当前位置: 仪器信息网 > 行业主题 > >

高聚物多孔弹性材料

仪器信息网高聚物多孔弹性材料专题为您整合高聚物多孔弹性材料相关的最新文章,在高聚物多孔弹性材料专题,您不仅可以免费浏览高聚物多孔弹性材料的资讯, 同时您还可以浏览高聚物多孔弹性材料的相关资料、解决方案,参与社区高聚物多孔弹性材料话题讨论。

高聚物多孔弹性材料相关的论坛

  • 【分享】高聚物多孔弹性材料的国标GB/T 10653-2001、12825-2003、18941-2003、18942.1-2003和18942.2-2003

    5个高聚物多孔弹性材料的国标:GB/T 10653-2001 高聚物多孔弹性材料 压缩永久变形的测定GB/T 12825-2003 高聚物多孔弹性材料 凹入度法硬度测定GB/T 18941-2003 高聚物多孔弹性材料 定负荷冲击疲劳的测定GB/T 18942.1-2003 高聚物多孔弹性材料 压缩应力应变特性的测定 第1部分: 低密度材料GB/T 18942.2-2003 高聚物多孔弹性材料 压缩应力应变特性的测定 第2部分: 高密度材料[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=86930]GB/T 10653-2001 高聚物多孔弹性材料 压缩永久变形的测定[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=86931]GB/T 12825-2003 高聚物多孔弹性材料 凹入度法硬度测定[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=86932]GB/T 18941-2003 高聚物多孔弹性材料 定负荷冲击疲劳的测定[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=86933]GB/T 18942.1-2003 高聚物多孔弹性材料 压缩应力应变特性的测定 第1部分: 低密度材料[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=86934]GB/T 18942.2-2003 高聚物多孔弹性材料 压缩应力应变特性的测定 第2部分: 高密度材料[/url]

  • 高聚物分子量对高分子材料性能的影响

    高聚物分子量对高分子材料性能的影响[中图分类号]O631  [文献标识码]A  [文章编号]1006-7906(2000)05-0027-011 高聚物分子量的特殊性及其测定方法  高聚物的分子量有两个基本特点:一是分子量大;二是分子量具有多分散性,也即同一种聚合物,其分子量的大小各不相同。因此,讨论某一种聚合物的分子量有多大,并没有意义,只有讨论其平均分子量才具有实际价值。  当外界条件固定时,可应用聚合物的性质与分子量成函数关系这一特性,来测定其分子量的统计平均值。由于聚合物的不同性质与分子量有不同的依赖关系,因而根据不同的性质求得的分子量的平均值是不同的。即如果所用的测定方法不同,就要采用不同的统计平均方法。具体如下:  数均分子量:端基分析法、沸点升高法、冰点降低法、膜渗透压法、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]渗透压法。  重均分子量:光散射法、X射线小角散射法、凝胶色谱法。  Z均分子量:超速离心沉降平衡法、GPC(凝胶渗透色谱法)。  粘均分子量:粘度法2 高聚物分子量与高分子材料性能的关系  高聚物平均分子量的大小及其分散性,对高聚物的物理性能与加工性能都有重要的影响。因此,可作为加工过程中各种工艺条件的选择依据。  高聚物的分子量只有达到某数值后,才能表现出一定的物理性能。但当大到某程度后,分子量再增加,除其它性能继续再增加外,机械强度变化不大。由于随着分子量的增加,聚合物分子间的作用力也相应增加,使聚合物高温流动粘度也增加,这给加工成型带来一定的困难。因此,聚合物的分子量大小,应兼顾使用和加工两方面的要求。  分子量分布对高分子材料的加工与使用也有显著的影响。  对塑料而言,塑料的分子量依据产品的要求,变动范围较大,但窄分布对加工和性能都有利,因为存在少量低分子量级分的分子能起内增塑的作用。  对橡胶而言,平均分子量一般都很大,为保证制品强度,常以分子量分布宽一些为宜,这样可改善流动性而有利于加工。但也不宜过宽,因为低分子量级分过多,橡胶混炼时易粘辊。  对合成纤维而言,因其平均分子量较小,分子量分布以窄为宜。若分布宽,小分子的组分含量高,这对纺丝性能和机械强度都不利。

  • 【分享】材料滞弹性

    【分享】材料滞弹性

    [img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907152015_160077_1759509_3.jpg[/img]理想的弹性体其弹性变形速度是很快的,相当于声音在弹性体中的传播速度。因此,在加载时可认为变形立即达到应力-应变曲线上的相应值,卸载时也立即恢复原状,图上的加载与卸载应在同一直线上,也就是说应变与应力始终保持同步。但是,在实际材料中有应变落后于应力现象,这种现象叫做滞弹性(如图1-2)。对于多数金属材料,如果不是在微应变范围内精密测量,其滞弹性不是十分明显,而有少数金属特别象铸铁、高铬不锈钢则有明显的滞弹性。例如普通灰铸铁在拉伸时,其在弹性变形范围内应力和应变并不遵循直线AC关系(参见图1-2),而是加载时沿着直线ABC,在卸载时不是沿着原途径,而是沿着CDA恢复原状。加载时试样储存的变形功为ABCE,卸载时释放的弹性变形能为ADCE,这样在加载与卸载的循环中,试样储存的弹性能为ABCDA,即图中阴影线面积。这个滞后环面积虽然很小,但在工程上对一些产生振动的零件却很重要,它可以减小振动,使振动幅度很快地衰减下来,正是因为铸铁有此特性,故常被用来制作机床床身和内燃机的支座。滞弹性也有不好的一面,如在精密仪表中的弹簧、油压表或气压表的测力弹簧,要求弹簧薄膜的弹性变形能灵敏地反映出油压或气压的变化,因此不允许材料有显著的滞弹性。对于高分子材料,滞弹性表现为粘弹性并成为材料的普遍特性,这时高分子的力学性能都与时间有关了,其应变不再是应力的单值函数也与时间有关。高分子材料的粘弹性主要是由于大的分子量使应变对应力的响应较慢所致。

  • 【原创】多孔材料与无孔材料粒度测试的区别?

    对一多孔材料来说,由于在湿法测试中孔内吸附了液体,在测试过程中我有如下几个问题想与大家讨论:1、其折射率与相同材料的无孔固体相比会发生改变吗?能不能用仪器上给的无孔固体的折射击率。2、其散射光的强度会发生变化吗?3、如何评价一种多孔固体的测试结果?与无孔固体相比有没有需在修正的地方?谢谢!

  • 某软弹性材料怎么做定性成分分析

    实验室收到一块材料,是软的,有点弹性,不知道是橡胶还是聚氨酯还是哪种塑料,猜测大概率是一种塑料,怎么做这种定性分析或者成分分析?

  • 【求助】如何从力曲线估算材料的弹性模量

    请教各位:如何从力曲线估算材料的弹性模量?一位老师曾说,不同材料(比如软的或硬的)对针的作用力不同,可估算该材料的弹性模量,可是想不通是什么原理,哪位高手可否指点迷津。说句老实话,现在也不大清楚力曲线有什么用[em04]

  • 求助书籍《聚氨酯弹性体及其应用》和《聚氨酯树脂及其应用》

    1. 书名: 聚氨酯弹性体及其应用 作者:傅明源,孙酣经 编著 出版社:化学工业出版社 书号:7502578455 简介:本书主要阐述了聚氨酯混炼胶、聚氨酯浇注胶和聚氨酯热塑胶的合成配方和工艺、加工配方和工艺的具体数据和计算公式;聚氨酯革、聚氨酯胶黏剂、聚氨酯泡沫弹性体、聚氨酯涂料、聚氨酯水乳胶、聚氨酯灌浆材料和聚氨酯弹性纤维等的制作工艺、反应原理;简要介绍了新型聚氨酯弹性体;各种聚氨酯制品的加工方法及其应用。还介绍了合成聚氨酯的原材料的成品的分析,以及聚氨酯的工业卫生等。书中对TPUR半预聚法生产、聚氨酯革生产、反应注射成型(RIM)和增强的反应注射成型(RRIM)方法的生产作了较多介绍。 \r\n 本书除对第二版内容作适当补充修正外,还增加了聚氨弹性体助剂、聚氨酯预聚体以及田径场地塑胶跑道、篮球、排球、羽毛球和网球场地的聚氨酯塑胶铺面、聚氨酯地板和地板砖、聚氨酯防水材、聚氨酯嵌缝材和聚氨酯防腐材与新世纪展望等内容。 \r\n 本书实用性强,内容丰富,可供从事聚氨酯生产、科研、加工应用的工程技术人员和技术工人使用,也可供大专院校及中专高分子专业的师生参考。2. 书名: 聚氨酯树脂及其应用  ISBN:7502537449  著作者:李绍雄 刘益军  出版社:化学工业  出版日期:2002-05-01    页数:743  内容简介:第1章 绪论1.1 聚氨酯树脂的发展史1.2 我国聚氨酯工业的发展史1.3 国外聚氨酯树脂的生产与市场1.4 国内聚氨酯树脂的生产与市场1.5 聚氨酯树脂的技术发展动态第2章 聚氨酯化学2.1 异氰酸酯基本反应2.2 催化剂及温度对反应的影响2.3 聚氨酯分子结构与性能的关系第3章 基本原料3.1 概述3.2 异氰酸酯3.3 聚酯多元素3.4 聚醚多醇3.5 其它低聚物多元醇3.6 助剂第4章 聚氨酯泡沫塑料4.1 概述4.2 泡沫形成的化学机理4.3 软质聚氨酯泡沫塑料4.4 硬质聚氨酯泡沫塑料4.5 聚氨酯半硬泡4.6 聚氨酯泡沫的阻燃4.7 聚氨酯泡沫塑料的应用第5章 弹性体5.1 概述5.2 弹性体原料及原料对性能的影响5.3 浇注型聚氨酯弹性体5.4 热塑性聚氨酯5.5 混炼型聚氨酯弹性体5.6 聚氨酯弹性体的应用第6章 聚氨酯涂料6.1 概述6.2 聚氨酯涂料的分类与特性6.3 聚氨酯涂料的原料6.4 氨酯油6.5 双组分聚氨酯涂料6.6 封闭型聚氨酯涂料6.7 湿固化型聚氨酯涂料6.8 催化固化型双组分聚氨酯涂料6.9 聚氨酯沥青涂料6.10 聚氨酯弹性涂料6.11 水性聚氨酯涂料6.12 聚氨酯粉体涂料6.13 聚氨酯涂料的应用第7章 聚氨酯胶粘剂7.1 概述7.2 聚氨酯胶粘剂粘接机理7.3 多异氰酸酯胶粘剂7.4 双组分聚氨酯胶粘剂7.5 单组分聚氨酯胶粘剂7.6 聚氨酯胶粘剂7.7 聚氨酯密封胶第8章 聚氨酯人造革与合成革8.1 概述8.2 聚氨酯革的主要原料8.3 干法生产聚氨酯人造革8.4 湿法聚氨酯革第9章 聚氨酯弹性纤维9.1 概述9.2 聚氨酯弹性纤维的基本原理9.3 聚氨酯弹性的纤维的制造9.4 聚氨酯弹性纤维的性能与检验9.5 聚氨酯弹性纤维纱线及应用第10章 聚氨酯铺地材料10.1 概述10.2 主要原料10.3 胶面层浆料制备工艺10.4 聚氨酯跑道的铺设10.5 聚氨酯地板第11章 聚氨酯防水材料11.1 概述11.2 焦油聚氨酯防水材料11.3 沥青聚氨酯防水材料11.4 聚醚型聚氨酯防水材料11.5 聚氨酯防水材料标准和施工11.6 油溶性聚氨酯灌浆材料11.7 水溶性聚氨酯灌浆材料11.8 亲水性聚氨酯材料第12章 水性聚氨酯12.1 概述12.2 水性聚氨酯制备用原料12.3 水性聚氨酯的制备12.4 水性聚氨酯的性能12.5 水性聚氨酯的交联12.6 聚氨酯与其它聚合物共混或共聚分散液12.7 水性聚氨酯的应用第13章 反应注射成型聚氨酯13.1 概述13.2 原料体系13.3 RIM生产设备及工艺参

  • 【原创大赛】材料由表及里的硬度弹性模量分布测试

    【原创大赛】材料由表及里的硬度弹性模量分布测试

    前言:一般对材料硬度的测试,一个点上只能得到一个硬度与弹性模量,有时候压入深度不够深,由于表面各种因素(粗糙度、表面硬化等)的影响造成结果的不准确。本文将讲述在一个点上不仅能得到由表及里的可定数量的硬度与弹性模量的分布,而且能通过硬度值随深度分布的稳定性来判断压入多深才可以保证结果的准确。实验仪器采用瑞士CSM公司的压痕仪,型号:UNHT:样品采用标准的熔融硅(熔融硅也叫石英玻璃,是硅的一种无定型状态)泊松比为0.16,弹性模量EIT=72.2±0.5Gpa,样品有瑞士CSM公司提供。实验部分:在样品上选取一块可塑区域实施加载参数设定:在同一个点上第一次加载为0.03mN,最后一次加载为6mN,总共分成20次加载完成,如下图(加载卸载图)http://ng1.17img.cn/bbsfiles/images/2013/11/201311291734_480002_2224533_3.jpg通过加载卸载曲线可以计算得到硬度和弹性模量随深度的分布图硬度分布图如下http://ng1.17img.cn/bbsfiles/images/2013/11/201311291734_480003_2224533_3.jpg上图一为硬度分布,可以看出当压入深度达到90纳米左右时硬度值基本保持稳定弹性模量分布图如下http://ng1.17img.cn/bbsfiles/images/2013/11/201311291734_480004_2224533_3.jpg上图为弹性模量分布,可以看出当压入深度达到100纳米时弹性模量值基本保持稳定小结:在熔融硅材料的表面,由于其亲水性,可能使其表面形成了一层水膜,从而导致在很小压入深度的时候受到水膜的影响,使硬度变小,然而随着压入深度的加深,水膜的影响越来越小,硬度也越来越大,直到稳定。通过连续多重加载模式,可以应用到其他材料的硬度与弹性模量随深度分布研究,从而可以更好的研究材料的表面力学性质。

  • 【分享】高聚物的力学性能(一)

    【分享】高聚物的力学性能(一)

    力学性能是高聚物优异物理性能的基础如:某高聚物磨擦,磨耗性能优良,但力学性能不好,很脆。不能用它作减摩材料如:作电线绝缘材料的高聚物,也要求它们有一定的力学性能:强度和韧性。如果折叠几次就破裂,那么这种材料的电绝缘性虽好,也不能用作电线。[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902012134_130737_1622447_3.jpg[/img]

  • 核磁测多孔材料问题

    [color=#444444]请问下大家,怎么用核磁来标准多孔材料的孔类型,区分大孔,介孔和微孔。[/color]

  • 【原创大赛】金属泡沫和多孔金属材料热导率测试方法选择和测量准确性保证措施

    【原创大赛】金属泡沫和多孔金属材料热导率测试方法选择和测量准确性保证措施

    [align=center][color=#990000]金属泡沫和多孔金属材料热导率测试方法选择和测量准确性保证措施[/color][/align][color=#990000][/color][align=center]Selection of Thermal Conductivity Test Methods for Foam and Porous Metal Materials and Measures to Ensure Measurement Accuracy[/align][align=center][img=,690,311]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101109288670_1537_3384_3.png!w690x311.jpg[/img][/align][color=#990000]摘要:针对金属泡沫和多孔金属材料热导率测试,本文介绍和分析了常用的各种测试方法,选择了热流计法作为金属泡沫和多孔金属材料热导率测试的适合方法,提出了热流计法测试过程中测量准确性的保障措施,同时针对热流计法的不足,提出了一种新型绝对瞬态法(热波法)。热波法具有更高的测试精度、宽热导率和温度测试范围、样品形式多样以及测试仪器低造价的特点。[/color][color=#990000]关键词:泡沫金属,多孔金属,热导率,稳态法,瞬态法,保护热板法,热流计法,热波法[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]1. 问题的提出[/color][/size]  金属材料中存在有很大体积比(典型的约占75%~95%)的气孔,如果这些气孔是相互独立的闭孔,则称为金属泡沫;如果气孔是开孔,则称为多孔金属。为叙述方便,本文将金属泡沫和多孔金属通称为多孔金属材料。  多孔金属材料的类型众多,如典型的泡沫铜铝镍材料,如图1-1所示;如3D打印的TPMS晶格结构钛合金多孔材料,如图1-2所示。[align=center][color=#990000][img=,570,350]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101113113659_2804_3384_3.jpg!w570x350.jpg[/img][/color][/align][align=center][color=#990000]图1-1 各种规格的泡沫铝[/color][/align][align=center][color=#990000][img=,690,279]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101113237076_4077_3384_3.jpg!w690x279.jpg[/img][/color][/align][align=center][color=#990000]图1-2 TPMS晶格结构钛合金多孔材料[/color][/align]  由于多孔金属材料的独特结构,特别是孔的闭合形式、形状、尺寸和气孔率的不同,使得多孔金属材料整体看似是均质材料,但在小尺度上又有严重的非均质特性,这就给这种材料的热导率准确测量带来的很大困难。由此,如何选择合理的热导率测试方法,以及采取哪些措施来保证测量的准确性,就成为准确测试评价多孔金属材料传热性能的关键。  本文将特别针对多孔金属材料,介绍现有的各种热导率测试方法,选择出多孔金属材料热导率测试的合适方法,同时介绍为保证热导率测量的准确性需要哪些具体措施。[size=18px][color=#990000]2. 常用热导率测试方法介绍[/color][/size]  多孔金属是一种以热导率普遍较高的金属材料为基体且内部含有大量气孔的刚性材料。由于气孔的存在,使得多孔金属材料整体的密度要远小于基体金属密度,因此多孔金属材料的整体热导率一般会比基体金属热导率低1个数量级以上,但由于有基体金属的存在使得整体热导率又无法达到绝热材料的水平,通常依据基体金属的不同,多孔金属材料的热导率在0.05~10W/mK范围内。  由于多孔金属材料的热导率介于低导热和高导热之间,理论上可以采用很多测试方法对多孔金属材料热导率进行测量,这些测试方法主要分为稳态法和瞬态法两类。[size=16px][color=#990000]2.1. 稳态法[/color][/size]  稳态法热导率测试是对样品在所关心的方向上施加了与时间无关的温度梯度,其主要优点是高精度、测量公式简单和测量定向热导率的能力。此外,测试过程中的热流穿过整个被测样品,是对完整样品的整体热导率进行测量。稳态法测量中需要在被测样品上形成一定的温度梯度,温度梯度可能使得热导率随温度变化的测量变得复杂,因此稳态法测量得到的是整体样品的等效热导率,代表了导热、对流和辐射三种传热机理的耦合效应。稳态法另一个特点是确保热稳态所需的测量时间较长,特别是对于低导热材料。  在测量精度最高的绝对稳态方法中,可直接测量热导率,这种方法的典型代表是常用的保护热板法,相应的标准有GB/T 10294、ISO 8302和ASTM C177。样品位于热板和冷板之间以在样品内产生温度梯度,当冷热板度差小于20℃时,测量的是热导率;冷热板温差大于20℃,由于热流和辐射传热的存在,测量的是等效热导率。保护热板法能作为一种绝对测量方法,是因为其中心量热计中的电加热热量完全无损的流经被测样品,精确测量并可溯源的电能转换为量热计热量输出,特殊的热保护装置对量热计进行绝热隔离消除侧向热损。保护热板法的测量原理如图2-1所示。[align=center][color=#990000][img=,516,301]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101113353083_3634_3384_3.jpg!w516x301.jpg[/img][/color][/align][align=center][color=#990000]图2-1 保护热板法热导率测量原理图[/color][/align]  目前采用保护热板法的标准热导率测试仪器一般样品截面积尺寸在300mm×300mm以上,大样品尺寸的选择主要是保证样品边长与样品厚度有一个合适的比例,从而有效保证流经样品厚度方向上的热流是一维形式。  相对于绝对法是一种相对稳态法,也可直接测量热导率,典型的有热流计法和保护热流计法。热流计法是上述保护热板法的一种变形,这类方法不是直接测量加热热量,而是通过放置在不同位置处的热流计测量流经被测样品的热流量,一般是将热流计放置在样品两端,相应标准是GB/T 10295、ISO 8301和ASTM C518,其原理如图2-2所示。[align=center][color=#990000][img=,640,361]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101113513138_968_3384_3.jpg!w640x361.jpg[/img][/color][/align][align=center][color=#990000]图2-2 热流计法热导率测量原理图[/color][/align]  热流计法的特点是热流计必须经过绝对法进行校准,所以测量精度要低于绝对法,但热流计法可适用于小尺寸样品和高温测试,特别适用于实际隔热工况下大温差隔热材料的等效热导率测试,可准确评价冷热面大温差下多种传热机理共存时的等效热导率。  在稳态热流计中,热流计可以有多种结构形式,热流计可以薄膜结构,也可以是块体结构。薄膜结构的热流计一般直接布置在被测样品冷端,如图2-2所示,而块体结构热流计则采用校准过的已知热导率材料并布置在被测样品的两端(或冷端),如图2-3所示。采用块体热流计进行材料热导率测试的标准有ASTM D5470、ASTM E1225和ASTM E1530。热流计法的主要特点是可以适用于各种规格尺寸大小和厚度的样品材料,薄膜结构热流计一般适用于高低温范围内低导热材料的热导率测量,块体结构热流计一般适用于常温附近和压力加载条件下的中高热导率测量,但为了保证测量精度,热流计法需要对热流计进行准确校准和侧向漏热处理。[align=center][color=#990000][img=,690,269]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101114031441_5410_3384_3.png!w690x269.jpg[/img][/color][/align][align=center][color=#990000]图2-3 三种块状热流计法热导率测量原理图[/color][/align][size=16px][color=#990000]2.2. 瞬态法[/color][/size]  所谓瞬态法一般是通过接触式传感器或非接触光源给温度恒定样品加载一个热脉冲扰动,使受热面温度升高0.5~5℃,通过检测传感器或样品前后表面的温度响应,来计算得到相应的热导率或热扩散率。  常用瞬态法主要包括瞬态热线法、瞬态热带法、瞬态平面热源法(HOT DISK法)和闪光法。热线法、热带法和平面热源法基本属于同一类测试方法,不同之处是测量传感器由一维热线转变为二维热带和热盘,但它们的测试过程和测试过程基本相同,都是将测量传感器夹持在两块相同被测样品中间,测量样品的大小尺寸使得传感器发出的热脉冲能量不会控制在样品内,即相对于探测器和热功率假设被测样品为无限大测试模型,典型的测量原理如图2-4所示。[align=center][color=#990000][img=,500,154]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101114191601_1291_3384_3.jpg!w690x213.jpg[/img][/color][/align][align=center][color=#990000]图2-4 瞬态平面热源法(HOT DISK法)测试原理图(热线法和热带法类似)[/color][/align]  瞬态平面热源法是一种绝对测试方法,由于瞬态平面热源法探测器是一种圆盘形式,传热更具有对称性,并与被测样品具有良好的接触,所以目前瞬态平面热源法的应用十分普遍,在合适的被测样品情况下,热导率测量可覆盖0.01~400W/mK范围,相应的标准测试方法为ISO 22007-2。  闪光法是一种非接触式测量方法,测试过程中闪光脉冲照射被测样品前表面,使样品表面温度升高1~5℃,通过红外探测器检测样品背面的温升变化,测量原理如图2-5所示。[align=center][color=#990000][img=,690,236]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101114318067_1312_3384_3.jpg!w690x236.jpg[/img][/color][/align][align=center][color=#990000]图2-5 闪光法热扩散系数测量原理图[/color][/align]  闪光法的最大特点是样品尺寸较小,最大直径不超过25.4mm,最高测试温度可以达到2800℃,可测量1~500W/mK范围的材料热导率,但闪光法只能直接测量热扩散率,然后通过其他方法得到比热容和密度,通过计算得到热导率。[size=18px][color=#990000]3. 多孔金属材料热导率测试方法选择[/color][/size]  从上述各种测试方法介绍中,可以采用排除法来选择哪种测试方法更适合多孔金属的热导率测量。  首先可以舍弃闪光法,这主要因为闪光法测试多孔金属热导率中存在以下严重缺陷:  (1)闪光法是非接触测量方法,闪光热脉冲以非接触方式照射样品前表面,这势必使得很大一部分热脉冲会穿过样品空隙直接照射到样品内部,从而严重破坏样品前表面受热模型。另外红外探测器是以非接触方式测量样品背面温度,但由于孔隙的存在,探测器会探测到后表面一定深度的温度变化,这些因素都会造成无法得到合理的测量结果。  (2)上述热脉冲和背温红外探测穿过空隙的问题,可以通过在样品的前后表面制作薄的实心表面来解决。但闪光法样品尺寸较小且薄,对于实体金属材料,闪光法要求样品厚度一般在1~3mm范围内,如果按照此厚度在多孔金属材料上取样,对于微小孔洞材料问题不大,而对于较大孔洞材料而言往往会造成被测样品不具有代表性问题,这是舍弃闪光法最重要的因素。  对于多空金属材料热导率的测量,其他瞬态法也可以舍弃,原因如下:  (1)在热线、热带和热源法中,要求两块被测样品夹持探测器并形成良好的热接触。但由于多孔金属表面很难做到高精度的平整,势必在样品表面与探测器之间形成较大的接触热阻,而这种接触热阻还无法使用热界面材料来进行消除。  (2)瞬态法测试中,若消除上述较大的接触热阻,需要在多孔金属的被测表面进行实心层处理。但在样品表面增加一层金属层后,瞬态法热脉冲会首先在此金属层内传递,然后再通过孔壁金属传递,由此测量得到热导率是金属层面内方向和多孔金属样品厚度方向的复合热导率,此复合热导率要比多孔金属厚度方向热导率大很多。  在稳态法中,保护热板法可以直接舍弃,原因如下:  (1)为了保证测量精度,特别是为了保证一维热流和足够的护热空间尺寸,保护热板法对样品的尺寸要求普遍较大,常规商用仪器的样品尺寸为300×300×20mm,最小也要200×200×10mm,这种规格尺寸对多孔金属样品而言过于庞大。  (2)为了减少保护热板法测试中的接触热阻,被测样品的平整度有严格要求,如平行度和平整度要小于0.05mm,这对多孔金属材料样品的加工要求比较苛刻。  (3)保护热板法一般用于测量热导率小于1W/mK的低导热材料,对于热导率通常大于1W/mK的多孔金属材料,样品厚度上的温差较小,保护热板法测量误差非常大。如要减少测量误差,就势必增大样品厚度,这又带来样品体积较大的问题。  通过上述分析,只剩下的稳态热流计法,热流计法在多孔金属热导率测试中主要有以下几方面的特点:  (1)尽管热流计法是一种相对测试方法,但如果热流计进行了准确的校准,热导率的测试精度完全能够满足工程需要,相对测量误差可以控制在±7%以内。  (2)热流计法即可以用于各种尺寸大小样品的热导率测试。对于多孔金属材料,考虑到被测样品的代表性,可以采用图2-3所示的三种热流计法,样品尺寸可以控制在适中尺寸大小(如直径50mm×高度30mm),由此可以满足不同孔洞大小的多孔金属材料测试。  (3)采用热流计法,特别是采用块状热流计进行测量,样品两个端面温度可以控制在较小的温差范围内,在保证足够测量精度的温差要求外,这样可以最大限度的减小较大温差带来孔洞内的对流和辐射,可以测量纯基材的等效热导率。  (4)由于多孔金属材料属于中等热导率材料,高温下热导率测试需要很复杂的护热机构,所以采用块状热流计法一般直进行100℃以下(最高不超过300℃)的测试。[size=18px][color=#990000]4. 测量准确性保障措施[/color][/size]  通过上述分析,针对多孔金属材料的热导率测量,可以选择图2-3所示的三种测试方法和相应仪器。但在使用这些测试方法过程中,为保证测量准确性,必须采取以下保障措:  (1)测试仪器一定要按照相应测试方法的规定制定相应的校准操作流程,校准流程必须是在线校准方式,不能将热流计取出进行离线校准,这是因为热流计安装后会存在一定的接触热阻,必须通过在线校准才能真正得到实际仪器测试过程中的热流测量值。  (2)根据热导率测试范围和样品的可能厚度,换算出相应的热阻测量范围,选择至少三种已知热导率的参考材料,并按照不同厚度和不同温度来对应整个热阻范围,然后通过这些参考材料对热导率测试仪器进行校准,而且这种校准需要半年进行一次,以避免仪器使用一段时间后接触热阻的改变所带来的影响。  (3)为了进一步保证多孔金属材料热导率测量的准确性,在对多孔金属样品进行完热导率测量后,最好对与被测多孔金属样品热阻近似且已知的实心样品(直径相同,但高度不同)进行对比测试。  (4)如果多孔金属样品表面很难加工成平整表面,则要考虑将样品制成图1-2所示结构,即在多孔金属样品的两个测试面上增加一层相同材质的金属薄层,对于大尺寸孔洞样品这点尤为重要,否则会引入较大的接触热阻而使得热导率测量结果偏小。[size=18px][color=#990000]5. 测试方法的改进[/color][/size]  通过以上分析可以看出,尽管选择采用热流计法对多孔金属热导率进行测量,但还是存在以下不足:  (1)热流计法需要繁复的校准过程,但测量精度还是不如保护热板法,这将非常不利于多孔金属材料的结构设计和精细优化。  (2)热流法热导率测试设备整体结构还是复杂,能满足一定测量精度要求的测试仪器整体造价还是偏高。  (3)能进行多孔金属热导率测试的热流计法导热仪普遍测试温度不高,无法满足目前和今后更高温度的测试需求。  为此,我们提出一种基于绝对稳态法热导率测量的崭新瞬态测试方法——热波法。热波法基于绝对稳态法,在样品冷面温度线性变化过程中,在样品热面加载设定功率和宽度的方波热脉冲,通过冷热面温差波形可以直接测量出样品热导率随温度的变化。  热波法作为一种瞬态法,但如果方波脉冲宽度变得无限大,则热波法就转变为典型稳态法,稳态法是热波法的一种特例。热波法作为一种绝对测试方法,其最大特点是测量精度高,且是在温度线性升降温过程中连续扫描测量热导率,同时热导率测试范围宽泛(0.1~2000W/mK),测试温度范围宽泛(液氮温度~1000℃),测试仪器整体造价低,以及模块式结构可实现各种几何形状固态材料(薄膜、薄板、细棒、块体)的热导率测量。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 聚氨酯硬泡沫塑料的低温弹性性质

    [b]【序号】:1【作者】:[font=&][size=13px][color=#666666][/color][/size][/font][b][url=https://search.cnki.com.cn/Search/Result?author=%E6%9C%B1%E8%B4%A4%2C%E5%86%80%E5%8B%87%E5%A4%AB%2C%E5%BC%A0%E5%BB%BA%E5%8F%AF%2C%E7%99%BD%E5%93%81%E8%B4%A4%2C%E9%9F%A9%E6%BA%90%E6%B4%B2]朱贤,冀勇夫,张建可,白品贤,韩源洲[/url][font=宋体][size=12px] [/size][/font][/b][font=&][size=13px][color=#666666][/color][/size][/font]【题名】:[b][url=https://wenku.baidu.com/view/e5c296f0f8d6195f312b3169a45177232e60e470?fr=xueshu_top][b]聚氨酯硬泡沫塑料的低温弹性性质[/b][/url][/b]【期刊】:[/b][url=https://www.cnki.com.cn/Journal/A-A4-DWWL-1984-02.htm]《低温物理》[/url][b]【年、卷、期、起止页码】:[font=&][size=13px][color=#666666][url=https://www.cnki.com.cn/Journal/A-A4-DWWL-1984-02.htm]1984年02期[/url][/color][/size][/font]【全文链接】:[url=https://www.cnki.com.cn/Article/CJFDTotal-DWWL198402011.htm]聚氨酯硬泡沫塑料的低温弹性性质--《低温物理》1984年02期 (cnki.com.cn)[/url][/b]

  • 求助:脆性材料最大弹性变形量公式?

    样品mm:W68 L40 T6.8;条件:三点弯曲;跨距60mm用压力机测试结果如下:最大力:450N;最大位移:3.95mm刚度:145N/mm;求最大弹性变形量?实验室小白求教~先谢谢大家了;

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制