当前位置: 仪器信息网 > 行业主题 > >

高纯镍粉

仪器信息网高纯镍粉专题为您整合高纯镍粉相关的最新文章,在高纯镍粉专题,您不仅可以免费浏览高纯镍粉的资讯, 同时您还可以浏览高纯镍粉的相关资料、解决方案,参与社区高纯镍粉话题讨论。

高纯镍粉相关的方案

  • 原子发射光谱法测定高纯镍粉中Mg含量
    高纯镍粉中杂质含量是其质量控制的重点项目之一,本文研究建立了一种快速准确的高纯镍粉中杂质含量分析测试方法。采用王水溶解样品,使用电感耦合等离子体原子发射光谱法同时测定了高纯镍粉中杂质元素Mg、Ca、Fe、Cu 含量。实验确定了以285.213 nm、393.366 nm、259.939 nm、324.752 nm 分别作为Mg、Ca、Fe、Cu 的分析谱线,并对仪器工作条件进行了优化。优化得到最佳仪器工作条件为:射频功率1100 W、雾化气流速0.8 L/min 和观测高度15 mm。实验结果表明:镍基体对待测元素的影响可通过基体匹配的方法克服,各元素的校准曲线线性相关系数均不小于0.999,方法中各元素的检出限为0.0002%~0.0011%。方法应用于镍粉样品中杂质元素含量的测定,结果的相对标准偏差(RSD,n=4)在1.1%~5.7%之间,且测定结果与样品质保书中测定结果相符。
  • 原子发射光谱法测定高纯镍粉中Cu元素含量
    高纯镍粉中杂质含量是其质量控制的重点项目之一,本文研究建立了一种快速准确的高纯镍粉中杂质含量分析测试方法。采用王水溶解样品,使用电感耦合等离子体原子发射光谱法同时测定了高纯镍粉中杂质元素Mg、Ca、Fe、Cu 含量。实验确定了以285.213 nm、393.366 nm、259.939 nm、324.752 nm 分别作为Mg、Ca、Fe、Cu 的分析谱线,并对仪器工作条件进行了优化。优化得到最佳仪器工作条件为:射频功率1100 W、雾化气流速0.8 L/min 和观测高度15 mm。实验结果表明:镍基体对待测元素的影响可通过基体匹配的方法克服,各元素的校准曲线线性相关系数均不小于0.999,方法中各元素的检出限为0.0002%~0.0011%。方法应用于镍粉样品中杂质元素含量的测定,结果的相对标准偏差(RSD,n=4)在1.1%~5.7%之间,且测定结果与样品质保书中测定结果相符。
  • 原子发射光谱法测定高纯镍粉中杂质元素含量
    高纯镍粉中杂质含量是其质量控制的重点项目之一,本文研究建立了一种快速准确的高纯镍粉中杂质含量分析测试方法。采用王水溶解样品,使用电感耦合等离子体原子发射光谱法同时测定了高纯镍粉中杂质元素Mg、Ca、Fe、Cu 含量。实验确定了以285.213 nm、393.366 nm、259.939 nm、324.752 nm 分别作为Mg、Ca、Fe、Cu 的分析谱线,并对仪器工作条件进行了优化。优化得到最佳仪器工作条件为:射频功率1100 W、雾化气流速0.8 L/min 和观测高度15 mm。实验结果表明:镍基体对待测元素的影响可通过基体匹配的方法克服,各元素的校准曲线线性相关系数均不小于0.999,方法中各元素的检出限为0.0002%~0.0011%。方法应用于镍粉样品中杂质元素含量的测定,结果的相对标准偏差(RSD,n=4)在1.1%~5.7%之间,且测定结果与样品质保书中测定结果相符。
  • 原子发射光谱法测定高纯镍粉中Ca元素含量
    高纯镍粉中杂质含量是其质量控制的重点项目之一,本文研究建立了一种快速准确的高纯镍粉中杂质含量分析测试方法。采用王水溶解样品,使用电感耦合等离子体原子发射光谱法同时测定了高纯镍粉中杂质元素Mg、Ca、Fe、Cu 含量。实验确定了以285.213 nm、393.366 nm、259.939 nm、324.752 nm 分别作为Mg、Ca、Fe、Cu 的分析谱线,并对仪器工作条件进行了优化。优化得到最佳仪器工作条件为:射频功率1100 W、雾化气流速0.8 L/min 和观测高度15 mm。实验结果表明:镍基体对待测元素的影响可通过基体匹配的方法克服,各元素的校准曲线线性相关系数均不小于0.999,方法中各元素的检出限为0.0002%~0.0011%。方法应用于镍粉样品中杂质元素含量的测定,结果的相对标准偏差(RSD,n=4)在1.1%~5.7%之间,且测定结果与样品质保书中测定结果相符。
  • 原子发射光谱法测定高纯镍粉中Fe元素含量
    高纯镍粉中杂质含量是其质量控制的重点项目之一,本文研究建立了一种快速准确的高纯镍粉中杂质含量分析测试方法。采用王水溶解样品,使用电感耦合等离子体原子发射光谱法同时测定了高纯镍粉中杂质元素Mg、Ca、Fe、Cu 含量。实验确定了以285.213 nm、393.366 nm、259.939 nm、324.752 nm 分别作为Mg、Ca、Fe、Cu 的分析谱线,并对仪器工作条件进行了优化。优化得到最佳仪器工作条件为:射频功率1100 W、雾化气流速0.8 L/min 和观测高度15 mm。实验结果表明:镍基体对待测元素的影响可通过基体匹配的方法克服,各元素的校准曲线线性相关系数均不小于0.999,方法中各元素的检出限为0.0002%~0.0011%。方法应用于镍粉样品中杂质元素含量的测定,结果的相对标准偏差(RSD,n=4)在1.1%~5.7%之间,且测定结果与样品质保书中测定结果相符。
  • EM科特台式扫描电镜在动力高镍正极材料的应用
    高镍材料和普通三元材料的区别在于材料中镍的比例提高,而钴的比例降低,甚至可将比例降到0,目前已经在诸多产品上进行了小规模的实验。高镍正极材料目前主要有两种,分别是多晶高镍材料和单晶高镍材料。使用EM科特台式扫描电镜可轻松观测到高镍正极材料表征,对后续研究试验提供帮助。
  • 微波消解电解镍粉
    电解镍粉是以镍为主要成分金属粉料,有良好的导电性,粉末颜色通常为黑灰色。主要用于原子能工业、碱性蓄电池、电工合金、高温高强度合金,也可以做化学反应的加氢催化剂。本文通过微波消解方法镍粉进行前处理,有利于后期快速准确测定其中的元素含量。
  • 微波消解电解镍粉
    电解镍粉是以镍为主要成分金属粉料,有良好的导电性,粉末颜色通常为黑灰色。主要用于原子能工业、碱性蓄电池、电工合金、高温高强度合金,也可以做化学反应的加氢催化剂。本文通过微波消解方法镍粉进行前处理,有利于后期快速准确测定其中的元素含量。
  • 使用Avio 500 ICP-OES测定纯镍中As杂质
    镍(Ni)由于其高温和低温下的耐腐蚀性和强度, 是最广泛使用的金属之一。 它最常用于钢的生产,也是各种其他合金中的重要成分。还用于电子,电镀和可充电电池中。 这些不同的用途需要不同纯度的镍,在某些应用中需要高纯度的镍,而对于其他应用领域低等级的镍就能满足需求了。伦敦金属交易所(LME)就不同金属杂质的镍发布了不同规格的要求。 本文的重点是利用PerkinElmer Avio® 500 ICP 发射光谱仪(ICP-OES)对镍中的杂质进行分析,使用“原料镍要求”作为待测元素和所需浓度的指南。
  • 使用Avio 500 ICP-OES测定纯镍中S杂质
    镍(Ni)由于其高温和低温下的耐腐蚀性和强度, 是最广泛使用的金属之一。 它最常用于钢的生产,也是各种其他合金中的重要成分。还用于电子,电镀和可充电电池中。 这些不同的用途需要不同纯度的镍,在某些应用中需要高纯度的镍,而对于其他应用领域低等级的镍就能满足需求了。伦敦金属交易所(LME)就不同金属杂质的镍发布了不同规格的要求。 本文的重点是利用PerkinElmer Avio® 500 ICP 发射光谱仪(ICP-OES)对镍中的杂质进行分析,使用“原料镍要求”作为待测元素和所需浓度的指南。
  • 使用Avio 500 ICP-OES测定纯镍中Bi杂质
    镍(Ni)由于其高温和低温下的耐腐蚀性和强度, 是最广泛使用的金属之一。 它最常用于钢的生产,也是各种其他合金中的重要成分。还用于电子,电镀和可充电电池中。 这些不同的用途需要不同纯度的镍,在某些应用中需要高纯度的镍,而对于其他应用领域低等级的镍就能满足需求了。伦敦金属交易所(LME)就不同金属杂质的镍发布了不同规格的要求。 本文的重点是利用PerkinElmer Avio® 500 ICP 发射光谱仪(ICP-OES)对镍中的杂质进行分析,使用“原料镍要求”作为待测元素和所需浓度的指南。
  • 使用Avio 500 ICP-OES测定纯镍中Co杂质
    镍(Ni)由于其高温和低温下的耐腐蚀性和强度, 是最广泛使用的金属之一。 它最常用于钢的生产,也是各种其他合金中的重要成分。还用于电子,电镀和可充电电池中。 这些不同的用途需要不同纯度的镍,在某些应用中需要高纯度的镍,而对于其他应用领域低等级的镍就能满足需求了。伦敦金属交易所(LME)就不同金属杂质的镍发布了不同规格的要求。 本文的重点是利用PerkinElmer Avio® 500 ICP 发射光谱仪(ICP-OES)对镍中的杂质进行分析,使用“原料镍要求”作为待测元素和所需浓度的指南。
  • 使用Avio 500 ICP-OES测定纯镍中P杂质
    镍(Ni)由于其高温和低温下的耐腐蚀性和强度, 是最广泛使用的金属之一。 它最常用于钢的生产,也是各种其他合金中的重要成分。还用于电子,电镀和可充电电池中。 这些不同的用途需要不同纯度的镍,在某些应用中需要高纯度的镍,而对于其他应用领域低等级的镍就能满足需求了。伦敦金属交易所(LME)就不同金属杂质的镍发布了不同规格的要求。 本文的重点是利用PerkinElmer Avio® 500 ICP 发射光谱仪(ICP-OES)对镍中的杂质进行分析,使用“原料镍要求”作为待测元素和所需浓度的指南。
  • 使用Avio 500 ICP-OES测定纯镍中Sb杂质
    镍(Ni)由于其高温和低温下的耐腐蚀性和强度, 是最广泛使用的金属之一。 它最常用于钢的生产,也是各种其他合金中的重要成分。还用于电子,电镀和可充电电池中。 这些不同的用途需要不同纯度的镍,在某些应用中需要高纯度的镍,而对于其他应用领域低等级的镍就能满足需求了。伦敦金属交易所(LME)就不同金属杂质的镍发布了不同规格的要求。 本文的重点是利用PerkinElmer Avio® 500 ICP 发射光谱仪(ICP-OES)对镍中的杂质进行分析,使用“原料镍要求”作为待测元素和所需浓度的指南。
  • 使用Avio 500 ICP-OES测定纯镍中Fe杂质
    镍(Ni)由于其高温和低温下的耐腐蚀性和强度, 是最广泛使用的金属之一。 它最常用于钢的生产,也是各种其他合金中的重要成分。还用于电子,电镀和可充电电池中。 这些不同的用途需要不同纯度的镍,在某些应用中需要高纯度的镍,而对于其他应用领域低等级的镍就能满足需求了。伦敦金属交易所(LME)就不同金属杂质的镍发布了不同规格的要求。 本文的重点是利用PerkinElmer Avio® 500 ICP 发射光谱仪(ICP-OES)对镍中的杂质进行分析,使用“原料镍要求”作为待测元素和所需浓度的指南。
  • 使用Avio 500 ICP-OES测定纯镍中Pb杂质
    镍(Ni)由于其高温和低温下的耐腐蚀性和强度, 是最广泛使用的金属之一。 它最常用于钢的生产,也是各种其他合金中的重要成分。还用于电子,电镀和可充电电池中。 这些不同的用途需要不同纯度的镍,在某些应用中需要高纯度的镍,而对于其他应用领域低等级的镍就能满足需求了。伦敦金属交易所(LME)就不同金属杂质的镍发布了不同规格的要求。 本文的重点是利用PerkinElmer Avio® 500 ICP 发射光谱仪(ICP-OES)对镍中的杂质进行分析,使用“原料镍要求”作为待测元素和所需浓度的指南。
  • 使用Avio 500 ICP-OES测定纯镍中Mn杂质
    镍(Ni)由于其高温和低温下的耐腐蚀性和强度, 是最广泛使用的金属之一。 它最常用于钢的生产,也是各种其他合金中的重要成分。还用于电子,电镀和可充电电池中。 这些不同的用途需要不同纯度的镍,在某些应用中需要高纯度的镍,而对于其他应用领域低等级的镍就能满足需求了。伦敦金属交易所(LME)就不同金属杂质的镍发布了不同规格的要求。 本文的重点是利用PerkinElmer Avio® 500 ICP 发射光谱仪(ICP-OES)对镍中的杂质进行分析,使用“原料镍要求”作为待测元素和所需浓度的指南。
  • 使用Avio 500 ICP-OES测定纯镍中Cu杂质
    镍(Ni)由于其高温和低温下的耐腐蚀性和强度, 是最广泛使用的金属之一。 它最常用于钢的生产,也是各种其他合金中的重要成分。还用于电子,电镀和可充电电池中。 这些不同的用途需要不同纯度的镍,在某些应用中需要高纯度的镍,而对于其他应用领域低等级的镍就能满足需求了。伦敦金属交易所(LME)就不同金属杂质的镍发布了不同规格的要求。 本文的重点是利用PerkinElmer Avio® 500 ICP 发射光谱仪(ICP-OES)对镍中的杂质进行分析,使用“原料镍要求”作为待测元素和所需浓度的指南。
  • 使用Avio 500 ICP-OES测定纯镍中Si杂质
    镍(Ni)由于其高温和低温下的耐腐蚀性和强度, 是最广泛使用的金属之一。 它最常用于钢的生产,也是各种其他合金中的重要成分。还用于电子,电镀和可充电电池中。 这些不同的用途需要不同纯度的镍,在某些应用中需要高纯度的镍,而对于其他应用领域低等级的镍就能满足需求了。伦敦金属交易所(LME)就不同金属杂质的镍发布了不同规格的要求。 本文的重点是利用PerkinElmer Avio® 500 ICP 发射光谱仪(ICP-OES)对镍中的杂质进行分析,使用“原料镍要求”作为待测元素和所需浓度的指南。
  • 铁矿─铝铬铜锌镍含量的测定─火焰原子吸
    1范围本推荐方法用火焰原子吸收光谱法测定铁矿石中铝铬铜锌镍的含量本方法适用于天然铁矿铁精矿烧结矿和球团矿中0.10%(m/m)5.00%(m/m)铝0.01%(m/m)1.00%(m/m)铬0.01%(m/m)1.00%(m/m)铜0.01%(m/m)1.00%(m/m)锌0.01%(m/m)1.00%(m/m)镍含量的测定2原理试样用盐酸酸的吸光度在波长357.9nm处测量铬的吸光度用空气乙炔燃烧器在波长不溶残渣经灼烧用氢氟以主液浸出熔块吸喷溶液乙炔火焰在波长309.2nm处测量铝硫酸蒸发除去二氧化硅干涸后用盐酸溶解盐类用焦硫酸钾熔融残渣到原子吸收光谱仪的火焰中用氧化亚氮硝酸分解处测量镍的吸光度324.8nm处测量铜的吸光度在波长213.9nm处测量锌的吸光度在波长232.0nm3试剂3.1 焦硫酸钾3.2 盐酸r1.19g/mL3.3 盐酸112983.4 硝酸r1.42g/mL3.5 硫酸113.6 氢氟酸r1.15g/mL3.7 铁溶液10g/L溶解10g纯铁丝[纯度不低于99.9%(m/m)]于50mL盐酸中滴加硝酸氧化煮沸除去氮氧化物以水稀释至1000mL混匀3.8 铝标准溶液 500mg/mL将0.5000g高纯铝[纯度不低于99.9%(m/m)]溶于25mL盐酸冷却将溶液转移至1000mL容量瓶中 用水稀释至刻度混匀此溶液1mL含铝500mg3.9 铜标准溶液3.9.1铜贮备液 500mg/mL将0.5000g高纯铜[纯度不低于99.9%(m/m)]溶于20mL硝酸(11)冷却将溶液转移至1000mL容量瓶中 用水稀释至刻度混匀此溶液1mL含500mg铜3.9.2 铜标准溶液50.0mg/mL匀此溶液1mL含50.0mg铜m用水稀释至刻度混分取25.00mL铜贮备液(500g/mL)于250mL容量瓶中3.10锌标准溶液3.10.1 锌贮备液 500mg/mL将0.5000g高纯锌[纯度不低于99.9%(m/m)]溶于20mL盐酸(11)冷却将溶液转移至1000mL容量瓶中 用水稀释至刻度混匀此溶液1mL含500mg锌3.10.2 锌标准溶液50.0mg/mL分取25.00mL锌贮备液 (500mg/mL)于250mL容量瓶中用水稀释至刻度混匀此溶液1mL含50.0mg锌3.11镍标准溶液3.11.1 镍贮备液 500mg/mL将0.5000g高纯镍[纯度不低于99.9%(m/m)]溶于30mL硝酸(11)冷却后移入1000mL容量瓶 水稀释至刻度混匀此溶液1mL含500mg镍3.11.2 镍标准溶液50.0mg/mL此溶液1mL含50.0mg镍m用水稀释至刻度混匀分取25mL镍贮备液(500g/mL)于250mL容量瓶中3.12铬标准溶液3.12.1 铬贮备液 500mg/mL将0.5000g高纯铬[纯度不低于99.9%(m/m)]溶于30mL盐酸(11)冷却后移入1000mL容量瓶 以水稀释至刻度混匀此溶液1mL含500mg铬3.12.2 铬标准溶液 50.0g/mL分取25mL铬标准溶液(500mg/mL)于250mL容量瓶中用水稀释至刻度混匀此溶液1mL含50.0mg铬4仪器原子吸收光谱仪配备有空气乙炔燃烧器氧化亚氮乙炔燃烧器心阴极灯铬空心阴极灯铜空心阴极灯锌空心阴极灯镍空心阴极灯
  • 利曼Prodigy直流电弧光谱仪 (DC Arc) 测定高纯硅中的痕量元素
    本文检测样品中的铝、硼、钙、铬、铜、铁、锰、镍、磷、钛和钒等,证明Teledyne Leeman Labs Prodigy直流电弧光谱仪测定高纯硅中痕量元素的能力。
  • 谱育科技ICP-OES法分析玻璃粉及高纯石英粉末中多种元素
    谱育科技 EXPEC 6000电感耦合等离子体发射光谱仪(ICP-OES)具备高灵敏度、低检出限、宽线性范围、多元素同时测定的特点,可解决上述困难,实现玻璃粉、高纯石英中Al、Na、K、Li、Cr、Fe、Mg、Ba、Ti、Ca、Mn、Mi、Cu、Mo 14种元素的分析。
  • 莱伯泰科:离子色谱-膜去溶-ICP—MS法测定高纯钨粉中痕量金属杂质
    摘要:灵敏地检测了高纯钨粉中的痕量金属杂质。钨粉用 02溶解后进入离子色谱的阳离子交换柱,经水淋洗后,用HN03洗脱,洗脱后的溶液经过膜去溶装置雾化去溶后进入电感耦合等离子体质谱检测。除B,V,Sb外,其它杂质元素如Mg,Al,Ti,Cr,Be,Fe,Mn,c0,Ni,cu,zn,Ga,Sr,Cd,Ba等的回收率均在90% 一107%之间,检出限在0.0ol~0.5 gg/g之间。关键词:痕量元素;高纯钨粉;离子色谱;阳离子交换柱;膜去溶装置;电感耦合等离子体质谱
  • 使用Avio 500 ICP-OES 根据伦敦金属交易所要求 测定纯镍中杂质
    镍(Ni)由于其高温和低温下的耐腐蚀性和强度, 是最广泛使用的金属之一。 它最常用于钢的生产,也是各种其他合金中的重要成分。还用于电子,电镀和可充电电池中。 这些不同的用途需要不同纯度的镍,在某些应用中需要高纯度的镍,而对于其他应用领域低等级的镍就能满足需求了。伦敦金属交易所(LME)就不同金属杂质的镍发布了不同规格的要求。 本文的重点是利用PerkinElmer Avio® 500 ICP 发射光谱仪(ICP-OES)对镍中的杂质进行分析,使用“原料镍要求”作为待测元素和所需浓度的指南。
  • 贝士德仪器:利用粉煤灰制备高纯氧化铝纳米粉体的研究
    摘!要!地球资源的充分利用已成为当今人们普遍关注的问题之一!采用苏打"A’"3K%#焙烧沥滤工艺从粉煤灰烧结料浸出液中制取了高纯超细氢氧化铝$进而通过控制煅烧制得氧化铝纳米粉体!对制备氧化铝的活化过程%浸出过程和煅烧过程的化学原理与工艺控制进行了研究与分析$确定了制备高纯氧化铝纳米粉体的较佳实验条件和工艺参数!应用^G_%H&B%9&H和J3等微观分析手段对所得C?"K%的形态%结构和纯度进行了表征!结果表明&焙烧%水煮粉煤灰和A’"3K%$并精确调节溶出液的OI值$可使超细的氢氧化铝沉淀析出!在\$b充分干燥后$分别于\##b%!!##b煅烧"*$得到晶型结构分别为(RC?"K%和’RC?"K%的氧化铝纳米粉体$其形态为纤维状和球状$比表面积分别为"%\@UN"’ 和!X@\"N"’ $平均粒径为"#!V#/N$纯度大于UU@U[!关键词!粉煤灰(氧化铝(纳米粉体(制备3H-2000BET-M型全自动氮吸附比表面积测试仪是目前国内多项测试功能唯一并且完全自动化的比表面积测试仪仪器,由贝士德仪器科技(北京)有限公司研制生产.国产比表面积测试仪使用较广的为3H-2000系列比表面积测试仪,国内拥有大量客户,08年推出的几款新品比表面积测试仪,国内拥有多项唯一的领先技术,如原位处理.风热助脱.程控六通阀.检测器零漂抑制.浓度色谱法检测等.使得国产动态色谱法比表面积测试仪器在多项指标方面超越了进口比表面积测试仪.广泛应用于石墨、电池、稀土、陶瓷、氧化铝、化工等行业及高校粉体材料的研发、生产、分析、监测环节。比表面,比表面仪,比表面积,比表面积仪,比表面积测试仪,比表面积测定仪,比表面积分析仪,比表面积测试,比表面积测定,比表面积分析,比表面测试仪,比表面测定仪,比表面分析仪
  • TRILOS超高压纳米均质机在导电镍浆中的应用
    导电镍浆的主要成分是由导电镍粉、无机粉体及有机载体3个部份组成。产品使用的镍浆要求颗粒粒径为亚微米级。如此小的粒径对分散要求变得非常高。若分散效果不好,则镍浆中存在团聚的大颗粒会导致产品性能恶化,甚至导致报废。目前导电镍浆制作的一般工艺流程是:将镍粉和分散剂、粘合剂、溶剂一起混合搅拌后,再用三辊机轧浆分散。这样制作的镍浆往往达不到需要的分散效果。为了解决上述技术问题,我们提供了用TRILOS超高压纳米均质机,制作导电镍浆的方法。
  • SALD-2300测定三元正极材料镍钴锰酸锂的粒径分布
    本文参考标准《镍钴锰酸锂》(YS/T 798-2012)与标准《粒度分析 激光衍射法》(GB/T 19077-2016),使用岛津激光粒度仪SALD-2300湿法测试三元正极材料镍钴锰酸锂粉末的粒径大小和分布。本法使用循环流通池,以纯水作为分散介质,可同时在搅拌和超声条件下进行测试,样品分散充分,测试速度快,数据稳定且重复性好,可满足三元材料镍钴锰酸锂粒度的测试要求。
  • 大气粉尘中镍、铅、镉、铁、锌含量分析
    空气中悬浮物污染现已成为大家共同关心的话题,身处悬浮物污染的环境会引起多种心血管、呼吸道等疾病。大气颗粒物中的重金属污染物具有不可降解性,重金属元素被人吸收后,可导致一系列的疾病,其中Pb、Cd、Ni、Cr、As 具有一定的致癌能力,As 和Cd 对人体有潜在畸形作用,Pb 和Hg 对胎儿有毒性作用。分析大气中粒子状物质中的金属成分能够得到多种多样与发生源相关的情报,因此大气粉尘中重金属的检测至关重要。本文采用日立原子吸收光谱仪,对大气粉尘中镍、铅、镉、铁、锌含量进行检测。
  • 高纯超细氧化铝在锂离子电池行业中的应用
    氧化铝(Al2O3)是一种白色晶状粉末,是一种无臭、无味、无毒的高硬度、耐高温化合物,熔点为2054℃,沸点为2980℃。粒度均匀的超细氧化铝粉体材料,具有多孔性、高分散性、绝缘性、耐热性等特点。高纯氧化铝按纯度分类,主要分为4N(纯度99.99%)、4N5(纯度99.995%)和5N(纯度99.999%)三个级别。5N级别的高纯氧化铝称为高纯超细氧化铝,通常用于锂离子电池、催化剂载体、透明陶瓷等领域。下面,我们就来探讨高纯超细氧化铝在锂离子电池行业中的应用。
  • 氢氧化镍、碳酸镍和氢氧化镍钴中阴离子的测定
    氢氧化镍是镍基电池(Ni-MH、Ni-Cd、Ni-Fe、Ni-Zn)的正极活性物质,碳酸镍、氢 氧化镍钴分别是锂电池正极材料碳酸镍锰和镍钴酸锂的合成原料。各类材料中杂质离子的含 量会直接影响正极材料性能,进而影响电池的充放电行为、容量性能、循环寿命等。离子色 谱法可用于同时检测氢氧化镍、碳酸镍、氢氧化镍钴及正极粉中的杂质阴离子,为各类材料 生产工艺及性能评估提供科学依据。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制