当前位置: 仪器信息网 > 行业主题 > >

高雷诺数湍流

仪器信息网高雷诺数湍流专题为您整合高雷诺数湍流相关的最新文章,在高雷诺数湍流专题,您不仅可以免费浏览高雷诺数湍流的资讯, 同时您还可以浏览高雷诺数湍流的相关资料、解决方案,参与社区高雷诺数湍流话题讨论。

高雷诺数湍流相关的论坛

  • 【原创大赛】【流式细胞仪系列之二】液流系统和样品室简介和注意事项

    【原创大赛】【流式细胞仪系列之二】液流系统和样品室简介和注意事项

    液流问题是流式细胞仪发展史上占有很重要的地位。从本世纪30年代-50年代,流式细胞仪发展迟缓的一个重要原因就是细胞悬液通过毛细管或小孔时的阻塞问题得不到解决,直到引入层流鞘液的方法后,不但使液流更加稳定,约束细胞在液柱中间,而且较彻底的解决了阻塞问题。1、稳流与雷诺数 当液体流动时,有时是稳定的流动,称之为稳流,有时会产生漩涡,称之为湍流。上世纪,雷诺(OsborneReynolds,1842-1912)发现了一个以他名字命名的数-雷诺数,其定义如下:在一个直径为d的管子内,流动液体的平均速度为http://ng1.17img.cn/bbsfiles/images/2014/12/201412251340_528895_2648817_3.jpg,如果液体的密度为ρ,粘滞系数为η,则雷诺数Rehttp://ng1.17img.cn/bbsfiles/images/2014/12/201412251158_528874_2648817_3.jpg 当Re=2300时,为稳流和湍流的分界点。当Re2300时为湍流。在流式细胞仪中我们希望保持稳流。如果喷孔直径为100μm,水的密度为1g/cm3,水在20℃时的粘滞系数是0.010泊(poise,1泊=1g/cm.s),代入上式,可以计算出 http://ng1.17img.cn/bbsfiles/images/2014/12/201412251341_528896_2648817_3.jpg 这是流式细胞仪喷孔速度的极限。考虑到湿润等因素的影响,常限制喷射速度在10m/s以下。2、喷嘴 本特利流式细胞仪采用进样针,实际上就是通用型流式细胞仪的喷嘴,见图1。喷嘴中间是含有细胞悬液的样品,样品外面包围着鞘液从喷嘴中喷出。http://ng1.17img.cn/bbsfiles/images/2014/12/201412251343_528897_2648817_3.jpg图1 IBC-M进样针 由于样品中可能含有牛毛、草屑、沙土、饲料颗粒等杂质,对进样针和样品室堵塞。所以当出现样品测定值持续偏低的时候,建议清洗完以后重新测定微球,观察微球的峰型是否尖锐、对称、呈正态分布,电压值是否在0.9-1.1之间。如果出现异常,建议用通丝通下进样针和样品室后重新测定。3、样品室 样品和鞘液相混合的小室成为流动室(cell),也称之为样品室、观察室等。样品室常以有机玻璃、光学玻璃或石英等制成,其做工精巧、尺寸准确、价格昂贵,是流动系统的心脏。其设计要求在流体力学上、光学上、机械学和电学上都十分稳定,见图2和图3。http://ng1.17img.cn/bbsfiles/images/2014/12/201412251348_528898_2648817_3.jpg图2 样品室组件http://ng1.17img.cn/bbsfiles/images/2014/12/201412251348_528899_2648817_3.jpg图3 样品室 图2[/f

  • 楔形流量计的优点

    楔形流量计采用“V”型体节流件可消除滞留区,防止系统出现堵塞现象。特别适合于高粘度、低雷诺数、带悬浮颗粒或气泡的介质测量;雷诺数的适用范围广,雷诺数为500时,仍保持差压与流量的平方关系。测量精度不受流体介质介电常数等特性的影响和限制;差压变送器可输出4~20mA的电信号,便于配用各种仪表。具有流体粘度变化、温度变化、密度变化等补偿功能;抗振动、抗冲击、抗脏污、抗腐蚀、防爆;具有双向流量测量功能;楔形流量计长期稳定性好,被用户誉为零故障率仪表。结构简单、牢固、高可靠性,安装方便,运行维护费用低;无运动部件,无磨损,长期使用时不需要重新标测量精度高,流量校准扩展不确定压度:±0.5%~±0.2%(水校或油校)。一次表分体式,更换楔形件(中间)可扩展量程。楔形流量计款式多样:普通型:量程比在1︰3范围内,流量系数的非线性误差为≤±1%。高性能型:量程比在1︰10范围内流量校准扩展不确定度为±0.5%~±0.2%。材质:全不锈钢。

  • 浮子流量计优点和缺点

    浮子流量计使用于小管径和低流速。常用仪表口径40-50mm以下,最小口径做到1.5-4mm。适用于测量低流速小流量,以液体为例,口径10mm以下玻璃管浮子流量计满度流量的名义管径,流速只在0.2-0.6m/s之间,甚至低于0.1m/s;金属管 浮子流量计和口径大于15mm的玻璃管浮子流量计稍高些,流速在0.5-1.5m/s之间。  浮子流量计可用于较低雷诺数,选用粘度不敏感形状的浮子,流通环隙处雷诺数只要大于40或500,雷诺数变化流量系数即保持常数,亦即流体粘度变化不影响流量系数。这数值远低于标准孔板等节流差压式仪表最低雷诺数104-105的要求。  大部分浮子流量计没有上游直管段要求,或者说对上游直管段要求不高。  浮子流量计有较宽的流量范围度,一般为10:1,最低为5:1,最高为25:1。流量检测元件的输出接近于线性。压力损失较低。  玻璃管浮子流量计结构简单,价格低廉。只要在现场指示流量者使用方便,缺点是有玻璃管易碎的风险,尤其是无导向结构浮子用于气体。  金属管浮子流量计无锥管破裂的风险。与玻璃管浮子流量计相比,使用温度和压力范围宽。  大部分结构浮子流量计只能用于自下向上垂直流的管道安装。  浮子流量计应用局限于中小管径,普通全流型浮子流量计不能用于大管径,玻璃管浮子流量计最大口径100mm,金属管浮子流量计为150mm,更大管径只能用分流型仪表。  使用流体和出厂标定流体不同时,要作流量示值修正。液体用浮子流量计通常以水标定,气体用空气标定,如实际使用流体密度、粘度与之不同,流量要偏离原分度值,要作换算修正。

  • 【资料】熊猫收集-制药用水专题资料

    制药用水贮存与分配系统的设计 一、 配管的坡度 配管设计中应为管道的敷设考虑适当的坡度,以利于管道的排水。即管道在安装时必须考虑使所有管内的水都能排净。这个要求应作为设计参数确定在系统中。制药用水系统管道的排水坡度一般取1%或1cm/m。这个要求对纯化水和注射用水系统管道均适用。配管系统中如有积水,还必须设置积水排泄点和阀门。但应注意,排水点数量必须尽量少。 二、配水管道参数的计算 制药工艺过程用水的量是根据工艺过程、产品的性质、制药设备的性能和药厂所处地区的水资源情况等多种条件确定的。通过分析对每一个用水点注射用水的使用情况来确定。 通常,工艺用水量的计算按照两种主要的用水情况进行。一种是根据单位时间工艺生产流程中某种耗水量最大的设备为基础考虑,即考虑工艺生产中最大(或峰值)用水量及最大(或峰值)用水时间;另一种是按照消耗在单位产品上的平均用水量(这个水量包括辅助用水)来计算。无论采用哪一种算法,应尽量考虑生产工艺用水的需求,应在药品制造的整个生产周期内比较均匀,并具有规律性;同时应尽量考虑为适应生产发展,水系统未来可能的规模扩展。。。 为满足工艺过程的各种需要,制药工艺过程的设计用水量是根据具体的药品品种在生产工艺过程中的直接用水量和辅助过程间接用水量之和决定的。即在考虑生产的具体品种和生产安排诸方面因素后,根据上述工艺分配输送管道的设计形式和要求原则来具体确定。而其计算用水量则由一天中生产过程的高峰用量与平均用量综合确定。不同药品生产过程,其用水量的情况相差很悬殊。 2.1生产工艺用水点情况和用水量标准 工艺用水系统中的用水量与采用的工艺用水设备的完善程度、药品生产的工艺方法、生产地水资源的情况等因素有关。通常,工艺用水的变化比较大。一般来说,工艺用水点越多,用水工艺设备越完善,每天中用水的不均匀性就越小。 制药用水的情况因各个工艺用水点的使用条件不同,差异很大。如前所述,工艺用水系统分单个与多个用水点、仅为高温用水点或仅为低温用水点、既有高温用水点又有低温用水点、不同水温的用水点中,既有同时使用各种水温的情况,又有分时使用不同水温的情况,等等。因此,用水点的用水情况很难简单地确定。必须在设计计算以前确定制药用水系统的贮存、分配输送方式,以确定出在此基础上的最大瞬时用水量。然后,再根据工艺过程中的最大瞬时用水量进行计算。 工艺过程中最大用水量的标准,根据药品生产的全年产量,按照具体每一天分时用水量的统计情况来确定,确定用水量的过程中应考虑所设置的工艺用水贮罐的调节能力。 2.2系统设计流量的确定 设计工艺用水管道,需要通过水力计算确定管道的直径和水的阻力损失。其主要的设计依据就是工艺管道所通过的设计秒流量数值。设计秒流量值的确定需要考虑工艺用水量的实际情况、用水量的变化以及影响的因素等。 通常,按照全部用水点同时使用确定流量。按照生产线内用水设备的完善程度,设计的秒流量为: q=Σn q max c 式中q——工艺因素的设计秒流量,m3/s; n——用水点与用水设备的数据; q max——用水点的最大出水量,m3/h; c——用水点同时使用系数,通常可选取0.5-0.8。 2.3管道内部的设计流速 制药用水是流体的一种类型,它具有流体的普遍特性。流体在管道中流动时,每单位时间内流经任一截面的体积称为体积流量。而管道内部流体的速度是指流体每单位时间内所流经的距离。制药用水管道内部的输送速度与系统中水的流体动力特性有密切的关系。因此,针对制药用水的特殊性,利用水的流体动力特性,恰当地选取分配输送管道内水流速度,对于工艺用水系统的设计至关重要。 制药用水系统管道内的水力计算与普通给水管道内水力计算的主要区别在于:制药用水系统的水力计算应仔细地考虑微生物控制对水系统中的流体动力特性的特殊要求。具体就是在制药用水系统中越来越多地采用各种消毒、灭菌设施;并且将传统的单向直流给水系统改变为串联循环方式。 这些区别给制药用水系统流体动力条件的设计与安装带来了一系列意义深刻的变化:例如,为控制管道系统内微生物的滋留,减少微生物膜生长的可能性等。 为此,美国药典对制药用水系统中的水流状态提出了明确的要求,希望工艺用水处于“湍流状态”下流动。这就需要通过对流体动力学特性的了解,来理解美国药典要求使用“湍流状态”概念的特殊意义。 通常,流体的速度在管道内部横断面的各个具体点上是不一样的。流体在管道内部中心处,流速最大;愈靠近管道的管壁,流速愈小;而在紧靠管壁处,由于流体质点附着于管道的内壁上,其流速等于零。工业上流体管道内部的流动速度,可供参考的有以下的经验数值: (1)普通液体在管道内部流动时大都选用小于3 m/s的流速,对于粘性液体选用0.5~1.0 m/s,在一般情况可选取的流速为1.5~3 m/s; (2)低压工业气体的流速一般为8~15m/s,较高压力的工业气体则为15~25 m/s,饱和蒸汽的流速可选择20~30 m/s,而过热蒸汽的流速可选择为30~50 m/s。 流体运动的类型可从雷诺实验中观察到。雷诺根据以不同流体和不同管径获得的实验结果,证明了支配流体流动形式的因素,除流体的流速q外,尚有流体流过导管直径d、流体的密度ρ和流体的黏度ц。流体流动的类型由dqρ/ц所决定。此数值称为雷诺准数,以Re表示。根据雷诺实验,可将流体在管道内的流动状态分为平行流(滞流)和湍流两种情况。 应注意,雷诺准数为一个纯粹数值,没有单位,因而是无因次数。在计算之中,只要采用的单位一致,对于任何单位都可得到同样的数值。例如在米千克—秒制中雷诺准数的单位为: dqρ/ц=(m)(m/s)(kgs2/ m4)/( kgs / m2) =(m)0(kg)0(s0) 式中所有单位全可消去,所剩下的为决定流体流动类型的数值。而采用尺-磅-秒英制时也能得到同样的结果。雷诺实验表明,当Re数值小于2300时,流体为滞流状态流动。Re数值若大于2300,流体流动的状态则开始转变为湍流。但应注意,由于物质的惯性存在,从滞流状转变为湍流状态并不是突然的,而是会经过一个过渡阶段,通常将这个过渡阶段称之为过渡流,其Re数值由2300到4000左右,有时可延到10000以上。因而只有当Re等于或大于10000时,才能得到稳定的湍流。 由滞流变为湍流的状况称为临界状况,一般都以2300为Re的临界值。须注意,这个临界值系与许多条件有关,特别是流体的进入情况,管壁的粗糙度等。 由此可见,在制药用水系统中,如果只讲管道内部水的流动,尚不足以强调构成控制微生物污染的必要条件,只有当水流过程的雷诺数Re达到10000,真正形成了稳定的湍流时,才能够有效地造成不利于微生物生长的水流环境条件。由于微生物的分子量要比水分子量大得多,即使管壁处的流速为零,如果已经形成了稳定的湍流,水中的微生物便处在无法滞留的环境条件中。相反,如果在制药用水系统的设计和安装过程中,没有对水系统的设计及建造细节加以特别的关注,就会造成流速过低、管壁粗糙、管路上存在死水管段的结果,或者选用了结构不利于控制微生物的阀门等等,微生物就完全有可能依赖于由此造成的客观条件,在工艺用水系统管道的内壁上积累生成微生物膜,从而对制药用水系统造成微生物污染。

  • 【资料】超声波气体泄漏的检测原理

    超声波泄漏检测仪为超声波检出方式的泄漏检测仪, 可对空气、煤气、蒸气以及液体等的输送管道以及各种设备的泄漏进行检查。如果与附属的超声波发生器配合使用,还可对冰箱,密封容器,空调系统,轮胎,压缩机以及各种输液管道等的密封状态进行检查,是改善环境,节约能源的有力工具。 如果一个容器内或管道内充满气体,当其内部压强大于外部压强时,由于内外压差较大,一旦容器有漏孔,气体就会从漏孔冲出。当漏孔尺寸较小且雷诺数较高时,冲出气体就会形成湍流,湍流在漏孔附近会产生一定频率的声波,声波振动的频率与漏孔尺寸有关,漏孔较大时人耳可听到漏气声,漏孔很小且声波频率大于20kHz时,人耳就听不到了,但它们能在空气中传播,被称作空载超声波。超声波是高频短波信号,其强度随着传播距离的增加而迅速衰减。超声波具有指向性。利用这个这个特征,即可判断出正确的泄漏位置。 R-0501可工作于被动态与主动态。当对输气管道进行实时检查时,可单独使用它,利用它捕捉气体泄漏时所产生的微小的超声波信号,即可判断出正确的泄漏位置。这种工作方式被称为被动态。   超声检测仪将R-0501与T-0501(超声波信号发生器) 配合使用时,可对被检查物进行非实时检查,即由T-0501(超声波信号发生器) 发射一定频率的超声波信号,一旦发生泄漏,超声波将由漏孔漏出,用R-0501捕捉漏出的超声波信号,即可判断出正确的泄漏位置。这种工作方式被称为主动态。与被动态工作方式相比,主动态工作方式不适合于实时检查,但是具有更高的可靠性

  • 求助中文文献

    【序号】:1 【作者】:闫雪 等【题名】:垂直立管中下行颗粒流的雷诺数【期刊】:《中国粉体技术》 2014年06期【年、卷、期、起止页码】:【全文链接】:http://www.cnki.com.cn/Article/CJFDTOTAL-FTJS201406003.htm 【序号】:2【作者】:郑海涛 等【题名】:低雷诺数下管状非球形颗粒群的阻力系数 【期刊】: 《中国粉体技术》 2004年03期 【年、卷、期、起止页码】:【全文链接】:http://www.cnki.com.cn/Article/CJFDTOTAL-FTJS200403002.htm【序号】:3 【作者】:黄德财 孙刚 厚美瑛 陆坤权【题名】:颗粒速度在颗粒流稀疏流-密集流转变中的作用 【期刊】:物理学报 2006年09期 【年、卷、期、起止页码】:【全文链接】:http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200609061.htm 【序号】:4 【作者】:王宝和【题名】:计算球形颗粒自由沉降速度的一种新方法 【期刊】: 【年、卷、期、起止页码】:【全文链接】:https://max.book118.com/html/2017/0723/123808800.shtm【序号】:5 【作者】:【题名】:非球形颗粒的自沉降速度和阻力系数 【期刊】: 【年、卷、期、起止页码】:【全文链接】:https://max.book118.com/html/2015/0918/25712104.shtm

  • 石油产品恩氏粘度计分析油品粘度的检测意义

    石油产品恩氏粘度计分析油品粘度的检测意义  衡量流体粘滞性大小的物理单位称为粘度。粘度分为动力粘度μ(动力粘度又称为粘度)、运动粘度γ和条件粘度。因采用不问的特定粘度计,又分为思氏粘度、赛氏粘度、雷氏粘度等。  一 油品粘度的检测意义  1.粘度对生产的意义  粘度是工艺计算的主要参考数据之一。例如,计算流体在管线中的压力损失,需查雷诺数,而雷诺数与粘度有关。  在生产上可以从粘度变化判断润滑油的精制深度。通常是:未经精制的馏分油粘度经硫酸精制的馏分油粘度用选择溶剂精制的馏分油粘度。  2.粘度对润滑油油的意义  粘度是润滑油的zui重要的质量指标,正确选择一定粘度的润滑油。可保证发动机稳定可靠的工作状况。随着粘度的增大,会降低发动机的功率,增大然料消耗。若年度过大,会造成起动困难 若年度过小,会降低油膜的支撑能力,使摩擦面之间不能保持连续的润滑层,增加磨损。润滑油的牌号,大部分以产品标准中运动粘度的平均值来划分。如:冷冻机油、机械油等,以50度运动粘度的平均厘拖数划分 汽缸油、齿轮油等,按100℃运动戮度的平均厘拖数划分。粘度对于润滑油的输送有重要意义。当油的粘度增大时,输送压力便要增加。  3.粘度对喷气燃料的意义  燃料雾化的好坏是喷气发动机正常工作的zui重要条件之一。喷气燃料的粘度对燃料雾化程度影响zui大。为了保证喷气发动机在不同温度下,所必需的雾化程度,在燃料规格标准中规定了不同温度下的粘度值。  4. 粘度对柴油的意义  粘度是柴油的重要性质之一,它可决定柴油在内燃机内雾化及燃烧的情况。粘度过大,喷油嘴喷出的油滴颗粒大且不均匀,雾化状态不好,与空气混合不充分,燃烧不完全。同时,柴油能对柱塞泵起润滑作用,粘度过小,会影响油泵润滑,增加柱塞磨损

  • 流量计的一些常用术语的解释

    在流量计量中的一些较常用的术语和指标。 1。流量范围 流量计的流量范围是指流量计在正常使用条件下,测量误差不超过允许值的最大至最小流量范围。最大与最小流最值的代数差称为流量量程。最大流量与最小流量的比值通常称作流量计的量程比。 2。额定流量 流量计在规定性能或最佳性能时的流量值,称为该流量,计的额定流量. 3。流量计特性曲线 流量计特性曲线是反映随流量变化流量计性能变化的曲线。特性曲线较常用的有两种不同表示形式:一种是表示流量计的某种特性(通常是流量系数或仪表系数,也有的是某一与流量有关的输出量)与流量q或雷诺数Re的关系;另一种是表示流量计测最误差随流量q或雷诺数Re变化的关系,这种特性曲线一般称为流量计的误差特性曲线。 流量计的特性曲线可以通过对流量计进行理论分析而得到,而更为准确可靠是对流量计进行检定得到,即在整个流量计的流量范围上进行一系列的实验得到。 4。流量系数 流量计的流量系数表示通过流量计的实际流最与理论流量的比值。一般来说,它的影响因素比较复杂,很难由理论分析得到,只能通过实验确定。 5。仪表系数 流量计的仪表系数表示通过流量计的单位体积流量所对应的信号脉冲数。它是脉冲信号输出类型流量计的一个重要参数,同时也是这类流量计的一次测量元件与显示仪表相互联系的依据。 6。盆复性流量计的重复性表示用该流量计连续多次测量同一流量时给出相同结果的能力.需要往意的是不要把重复性与准确度两者混淆起来,准确度表示流k计测是值接近真值的能力.一台流量计的重复性不好,自然其准确度无从谈起,但重复性好的流最计也有可能给出相同的不准确测量结果。7。线性流量计的线性是表示在整个流量范围上的特性曲线偏离最佳拟合直线程度的量度,有时用非线性误差表示.对于用仪表系傲K来评定流量计特性的脉冲输出流盘仪表来说,其线性通常用整个流量范围的平均仪表系数K2与仪表系数对平均俏的最大偏差K1的比值K1 / K2来表示。 返回——仪器仪表网

  • 石油产品恩氏粘度计之油品粘度的检测意义

    石油产品恩氏粘度计之油品粘度的检测意义和常用方法  衡量流体粘滞性大小的物理单位称为粘度。粘度分为动力粘度μ(动力粘度又称为粘度)、运动粘度γ和条件粘度。  一 油品粘度的检测意义  1.粘度对生产的意义  粘度是工艺计算的主要参考数据之一。例如,计算流体在管线中的压力损失,需查雷诺数,而雷诺数与粘度有关。  在生产上可以从粘度变化判断润滑油的精制深度。通常是:未经精制的馏分油粘度经硫酸精制的馏分油粘度用选择溶剂精制的馏分油粘度。  2.粘度对润滑油油的意义  粘度是润滑油的zui重要的质量指标,正确选择一定粘度的润滑油。可保证发动机稳定可靠的工作状况。随着粘度的增大,会降低发动机的功率,增大然料消耗。若年度过大,会造成起动困难 若年度过小,会降低油膜的支撑能力,使摩擦面之间不能保持连续的润滑层,增加磨损。润滑油的牌号,大部分以产品标准中运动粘度的平均值来划分。如:冷冻机油、机械油等,以50度运动粘度的平均厘拖数划分 汽缸油、齿轮油等,按100℃运动戮度的平均厘拖数划分。粘度对于润滑油的输送有重要意义。当油的粘度增大时,输送压力便要增加。  3.粘度对喷气燃料的意义  燃料雾化的好坏是喷气发动机正常工作的zui重要条件之一。喷气燃料的粘度对燃料雾化程度影响zui大。为了保证喷气发动机在不同温度下,所必需的雾化程度,在燃料规格标准中规定了不同温度下的粘度值。  4. 粘度对柴油的意义  粘度是柴油的重要性质之一,它可决定柴油在内燃机内雾化及燃烧的情况。粘度过大,喷油嘴喷出的油滴颗粒大且不均匀,雾化状态不好,与空气混合不充分,燃烧不完全。同时,柴油能对柱塞泵起润滑作用,粘度过小,会影响油泵润滑,增加柱塞磨损。

  • 运动粘度对润滑油的意义

    流体间产生内摩擦力的性质,称为流体的粘滞性。粘度是流体的 一种属性,是指液体受外力作用移动时,分子间产生的内磨擦力的量度, 不同流体的粘度数值不同。粘度也可通过实验求得,如用粘度计测量。粘度反映油品的内摩擦力,是表示油品油性和流动性的一项指 标。在未加任何功能添加剂的前提下,粘度越大,油膜强度越高,流动性越差。运动粘度表示液体在重力作用下流动时内磨擦力的量度,其值为相同温度下的动力粘度与其密度之比,在国际单位制中以米2/秒表 示。习惯用厘斯(cSt)为单位。1厘斯=10-6米2/秒=1毫米2/秒。润滑油是用在各种类型机械上以减少摩擦,保护机械及加工件的 液体润滑剂,主要起润滑、冷却、防锈、清洁、密封和缓冲等作用。粘度是评价润滑油质量的重要参数, 粘度对发动机的启动性 能、磨损程度、功率损失和工作效率等都有直接影响, 只有选用 粘度适当的润滑油,才能保证发动机具有稳定可靠的工作状况,达 到最佳的工作效率,延长使用寿命。粘度增大,流动性能变差,会降 低发动机的功率,增大燃料消耗,甚至造成启动困难。润滑油粘度 过小,则会降低油膜支撑能力,使摩擦面之间不能保持连续的润滑 层,增大磨损,降低使用寿命。喷气发动机燃料及柴油燃料的重要 指标之一。粘度是润滑油分类的依据。一些种类的润滑油产品是以油品的 运动粘度值划分编号的。例如,内燃机油、齿轮用油和液压系统用油等三大类润滑油多用运动粘度来划分牌号,其中汽油机油、柴油机油 按GB/T14906---1994《内燃机油粘度分类》划分牌号,工业齿轮油按 50℃运动粘度划分牌号,而普通液压油、机械油、压缩机油、冷冻机油和真空泵油按40℃运动粘度划分牌号。此外,粘度对于润滑油的输送有重要意义。当油品的粘度增大时, 输送压力便要增加。也是工艺计算的主要参考数据之一。例如,计算流体在管线中的 压力损失,需查出雷诺数,而雷诺数与绝对粘度有关。[color=#333333] [/color]

  • 气体涡轮流量计在石油工业中起到的作用

    气体涡轮流量计在石油工业中起到的作用应用涡街流量计对垂直上升管内油水两相流总体积流量进行了实验丈量,分析了不同两相流量、含油率对仪表系数误差产生的影响,以及两相斯特劳哈尔数随含油率和两相雷诺数的变化情况。目前,将成熟的单相流量计应用于两相流量丈量取得了较大进展,如差压式流量计、Coriolis流量计等。 然而涡街流量计在两相流量丈量领域的研究还处于探索阶段,目前主要集中在气液两相流方面,包括总流量、组分、斯特劳哈尔数及不乱性等。涡街流量计因其具有输出与流体流量成正比的脉冲信号,对被测流体压力、温度、黏度和组分变化不敏感,可丈量液体、气体和蒸汽流量等长处,广泛应用于石油、化工、冶金、机械等产业领域。 石油行业,常常会碰到油和水两相混合活动的现象,开展油水两相流流量的丈量具有重要的理论和工程意义。在油水两相流方面研究甚少,仅SKEA应用多种单相流量计丈量水平管内油水两相流流量的研究中提及涡街流量计,但未对实验结果进行分析。来源——仪器仪表网

  • 阿牛巴流量计精度的因素及解决方法

    阿牛巴流量计精度的因素及解决方法:阿牛巴流量计(又称笛形阿牛巴流量计)是根据皮托管测速原理发展起来的一种新型差压流量检测元件,它输出为差压信号,与测量差压的仪表配套使用,可准确测量圆形管道、矩形管道中的多种液体、气体和蒸汽(过热蒸汽和饱和蒸汽)的流量,并以其压力损失小、安装方便等优点逐渐取代孔板和其它检测元件,在电力、石油、化工、轻纺、冶金等工业中得到广泛应用,最重要的是阿牛巴流量计非常好地解决了其它流量计在大口径管道测量上的许多问题。但阿牛巴流量计从设计、制造到安装使用,都要求十分严格,只要其中一个环节稍加不慎,就可造成很大误差。 G"dS+,Q #QwP~Z Qv=K×π/4×D2(2ΔP/р)1/2 6k{2 +P V]OmfPve 式中:Qv—流经测量管的流体流量m3/h; )~4II.`%^ D—测量管内径mm。 K;?,FlH 由式(2)可以看出,阿牛巴流量计系统的实质是对差压△P 的测量,其测量原理如图2 所示,这是所有差压式流量计的共同特性,技术是通用的,即采用差压变送器把△P 转换成相应的机械信号或电信号。[/align][align=center][v7^i_d [/align][align=left]2 影响流量计精度的因素和解决措施 FuG4F ①阿牛巴流量计的差压式检测杆上各取压孔处的流速是不同的,各取压孔之间存在一定的压力差,这样,各取压孔之间就有介质流动,流动介质中的杂物就会产生埋积,形成堵塞,时间一长就会造成差压损失。目前阿牛巴制造厂虽然声称传感器的抗堵塞问题已能解决,但由于各生产工艺的特殊情况,笔者还是建议加装必要的附属设备如杂物过滤装置等,以确保仪表正常工作。 uzmk6G v ②从流量的基本公式可知,只要有效地测出检测杆的输出差压△P,就可测出流体的流量值。长期以来检测杆背压检测孔一直只用一个测孔,人们认为检测杆检测孔按规范要求已处于位势流中,而位势流的前题是管道横截面上各点静压均相等,没有横向流动,从这个角度来看,一个背压检测孔已足够。为了防止流体的流量在检测过程中阻塞背压检测孔,可采用多孔的背压取压,这已经开始应用在检测杆流量传感器上。 LZJA4?C ③流量系数K 不稳定,造成流量不稳定。对圆形截面的检测杆来说,当雷诺数Re 处于105至106之间时,流量系数K 不稳定,它的稳定区域是在雷诺数Re106。这主要是由于圆形截面的阻力件自身存在着“阻力危机”而引起的。流体流经圆管因分离点不同而导致圆管在迎流流体时引起的压力分布不同,从而引起流量系数K 的变化。采用菱形截面的检测杆可以克服圆形截面这一不稳定区。菱形截面无论雷诺数的数值Re 是多少,其分离点都是确定不变的,从而较好地解决了检测杆流量传感器在检测液体、气(汽)体流量时不稳定区的困难。 1wzqGmjmt ④阿牛巴流量计根据皮托管测速原理,通过测总静压来推算流量,常用于大口径管道液、气(汽)体流量测量,它产生差压一般都比较小,最小可能只有20Pa~30Pa,为此要尽量避免使用长的引压管,选用高精确度的微差压变送器,如霍尼韦尔、EJA 差压变送器等,最好的方案是采用检测杆、三阀组、差压变送器一体化的直接安装方式,如LG-A 系列一体化智能型阿牛巴流量计,不但可以减少使用引压管而引起的泄漏,还可补偿受温度、压力的变化而变动的差压信号失真等问题。 CTt vyr @2pu^k^ 3 选型和安装 8`4_T(I ① 应足够重视流量仪表结构和工作原理,特别是一件新颖的仪表,使用前要充分的了解它的结构和工作原理,才能对其进行正确的安装,并对使用过程中出现的问题作出准确的判断和排除,杜绝盲目性。 ##Z_QB(; ^F:k3,_[ ② 注重流量仪表的维护保养,是提高仪表的使用寿命和准确度的重要措施,仪表维护及技术人员一定要养成良好的操作习惯。

  • V锥流量计的优势及功能介绍

    V锥流量传感器与差压变送器组合成为V锥流量计,是目前最先进的差压式流量计之一,可精确测量宽雷诺数范围(8×103~ 5×107)内各种介质的流量。V锥流量计可耐高温,无运动部件,具有长期精度高、稳定性好、受安装条件影响小、耐磨损、测量范围宽、压损小等优点。 V锥流量计克服了一般流量仪表很难在扰动流动中取得正确测量值的缺点,在极恶劣的安装条件下,如上游有两个不在同一平面上的弯头,而且很靠近锥体,V型锥体也能使速度分布变得平坦和对称,从而确保了测量精度。V锥流量计的节流缘是钝角,流动时形成边界层,使流体离开了节流缘。边界层效应使肮脏流体不能磨损节流缘,其值长期不变。因此无需重复标定,具有长期的稳定性。 V锥流量计改善了传统差压流量计的使用局限,提高了精确度和重复性,安装时几乎无直管段要求,自清洗功能,适用于容易结垢的脏污介质,气液两项测量。V锥流量计适用于各行业的液体、气体和蒸汽流量的测量,特别适合脏污介质的测量。

  • 【有奖讨论】你知道液相色谱的调节比例电磁阀为什么响吗?有什么规律吗?

    调节阀的主要噪音源是:阀部件的机械振动和流体噪音,而流体噪音包括流体动力噪音和空气动力噪音两类。 机械噪音 阀门部件的振动是由于阀体内不规则的压力波动和(或)流体冲击可动的或活动零件所引起的。由于机械振动所引起的最通常的噪音源是阀芯相对于导向表面的横向移动。这种类型的振动所产生的噪音,其频率一般小于1500赫兹,而且常常显示出一种金属的响声。对于阀芯和(或)导向表面所遭受到的物理损坏的关注胜过对发生噪音的关注。 在早期,调节阀通常使用圆筒薄壁窗口型阀芯,阀芯的圆筒形侧缘进入浇铸或车削的流通口。这种圆筒形侧缘使阀芯在阀体的流通口中导向。圆筒形侧缘和阀体导向装置之间的间隙比较大,使得这种结构对振动相当敏感。当把这种侧缘导向改变为连结阀芯一端或两端的杆部导向时,这种振动情况得到了改善。阀芯的杆部是通过牢固地固定在阀体的上阀盖和下阀盖中的衬套来导向的。对于正常不好使用的阀门,更进一步的改进办法就是增大这种导杆直径和尽可能减少间隙。今天的标准调节阀或多或少是以套筒导向为特色。在这种结构中,一个包含有流通口的套筒部件牢固地固定在阀体上,而且可拆卸的阀芯在它的内径中紧密地导向。图4表示三种类型的这种结构。由于阀内件设计改进的结果,使阀芯横向移动所引起的振动问题减到最小。 第二个机械振动噪音源是阀门部件在其固有频率下共振。阀门部件的共振振动产生一种单音调的声音,其频率一般为3000~7000赫兹。这种类型的振动产生高能级的应力,最后会导致振动的零部件因疲劳而损坏。对固有频率振动敏感的阀门部件是柱塞式阀芯、圆筒形薄壁窗口型阀芯及柔性部件例如球阀的金属密封环。 总的说来,噪音是阀门部件机械振动的副产品,这种噪音: 1、是不可能预测的; 2、相对于可能出现的机械结构损坏,它是次要的; 3、甚至可以认为这是有利的,这意味着它预报了可能存在着产生阀门故障的工况; 4、通过改进阀门的结构可以消除其大部分。 流体动力噪音 控制液体的调节阀可能是主要的噪音源。可以把流动噪音看作为流体动力噪音,而且可以按照具体的流动类别或当时产生的特点来分类。通常可以把液体流动分为三类: 1、无气蚀的 2、气蚀的 3、闪蒸的 无气蚀的液体流动一般产生很低的环境噪音级。通常认为,产生噪音的机械过程是流体湍流速度波动的函数,通常把湍流波动看作为“雷诺应力”或湍流动量。在调节阀中出现高强度湍流是由于缩流处的面积突然收缩,缩流处下游处的流速迅速减低的结果。 现场经验证实这种试验结果,从无气蚀的液体应用中产生的噪音很小,一般可以不予考虑。图5表示一种有代表性的流体动力噪音特性,它是阀门前后的压降(△P)与阀门入口压力(P1,磅/英寸2绝压)减去蒸气压力(Pv,磅/英寸2绝压)的比值的函数。 气蚀是主要的流体动力噪音源。这种噪音是由于在气蚀过程中形成的汽泡破裂所引起的。在控制液体的调节阀中,无论是当阀门的下游静压大于蒸气压还是当阀门中某点的局部静压小于或等于液体蒸气压都会出现气蚀现象。低的局部静压力可能是导致产生高速和(或)强烈湍流的结果。 图6表示在产生气蚀的情况下流体压力分布与沿流体流动距离的关系。气泡在最小静压力区域内形成,而随后,汽泡在进入较高的区域时被挤压破裂。由气蚀作用产生子的噪音具有很宽的频率范围,因而常常把这种噪音描述为格格声,它与流体中包含有砂石发出的声音相似。 气蚀作用对于限制气蚀流体的固体表面会产生严重的破坏作用。一般说来,由气蚀所产生的噪音是次要的。图7表示了由于气蚀磨损所引起的表面损坏情况。 闪蒸是当节流元件前后的差压大于入口的绝对静压力和节流元件前蒸气压力之间的差压即△PP1—Pv时,在液体流动中出现的一种现象。其结果,流动的流体是[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相的混合物。控制闪蒸流体的阀门所产生的噪音是两相流体的减速和膨胀的结果。 空气动力噪音 空气动力噪音是调节阀的主要噪音源。空气动力噪音是流动气流所产生的噪音,即在没有振动边界或其它外部能源的流体的相互作用下产生的噪音。 空气动力噪音是雷诺应力或剪切力的一种结果,雷诺应力或剪切力是由于减速、膨胀或冲击的结果在流动的流体中产生的。调节阀中产生噪音的主要区域是在紧*缩流处下游的恢复区,此处的流动状态是物相混乱、完全没有规则和不连续的,具有强烈的湍流和混合作用。

  • 孔板流量计和V锥流量计选择差压值的经验之谈

    孔板流量计和V锥流量计在选择差压值的时候该依靠什么理论来选择呢?很多时候,我们都把这两个放在一起,很多人也叫V锥流量计(孔板流量计)。V型锥流量计是差压类型中一款比较有典型代表的流量计,它的出现是差压类型的流量计的一个比较具有时代性意义的事情。她的工作原理是利用V锥产生的流体,运用测估量压差来测量某一特定的流量。它改变了节流的一般配置,也改为了环状的形态。工作中的表现来证明,V锥流量计和其他类型的流量计相比,具有测量精度准确高、测量限制小、测量范围广、适应更多恶劣环境等等优势。同时,V锥体作为整流器也成为了在行业中比较有实用价值的一种流量计。  下面,简单介绍一下孔板流量计的基本概念,孔板流量计是测量差压的一种流量计,与其他流量计一起配合可以测量出一些介质的流量。同时,与差压变送器配合运用,即可以测量出气体和液体中的流量,这款流量计广泛地于石油化工等能源行业中发挥作用。  介绍完这以上两个信息,相信大家会有一个大概的认识,那么下面就出现了一个比较复杂的问题,就是差压值该如何选区呢?又该选多大的数值呢?下面,我将给大家几个比较有价值的知识点,具体的操作请大家以后再在实践中慢慢摸索。  首先一点,差压值如果选得稍微大一点,那么则需要稍微短一些的直管段。根据这个原理,在孔板流量计选择差压值的时候,需要我们考虑多方面的因素,我们应该去选择差压最大的数值。那么V锥流量计又该如何选择呢?它的直管段需求不是很高,所以选取的时候就要按照这个特点来进行。  其次,在差压值稍微大点的时候,我推荐大家使用的比较小的雷诺数值,经过这样的处理,雷诺数会大于推荐我们使用的数值,所以,测量也就更加精确,也更加稳定。 差压值选取比较大的时候有点比较多,但是,什么事情都是有两面性的,当经济社会发展过后,对产品的综合性能的要求会越来越高,如果我们选取差压太大的情况下,会导致非常小的开孔,则对压力产生不好的影响,对于我们的使用者而言,则会增大成本,因为压力的流失会导致很大的资金浪费,不过对于V锥流量计而言,差压值选取的时候,尽量选取适中的数值,这样会对我们的使用者的使用更加符合我们的意愿。 V锥流量计(孔板流量计)的选择基本点,我在以上已经给大家简单地介绍了关于孔板流量计和V锥流量计选取差压值的一些技术要点,其实都是一些经验之谈,如果真正想从根本上解决选取难度大的问题,这需要我们在平时的使用中多积累经验,不断利用经验来摸索出一套有价值的理论知识。

  • 运动粘度对润滑油的意义

    [font=&][size=18px]流体间产生内摩擦力的性质,称为流体的粘滞性。粘度是流体的 一种属性,是指液体受外力作用移动时,分子间产生的内磨擦力的量度, 不同流体的粘度数值不同。粘度也可通过实验求得,如用粘度计测量。    粘度反映油品的内摩擦力,是表示油品油性和流动性的一项指 标。在未加任何功能添加剂的前提下,粘度越大,油膜强度越高,流动性越差。 运动粘度表示液体在重力作用下流动时内磨擦力的量度,其值为 相同温度下的动力粘度与其密度之比,在国际单位制中以米2/秒表 示。习惯用厘斯(cSt)为单位。1厘斯=10-6米2/秒=1毫米2/秒。 润滑油是用在各种类型机械上以减少摩擦,保护机械及加工件的 液体润滑剂,主要起润滑、冷却、防锈、清洁、密封和缓冲等作用。 粘度是评价润滑油质量的重要参数, 粘度对发动机的启动性 能、磨损程度、功率损失和工作效率等都有直接影响, 只有选用 粘度适当的润滑油,才能保证发动机具有稳定可靠的工作状况,达 到的工作效率,延长使用寿命。粘度增大,流动性能变差,会降 低发动机的功率,增大燃料消耗,甚至造成启动困难。润滑油粘度 过小,则会降低油膜支撑能力,使摩擦面之间不能保持连续的润滑 层,增大磨损,降低使用寿命。喷气发动机燃料及柴油燃料的重要 指标之一。 粘度是润滑油分类的依据。一些种类的润滑油产品是以油品的 运动粘度值划分编号的。例如,内燃机油、齿轮用油和液压系统用油 等三大类润滑油多用运动粘度来划分牌号,其中汽油机油、柴油机油 按GB/T14906---1994《[/size][/font][url=https://www.antpedia.com/standard/198076.html]内燃机油粘度分类[/url][font=&][size=18px]》划分牌号,工业齿轮油按 50℃运动粘度划分牌号,而普通液压油、机械油、压缩机油、冷冻机 油和真空泵油按40℃运动粘度划分牌号。 此外,粘度对于润滑油的输送有重要意义。当油品的粘度增大时, 输送压力便要增加。 也是工艺计算的主要参考数据之一。例如,计算流体在管线中的 压力损失,需查出雷诺数,而雷诺数与粘度有关[/size][/font]

  • 旋进漩涡流量计的基本原理

    旋进漩涡流量计可以用来测量各种管道中的液体、气体和蒸汽的流量,是目前工业控制、能源计量管理中常用的新型流量计。它是利用流体通过漩涡发生器产生漩涡流,漩涡流在文丘利管中旋进,到达收缩段突然节流使漩涡流加速,然后再突然进入扩散段,由于压力变化使漩涡流发生进动。在流动区域放置压电传感器以检测进动频率,再经过放大器处理,转换成频率与流量成正比的脉冲信号,最后通过流量积算仪的运算、处理转换成瞬时值和累积值显示。 因为单侧漩涡产生频率f:http://www.yb1518.com/uploadfiles/image/2011-10//2011101884734544.gif 所以单位时间内的体积流量Q:http://www.yb1518.com/uploadfiles/image/2011-10//20111018847151933.gif f为单侧漩涡产生的频率,Hz; v为流体平均流速,m/s; d为圆柱体直径,m; St=0.2(雷诺数Re=5×102~15×104) 它的优点是精确度高、测量范围广、没有运动部件、无机械磨损、维护方便、压力损失小、节能效果明显。缺点则是工作压力低,如果是铝合金外壳,工作压力小于等于1.6MPa,并且在安装时要特别注意不能用力过大,因为铝合金法兰面容易断裂;如果是不锈钢外壳,工作压力则小于等于4MPa。常用于作业区供气、注气压缩机燃料气和外输机燃料气等压力等级低的计量。

  • 【转帖】利用涡街流量计测量油水两相混合流量具有可行性

    [b][u]在石油行业,经常会遇到油和水两相混合流动的现象,开展油水两相流流量的测量具有重要的理论和工程意义。目前,将成熟的单相[color=blue][url=http://www.greencc.net/gallery-14.html][font=宋体][color=#d6006d]流量计[/color][/font][/url][/color][font=宋体]应用于两相流量测量取得了较大进展,如差压式流量计、[/font][font=Times New Roman]Coriolis[/font][font=宋体]流量计等。涡街流量计因其具有输出与流体流量成正比的脉冲信号,对被测流体压力、温度、黏度和组分变化不敏感,可测量液体、气体和蒸汽流量等优点,广泛应用于石油、化工、冶金、机械等工业领域。然而涡街流量计在两相流量测量领域的研究还处于探索阶段,目前主要集中在气液两相流方面,包括总流量、组分、斯特劳哈尔数及稳定性等。在油水两相流方面研究甚少,仅[/font][font=Times New Roman]SKEA[/font][font=宋体]应用多种单相流量计测量水平管内油水两相流流量的研究中提及涡街流量计,但未对实验结果进行分析。[/font][/u][/b][font=宋体][color=#d6006d][size=3][b][u]本文应用涡街流量计对垂直上升管内油水两相流总体积流量进行了实验测量,分析了不同两相流量、含油率对仪表系数误差产生的影响,以及两相斯特劳哈尔数随含油率和两相雷诺数的变化情况。[/u][/b][/size][/color][/font]

  • 如何选用合适的流量测量仪表

    由于流量测量仪表的种类多,适应性也不同,因此正确选用流量测量仪表对保证流量测量精度十分重要: (1)选用流量测量仪表时要考虑工艺允许压力损失,最大最小额定流量、使用场合特点以及被测流体的性质和状态(如液体、气体、蒸汽、粉末、导电性、压力、温度、数度、重度、腐蚀、气泡和脉动流等),还要考虑对仪表的精度要求,以及测量瞬时值、积算值等。 (2)节流装置或其他差压感受元件与差压计配套,可用于测量各种性质及状态的液体、气体与蒸汽的流量,一般用在大50mm管径的流量测量;标推孔板适用于测量干净的液体、气体或蒸汽流量;喷嘴可用于测量高压、过热蒸汽的流量;文丘里管适用于精密测量干净或脏污的液体或气体;偏心孔板和圆缺孔扳适用于介质含有沉淀物、悬浮物的流量测量;1/4圆喷嘴适用于测量黏度大、流速低、雷诺数小的流体;毕托管适用于流量较大而不允许有显著压力损失的场合,但测量精度较低。 (3)计量部门应选用精度等级较高的仪表,如椭圆齿轮流量计、旋转活塞流量计流量计、涡轮流量计、旋涡流量计、侧贴式液位开关等。 (4)电磁流量计只能用于导电液体的测量,如酸、碱、盐、泥砂状流体等。 (5)金屑转子流量计和靶式流量计可以测量高黏度、腐蚀性介质的流量,它可远传和自动调节。 (6)差压流量计和靶式流量计是均方根刻度。在选择刻度时,最大流量为满刻度的95%,正常流量为满刻度的70%—80%,最小流量为满刻度的30%;其他流量仪表是线性刻度,在选择刻度时,最大流量为满刻度的90%,正常流量为满刻度的50%—70%,最小流量为满刻度的10%—20%。

  • 差压式流量计如何安装和使用

    仪器仪表网介绍差压式流量计的安装和使用 ①必须保证节流装置的使用条件与设计条件相一致,当被浏流体的工作状态或密度、枯度、雷诺数等参数值与设计值不同时,应进行必要的修正,否则会造成较大的误差。 ②安装节流装置时.标有“十”的一侧.应当是流体的人口方向。如为孔板,则应使流体从孔板90°锐口的一侧派人。 ③导压管内径不得小于6mm.长度不得大于16 m.安装导压份时.应使两根导压管内的被洲介质的密度相同,否则会引起较大的测量误羞。 测量液体的流量时,取压点应该位于节流装置的下半部,与水平线夹角为0--45°;引压导管应垂直向下或下倾一定的坡度(1:20--1:10).使气泡易于排出,管路内应有排气装置。若差压计只能装在节流装置之上时.须加装贮气罐。 测最气体流量时.取压点应在节流装置的上半部.引压管垂直向上或上倾一定的坡度,以使引压管内不滞留液体;若差压计必须装在节流装置之下.须加装贮液雄和排放阀. 测量蒸汽流量时,取压点应从节流装l的水平位置接出,并分别安装凝液罐,使两报导管内都充满冷凝液.保持两凝液罐液位高度相同,就能实现差压的准确侧最。 ④差压计安装时,应考虑安装现场周围环境条件,选择合适的地点。 开表前,必须使导压管内充满液体或隔离液.导压管中的空气要通过排气阀和仪表的放气孔排放干净。开表时.不能让差压计单向受到很大的静压力,否则仪表会产生附加误差,甚至损坏。 应正确使用平衡阀:启用差压计时.先开平衡阀,使正、负压室连通,再开正、负压侧切断阀,最后关闭平衡阀.差压计即投人运行。当正、负压侧切断阀关闭时,打开平衡阀,即可进行仪表的零点校验。差压计停止运行时,先开平衡阀,再关闭正、负侧切断阀,最后关闭平衡阀。 ⑤测量腐蚀性或易凝固等不宜直接进人差压计的介质的流量时,必须采取隔离措施。来源——仪器仪表网

  • 浮力﹑对流和湍流对TG曲线的影响

    样品支持器所处介质空间[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]密度随温度的升高而降低﹐因而浮力减小﹐表现为表观增重。对试样容器来说﹐朝上流动的空气引起表观失重﹐而空气湍流引起增重﹐这与坩埚尺寸和形状有关﹐可借助与试样容器上方的出气孔加以调整﹐但使TG曲线在整个温度范围没有表观质量变化是比较困难的。

  • 实验流场评估——数字粒子图像测速仪(DPIV)使用数字粒子图像测速仪(DPIV)

    实验流场评估——数字粒子图像测速仪(DPIV)使用数字粒子图像测速仪(DPIV),可以分析装置附近的脉动流条件,以确定心血管装置是否符合监管标准。疾病的触发因素(如剪切应力和停滞区域)可以高度精确地量化。先进的方法,包括适当的正交分解,也捕捉感兴趣的隐式流体力学现象。检查法ViVitro实验室测试为2D提供了关于设备周围流动的定量和定性的高速信息。定性输出包括基于颗粒条纹的流动评估,评估和描述任何流动分离、流动停滞、涡流形成、喷射性质、回流和其他流体机械现象的发生。定量输出包括心动周期不同阶段的速度、剪切应力和粒子停留时间。在心脏瓣膜手术期间,停滞流动可能导致潜在的血凝块形成。装置附近的高流速可能导致潜在的溶血和血小板活化。测量参数速度剪切应力(粘性剪切应力、雷诺剪切应力)停滞地区定性分析:湍流区域,流动分离,涡流形成,喷流计算的粒子停留时间(如果需要)范围经导管瓣膜;TMVR TAVI生物、聚合物、机械瓣膜:刚性或柔性静脉瓣膜和导管瓣膜导管腔静脉过滤器辅助心室装置任何植入流动模型中装置服务水平标准服务全方位服务适用标准ISO 5840-2:2021心血管植入物心脏瓣膜假体第2部分:外科植入的心脏瓣膜替代物ISO 5840-3:2021心血管植入物心脏瓣膜假体第3部分:心脏瓣膜[img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304301015561812_3608_1602049_3.png[/img]

  • 看到这样的新闻,你如何回复?

    http://news.163.com/12/0312/09/7SCRPTJ000014JB5.html阿根廷两名男子蹦极时头部相撞双双死亡新华网布宜诺斯艾利斯3月11日电 阿根廷布宜诺斯艾利斯省莫雷诺市10日发生一起蹦极事故,两名年轻人在空中头部猛烈相撞而亡。据媒体报道,莫雷诺市某农庄一架处于拆卸状态的废旧工程吊车被农庄主人儿子及其朋友重组改造成蹦极设施。10日晚,25岁的马丁内斯和27岁的帕帕亚尼从25米高的吊车上一起跳下,两人的头部在空中猛烈相撞。一人当场死亡,另一人被送医院抢救,不治身亡。莫雷诺市政府官员说,私自搭建这么高的工程吊车需要得到市政府的许可,附近居民以为搭建吊车是为建筑工程使用,故未举报。

  • 各位土壤专家, 第六届国际雷诺杯土壤矿物物相定量竞赛开始了

    Dear Colleagues,It's on again!The 6th biennial Reynolds Cup competition for quantitative mineral analysis is now open. You can register your interest for the contest by sending an email to ReynoldsCup2012@csiro.au. Information about the competition including guidelines and previous winners can be found at http://www.clays.org/SOCIETY%20AWARDS/RCintro.html. The competition is free for all to enter, however, those that are not members of the CMS are encouraged (but not obliged) to become members (see http://www.clays.org/MEMBERSHIP/MemberRates.html for details).Please use the following format when registering:Subject: Please put "Reynolds Cup 2012 registration" in the subject line in your email request.Body: In the body of the email please put the following information:Name: Institution/organization: Shipping address: (that works for DHL/Courier delivery, e.g. physical address not Postal Box) Phone number (for delivery): Email address:Please also fill in these same delivery address details on the attached file Address-Label.doc.A total of approximately 100 sets of samples will be available for distribution. Each set comprises three samples with mineral mixtures commonly found in clay bearing rocks or soils. All 100 sets of samples will be distributed in the order of registration.Samples are expected to be dispatched on the 1st March with the deadline for submission of results by the 15th May 2012. The top three contestants with the most accurate results will be announced at the (49th Annual meeting of the Clay Minerals Society 7-11th July 2012). Only the names of the top three contestants will be published. The names of the other participants will remain strictly confidential.The competition is open to anyone interested in quantitative mineral analysis, with particular emphasis on clay mineralogy.Because of the popularity of the Reynolds Cup and the enormous amount of work put into its preparation, potential participants are strongly encouraged to plan ahead and only request samples if they are sure they can complete the analysis and return results to the organizers by the due date.Those who request samples and do not send in results or fail to return the samples unopened WELL BEFORE the due date will not be eligible to participate in future Reynolds Cups.A waiting list will be kept to offer returned samples to other potential participants.To ensure an even wider exposure, we encourage you to forward this announcement to your national mailing lists and mineralogy associations, colleagues and friends who might be interested in participating.We look forward to your participation!Sincerely,Mark Raven and Peter Self Reynolds Cup 2012 organizers. CSIRO Land and WaterWaite RoadUrrbraeSA 5064AUSTRALIA

  • 【原创】推荐色谱书1___气相色谱基本关系式

    【原创】推荐色谱书1___气相色谱基本关系式

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]基本关系式http://www.instrument.com.cn/bbs/download.asp?ID=94893美,L.S.艾特利著,石油工业出版社 1984年第一版书的前两个附录,详细讨论了由色谱的保留数据计算死时间的方法,同时导出了柱效率和分离度与分析参数之间的基本关系式.第三个附录,列举了罗什奈得-麦克雷诺常数应用的实例.最后附录,阐明了从色谱图上测得的数据如何进行色谱方面的计算.这本书对于色谱的一些计算讲得比较经典,虽然现在很多的计算都可以从色谱工作站中得到,但大家正因为如此不知是怎么的来的.[img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_625533_1618994_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901232154_130277_1618994_3.jpg[/img]

  • 【资料】毛细管气相色谱仪理论

    世界性的科学技术和生产的发展、进步,推动了分析化学的发展,激发了商品仪器的生产。而色谱法是分析化学的重要组成部分,从一出现就对科学的进步和生产的发展起着重要的作用。在30~40年代他为揭开生物世界的奥秘,为分离复杂的生物组成发挥了他独特的作用;50年代为石油工业的研究和发展作出了贡献;60~70年代成为石油化工、化学工业等部门不可缺少的分析监测工具。目前色谱法是生命科学、材料科学、环境科学、医药科学、食品科学、法庭科学以及航天科学等研究领域的重要手段。各种色谱仪器已经成为各类研究室、实验室极为重要的仪器设备。气相色谱是比较成熟的方法,气相色谱仪使用极为普遍的仪器。1941年Martin和Synge提出用气体代替液体作流动相的可能性,11年之后James 和 Martin 发表了从理论到实践比较完整的气液色谱方法(Gas-Liquid Chromatography),因而获得了1952年的诺贝尔化学奖。http://www.labbase.net/images/ParamPic/NewsPic/200707/07a032.jpg在此基础上1957年高雷(M.J.E .Golay) 开创了开管柱气相色谱法(Open-Tubular Column Chromatography)。高雷进行毛细管气相色谱的研究高雷本来是电学和数学专家,1955年他加盟 Perkin-Elmer公司,开发红外分光光度计的检测器,这一年Perkin-Elmer公司推出了世界上第一台气相色谱仪,许多研究人员对这种新奇的分离方法进行深入的研究,也引起了高雷极大的兴趣,他用电学和数学的方法对填充柱色谱进行了大量的理论研究,发现如果使用毛细管柱可以把柱效大大提高。他在1957年美国仪器学会组织的第一届气相色谱会议上发表了第一篇毛细管气相色谱的报告,介绍了他的第一张毛细管气相色谱图,是在一支91m长的毛细管气相色谱柱上进行的,得到了12000个理论塔板数。次年他在阿姆斯特丹的国际气相色谱会议上发表了著名的高雷方程,阐述了各种参数对柱性能的影响。阿姆斯特丹的会议为毛细管气相色谱的发展奠定了重要的基础。高雷的研究激发了许多色http://www.labbase.net/images/ParamPic/NewsPic/200707/07a033.jpg谱学家的极大兴趣,如英国的Desty,Scott 美国的Zlatkis, Lipsky, Lovelock;德国的Kaiser,Schomberg;意大利的 liberti, bruner, 都为毛细管气相色谱早期的发展做出了贡献。

  • 【资料】毛细管气相色谱系列讲座(共35讲)

    【资料】毛细管气相色谱系列讲座(共35讲)

    [B][center] 毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]系列讲座(1)[/center][/B]主讲人 rfu 毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的出现 世界性的科学技术和生产的发展、进步,推动了分析化学的发展,激发了商品仪器的生产。而色谱法是分析化学的重要组成部分,从一出现就对科学的进步和生产的发展起着重要的作用。在30~40年代他为揭开生物世界的奥秘,为分离复杂的生物组成发挥了他独特的作用;50年代为石油工业的研究和发展作出了贡献;60~70年代成为石油化工、化学工业等部门不可缺少的分析监测工具。目前色谱法是生命科学、材料科学、环境科学、医药科学、食品科学、法庭科学以及航天科学等研究领域的重要手段。各种色谱仪器已经成为各类研究室、实验室极为重要的仪器设备。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]是比较成熟的方法,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]使用极为普遍的仪器。1941年Martin 和Synge提出用气体代替液体作流动相的可能性,11年之后James 和 Martin 发表了从理论到实践比较完整的气液色谱方法(Gas-Liquid Chromatography),因而获得了1952年的诺贝尔化学奖。在此基础上1957年高雷(M.J.E .Golay)(见图1) 开创了开管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法(Open-Tubular Column Chromatography)。[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910291629_178778_1912472_3.jpg[/img]图1 高雷进行毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的研究高雷本来是电学和数学专家,1955 年他加盟 Perkin-Elmer 公司,开发红外分光光度计的检测器,这一年 Perkin-Elmer 公司推出了世界上第一台[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],许多研究人员对这种新奇的分离方法进行深入的研究,也引起了高雷极大的兴趣,他用电学和数学的方法对填充柱色谱进行了大量的理论研究,发现如果使用毛细管柱可以把柱效大大提高。他在1957年美国仪器学会组织的第一届[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]会议上发表了第一篇毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的报告,介绍了他的第一张毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]图,是在一支91m长的毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱上进行的,得到了12000个理论塔板数。次年他在阿姆斯特丹的国际[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]会议上发表了著名的高雷方程,阐述了各种参数对柱性能的影响。阿姆斯特丹的会议为毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展奠定了重要的基础。高雷的研究激发了许多色谱学家的极大兴趣,如英国的Desty,Scott 美国的Zlatkis, Lipsky, Lovelock;德国的Kaiser ,Schomberg ;意大利的 liberti, bruner, 都为毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]早期的发展做出了贡献。RFU撰文

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制