分析仪、毛细管电泳仪、全自动智能蛋白液相色谱仪等设备仪器181台(套),建设全自动血栓弹力图仪生产线1条、血栓弹力图仪生产线1条和配套检测试剂生产线1条。5000生物医药30健康元海滨药业有限公司健康元海滨吸入剂产业化项目二期2021.1-2023.12改建场地5000平方米,购置吹灌封一体化包装机、水系统、配液系统等设备仪器21台(套),建设吸入制剂生产线5条及滴眼剂生产线2条。16353.4生物医药31深圳北芯生命科技股份有限公司血管内超声精准诊断系统产业化2021.1-2023.12改建场地4800平方米,购置磁控溅射镀膜机、冷水机组、高精度切割机等设备仪器394台(套),建设血管内超声诊断仪和血管内超声诊断导管生产线1条。7500生物医药32深圳瑞华泰薄膜科技股份有限公司深圳市特种功能聚酰亚胺薄膜工程研究中心组建2021-10至 2023-10 改建场地2500平方米,购置扫描电镜、石墨炉等设备及工器具29台(套),围绕特种功能性聚酰亚胺薄膜、树脂及衍生材料产业化的关键技术开展研究,搭建功能性聚酰亚胺材料研发平台、制造工艺技术创新与开发平台、装备技术创新与开发平台、以及中试平台,组建特种功能聚酰亚胺薄膜工程研究中心。2307新材料33深圳市三利谱光电科技股份有限公司深圳市显示用光学膜材料工程研究中心组建项目2021.7- 2023.6改建场地1400平方米,购置AOI检测机(直交光学系)、离线缺陷AOI测试机视觉系统、紫外皮秒激光机等设备及工器具共9台(套),组建深圳市显示用光学膜材料工程研究中心,重点开展固定曲率AMOLED用偏光片、车载用超高耐久染料偏光片、超高硬度偏光片、3D打印显示屏用高UV透过率偏光片等研发。1700新材料34深圳职业技术学院深圳市半导体先进封装光刻胶材料工程研究中心组建项目2022.1- 2024.12改建场地600平方米,购置原位显微红外光谱仪、高纯反应釜、台式电子显微镜等仪器设备及工器具共6台(套),组建深圳市半导体先进封装光刻胶材料工程研究中心,重点开展高分辨率光刻胶树脂材料的分子结构设计与开发,新型光敏剂的分子结构设计与感光性能研究,光刻胶复合材料的配方设计、开发与测试验证研究,光刻胶材料与半导体芯片的适配性研究与开发。1500新材料35深圳德邦界面材料有限公司深圳市高导热半导体热界面材料工程研究中心组建项目2021.10- 2023.9改建场地1300平方米,购置导热系数仪(激光法)、凝胶色谱仪及热阻仪等设备及工器具共10台(套),围绕聚合物基热界面材料和金属基热界面材料的共性关键技术开展研究,搭建研发实验室、分析检测实验室、可靠性实验室以及中试基地,组建高导热半导体热界面材料工程研究中心。1276新材料36南方医科大学深圳医院深圳市医用3D打印材料转化应用工程研究中心组建项目2021.7- 2024.6改建场地面积1000平方米,购置金属打印机、Micro CT等设备及工器具2台(套),开展医疗植入物的3D打印材料、3D打印工艺和3D打印评估体系的研究开发,以及临床试验方案设计,搭建新型医用3D打印材料研发、3D打印工艺与关键技术制定、新型3D打印医用材料的体内外评估以及临床转化试验研究等四个平台,为医疗单位等提供个性化定制服务。1300新材料37哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)深圳市有机卤化物钙钛矿微型光电器件工程研究中心提升项目2022.1- 2024.12主要建设内容为基于前期研究基础,购置电子束光刻系统一套,开展有机卤化铅钙钛矿关键材料的合成、器件的设计、器件的加工和器件的表征等研究,搭建有机钙钛矿微型光电器件研发及工程化平台。1800新材料38中国科学院深圳先进技术研究院深圳市航空航天超硬涂层材料与技术工程实验室(提升)2021.11- 2024.10主要建设内容为基于前期研究基础和现有场地,购置电子探针显微分析仪和三维光学轮廓仪各2台(套),针对微型精密镀膜工具面临的关键技术难题,开展高效无损伤前处理、高装载量均匀沉积、中试及性能测试评估等研发工作,搭建超硬涂层材料与技术工程实验室。1500新材料39北京大学深圳研究生院深圳市柔性显示纳米光电材料工程研究中心提升项目(原深圳纳米光电打印材料工程实验室)2021.1- 2024.12主要建设内容为基于前期研究基础,购置分子能级晶体取向测量系统、热重分析仪等设备及工器具37台(套),针对印刷与柔性OLED/QLED显示、Micro-LED显示,开展关键材料、器件、大尺寸柔性与喷墨打印制备工艺等关键技术研究,搭建深圳市柔性显示纳米光电材料设计合成及纯化平台、器件制备及性能表征分析平台。1250新材料40深圳市飞荣达科技股份有限公司5G通讯设备用电磁屏蔽材料的研发及产业化项目2021.1-2022.6购置冲压卷料连线包塑、冲压机床、CCD检测设备、模具等设备及工器具共10台(套),搭建电磁屏蔽产品生产线,对铍铜、环保铜及洋白铜等材料进行冲压、真空热处理、电镀等工艺处理,生产不同结构的电磁屏蔽产品。5603.77新材料41深圳市杰美特科技股份有限公司具有超强抗摔性及耐用性的高分子材料终端配件研发及产业化项目2021.1- 2023.12改建现有场地19165.57平方米,拟购置CNC加工中心、注塑机、热压机伺服等设备及工器具共26台(套),新建年产2000万个超强抗摔耐用高分子材料终端配件智能数字化生产线1条。5000新材料42深圳市深大极光科技有限公司超高精度微纳洗铝全息防伪材料研发及产业化2021.9- 2023.3 购置激光直写光刻涂胶显影一体机、收卷复卷机、烫金机、全自动高速分条机等设备及工器具共7台(套),主要从关键技术方案设计、材料层制备、洗铝工艺开发等方面开展超高精度微纳洗铝全息防伪材料研究,并实现防伪材料的产业化。1785新材料43深圳纽迪瑞科技开发有限公司实现智能手机3D触控屏的柔性压感关键技术研发及产业化2021.1- 2023.12 利用现有场地900平方米,购置固晶机、金线键合机等设备及工器具11台/套,开展智能手机3D触控屏的柔性压感关键技术研发,建设智能手机3D触控屏生产线3条。2000新材料44深圳和美精艺半导体科技股份有限公司面向14纳米芯片的高密度封装基板产业化项目2021.5- 2023.9改建场地3000平方米,购置自动激光打标机(EO)、测试机、外观检查机(AVI)等设备及工器具31台(套),新建产品化验室1间,用于产品失效机理的分析及可靠性方案的验证;建设面向14纳米芯片的高密度封装基板生产线1条,开展封装基板的自动化生产;建设高密度封装基板检测线1条,用于封装基板大批量产中外观缺陷和超精密线路等性能检测。4310.11新材料45中国科学院深圳先进技术研究院深圳市海洋声光探测技术及装备工程实验室提升项目2021.11-2024.10拟购置集成电路49国民技术股份有限公司深圳市物联网设备主控芯片核心技术工程研究中心2021.10-2024.10现有场地2000平米,拟购置带电HTOL/LTOL老化设备、X-RAY扫描设备等设备仪器8台(套),建设物联网设备主控芯片核心技术标准平台、物联网设备主控芯片核心技术认证平台、物联网设备主控芯片产业化平台,开发基于32位ARMCortex-M7内核的工业控制器主控芯片。2890集成电路50深圳飞骧科技股份有限公司深圳市5G终端射频芯片与异构集成系统工程研究中心组建2021.10-2023.10改建现有场地600平米,购置5G综测仪、全自动探针台及激光器、矢量信号频谱分析仪等设备仪器10台(套),建设晶体
  • 湖南:到2027年,力争石化产业产值超过4100亿元
    近日,湖南省人民政府办公厅印发《湖南省现代化产业体系建设实施方案》。方案提出,到2027年,力争石化产业产值超过4100亿元,培育5家以上百亿龙头企业,建设成为我国中部地区重要的石化产业创新示范基地。重点产品方向石油化工:炼油,乙烯[聚乙烯(含EVA)、30万吨环氧丙烷、聚烯烃],己内酰胺(聚酰胺、工程塑料、锦纶织造、特色尼龙),炼油催化剂(化工、环保、燃料电池催化剂),特色石化(热塑性橡胶、环氧树脂、聚氨酯、聚己内酯、聚酰亚胺、碳酸酯、高端高分子新材料、有机化学制品、电子级化学品)。盐氟化工:含氯、硫、氨等基本化工原料和功能材料,氯碱、纯碱,电子级双氧水、硫酸、盐酸、高纯氨和新型水处理剂、高端无机盐产品。高品质聚氯乙烯、环氧氯丙烷、聚甲醛、三氟氧乙烯等盐基有机化工、有机氟化工产业链。精细化工:高端涂料、农药、酶制剂。关键技术攻关:聚焦分子炼油、高端合成材料、高分子材料等领域开展关键核心技术攻关。重点支撑企业石油化工:湖南石化、时代新材、岳阳兴长、瑞源石化、岳化化工盐氟化工:建滔实业、湘衡盐化、中蓝新材料、金裕环保精细化工:中石化催化剂长岭分公司、中创化工、国发精细化工、海利化工、东方雨虹、湘江涂料、松井新材市州布局长沙、岳阳、衡阳、郴州、怀化市
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制