当前位置: 仪器信息网 > 行业主题 > >

高光谱技术

仪器信息网高光谱技术专题为您整合高光谱技术相关的最新文章,在高光谱技术专题,您不仅可以免费浏览高光谱技术的资讯, 同时您还可以浏览高光谱技术的相关资料、解决方案,参与社区高光谱技术话题讨论。

高光谱技术相关的资讯

  • 高光谱市场潜力巨大,科研亟待走向商用——“异军突起的高光谱技术”系列约稿
    据相关研究机构的数据显示,2021年全球高光谱成像系统市场154亿美元,预计到2026年该市场将增至358亿美元,复合年增长率为18.4%。随着技术的进步,当前,高光谱成像系统的应用领域也从最初的地球卫星成像,覆盖到农业、环境、制药、食品测试、医疗诊断、艺术研究、环境等更多领域,为各学科、各领域带来了新的机遇,成为科学研究中必不可少的工具和手段。为了展现高光谱仪器和应用的最新发展态势,仪器信息网邀请杭州高谱成像技术有限公司市场营销部主管 吴水龙就“异军突起的高光谱技术”主题活动参与投稿分享,了解高光谱的最新进展情况。以下为杭州高谱成像技术有限公司投稿内容:仪器信息网:如何评价目前全球及我国高光谱技术和应用的发展现状?相较国外,我国高光谱发展历程有什么不同?吴水龙:总的来说处于求同存异,目前正处于中外合作共同扩大高光谱市场的规模和增加各类行业应用数量阶段,技术已经成熟,产品尚未成熟,技术规范和行业标准尚未建立起来。我国高光谱发展核心配件受禁售中国限制,导致需要自建全套高光谱所需核心配件,而国外在高光谱谱段范围上不受任何限制,相比之下国产高光谱的可选择性不多,成熟化推广因此受限。目前国内只有250-1700nm已经成熟,900nm-2500nm开始的短波红外高光谱受相机类配件供应限售原因无法有效展开,急需国产化供应能提供此类或更高谱段的红外相机。仪器信息网:从技术的角度而言,当前高光谱技术发展是否成熟?还有哪些新的技术亟待发展?吴水龙:光学类技术发展缓慢,单纯的高光谱技术原理层面已经多年未有大的变化,或更好的理论提出。高光谱技术从原理到实现层面来看,已经非常成熟,而且已经被越来越多的科研和工业客户用实际的应用价值证明。但是高光谱技术要从科研走向商用尚有许多工作要做,比如小(微)型化,小(微)型化是C端客户重要门槛;比如轻量化,轻量化是无人机载模式高效率使用的一个考量,沉重的设备会影响滞空时间;比如数据呈现行业化,因高光谱技术出现晚和发展时间短,各行各业的应用尚处于探索阶段,很多客户拿到设备还需要自己有应用软件研发能力,这是一个很大的制约因素;再比如数据降维,高光谱数据信息量大,同一个数据可提供给不同行业的客户进行分析使用,但是单一客户不需要如此丰富的数据,仅需对他有用数据即可,在什么环节进行数据降维,如何根据行业需求进行降维也是未来高光谱设备配套的必须软件;再比如融合应用,高光谱数据与孔径雷达数据、激光点云数据、高清图像数据等多源数据精细化融合及利用彼此数据的优势形成高质量的结果分析等也是未来技术发展的趋势;再如谱系融合应用,高光谱不同谱段相机数据融合使用和分析。仪器信息网:从应用的角度而言,目前成熟的应用领域有哪些?最具前景的应用体现在哪些方面? 吴水龙:杭州高谱成像技术有限公司目前在环保类的高光谱水质监测领域,农林类树种识别,枯死树、植被养分长势等监测,国防公安类的反伪装、罂粟识别等,工业分拣类的食品酸甜度无损监测,塑料分拣,食品包装完整性、漏液等检测,矿石分拣等应用很多。目前来看工业类最有前景。仪器信息网:贵公司什么时候进入高光谱领域?为什么会选择这一赛道?吴水龙:杭州高谱成像技术有限公司成立于2019年,立足于用光学类技术解决方案服务于各类客户。因公司创始人在高光谱相关领域已经有近20年的学习和从业经验,是国内为数不多的高光谱的软硬件综合解决能力拥有者,有着丰富的高光谱行业应用解决经验,因此选择此赛道进行创业。仪器信息网:当前,贵公司在高光谱仪器产品线方面是如何布局的?主推的产品有那几款?吴水龙:杭州高谱成像技术有限公司紧紧围绕自研的高光谱光机电研发技术,全力打造全谱系高光谱相机,积极研发基于应用场景的高光谱产品。目前高光谱相机谱段能做到国产自研的是250-2500nm,分紫外高光谱相机(250-490nm),可见近红外高光谱相机(400nm-1000nm),近红外高光谱相机(900-1700nm),短波红外高光谱相机(1000-2500nm),上述几款已经可以做到国产化生产。基于上述的高光谱相机品类结合国内外客户需求研发推出了以下品类市场化产品:• 高光谱相机。250-2500nm各谱段高光谱相机,提供给各类具备后续研发和集成能力的客户。•无人机载型高光谱成像系统。全国产化研发生产,因此能根据客户需求进行全新光路设计和产品形态设计,能适配各类客户要求机型。从多旋翼无人机到固定翼无人机再到有人机,只要负重够、空间足,我们能解决高光谱挂载全部问题。• 实验室高光谱成像系统。专为实验室研究人员设计,能有效降低环境光对实验数据的影响,具备高质量采集数据的能力。• 显微高光谱成像系统。为专门做微观研究的用户准备,特别是芯片研制,生物医药等领域,是今年爆款产品。•内窥镜高光谱成像系统。内部狭隘空间检测利器,传统检测设备无法满足的检测性能,内窥镜高光谱能做替代方案。•便携式高光谱成像系统。方便用户随时随地展开数据采集试验。具备自动对焦,独立电源,可长时间户外使用。仪器信息网:目前中国高光谱相关仪器品牌的竞争情况怎么样?贵单位的优势体现在哪些方面?有哪些成功案例?吴水龙:竞争情况可以说是群雄争霸,但良莠不齐,部分友商恶意报价。杭州高谱成像技术有限公司优势有:①全国产化。不怕卡脖子,交货底气足,交货可靠性和时间承诺有保障。售后维修等都非常简单。②具备定制能力。深厚的自研能力决定了能解决所有能用钱解决的问题。③性价比与同类国外品牌相比,高出一筹。④采集数据相比竞品略胜一筹。目前合作的客户有:北京核工业研究所,浙江大学,北京理工大学,浙江农林大学,浙江农科院,上海技物所太仓中心等。仪器信息网:对中国高光谱市场规模和增长有什么样的预期?理由是什么?吴水龙:未来已来,随着科研市场普及和工业市场兴起,高光谱成像仪市场会变得越来越大。因为市场反馈出现积极的信号,各类科研和行业客户的咨询量出现了明显增长。仪器信息网:基于此,贵公司未来高光谱方面的发展规划?吴水龙:本着成为全球光学应用和技术方案解决商的定位出发,做足做深高光谱相机技术,扩大应用领域范畴。目标是:①努力加强高光谱相机技术。②积极在工业、农业、环保等应用发展行业应用。
  • “高分五号”可见短波红外高光谱相机使我国高光谱遥感技术再上新台阶
    p   2018年5月9日,北京时间2时28分,我国在山西太原卫星发射中心成功发射“高分五号”高光谱卫星。中国科学院上海技术物理研究所承担研制卫星红外地平仪(已在入轨初期成功捕获地球)和可见短波红外高光谱相机。 /p p   作为“高分五号”卫星六大主载荷之一,可见短波红外高光谱相机是国际首台同时兼顾宽覆盖和宽谱段的高光谱相机,对复杂地物、环境具有突出的识别和分类能力。它可同时获取观测对象的几何、辐射和光谱信息,并以足够高的光谱分辨率、空间分辨率和辐射分辨率,定量获取观测目标的构造和成份等信息,同时获取观测路径上大气等相关信息,实现对陆地表面高光谱、高空间、高辐射分辨率成像光谱观测。 /p p   可见短波红外高光谱相机以高光谱的方式实现对地优于30米空间分辨率的连续成像,它具有330个光谱通道,比一般成像相机多了近百倍 其光谱覆盖可见光至短波红外的2100纳米范围宽度,比一般相机宽了近9倍 特别是同时实现的60公里高光谱成像幅宽,将极大提高对全球陆地环境生态资源的探测能力。与国际上经典的高光谱相机相比,该载荷幅宽提高8倍,光谱数增加近百个,信噪比提升近4倍 与美国、德国、日本、加拿大等国际上当前发展的高光谱相机比较,其综合性能和主要技术指标可保持5年以上的国际领先水平。 /p p   上海技物所创新性地提出基于视场倍增远心成像和凸面光栅大平场度低畸变分光的高光谱成像方案,历经10年时间,突破了小F数大视场低畸变远心成像,大平场度超低畸变精细分光、在轨高精度光谱辐射定标、大规模高帧频红外焦平面探测器等关键技术,完成高光谱相机的原型样机、工程样机、鉴定产品、发射产品的研制。相机入轨后,将有力提升我国在环境、生态、资源、农业、林业等多个领域遥感监测方面的能力,有效服务“美丽中国”建设,使我国高光谱遥感技术再上新台阶,走在国际前列。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/39eacb35-8a94-47c6-87c3-a8a96b880be2.jpg" title=" 微信图片_20180510094457.jpg" / /p p style=" text-align: center " 卫星发射现场 br/ /p p br/ /p
  • 高光谱机器视觉感知技术正走向普及应用
    人类获取的信息83%都来自视觉,由听觉、触觉和其他的渠道获取信息的占比仅有17%,所以视觉对于人类的重要性溢于言表。而机器视觉作为机器人的“高精密眼睛”,其之于机器人的作用就像视觉之于人类一样重要。近日,中国工程院院士王耀南在2022世界VR产业大会关键共性技术主题论坛上围绕“高光谱机器视觉感知技术应用及发展趋势”发表演讲。他指出,高光谱机器视觉技术正在迅速普及,在制药行业的产品检测、食品生产的安全识别、建筑材料的质量控制、医学成像等场景中广泛应用,但距离真正实现“高精准、看得清、更好用”仍面临挑战。智能机器人的“高精密眼睛”在日常生活中,人们通常是通过视觉器官(眼睛)获取信息,再通过大脑来分析、处理这些信息,从而识别出物体。而高光谱成像的目标是获得包括从可见光到长波、红外光谱的精细光谱“指纹”,精确反映物质独特的光谱特性。作为智能机器人的“高精密眼睛”,高光谱机器视觉的发展对机器人的控制具有重要作用。受不同生物的感光细胞具有差异启发,高光谱成像与感知可将丰富的、不同波段的图像信号映射到数字世界,是机器智能的重要支撑技术。“高光谱图像能够精准反应出物质特征的光谱信息,这是它最大的优势,”王耀南表示,“近几年,高光谱的发展非常迅速。过去高光谱主要是在遥感应用里面,今天我们把高光谱用到机器视觉,使机器人装上了明亮精准的眼睛,可以感知到可见光、红外光。”据了解,机器人的高光谱视觉研究主要包含两部分内容,一部分是成像感知,另一部分是自动的光谱信息分析。成像技术实质上是感光元件把光信息转化为数字图像信息,最早的光谱成像来自感光设备,目前低成本、小体积、高速率、低功耗的感光元件成为发展趋势。近年来高光谱机器视觉的发展态势从感知智能进入到了认知智能,从过去的 RGB 图像变成今天的光谱图像,已然进入到一个计算智能成像的时代。目前高光谱相机及其相关技术已成为智能机器视觉领域研究的前沿方向。高光谱机器视觉仍面临挑战分析与认知能力是机器人能否对环境中的有效信息加以处理与理解的重要标志,是智能化发展的必经途径。王耀南认为,高光谱机器视觉分析与认知面临着三大挑战,主要涉及图像特征提取、语义知识理解和自主适应学习。“首先要突破图像特征的提取,过去我们主要是像素特征的提取,今天扩展至边缘、纹理、光谱等空间几何等方面;第二,它已经走向了图像的推理,涉及语义知识的理解、语义的描述、高维的图像特征等技术的突破。第三,要突破自适应的学习,传感器要具有学习性、能感知,还要能理解、能分析,让人工智能真正融入到机器视觉里。”王耀南说道。近年来,通过大量研究,高光谱视觉传感器的发展突破了两项关键技术。第一项技术面向成像系统,成像系统围绕复杂的目标,能够解决在多空间、大尺度下的成像问题,可以同时捕捉三维空间和光谱维度的成像。第二项技术面向三维光谱数据分析,比如空间-光谱联合分析、大数据分析和处理等。快速突破这两项关键技术,有助于实现高光谱机器视觉技术的广泛应用。“高光谱广泛装载在机器视觉以后,不仅能应用到工业、农业,还能应用到无人驾驶、机器人、新药研发、新产品质量检测等领域。”王耀南表示。比如为了加速工业检测速度,我们开发了高光谱图像处理的硬件系统,研制了工业高光谱仪器,包括高光谱的成像,成像仪器的处理特征识别等。再比如,高光谱机器视觉也被用在异物检测方面,应用于疫苗生产的柔性智能化工厂。而不同的应用场景对高光谱成像的复杂性、多样性提出了更大的挑战。未来首先要解决数据传输与处理问题王耀南指出:“随着科学技术的进步,未来高光谱机器视觉的发展首先需要解决的,也是最重要的一个问题,就是数据传输与处理。”比如,高光谱仪器是联网的,如此庞大规模的光谱图像信息怎么同时传输,这就是一个需要解决的难题。第二是光谱成像高分辨率问题。高光谱最大的弱点就是分辨率比较低,不像可见光成像的分辨率比较高。合成孔径雷达图像的分辨率也比较低,但是它的探测精度比较高。每一种传感器都有优点和缺点,因此未来一个重要的研究方向就是新的成像方法和机理探索。第三个是所有的高光谱成像仪器都向小型化和高可靠性转变,要能够装载在不同的设备上,从单一的传感器进入到多传感器信息融合,从数据处理方面到光谱数据处理,从模型驱动向数据驱动、知识驱动的方向发展。
  • 应用盘点|高光谱技术能解决哪些行业实际问题?
    近年来,高光谱技术迅速发展,其应用潜力越来越吸引大家的关注。最新报道显示:广东省水利水电科学研究院智慧水利研究所近期开展了基于无人机高光谱遥感的水质调查实验,搭载高光谱传感器获得的高时空和高光谱分辨率的遥感数据可实现河道和水库的长时间精准观测,对河湖(库)水域水污染状态的持续性监测及污染源紧急重点排查具有重要意义,能有效提高有关部门处理应急突发事件的能力。中日友好医院崔勇教授团队在首先实现皮肤高光谱仿真技术突破、研发出皮肤成分无创定量检测医疗器械的基础上,获得适合皮肤病精准医疗的AI数据源—皮肤高光谱图像,开启了皮肤病人工智能辅助诊断创新研究。除此之外,高光谱技术还被应用于工业上如垃圾分选,印刷纺织品检测;医学上如胃癌组织高光谱检测,基于显微高光谱成像的皮肤黑色素瘤识别;农业上如蔬菜表皮细胞检测,小麦长势情况;另外还可以对古代字画和壁画进行无损鉴定、文物颜料研究等。基于高光谱技术的应用案例越来越广,其市场潜力可见一斑。仪器信息网2021-2022年“行业应用”栏目信息显示(在题目中以“高光谱”为关键词搜索的不完全统计), 2022年厂商发布的高光谱行业解决方案数量为2021年的3倍,涉及行业也进一步增加,相关解决方案主要涉及地矿、环保、建材、农业、食品等领域,其中在农/林/牧/渔、食品/饮料领域应用最为广泛。仪器信息网摘录部分如下:农/林/牧/渔领域:方案名称厂家名称高光谱-红外热成像无人机遥感技术-林木病虫害早期诊断和量化北京易科泰生态技术有限公司一体式高光谱-激光雷达无人机遥感系统应用案例北京易科泰生态技术有限公司易科泰光谱成像技术—植物天然活性物质和次生代谢产物无损高光谱检测方案北京易科泰生态技术有限公司高光谱-红外热成像无人机遥感技术—作物表型研究北京易科泰生态技术有限公司高光谱-红外热成像无人机遥感技术—森林病虫害监测北京易科泰生态技术有限公司[高光谱成像技术]面粉无损检测森泉光电有限公司一体式高光谱-红外热成像无人机遥感系统应用案例北京易科泰生态技术有限公司UAS-8高光谱无人机遥感平台北京易科泰生态技术有限公司高光谱成像相机技术解决大豆食心虫虫害技术检测杭州彩谱科技有限公司近红外高光谱相机:鸡种蛋性别鉴定研究进展杭州彩谱科技有限公司近红外高光谱成像技术应用于谷物品质检测北京易科泰生态技术有限公司FS60-无人机高光谱相机研究马铃薯株高和地上生物量估算杭州彩谱科技有限公司无人机高光谱测量系统协助甘蔗病虫害防治杭州彩谱科技有限公司高光谱相机针对大米农产品无损检测技术杭州彩谱科技有限公司基于高光谱相机技术的快速、准确、无损地霉变玉米检测研究杭州彩谱科技有限公司高光谱成像技术应用到薇甘菊特征提取的研究杭州彩谱科技有限公司高光谱成像技术应用于蔬菜品质检测评估北京易科泰生态技术有限公司基于高光谱相机分析的冬油菜苗期田间杂草识别研杭州彩谱科技有限公司基于高光谱工成像的黄瓜叶内叶绿素分布的无损检测杭州彩谱科技有限公司基于高光谱成像技术的苹果表面缺陷无损检测杭州彩谱科技有限公司基于高光谱成像技术的番茄果实成熟度研究杭州彩谱科技有限公司基于高光谱图像技术的稻田苗期杂草稻识别杭州彩谱科技有限公司基于无人机高光谱遥感技术对内陆养殖池塘水质监测的研究杭州彩谱科技有限公司基于高光谱图像技术预测苹果大小杭州彩谱科技有限公司易科泰高光谱成像技术应用于水果内外部品质研究北京易科泰生态技术有限公司易科泰高光谱成像技术应用于枸杞品种品质研究北京易科泰生态技术有限公司基于高光谱成像技术的油桃质量检测北京盈盛恒泰科技有限责任公司易科泰提供推扫式高光谱成像系统应用于鱼肉食品检测研究北京易科泰生态技术有限公司基于电子鼻和高光谱多数据融合跟踪水稻品质差异的协同策略研究北京盈盛恒泰科技有限责任公司高光谱技术在植物表型研究中的应用(1)北京易科泰生态技术有限公司高光谱-LiDAR应用于Natura2000自然保护区栖息地监测北京易科泰生态技术有限公司高光谱-LiDAR一体式无人机遥感系统应用于城市森林结构测量和生态功能评估北京易科泰生态技术有限公司高光谱-激光雷达无人机遥感技术北京易科泰生态技术有限公司一体式高光谱-激光雷达无人机遥感系统-森林碳循环研究及应用北京易科泰生态技术有限公司HSI果实品质高光谱无损检测技术北京易科泰生态技术有限公司一体式高光谱-激光雷达无人机遥感系统—林木监测和树种分类应用北京易科泰生态技术有限公司食品/饮料领域:方案名称厂家名称基于高光谱与电子鼻融合的番石榴机械损伤识别方法北京盈盛恒泰科技有限责任公司近红外高光谱成像技术在小黄瓜含水量无损检测中的应用杭州彩谱科技有限公司高光谱成像技术对生鲜猪肉含水率进行无损检测杭州彩谱科技有限公司杭州彩谱科技有限公司:高光谱成像技术检测三文鱼品质参数杭州彩谱科技有限公司高光谱成像技术对鲜枣裂纹进行定性和定量检测杭州彩谱科技有限公司基于高光谱成像的西兰花农药残留无损检测方法研究杭州彩谱科技有限公司基于高光谱成像技术检测脐橙溃疡杭州彩谱科技有限公司近红外高光谱成像技术探索西瓜糖度高精度检测模型杭州彩谱科技有限公司基于高光谱成像技术测定花生种子及花生油中油酸和亚油酸含量杭州彩谱科技有限公司基于高光谱成像技术的鸡肉品质快速无损检测杭州彩谱科技有限公司易科泰高光谱成像在线分选技术——食品检测应用北京易科泰生态技术有限公司高分辨率sCOMS-高光谱相机用于食品检测北京睿光科技有限责任公司纺织/印染/服装/皮革领域:方案名称厂家名称高光谱成像在纺织品识别与回收中的应用QUANTUM量子科学仪器贸易(北京)有限公司近红外高光谱相机对鹅鸭混合绒定量检测研究杭州彩谱科技有限公司高光谱成像技术应用于废旧纺织品识别与回收北京易科泰生态技术有限公司医疗/卫生领域:方案名称厂家名称光谱成像技术创新应用SpectrAPP高光谱成像技术监测伤口愈合过程北京易科泰生态技术有限公司近红外高光谱相机血液种属鉴别方法杭州彩谱科技有限公司400-1000nm高光谱相机在烧伤深度检测中的应用杭州彩谱科技有限公司地矿领域:方案名称厂家名称SWIR-LWIR地矿勘查高光谱成像分析系统应用案例北京易科泰生态技术有限公司“μXRF+高光谱成像”高通量样芯分析技术北京易科泰生态技术有限公司环保/水工业领域:方案名称厂家名称高光谱成像研究 胡泊水体中沉积物检测方案(生态环境遥感)北京易科泰生态技术有限公司基于高光谱相机系统数据的赤潮检测方法杭州彩谱科技有限公司建筑/建材/家具领域:方案名称厂家名称基于高光谱技术的陶瓷绝缘子污秽等级检测杭州彩谱科技有限公司军队/公安/司法领域:方案名称厂家名称高光谱成像光谱仪的字迹鉴定检测算法和实验研究杭州彩谱科技有限公司基于成像高光谱相机分析技术的不同介质血迹陈旧度研究杭州彩谱科技有限公司综合领域:方案名称厂家名称利用高光谱成像光谱仪对古代颜料进行无损鉴定杭州彩谱科技有限公司使用手持式高光谱相机IQ揭示进化的秘密—在非洲沙漠研究生石花北京易科泰生态技术有限公司
  • 高光谱技术高在哪?未来还可能随时检测雾霾
    不同物质有它独属的“指纹光谱”,高光谱遥感技术可准确捕获这一重要信息,提高人眼及遥感观测能力。中科院遥感地球所岑奕绘图  看过纪录片《我在故宫修文物》的观众或许会对如下场景有印象:技术人员用一台仪器扫描古字画,扫描信息经过专业处理后,文物修复专家就能发现字画上肉眼看不见的信息,甚至还能分析出绘画技法和当时用的颜料。  这台神奇的仪器就是中科院遥感与数字地球研究所(以下简称中科院遥感地球所)研发的高光谱扫描仪。高光谱遥感为何有如此的超能力?除文物检测修复外还有哪些应用?我国在高光谱遥感领域的研发水平又如何?  利用高光谱技术能提取古画的颜料信息,推算颜料产地,从而能在修复时精准选用颜料  人们日常生活中所见的光,是由多种颜色构成的复色光,通过棱镜等分光后显现的是单色光。这些单色光按不同波长(或频率)大小依次排列形成的图案,就是光谱。  光谱分析是人类借助光认知世界的重要方式,地球上不同的元素及其化合物都有自己独特的光谱特征,光谱因此被视为辨别物质的“指纹”。如果说肉眼光学成像能看到物质的形状、尺寸等信息,光谱分析则能获取物质的成分信息。  要获取更丰富、精细的物质成分信息,除了提升分光系统性能外,还可以改进分光方法、呈现方式等——高光谱遥感就是这样一种思路。中科院遥感地球所高光谱遥感研究室主任张立福介绍说,高光谱遥感的特点是能在可见光到短波红外的光谱区间连续成像,传统的彩色相机只能记录红绿蓝三个通道的影像,且每个通道的带宽很宽,而高光谱成像所记录的通道数量可以达到数百个,且光谱通道很窄,分辨率很高,其光谱探测范围远远超过了人类肉眼的感知范围,能够探测人眼无法看到的大量信息,提高人们对自然和物质的认识。  因为能在非常窄的光谱波段内获取丰富的信息,利用高光谱技术获取的信息分辨率很高,甚至能分辨出观测物质的分子和原子结构,这是普通的光学遥感所达不到的。  如何运用高光谱技术鉴定、修复古字画?在中科院遥感地球所高光谱研究室实验室,张立福画了一张图,并为记者解释高光谱遥感成像的原理:高光谱仪器扫描字画表面,获取图像上每个点的光谱数据 因为高光谱连续成像的特征,能够获得目标数百张不同波长的图像,这些图像叠加起来,在三维空间上就能形成一个图像立方体,将每个像素对应的数百张数字图像的数值连接起来,就成为一条光谱曲线。  “不同物质甚至不同年代的物质反映出的光谱信息也有差异,也就是有一条独属于它的‘指纹’光谱。如果两个物体的成分信息一致,得出来的曲线应该基本吻合 如果某一条曲线的局部有较大波动,就能推算出其中有异常。”张立福说。  以故宫藏品《崇庆皇太后八旬万寿图》为例,该画描绘的是乾隆皇帝的母亲崇庆皇太后八十大寿时现场祝寿的实景,历经250多年之后非常残破,绢面有缺损断裂,甚至还有霉迹。要想恢复原作风貌,修复该画时就要了解当时所用的颜料。中科院遥感地球所高光谱研究团队利用高光谱扫描仪对古画颜料进行了扫描,提取了古画颜料信息,由此推算出当初绘画所用矿物原料的种类。根据不同颜料产地光谱曲线的差异,科技人员甚至还能反推出颜料的产地——这就为修复选用精准颜料提供了依据。  张立福说,中国古书画所用材料,大多为绢和纸,质地纤薄,年代久远容易破损、掉色。高光谱分析技术不损害文物本体,能帮助修复专家了解古书画的颜料组成、绘画技法,甚至能及早发现书画潜在的病害信息。  借助高光谱技术可检测果蔬农药残留,未来还可能随时检测雾霾  高光谱这双“火眼金睛”的本领可不仅仅是帮助鉴定、修复文物。因其能呈现人眼看不到的细节、辨别不同成分的物质,因此该技术在国防军事、精准农业、水环境监测、地矿勘察等领域都有广阔应用价值。  在中科院遥感地球所高光谱研究室实验室,张立福向记者展示了一盆绿萝。从表面看,这盆绿萝的叶子没有什么特别之处,但经过高光谱仪的“眼睛”观察,一块白色区域就在电子屏上显示出来。“绿萝中有几片塑料做的叶子,肉眼几乎难以发现,但由于它和正常叶子的光谱信息有很大差别,就躲不过高光谱的‘眼睛’。”张立福说。  利用该原理,高光谱还能用在果蔬农药残留的检测上。有没有残留农药、残留多少农药,呈现的光谱特征会有细微的差别,通过分析这些差别,专业人员就能做出科学的判断。  张立福说,相较于传统食品安全取样化验等检测方式,高光谱技术检测具有无接触、无损伤的优点,可以大大提升检测效率。此外,根据不同生长日期或产地的果蔬光谱特征也不同的原理,高光谱技术还能用于检测果蔬新鲜度、进行产地溯源等。  张立福介绍,基于高光谱原理,科研人员目前正在研发可供智能手机使用的高光谱检测应用系统。他希望未来手机有高光谱检测功能,结合云计算、大数据,人们能够随时随地用手机快速检测食品安全问题。这样,农民拿手机就能检测果蔬病虫害信息,并把这些数据发送到云端,后方科研人员可以根据这些信息预知哪里可能爆发病虫害。  “从果蔬农药残留检测到化妆品重金属检测,水体、土壤等环境污染监测,再到牙齿、皮肤等医学检测,高光谱技术应用有很大的想象空间。”张立福说,不同空气颗粒反射的光谱不同,未来人们甚至都能通过手机及时、准确地监测雾霾。  高光谱技术属于遥感技术范畴。通常人们提到遥感,就往往联想到卫星遥感、航空遥感等,认为遥感和老百姓的日常生活没有直接关系,其实不然。3S技术(地理信息系统、全球定位系统、遥感)中,前两个“S”已经与人们的生活息息相关,人们已在手机中普遍应用,现在缺少的是第三个“S”与老百姓的生活关联起来。高光谱遥感技术的应用,表明遥感技术正在走进人们的生活。“我们所做的,就是要使高光谱遥感技术飞入寻常百姓家。遥感与智能手机的结合,将使‘遥感’无处不在。”张立福说。  我国在高光谱遥感研究上处于国际领先地位  巨大的应用前景,使高光谱遥感技术成为当前国际上遥感技术的前沿领域。  据专家介绍,我国在高光谱遥感研究上,处于国际领先地位。  上世纪90年代,中国科学院遥感应用研究所与上海技术物理研究所合作,研制了系列航空高光谱传感器,并前往日本、澳大利亚、马来西亚等国进行国际合作,为当地环境、农业、海洋、地质等领域的研究提供了重要数据,受到高度评价。  张立福说,受制于科研经费支持等原因,本世纪初我国高光谱研究一度发展缓慢。近年来我国加大了对高光谱的支持力度,科研人员也取得了一系列成果。他介绍,我国在高光谱基础研究及信息数据积累等方面走在国际前列 同时,科研人员不断扩大高光谱的应用领域,在成像光谱地面测量与光谱图像模拟、高光谱图像智能处理与信息提取、新的应用领域拓展等多方面取得了系列国际领先的研究。  “我国在高光谱技术方面有较强的积累,但光谱仪器的一些关键器件还需要进口,一定程度上影响了我国高光谱技术应用的自主性。”张立福说,高端科学仪器设备制造方面的不足与我国在材料学、制造工艺等方面整体水平不高有关,他呼吁我国有更多的、不同领域的科研人员参与到高光谱的研发中,提高光谱仪器制造能力,使我国成为高光谱研究强国。
  • 潜力无限!高光谱技术及应用发展综述
    高光谱技术是指利用光谱仪获取的被测地物多个窄波段电磁波,并通过所获取的数据进行分析提取所需的信息的技术。光谱仪从1666年牛顿利用三棱镜观察到了光的色散开始,到1859年基尔霍夫和本生合作设计了第一台棱镜光谱仪并发现了铯和铷,化学分析的光谱方法也就此展开,高光谱技术随着光电技术的进步也在逐渐发展。现在,高光谱技术利用棱镜、光栅、干涉仪等手段,将混合光分散为连续的不同极窄间隔波段的光,根据使用目的不同,可以获取从远紫外到远红外不同波段的数据。目前,在高光谱遥感、原子吸收、材料发射率等领域均有应用。狭义的讲,高光谱技术目前大部分是指可见光到近红外(400-2500nm)的高光谱分辨率遥感技术,该技术始于成像光谱仪的研究计划,最早由美国加州理工学院喷气推进实验室的一些学者提出,并在美国国家航空航天局(NASA)的支持下,相继推出了机载航空成像光谱仪(AIS)系列,航空可见光/红外成像光谱仪(AVRIS),星载中分辨率成像光谱仪(MODIS)等等型号设备。与此同时,20世纪80年代中后期,我国开始着手发展高光谱成像系统,从多波段扫描仪到高光谱成像扫描仪,从光机扫描到面阵列CCD探测器固态扫描的发展过程。目前,我国中科院系统自行研制的第一台224波段扫帚式高光谱成像仪(PHI)与128波段的实用型模块化机载成像光谱仪(OMIS)已研制成功并进行了多次成功的航空遥感实验,近年来的珠海一号、高分五号也在持续的发回数据。国外的星载与大型机载的高光谱设备发展较早,商业应用成熟。随着我国经济实力的不断增强,近些年来,尤其是21世纪以后,基于中国科学院上海技术物理研究所与中国科学院长春光学精密机械与物理研究所 长期以来的钻研与突破,星载高光谱光路设计、中大型高精度衍射光栅制作、全色可见光近红外光路分离、小F数大视场低畸变远心成像、大平场度超低畸变精细分光、在轨高精度光谱辐射定标、大规模高帧频红外焦平面探测器等关键技术一一攻克,我国的星载高光谱设备厚积薄发,已达到国际领先的水平。在星载设备发展的同时,非成像光谱设备也伴随着电子技术与计算机技术的发展在逐渐地小型化与轻量化,从直读光谱仪到便携式地物光谱仪,光谱设备也从实验室走向了野外,由于便携式地物光谱仪不受天气的影响,光谱分辨率高于星载高光谱数据,对于光谱库的建立,分析模型的建立,筛选特征光谱波段,星载高光谱数据的地面验证等发挥着重要的作用。地质调查和矿产勘探是高光谱技术主要的应用领域之一,地质是高光谱遥感应用中最成功的一个领域。由于矿物内部物质组成、内部晶格结构等不尽相同,矿物光谱通常包含一系列特征光谱吸收带,这些特征谱带在不同的矿物中具有较稳定的波长位置和较稳定的独特波形,能够指示离子类矿物、单矿物的存在。目前,矿物识别、矿物填图、成矿预测、矿山环境分析等领域均有广泛应用。被测物光谱(蓝色)与光谱库数据自动进行匹配并计算相关性在沿海和内陆水域环境系统研究中,沿海、江河、湖泊中的叶绿素、众多浮游生物种类、不可溶解有机质、悬浮沉淀物、基底物质组成、半淹没水生植物在光谱方面有着显著的吸收和散射特性,利用高光谱技术,我们可以监测水华,识别水生植物,判别黑臭水体,针对悬浮物浓度、叶绿素浓度等水质参数进行定量反演。对于海洋及大面积的内陆湖泊,相比于河流与小面积的湖泊,使用星载高光谱数据,有着快速的反应及分析能力,可以进行整体水域的评估。以上两种领域是目前高光谱应用最为成熟的领域,由于卫星过境周期、天气等因素的影响,星载高光谱数据的时效性略显不足,且针对精准农业、胁迫研究、树种识别等应用,星载高光谱数据由于分辨率较差,无法发挥作用。随着无人机技术的发展,高光谱设备逐渐地小型化与轻量化,中小尺度、厘米/分米级别的高光谱数据的获取成为可能。随着我国经济社会的不断发展,人们生活节奏越来越快,日常生活用品工业产品不断更新,垃圾的产量迅速上升,组成成分多样。近年来,全国垃圾分类工作的逐渐展开,现有的分类方法检测时间长,分类效率低,利用高光谱技术,在记录待分类垃圾的空间信息同时,分析其光谱信息,通过建立识别分类模型对垃圾进行识别与分类,有着极为迫切的需要。目前,纸类、塑料、金属、木制产品均有比较好的效果,但受限于成本高与产业化程度较低,高光谱技术还未在垃圾分类领域有大范围的应用。垃圾分类的高光谱研究 北京欧普特科技有限公司在2000年从光谱仪的代理开始进入遥感领域,随着无人机技术的发展,全球的高光谱技术已经初具影响并有落地应用,我公司判断未来的高光谱技术必定是由星载数据、机载数据与地面数据相互支撑,并且基于无人机的高光谱技术的时效性强、易用性好和地面分辨率高,必定将成为高光谱技术在未来应用中的主流方式。我公司在2013年基于美国Headwall Photonics Inc.公司设计生产的推扫式全反射光栅光谱仪,进行了机载高光谱设备的研发工作,为高光谱成像仪配备了三轴稳定云台系统和GPS/IMU惯性导航系统,并搭载到滑跑起飞的固定翼无人机上,进行了低空的光谱数据采集,并申请了相关专利。随着光电技术的进步,光谱仪逐渐地小型化、轻量化与高度集成化,旋翼无人机的出现并且不断升级换代,整套无人机高光谱成像设备操作简单,场地限制小,折叠后可以放到汽车后备箱中,成为了目前的主流应用方式。目前,我公司以无人机机载设备为主,包含400-1000nm、900-2500nm、400-2500nm等推扫式全反射成像光谱仪,整套设备包含传感器、辐射亮度标定、地面定标布、采集与处理软件等,辅以室内采集的高精度高分辨率高光谱设备、野外便携式地物光谱仪、多光谱相机、热红外成像仪、热红外光谱仪、高清相机、激光LiDAR等设备,可以进行多源数据的采集与分析。 Nano Hyperspec(400-1000nm)与Co-Aligned(400-2500nm)高光谱设备挂载我公司也在进行高光谱成像光谱仪与便携式地物光谱仪的国产化工作,国内也有其他厂家进行设计生产,但是总体来说,核心的光栅部件均为采购或定制的产品,整体信噪比略低于国际水平,但是性价比高。我公司依托于深厚的光学元件设计加工生产经验,正在进行各个方面的优化,争取早日赶上国际水平。经过近10年的机载高光谱设计集成搭载等工作,我公司积累了丰富的经验,针对不同型号的光谱仪产品,设计专用的三轴稳定云台,搭载到不同类型的平台上,包括大疆M600 PRO、M300 RTK,科卫泰X6L,德国MicroDrones的MD4-1000等旋翼机,纵横CW15和飞马V20等垂起固定翼无人机,不同类型的有人机,并承接高光谱飞行服务工作,全方位的服务客户。在工业领域,我公司也为某厂进行了高光谱设备的安装架设工作,在病变溯源、肉质分级等方面均有应用。软件方面,我公司针对机载推扫式高光谱设备,开发了一套通用的几何校正软件,有效地纠正了飞行时的抖动问题,并适用于不同型号的传感器。针对内陆水系,开发了一套内陆水环境监测系统,大范围的监测水质,获取水质的遥感参数,一键生成评估报告,为上海某水库、辽宁某河流提供较为及时的数据支撑。 内陆水环境监测系统分析某河流悬浮物浓度与叶绿素浓度高光谱技术正在不断发展,伴随着无人机的发展及星载高光谱的发射,低空高光谱遥感正在由科研院校走入民用市场,未来大农场评估、森林树种识别、水环境监测、矿物识别与填图、垃圾分类等市场的潜力无限,尤其是水环境监测。近些年来,为了促进水质监测行业的发展,我国陆续发布了许多政策,如2021年生态环境部发布的《“十四五”生态环境监测规划》明确将要推动三水统筹,增强地表水环境监测,突出水生态监测评价。绿水青山就是金山银山,高光谱技术将大放异彩。作者:王辰泽,徐胜艳,魏志奇(北京欧普特科技有限公司)
  • 智能触摸屏 | 让世界见证高光谱技术的无限可能
    经过20世纪后半叶的发展,高光谱遥感技术在理论上、技术上和应用上均发生了重大的变化。高光谱相机可以见到人类肉眼不能直接看到的内容,甚至可以分析物体的成分,只是这类设备通常又大又笨重,使用起来有很多不便之处。2017年11月30日,芬兰SPECIM公司正式发布了一款智能型的高光谱相机,SPECIM IQ!这款相机在前期高光谱经验积累的基础上,不仅手持便携,同时增加了实时数据查看功能。有了 SPECIM IQ,我们就可以在现场进行高光谱成像及数据处理了! 高度集成技术 SPECIM IQ 开创性地在手掌大小的空间中将高光谱相机、电脑、扫描平台、电源以及数据处理系统集成一体化,这种高度集成技术为新一代智能化研究体系竖立了一面旗帜,真正让高光谱由传统的高端研究领域迈入到现代化便携应用时代。拿起 SPECIM IQ 高光谱相机,我们也可以来一场说走就走的科研之旅了! 便携数据操控 芬兰 SPECIM IQ 采用智能化设计,如同数码相机一般便携操控,采集可见光和近红外光谱范围内的不同波长对物体表面的反射光成像,获取高质量的高光谱数据图像。同时,相机内置智能处理器,通过相机本身4.3寸的触摸屏可实时查看数据处理结果。如此一款高光谱研究利器,设备重量仅1.3公斤,真正实现了轻松手持操作。用数码相机拍过浩瀚星空,拍过红梅秀,你就会更深切地感受到SPECIM IQ 的魅力所在。作为2018年重点推荐的高光谱相机,SPECIM IQ 先进的技术和优越的性能,让其在同行业的高光谱相机中树一帜。 全方位应用领域 作为手持智能型高光谱相机开创者,芬兰 SPECIM IQ 相机内置数据处理并结合SPECIM IQ Studio高光谱数据分析建模软件,在采集数据现场可立刻得到数据分析结果,完成目标的分类识别,方便地应用于食品检测、刑侦调查、植被病害研究、艺术品分析以及人体皮肤检测等多种应用领域。 SPECIM IQ高光谱应用: 1、植被病害高光谱研究: 2、食品分析检测: 3、艺术品真伪辨别: 另外还能用于刑侦探案检测、人体皮肤病变检测等。具体应用案例视频,可前往优酷搜索“高光谱应用”,点击观看。高光谱图像可收集及处理整个跨电磁波谱的信息,对人类在其他波段观测信息至关重要。虽然这款相机上市还没多久,但已受到各媒体追踪,新兴起的人工智能、物联网和智能设备不断进步暗示我们,“智能化”一定是科技的未来走向~~ 小贴士芬兰SPECIM是上早提供商用高光谱分光器的制造商,至今已有二十余年高光谱产品生产历史。其产品包含工业高光谱相机、实验室高光谱成像系统、机载高光谱遥感系统等,涵盖可见光到热红外全部波段。满足了工业客户、系统集成及科研客户的不同需求,覆盖农业遥感、环境监测、矿物勘查、工业集成以及国防安全等领域。 相关产品及链接: 1、芬兰SPECIM 手持智能型高光谱相机:http://www.instrument.com.cn/netshow/SH100980/C282348.htm 2、芬兰SPECIM 高光谱航空遥感成像系统 http://www.instrument.com.cn/netshow/SH100980/C160539.htm3、芬兰SPECIM 高光谱化学成像工作站:http://www.instrument.com.cn/netshow/SH100980/C160497.htm4、芬兰SPECIM 高光谱矿石成像工作站:http://www.instrument.com.cn/netshow/SH100980/C160538.htm5、芬兰SPECIM 艺术品高光谱成像系统:http://www.instrument.com.cn/netshow/SH100980/C237971.htm6、芬兰SPECIM 工业高光谱相机FX系列:http://www.instrument.com.cn/netshow/SH100980/C265811.htm
  • 高光谱遥感技术在文物保护中的应用
    在纪录片《我在故宫修文物》中,科研人员使用一种名为高光谱的遥感技术,通过扫描古字画提取墨迹、识别颜料。高光谱遥感属于无损、非接触式的检测,文物古迹大多年代久远,有不可复原性,很难承受接触式测量带来的损伤和破坏,在这一点上,高光谱遥感和文物古迹保护不谋而合。将高光谱遥感和文物古迹保护有机的结合起来,是现代科学技术发展的趋势,也是考古界的需求和呼声。1、高光谱遥感在乐山大佛保护上的应用很多的文物古迹都历经千百年时间,其表面或者内部都多少有一些损伤、风化或者腐蚀。这些文物又往往具有很高的历史价值,不能够随意进行接触式检测和调研,这对文物受损程度的评判带来了巨大的问题。乐山大佛已经有了上千年的历史,大佛表面受到的磨损情况十分严重。根据相关专家的推算,现在看到的大佛,已经比最初的大佛“清瘦”了许多,也就是说,乐山大佛表面受到的风化和腐蚀情况十分严重。而大佛表面受损的情况,如果采用接触式的方法,一方面难度极大,效果不会很理想;另一方面,会对大佛表面产生伤害,进一步加强其表面的风蚀等。高光谱遥感则可以很好的解决这个问题,高光谱遥感是一种非接触式检测方法,既降低了检测成本,又保护了文物古迹,是一种较为可靠的方法。不同的物质对于高光谱遥感图像的不同波段有着不同的反应,这是基于高光谱遥感的特性。通过这些特性可以获得文物的一些内部信息,这些信息是很难通过文物表面检测而获得的。实际应用中,只要找到对大佛中的隐含信息较为敏感的波段,使用这些波段对其进行深入的研究,就可以获取一些普通方式无法获取的特征,从而可以恢复出一些已经消失的信息。此种技术已经在实际中有过采用的先例,例如,英国《星期日泰晤士报》于2006年5月28日首次向公众披露,塞拉奇尼借助多光谱成像技术成功地发现了达芬奇的《三博士来朝》这幅世界名画背后的血腥的场面。因此,如果把高光谱遥感应用在乐山大佛的保护上,将会卓有成效。一方面,可以通过高光谱遥感的信息,了解大佛本身的受损情况,并针对这些问题做出更好的保护措施,避免大佛受到进一步的伤害;另一方面,可以从大佛身上获得更多信息,预测大佛表面一些可能发生的问题,例如何处已经出现裂隙,何处已经出现凹陷,通过这些方面,可以防患于未然,在真正发生不可挽回损失之前就发现这些问题。2、高光谱遥感在文物断代上的应用根据遥感学知识,即便是同一类型的文物,由于其年代不同,其原材料、加工工艺等方面都是大相径庭的,这些因素反应到成份上就造成了其光谱特征的不同。如果采用高光谱遥感对文物进行处理,就可以很容易的发现文物所含成分特征,进而可以推断出文物大致的年限。但是,使用高光谱遥感对文物进行断代,需要通过测试大量相应的同类型材料样品,进而获得大量的数据,并通过这些数据建立一个丰富的光谱指纹数据库。通过数据库,就有了对比的准则,从而可以准确确定文物的年代。因此,如何建立一个数据量足够大的数据库,如何使得数据库的数据尽可能的涵盖各个方面,如何维护这个数据库,这些都是高光谱遥感在文物断代方面的一个现实问题。乐山作为世界闻名的文化遗产丰富地区,拥有着大量的文物储备。但是,专家对相当一部分文物的年代仍然存在着争议。对这些年限尚不明确的文物进行断代时就可以考虑使用高光谱遥感,相较于传统的断代方式,高光谱遥感方法可以更好的保护文物,避免断代时给文物带来的二次伤害,并且,在测量精度方面也有一定的保障。更多的去采用高光谱遥感断代方法,加快建设更完善的光谱指纹数据库,从长远角度来看,是非常有现实意义的。3、高光谱遥感数字博物馆在现代社会中,数字化已是大势所趋,在文物古迹方面也是如此。目前,已经出现了很多的数字博物馆。这些常见的数字博物馆,往往所涉及的都是可见光波段的图像,虽然已经具有很好的效果和实用价值,但相较于高光谱遥感,还有很多可以进一步研究的地方。普通的基于可见光的数字立体图像仅仅是对文物的空间信息进行了记录和再现,缺乏对文物的进一步信息的全方位立体的保存和重现,这使得在对文物做深入研究时有很大的局限性。而高光谱遥感可以获得更多的信息,除了三维信息、颜色信息之外,还有光谱信息。光谱信息是一个很广泛的事物,通过光谱信息,我们可以了解许多隐含的信息,例如文物的材质组成、历史变化、三维结构和外观形态等。埃及考古学家通过高光谱遥感技术,对已经淹没海底的古亚历山大港进行了数字重现,获得了极好的效果,古亚历山大港已经淹没海底,接触式的测量和评估是不现实的,高光谱遥感则为科学家们提供了很好的评估手段,让沉睡海底千年的古城重新展现在人们眼前。4、总结高光谱遥感技术可以了解文物古迹的受损情况、年代推算;还可以对文物进行完好度评估,以及推算出受损文物的原貌等等。高光谱遥感技术在文物保护领域大有可为。
  • 高光谱成像技术在果蔬品质检测中的应用
    近年来,食品安全问题备受关注,人们对果蔬品质与安全标准的要求也越来越高,已成为社会关注的热点。通常,果蔬品质包括了形状、颜色、大小和表面缺陷等外部品质与糖度、酸度、硬度、可溶性固形物含量、淀粉含量、水分和成熟度及其他营养元素的含量等内部品质,其品质好坏是其市场销量的重要因素。传统果蔬品质检测方法如化学法、高效液相色谱法、质谱分析法等通常对待测物具有破坏性,且速度慢。机器视觉和光谱技术具有快速、无损、可靠等优点,近年来广泛用于果蔬品质检测中。其中,机器视觉技术通过提取和分析果蔬形状、大小、颜色及表面缺陷等空间信息进行外部品质检测,而近红外光谱技术主要对果蔬内部品质进行检测。高光谱成像技术将图像与光谱技术相结合,可同时获取反映待测物内外部品质的光谱信息与空间信息,近几年国内外对其在果蔬品质的无损检测中进行了广泛的研究。本文将从高光谱成像技术的基本原理与其在果蔬品质无损检测中的研究与应用等方面,介绍其在该领域的最新研究进展。1、高光谱成像技术原理高光谱系统中的每个像元均可获取同一个光谱区间内几十到几百个连续的窄波段信息,并得到一条平滑而完整的光谱曲线,同时整个成像系统还可获取被测物的空间信息,实现对待测物内部成分与外观特征的同时检测,具有光谱连续与分辨率高等特点。系统获取的高光谱图像可用一段连续波段的光学图像组成的立体三维图像来表示,如图2所示。其中XY平面的二维图像表示物体的空间信息,如形状大小、缺陷等。由于物品外部变化会影响反射光谱,故形状、颜色或缺陷在某一特定的波长下图谱会有变化。λ坐标表示物体的光谱信息,将反映出待测物成分结构等内部品质。本研究应用了400-1000nm的高光谱相机,可采用杭州彩谱科技有限公司产品FS13进行相关研究。光谱范围在400-1000nm,波长分辨率优于2.5nm,可达1200个光谱通道。采集速度全谱段可达128FPS,波段选择后最高3300Hz(支持多区域波段选择)。2、果蔬外部品质的检测市场上人们对果蔬的直接感受就是其外部品质的好坏,即对颜色、新鲜度、大小、机械损伤、冻伤与腐烂等方面的判断。传统的机器视觉技术在果蔬外部品质的检测中由于精度低、操作复杂,很难区分出机械损伤、冻伤、腐烂及新鲜度等方面外部特征。高光谱成像技术恰好克服了这一缺点,能够实现全方位的无损检测,而且精度高、易于操作,近年来逐步用于果蔬外部品质的检测中。新鲜度是反映果蔬品质的重要指标。刚采摘的果蔬通常需经过储存、运输,最终到达消费者,该过程将影响其新鲜度品质。一般而言,人们对果蔬新鲜度的主观判断是不准确的。分别在失水0、10、24、48小时状态下,利用成像光谱仪采集了小白菜、菠菜、油菜、娃娃菜等四种蔬菜叶片的光谱图像并进行对比分析。其中,小白菜叶片在不同失水时间下的高光谱图像与机器视觉图像的对比分析如图3、4所示。从中可以看出,随着时间的变化两幅图中的叶片状态均有明显变化,但机器视觉图像只能看出失水状态,而高光谱图像通过分析光谱信息的变化发现,叶片在失水过程中其外观形态及内部叶绿素均有变化,叶绿素相对含量值预测模型的相关系数r=0.76,说明高光谱技术可以有效辨别蔬菜叶片的新鲜度。利用高光谱技术和ANN预测模型对苹果冻伤进行了研究,如图5所示。实验采用如图6所示过程,在400-1000 nm波段的冻伤苹果高光谱图像中选择5个主成分波段(717,751,875,960和980 nm)进行ANN模型的建立,其训练集、测试集和验证集的相关系数分别为0.93,0.91和0.92,最终实现了98%以上的识别准确率。对80个苹果样本分别采集4块尺寸为2 cm×2 cm×1.5 cm区域中的高光谱图像,利用偏最小二乘回归法来估算可溶性固形物含量反射数据与近红外光谱数据之间的关系,得到交叉验证系数为0.89,均方根误差0.55%,最后成功绘制出主要波段的高空间分辨率SSC图像,如图7所示。从图中可以看出靠近苹果边缘部分相比于中心部分有着更高的SSC值。结果表明,可用近红外高光谱成像技术测量苹果的可溶性固形物含量。3、结论随着生活水平的提升,人们对健康食品的品质要求越来越高。传统的机器视觉技术和物理化学方法在测量果蔬品质方面操作复杂、破坏性强,难以满足检测需要。高光谱成像技术融合了机器视觉、光谱和图像处理技术,产生的图像是“图谱结合”的三维数据立方体,不仅包含了待测物的空间信息特征,同时还包含了待测物的光谱信息,能够准确、快速、无损的检测出农产品的品质,并且操作简单,近年来广泛应用于果蔬品质的检测中。但是高光谱成像技术在采集和处理图像数据的过程中,受限于仪器性能和处理速度的影响,该技术现目前主要应用于基础性研究,并未广泛应用于工业的在线实时检测中。针对这些问题,为了实现果蔬品质的商业化在线检测,还需要做到如下两点:一是改进并升级高光谱成像技术的相关设备比如成像光谱仪,提升其性能并降低其生产成本,利于高光谱成像技术在果蔬品质检测中的推广;二是针对全波段的、不同品种的果蔬高光谱图像进行特征波长选取,以降低数据冗余量,减少高光谱图像的获取以及处理时间。尽管如此,随着社会发展与科学进步,高光谱成像技术将不断提升和改进,未来在农产品、食品安全领域将具有更加广阔的发展空间和应用前景。
  • 美国SOC参与军工业先进高光谱和多光谱技术展
    2016年10月24-25日,高光谱/多光谱技术进展行业日在新泽西的阿森纳举办。美国陆军士兵武器项目管理组织展示了M153通用遥控操作武器站(CROWS)上的多光谱实时成像相机(Surface Optics Corporation,SOC公司)。当天邀请了相关企业探讨实时高光谱/多光谱成像技术,并指出了在提升技术性能(检测、算法、范围、变焦功能)、成本最小化、耐用、可制造性方面的发展方向。 美国政府投资发展的实时高光谱/多光谱成像技术和算法支持自动化的目标获取武器、人员和车辆。实时高光谱/多光谱技术能够提供完整的目标获取能力。利用目标独特的光谱特征探测和追踪目标,并在屏幕上显示感兴趣的目标,而这些目标通常是用肉眼无法看到的。
  • 王建宇院士:红外高光谱成像技术及应用
    2021年6月21日,国内首家独立设置的国土空间规划学院在浙大城市学院成立。该学院将构建本、硕、博纵向贯通的国土空间规划教育体系,打造教育链、创新链、产业链深度融合的国土空间规划科教创新综合体,率先探索国土空间规划专业人才培养新模式,实现与城市发展同频共振、双向赋能。2022年6月18日,恰逢浙大城市学院国土空间规划学院“周年庆”活动,浙大城市学院还特别举办了院士论坛活动,中国科学院院士王建宇出席活动,为浙大城市学院城市大脑空天信息研究院揭牌,并受聘为该研究院学术委员会主席,作主题报告《红外高光谱成像技术及其在城市的应用》。王建宇院士介绍了当前红外高光谱成像技术的研究进展,并结合红外高光谱成像技术在城市安全、工业生产、生态环境、政府生态治理中的场景应用分析了红外高光谱成像技术的多场景需求。他指出,未来在城市管理、应急处理、环境保护等领域对红外高光谱成像技术的需求尤其迫切,“双碳计划”的国家战略定位,也将进一步推动这一技术的实用化发展。随着需求的推动,一些新的颠覆性技术也将逐步发展(如超表面红外探测、光声光谱等),通过技术创新、应用创新和管理创新实现对国外“卡脖子”高端红外光谱高光谱仪器的弯道超车,日益成为可能。想在线听到王建宇院士的报告并与他互动吗?第十一届光谱网络会议(简称iCS2022),王建宇院士将做《高光谱技术发展与空间应用展望》,你还犹豫什么?还不快报名参加?第十一届光谱网络会议(iCS2022)将聚焦最新、最前沿的光谱技术及应用,既包括最热门的新冠病毒SERS检测方法、高速发展的高光谱最新技术、极具应用前景的过程在线光谱分析,也涵盖了各类光谱技术在生命科学、食品/制药、环境、材料四大领域的应用进展,为国内外光谱科研工作者及专业技术人士提供一个全新、高效的沟通交流平台,以促进业内交流,提高光谱研究及应用水平。
  • 2018年高光谱遥感技术应用研讨会通知
    2018.05.14~15 北京 第二轮通知高光谱遥感技术能够有效探测和精细识别观测目标的光谱特性,对遥感事业发展具有重要推动作用。近年来随着遥感技术和应用迅猛发展,高光谱遥感的相关研究逐步向更高层次的光谱分辨率、空间分辨率和多维集成方向发展,取得了卓越的研究成果,并广泛应用于遥感科学、辐射定标、农业遥感、环境遥感、林业监测、地质勘查、土壤遥感、水体遥感、大气科学、材料研究以及伪装识别等众多研究领域。中国科学院遥感与数字地球研究所在解决高光谱遥感信息机理、图像处理和多学科应用中的世界性难题方面取得了多项重大成果,开创了高光谱遥感在农业、地矿、环境、文物保护等多领域的成功应用,获得国际同行高度赞誉,也使得我国在国际高光谱遥感学科发展方面始终处于国际前沿,在国际上产生了重要影响。美国SOC公司和SEI公司是全球优秀的光谱测量设备领导者,与美国NASA、NIST、JPL、LMT、DOD、U.S.Navy等世界一流遥感相关单位有数十年的合作,在业界获得了高度认可。北京安洲科技有限公司作为美国SOC公司和美国SEI 公司在中国区的总代理和技术服务中心,联合中国科学院遥感与数字地球研究所、美国SEI公司、美国SOC公司,合作举办2018年度高光谱遥感技术交流培训及应用研讨会,旨在探讨高光谱技术的多元应用方向和热点,提升广大科研人员的光谱测量和光谱数据处理水平,同时也为大家提供一个业界同行交流与学习的平台。会议期间,我们将发布并展示最新的SEI高端产品,指导高光谱仪器的使用方法、注意事项、使用技巧、数据处理与分析、高光谱技术的应用以及最新的技术进展;同时,还有高光谱领域的专家为大家做应用专题报告,以促进不同领域学者之间的交流和相互借鉴。 一、会议主办方:中国科学院遥感与数字地球研究所 美国SEI公司、美国Esri公司北京安洲科技有限公司二、会议时间:2018年5月14日-15日 三、会议地点:中科院遥感应用研究所奥运园区A501四、专家报告报告时间报告题目报告人5月14日 全天9:00-9:45作物长势与病虫害监测黄文江 研究员中科院遥感与数字地球研究所9:45-10:30SEI最新产品发布与展示Maurice A. KashdanHead of Marketing/SPECTRAL EVOLUTION10:30-10:50茶歇(合影)10:50-11:50高光谱遥感环境污染监测研究进展田庆久 教授南京大学11:50-12:00仪器体验Maurice A. KashdanHead of Marketing/SPECTRAL EVOLUTION12:00-13:40午餐及午休13:40-14:40遥感指数设计新探索陈晋 教授北京师范大学14:40-15:25作物表型遥感技术研究进展杨贵军 北京农林科学院15:25-15:40茶歇15:40-16:25高光谱遥感预处理方法研究高海亮 研究员中科院遥感与数字地球研究所16:25-17:00多源遥感数据获取与实践方墨人 经理北京安洲科技有限公司17:00-17:30ENVI高光谱处理最新进展和应用 邓书斌Esri中国遥感事业部5月15日 上午9:00-9:45测绘地物波谱本底数据库研究进展肖青 研究员中科院遥感与数字地球研究所9:45-10:30植被光谱知识库与植被参量遥感定量反演柳钦火 研究员中科院遥感与数字地球研究所10:15-10:30茶歇10:30-11:00仪器演示与操作培训吴瑞强 技术工程师北京安洲科技有限公司五、会议联系人:邮箱:service@azup.com.cn 六、参会须知1. 签到:8:30开始,参会人员签到,我们可以提供参会确认函,以便报销使用。2. 食宿安排 :免费提供5月14日午餐;其他食宿自理。七、参会登记表单位及部门电话 /手机姓名邮箱参会人数兴趣与方向是否需要午餐14日 是 否需解决的问题如有请填写注:1.请在5.10日前提交至service@azup.com.cn,以便安排会场。
  • 水质卫士安洲科技:无人机高光谱技术的应用与实践——《高光谱:水质监测的“科技助手”》主题约稿
    随着社会的发展,工业、农业及生活废水的大量排放,严重污染了人类赖以生存的水资源;河湖水体变色,甚至散发恶臭。这些呈现令人不悦的颜色和散发不适气味的水体,一般称为黑臭水体。黑臭水体破坏了水质和生态环境,很大程度地影响了人们的生活、危害人类健康,是目前较为突出的环境问题。遥感技术因具有速度快、同步性好、 覆盖面广、单位成本低等优点,已经被广泛地应用于水质动态监测中,遥感影像数据还可应用于水体成分的反演;研究表明,将卫星遥感技术应用于水质监测,其方法已经较为成熟,并已取得了较多的成果。然而受卫星遥感影像的分辨率限制,这种技术主要适用于大面积水域的监测,难以实现对小型水域或河道的高空间分辨率测量,而且卫星遥感还存在数据获取周期较长、时效性不够高、易受大气云层影响等问题,因此需要一种机动灵活且能够快速获得较大覆盖面积的水质测量方法,而无人机高光谱成像系统与地面水质测量相结合进行水质反演,即可解决这一问题。无人机高光谱成像系统是由无人机技术、遥感与测量技术、计算机技术等共同发展而融合的新技术,通常由硬件(包括无人机、 高光谱成像仪、计算机等)、软件(地面站控制软件、相片处理软件、影像应用软件等)和售后服务团队组成。 无人机高光谱成像系统测量相对于常规测量具有如下的优势:1)机动、灵活、 快速。无人机可在各种复杂条件下作业,反应迅速,适合应急监测。2)数据获取成本低。无人机遥感系统的购置、运行成本大大低于载人飞机,对场地和人员的要求也较低,日常维护简单,大大降低了遥感数据的获取成本。3)适合大面积观测。无人机作业可快速覆盖较大的观测面积,作业效率比人工现场测量大大提高。4)空间分辨率高。无人机高光谱成像数据的光谱分辨率高达纳米数量级。5)复杂区域观测。对于一些复杂区域,例如山区河流、河口海岸带、滩涂湿地等常规测量方式难以进入的区域,无人机航测具有显著优势。数据获取1.无人机光谱数据获取(1)机载高光谱成像设备介绍:X20P机载高光谱成像仪是一款基于光场成像技术的高光谱成像(HSI)设备,其内核为20 MP的超高清CMOS传感器,实现了相当高的空间分辨率。该设备以画幅式成像方式高速获取超过160个光谱通道的高光谱图像,连续覆盖350~1000 nm的波长范围,高性能传感器保证了噪声被控制得非常低,双GigE摄像机接口保证了高达5Hz的图像帧率(1886*1886像素/帧)。*350~1000nm宽波段范围*164或325通道瞬时同步成像*采用光场成像技术,快速成像无畸变*1886 x 1886大面阵空间维度高清图像*一体式无刷云台,Skyport电子排线接口*可搭载多种无人机并完成大面积数据图像X20P机载高光谱成像仪的164/325个光谱通道同步瞬时成像,更适合高速移动式使用,数据真实可靠无伪影;配套软件具有反射率校准、感兴趣波段数据导出、光谱植被指数制图等功能。X20P具有一体式无刷云台,内置控制及固态存储,适合多旋翼或固定翼无人机搭载。X20P一体式高光谱成像仪光谱范围350~1000nm高光谱分辨率1886*1886像素/帧光谱通道数164(可扩展)探测器20 MP高光谱CMOS成像方式全面阵所有通道同步成像,全局快门高光谱成像速度>2 Cubes/s 1886*1886像素/Cube数字分辨率12 Bit光谱输出168000 Spectra/Cube光学阵列/FOV66个/35°通讯接口Skyport电子排线接口、2*GigE、2*USB、HDMI存储内存内置固态硬盘500G/8G限位范围俯仰方向: ±50°,横滚方向: ±90°增稳范围俯仰方向: ±40°,横滚方向: ± 45°角度抖动量± 0.015°触发控制飞控提供触发信号,同步获取GPS数据结构重量一体式云台结构,整体重量<1.5Kg主要应用:UAV应用农业遥感环境遥感精准农业物种分类病害检测植物科学考古调查植物表型水色遥感(2) 作业计划落实:地物类型(主要提供河流宽度与长度等参数)、飞行面积(根据谷歌地图 kml 文件初步估算实际作业面积)、飞行高度(根据地面分辨率要求与空域高度等给出推荐飞行高度)、飞行架次(根据飞行面积与飞行高度等,估算无人机的飞行架次)、空域许可(需求方提供)。2. 无人机同步水面实验数据获取无人机飞行航测的同时,在水面开展实验,获取水体实验数据,主要包括:(1)水面反射光谱:用于水质参数反演建模、评价无人机反射率反演精度等。(2)现场测量水质参数:地面取样或直接测量相关的水质数据,包括:透明度、浊度、水深、水温、溶解氧、氧化还原电位等。(3)现场调查水体污染状况,包括:蓝藻水华、黑臭水体、排污口等。(4)现场采集水样,送到实验室内测量水质参数,包括:叶绿素 a、总悬浮物浓度、无机悬浮物浓度、有机悬浮物浓度、有色可溶性有机物(黄色物质)含量、总氮浓度、总磷浓度、化学需氧量(COD)浓度等。数据处理1. 基于无人机高光谱成像的水质参数反演建模利用无人机高光谱遥感图像和实测水面光谱和水质参数数据,构建水质参数遥感反演模型,实现基于无人机高光谱遥感的水质参数快速制图,包括浊度、叶绿素 a、总悬浮物浓度、无机悬浮物浓度、有机悬浮物浓度、黄色物质、水体营养状态等。2. 基于无人机高光谱成像的水体污染和水色异常区域提取方法利用无人机高光谱遥感图像和实地调查水体污染分布数据,构建水体污染遥感提取方法,实现基于无人机高光谱遥感的水体污染分布快速制图,包括蓝藻水华和黑臭水体等。此外,构建基于空间维和时间纬的水色异常区域提取算法,实现基于无人机高光谱遥感图像的疑似水体污染源信息提取。案例分享高光谱大面积水质反演案例飞行参数:飞行高度:400 m 飞行速度:20 m/s;飞行面积:3 平方公里 波段选取:490、550 、615、685、725、940拼接结果:1.RGB 合成图:2.总磷反演结果:总磷是水样经消解后将各种形态的磷转变成正磷酸盐后测定的结果,以每升水样含磷毫克数计量。3.氨氮反演结果:氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。 动物性有机物的含氮量一般较植物性有机物为高。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氮。4.水溶解氧(DO)反演结果:溶解于水中的分子态氧称为溶解氧,通常记作 DO,用每升水里氧气的毫克数表示。水中溶解氧的多少是衡量水体自净能力的一个指标。5.化学需氧量(COD)反演结果:化学需氧量 COD(Chemical Oxygen Demand)是以化学方法测量水样中需要被氧化的还原性物质的量。废水、废水处理厂出水和受污染的水中,能被强氧化剂氧化的物质(一般为有机物)的氧当量。水体遥感监测原理、特点影响水质的参数有:水中悬浮物、藻类、化学物质、溶解性有机物、热释放物、病原体和油类物质等。随着遥感技术的革新和对物质光谱特征研究的深入,可以监测的水质参数种类也在逐渐增加,除了热污染和溢油污染等突发性水污染事故的监测外,用遥感监测的水质数据大致可以分为以下四大类:浑浊度、浮游植物、溶解性有机物、化学性水质指标。利用遥感技术进行水环境质量监测的主要机理是被污染水体具有独特的有别于清洁水体的光谱特征,这些光谱特征体现在其对特定波长的光的吸收或反射,而且这些光谱特征能够为遥感器所捕获并在遥感图象中体现出来。如当水体出现富营养化时,浮游植物中的叶绿素对近红外波段具有明显的“陡坡效应”,故而这类水体兼有水体和植物的光谱特征,即在可见光波段反射率低,在近红外波段反射率却明显升高。水质遥感存在的问题与发展趋势1 存在的问题:①多数限定于定性研究,或进行已有的航空和卫星遥感数据分析,却很少进行定量分析。②监测精度不高,各种算法以经验、半经验方法为主。③算法具有局部性、地方性和季节性,适用性、可移植性差。④监测的水质参数少,主要集中在悬浮沉积物、叶绿素和透明度、浑浊度等参数。2 发展趋势2.1 建立遥感监测技术体系。研究利用新型遥感数据进行水质定量监测的关键技术与方法,形成一个标准化的水安全定量遥感监测技术体系,针对不同类型的内陆水体,建立多种水质参数反演算法,实现实验遥感和定量遥感的跨跃,从中获得原始创新性的成果。2.2 加强水质遥感基础研究。加深对遥感机理的认识,特别是水质对表层水体的光学和热量特征的影响机理上,以进一步发展基于物理的模型,把水质参数更好的和遥感器获得的光学测量值联系起来;加深目视解译和数字图象处理的研究,提高遥感影象的解译精度;增强高光谱遥感的研究,完善航空成像光谱仪数据处理技术。2.3 拓宽遥感水质监测项。现阶段水质遥感局限于某些特定的水质参数,叶绿素、悬浮物及与之相关的水体透明度、浑浊度等参数,对可溶性有机物、COD等参数光谱特征和定量遥感监测研究较少,拓宽遥感监测项是今后的发展趋势之一。应加强其他水质参数的光谱特征研究,以扩大水质参数的定量监测种类,进一步建立不同水质参数的光谱特征数据库。2.4 提高水质遥感监测精度。研究表明利用遥感进行水质参数反演,其反演精度、稳定度、空间可扩展性受遥感波段设置影响较大,利用星载高光谱数据进行水质参数反演,对其上百的波段宽度为10nm左右的连续波段与主要水质参数的波谱响应特性进行研究,确定水质参数诊断性波谱及波段组合,形成构造水质参数遥感模型和反演的核心技术,提高水质监测精度。2.5 扩展水质遥感监测模型空间。系统深入的研究水质组分的内在光学特性,利用高光谱数据和中、低分辨率多光谱数据进行水质遥感定量监测机理研究,进行水质组分的定量提取和组分间混合信息的剥离,消除水质组分间的相互干扰,建立不受时间和地域限制的水质参数反演算法,形成利用中内陆水体水质多光谱遥感监测方法和技术研究低分辨率遥感数据进行大范围、动态监测的遥感定量模型。2.6 改进统计分析技术。利用光谱分辨率较低的宽波段遥感数据得到的水质参数算法精度都不是很高,可以借鉴已在地质、生态等领域应用的混合光谱分解技术,人工神经网络分类技术等,充分挖掘水质信息,建立不受时间和地域限制的水质参数反演算法,提高遥感定量监测精度。2.7 综合利用“3S”技术。利用遥感技术视域广,信息更新快的特点,实时、快速地提取大面积流域及其周边地区的水环境信息及各种变化参数;GPS为所获取的空间目标及属性信息提供实时、快速的空间定位,实现空间与地面实测数据的对应关系;GIS完成庞大的水资源环境信息存储、管理和分析。将“3S”技术在水质遥感监测中综合应用,建立水质遥感监测和评价系统,实现水环境质量信息的准确、动态快速发布,推动国家水安全预警系统建设。
  • 高光谱成像技术在布料颜色测量当中的应用
    一、背景 纺织品作为颜色传播的重要载体,对织物颜色的准确度和均匀度具有较高要求。在纺织工业生产中,加工出符合要求的布料和成衣的两个前提条件是准确测量样品布匹颜色和严格控制印染颜色。 工业上测量织物颜色最常用的分光光度法只能测量单色织物,对织物尺寸大小要求较高且操作繁琐,使得其并不适应于多色织物或单根纱线颜色测量。 为了满足企业生产和发展的需求,本公司对织物颜色的精确测量方法进行了深入研究,针对当前技术的不足,在分析光谱成像技术的基础上建立高光谱成像系统,提出基于高光谱成像技术的织物颜色测量方法,实现了具有较高精度的颜色测量。光谱成像技术是将光谱技术和成像技术结合在一起,可以测量织物感兴趣区域(ROI)中光谱波段的反射率。从而获得更多的纺织品颜色信息,达到较高的颜色测量精度。二、可行性分析作为一种集光谱学、微弱信号检测、信息处理等于一体的综合性技术,光谱成像技术克服了分光光度法测量纺织品颜色的缺点。光谱成像技术能测量单色、多色和各种形状的织物,从采集的光谱图像中获取每个像素的颜色信息,从而实现光谱成像技术在纺织品颜色测量中的应用。光谱成像技术在对目标的空间信息成像的同时,也对每一个空间像元在波段内进行光谱信息覆盖,从而形成“光谱图像立方体”。浙江理工大学的张盼曾利用高光谱成像仪进行 15 个标准样品与15 个次品颜色测量并计算明度差、色度差和色差,其反射率图片如图 1 所示: 图 1 标准样品与次品反射率对比图 图一(a)为标准样品的反射率曲线,(b)为次品的反射率曲线,从光谱反射率曲线可以直观的看出,单色色织布标准样与批次样间的光谱反射率曲线的走向是一样的,但是在数值上还是有差异的。高光谱成像仪测量织物间颜色可以获得它们的色差值,这反映了高光谱成像仪的测色能力。 三、数据采集设备 数据采集的设备为杭州高谱自主研发的实验室高光谱成像仪(HY-8010-U),设备实景图,如下图。系统参数,见下表。系统核心分光模组完全由高谱公司自主研发,支持选配多种型号图像传感器,并搭配超高像素高清相机实现高空间分辨率与高光谱分辨率的完美融合。同时,HY-80系列可选配自研线性光源和定制暗箱,最大程度减少外部环境对样品检测带来的影响,结合独有的时空辐射校正功能,确保获得稳定的标准化高光谱数据。 HY-80系列实验室高光谱成像仪是一款专门为实验室环境定制的专用设备,能够实现对物质定性、定量、定时、定位信息的精准检测,是一台“图谱合一”的专业化科研设备,为物质分选、刑侦文检、食品监测、真伪鉴定等行业高端应用领域提供高精度的光谱建模与分析解决方案。四、测量结果及结论 通过对标准色卡和花布进行测量,并对测量结果进行反射率校正与值转换。本次选取 RAL 1000-RAL1004 共 5 种颜色样本进行分析,并分为两组进行对比,如图 2 所示,反射率处理结果如图 3 所示。将其转换为 L、A、B 值并对其进行相关处理后结果如图 4 所示:如上图 4 所示,图 4(a)为 RAL1000-RAL1004 五种样品的 L 值对比图、图 4(b)为 a 值对比图、图 4(c)为 b 值对比图、图 4(d)为以 RAL1000 为基准 RAL1001、RAL1002、RAL1003、 RAL1004 四种颜色的色彩度差值。对四块样品布进行想同处理后得到如下结果: 如上图 6 所示,图 6(a)为 1、2、3、4 四种样品的 L 值对比图、图 6(b)为 a 值对比图、图 6(c)为 b 值对比图、图 6(d)为以 1 为基准 2、3、4 四种颜色的色彩度差值。综上所述,可看出高光谱成像仪检测的 Lab 值具有明显差异。
  • 高光谱遥感找矿技术通过评审
    记者3月27日从河南省地质调查院获悉,由该院承担的“河南省重要成矿带高光谱遥感找矿方法技术研究”项目日前通过专家评审,技术水平全国领先。   作为河南省地质矿产科技攻关项目,该项目主要研究内容包括东秦岭地区区域遥感扫面技术方法、高光谱矿物填图技术方法、矿产地质特征遥感解译方法技术对比和高光谱遥感找矿方法技术集成等。   “项目在河南省内首次利用世界最先进的SVC HR-1024光谱测试仪对栾川赤土店、嵩县葚沟等试验区主要岩矿类型进行了光谱测试研究。”项目有关负责人介绍,利用此技术找矿效果明显,共圈定出10处成矿远景区和20处找矿目标靶区。经野外工程验证,嵩县桃园靶区地表金品位良好,金矿化特征明显 卢氏下坪子铜铅锌银靶区的部分铜、铅已达到工业品位。   专家认为,该项目所建立的东秦岭地区高光谱遥感找矿方法技术体系,具有快捷、高效、实用等特点,对推动河南省矿产资源勘查技术进步具有重要意义。
  • 2018年高光谱技术应用研讨会圆满落幕
    5月14日~15日,北京安洲科技有限公司联合中国科学院遥感与数字地球研究所、美国SEI公司、美国SOC公司和美国Esri公司合作举办了2018年度高光谱遥感技术应用研讨会。中国科学院遥感与数字地球研究所、北京师范大学、南京大学、北京农林科技大学,美国SEI公司及Esri公司等多位知名专家给大家做了精彩的学术报告,探讨了高光谱技术的多元应用方向和热点,给大家提供了很多高光谱遥感在不同研究领域的新思路和新方法。此次会议,美国SEI公司全球市场总监Maurice博士给大家带来了三款最新产品:多功能地物光谱仪SR-8800、 超高分辨率高光谱地物光谱仪SR-6500和专门为NASA定制的超稳定辐射标准传递光谱仪SR-4500A,引起参会老师的浓厚兴趣,并得到大家的高度认可。同时,我们公司还给大家展示了利用无人机进行多源遥感数据获取与实践的多个案例,利用机载高/多光谱成像仪、机载热红外成成像仪、机载激光雷达、倾斜摄影等多种传感器获取多源遥感数据。最后,我们的技术总监给参会的客户提供了内置推扫型高光谱成像仪SOC710的技术培训和免费软件升级服务。这次会议得到了业内相关老师、同学和科研工作者的热情支持,提前预设的200多个位置座无虚席,后面来的小伙伴们由于场地原因只能站着听完报告,在此向热心科研,热爱学习的小伙伴们致意。此次会议多位专家给大家带来了干货满满的精彩报告,同时也给国内同行提供一个业界同行交流与学习的平台,小伙伴们纷纷点赞!并期待下次会议的到来!
  • 高光谱成像技术对祁门红茶等级的无损检测
    茶是世界上最有价值和最流行的饮品之一,茶叶不仅可以提高机体免疫力,而且可以对抗疾病。红茶在世界茶产品中是主流的消费产品,中国生产的祁门红茶是世界三大高香红茶之一,它具有独特的果香气味,受到很多人的青睐。随着人们对红茶需求的不断增加,红茶的品质越来越受到重视。目前,茶叶市场存在以次充好的现象,但仅凭感官评价正确分辨茶叶品质好坏是比较困难的,而无损检测具有快速、精确和评价标准稳定的特点,因此实现茶叶的快速无损鉴别是十分必要的。本文利用近红外高光谱成像系统(900~1700 nm)对祁门红茶的6个等级进行分类,比较分析了PCA、MDS、t-SNE和Sammon四种不同降维技术,建立SVM和极限学习机(Extreme Learning Machine,ELM)模型并生成高光谱图像像素空间分类图。应用的900-1700nm高光谱相机,可采用杭州彩谱科技有限公司产品FS-15。短波近红外高光谱相机,采集速度全谱段可达200FPS,被广泛应用于成分识别,物质鉴别,机器视觉,农产品品质,屏幕检测等领域。1.2实验方法1.2.1数据采集近红外高光谱采集仪的光谱范围为900~1700 nm,光谱分辨率为3nm,共256个波段。在实验中将茶叶样本均匀的平铺在直径为5cm,高为2cm的圆形容器中,放在前进速度为1.68 cm/s的移动台上进行图像采集,曝光时间为20 ms,镜头与样本之间的距离为32 cm。为避免外部光线影响,高光谱图像的采集过程在暗箱中进行。原始高光谱图像噪声较大,故对其进行图像校正。本文采用黑白校正和最小噪声分离变换(Minimum Noise Fraction,MNF)方法对原始数据进行去噪处理。使用ENVI5.3软件,提取50×50像素中心区域作为感兴趣区域(Region of Interest,ROI),计算其平均光谱作为样本的原始光谱。各等级的茶叶样本按照3:2分为训练集和测试集,训练集包含288个样本,测试集包含192个样本。1.2.2数据处理1.2.2.1数据预处理图像采集过程中受到暗电流噪声、探测器灵敏度和光学传输特性等因素影响,导致采集的图像质量受到影响,需要对采集图片进行黑白校正。在相同的采集条件下,分别采集反射率接近100%的白帧图像和反射率接近为0%的黑帧图像。2结果与分析2.1 样本光谱特征由于卤素灯在初始阶段光照强度不均匀以及仪器噪声影响,为了保证数据的准确性和实验结果的可靠性,剔除900~980 nm和1650~1700 nm,选取光谱范围在980~1650 nm的203条光谱带作为祁门红茶的原始光谱数据。所有样本的原始光谱曲线如图1所示,光谱数据受到随机噪声和散射效应的干扰,需要对其进行预处理。本文对原始光谱分别采用SG平滑滤波(Savitzky-Golay Filtering,SG)、标准正交变换(Standard Normal Variate,SNV)、多元散射校正(Multiplicative Scatter Correction,MSC)、SG-SNV和SG-MSC等算法对数据进行预处理。SG可以消除或减弱随机噪声,SNV和MSC用来校正散射现象,SG-SNV和SG-MSC对原始算法进行了优化。实验结果表明,SG-SNV预处理效果优于其他算法。该算法有效地修正了光散射引起的光谱基线漂移问题,使光谱的吸收峰位置更加突出,光谱曲线如图2所示。祁门红茶6个等级的平均光谱曲线如图3所示,不同等级的茶叶在三个峰处反射率差别较明显。由此可知,高光谱成像技术可建立分类模型对6个等级的祁门茶叶进行识别。2.2 高维数据可视化利用MDS、Sammon、t-SNE和PCA等算法对高光谱图像进行高维数据的低维可视化。实验结果如图4所示,不同颜色的聚类代表不同的茶叶等级,只有t-SNE可以将6个等级的茶叶明确区分。如图4(a)、图4(b)、图4(d)所示,MDS和PCA不能将G1和G4完全区分开,Sammon不能将G5、G6以及G1、G3完全区分开,主要原因是该样本具有相似的光谱特征。与PCA和MDS相比,Sammon对6个等级祁门红茶的可视化效果较差。由于Sammon映射没有显式地表示转换函数.该算法只是提供了一种度量方法来衡量转换结果,故分离簇的能力不强。PCA和MDS无法保持高维空间的数据结构,因其只利用了远处数据点的信息,所以分离簇能力较弱。如图4(c)所示,与其他算法相比,t-SNE能够捕获数据的非线性和邻域信息,故可呈现较好的可视化效果。由实验结果可知,t-SNE识别最大分离簇数的能力优于PCA、MDS和Sammon。光谱数据进行判别的实验结果。其中,SVM模型惩罚系数c为1.2,核函数系数g为2.8,ELM模型的隐层节点数为5。由实验结果知,SVM和SG-SNV-SVM模型,训练集和测试集的准确率分别为100%。ELM模型的识别效果较差,ELM模型的训练集和测试集准确率分别为90.27%和85.93%,SG-SNV-ELM模型的训练集和测试集识别率分别为98.61%和96.35%。预处理之后的SVM模型分类精度没有发生变化,而经过预处理的ELM模型分类精度显著提高。由此可知,SG-SNV预处理对ELM得到有效应用。图5是不同模型的混淆矩阵结果。图5(a)混淆矩阵结果存在较多识别错误,G2中10个样本和3个样本被分别识别为G1和G4,G3中3个样本被识别为G4,G4中3个样本被识别为G3,G5中1个样本和3个样本被分别识别为G4和G6,G6中4个样本被识别为G5。图5(b)混淆矩阵结果出现少量识别错误,G3中1个样本被识别为G1,G4中4个样本被识别为G2,G6中1个样本被识别为G5。图5(c)和图5(d)的混淆矩阵结果完全正确。为了可视化6个等级祁门红茶的差异,对不同等级茶叶的像素光谱信息建立SVM和ELM识别模型,实验结果如图6示。如图6(a)所示,提取灰度图像,如图6(b)、图6(c),祁门红茶等级分类图由上到下依次为一级、二级、三级、四级、五级和六级。由图6(b)所示,SVM模型将6个等级的祁门红茶识别为各自相应的等级,但也存在一些像素点分类错误,特别是圆形容器边缘的误分类尤为明显。由图6(c)所示,ELM模型的分类图中不仅边缘像素存在误分类,而且各等级之间存在严重误分类。除去边缘分类错误,造成不同等级茶叶误分类的主要原因是光谱的相似性。误分类的另一个原因可能是茶叶的纯度,例如,将低等级的茶叶掺入高等级茶叶中进行混合售卖盈利。SVM模型的识别结果优于ELM模型。因此,SVM有较好的识别效果和性能。3结论本文利用近红外高光谱成像技术,结合SNV-SG、PCA、MDS、Sammon及t-SNE算法,基于光谱特征,分别建立祁门红茶等级快速无损识别的SVM模型和ELM模型。结果显示,t-SNE能更好地分离不同等级的祁门红茶,其高维空间邻近数据点的信息可以保持低维空间中的数据结构。基于光谱特征的SVM模型和ELM模型的测试集识别率分别为100%和96.35%。因此,近红外高光谱成像技术结合机器学习在茶叶产品分类的应用领域具有很大潜力。
  • 高光谱成像技术在文件鉴别领域的应用
    图片:利用高光谱成像软件对货币进行油墨鉴别   西南法医证件检查协会(SWAFDE)是一个区域性组织。它定期为全美国法医证件审查员提供技术交流会议。   下一次西南法医证件检查协会会议将在2013年4月7号美国圣迭戈举行。SOC公司计划参加,并展示先进的高光谱成像光谱仪。   高光谱成像光谱仪,作为一种无损检测工具,能在非接触的条件下,提供文件的任意光谱影像,使得法医证件审查员能够依据样品的光谱构成和独有特征,更清晰准确的鉴别文件真伪。具体的,高光谱成像光谱仪在文件鉴别领域具有以下功能:   1.指纹分析   2.文件伪造或变更监测   3.油墨鉴别   4.纸基纤维分析服务
  • 高光谱成像技术的发展现状及应用前景展望
    成像光谱仪自上世纪80年代由美国喷气动力实验室正式提出并研制以来,经过数十年的飞速发展,目前已成为非接触光学成像最具代表性的技术。高光谱成像技术的出现和发展使人们观测和认识事物的能力实现了又一次飞跃,续写和完善了光学成像从全色经多光谱到高光谱的全部图像信息链,孕育形成了一门成像光谱学的新兴学科门类,已广泛应用于遥感领域。国际上知名的高光谱成像技术提供商如Specim、Headwall、Cubert和IMEC等绝大多数集中在欧美国家,因此高光谱技术的早期应用探索也率先在欧美地区展开。我国高光谱遥感技术从20世纪80年代以来,经过几代研究人员的不懈努力,从探索研究到实际应用,始终和国际保持同步发展。但是,近地及无人机遥感高光谱技术在中国的发展起步较晚,特别是民用化的推广应用,更是在近二十年间才逐步为广大科研工作者所知悉。受国内成像传感器、光谱仪等核心器件的技术壁垒限制,真正国产高光谱成像技术的研发更是凤毛麟角,国内大多数企业更多是从国外引进光谱仪等核心器件,在此基础上进行二次开发集成,缺乏核心竞争力,因此,核心技术的国产化应该成为我们国内企业关注的重点。高光谱技术发展至今,就硬件来说,随着工业4.0时代的到来以及先进制造业的发展,以Specim为代表的高光谱成像技术生产商经过近20年的技术积累,已经具备了从紫外(UV)、可见光(VIS)、近红外(NIR)、短波红外(SWIR)、中波红外(MWIR),到长波红外(LWIR)全波段的高光谱成像产品生产能力。可以说高光谱成像硬件技术的发展已达到先进制造业所能支撑的顶级水平,市场常见的高光谱产品也是百花齐放。但是,由于高光谱成像技术应用领域的多样化,不同应用分析需求中由定性分析向定量或半定量分析的快速转化,高光谱成像应用解决方案及软件分析技术未得到同步发展,特别是针对某一具体应用领域,缺乏完整的解决方案。而且高光谱图像数据的一个重要特征是超多波段和大数据量,对它的处理也就成为其成功应用的关键问题和难题。高光谱图像数据分析门槛较高,市场上又鲜有专业的分析软件,用户要想更好、更深入地发掘高光谱信息并与自身研究课题结合起来,往往需要从底层入手,且具备图像处理、编程、二次开发等专业基础,而目前高光谱成像技术应用较多的领域如农业遥感、生态环境监测、植物表型分析等领域的用户,并不具备这样跨学科的基础,使得诸多领域的用户望而却步。更需一提的是,具有广阔前景的工业应用领域的用户,往往更关注直接可用的结果,而不注重分析过程,因此,相比高光谱成像硬件技术,针对特定领域的专业分析软件技术成为现如今高光谱成像技术的普及及工业化应用的最大阻碍,是高光谱行业科技公司亟需解决的问题。正因如此,以北京易科泰生态技术公司自主开发的SpectrAPP©、FluorVision©等为代表的专业高光谱成像分析软件应运而生,为高光谱技术的发展贡献积极力量。目前高光谱技术在农业、林业、植被覆盖、生态环境监测、地质矿产、湖泊和海洋水质检测等领域具有广泛的应用。除了以上领域外,高光谱技术最具发展潜力的应用将会体现在工业应用方向,如自动化分选、流水线/产品线品质监控、废弃物循环利用等,另外生物医学、文博考古、刑侦、艺术品鉴定等行业也将是高光谱技术的大显身手的领域。随着成像传感器技术、机器视觉技术、人工智能技术的发展,尽管高光谱成像技术已越来越多地应用于各行各业,但由于缺乏通用的行业标准,再加上国内外高光谱软硬件质量参差不齐,在全世界范围内没有建立起一套完整的、公认的、权威的规范标准,使得高光谱成像技术缺乏国际一致认可的衡量标准,也催生出许多以次充好、滥竽充数、搅乱市场的现象。易科泰公司自2002成立以来,便长期致力于生态-农业-健康研究监测技术推广、研发与服务,并与国际知名公司如PSI公司、Specim公司等合作,在光谱成像技术如高光谱成像技术、叶绿素荧光成像技术、红外热成像技术、无人机遥感技术等方面积累了丰富的经验。易科泰生态技术公司为国内遗传育种、植物生理生态研究、作物抗性筛选等提供表型分析技术方案已有10多年的成功技术经验,先后为中科院植物所、中国农科院水稻所、中国农科院生物技术研究所、中国海洋大学、海南大学热带作物学院等科研机构和公司机构提供了几十套高通量作物/植物表型分析平台和藻类表型分析平台,包括高光谱成像技术、叶绿素荧光成像技术等国际先进表型分析技术。近几年来,易科泰公司与国际高光谱成像技术领导者Specim合作,研制生产了Ecodrone®系列无人机高光谱-激光雷达-红外热成像遥感平台、PhenoTron®多功能高光谱成像等系列作物/植物表型分析系统、AlgaTech®藻类表型分析平台等,为植物/作物表型分析、中医药表型组学、生态修复及生态保护、水体与藻类、生态环境监测领域等提供陆空双基、全方位的技术方案。也使得易科泰成为国内高光谱成像技术在农业、林业、生态环境、海洋科学、地质地球科学等领域应用推广的先行者和主要代表。易科泰公司基于自主研发的SpectraScan©光谱成像扫描平台技术、成像配置系统、SpectrAPP©及FluorVision©软件分析技术,并结合国际先进的Specim高光谱成像、PSI叶绿素荧光成像、Thermo-RGB成像技术,先后推出多种产品系列,以完整的解决方案全方位覆盖高光谱成像技术的主要应用领域。主要有:• FluorVision叶绿素荧光高光谱成像技术• UV-MCF生物荧光高光谱成像技术• SIF太阳光诱导叶绿素荧光高光谱成像技术• PhenoTron®植物表型成像产品系列• PhenoPlot®近地遥感高光谱成像系列• AlgaTech®藻类表型成像系统• Ecodrone®无人机高光谱遥感系统(农、林、生态环境方向)• Geodrone®无人机高光谱遥感系统(地质地球方向)• SpectraScan®高光谱成像扫描系统• SpectrAPP©光谱成像技术创新应用项目(合作实验与技术服务)正如前文所述,受限于国产光谱仪核心部件的技术壁垒,目前主流的国产高光谱产品是基于进口光谱仪如Imspector的二次组装集成,从核心技术成像光谱仪的研发、光学设计到整机集成、出厂校准测试等没有形成一体化、封闭式流程,产品性能较进口产品仍然有不小的差距,高光谱整机解决方案的国产化进程缓慢。但由于随着国家对国产设备的支持力度逐渐加大,且国产设备从市场价位、售后响应等方面存在先天优势,在中国市场,目前的国产集成设备与整机进口设备竞争日趋激烈。同时,在EcoTech®实验室、西安易科泰光谱成像与无人机遥感技术研究中心(设立有光谱成像实验室)、表型与种质资源事业部等多方专业技术团队的分工协作、共同努力下,易科泰公司已经走出一条从光谱成像核心技术的引进、专业领域的系统集成,到软件分析技术的自主研发、解决方案的全面整合,再到技术支持服务保障一站式、全流程道路,及用户之所想,解用户之所需,消用户之顾虑,也因此赢得市场的广泛认可,成为高光谱成像技术在国内发展壮大的有力推动者。2018-2021年间,由易科泰公司和中国海洋大学海洋生命学院研究团队合作,首次将Ecodrone®无人机遥感技术引入海洋科学领域,建立了一套可靠的紫菜生物量快速评估方法,并在Plant Methods上合作发表文章《Biomass estimation of cultivated red algae Pyropia using unmanned aerial platform based multispectral imaging》,为大型藻类的培育管理、遗传育种、表型学研究及海洋牧场监测管理提供高效、可靠的解决方案。随后,考虑到研究团队对于一站式多传感器表型成像分析的迫切需求,易科泰公司充分发挥自身优势、基于自主专利技术设计研发AlgaTech®高通量藻类表型成像分析平台,成为目前国内功能完备、技术一流的高通量藻类表型成像分析系统,为藻类及海洋植物生理生态、海水养殖、生物量评估、遗传育种等研究领域提供全方位、一站式解决方案。有研究数据显示,2022年全球与中国高光谱成像系统市场容量分别为934.73亿元与279.02亿元。基于2018-2022年高光谱成像系统市场发展趋势并结合市场影响因素分析,有预测机构预测全球高光谱成像系统市场规模在2028年达2471.94亿元。由此预计2022至2028年间,中国高光谱市场规模将超过700亿元,可以预测中国必将成为未来全球最大的高光谱成像市场。面对如此市场机遇,易科泰公司将继续秉持“生态-农业-健康”的战略定位,以自主研发的软硬件技术为基础,以高光谱成像、叶绿素荧光成像、红外热成像等先进传感器技术为依托,全面整合解决方案,在农、林、生态环境、无人机遥感、地质地球等科研领域继续深耕,并逐步向工业生产线、废弃物分拣、食品药品、文博考古、艺术品鉴定等应用领域积极拓展,为高光谱成像技术在中国的全面发展贡献蓬勃力量。(作者:北京易科泰生态技术有限公司、西安易科泰光谱成像与无人机遥感技术研究中心 王宁)
  • 中国高光谱遥感应用技术出口发达国家
    领域介绍   高光谱遥感是高光谱分辨率遥感的简称。它是在电磁波谱的可见光,近红外,中红外和热红外波段范围内,获取许多非常窄的光谱连续的影像数据的技术。其成像光谱仪可以收集到上百个非常窄的光谱波段信息。高光谱遥感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重信息。高光谱遥感的出现是遥感界的一场革命,它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。   人物简介   张兵,中科院对地观测与数字地球科学中心副主任,中科院研究生院教授,继承和发展了童庆禧院士和薛永祺院士开创的高光谱遥感技术和应用,是我国高光谱遥感科学与技术从诞生走向成熟、从科研走向实际应用的最主要的贡献人之一。   核心提示   人类“鸟瞰”地球的梦想催生了遥感这门科学的兴起,高光谱遥感是遥感科学最前沿的领域。   新中国建立后特别是最近的20多年,中国的高光谱遥感科技研究取得了长足的发展,在某些方面的应用技术实现了出口。但是,由于缺乏持续性的支持,我们在仪器研制方面还处于落后局面。   人类鸟瞰地球的梦想   遥感通俗讲就是遥远的感知,是通过电磁波和记录的相互作用,以波谷和空间两维成像的方式来勘测记录的技术。它的特点一是记录电磁波,二是空间成像,非成像方式也有。   人类早期运用遥感技术的手段很有限,在没有飞机之前,人们用热气球、鸽子作为遥感的平台,将照相机挂在热气球上或捆在鸽子腿上,对地球进行遥感成像。   伴随着飞机的问世,航空遥感以及航空侦查在第一次世界大战,尤其是第二次世界大战得到了飞速的发展,但那时候的图像都是黑白的,也就是我们说的全波段图像。   1957年10月,前苏联发射了第一颗人造地球卫星,拉开了人类进入航天遥感的序幕,他们把相机放在卫星上,围着地球转,对地面进行拍摄。1972年,美国发射了陆地卫星,这是航天遥感的标志性事件。   遥感有很多种类型。按照遥感平台的不同,可以分为航空遥感、航天遥感 按照谱段可以分为可见光遥感、红外摇杆和微波微波遥感,按照遥感感测目标能源的方式分为主动遥感和被动遥感。   主动遥感是指遥感器主动发射一部分能量,到地面后反射回来,遥感器接收它反射回来的能量,通过这种方式进行分析研究的遥感 被动遥感是指遥感器只是被动接收。   光学遥感技术主要是侧重在光学这部分,可以分为全色遥感、彩色摄影、多光谱扫描成像,光谱遥感发展的最前沿就是高光谱遥感。   高光谱遥感实际上是一种简称,它的全称叫“高光谱分辨率遥感”,它不像多光谱遥感中根据颜色的差异来分辨目标,而是根据谱段光谱曲线的形态来分析目标是什么。这个谱段的形态对目标的识别能力很强,举例说,它不仅仅能够知道地面目标物体是不是植物,还能知道这些植物是水稻还是玉米。   应用技术出口发达国家   主持人:中国现在在高光谱遥感领域的研究和应用现状如何?   张兵:咱们国家的高光谱遥感分仪器和应用模型两个方面,说中国高光谱遥感的发展,必须提到两位院士,一位是童庆禧院士,还有一位薛永琪院士。童庆喜院士是遥感应用研究所的,我是他的学生。   童院士是我们国家高光谱遥感的开拓者,这个概念是从美国引入过来的,他跟薛院士共同协作推动了咱们国家高光谱遥感的发展。   童院士侧重于概念设计,跟上海研究所一起,引进了一些概念的设计,仪器制造是在薛院士这里。研究这块是童院士带领的团队。   从80年代初开始,我们陆续有一些高光谱遥感仪器在上海技术研究所研制出来了,后来去日本、马来西亚、澳大利亚做实验,我们带的都是我们自己的机器。2002年《科学时报》专门登过一篇采访我的稿子,我们去日本做实验,高技术出口。这是比较少有的,在空间领域我们的技术能跟国外相比。   我们国家在高光谱遥感研究领域起步比较早,赶上了国际,但这几年尤其在仪器研制方面我们是落后的,一个很重要的原因是我们缺乏持续性的支持。在发展得很好的国家,第一代研制出来后,国家会再投入第二代、第三代的研发,给与一种持续性的支持。   在仪器方面,西安光机所这几年也开始做高光谱仪,但是他们做的是干涉型的,上海激光所起步比较早,基础比较好一些。   在应用技术方面,我们给美国、澳大利亚、日本、马来西亚都提供过技术,应该说在应用技术方面我们是不落后的。   现在高光遥感主要是美国、欧洲、澳大利亚、中国,日本现在开始做起来了,主要是对地面成像地数据分析这一块。   对大气这一块,我们国家比较落后,因为他们更多的是侧重在全球温室气体,面对全球变化的一些大的计划,这一块做得比较好的有美国、欧洲和日本。   美国航空遥感技术最先进   主持人:从航空遥感的角度来说,欧美国家的水平如何?   张兵:美国是最先进的,欧洲发射了一个卫星Chris,也只有可见光谱段,跟我们差不多,但是他们空间分辨率高,可以达到17米。   我们国家(航空遥感的空间分辨率)是100米,美国是30米,但是美国这30米很厉害,关键是它的谱段很强。   航空的成像光谱议现在发展得非常快,美国在1988年就制定了航天Paris计划,但1992年因为技术原因终止了。   美国曾经先后发射过几个军用卫星,1987年发射了TRW,但发射失败。   2001年,美国又发射了Orbiting Carbon Observatory“轨道碳观测者”卫星,也是很先进的,它的像源是8到20米,但分辨率一高,幅宽马上就变窄了。这颗卫星有200个谱段,是0.4到2.5微米,也就是400到2500纳米。但是这颗卫星也发射失败了,掉到了印度洋里。   2000年,美国军方还发射了另一个航空遥感卫星,主要是做一些大型探测和实验研究。   目前最成功的航空遥感卫星,就是前面说的分辨率是30米的那颗美国卫星,它的幅宽是7.5公里,有220个谱段,10纳米的光谱分辨率。   高光谱遥感有广泛的民用空间   高光谱遥感技术的应用非常广泛,日本今年1月23号,发射了世界首颗温室气体观测卫星“呼吸”号,专门检测二氧化碳、甲烷、一氧化氮等温室气体。   在精细农业方面,我们和日本合作做的一个实验,也是高光谱技术应用的一个非常经典的例子:用高光谱数据来监测作物生长状况。其实,高光谱遥感技术不仅能够监测作物的生长状况,还可以对任何一种作物的种植面积等情况进行调查,给政府决策提供依据。   除了调查作物的品种、类型、种植面积等以外,还可以做到作物的叶绿素、氮磷钾含量的调查,但后者还正在研究之中,不是非常成熟。   在地矿调查中,高光谱遥感技术也可以给地址工作者提供帮助。以前地质学家做地矿调查非常辛苦,背一个书包,拿一个罗盘,别人调侃说搞地质的人,远看是个要饭的,近看是搞勘探的。他们出去到野外考察,一住可能就是好几天,然后花很大的气力把采集到得矿物标本背回来。因为要做矿物填图,要沿着这个地方走一圈,走一段一看地层变化了,就敲一块往包里一装,然后把位置记下来,回来后做化学成份分析,最后把它标到图上去,位置是在哪发现的,才能把图填出来。   有了光谱议,他们的工作减轻了很多,不用再花那么大的力气背矿石标本,只要到了那个地方用光谱议一照,就能获得岩石的一条光谱曲线,回来后根据光谱曲线一分析,就能知道那个地方有什么矿,是怎么分布的。   高光谱遥感技术还可以给森林火灾预警、地表膨胀、城市调等等各种工作提供帮助。   运用到军事上,能让目标无法隐藏   高光谱遥感的区分能力在军事上运用是很强大的,所以它很大的一个用处就是军事用途。比如,你看到一个绿色的网,拍一般的图片,看起来都是一样的,但高光谱一看,就它能发现隐蔽的哨所、坦克、伪装起来的军事设施。   美国人强调定点攻击,它想在晚上攻击一些重要的工业基础设施,比如炼油厂之类的,这时高光谱遥感技术就能派上大用场。通常情况下,居民楼的光线和工业区的灯光是不一样的,如果光谱议能够把光线的曲线探测到,就可以根据夜间光谱光线亮度的情况,知道这块区域是居民区,还是工业区。   还有伪装,高光谱遥感技术能让一切的伪装现出原形,这种功能是多光谱遥感也无法实现的。   我们小时看的电影《地雷战》有一个情景:民兵把地雷埋下去以后,拿树枝扫一下地面,让埋藏地雷的地方看起来和周围一样。还有的干脆把鞋脱了,轻轻的在藏地雷那地方压一个鞋印,以迷惑敌人。现在,这种伪装一点用也没有,高光谱遥感技术能把一个个地雷的位置找到。   它是怎么找到呢?因为土壤挖开之后再回填回去,土壤的结构变了,水分也变了,高光谱遥感就是根据这种细微的土质的变化,发现地雷的藏身地。   阿富汗战争期间,美军想知道塔利班武装晚上大概都经常走哪条路,于是就拿高光谱遥感仪器去探测,根据的就是上面的道理。
  • "开扒"高光谱遥感技术 带你穿云透雾火眼金睛
    p   在2016年度中国遥感领域10大事件评选中,“遥感技术首次辅助城市黑臭水体整治工作取得实效”名列榜首。而这与高光谱遥感技术有很密切的联系。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/9ced0203-c3d3-4be5-9ce3-cfd7eeb9418b.jpg" title=" 下载.jpg" / /p p   那么,高光谱遥感技术到底是怎么回事儿?高光谱分辨率遥感是用很窄而连续的光谱通道对地物持续遥感成像的技术。在可见光到短波红外波段其光谱分辨率高达纳米(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的,因此高光谱遥感又通常被称为成像光谱遥感。 /p p   在电影《地雷战》中有一个情景:民兵埋地雷的时候,用树枝进行掩盖,让埋藏地雷的地方看起来和周围一样 还有的干脆把鞋脱了,轻轻地压一个鞋印,以迷惑敌人。但是在今天,这种伪装就一点用也没有了,高光谱遥感技术能将一个个地雷精确地找到。 /p p    strong 1.光谱:物体独一的身份证 /strong /p p   遥感可以概括为借助光、热、无线电波等电磁能量来探测地物特性的科学。在20世纪60年代之前,人类对地球和宇宙的观测还主要以可见光为主。 /p p   人们日常生活中所见的光,是由多种颜色构成的复色光,通过棱镜等分光后显现的是单色光。这些单色光按不同波长(或频率)大小依次排列形成的图案,就是光谱。地球上不同的元素及其化合物,由于物质组成、结构等不同,都有不同的光谱特征。这些独特的光谱特性,类似于人类指纹的功能,是遥感科学中用以识别和分析不同物体特征的一种重要的“身份证”。 /p p   高光谱遥感实际上是一种简称,它的全称叫“高光谱分辨率遥感”。它不像多光谱遥感中根据颜色的差异来分辨目标,而是根据谱段光谱曲线的形态来分析目标是什么。光谱分析是人类借助光认知世界的重要方式。如果说肉眼光学成像能看到物质的形状、尺寸等信息,光谱分析则能获取物质的成分信息。 /p p   据中国科学院遥感与数字地球研究所张兵研究员介绍,高光谱遥感能在可见光到短波红外范围内连续光谱成像,不仅光谱探测范围超过了肉眼的感知,还能连续记录数百个光谱波段。因此,用肉眼甚至普通的光学遥感不能识别的地面物体,这项技术都能够更好地分辨出其内在的物理、化学特性,甚至是物质的分子和原子结构。 /p p   如果说彩色合成遥感图像主要是根据颜色和形态的差异来分辨地面物体,那么高光谱遥感则是根据光谱曲线的形态来识别地面物体。它利用成像光谱仪在连续的几十个甚至几百个光谱通道获取地物辐射信息,在取得地物空间图像同时,每个像元都能够得到一条包含地物诊断性光谱特征的连续光谱曲线。张兵举例说:“在数百公里高度运行的高光谱卫星,不仅能观测到地面覆盖的是不是植被,还能探知这些植被的具体种类和长势如何。” /p p   高光谱遥感的出现,是遥感领域的一场革命,使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。 /p p    strong 2.“火眼金睛”怎样炼成 /strong /p p   上文提到的埋藏的地雷是如何被高光谱遥感技术轻易发现的呢?因为土壤被挖开后再回填回去,土壤的结构、水分都改变了,高光谱遥感技术就是根据这种细微的土质变化,发现了地雷的藏身处。在阿富汗战争期间,美军利用高光谱遥感仪器,可以探测出塔利班武装晚上经常走的道路。高光谱遥感技术还可以发现隐蔽的哨所、坦克,伪装起来的军事设施。 /p p   当前,农业生产管理存在作物营养和病虫害等农情信息大面积监测不及时、监测水平以定性为主、监测精度无法实现定量的精准变量肥水药管理等难题。高光谱遥感技术可以对任何一种农作物的品种、类型、种植面积等情况进行调查,甚至可以对农作物的叶绿素、氮磷钾含量进行分析,为相关决策提供科学依据。中国科学院遥感与数字地球研究所黄文江带领的植被定量遥感研究团队,开展的即是这一工作。 /p p   高光谱遥感技术还可以为地质学家提供帮助。以前,地质学家野外考察时,背着包、拿着罗盘,需要花很大气力把采集到的矿物标本一一背回来进行研究。而自从有了高光谱仪器,他们只要到一个地方用高光谱仪器扫描一下,就可以获得岩石的一条光谱曲线,从野外回来后根据光谱曲线进行分析,可以知道这个地方矿物分布种类以及区域。 /p p   近年来,成像光谱技术也逐渐渗透进了各种非传统遥感行业,比如在医学、生物、刑侦、考古、文物保护等领域开展了广泛的探索性应用。2006年中科院成功研制了国内首套摆扫式地面成像光谱仪,并与故宫博物院等单位合作在古画、唐卡、壁画、墨书等文物的识别和鉴别方面取得了开创性成果。光谱分析技术与智能手机的融合诞生了面向普通民众的高光谱应用,借助于嵌入到智能手机里的光谱仪,人们能够随时随地用手机快速检测果蔬农药残留和食品品质安全等信息。 /p p    strong 3.水质监测领域大有可为 /strong /p p   当前,全国城市黑臭水体的筛查、治理过程监督和整治效果评价,都迫切需要遥感大范围动态监测提供科技支撑,但黑臭水体遥感监测的有关研究几乎为空白。高光谱遥感技术可以对不同污染程度和不同污染来源的黑臭水体进行区分。 /p p   中国科学院遥感与数字地球研究所水环境遥感研究团队在北京等城市开展了十余次黑臭水体野外实验,积累了141个黑臭采样点的实测遥感反射率等数据。基于黑臭水体和一般水体的反射率细微的光谱差异,发展了决策分类树,可以区分一般水体、三种类型的轻度黑臭水体和七种类型的重度黑臭水体。并发展了基于纯度算法的多光谱遥感识别算法,可以识别一种类型的重度黑臭水体,识别精度约90%。基于这一方法,作为参研单位之一,进行了13个城市黑臭水体遥感筛查与实地验证。 /p p   利用高光谱数据对内陆水质开展水华和水生高等植物的识别,从而对水质分布情况进行监测,也是高光谱遥感的重要应用。由于水草和水华光谱与植被光谱具有一定的相似性,常用的多光谱遥感数据很难精确识别水华和水草,只有高光谱遥感数据才能够捕捉复杂多变的水华、水草和水体细致的光谱差异,从而对水华和水草进行精确识别。水环境遥感研究团队利用高光谱遥感技术等构建了水体叶绿素a浓度、总悬浮物浓度、水色FU值等9种水质参数、19个反演模型。其中,针对浑浊水体的悬浮物浓度精度提高了19.7% 研发了国内首个在国家级和省级环保部门业务化运行的内陆水环境遥感系统,为环保部卫星环境应用中心等部门开展水环境遥感应用提供了有力支撑。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/93282d25-10de-41c1-8a91-870ce8ba1772.jpg" title=" 下载 (1).jpg" / /p p   高光谱遥感技术起源于20世纪80年代,已形成了一个颇具特色的前沿领域。我国高光谱遥感的起步和发展基本与国际同步,在开创初期,中科院童庆禧院士和薛永祺院士为此做出了重大贡献。 /p p   1989年,中科院研制了我国第一台模块化航空成像光谱仪,并在20世纪90年代又陆续研发了推帚式成像光谱仪、新型模块化成像光谱仪、轻型高稳定度干涉成像光谱仪等。2002年“神舟三号”搭载了我国第一台航天成像光谱仪,此后我国发射的“嫦娥1号”探月卫星、环境与减灾小卫星(HJ-1)星座、风云气象卫星等也都搭载了航天成像光谱仪。 /p p   我国的高光谱遥感科技发展一直处于国际前列,中科院自主研发的高光谱图像处理与分析通用软件系统(HIPAS)被国际同行评为国际六大顶尖高光谱图像处理软件之一,并在高光谱遥感应用方面实现了向美、日、澳等发达国家的技术输出,成果在国际上产生了重大影响。 /p p   目前,高光谱遥感技术和应用在中国科学院逐渐形成了一个成熟的研究方向和学科领域,具有一支从技术发展到应用研究的专业科研队伍。其中,以遥感与数字地球研究所张兵、张立福研究员和童庆禧院士为突出贡献者的“高光谱遥感研究集体”获得了2016年度中国科学院杰出科技成就奖。 /p
  • 会议通知 | 2024年高光谱测量技术及应用学术交流会
    会议时间:2024年4月19日参会方式:线上参会主办方:中山大学测绘科学与技术学院北京理加联合科技有限公司协办方:英国ASD公司美国Resonon公司加拿大Itres公司01 背景随着科技的不断进步和创新,高光谱遥感技术已经成为遥感领域的前沿技术之一。相较于传统的多光谱遥感,高光谱遥感不仅可以捕捉到多光谱技术所无法观测到的光谱信息,而且可以为各个领域的研究提供更加全面和深入的数据支持。目前,高光谱遥感技术在农业、环境、林业监测、土壤科学、水色遥感、大气科学、材料研究等各个领域都得到了广泛的应用。在农业领域,高光谱遥感技术可以用于监测作物的生长情况、诊断病虫害、优化施肥方案等;在环境领域,可以用于监测水质、土壤污染、植被覆盖等;在大气科学领域,可以用于监测大气组成、空气质量等。这些应用展示了高光谱遥感技术在不同领域中的巨大潜力和价值。为了促进科研工作者对高光谱遥感技术及其研究进展的了解,并推动不同学科领域之间的交流与合作,拓宽高光谱遥感技术在各个研究领域的应用和发展,2024年高光谱测量技术及应用学术交流会将于4月19日举办。届时相关专家学者将分享他们在高光谱遥感领域的最新研究成果、技术创新和应用案例,共同探讨高光谱遥感技术的未来发展方向和挑战。02 会议目的面向广大科研人员,开展以高光谱遥感基础理论、技术方法、数据分析和应用研究进展等多方面为主的技术交流和培训,以解决仪器使用过程中遇到的各种问题,提高仪器测量的精确度和准确度,促进和拓宽高光谱遥感技术在不同领域的应用。03 会议内容1)高光谱遥感技术前沿的科学问题2)高光谱技术的基础理论与方法3)高光谱技术的应用和最新研究进展4)高光谱和激光雷达相融合的最新技术及应用04 会议日程9:00~9:05致辞王天星 副院长中山大学测绘科学与技术学院9:05~9:10致辞孙宝宇 总经理北京理加联合科技有限公司9:10~9:50基于多源光谱信息的东北耕地土壤有机碳遥感反演研究耿静 助理教授中山大学测绘科学与技术学院9:50~10:30内蒙古典型草原植被生物量遥感反演研究王秀梅 副教授内蒙古工业大学10:30~10:40休息10:40~11:20“空-地”高光谱遥感监测技术设备的升级韩善龙 低空遥感工程师北京理加联合科技有限公司11:20~12:00基于多尺度遥感技术的农田杂草防控研究权龙哲 教授安徽农业大学休息时间13:30~14:10遥感环境指标的云计算系统宋挺 高级工程师江苏省无锡环境监测中心14:10~14:50基于高光谱遥感影像的数字土壤制图研究郭龙 副教授华中农业大学资源与环境学院14:50~15:30国产日光诱导叶绿素荧光(SIF)及相关高光谱系统最新研发进展郑宁 应用科学家北京理加联合科技有限公司15:30~15:40休息15:40~16:20黄土高原麦田土壤有机碳及其因子的高光谱响应机理和定量监测王超 副教授山西农业大学16:20~17:00基于光谱指数的光照与阴影冠层和背景分离方法方美红 副研究员杭州师范大学遥感与地球科学研究院17:00~17:30生态系统碳源碳汇立体监测方案及实践孙宝宇 总经理北京理加联合科技有限公司05 会议时间、形式1.会议时间:2024年4月19日2.会议形式:线上(腾讯会议,届时将发送会议链接至报名邮箱)06 注意事项本次研讨会不收取费用。07 报名方式关注“理加联合”微信公众号,回复“2024”,获取报名链接08 联系我们BeijingLICA (工作人员微信号)请添加工作人员微信,邀请您进入此次会议交流群(请备注单位及姓名)09 专家一览耿静 助理教授中山大学测绘科学与技术学院耿静,中山大学测绘科学与技术学院助理教授、硕士导师。主要从事土壤遥感、全球变化与土壤碳动态等究。主持国家自然科学基金青年基金项目、广东省区域联青年基金、井冈山农高区省级科技专项“揭榜挂帅”课题、中科吉安生态环境研究院院长基金等多项课题。在国内期刊发表论文二十余篇;出版专著1部;授权国家发明专利2项;授权软件著作权1项;担任中科院二区SCi期刊Agriculture客座编辑及《Geoderma》、《Soiland Tillage Research》等国际期刊审稿人。王秀梅 副教授内蒙古工业大学王秀梅,博士,副教授,硕士生导师。现就职于内蒙古工业大学环境科学与工程学科。主要研究方向为环境信息系统、环境遥感、高光谱遥感。主持内蒙古自然基金项目 目“基于多源信息的草原蝗虫遥感监测与预测方法研究”和“基于多尺度数据源的生物多样性对草地生态系统功能稳定性影响研究” ”出版著作《遥感与地理信息系统实习教程》、《一种高光谱成像设备,实用新型专利》和《一种便携式野外高光谱相机系统,实用新型专利》。权龙哲 教授安徽农业大学权龙哲,安徽农业大学教授、博士生导师,智能制造专业负责人,主要从事农业机器人与人工智能技术研究;获东北农业大学学士/硕士学位、吉林大学博士学位,在哈工大机器人国家重点实验室和美国UIUC脱产访学多年,于东北农业大学农业工程博士后流动站出站;获安徽省领军人才(特聘教授)、黑龙江省高校人才、东北农业大学青年才俊、东北农业大学学术骨干等人才称号,2021年被安徽农业大学以高层次人才引进;现任中国农业工程学会青年工作委员会副主任委员、中国农业机械学会青年工作委员会副主任委员、中国农业机械标准化委员会委员、省创新方法学会理事等9项学术兼职;担任农业工程学报/农业机械学报/COMPAG/BE/RS/IJABE/ASABE等国内外农业工程领域知名期刊的审稿专家,同时还担任国家基金/博后基金/各地省市基金等函评专家,以及各类人才项目/优秀教师奖/科技奖的评审专家。宋挺 高级工程师江苏省无锡环境监测中心宋挺,江苏省无锡环境监测中心高级工程师。长期从事环境遥感和生物生态研究,参与省级及以上科研课题5项,近年来以第一作者在“Science of the Total Environment”、“Remote Sensing”、“遥感学报”、“湖泊科学”、“光谱学与光谱分析”、“环境科学学报”、“遥感技术与应用”、“中国环境监测”等期刊发表20多篇学术论文,多篇论文被录入《学术精要数据库》前0.1%或前1%。发明专利三项,软件著作四项,获得生态环境监测三五人才“技术骨干”称号。郭龙 副教授华中农业大学资源与环境学院郭龙,华中农业大学资源与环境学院副教授。研究专注于利用多源异构的自然环境和人为活动数据进行土壤属性(土壤有机碳、黑碳、多环芳烃等)反演制图、农作物长势监测和生态环境评估等。近年来在国内外知名期刊杂志发表学术论文40余篇,其中,第一/通讯作者身份发表论文18篇,SCI论文14篇(Top期刊7篇),发表在Geoderma,Soil&TillageRe-search和土壤学报等知名期刊。主持国家自然科学基金,博士后面上项目二等资助,湖北省自然科学基金等。全国第三次土壤普查剖面样点布设技术负责人,全国第三次土壤普查技术规范编委,湖北省第三次全国土壤普查专家成员。王超 副教授山西农业大学王超,博士,副教授,硕士生导师,教育部学位中心通讯评议专家,山西省小麦产业技术体系信息岗位专家,长期从事智慧农业研究,先后主持中国博士后科学基金项目、山西省基础研发项目、山西省高等学校科技创新项目等课题8项,以第一作者或者通讯作者在国际和国家级学术刊物发表论文22篇,其中SCI论文18篇,授权国家专利2项,荣获山西省“三晋英才”青年优秀人才称号,是2016年山西省优秀博士学位论文获得者。方美红 副研究员杭州师范大学遥感与地球科学研究院方美红,杭州师范大学遥感与地球科学研究院特聘副研究员,硕导。南京大学资源环境遥感博士、地理学博士后。主持或参与国家自然科学基金、中国博士后科学基金等 10 余项,已累计在国际主流 SCI/SSCI 刊物发表论文10 余篇,获得授权专利和软件著作权多项;担任多个SCI 期刊审稿人。研究方向:植被冠层结构和叶片生化参数遥感定量反演、陆地碳水循环模拟和湿地生态环境监测。
  • 高光谱遥感技术 给土壤做“CT扫描”
    在政策红利不断释放之下,农业升级的核心价值不在于人或技术,而是土地价值。土地的平整与否、集约程度,决定着机械化应用比例。标准化生产程度越高,越能提升土地生产效率,降低农户生产成本。也因此,先进的管理方式或技术手段所要做的是,去发掘出土地的最大价值。麦飞科技利用遥感技术,辅助农业生产,包括帮助农户精准施肥打药、农田病虫害探测防治、产量预测等软硬件一体化技术。麦飞科技通过高光谱遥感监测技术、人工智能技术实现了农田病虫害的实时精准探测,农药喷洒的精准控制,极大改善了因农户仅凭经验而导致的农药过量喷洒问题。利用农业遥感技术,通过监测土壤性质、农作物的生产过程,面向种粮大户、合作社、农场、粮食品牌商等,售卖一套技术解决方案。“相当于是对农田做了一次CT扫描,形成一张农田热力图谱,告诉农户不同农田位置生产参数的好与坏,例如病虫害的分布位置和分布轻重程度。如果农户想追加施肥,根据农作物的长势差异和茎叶含氮量的指标高低,在农田不同位置进行差异化施肥方案。”麦飞科技创始人宫华泽介绍道,这背后的核心逻辑是帮农户优化种植成本、生成利润。想了解高光谱更多信息,请关注仪器信息网“第十一届光谱网络会议(简称iCS2022)”,7月22日高光谱专场(光谱新技术与新方法三)。麦飞科技是一家拥有国际化技术背景、互联网基因、专注于智慧农业领域的AI大数据公司。公司创始于2016年。核心技术源于中科院遥感所十余年的创新科研积累。公司初创成员来自中国科学院、中国农业科学院、北京大学、阿里巴巴、甲骨文、加拿大卡尔顿大学、欧洲空中客车集团等国内外知名团队。
  • 第四届高光谱成像技术及应用研讨会即将召开
    p style=" text-align: center "   大咖专家云集分享高分“神器”的辉煌成果,我国高光谱遥感技术的盛宴——第四届高光谱成像技术及应用研讨会即将召开 /p p style=" text-align: center "   2018年10月23-25日,上海好望角大饭店 /p p style=" text-align: center " img title=" 11222.jpg" alt=" 11222.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/80891c28-9dbb-437e-8c1a-8080723c361a.jpg" / /p p   2018年10月23日至25日,由中国光学工程学会和中国遥感应用协会主办,联合中国科学院上海技术物理所、中国科学院空间应用工程与技术中心、中国航天科技集团公司第508研究所、中国科学院遥感与数字地球研究所、中国科学院安徽光机所、国家海洋局第二海洋研究所、北京航空航天大学、苏州大学、南京大学等20余家科研院所、大学和工业应用部门,将在上海组织召开“第四届高光谱成像技术及应用研讨会”。 /p p   我国自主航天事业近年来发展迅猛,推动了我国遥感事业的进步,尤其是空间信息应用及其相关产业的发展更是日新月异。高光谱遥感作为遥感科技的前沿领域,我国不断取得世界瞩目的成果。2017年4月26日,“珠海一号”遥感微纳卫星星座02组卫星发射成功,包含4颗高光谱卫星,可机动灵活地提供丰富的高光谱数据 2018年5月9日,高分专项部署的、具有划时代意义的“高分五号”卫星成功发射,它填补了国产卫星无法有效探测区域大气污染气体的空白,可满足大气、环境、地矿、植被等方面综合监测的迫切需求,是中国实现空间高光谱分辨率对地观测能力的重要标志。我国的高光谱遥感研究今后将更向超高光谱分辨率、数据多维集成、观测目标精准识别、热红外高光谱等方向发展,并不断取得卓越丰富的研究成果。 /p p   为进一步加强我国高光谱遥感领域技术交流与发展,打造一个以“高分五号”卫星各型载荷为主,兼顾其他航空机载高光谱仪器技术,总结和推广最新遥感和测绘数据应用成果,特别是地矿、环保、农业、林业、气象、海洋等领域的交流与合作平台。 /p p   大会名誉主席邀请童庆禧院士、薛永祺院士、赵文津院士、顾逸东院士、潘德炉院士、周成虎院士担任,王建宇院士和罗格理事长担任大会主席。组委会诚挚邀请业内权威多位院士和30余位领军专家出席大会作特邀专家报告,报告内容包括高光谱遥感成像技术、成像光谱仪器与设备、载荷研制与数据处理技术、光谱成像定量化研究、高光谱数据应用等。报告专家大部分都是国家重大科技专项任务中的项目负责人,经过八年的积累此高端会议已确实成为国内唯一高光谱技术及应用领域的权威交流平台。邀请专家名单请见大会官网 http://www.csoe.org.cn/meeting/GGP2018/427.html /p p   大会交流形式包括专家报告会、优秀论文粘贴交流会、创新产品与技术展览展示会、产业化论坛、青年人才招聘活动等。组委会热诚欢迎相关科研人员和创新型企业报名参加会议!组委会可为企业引荐院士、专家,或者量身定制活动解决应用需求。 /p p style=" text-align: center " img title=" 111123.jpg" alt=" 111123.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/7bf18404-21e7-4c89-a79e-ba652a257bdd.jpg" / /p p /p
  • 863计划“高光谱红外一致性传递定标技术”项目通过验收
    p   2019年7月23日,科技部高新技术司会同遥感中心在上海组织召开了“十二五”国家863计划“高光谱红外一致性传递定标技术”项目验收会。项目验收专家、项目承担单位科研人员共计40余人参加了此次会议。 /p p   该项目面向提高我国高精度红外遥感载荷质量综合检测与定量应用水平的迫切需求,经过四年技术攻关,攻克了高光谱红外载荷高精度、可溯源在轨光谱辐射定标技术中的前沿技术难题,研制了覆盖可见光近红外、短波红外、长波红外谱段的具备自定标功能的地物成像光谱仪和机载成像光谱仪 构建了基于高空作业平台的高光谱红外成像地面测试基准同步获取技术系统,形成了我国自主的高光谱红外一致性传递定标技术体系。 /p p   高光谱红外成像技术和定量化信息获取是国际地球观测领域发展的前沿热点之一,通过该项目建立的高光谱红外一致性传递技术体系,实现了实验室标准、场地定标和星上定标的有机衔接,已成功应用于高分、高景、陆地资源卫星等多个国内外卫星的在轨定标或示范验证。该体系对于提升遥感综合定标技术能力、提高我国高质量红外定量遥感技术与应用水平具有重要意义,为我国高光谱红外遥感成像技术定量化应用提供重要的支撑和保障。 /p p br/ /p
  • 案例分享[高光谱成像技术]面粉无损检测
    应用案例分享[高光谱成像技术]面粉无损检测 背景面粉(小麦粉)是中国北方大部分地区的主食,用面粉制成的食物品种多样,如:面条、馒头、水饺等。生活中我们都是依据外包装上的高筋粉、中筋粉、低筋粉、全麦面粉等信息进行采购。很多人在购买面粉的时候会误以为"高筋面粉=高精面粉",其实"高精"的意思简单说就是高级精制,它只表示小麦的加工工艺,并不能说明面粉的筋度,其蛋白质的含量,决定面粉的“筋度”,即高筋、中筋、低筋。同时,面粉中蛋白质、淀粉、脂肪、矿物质的含量会直接影响面粉的等级。高光谱成像技术不仅有样品图像的信息,并且还可以获得图像上每个点的光谱数据,光谱可以反映特定波长的特征信息,从而获得更全面、更可靠的结果,以及更精确的信息,如糖、脂肪和蛋白质等等。随着生活水平的提高及食品产业规模化,食品品质的提高和改良倍受关注。传统的化学检测手段、精度、效率都不高。亟需建立一种新的能够应用于面粉质量分级的快速无损检测方法。实验设置基于漫反射方式采集面粉的高光谱数据,我们用Camlin型号VNIR-HR(光谱范围400-1000nm)和NIR-HR+(光谱范围900-1700nm)范围内反射光谱,建数学模型,分析面粉种类、颜色、淀粉、蛋白质、脂肪含量等指标,实现对面粉品质的无损检测。(1)VNIR高光谱相机下的测试结果主成分分析图像通过测试用的是VNIR高光谱相机(波长范围400-1000nm)从光谱图中可以看到在580nm附近有特征峰。(2) NIR高光谱相机下的测试结果主成分分析图像通过测试用的是NIR高光谱相机(波长范围900-1700nm)从光谱图中可以看到在970nm、1300nm附近有特征峰。高光谱成像技术在本应用中的独特优点:可以同时获取样品图像和光谱信息,该方法具有不破坏样本原貌,不使用化学试剂、检测快速等优点,避免了人工鉴别方法易受主观因素影响,属于在线快速检测和全检,实用性强,性价比高。1. 无损快速检测2. 全波段测试3. 支持集成、二次开发下表中涂黄部分是此次测试过程中使用的高光谱相机的产品参数:SpectralVNIR-SVNIR-HRNIR-HRNIR-HR+UnitsSpectral Range400 to 1000900 to 1700nmSpectral Resolution810.731.5nmSpectral Bands*892 / 446 / 223830 / 415 / 208250500-Spatial pixels14001600320640pixMaximum line frame rate120120344300lf/sSmile and Keystone errorSub-pixel across the spectrograph output field-InterfaceGiGe- 结论:通过采集面粉的高光谱图像和可见-近红外光谱信息,进一步建模型可分析出面粉中的蛋白质、淀粉、脂肪等的含量,跟国标和常规化学检测方法对比,结果可靠,可实现快速无损检测,且成本低。这能减少整个供应链的浪费,并提高消费者对产品感受的一致性。
  • 2019年无人机遥感及高光谱应用技术交流会
    2019年无人机遥感及高光谱应用技术交流会暨安洲科技优秀论文表彰大会2019.6.12~14 北京 第二轮通知无人机技术与高光谱遥感的结合作为一种先进的技术手段,目前已经成为遥感应用的热点,广泛应用于遥感科学、辐射定标、农林业遥感、环境遥感、地质勘查、土壤遥感、水体遥感、材料研究等众多领域。本次无人机遥感及高光谱应用技术交流会邀请了多位遥感研究领域的知名专家做应用专题报告(请见会议日程)。会议期间还将分享无人机多源遥感技术方案与成功应用案例,并展示新型无人机遥感载荷及光谱测量设备。最后将进行无人机多源遥感平台的飞行演示,展示无人机搭载高光谱、多光谱、热红外等传感器的实际应用。一、会议主办方:中国科学院空天信息研究院北京师范大学德国Cubert公司北京安洲科技有限公司二、会议时间:2019年6月12~14日中午,其中6月14日上午为无人机飞行演示,中午返城三、会议地点:中科院遥感应用研究所奥运园区A501四、日程安排会议日程报告时间报告题目报告人6月12日 8:30 签到9:00~9:10致辞嘉宾9:10~9:45高光谱矿物填图及应用甘甫平 研究员 自然资源部航空物探遥感中心9:45~10:20无人机视角下的植被高光谱特性田庆久 教授 南京大学10:20~10:45茶歇(合影)10:45~11:20机载遥感系统集成及林业应用庞勇 研究员 中国林科院资源信息研究所11:20~11:55旋转扫描高光谱成像系统的三维信息获取巫兆聪 教授 武汉大学12:00~13:40午餐及午休13:40~14:15地表水体污染遥感监测研究李俊生 研究员 中国科学院空天信息研究院14:15~14:50近地面/无人机平台新型传感器及其应用方墨人 产品经理 北京安洲科技有限公司14:50~15:10茶歇15:10~15:45遥感时空数据融合算法新探索陈晋 教授 北京师范大学15:45~16:20被动微波土壤水分反演及降尺度技术研究毛克彪 研究员 中国农科院农业资源与区划所16:20~16:55企业级遥感平台技术在高光谱中的应用探讨邓书斌 技术总监 ESRI中国遥感事业部16:55~17:30新型无人机遥感载荷展示及技术答疑李建国 技术经理 北京安洲科技有限公司6月13日9:00~9:35The latest development and applications of UAV based hyperspectralDr. Matthias Locherer Cubert9:35~10:10高光谱植被参数反演与病虫害遥感监测黄文江 研究员 中国科学院空天信息研究院10:10~10:20茶歇10:20~10:55无人机高光谱遥感及科学应用肖青 研究员 中国科学院空天信息研究院10:55~11:30基于无人机遥感的作物氮素营养诊断研究陈鹏飞 副研究员 中科院地理所11:30~12:00无人机遥感数据获取及数据预处理经验分享李建国 技术经理 北京安洲科技有限公司12:00~13:40午餐及午休13:40~14:15多传感器下的稻麦遥感监测方法探索研究张东彦 副教授 安徽大学电子信息工程学院14:15~14:50复合翼无人机在低空遥感中的应用骆海洋 产品经理 成都纵横自动化技术股份有限公司14:50~15:10茶歇15:10~15:30基于成像高光谱的油松毛虫危害等级评价张凝 博士 北京农林科学院15:30~15:50基于近地成像与无人机高光谱遥感的红树林分类研究曹晶晶 博士 中山大学15:50~16:25无人机面阵高光谱成像的几何精度探讨谭骏翔 工程师 中国科学院航空遥感中心16:25~17:00新型多功能地物光谱测量技术进展及演示吴瑞强 技术经理 北京安洲科技有限公司17:00~17:30优秀论文颁奖6月14日 飞行演示 上午 9:00从中科院遥感应用研究所奥运园区楼下出发,中午返城,会议结束五、会议联系人:方经理18201326729 李经理18501052465 邮箱:support@azup.com.cn 微信二维码: QQ群二维码: 六、参会须知1. 签到:6月12日8:30开始,参会人员签到,我们可以提供参会确认函,以便报销使用。2. 食宿安排 :免费提供6月12日及13日会议午餐,其他食宿自理。参加6月14日上午飞行演示活动的统一安排往返车辆,如需自行前往或返回的差旅费自理。七、参会登记表(同一单位多人参加的,请分别填写)单位及部门电话 /手机姓名工作邮箱兴趣与方向是否需要午餐第一天?第二天?是否参加飞行演示是? 否?是否自行前往?是否自行返回?注:请在6.10日前提交至support@azup.com.cn,以便安排。
  • 2019年无人机遥感及高光谱应用技术交流会
    2019年无人机遥感及高光谱应用技术交流会暨安洲科技优秀论文表彰大会2019.6.12~14 北京 第三轮通知无人机技术与高光谱遥感的结合作为一种先进的技术手段,目前已经成为遥感应用的热点,广泛应用于遥感科学、辐射定标、农林业遥感、环境遥感、地质勘查、土壤遥感、水体遥感、材料研究等众多领域。本次无人机遥感及高光谱应用技术交流会邀请了多位遥感研究领域的知名专家做应用专题报告(请见会议日程)。会议期间还将分享无人机多源遥感技术方案与成功应用案例,并展示新型无人机遥感载荷及光谱测量设备。最后将进行无人机多源遥感平台的飞行演示,展示无人机搭载高光谱、多光谱、热红外等传感器的实际应用。一、会议主办方: 中国科学院空天信息研究院北京师范大学德国Cubert公司北京安洲科技有限公司 二、会议时间:2019年6月12~14日中午,其中6月14日上午为无人机飞行演示,中午返城三、会议地点:中科院遥感应用研究所奥运园区A501四、日程安排会议日程报告时间报告题目报告人6月12日 8:30 签到9:00~9:10致辞嘉宾9:10~9:45高光谱矿物填图及应用甘甫平 研究员 自然资源部航空物探遥感中心9:45~10:20无人机视角下的植被高光谱特性田庆久 教授 南京大学10:20~10:45茶歇(合影)10:45~11:20机载遥感系统集成及林业应用庞勇 研究员 中国林科院资源信息研究所11:20~11:55旋转扫描高光谱成像系统的三维信息获取巫兆聪 教授 武汉大学12:00~13:40午餐及午休13:40~14:15地表水体污染遥感监测研究李俊生 研究员 中国科学院空天信息研究院14:15~14:50近地面/无人机平台新型传感器及其应用方墨人 产品经理 北京安洲科技有限公司14:50~15:10茶歇15:10~15:45遥感时空数据融合算法新探索陈晋 教授 北京师范大学15:45~16:20被动微波土壤水分反演及降尺度技术研究毛克彪 研究员 中国农科院农业资源与区划所16:20~16:55企业级遥感平台技术在高光谱中的应用探讨邓书斌 技术总监 ESRI中国遥感事业部16:55~17:30新型无人机遥感载荷展示及技术答疑李建国 技术经理 北京安洲科技有限公司6月13日9:00~9:35The latest development and applications of UAV based hyperspectralDr. Matthias Locherer Cubert9:35~10:10高光谱植被参数反演与病虫害遥感监测黄文江 研究员 中国科学院空天信息研究院10:10~10:20茶歇10:20~10:55无人机高光谱遥感及科学应用肖青 研究员 中国科学院空天信息研究院10:55~11:30基于无人机遥感的作物氮素营养诊断研究陈鹏飞 副研究员 中科院地理所11:30~12:00无人机遥感数据获取及数据预处理经验分享李建国 技术经理 北京安洲科技有限公司12:00~13:40午餐及午休13:40~14:15多传感器下的稻麦遥感监测方法探索研究张东彦 副教授 安徽大学电子信息工程学院14:15~14:50复合翼无人机在低空遥感中的应用骆海洋 产品经理 成都纵横自动化技术股份有限公司14:50~15:10茶歇15:10~15:30基于成像高光谱的油松毛虫危害等级评价张凝 博士 北京农林科学院15:30~15:50基于近地成像与无人机高光谱遥感的红树林分类研究曹晶晶 博士 中山大学15:50~16:25无人机面阵高光谱成像的几何精度探讨谭骏翔 工程师 中国科学院航空遥感中心16:25~17:00新型多功能地物光谱测量技术进展及演示吴瑞强 技术经理 北京安洲科技有限公司17:00~17:30优秀论文颁奖6月14日 飞行演示 上午 9:00从中科院遥感应用研究所奥运园区楼下出发,中午返城,会议结束 五、参会须知1. 签到:6月12日8:30开始,参会人员签到,我们可以提供参会确认函,以便报销使用。2. 食宿安排 :免费提供6月12日及13日会议午餐,其他食宿自理。参加6月14日上午飞行演示活动的统一安排往返车辆,如需自行前往或返回的差旅费自理。六、参会登记表(同一单位多人参加的,请分别填写)单位及部门电话 /手机姓名工作邮箱兴趣与方向是否需要午餐第一天?第二天?是否参加飞行演示是? 否?是否自行前往?是否自行返回?注:请在6.10日前提交至support@azup.com.cn,以便安排。
  • 我司在首都师范大学举办高光谱成像技术交流会
    安洲科技于2013年1月21日在首都师范大学资源环境与旅游学院举办了高光谱成像技术交流会,我司主要介绍了SOC公司在高光谱成像领域的卓越成就,并就SOC710VP便携式可见-近红外高光谱成像光谱仪与参会老师进行了详细的技术交流,首都师范大学参会老师对我公司的SOC710vp便携式可见-近红外高光谱成像光谱仪表现出很高的兴趣,表达了与我公司继续交流合作的意愿。 美国Surface Optics Corporation(SOC)成立于1978年,专门从事表面光学特征研究和表面光学仪器的开发。在过去三十多年里SOC公司一直和美国政府部门进行合作,并开发了一个广泛的用于各种材料的光学测量数据库。SOC的实验室光学仪器和高光谱分析工具已经获得卓越的国际声誉。 我公司代理美国SOC公司的SOC710VP便携式可见-近红外高光谱成像光谱仪可实现开箱即用,无需再进行系统集成和定标,其光谱范围为400~1000nm。SOC公司的SOC710VP便携式可见-近红外高光谱成像光谱仪可实时获取图谱合一的海量数据立方。数据立方同时包含了图像信息和光谱信息,图像每个像元都能产生一条完整而连续的光谱曲线。
  • 中国高光谱成像技术应用领域及发展前景
    特色高光谱技术具备对植被、水体、土壤等地物进行精准定量分析的能力,已经在军民融合、自然资源监测、环保监测、海洋监测、农作物面积统计以及估产、保险定价与理赔、应急管理、城市规划、重大工程监测等领域得到了示范应用,受到了部队、政府、行业等诸多用户的好评,树立起了业内高光谱卫星数据应用的新标杆。例如,在贵州省玉米种植面积统计、新疆棉花种植面积统计、雄安新区农作物分类等应用中,精确度达到95%以上。 高光谱成像技术应用领域及发展前景中国高光谱技术应用于遥感卫星行业,主要包括农业高光谱、动物高光谱成像、矿物高光谱检测等,帮助人们更好地分析、理解这个世界。高光谱技术具有波段多、光谱范围窄、波段连续、信息量大等特点,是多光谱技术的升级。随着测谱学理论的发展和成像光谱学的建立以及成像光谱技术的应用,使得人们有能力获得这些信息,并利用这些信息,使得人们对景物或目标的分析和识别变得更加精准。应当说,成像光谱学理论及其相关技术使得人们可以从中获取更多的信息,使宇宙空间和微观世界的探索更为有效、准确,同样也使人们对自然界的认知水平和能力有了较大的提高。高光谱成像技术,在民用和军事上都已经成为发达国家科技争夺的制高点之一,其不仅可用于宇宙物质探测鉴别,而且可利用航空遥感或卫星遥感技术,对地质、矿产蕴藏、森林、水利、海洋、农业等资源进行有效而准确的物质分析判断 在气象方面可进行自然灾害预测、预报、环境污染检测 在生物医学领域可进行细胞、染色体分类、分析、识别和医疗诊断 在军事、公安等国家安全部门中用于军事目标侦察、制导、警戒系统、防御系统及其反伪装侦察。遥感卫星主要包括光学遥感卫星及雷达遥感卫星,其中光学遥感卫星分辨率高:光学遥感卫星空间分辨率高,但易受环境影响,而雷达遥感卫星可全天候工作,但分辨率相对较低。全球遥感卫星占在轨卫星比例迅速上升,遥感卫星因具有用途广泛、技术准入门槛低、卫星制造成本低、发射成本低、无轨位限制等特点,受到创新型商业航天企业青睐。遥感卫星可在气象、灾害监测、资源和测绘等应用方面创造较高的社会经济效益,其受益者为国家和全体公众,因此数据本身具有社会性和公益性、大部分遥感数据无法在短期内实现商业化发展,但未来行业的商业化发展是未来的必然趋势。根据美国Union of Concerned Scientists数据,截至2021年4月,美国拥有的遥感卫星存量排名第一,数量为442颗 其次为中国,遥感卫星存量215颗,美国和中国遥感卫星存量相比其他国家处于绝对优势地位。但美国遥感卫星存量在中国的两倍以上,中美遥感卫星存量差距依旧明显。不过从中国遥感卫星年发射情况来看,我国遥感卫星发射量呈现上升趋势。2009年我国遥感卫星发射数量仅为3颗,而到了2020年发射数量为33颗,我国遥感卫星发射规模大幅提升。遥感卫星市场规模的快速增长得益于航空航天技术的进步和国家鼓励政策的推进。《“十三五”国家战略性新兴产业发展规划》中曾提出打造国产高分辨率商业遥感卫星运营服务平台,推进商业卫星发展和卫星商业化应用。2020年据初步测算,中国遥感卫星市场规模达到了102亿元,相比2016年增长了61.90%。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制