当前位置: 仪器信息网 > 行业主题 > >

高聚物乳液

仪器信息网高聚物乳液专题为您整合高聚物乳液相关的最新文章,在高聚物乳液专题,您不仅可以免费浏览高聚物乳液的资讯, 同时您还可以浏览高聚物乳液的相关资料、解决方案,参与社区高聚物乳液话题讨论。

高聚物乳液相关的方案

  • 赛默飞防水乳液中的苯乙烯单体的测定
    目前,我国在防水材料的开发应用领域与世界先进国家的差距主要表现在高聚物防水涂料的生产与应用量很小。而该涂料在生产过程中,残留的苯乙烯单体的含量,反应着生产工艺、原料使用率水平。而目前,这种单体的检测方法,并没有明确的标准。 本实验通过顶空色谱法,采用Thermo Scientific 最新的Trace 1300 气相色谱仪,配合Triplus RSH 自动进样器,采用顶空进样,分析分析防水乳液中的乙烯单体含量,分析结果准确,重现性高。
  • 静态光散射 SMLS 预测含聚合物乳液的长期稳定性
    聚合物在工业中被广泛应用于控制粘度、提高使用性能和增加货架期。在高浓度时,聚合物通过形成网络来稳定乳液体系,可以持续很长一段时间(几个月),但是zui终会崩溃形成分离的两相。这类样品因为没有预测乳液崩溃的方法,在工业中经常是有问题的,如样品在质检测试中是稳定的,但是在商业化过程中却可能出现稳定性崩溃。
  • 赛默飞防水乳液中的丙烯酸丁酯测定
    目前,我国在防水材料的开发应用领域与世界先进国家的差距主要表现在高聚物防水涂料的生产与应用量很小。而该涂料在生产过程中,残留的丙烯酸丁酯单体的含量,反应着生产工艺、原料使用率水平。而目前,这种单体的检测方法,并没有明确的标准。 本实验通过顶空色谱法,采用Thermo Scientific 最新的Trace 1300 气相色谱仪,配合Triplus RSH 自动进样器,采用顶空进样,分析分析防水乳液中的丙烯酸丁酯含量,分析结果准确,重现性高。
  • 低场核磁法研究abs乳液聚合及橡胶含量
    乳液聚合是单体借助乳化剂和机械搅拌,使单体分散在水中形成乳液,再加入引发剂引发单体聚合。在用乳液聚合方法生产合成橡胶时,除加入单体、水、乳化剂和引发剂四种主要成分外,还经常加入缓冲剂(用于保持体系PH不变)、活化剂(形成氧化还原循环系统)、调节剂(调节分子量、抑制凝胶形成)和防老剂(防止生胶及硫化胶老化)等助剂。工业化品种有乳聚丁苯橡胶,聚丙烯酸酯乳液等。
  • 赛默飞防水乳液中的丙烯酸丁酯和苯乙烯单体的测定
    目前,我国在防水材料的开发应用领域与世界先进国家的差距主要表现在高聚物防水涂料的生产与应用量很小。而该涂料在生产过程中,残留的苯乙烯单体和丙烯酸丁酯的含量,反应着生产工艺、原料使用率水平。而目前,这两种单体的检测方法,并没有明确的标准。 本实验通过顶空色谱法,采用Thermo Scientific 最新的Trace 1300 气相色谱仪,配合Triplus RSH 自动进样器,采用顶空进样,分析分析防水乳液中的丙烯酸丁酯和苯乙烯单体含量,分析结果准确,重现性高。
  • 赛默飞防水乳液中的丙烯酸丁酯和苯乙烯单体的测定
    目前,我国在防水材料的开发应用领域与世界先进国家的差距主要表现在高聚物防水涂料的生产与应用量很小。而该涂料在生产过程中,残留的苯乙烯单体和丙烯酸丁酯的含量,反应着生产工艺、原料使用率水平。而目前,这两种单体的检测方法,并没有明确的标准。 本实验通过顶空色谱法,采用Thermo Scientific 最新的Trace 1300 气相色谱仪,配合Triplus RSH 自动进样器,采用顶空进样,分析分析防水乳液中的丙烯酸丁酯和苯乙烯单体含量,分析结果准确,重现性高。
  • 赛默飞防水乳液中的丙烯酸丁酯和苯乙烯单体的测定
    目前,我国在防水材料的开发应用领域与世界先进国家的差距主要表现在高聚物防水涂料的生产与应用量很小。而该涂料在生产过程中,残留的苯乙烯单体和丙烯酸丁酯的含量,反应着生产工艺、原料使用率水平。而目前,这两种单体的检测方法,并没有明确的标准。 本实验通过顶空色谱法,采用Thermo Scientific 最新的Trace 1300 气相色谱仪,配合Triplus RSH 自动进样器,采用顶空进样,分析分析防水乳液中的丙烯酸丁酯和苯乙烯单体含量,分析结果准确,重现性高。
  • 使用Turbiscan研究化妆品乳液的凝胶化现象
    凝胶的获得主要通过两种机理:通过聚合物的网状物创造一个网络结构(例如明胶),或者通过颗粒的聚集或絮凝形成网络结构(例如酸奶)。在化妆品工业中,经常用凝胶来获得不同的质感,同一个乳液凝胶前后的微观结构也会明显不同对于通过絮凝成型凝胶的乳液体系,液滴之间的相互作用依赖于温度、液滴尺寸、盐浓度和乳液浓度等因素。配方研发者需要知道乳液在何种条件下出现凝胶,乳液是否有凝胶化的趋势,凝胶的特征,凝胶存在的条件和稳定性,等等。本文中,我们呈现了几个变量对乳液凝胶化的影响。
  • 北京祥鹄:微波辐射无皂乳液聚合制备聚氰基丙烯酸正丁酯微球
    在微波辐射的“非致热效应”作用下,采用不含乳化剂的无皂乳液聚合,制备了聚氰基丙烯酸正丁酯( PBCA)微球。通过透射电子显微镜观察了微球的形态结构,利用激光光散射粒度测定仪测定了微球的粒径大小及其分布,探讨了柠檬酸浓度、氰基丙烯酸正丁酯(BCA)用量、微波辐射功率等对微球粒径的影响。研究结果表明,与常规无皂乳液聚合相比较,微波作用下的无皂乳液聚合反应时间缩短,得到的PBCA微球粒径更小,分散性更好。柠檬酸浓度增加, PBCA微球粒径逐渐增大 单体浓度增加,或微波功率增加, PBCA微球的粒径先减小后增大。当柠檬酸质量分数为01005%、BCA体积分数为110%、微波功率为600 W时,所制得的微球粒径最小,为200 nm左右。
  • 评估破乳剂对原油乳液稳定性的影响– 实时和加速分析
    由于生产条件的原因,原油大多以油包水乳液的形式获得,这些乳液通过沥青质、蜡和细颗粒来稳定。实际上,提炼原油的第一步是分离水。目的是最经济有效地破坏乳液,使水相完全分离。通常使用表面活性物质与热处理相结合,促使水滴聚结、水分离。原油是一种非常复杂的混合物,其化学成分和物理性质因产地不同而有很大差异。水、盐和矿物质的含量变化很大。混合料的不同不仅会影响其粘度、密度等宏观特性,还会影响破乳剂的种类和最佳用量。因此,市场上不断开发新的破乳剂。为了开发和选择合适的破乳剂,必须使用多种不同的破乳剂测试各种原油乳液。出于技术和经济原因,必须确定其最佳浓度。一种短时间内量化分离过程的有效的测试方法,将作为期瓶试法的替代方案。
  • 高聚物材料的包装可以实现哪些功能?
    高聚物材料的应用改变了过去包装笨重、复杂、功能单一的不足,因而在食品、药品等行业中得到广泛应用,同时由于高聚物性能具有可定制性,使得按照内容物的特点以及设计者的意图来设计包装材料的结构成为可能。资料显示,目前国内塑料类的包装(包括容器、工具)约占食品包装的30%,而且呈逐步上升趋势,其增长速度超过纸类食品包装。近几年我国已加大了对包装材料质量控制的监管力度,但是目前食品包装安全性能还是存在一些隐患,食品包装质量仍然存在很多问题。为此,从今年起,我国开始对食品包装/容器类产品进行强制性产品认证,以增强对塑料包装的质量保证。
  • 利用LUMiSizer研究分析DHA乳液的稳定性
    1.介绍二十二碳六烯酸(DHA)是一种ω -3长链多不饱和脂肪酸(ω -3 LCPUFA)。DHA具有很好的保健作用,如预防心血管疾病的发生、抗炎、促进视觉和神经发育、改善大脑功能、降低癌症风险以及预防其他代谢和慢性疾病。然而,DHA的结构由双烯丙基亚甲基组成,所有-CH=CH-键均以顺式构型存在,故DHA在有氧、光照、热等环境下很不稳定。据报道,ω -3 LCPUFA氧化会形成对人体有害的化合物和难闻的异味,极易氧化和低水溶性会降低DHA的生物利用度,这都大大限制DHA了在加工食品和饮料中的利用。近年来很多研究致力于研究包埋DHA的乳液载体系统,这类系统可用于包埋DHA,以提高其水溶性、物理化学稳定性及其生物利用度。已开发出越来越多的基于乳液的系统,这些系统具有不同的特性,以满足特定加工应用中胶囊成分的结构和功能要求,包括多重乳液、胶体体、微团簇、聚合物复合物、填充水凝胶微球和脂质体。上述每种系统都有各自的优缺点。因此,应根据应用条件选择合适的载体系统。一般来说,蛋白乳液受环境条件的影响,如pH值、温度和离子强度。乳状液本质上是热力学不稳定的系统。当pH值接近吸附蛋白质的等电点(pI)时,或在存在高离子强度时,由于液滴之间的静电斥力减少,可能发生聚结、絮凝、乳状化和相分离。 Ningning Ma等人利用利用LumiSizer研究分析DHA乳液和微粒在不同的pH条件下的稳定性。这也为DHA乳液设计和制造微粒提供理论和数据的支持,使得DHA今后可更好地添加在食品、饮料和医药产品中,发挥其有益的功能特性。
  • 利用LumiSizer研究分析DHA乳液的稳定性
    介绍二十二碳六烯酸(DHA)是一种ω -3长链多不饱和脂肪酸(ω -3 LCPUFA)。DHA具有很好的保健作用,如预防心血管疾病的发生、抗炎、促进视觉和神经发育、改善大脑功能、降低癌症风险以及预防其他代谢和慢性疾病。然而,DHA的结构由双烯丙基亚甲基组成,所有-CH=CH-键均以顺式构型存在,故DHA在有氧、光照、热等环境下很不稳定。据报道,ω -3 LCPUFA氧化会形成对人体有害的化合物和难闻的异味,极易氧化和低水溶性会降低DHA的生物利用度,这都大大限制DHA了在加工食品和饮料中的利用。近年来很多研究致力于研究包埋DHA的乳液载体系统,这类系统可用于包埋DHA,以提高其水溶性、物理化学稳定性及其生物利用度。已开发出越来越多的基于乳液的系统,这些系统具有不同的特性,以满足特定加工应用中胶囊成分的结构和功能要求,包括多重乳液、胶体体、微团簇、聚合物复合物、填充水凝胶微球和脂质体。上述每种系统都有各自的优缺点。因此,应根据应用条件选择合适的载体系统。一般来说,蛋白乳液受环境条件的影响,如pH值、温度和离子强度。乳状液本质上是热力学不稳定的系统。当pH值接近吸附蛋白质的等电点(pI)时,或在存在高离子强度时,由于液滴之间的静电斥力减少,可能发生聚结、絮凝、乳状化和相分离。 Ningning Ma等人利用利用LumiSizer研究分析DHA乳液和微粒在不同的pH条件下的稳定性。这也为DHA乳液设计和制造微粒提供理论和数据的支持,使得DHA今后可更好地添加在食品、饮料和医药产品中,发挥其有益的功能特性。
  • 粘度计测定高聚物的相对摩尔质量
    一、实验目的:1、掌握乌氏粘度计测量粘度的原理和方法。2、掌握粘度法测定聚乙烯分子量的原理、过程和数据处理方法。二、实验原理:由于高聚物的分子质量大小不一、参差不齐,且没有一个确定的值,故实验测定某一高聚物的分子质量实际为分子质量的平均值,称为平均分子质量(即平均摩尔质量)。根据测定原理和平均值计算方法上的不同,常分为数均分子质量、质均分子质量、Z均分子质量和粘均分子质量。对于同一聚合物,其测得的数均、质均、Z均或粘均分子质量在数值上往往不同。人们常用渗透压、光散射及超离心沉降平衡等法测得分子质量的绝dui值。粘度法能测出分子质量的相对值,但因其设备简单,操作方便,并有很好的实验精度,故是人们所常用的方法之一。
  • 利用稳定性分析仪LUMiSizer®®快速筛选乳液配方
    buriti棕榈树果油和pequi巴西油桃木果油由于丰富的营养广泛应用于在食品和化妆品中。然而,由于不饱和脂肪酸的存在,这些油很容易被氧化,且很难分散在水性介质中。此外,其中的类胡萝卜素也极易被氧化。乳剂的生产,然后冷冻干燥使我们能够获得这些材料的粉末,它们可以分散在水介质中,方便在食品工业中的应用。乳清蛋白(WPI)被广泛用作乳化剂。WPI含有90%以上的蛋白质,主要是β-乳球蛋白(β-lg)。除了以天然形式作为乳化剂使用外,加热后的WPI会形成团聚体,促进水包油体系的稳定。因此,通过在油水界面中使用WPI聚集体生成乳液,并将这些乳液与干燥技术相结合,可以提高乳液的稳定性,从而促进对被包裹化合物的更好保护。本研究的目的是利用加热和未加热的WPI作为乳化剂/连续相,将巴西油桃木果油进行包裹,并将巴西油桃木果油和棕榈树果油共同包裹在水包油乳液中,然后进行冷冻干燥。
  • 特殊医学用途配方食品全营养乳液的稳定性
    特殊医学用途配方食品(Food for Special Medical Purpose, FSMP),是为了满足进食受限、消化吸收障碍、代谢紊乱或特定疾病状态人群对营养素或膳食的特殊需要,专门加工配制而成的配方食品。全营养乳液是一个成分复杂的缓冲体系,由蛋白质、脂肪、碳水化合物、维生素和矿物质类组成。它在热力学上属于不稳定体系,既有蛋白质等微粒形成的悬浮液、脂肪乳浊液,又有以糖、盐类形成的真溶液。其主要质量问题为加工及贮藏中出现沉淀、分层以及脂肪上浮的问题。从微观上表现为乳状液分散相颗粒的迁移(表现为沉淀和析水),或是分散相颗粒平均粒径大小的变化(表现为团聚和絮凝)。凡是影响全营养乳液中蛋白质稳定性的因素,破坏蛋白结构稳定性的因素都会影响产品的稳定性,例如稳定剂、乳液体系的pH、矿物质盐以及蛋白诱导胶凝等因素都会影响到产品的稳定性。全营养乳液这一复杂的体系不仅需要合适的工艺,还需要适量的稳定剂、乳化剂以及一定的体系条件(pH、金属离子浓度)以保持液体的稳定性。本文主要研究胶体对全营养乳液稳定性的影响。
  • 利用LUMiSizer®对不同API(利多卡因)药物含量的Sepineo P600乳液凝胶制剂稳定性进行评价
    在乳液体系的水相中存在胶凝剂会将其转化为乳液凝胶或“乳胶”,乳液凝胶具有凝胶和乳液的特性,例如可调流变学、作为双重控释系统、改善稳定性和涂抹性,以及通过油润肤作用促进皮肤保湿和调理,具有较高的患者接受度。Sepineo p600是现在化妆品和制药行业中广泛使用的赋形剂,用于制备外用凝胶和乳液。含有 3-5% (w/w) Sepineo P600 的体系表现出典型的凝胶状行为,其结构具有弱聚合物-聚合物相互作用的特征,有利于局部给药。
  • LUMiSizer®对不同乳化体系的液晶乳液进行快速稳定性分析
    液晶结构乳状液是近几年来备受化妆品领域关注的乳化体系,可通过选择特定结构的乳化剂,使其分子在油水界面处通过定向排列形成有序的多层结构制备得到。层状液晶结构与角质层细胞间脂质多层结构相似,具有良好的稳定性、清新自然的肤感,同时能够延长水合作用和闭合作用,控制活性成分缓释。含有液晶结构的护肤品具有广阔的应用前景,但同时液晶乳液的制备仍然存在液晶形成概率小、形状不规整、单位面积内数量少、液晶织构结构稳定性难以保证等问题。不同种类的乳化剂形成液晶的能力有所差别,是影响层状液晶结构形成的最主要因素。本文使用LUMiSizer®对鲸蜡硬脂醇、山嵛醇对葡糖苷类、硬脂酰类和聚甘油类乳化剂制备得到的层状液晶乳液稳定性进行了探究,以期为液晶乳液中乳化剂的选择提供更多的实践基础以及理论依据,为开发兼具优异性能及稳定性的高端化妆品提供基础信息。
  • LUMiSizer®对不同乳化体系的液晶乳液进行快速稳定性分析
    液晶结构乳状液是近几年来备受化妆品领域关注的乳化体系,可通过选择特定结构的乳化剂,使其分子在油水界面处通过定向排列形成有序的多层结构制备得到。层状液晶结构与角质层细胞间脂质多层结构相似,具有良好的稳定性、清新自然的肤感,同时能够延长水合作用和闭合作用,控制活性成分缓释。含有液晶结构的护肤品具有广阔的应用前景,但同时液晶乳液的制备仍然存在液晶形成概率小、形状不规整、单位面积内数量少、液晶织构结构稳定性难以保证等问题。不同种类的乳化剂形成液晶的能力有所差别,是影响层状液晶结构形成的最主要因素。本文使用LUMiSizer®对鲸蜡硬脂醇、山嵛醇对葡糖苷类、硬脂酰类和聚甘油类乳化剂制备得到的层状液晶乳液稳定性进行了探究,以期为液晶乳液中乳化剂的选择提供更多的实践基础以及理论依据,为开发兼具优异性能及稳定性的高端化妆品提供基础信息。
  • 应用动态光散射解析一个悬浮液中的三种颗粒尺寸
    高聚物乳液以接近完美球体分布著称可以被用来验证DLS性能。因为DLS是一种以测试单分散样品平均粒径著称的技术,所以在单一悬浮液中区分不同颗粒尺寸是一个重大的挑战。安东帕Litesizer 500不但做到市面上很多纳米粒度仪解析出的两种尺寸颗粒混合高聚物乳液,甚至做到目前没有报导的准确分辨出三种尺寸颗粒混合的高聚物乳液。
  • 温度对精华乳液稳定性的影响
    精华乳是一种富含精华成分的护肤品,作用效果和精华液差不多。精华乳质地浓稠保湿效果更好,对于肌肤的防护、修复、缓解衰老等有着较为显著的效果,其主要作用包括补水保湿、美白祛斑、抗衰老、抗氧化等。精华乳和精华液的功效基本相同,精华液和精华乳的区别是,精华乳的质地比精华液的质地更加黏稠,但不及面霜或其他膏霜类的厚重感,一般也相比膏霜类产品更受温度等其他因素的影响导致乳液分层。在长途运输过程中,产品所处的环境比较恶劣,温度高且伴随有振动等影响,稳定性受到挑战。在一般情况下,考察产品物理稳定性主要用到烘箱和培养箱进行高温3个月的加速试验,进而来观测产品是否存在明显得到分层,破乳,颗粒团聚等情况,若出现不稳定情况再来调整配方和工艺,特别是品牌方或者OEM方开发全新的配方,产品开发周期的时间更久,往往要重复多次。LUMiSizer?稳定性分析仪能在短时间的测试中对乳液产品进行不同温度稳定性考察,得到产品稳定性结果,帮助研发人员及时发现问题优化配方。
  • 如何测量EVA(乙烯-醋酸乙烯共聚物)切片或粒子或乳液的颜色?
    对于EVA切片、粒子和乳液,测量颜色时,会遇到如下一些困难。由于样品具有不均匀性,测量结果的重复性很难保证。因此,需要使用备件或者特殊方法来确保测量结果的重复性。样品对入射光存在吸收,当样品厚度不同时,对入射光的吸收是不同的,导致测量结果也不尽相同。因此,必须固定样品厚度,且样品的厚度足够大,如采用50mm光程的比色皿和光罩。样品可能含有荧光增白剂,光源中的UV部分发生变化,测量结果也会发生变化。因此,需要对光源中的UV部分含量进行控制和校准。本文针对上述问题,提出了一种测量方法,不但操作简单,方便快捷地得到样品的颜色数据,而且还能快速得到重复性高的测量结果。
  • 全天然,水溶性,高生物利用度的CBD浓缩物纳米乳液超声制备
    大麻油和大麻分离物具有较差的水溶性,这会降低其生物利用度,并导致口服或局部给药后治疗作用延迟。然而,当以纳米乳剂的形式消费时,它们提供了极高的生物利用度和治疗效果,并被人体迅速和完全吸收。CBD American Shaman与ISM合作,开发一种稳定、水溶性、全天然纳米乳液的配方和生产工艺,该纳米乳液由CBD和富含萜烯的大麻油制成.
  • 石蜡乳液的质量控制
    石蜡乳液是包括石油蜡在内的各种蜡,经物理改性制成的一种含蜡含水的均匀流体,是由石蜡与几种不同种类、性能的乳化剂及适当的调节剂经乳化反应制成的固-油-水多相分散体系的乳状液。石蜡乳液具有抗酸、抗碱、耐硬水、水溶性强、乳液稳定,稀释不分层、不破乳、不结块、保质期长、固含量高、分散性好等特点,目前广泛应用于皮革业,建筑业,农业,造纸,木材防水,水性涂料等行业。本文介绍了某石蜡乳液的制造商,用离心式分散体分析仪LUMiSizer对其生产的不同批次及不同储存期限的产品进行稳定性监测的案例。
  • ATAGO(爱拓)阿贝折光仪+高聚物+分子量
    无论是天然的还是合成的高聚物,分子量很大且都是不均一的,具有多分散性,会给测定带来一定的困难。一般是利用某种形式的分子量分布函数或分布曲线,多数情况是直接测定其平均分子量。因此,聚合物的分子量只有统计的意义,用实验方法测定的分子量只具有统计意义的平均值。高分子分子量的测量方法主要有:测试数均分子量的端基分析法、依数法、渗透压法;测量重均分子量的光散射法、小角X光衍射法;测量Z均分子量的超速离心沉降法;测量粘均分子量的粘度法以及其它方法——电子显微镜、凝胶渗透色谱法。其中光散射法或者光散射——凝胶渗透色谱联用法比较常见。
  • 乳液的稳定性及货架期推算的精确快速评价法
    乳液作为化妆品中最基本的产品,种类繁多。一般由两种及以上流体成分混合而成,其中一种必以液滴的形式分散于另外一相中,形成O/W分散相。乳液属于热力学不稳定体系,产品容易变得不稳定,因此货架期稳定性评估成为化妆品乳液产品生产发展的主要问题。传统方式进行乳液稳定性及货架期推算大多采用静置或条件静置方式,周期过长且不够准确。而采用多重光散射及离心加速的方式可以更为有效科学的对乳液稳定性及货架期进行评估、推算。
  • 稀释剂对重质油油乳液稳定性的影响
    蒸汽辅助重力泄油技术(SAGD)是开发超稠油的一项前沿技术,其机理是在注汽井中注入蒸汽,蒸汽向上超覆在地层中形成蒸汽腔,蒸汽腔向上及侧面扩展,与油层中的原油发生热交换,加热后的原油和蒸汽冷凝水靠重力作用泄到下面的水平生产井中产出。在这一过程中会产生复杂的W/O/W乳液,为了获得无水稠油需要将乳液进行相分离。由于重质油的密度与水接近,经常采取稀释的方法降低沥青的粘度来加速相分离过程。在本文中,利用静态多重光散射仪Turbiscan测量了重质油乳液的不稳定现象,评价了不同种类稀释剂对重质油油乳液稳定性的影响。
  • 杜伯特自动洗瓶机对多元醇、表面活性剂、乳液残留物清洗解决方案
    在化妆品检测实验室中,多元醇、香波表面活性剂、乳液(乳白色粘稠液)等十分常见,这类器皿残留物人工清洗起来非常麻烦,十分费时费力。杜伯特自动洗瓶机对比人工,能够快速洁净的解决这类残留物清洗。
  • 美藤果油纳米乳液稳定性分析研究
    美藤果油是一种含有丰富 α-亚麻酸的功能性植物油,其 α-亚麻酸含量分别是橄榄油的 67. 09 倍、茶籽油的 175. 46 倍、花生油的 506. 89 倍,不饱和脂肪酸质量分数可达 93% ,研究表明,美藤果油在调节人体血脂、预防心血管疾病、增强免疫力、抗菌消炎、保养肌肤等方面具有显著疗效。然而,由于美藤果油中不饱和脂肪酸含量极高,其在贮藏加工中极易发生氧化,且又因为油类物质具有水溶性差、口服利用率低等不足,大大限制了其作为功能油脂在食品中的开发应用。纳米乳液( nanoemulsions) ,多指平均粒径为50 ~500 nm 的乳液体系,是由水、油、表面活性剂或助表面活性剂等按一定比例混合,经过一定的外部能量输入( 如搅拌、均质、分散、超声等) 所形成的热力学稳定的胶体分散体系。纳米乳液可以改善功能性油脂在水相食品中的溶解性和分散性,使功能性油脂可以应用到多相多组分的油水分散体系。纳米乳液与其他乳液体系相比,在乳液稳定性和食品安全性等方面具有较好的优势。将美藤果油制作成美藤果油纳米乳液,可以解决其水溶性差、口服利用率低、贮藏和加工过程中易发生氧化变质等加工应用方面的难题,同时保留美藤果油作为功能性油脂的营养价值,有利于其作为功能性辅料在食品领域进行广泛应用。
  • 探索纳米世界-Pickering乳液与粒度分析技术
    在现代材料科学领域,Pickering乳液以其独特的稳定性和可控性,成为研究的热点。这种乳液通过固相颗粒作为稳定剂,不仅在食品工业、化妆品、药物递送系统中有广泛应用,还在光催化、水净化等环保领域展现出巨大潜力。今天,我们主要参考Danae University of Montpellier Mikhael Bechelany团队的《Current Trends in Pickering Emulsions: Particle Morphology and Applications》文章[1],带您走进Pickering乳液的世界,并介绍三款先进的粒度分析、稳定性分析设备,它们在乳液粒径分布和稳定性研究中发挥着关键作用。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制