当前位置: 仪器信息网 > 行业主题 > >

复杂降解反应

仪器信息网复杂降解反应专题为您整合复杂降解反应相关的最新文章,在复杂降解反应专题,您不仅可以免费浏览复杂降解反应的资讯, 同时您还可以浏览复杂降解反应的相关资料、解决方案,参与社区复杂降解反应话题讨论。

复杂降解反应相关的资讯

  • 复杂分子体系反应动力学研究获新进展
    p   近日,中科院大连化物所研究员韩克利带领复杂分子体系反应动力学研究团队,在全无机钙钛矿光电探测器动力学研究中取得新进展。该研究团队发现全无机钙钛矿微晶激发态载流子存在快速扩散行为,以此制备出的光电探测器具有超高灵敏度和快速时间响应。相关研究成果发表在《先进材料》上。 /p p   光电探测器在信号处理、通讯、生物成像等领域发挥着重要作用。研究人员发现钙钛矿薄膜具有较高陷阱态密度,而基于钙钛矿单晶光电探测器的电荷收集效率很低。因此基于这些材料的光电探测器通常灵敏度较低,响应时间长。 /p p   该研究团队于2016年成功制备出有机—无机杂化钙钛矿微晶。在此基础上采用溶液法快速合成了具有较低缺陷态密度的全无机钙钛矿微晶。研究发现单光子激发的荧光衰减动力学依赖其发光波长,而双光子激发的荧光衰减动力学与发射波长无关。分析表明全无机钙钛矿微晶激发态载流子存在快速扩散行为。通过构建全无机钙钛矿微米尺度的光电探测器可以实现高效的电荷收集,该光电探测器具有超高的响应度,刷新了目前有报道的全无机钙钛矿光电探测器的最高值,而且可以同时实现单光子和双光响应。该工作为制备高性能光电探测器提供了新思路。 /p p /p
  • 中国水产院携手清华大学推出首台基于微填充床反应器降解废水处理系统
    随着我国经济水平的不断提高,水产养殖业迎来了快速发展,淡水水产养殖业也日益趋向集约化高密度水产养殖。然而,高密度繁殖环境下,水污染已经成为一个突出的问题。水环境状况的优劣不但是养殖成败和水产品质量是否安全关键的所在,而且水产养殖中过量的杀菌剂和抗生素等危害物长期积累将对环境、生物和人类健康构成潜在的风险。目前,对于养殖废水处理技术,常用的传统方法有物理处理技术、化学处理技术、理化综合处理技术等。其中,物理处理技术主要去除污水中的漂浮物、悬浮物和少量的油,由于具有较强的可操作性,被广泛使用。化学处理方法主要针对无法通过物理方法解决的污染问题。理化综合处理技术又包括膜分离技术、生物处理技术、活性污泥处理技术、生物膜处理技术等。由于传统的处理方法处理时间长(60 min以上)、处理效果差(50%及以下),因此开发新的高效降解方法意义重大。近日,中国水产科学研究院研究团队在Chemosphere杂志在线发表了题目为“Rapid Degradation of Refractory Organic Pollutants by Continuous Ozonation in a Micro-packed Bed Reactor”的研究论文。为突破传统方法降解效率低、耗时长的技术瓶颈,该团队与清华大学化工系张吉松副教授合作,开发了一种微填充床反应器和臭氧氧化相结合的连续处理系统,对水产养殖废水中孔雀石绿及沙星类抗生素等有机危害物进行了快速、连续、高效的降解。连续液流微反应器原理图由于微填充床反应器可以提高气液传质速率,增加臭氧在液相中的溶解度,因此可以显著提高降解水产养殖废水的效率。在连续反应71 s后,孔雀石绿和沙星类抗生素的去除率即可达到95%-100%,COD去除率高达80%-85%。此外,本系统中未反应完的臭氧可99.9%转化为氧气,这不仅消除了臭氧对水生生物的危害而且增加了水中的溶解氧,保障了渔业生态系统的健康可持续发展。据了解,这是一套国际上首次提出基于微填充床反应器降解废水的处理技术,也是中国水产科学研究院研究自主知识产权研发仪器的核心技术。该处理系统成本约为5万元左右,污染物去除率约为99.9%,COD去除率约为80%,对高浓度和低浓度的水产养殖废水都能进行有效的降解。 微反应处理系统连续降解鱼缸中孔雀石绿的过程
  • 溶解有机物影响抗生素光降解机理研究获进展
    近岸海域中,常常会产生抗生素的残留,这些残留对海洋生物甚至人类健康产生了威胁。光降解是抗生素在海洋环境中重要的非生物降解途径,包括直接光降解和间接光降解,其中,间接光降解是表层水体中抗生素的重要转化途径。溶解有机物可通过光照作用产生活性中间体参与间接光降解反应,是影响抗生素间接光降解的关键性因素。由于溶解有机物结构组成的复杂性,目前国际上关于溶解有机物对抗生素间接光降解的影响机制尚不明确。多年来,中国水产科学研究院黄海水产研究所渔业环境优化与循环水处理技术创新团队针对这一科学问题展开了深入研究,揭示了溶解有机物结构组成在磺胺类抗生素间接光降解过程中的关键作用,阐明了海水中关键环境因子对间接光降解的影响机理。近日,相关研究成果发表在环境科学与生态学领域期刊《整体环境科学》和《环境污染》上。溶解有机物的结构组成对磺胺类抗生素间接光降解的影响机制 黄海水产研究所供图据了解,该研究以溶解有机物的结构、性质以及环境中pH、盐度、硝酸根、碳酸氢根等关键因子为影响因素,首次系统阐明了近海海水中溶解有机物对磺胺类抗生素光降解的影响机制。研究发现,溶解有机物通过产生活性中间体,有效促进了磺胺类抗生素的间接光降解;溶解有机物中陆源类腐殖质组分对磺胺类抗生素间接光降解的影响要显著强于海源类腐殖质组分;pH、盐度、硝酸根和碳酸氢根均可通过改变活性中间体的稳态浓度影响磺胺类抗生素的间接光降解。团队进一步研究表明,由于具有高的芳香性,陆源类腐殖质组分能够较好促进磺胺类抗生素的间接光降解;低分子量的溶解有机物比高分子量的溶解有机物对磺胺类抗生素间接光降解的促进作用更显著;由于具有较高的芳香性和陆源类腐殖质物质,亲水性酸、亲水性碱和疏水性酸是影响磺胺类抗生素间接光降解的主要组分。这些研究结果揭示了磺胺类抗生素在我国近岸渔业水域光降解过程的反应动力学及降解机理,为准确掌握近岸海域环境中抗生素的归趋和评估其生态环境风险提供了理论依据。相关研究得到国家自然科学基金、山东省自然科学基金、崂山实验室项目和中国水产科学研究院创新团队等项目的支持。
  • 我国学者在聚乙烯废塑料降解研究方面取得重大进展
    p   近日,中国科学院上海有机化学研究所的黄正课题组和加州大学尔湾分校管治斌课题组合作,在聚乙烯废塑料降解研究方面取得重大进展,相关成果于6月17日以“Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions”(温和条件下高效选择性降解聚乙烯制备液体燃料和石蜡)为题在Science Advances杂志上在线发表(Sci. Adv., 2016, 2, e1501591)。该研究工作得到优秀青年科学基金(21422209)和重点项目(21432011)等的支持。 /p p   烃类物质(烷烃、烯烃、芳烃等)是化石能源的重要组成体,也是重要的基础化工原料。为应对绿色、可持续发展的挑战,一方面需要从自然界丰富的烃类物质出发,发展高效、原子经济性的合成技术,直接制备高价值化学品,实现“分子价值的增量” 另一方面也需要发展温和、实用的催化降解技术,将废弃的高分子量、稳定的烃类化学化工产品转化成可再次利用的小分子物质,避免对环境造成污染,实现“污染物质的减量”。黄正课题组发展了高效的金属有机催化方法和技术,在这两方面取得了重要突破。 /p p   烷烃由高键能、非极性C-C单键和Csp sup 3 /sup -H键组成,是最惰性的有机分子之一,其在合成化学中的应用价值较低。黄正课题组一直致力于烷烃催化转化方面的研究。该课题组先前发展了一类新型的PSCOP螯钳型铱金属有机配合物,其在烷烃脱氢反应中表现出非常高的催化活性,但是在直链烷烃脱氢过程中,由于催化剂具有烯烃异构活性,在反应后期阶段不可避免地生成内烯烃混合物作为主要产物。为解决该问题,他们巧妙地利用双金属催化一锅两步法进行烷烃末端高区域选择性硅基化,实现烷烃至直链烷基硅的高效催化转化(图1a)。催化体系包括由该课题组发展的PSCOP螯钳型铱金属有机络合物作为烷烃脱氢催化剂,将烷烃脱氢生成内烯烃混合物,吡啶二亚胺铁络合物作为串联烯烃异构和端烯烃硅氢化催化剂。该转化的关键在于:烷烃脱氢所生成的烯烃中间体快速异构,并通过铁催化剂对端烯烃选择性硅氢化促使内烯烃向端烯烃转化。该工作为烷烃选择性官能团化提供了新思路,相关成果发表在Nature Chemistry上(Nat. Chem.,2016, 8, 157 Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation 利用铑-铁催化的脱氢-异构化-硅氢化串联反应实现烷烃到直链烷基硅的转化)。 /p p   聚乙烯和烷烃结构单元相似,均由C-C单键和Csp sup 3 /sup -H键组成。聚乙烯是年产量 大的塑料产品(年产超过上亿吨),由于其化学惰性,被弃置后难以降解构成“白色垃圾”主要成分。研究人员利用双金属催化交叉烷烃复分解策略,使用价廉量大的低碳烷烃作为反应试剂和溶剂,与聚乙烯发生重组反应,可有效降低聚乙烯的分子量。由于在反应体系中低碳烷烃过量存在,可多次参与和聚乙烯的重组反应,直至把分子量高至上百万的聚乙烯降解为适用于运输系统燃油的烷烃产品。该反应适用于 HDPE、 LDPE和 LLDPE的降解,且催化剂可以兼容商业级聚乙烯中包含的各类添加剂,并进一步被证明可应用于实际生活中所产生的聚乙烯废塑料瓶、废塑料膜和废塑料袋的降解(图1b)。相比较传统高温裂解方法,该方法具有反应条件相对温和,产物选择性高的优点。高温裂解方法往往需要超过400度反应温度,产生包括气、油、蜡、焦等非常复杂的混合物 产物包括直链烷烃、支链烷烃、烯烃、芳烃等,产品利用价值低。而且黄正等发展的降解方法温度较低(150-200度),生成的产物以直链烷烃为主,且可以通过催化剂结构调控或反应时间控制,选择性生成可作为柴油的C9-C22烷烃或者聚乙烯蜡。这项研究成果得到了Nature、Science、Chemical & amp Engineering News等学术杂志的正面评论,并被《洛杉矶时报》、《华盛顿邮报》和新华网等国内外新闻媒体报道。 /p p style=" TEXT-ALIGN: center" img title=" tpxw2016-06-27-01.jpg" src=" http://img1.17img.cn/17img/images/201606/insimg/0b7ccaeb-e75f-4906-95ec-5a09ef3bc04a.jpg" / /p p style=" TEXT-ALIGN: center" strong 图1. a) 烷烃选择性硅基化 b) 聚乙烯降解。 /strong /p p /p
  • 核酸降解知多少
    导语在实验过程中,最心累的莫过于好不容易提取的核酸却降解了。那么核酸为什么会发生降解呢,我们又该如何预防呢?关于核酸降解,你了解多少呢?让我们一起对核酸降解一探究竟吧。 什么是核酸 核酸是一种高分子化合物,核苷酸是构成核酸的基本单位。核酸水解后得到许多核苷酸,核苷酸是组成核酸的基本单位,即组成核酸分子的单体。一个核苷酸分子是由一分子含氮的碱基、一分子五碳糖和一分子磷酸组成的。根据五碳糖的不同可以将核苷酸分为脱氧核糖核苷酸和核糖核苷酸。如果5-碳糖是核糖,则形成的聚合物是RNA;如果5-碳糖是脱氧核糖,则形成的聚合物是DNA。 核酸降解本质 核酸降解是DNA/RNA分子中的碱基和戊糖间的氮糖苷键,或磷酸二酯键在物理因素、化学因素和生物因素等作用下发生水解,使DNA/RNA链发生断裂。核苷磷酸化酶:能分解核苷生成含氨碱基和戊糖的磷酸酯酶。广泛存在于生物体内,催化的反应可逆。可在核苷水解酶作用下继续分解核苷成嘌呤碱、嘧啶碱和戊糖。核苷水解酶:主要存在于植物和微生物体内,只水解核糖核苷。 核酸降解原因 DNA降解的因素很多,主要分为物理因素,化学因素和生物因素。一、物理因素:温度,机械剪切力、核酸的反复冻融、高温煮沸及辐射等。二、化学因素:PH值,水解反应,氧化反应等。三、生物因素:酶解及微生物侵染等作用。一、物理因素的影响★ 温度:高温条件下,RNA不稳定,易加速磷酸二酯键的水解,使核酸降解;★ 机械剪切力:包括剧烈震荡、搅拌、细胞突然至于低渗溶液中,以及让溶液快速通过狭长的孔道;★ 核酸的反复冻融、高温煮沸及辐射等,均会导致核酸的降解。二、化学因素影响水解★ PH值:氢离子参与催化磷酸二酯键、糖苷键的水解,但糖苷键比磷酸二酯键更易被酸水解。过高或过低的PH值都易破坏复键。核酸(特别是RNA)在碱性溶液中十分容易降解;★ 氧化反应:会氧化碱基中的含氨杂环,使其变性,从而改变一级与二级的核酸构象;★ 苯酚在空气中被氧化生成醌,它能够产生自由基,直接用于DNA的分离,会使磷酸酯键断裂,造成DNA的降解。三、生物因素影响★ 酶解:核酸酶可以催化水解多聚核苷酸链中的磷酸二酯键,直接破坏核酸的一级结构,使其降解。1.核酸酶(磷酸二酯酶)核酸内切酶:在环境或生物体内具有识别双链DNA分子中特定核苷酸序列,并由此切割DNA双链的核酸内切酶统称为限制性核酸内切酶。作用方式从多聚核苷酸链中间开始,在某一个位点切断磷酸二酯键。如DNase,RNase等。核酸外切酶:核酸外切酶的作用方式是从多聚核苷酸链的一端(3' -端或5' -端)开始,逐个水解切除核苷酸。如蛇毒磷酸二酯酶,牛脾磷酸二酯酶等。2.核苷酸酶(磷酸单酯酶)专一性的磷酸单酯酶:3' -核苷酸酶,5' -核苷酸酶非专一性磷酸单酯酶。★ 微生物侵染:微生物会将DNA作为营养物质或是其分泌的化学物质含酶。 预防降解的方法 预防RNA降解的方法:★ 去除环境中RNase酶的污染或强有力地抑制其活性。★ 获取样品后最好立即提取RNA,若无条件立即实验,应于-80℃液氮中保存样品,提取时取出样品后立即在低温下研磨裂解细胞,以防RNA降解。★ 在总RNA提取分离的最初阶段,联合使用Rnase的特异抑制剂,尽可能的灭活胞内的Rnase的活性。★ 避免样品的反复冻融。★ 保证裂解液的质量,裂解液的用量不足,也会导致RNA降解。★ RNA提取后,放入-80℃保存,防止降解。预防DNA降解的方法:★ 简化操作步骤,缩短提取过程,以减少各种有害因素对核酸的破坏;★ 减少化学物质对DNA的降解,为避免过酸、过碱对DNA双链中磷酸二酯键的破坏;★ 防止基因组DNA的生物降解,主要是DNase降解基因组DNA,Dnase需要二价金属阳离子Mg2+等的激活,可用EDTA等金属离子整合剂整合Mg2+以抑制Dnase的活性;★ 减少物理因素对DNA的降解,物理降解因素主要包括机械剪切力(如剧烈震荡、搅拌等);★ 避免样品的反复冻融,可将DNA分装保存于缓存液中;★ 所有试剂应用无菌水配制,耗材经高温灭菌;★ 避免DNA的过高温处理等。
  • 可自然降解传感器问世
    p style=" text-indent: 2em " 在英国《自然· 电子学》杂志14日在线发表的一篇动物研究论文中,美国科学家介绍了一种可移植、可伸展的应变及压力传感器,可以在有效使用期结束后自然降解。该装置将用于实时监测受损软组织所受的微弱应力和压力变化,有助于为患者设计个性化的康复方案。 /p p style=" text-indent: 2em " 传感器技术早已“轻松”应用于多种不同的环境,它们能集成到小型化的发射器或接收器系统中,也能与人体直接接触服务于医疗应用。这其中,可降解传感器是一种新兴技术,它们在预定的使用期限结束后会自然降解,因此不需要通过二次手术取出来。 /p p style=" text-indent: 2em " 但是,生物相容性微传感器的生产目前还是一个非常耗时和昂贵的过程,现有的这类传感器的感应性能十分有限,或是其生物相容性还未经证明。 /p p style=" text-indent: 2em " 此次,美国退伍军人事务部研究人员佩吉· 福克斯、斯坦福大学鲍哲南及他们的同事,报告了一种由完全生物可相容材料构成的、可伸展、可生物降解的应变及压力传感器。这一可移植传感器具有高灵敏度,能够区分小到0.4%的应变和12Pa的压力(一粒盐产生的压力)变化。 /p p style=" text-indent: 2em " 为了测试该传感器的生物相容性,研究团队将其移植进一只大鼠的背部。在移植手术8周后,未观察到负面炎症反应(除了第1周出现初期炎症反应)。 /p p style=" text-indent: 2em " 研究人员表示,他们能够控制传感器的降解,使其寿命与组织愈合所需的时长一致。此外,经过一定的设计,在降解过程中,该传感器的灵敏度也不会有明显下降。 /p p style=" text-indent: 2em " 针管有一次性的,医疗电子仪器也可以有一次性的。可降解的生物传感器一旦进入实用,我们就可以将很多临床定性描述转为量化指标,病人的恢复快慢可显示在屏幕上,痛觉程度也不再模糊。医生的工作将因此大大便利。 /p
  • 新品应用 | 新型3D多孔可降解微载体在【疫苗领域】的应用
    传统培养工艺下,贴壁细胞通常使用细胞培养瓶、滚瓶、或细胞工厂等进行培养,培养规模相对有限,培养过程难以控制,且难以在保障质量可控的前提下进行工艺放大。使用微载体结合生物反应器进行贴壁细胞的悬浮式培养,是一种非常好的解决方案。传统微载体多采用合成聚合物制备的刚性实心微球,贴壁细胞在微载体表面呈2D曲面生长。在高投料密度下,反应器搅拌容易造成细胞死亡、并产生微载体碎片,对病毒产量及后续纯化造成成本增加、安全风险、回收率低等不可忽略的影响。[1]华龛生物面向病毒类生物制品行业推出首款3D多孔可降解微载体——3D TableTrix® 微载体V01,不仅可用于贴壁细胞的育种与收获传代,还可用于病毒生产。3D TableTrix® 微载体V01与传统微载体相比,在细胞扩增、产毒方面优势明显。用于Vero细胞大规模培养,细胞密度均可达到1× 107cells/mL以上,细胞在生物反应器中可稳定逐级放大,最终实现分泌型病毒和胞内病毒高滴度生产。图1:3D FloTrix® 细胞大规模培养技术用于病毒生产(点击查看大图)产品特点Product Features1. 呈蜂巢状多孔结构, 孔径范围30~50μm,孔隙率>90%;2. 比表面积高达9000cm2/g以上,约等同于传统微载体表面积2~3倍,可在同等投料密度下提供更多有效生长空间,承载更多贴壁细胞;3. 微载体可完全降解,可提供由中检院核验的微载体降解残留检测方法(试剂盒)。实现无损收获细胞,可代替细胞工厂用于细胞育种和建立种子库;4. 具有仿生的生物力学特性,可有效缓冲搅拌式反应器中的流体剪切力与微载体间的碰撞作用,更充分地保障细胞活率,从而提高病毒产量;5. 放大工艺简单,细胞可实现罐转罐放大,全封闭工艺有效避免染菌风险;6. 支持湿热在线灭菌,可用于不锈钢反应器的大规模生产使用。Part.1微载体用于Vero细胞大规模培养工艺的建立细胞育种:使用10层工厂进行细胞育种,培养72h后用于反应器接种。培养液接种培养基为含10%NBS的SFM培养基,换液培养基为含1%NBS的SFM培养基。微载体3D TableTrix® 微载体V01,密度:2g/L。细胞密度微载体2g/L条件下,推荐细胞接种密度为25万-40万/mL。接种条件40rpm 5min,0rpm 25min循环8-16h后,调节为恒速45rpm。细胞培养细胞培养过程中每天取样计数并检测葡萄糖含量,葡萄糖含量低于1g/L时使用换液培养基进行换液,换液体积为总培养体积的80%。放大比例1 :5原位传代细胞增殖4-5天,增殖倍数达8-10倍时,可以进行原位传代。传代前先对微载体进行计数,计数方法为胰酶降解载体计数。计数后沉降微载体,PBS清洗3次,用细胞消化酶消化约30min,细胞从微载体脱落,使用完全培养基终止消化。根据下一级接种所需细胞将合适体积的细胞载体悬液转移至下一级反应器。三级增殖效果Vero细胞可实现三级放大,且细胞增殖稳定。&bull 细胞生长8天最高可实现1.37×108cells/mL密度(图2)。图2.Vero大规模扩增细胞增殖曲线&bull 第一次转罐回收率93.8%;&bull 第二次转罐回收率100%,且细胞维持较高活性(图3)。图3.Vero大规模扩增细胞增殖和消化荧光图Part.2微载体用于Vero细胞大规模培养工艺的优化为了进一步降低经济成本和操作复杂性,在原接种工艺上对接种培养基及换液培养基进行优化,将接种培养液血清浓度降低至3%,换液培养基不使用血清,并进一步放大培养比例至1:8。由于换液时不使用血清,传代消化时也可将清洗次数由3次降低到1次,有效的节省试剂耗材成本和操作时间。工艺优化后扩增结果:不添加血清不影响细胞的增殖效率,细胞生长5天可实现5.42×106cells/mL密度(图4)。传代时PBS清洗一次不影响消化效率转罐回收率为93.3%,且细胞维持较高活性。图4.工艺优化后细胞增殖曲线Part.3微载体用于猪流行性腹泻病毒(PEDV)生产使用3D TableTrix® 微载体V01培养Vero细胞72h(Day 3)后,密度增殖到2.5×106cells/mL左右接种PEDV, 接种后每天收取上清检测滴度,获得病毒滴度峰值,并做二维产毒对比。用于生产PEDV结果:病毒接种后微载体上的细胞逐渐病变脱落,接毒后160h微载体上的细胞几乎完全脱落(图5)。图5. 接种PEDV前后细胞状态病毒滴度最高可达108.57 TCID50/mL,比二维平面工艺最高提高100倍以上(图6)。图6. 两种培养方式PEDV滴度对比Part.3微载体用于Vero细胞大规模培养工艺的优势1.细胞增殖迅速,5天可以实现10倍增殖。2.90%以上的细胞回收率保证较高的放大比例。3.转罐操作简便,1-2人即可操作,节省人力成本。4.血清用量少,有效降低成本。5.用于病毒生产可以显著提高病毒滴度,进而提高病毒生产效率。基于华龛微载体的Vero细胞大规模培养工艺,在微载体密度2g/L,细胞接种密度30万/ml条件下,采用无血清培养基培养5天细胞即可增殖10倍,通过罐内消化的方式传代,细胞回收率均在90%以上。在通过此工艺培养Vero细胞用于猪流行性腹泻病毒生产时病毒滴度显著优于二维平面培养的细胞。本工艺载体用量少,操作简单,同时可降解载体收获细胞,满足不同疫苗生产工艺需求。总结3D TableTrix® 微载体V01在Vero细胞的培养中表现出了较好的优势,相对于现有的的培养方式,使用相对低密度的V01微载体即可实现细胞的大规模扩增,且微载体可降解,实现细胞的无损收获,工艺简单,易于放大。凭借3D TableTrix® 微载体V01配合3D FloTrix® 自动化生物反应器的独特优势,在满足疫苗产业对于细胞数量和质量需求的同时,大大降低人工、时间及仪器耗材等成本。这为疫苗企业提供了新选择,带来了新动力。产品资质Product Qualification华龛生物的核心产品3D TableTrix® 微载体,源于清华大学科技成果转化,可作为细胞生长的微环境(Microniche) 实现细胞体外高质量扩增。该产品已获得:&bull 2项国家药监局药用辅料资质:CDE审批登记号为【F20200000496、F20210000003】;&bull 1项美国FDA-DMF药用辅料资质:备案号为【DMF-35481】。药用辅料资质(点击查看大图)参考文献[1] Kurokawa M, Sato S. Growth and poliovirus production of Vero cells on a novel microcarrier with artificial cell adhesive protein under serum-free conditions. J Biosci Bioeng. 2011 May 111(5):600-4. doi: 10.1016/j.jbiosc.2010.12.018. Epub 2011 Jan 23. PMID: 21262586.
  • 安捷伦8800 ICP-MS/MS:高端研究和复杂分析“利器”
    安捷伦举行电感耦合等离子体串联质谱仪新技术与应用VIP研讨会   仪器信息网讯 2012 年3 月 16 日,安捷伦科技在北京盘古七星酒店举行了电感耦合等离子体串联质谱仪新技术与应用VIP研讨会。钢铁研究总院王海舟院士、国家环境分析测试中心黄业茹研究员、中国疾病预防控制中心吴永宁研究员、北京光谱学会理事长郑国经教授、厦门大学弓振斌教授、武汉大学胡斌教授、西北大学袁洪林教授等业内专家参加了研讨会。安捷伦科技生命科学与化学分析事业部大中华区市场经理张伟基先生、化学分析市场经理何峻先生、材料测试与光谱市场经理陈玉红博士、安捷伦科技ICP-MS全球产品经理Naoki Sugiyama先生、安捷伦科技中国原子光谱产品经理陈登云博士等同时出席。 研讨会现场 张伟基先生、Naoki Sugiyama先生为8800 ICP-MS/MS揭幕   安捷伦中国发展战略已经由“中国制造”转向了“中国创造” 何峻先生介绍安捷伦科技概况   何峻先生介绍中指出,安捷伦科技认为未来测量测试技术与市场的驱动力来自亚洲的快速发展、食品安全和饮用水的需求、全球人口老龄化、日趋增加的精致电子产品等宏观趋势。而面对如此行业发展趋势,安捷伦科技2011年在新产品研发方面投入了7亿美元以及2700名研发人员,如此大投入保证了安捷伦技术的领先地位。   安捷伦科技一直非常重视在中国的发展,其主要产品在华市场份额排名第一,公司18%的收入来自于中国,并且安捷伦中国本土化发展战略已经由“中国制造”转向了“中国创造”。   安捷伦ICP-MS发展史——不断创新之路 陈玉红博士介绍安捷伦科技ICP-MS的创新史   安捷伦(以前的Hewlett-Packard)和日本的Yokogawa电气于1963年创建了他们的第一个联合企业,于1987年制造了全球第一代由计算机控制的ICP-MS仪器并推向世界市场   1994年推出世界第一个台式ICP-MS仪器HP 4500。HP 4500是业内首先采用屏蔽炬技术与帕尔帖控温雾室、首个(也是唯一的)使用双曲面四极杆、首个个采用高精密度步进马达控制炬管箱的ICP-MS,六年之内共售出800多台   2000年安捷伦推出7500系列,其中也集中了多个第一,如第一个具有9个数量级范围的同时型检测器、第一个为用户定制设计的ICP-MS集成自动进样器、第一个数字驱动的固态发生器、第一个使用局域网通讯进行仪器控制,并首先提出碰撞/反应池在单一氦模式下消除质谱固有干扰,在九年之内售出了2000多台   2009年安捷伦推出7700系列,是迄今所有ICP-MS仪器中占用空间最小的台式仪器,该型号配有安捷伦专利的耐高盐进样系统,使得ICP-MS的耐盐能力由传统的0.1~0.2%显著提高至2-3%。此外,该仪器在碰撞池消干扰能力、灵敏度以及软硬件的操作与数据处理等各方面性能都比较早型号更胜一筹   2012年,安捷伦推出世界首款电感耦合等离子体串联质谱仪8800 ICP-MS/MS (俗称ICP-QQQ),为客户高端研究和复杂分析难题带来变革。 王海舟院士等专家观看8800 ICP-MS/MS   安捷伦8800 ICP-MS/MS:技术的变革,性能的飞跃 Naoki Sugiyama先生介绍8800 ICP-MS/MS   安捷伦科技2004年就已经提出了研发ICP-MS/MS的想法,历经8年,在2012年1月9日,安捷伦科技发布了8800 ICP-MS/MS,并将于2012年4月1日开始销售。   8800 ICP-MS/MS主要由两个四极杆和位于它们之间的碰撞反应池(ORS3)组成,也就是说在ORS3前面加了个四极杆(Q1),同时相应地增加了分子涡轮泵。Q1通过精确质量分离,选择控制进入ORS3的离子,因此即使样品组成有所不同,也能保持一致、可预见的反应。ICP-MS/MS不仅具有ORS3氦碰撞动能歧视消干扰的性能,其MS/MS功能还有效解决了原先传统反应池在使用反应性气体测定复杂基体时因共存基体或元素易形成新的干扰离子或共存离子导致用mass-shift 法难以获得准确的痕量定量结果等难点。   8800 ICP-MS/MS 的碰撞/反应池工作方式主要有两种:(1) 通入惰性气体He气,以碰撞动能歧视或碰撞解离方式消除干扰 (2) 通入各类反应性气体,以反应方式并通过MRM功能有效地消除等离子体与基体产生的质谱干扰,并完全避免反应过程中产生的副产物离子与样品基体中的共存离子。新型反应模式中提供一键式运行,其标配的四路反应气之间的切换,只需10-15秒即可达到稳定。同时,安捷伦 8800亦能如单四极杆ICP-MS 一样运行,确保复制现有方法和类似方法的安全性。   8800 ICP-MS/MS的灵敏度与背景噪音比7700系列更为优异,同时,其大部分关键部件、耗材,如锥、雾化器等皆可与7700系列共享。   8800 ICP-MS/MS进一步颠覆了复杂基体分析的瓶颈,将在半导体、材料、临床医学以及科研领域中发挥巨大作用,极适合于复杂基质中易受干扰元素的超痕量分析,以及定量分析 DNA/核苷酸和蛋白/多肽中的硫磷元素并与色谱联用分析其化合物等。 ICP-MS应用工程师荆淼博士介绍8800 ICP-MS/MS应用   此次研讨会还通过网络直播形式,与不能亲临现场的用户和专家共同分享并探讨ICP-MS/MS质谱仪所带来的技术研发与创新。   近年,来自半导体、材料、生物、医学、环境、食品等多个领域对痕量元素及其化合物分析的需求不断提高,样品种类也从简单基体拓展到极为复杂的样品基体,痕量分析面临了各种复杂基质所带来的各种质谱干扰。安捷伦8800 ICP-MS/MS的推出代表了ICP-MS仪器的变革,为高端研究和解决复杂的分析难题带来了前所未有的灵活性。
  • 李攻科教授:复杂体系痕量分析样品前处理方法研究进展
    仪器信息网讯 2012年4月13日-16日,由中国化学会主办,四川大学承办的中国化学会第28届学术年会在四川大学举行。本届年会恰逢中国化学会八十华诞,受到国际国内化学界同行高度重视,来自国内国际的包括50位两院院士和第三世界院士在内的4000多名化学界代表参加了此次盛会。   在大会组织的分析化学学术分会中,中山大学化学与化学工程学院李攻科教授做了题为《复杂体系痕量分析样品前处理方法研究进展》的报告。 中山大学化学与化学工程学院 李攻科教授   李攻科教授介绍说在样品分析过程当中,样品前处理时间占整个分析过程的61%,数据处理与报告占27%,样品采集和分析测定时间各占6% 而整个分析过程当中的误差来源的前两位是样品前处理占30%,操作者占19%,另外污染、样品引入、分析测定、数据处理、仪器、校正等引入的误差均在10%以下。由此可见,样品前处理已成为复杂体系分析的瓶颈问题。   2001-2011年有关样品前处理技术的SCI文章呈稳步上升的趋势,从2001年的800余篇文章增长到2011年的1600余篇。其中各种微萃取技术的论文数量从高到低为:固相微萃取、磁性微球、液相微萃取、搅拌棒萃取技术等。从2001年到2011年,固相萃取技术的论文数量增长平缓,液相微萃取和磁性微球技术论文数量增长较快。   分子印迹微萃取在复杂样品分析中的应用   李攻科教授介绍说分子印迹聚合物兼备了生物识别体系和化学识别体系的优点,能从复杂样品中选择性分离富集印迹分子及其结构类似物。适合用作“分离介质”,在复杂样品前处理领域中具有发展潜力和应用前景。从2001年-2011年,有关分子印迹样品前处理技术的论文数量也是呈上升趋势,并且从2007年-2011年每年都保持了较高的增长率。   分子印迹微萃取技术的核心是纤维涂层材料的研发,李攻科教授在报告中介绍了课题组的一些研究成果,如研发扑草净、四环素、心得安、雌二醇、2,2-联吡啶分子印迹探针的涂层,并且在大豆、玉米、血液、尿液等复杂样品分析中取得很好的效果 研发莠去津、生长素、莱克多巴胺和β-谷甾醇磁性分子印迹微球,结合了磁性分离和分子印迹技术各自的优点,具有效率高、选择性好、实现动态萃取等优点。进行了样品分析,实验结果良好 研发特丁津、磺胺二甲啊嘧啶、莱克多巴胺等分子印迹萃取搅拌棒涂层,搅拌棒通过化学键合作用涂渍的分子印迹涂层非常牢固,具有较好的机械性能,使用40-50次后涂层表面保持完好,萃取性能没有明显改变。   微波辅助样品前处理技术在样品分析中的应用   另外,李攻科教授还介绍了微波辅助样品前处理技术的发展情况,从论文数量来看,微波萃取技术的相关研究也越来越多。从应用领域来看,2001年微波萃取技术主要用在环境领域,占53.57%,而到2011年, 固相微萃取技术主要用于中草药及其他天然产物的分析,占37.69%,其次是食品分析,环境居第三位。   李攻科教授介绍了课题组正在研究的微波辅助低温萃取技术,在低温真空环境中结合微波辅助萃取技术,可避免热敏性及易氧化物质的降解和氧化,使溶剂在较低的温度下保持回流状态萃取目标物,促进溶剂和样品充分接触,提高目标物萃取率。适合于食品药物中热敏性、易氧化物质的萃取。   微波超声辅助固液固分散萃取联用技术:目标物和干扰组分在复合场的作用下同时进入萃取溶剂,干扰组分被分散吸附剂吸附,目标物则留在萃取溶剂中,分散吸附剂应有充分的活性以保留萃取液中的杂质,同时能够使目标物被洗脱。   微波辅助索氏固相萃取技术,溶剂被微波加热并回流,样品中的目标物和干扰组分同时进入萃取溶剂,干扰组分被固相吸附剂吸附,目标物则保留在萃取溶剂中。该技术集萃取、净化为一体,可分析西洋参中的农残,可拓展至其他复杂样品中极性目标物分析。
  • 我国学者在有机污染物光催化降解及机理研究方面取得系列进展
    在国家自然科学基金委的持续支持下,中国科学院化学研究所赵进才课题组在光催化降解有机污染物及其机理方面进行了十几年的系统深入研究,取得一系列重要研究进展。   低浓度、高毒性、难降解有机污染物是一类普遍存在、具有长期危害性的环境污染物,用传统方法很难处理。TiO2光催化可利用洁净的太阳光驱动反应,利用环境友好的分子氧为氧化剂,是消除这类污染物最有应用前景的方法之一。TiO2耐腐蚀,光、热和化学稳定性好,是目前最好的光催化体系。但TiO2只能利用紫外光(约占太阳光5%),由于占太阳光主要部分的可见光的激发能较低,从传统半导体光催化的带-带激发原理上很难实现同时满足导带电子活化氧和价带空穴氧化水或污染物两个必需条件的可见光反应。因此,如何实现可见光反应是对TiO2光催化原理和应用提出的一个极大挑战。   赵进才课题组从1995年开始致力于染料污染物可见光光催化降解及其机理的研究。发现染料分子吸收可见光被激发后可以向TiO2导带注入电子实现电荷分离,通过半导体导带的媒介作用实现可见光照射下染料分子和空气中氧分子的同时活化,成功地将有机染料污染物氧化降解。揭示了一个与传统光催化有着本质区别的可见光光降解机理,该机理不涉及半导体的带-带吸收以及空穴的生成和反应,而是利用染料污染物分子吸收可见光诱发的活性自由基和分子氧的共同作用导致污染物降解。   通过对几十种染料污染物降解的研究,发现只要染料的电子激发态电位比TiO2导带电位更负,都能实现有效的电子注入进而降解,证明了该原理的有效性和普适性。该原理还在共存无色小分子污染物的氧化降解、卤代污染物的还原脱卤以及可见光光催化合成化学品等方面有着广泛的应用前景。相关研究成果先后在J. Am. Chem. Soc., Angew. Chem. Int. Ed., Environ. Sci. Technol.等刊物上发表系列论文。   最近应英国皇家化学会综述期刊Chemical Society Reviews的邀请,撰写了题为“Semiconductor-mediated photodegradation of pollutants under visible-light irradiation”的综述论文 (Chem. Soc. Rev. 2010, 39, 4206-4219),系统地介绍了该课题组取得的相关研究成果。   最近,他们在光催化活化分子氧机理研究方面取得新进展。光催化反应过程中分子氧如何活化一直是该研究领域的一个关键科学问题。他们利用同位素标记等实验研究TiO2 光催化氧化醇类分子时,发现在反应过程中醇分子中的氧原子完全被氧分子中的一个氧原子所置换(置换率99%)生成相应的羰基化合物。基于顺磁共振、氧同位素标记拉曼光谱、动力学同位素效应等实验结果,揭示了与以往贵金属等催化氧化机理完全不同的TiO2光催化氧原子转移机理(Angew. Chem. Int. Ed., 2009, 48, 6081-6084,被选为Highly Important Paper (HIP),并作为封面论文发表)。   在这一机理的指导下,他们进一步实现了通过TiO2表面吸附Bronsted酸来加速醇类分子的光催化转化,同时发现由于掺杂SiO2能增加酸的吸附位点,当用Bronsted酸对TiO2/SiO2复合光催化剂进行表面修饰后加速作用进一步加强。表面光谱滴定实验证实了质子能够有效促进TiO2表面形成的Ti-过氧化物中间物种的分解,进而使得表面光催化活性位点再生,因此加速了光催化循环和反应。该研究有助于深入理解TiO2光催化活化分子氧的微观机理,为今后制备新型光催化剂和调控光催化反应提供了重要的科学依据。相关研究成果发表在Angew. Chem. Int. Ed. (2010, 49, 7976-7979),被选为VIP论文并作为内封面(Inside Cover)做了专门介绍,Nature China对此研究成果也做了评述 (Highlight)。
  • 1100万!河南省科学院化学研究所反应挤出制备生物基降解材料创新平台和福州大学X射线原位相精细结构分析系统采购项目
    一、项目一(一)项目基本情况1、项目编号:豫财招标采购-2024-4372、项目名称:河南省科学院化学研究所反应挤出制备生物基降解材料创新平台建设项目3、采购方式:公开招标4、预算金额:6,250,000.00元最高限价:6250000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20240516-1河南省科学院化学研究所反应挤出制备生物基降解材料创新平台建设项目625000062500005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1标的名称:河南省科学院化学研究所反应挤出制备生物基降解材料创新平台建设项目5.2数量:1批(具体数量详见招标公告附件)5.3技术需求:详见招标公告附件。5.4质保期:设备验收合格后1年(以最终验收结果单据签订时间为准)。5.5交货期:签订合同后180天内供货、安装调试完毕。(在达到供货条件至运输安装调试期间所产生的如仓库保管等一切费用由中标人承担)5.6质量标准:符合国家、行业、地方相关规范合格标准,满足采购人要求。5.7交货地点:郑州市内采购人指定地点。6、合同履行期限:同交货期7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否(二)获取招标文件1.时间:2024年05月21日 至 2024年05月27日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心(http://www.hnggzy.net)3.方式:供应商凭CA登陆(http://www.hnggzy.net)市场主体登录系统,在规定时间内按网站提示下载招标文件及相关资料(详见http://www.hnggzy.net公共服务-办事指南)。CA数字证书办理详见河南省公共资源交易中心门户网站(http://www.hnggzy.net/)“办事指南”专区。4.售价:0元(三)凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南省科学院化学研究所地址:郑州市金水区红专路56号联系人:孙敏青联系方式:0371-616551282.采购代理机构信息(如有)名称:河南省机电设备国际招标有限公司地址:河南省郑州市商都路27号财信大厦14-15层联系人:王佩、郭峰联系方式:0371-861360693.项目联系方式项目联系人:王佩、郭峰联系方式:0371-86136069二、项目二(一)项目基本情况项目编号:[350001]CCZB[GK]2024007项目名称:福州大学X射线原位相精细结构分析系统采购采购方式:公开招标预算金额:4,750,000.00元采购包1(X射线原位相精细结构分析系统):采购包预算金额:4,750,000.00元采购包最高限价: 4,750,000.00元投标保证金: 47,500.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02109900-其他仪器仪表X射线原位相精细结构分析系统1(套)否详见招标文件4,750,000.00工业本采购包不接受联合体投标合同履行期限:合同签订之日起180个日历日内到货。(二)获取招标文件时间: 2024-05-20 至 2024-05-27 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名称:福州大学地址:福建省福州市福州地区大学新区学园路2号联系方式:陈老师0591228659172.采购代理机构信息(如有)名称:福建省承诚招标代理有限公司地址:福州鼓楼区梁厝路2号华雄大厦3号楼17层联系方式:李杰059187554016/邮箱fjscczb@163.com3.项目联系方式项目联系人:李杰电话:059187554016网址: zfcg.czt.fujian.gov.cn开户名:福建省承诚招标代理有限公司
  • Environ. Sci. Technol新成果!mIRage助力复杂道路灰尘内微塑料检测
    微塑料在我们的空气、水和土壤中无处不在,存在于生态系统的各个层面。其主要来源于城市灰尘、船舶涂料、个人护理产品、塑料产品、道路标志、合成纺织品和轮胎等,并以不同的形态如:纤维、微粒、颗粒和碎片存在。 近年来,已有研究表明微塑料对人类、动物、植物和环境的健康影响取决于塑料颗粒的大小、浓度、化学性质和相互作用的方式。但由于微塑料尺寸过小和其混合存在的复杂性,传统方法针对这些颗粒的检测往往勉为其难。尤其是降解后的次级微塑料,其尺寸往往小于5μm,传统分子仪器分析方法如傅里叶红外光谱难以有效的对其化学成分进行表征。 非接触亚微米分辨红外拉曼同步测量系统-mIRage的出现有效解决了上述受限问题。设备基于光学光热诱导共振(O-PTIR)技术,突破了传统红外光谱衍射极限,空间分辨率可达500 nm,有效解决了基本全尺寸微米和纳米塑料(MNPs)样品的化学成分信息、大小和形态表征问题。 图1 非接触亚微米分辨红外拉曼同步测量系统-mIRage原理图 近期,来自美国圣母大学的Kyle Doudrick等人[1]使用非接触亚微米分辨红外拉曼同步测量系统-mIRage对我们日常生活中时时接触的道路粉尘中的微塑料进行了表征。 道路灰尘含有由轮胎退化产生的微纳米塑料(MNPs),它们由天然橡胶、合成橡胶和尼龙组成合成橡胶用于增强轮胎缓冲和弹性,而尼龙用于轮胎内层。道路灰尘还含有来自燃料添加剂的含氮硝基化合物。作者首先通过传统FTIR光谱来表征大块道路粉尘(图2a黑色谱线),在1100 cm&minus 1和1750cm&minus 1之间存在广泛的未解跃迁,表明粉尘中存在复杂的混合物质。而粉尘内混杂的微塑料颗粒却因为尺寸问题无法分析。 随后,作者使用采用基于OPTIR技术的mIRage系统,对粒径仅1μm的两个颗粒——颗粒1和颗粒2(图2d和图2e)进行成像分析,可以看到密集的道路尘埃聚集体和单个颗粒,并在1450cm-1和1650cm-1波数处出现强红外光谱吸收峰(图2f)。 图2表明,颗粒1主要由合成橡胶组成,在1451±4 cm&minus 1和1493±4 cm&minus 1处具有主要特征峰,并存在特征吸收在1500 cm&minus 1和1550 cm&minus 1之间的硝基化合物。颗粒2具有尼龙中常见的酰胺I和酰胺II过渡指示峰。同时具有与含硝基化合物如硝基甲烷(1383 m&minus 1和1573cm&minus 1)一致的振动(图2a)。 图2 粉尘内混杂的微塑料颗粒红外成像表征图 最后,作者对图2a中突出显示的单个颗粒1和2进行了分析。图2d、e分别为1450 cm&minus 1和1650cm&minus 1光谱特征的5×5 μm2 OPTIR显微图像。在1450 cm&minus 1和在1650 cm&minus 1处,颗粒1的化学性质与颗粒2不同。综上所示,作者推断出粒子1和粒子2可能分别由橡胶和尼龙组成,体现了OPTIR量化MNPs的能力,有效监测降解过程中发生的化学变化,并表征复杂样品(即道路粉尘)中单个和聚集MNPs的化学特性。这款创新设备有效克服了目前许多产品对MNP表征的限制,即同时量化颗粒丰度和形态的能力,致使mIRage系统成为分析复杂环境中MNPs的有效工具。非接触亚微米分辨红外拉曼同步测量系统-mIRage优势: ☛ 可达500 nm左右的空间分辨率 ☛ 基本无需样品前处理,样品即放即测 ☛ 光源“探针”对样品无损伤 ☛ 同时、同位置进行红外和拉曼光谱测试,提供相互佐证的分析结果 ☛ 同时获得样品成分、形貌、大小等信息 样机体验: 为满足国内日益增长的新型红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了非接触亚微米分辨红外拉曼同步测量系统——mIRage,为您提供样品测试、样机体验等机会,欢迎各位老师垂询!参考文献: [1]. Kirill Kniazev, Ilia M. Pavlovetc, Shuang Zhang, Junyeol Kim, Robert L. Stevenson, Kyle Doudrick,and Masaru Kuno.Using Infrared Photothermal Heterodyne Imaging to Characterize Micro- and Nanoplastics in Complex Environmental Matrices: Environ. Sci. Technol. 2021, 55, 15891&minus 15899
  • ICP-MS技术漫谈V--碰撞/反应池CCT技术之于icpTOF:复杂基体高时间分辨率测量中充分非必
    ICP-MS技术漫谈系列前篇回顾ICP-MS技术漫谈I: CeO+/Ce+ 和 BaO+/Ba+分不清楚?ICP-MS技术漫谈II icpTOF飞行时间质谱仪“免疫系统” – Notch Filter陷波技术ICP-MS技术漫谈III ICP-MS 谱图多原子离子干扰区分所需质量分辨率ICP-MS技术漫谈IV 无海平面,何来山峰海拔高度:论icpTOF全谱原始数据(包含基线信号)记录之重要性ICP-MS技术漫谈V 本文CCT模式TOFWERK ICPTOF 自1980年首次推出以来,电感耦合等离子体质谱ICP-MS技术已在多个领域(如地质学、环境科学、材料科学、法医学、考古学、生物学及医学等),成为一种成熟且广泛应用的多元素及同位素分析方法。ICP-MS以其卓越的灵敏度、低检出限、宽线性动态范围和多同位素检测能力而著称,同时还能与多种样品处理/进样技术(如色谱、电热蒸发、(单)微液滴生成和激光剥蚀等)耦合使用。同有机质谱类似,质谱干扰也是影响ICP-MS准确测量多种元素的主要挑战。这些干扰主要来源于单价或双价的原子及分子离子,其产生与等离子体、样品组成、ICP操作条件及相关样品的物理化学特性有关。目前,处理这些干扰的策略包括利用多极离子导引器与上游质量分析器内通入气体进行的离子-分子反应或产生动能差异,以及采用超高分辨率磁扇区ICP-MS技术以区分多原子干扰物。 使用有选择性的化学反应来减少对目标元素的干扰并将产生的附加干扰物的离子转移到未被占用的质荷比(m/z)通道,是一种有效的解决质谱干扰问题的方法。例如,引入氢气H₂ 作为反应气体能显著减弱由氩离子(Ar⁺ )及基于氩的多原子离子所引起的背景干扰,使得能够在其丰度最高的同位素峰上检测到钙(Ca)、铁(Fe)或硒(Se)。此过程中主要的反应产物为H₃ ⁺ ,不会引入额外的干扰信号,从而提高了分析的准确性和灵敏度。这种方法通过改变干扰物质的质荷比来“清理”分析信号,使得原本由于干扰而无法检测的元素或同位素得以准确测定。 本文中,研究人员探讨了电感耦合等离子体-飞行时间质谱(ICP-TOF-MS)结合碰撞/反应池技术(CCT)在高时间分辨率分析中的应用优势,特别是在使用多样的样品引入技术,包括高速激光剥蚀和微液滴生成。通过在CCT中采用氢气(H₂ )作为反应气和氦气(He)作为碰撞气,研究着重于多元素测定的能力,特别是在抑制基于氩的背景离子、提高多同位素灵敏度和优化激光剥蚀定量分析方面。这些CCT中的气体分子和离子束发生化学反应或者物理碰撞,从而实现清除某些特定的同位素,或者将多原子离子解离。 使用H₂ 作为反应气体时,能够显著降低氩离子(Ar⁺ )和氩分子离子(Ar₂ ⁺ )的信号,使得钙(Ca)和硒(Se)的丰度最高的同位素得以检测。此外,降低Ar⁺ 信号时还允许在进行飞行时间分析前,无需陷波技术(notch filter)来选择性减弱特定质荷比(m/z)信号值,从而改善了质荷比40和80附近同位素的传输效率。 研究发现,以不超过4mL/min的流量引入氢气、氦气或两者混合气体,可以通过碰撞诱导聚焦机制将离子检测灵敏度提升1.5至2倍,并且质量分辨率也提高了16%。使用CCT后,钙(40Ca)的检出限(LOD)提高了超过三个数量级,硒(80Se)的检出限(LOD)提高了一个数量级。对于NIST SRM610标准中的多种元素,检出限均提高了2到4倍,同时在大多数元素上保持了定量准确性(小编注:如果应用偏重于轻质量数元素分析,可以通过关闭CCT模式来达到最优效果)。 实验还表明,当采用微液滴样品引入技术时,碰撞池中的He缓冲气体量会导致单个微液滴信号的宽度增加至数十至数百微秒。但是,高速激光剥蚀产生的单气溶胶羽流事件的持续时间未受碰撞效应影响,表明在100 Hz的激光剥蚀频率下,即使开启CCT,也不会对成像效果产生显著影响。这些发现强调了CCT在提高ICP-TOF-MS性能和分析精度方面的潜力,尤其是对于高时间分辨率的多元素分析。01实验参数和设置 实验是在瑞士TOFWERK AG公司生产的icpTOF仪器上进行的,该仪器与多种样品引入系统相结合使用。icpTOF装备有陷波滤波器,位于碰撞/反应单元(CCT)下游,用于精确调控飞行时间(TOF)谱图中多达四个特定质荷比(m/z)的高信号强度。通过调整频率和振幅,可以选择性地衰减特定m/z离子信号,同时这也会影响到相邻的m/z。在进行激光剥蚀(LA)实验时,通常只需衰减氩离子(Ar+)的信号,以避免信号饱和导致探测器损坏。表1:在不同实验设置的情况下,ICP-TOFMS的运行参数和碰撞/反应池的设置。碰撞/反应单元操作:碰撞/反应单元使用的氦气(99.999%纯度,由瑞士Dagmersellen的PanGas AG提供)和氢气(99.9999%纯度,同样由PanGas AG提供)或这些气体的混合物进行加压。气体的流量通过质量流量控制器进行精确控制,使用Micro Torr气体净化器(由加利福尼亚的SAES Pure Gas, Inc.提供)来去除气体中的杂质。在需要进行离子束衰减的实验中,调整陷波滤波器的操作参数以确保背景信号的总强度维持在500 kcps以下。激光剥蚀导入:激光剥蚀实验在NIST SRM610、NIST SRM612和USGS BCR-2G标准样品上进行。使用的是193nm ArF准分子激光剥蚀系统(GeoLasC,由德国哥廷根的Lambda Physik提供)。高分散LA实验在一个充满氦气的单体积圆柱形剥蚀室中进行,使用44μm直径的圆形激光光斑和10Hz的激光剥蚀频率,单脉冲信号的持续清洗时间为1.5-2秒(FW0.01M)。低分散LA实验在一个双体积管状样品池中进行,使用5μm直径的圆形光斑和100Hz的激光频率,单脉冲信号的持续清洗时间小于10毫秒(FW0.01M)。所有实验都采用线扫描模式,扫描速度分别为5μm/s(高分散)和50μm/s(低分散)。通过调节操作参数,实验每天都能在保持相近的铀(238U)和钍(232Th)的灵敏度以及低氧化物生成率的同时,获得最高的238U+灵敏度。高分散LA-ICP-TOFMS数据的采集时间分辨率为1秒,而低分散LA-ICP-TOFMS数据的采集时间分辨率为1毫秒。在后处理中,对TOF质谱进行了重新校准和基线去除。微液滴导入:微液滴导入实验使用的是德国Microdrop Technologies GmbH公司的商用微滴生成器(MD-K-150-020和MDE-3001,配备30微米直径喷头)。在50Hz的条件下产生直径为25到30微米不等的液滴,并通过氦气和氩气传输到ICP。多元素标准溶液由单元素标准溶液制备而成(由德国达姆施塔特的Merck AG和美国弗吉尼亚克里斯琴斯堡的Inorganic Ventures提供),每个元素的最终浓度通常为100 ng/g。02实验结果使用氢气作为反应气体以衰减背景信号:本研究的激光剥蚀NIST SRM610实验是在仪器参数优化后进行的。实验使用高色散LA-ICPTOFMS装置,并在反应池中通入不同流量的氢气。除了氢气流量和陷波滤波器的设置外,三个实验中的ICP-TOFMS操作参数和碰撞/反应池设置保持恒定。图1报告了气体背景信号强度的平均值。当通入氢气流量大于1.5mL/min以上,m/z=40的信号是无需使用陷波滤波器进行衰减的。气体背景信号分析虽然仅反映了仪器在不引入样品时的背景信号情况,但这种分析并不完全代表分析特定样品时的背景信号水平,因为样品基质可能会提升基线信号。尽管存在这一局限性,此类测量对于估计激光剥蚀实验中的背景信号强度仍然非常有用,特别是低背景信号对于实现更佳的检出限(LOD)至关重要。在不引入氢气的条件下,背景信号主要由Ar+离子及其相关的氩基分子离子(例如Ar2+、ArN+和ArO+)贡献,同时H2O+、N2+和O2+也展现出显著的峰值。ICP-TOFMS的丰度灵敏度特性导致这些背景离子增加了质谱的基线水平。通过向CCT中增加氢气流量,Ar+信号可以显著衰减至每秒几百次的强度水平。特别是当氢气流量达到5 mL/min时,Ar2+的信号可以降低超过四个数量级,达到每秒几个的强度水平。这一衰减效果涉及到的反应主要是氢原子的转移,例如Ar+转变为ArH+,使得在质谱中m/z=37和m/z=41位置的信号变得占主导地位。在更高的氢气流量下,ArH+通过质子转移的方式进一步减少。图1:分析m/z小于100的范围内的平均背景信号强度与通入氢气流量的关系。左右两图为同样的数据但被绘制在线性y轴(a)和对数y轴(b)上。当没有氢气流过反应池时,使用陷波滤波器来衰减m/z=40处的信号强度。当H2气体以2.5mL/min和5mL/min则不需要信号衰减。 图2a和c展现了在高色散LA-ICP-TOFMS条件下,特定同位素(27Al、55Mn、89Y、141Pr、238U)的灵敏度与氢气和氦气流量之间的关系。这些同位素覆盖了广泛的m/z范围。对于氢气和氦气,灵敏度随气体流量增加先升高后降低,显示出相似的趋势。特别是,对于55Mn,在气体流量为1 mL/min时,其灵敏度达到最大值,与不通气的标准条件相比,分别增加了28%(氢气)和84%(氦气)。对于27Al,在氢气流量为0.5 mL/min时灵敏度最高,而对于238U,在氢气流量为1.5 mL/min时灵敏度最高,相较于不通气的标准条件,它们的灵敏度分别提高了11%(27Al)和2%(238U)。在通入氦气时,27Al和238U的灵敏度分别在氦气流量为0.5 mL/min和3.5 mL/min时达到峰值,相比不通气的标准条件,它们分别提高了3%(27Al)和73%(238U)。灵敏度的提升主要归因于碰撞聚焦效应。随着m/z增大,较高的气体浓度下灵敏度的下降趋势减缓,这与低质量离子的速度减慢和散射过程加快有关。 同位素238U+/232Th+的信号强度比随气体流量的增加而稳步上升,在通入氢气和氦气时分别从1.25增加到1.36和从1.31增加到1.47。这表明在通入气体时,Th+的减少速度超过U+。这可能是由于Th+与气体中的杂质反应或散射过程。然而,鉴于U和Th的碰撞截面和动能相似,散射过程的影响可能较小。Th+相对于U+更快的减少可能与其与气体中水分子的反应有关。 同时,137Ba++/137Ba+的信号强度比随着气体流量的增加先上升后下降,这一趋势在通入氢气和氦气时均被观察到。这表明Ba++的透射率最初随气体流量的增加而提高,可能是由于双电荷离子在进入碰撞/反应池前在静电离子光学器件中获得较高的动能。然而,随着气体流量的进一步增加,Ba++离子的反应速率可能超过了Ba+,导致其离子信号强度的连续下降。图2:灵敏度和选定的离子强度比与通入反应池的氢气H2流量的关系(a)。钙的同位素的检出限与通入反应池的氢气流量的关系(b)。在低于1.5mL/min的氢气流量设置时,每种氢气流量设置都会相应调整陷波滤波器上的设置,以保持尽可能高的灵敏度,同时防止检测器饱和。对于H2气体流量大于1.5mL/min,则未启用陷波滤波器。灵敏度和选定的离子强度比与通过碰撞池的氦气He流量的关系(c)。质量分辨率和灵敏度与通过碰撞池的氦气流量的函数关系(d)。在此实验期间,陷波滤波器设置保持不变,m/z=40处的信号强度必须始终衰减。所有实验均在NIST SRM610上进行,使用直径44微米的圆形光斑和10Hz的激光频率。实验采用线扫描模式进行,扫描速度为5µ m/s。03检出限和氢气气体流量的关系及同位素的选择 图2b展示了多个Ca同位素(40Ca, 42Ca, 43Ca和44Ca)的检出限随着通过反应池的氢气流量变化的情况。在氢气流量为3mL/min时,40Ca的检出限数值最佳,达到0.33mg/kg,这一检出限比CCT模式下其他Ca同位素的检出限好一个数量级以上。与无氢气流的标准条件相比,检出限提升超过了三个数量级,这主要归因于氢气对Ar+信号的选择性衰减,从而显著提升了检出限。随着氢气流量的进一步增加,检出限的上升归结于灵敏度降低。 此外,研究中还观察到Se同位素(特别是80Se)在氢气流量为3.5mL/min时达到了最佳检出限0.95mg/kg,相比于标准条件下可获得的检出限(针对77Se为4.1mg/kg)提高了约四倍。对于238U和89Y,当氢气流量分别达到5mL/min和3.5mL/min时,观察到检出限降低了四倍,这表明通过调整氢气流量,可以显著改善某些特定元素的检出限。 对于27Al,在无氢气通入的条件下其检出限数值最低,但即使在低氢气流量下,27Al的信号也可能因碰撞而衰减。当通入3.5mL/min的氢气时,27Al的检出限恶化了两倍,这表明氢气流量的增加对某些元素的检测性能有负面影响。 这些观察结果说明,在通过反应池的氢气流量对检出限有着显著的影响,不同元素和同位素受氢气流量影响的程度各不相同。通过优化氢气流量,可以在不牺牲其他性能的前提下,针对特定元素达到更低的检出限。对于更多细节和氢气流量与灵敏度及背景信号之间的相关性分析,建议参考原始研究的辅助材料。04质量分辨率和丰度灵敏度与He气体流量的函数关系 图2d的结果表明,通过向碰撞池中添加氦气(He)作为碰撞气体,可以略微提高特定同位素的质量分辨率。这一发现对于改善质谱分析的准确性和分辨能力具有重要意义。质量分辨率的提高允许更好地区分质量相近的同位素,从而降低了分析中的误差和不确定性。例如,141Pr和238U的质量分辨率分别在氦气流量为5mL/min和6mL/min时提高了16%和13%。这种效果是由于碰撞导致离子动能的离散度减小,从而使得同位素峰更加尖锐。 与使用氦气相似,实验中也观察到使用氢气(H2)作为反应气体时,同样可以提高质量分辨率。例如,在氢气流量为2.5mL/min时,238U的质量分辨率提高了4%。这进一步证明了通过调整碰撞/反应池中的气体种类和流量,可以有效地优化质谱分析的性能。 在进行了ICP-TOFMS操作参数和碰撞/反应池设置的优化后,特别是在优先考虑峰形而非灵敏度的情况下,238U的质量分辨率可以超过4000。尽管这种优化导致238U的灵敏度降低了7%,但显著提高的质量分辨率对于解决复杂样品分析中的同位素重叠问题至关重要。 此外,通过监测209Bi+在m/z=209和m/z=210处的强度,研究人员还探讨了丰度灵敏度的变化。发现通过将氦气流量提高至3mL/min,可以提高丰度灵敏度。这是因为增加的氦气流量导致重质量侧的质谱峰底部变宽,尽管这种效果在质量分辨率的测定中未能得到充分体现。这一发现强调了在实际应用中,对碰撞/反应池中气体流量和种类的精细调节对于优化质谱分析性能的重要性。 钙的定量与氢气气体流量和同位素选择的关系:图3a和b的研究报告通过使用高色散LA-ICP-TOFMS技术在NIST SRM612和USGS BCR-2G样品中测定钙(Ca)元素含量,并探讨了通过反应池的氢气(H2)流量对测定结果的影响。这项研究选择NIST SRM610和29Si+作为参考样品和内标,因为NIST SRM610与NIST SRM612成分相似,适用于校准,而对于USGS BCR-2G的定量,使用NIST SRM610进行校准则被视为非基质匹配的方法。 研究发现,在没有氢气流的标准条件下,能够测定的Ca浓度主要基于44Ca+的强度,而40Ca+、42Ca+和43Ca+的信号未能检测到高于背景水平。当在NIST SRM612中测定Ca时,发现无论选择哪种同位素,准确度和精确度都遵循相似的趋势,并且在氢气流量低于2.5mL/min时得到提升。这表明低氢气流量有助于提高钙定量的准确度和精确度,而较高的氢气流量则因碰撞引起的信号损失而导致逆向趋势。 此外,2.5mL/min的氢气流量被发现能够实现最准确的Ca测量,基于40Ca强度测得的Ca浓度与GeoReM数据库中的参考值相比,偏差仅为1.3%。在USGS BCR-2G标准样品中,较小的氢气流量同样能够提高Ca定量的准确度和精确度。 然而,Ca离子的强度可能会受到MgO+、MgOH+、AlO+和AlOH+等多原子离子的干扰,尤其是在USGS BCR-2G样品中钙浓度高的情况下。这些干扰主要影响低丰度同位素42Ca+、43Ca+和44Ca+,并且随着H2气体流量增加,其影响也随之增大。研究指出,在NIST SRM和USGS BCR-2G样品中,较高的氢气流量可能有助于减少Ca+/Ar+比率的差异和K+信号的拖尾现象, 但为何在较高H2气体流量下基于40Ca+的定量结果更为准确仍然不明确, 这项研究不仅展示了LA-ICP-TOFMS技术在测定特定元素含量时的应用潜力,也强调了优化氢气流量在提高测定准确度和精确度中的重要性。通过调整反应池中的氢气流量,可以有效地减少多原子离子的干扰,从而实现更准确和精确的元素定量分析。 在2.5mL/min的氢气流量下,研究对NIST SRM612和USGS BCR-2G样品中多种元素的定量能力进行了测试。选择这一氢气流量是基于它能够有效平衡背景信号的衰减和由于碰撞引起的信号损失。结果表明,在没有氢气流量的标准条件下与2.5mL/min氢气流量条件下,大多数元素的定量结果之间没有显著差异。实验数据显示,在无氢气和2.5mL/min氢气条件下,分别有43%和36%的测试元素的浓度落在NIST SRM612的首选值不确定度范围内。同时,大约70%的元素在两种条件下与NIST SRM612的首选值相对偏差小于5%。对于USGS BCR-2G样品,62%(无氢气流)和69%(2.5mL/min氢气流)的元素浓度落在首选值的不确定度范围内,且在这两种实验条件下,大约62%的元素与USGS BCR-2G首选值的相对偏差小于5%。 然而,对于磷(P)、钾(K)和钪(Sc)等某些元素,随着氢气流量的增加,其定量准确性有所降低。这一趋势在两种标准参考材料中均被观察到。分析光谱数据时发现,31P、39K和
  • 毛细管气相色谱仪对复杂样品的定性定量分析
    在现代分析化学领域,毛细管气相色谱技术因其分离效率和精确的分析能力而被广泛应用。尤其在面对组成复杂的样品时,毛细管气相色谱仪显示出其优势。本文将深入探讨它在处理复杂样品时的定性和定量分析能力,以及其在实验过程中的应用策略和注意事项。   毛细管气相色谱仪的核心部分是长而细的毛细管柱,内壁涂有固定相。这种设计极大地增加了相互作用的表面积,使得样品分子能在气相和固定相之间进行成千上万次的交互作用。通过精准控制色谱条件如载气流速、温度程序等,可以实现复杂混合物中各组分的有效分离。   在进行定性分析时,毛细管气相色谱通常与质谱(MS)或傅里叶变换红外光谱(FTIR)联用,以增强识别未知化合物的能力。例如,气相色谱-质谱联用技术可以提供样品中每个峰的质谱图,通过数据库比对实现快速鉴定。这种方法尤其适用于石油产品、植物提取物、香精香料等复杂样品的分析。   定量分析方面,仪器通过与标准物质的保留时间和峰面积或峰高对比,实现高精度的定量测定。使用内标法或外标法定量,可以根据实际需要选择最合适的方法。内标法通过添加已知浓度的内部标准物来校正样品处理过程中可能出现的损失,从而提高定量的准确性。外标法则依赖于标准曲线,适用于可以精确控制样品进样量的情况。   操作时,需特别注意温度的控制和优化。升温程序必须精心设计以确保所有组分都能得到有效分离而不致于峰展宽或峰形失真。载气的选择和流速的调整也至关重要,氮气和氦气是常用的载气,它们具有化学惰性,不会与样品发生反应。   维护和日常检查对于保持设备的最佳性能也是必要的。定期检查和更换进样口的隔垫、衬管和色谱柱,可以防止样品交叉污染并保证分析的重现性。   综上所述,毛细管气相色谱仪是分析复杂样品的强有力工具。通过优化分析条件和适当的操作维护,可以实现对复杂样品中各个组分的高效、准确的定性和定量分析。
  • 清华大学开发出具有自发电场的可降解神经再生电子药物
    p style=" text-indent: 2em " 目前大量研究表明电刺激疗法在体外和体内均具有促进轴突快速定向再生,实现功能恢复的效果,但是目前提出的植入式电刺激器件新方案中还存在体积相对较大、不可降解需二次手术取出或者外部无线供能装置制备流程较复杂等一系列限制其临床转化的潜在问题。 /p p br/ /p p style=" text-indent: 2em " 周围神经损伤是周围神经干或其分支意外受到外界直接或间接创伤而发生损伤导致躯干和肢体的运动、感觉及自主神经功能障碍的一种临床病症。大量报道表明2.8%的创伤患者受到周围神经损伤的影响,且每年全世界约超过1百万人会遭受周围神经损伤疾病损害,严重影响患者的生活质量,部分患者甚至会因此而终身残疾。随着再生医学和组织工程的进步,组织工程化的人工神经导管得到了迅速发展,但自体神经移植仍是外周神经损伤修复的“金标准” ,而自体神经移植方法存在供体神经支配区永久性失神经功能丧失、供移植来源有限、供体部位的神经和缺损部位神经不匹配以及需要进行二次手术等问题。目前大量研究表明电刺激疗法在体外和体内均具有促进轴突快速定向再生,实现功能恢复的效果,但是目前提出的植入式电刺激器件新方案中还存在体积相对较大、不可降解需二次手术取出或者外部无线供能装置制备流程较复杂等一系列限制其临床转化的潜在问题。 /p p br/ /p p style=" text-indent: 2em " 近日,清华大学材料学院尹斓课题组开发了一种新型电刺激人工神经导管一体化的微型可降解电子器件,此类器件兼具人工神经导管的引导与长时间连续电刺激的双重作用,且其组成材料全部生物相容并在特定时间内发生降解且被人体所吸收或代谢,不需要进行二次手术取出。该研究成果以“A fully biodegradable and self-electrified device for neuroregenerative medicine”为题在国际著名学术期刊Science Advances上发表。 /p p br/ /p p style=" text-indent: 2em " 该研究采用Mg作为电池的负极,FeMn作为正极,体液为电解质溶液。此外,根据神经导管的力学性能与微观结构需求,对可降解电池的复合一体化神经导管的结构进行了设计,其中神经导管的最外层支架为多孔PCL,其主要作用为力学支撑,第二层为与神经组织力学性能相匹配的柔性PLLA-PTMC材料;最内层为PCL纤维薄膜,其主要作用为引导缺损神经再生。 /p p br/ /p p style=" text-indent: 2em " 此电刺激器件可在大鼠体内连续放电3天,且有限元计算得到电场强度分布范围为25?200 mV/mm,与促进DRG轴突生长、血旺细胞定向生长和PC12细胞增殖的电场强度范围区间相吻合。此外,此器件可在60℃的PBS溶液(pH为7.4)中约于56天内发生全部降解。 /p p style=" text-align: center text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 544px height: 496px " src=" https://img1.17img.cn/17img/images/202012/uepic/d7f5fe83-8c96-4562-a2dd-3b0f41c38e28.jpg" title=" 75173778d9f84ca2a67cb180b41a5a03from=pc.jpg" alt=" 75173778d9f84ca2a67cb180b41a5a03from=pc.jpg" width=" 544" height=" 496" / /p p style=" text-align: center text-indent: 2em " 图1. 可降解电刺激器件的结构、放电性能与降解性能 /p p br/ /p p style=" text-align: center text-indent: 2em " 在此基础上开展了此电刺激器件在体外对背根神经节细胞和血旺细胞的影响研究,分析了电刺激对胞内钙信号传导和所分泌神经营养因子的影响,发现此器件具有引导和促进轴突定向生长的作用,且能显著促进胞内钙离子的活性。此外,该器件还能促进血旺细胞的增值,且能显著促进其对BDNF, CNTF, NGF和VEGF的分泌。 img src=" https://img1.17img.cn/17img/images/202012/uepic/8c4e66b2-73a9-4ae2-85fd-6aa6c20b4eb5.jpg" title=" d201c3dc776c4ef4beae25fa610fe190from=pc.jpg" width=" 552" height=" 346" style=" width: 552px height: 346px " / /p p style=" text-align: center text-indent: 2em " 图2. 可降解电刺激器件对背根神经节细胞的影响结果 /p p style=" text-align: center text-indent: 2em " img src=" https://img1.17img.cn/17img/images/202012/uepic/1632f9ed-642f-45ee-bd59-6e6eca61240d.jpg" title=" 5e8d1450f79e45e79d695f13892abd57from=pc.jpg" width=" 568" height=" 273" style=" width: 568px height: 273px " / /p p style=" text-align: center text-indent: 2em " 图3. 可降解电刺激器件对血旺细胞的影响结果 /p p br/ /p p style=" text-indent: 2em " 此外,研究了此神经导管一体化电刺激器件对Sprague-Dawley大鼠坐骨神经10 mm缺损的修复效果,发现3周和9周后电刺激组的再生神经面积较空管组有显著增加,且可与自体神经移植组的再生神经面积相比拟,验证了此器件对神经的早期和中期神经再生的促进作用。通过对12周后再生神经组织和运动功能的研究,验证了电刺激对再生神经中轴突髓鞘化、靶肌肉的神经再支配和运动功能恢复的促进作用。 /p p style=" text-align: center " /p p style=" text-align: center text-indent: 2em " img style=" width: 436px height: 295px " src=" https://img1.17img.cn/17img/images/202012/uepic/a93960e8-99df-431a-bd30-4d83b582b532.jpg" title=" 3192d1b688de492cbdd66b2d2e363c0cfrom=pc.jpg" width=" 436" height=" 295" / /p p style=" text-align: center text-indent: 2em " 图4. 手术过程和3周后再生神经荧光染色结果 /p p style=" text-align: center text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 469px height: 524px " src=" https://img1.17img.cn/17img/images/202012/uepic/15dc160f-479d-4532-b7aa-4b388fe9bd02.jpg" title=" 5ad3aabe9e87409180595df362d27b0bfrom=pc.jpg" alt=" 5ad3aabe9e87409180595df362d27b0bfrom=pc.jpg" width=" 469" height=" 524" / /p p style=" text-align: center text-indent: 2em " 图5. 12周的再生神经髓鞘化、电生理、靶肌肉和运动功能结果 /p p br/ /p p style=" text-indent: 2em " 清华大学材料学院副教授尹斓为本文通讯作者,中国人民解放军总医院骨研所副主任彭江和副研究员王玉为共同通讯;清华大学材料学院博士后王柳为本文第一作者,中国人民解放军总医院硕士鲁长风、清华大学材料学院博士生杨淑慧和孙鹏程为共同一作;合作者包括清华大学材料学院王秀梅教授、清华大学生命学院熊巍研究员、清华大学电子系盛兴副教授、北京理工大学汪世溶副研究员和清华大学材料学院陈浩副教授。本工作得到了国家自然科学基金、博士后科学基金、北京市自然科学基金和国家重点研发计划等项目的共同资助。 /p p br/ /p
  • 碳监测比常规空气质量监测复杂在哪?
    2022全国生态环境保护工作会议就对碳监测试点工作作出部署。日前生态环境部召开的党组会议也对碳监测提要求:“要推动减污降碳协同增效,建立完善温室气体数据统计核算、数据管理及履约长效机制,继续实施碳监测评估试点,加强甲烷等非二氧化碳温室气体管控。”   距离上海、杭州、宁波、济南、唐山等13个城市入选为大气温室气体监测试点城市已过去近5月,各试点城市进行了哪些探索?有何经验?   方案均“出台”,资金有保障   2021年9月,生态环境部印发《碳监测评估试点工作方案》,选取13个城市开展大气温室气体监测试点。其中唐山、太原、鄂尔多斯、丽水和铜川作为基础试点城市;上海、杭州、宁波、济南、郑州、深圳、重庆和成都作为综合试点城市。   “据统计,截至目前,13个城市的本地化实施方案已编写完成,处于专家论证及完善的阶段。有些城市的进展较快,完成后的方案已经报送至省级主管部门,个别城市的方案已经报送至生态环境部。”中国环境监测总站工程师孙康告诉记者。   一些城市的监测方案划分了任务阶段的进度目标。例如丽水市试点分为建设阶段和探索研究阶段,将于2022年6月开展城市大气地面高精度温室气体监测和碳同位素监测;计划2022年底,完成监测数据上传、试点监测经验总结,规划整体的长期部署已至2035年。而成都市出台的《成都市城市大气温室气体监测综合试验详细设计方案》主要包括项目背景、项目目标、设计原则及技术路线、项目内容、计划进度、基础保障等六大板块的内容。   试点推行落地中比较关键的资金保障,目前也有较好的落实。据了解,这些试点城市的工作经费,由试点城市自行解决,或由所在省份统筹解决。“虽然数额多少不一,但各地基本上都有专项资金保障,其中由4个城市保障资金在1500万元以上。有个别城市保障充足,例如唐山申请了3000多万元的经费,杭州经费也超2000万元。”   各试点城市量身定制布点方案   据了解,中国环境监测总站编制的《城市大气温室气体监测点位布设技术指南》已于2021年12月31日编制并发送至各地,指南中明确了监测点位布设的5条原则。其中“整体性”原则要求考虑城市地形地貌、气象等综合环境因素,以及能源结构、产业布局等社会经济特点,反映城市主要温室气体排放状况。   这就意味着试点城市需在温室气体监测方面做好“量身定制”工作,所以试点城市大气温室气体监测点位的选址、评估、现场勘查等工作也要进行综合性考量。   孙康说:“各城市都在探索本地化的方案,比如重庆属于典型山地城市,布点就需要充分考量山地地形的实际,可以采用一些梯度采样。比如丽水,它的城市绿地面积大、生态好,布点会侧重生态系统碳通量监测,而不是仅仅围绕着大气温室气体一方面。再比如唐山作为典型的工业密集、排放强度大的城市,布点上可能要统筹考虑高精度监测点位与中精度监测点位、原位监测与遥感走航监测等多种方法,这类探索对于我国工业城市较多的特点具有重要帮助。”   一些“碳监测”点位布设也面临“个性化”挑战,相应解决方案也在探索过程中。   孙康以上海举例,“高精度大气温室气体监测点位要求比较高,最好是在开放式高塔上,例如通信塔,避免周围环境的干扰影响。由于上海这类大都市城区大多建筑物密集,没有合适高度的通信塔,只能选择高层建筑。但是,高层建筑的楼顶风向风速等微气象条件复杂,同时,楼顶通常有排气口会对监测造成严重干扰。”   这种情况下,如何在高层建筑上把大气温室气体监测得更“准”成为上海一直在攻克的方向。孙康介绍:“像国外有在建筑物的4个角设立采样口,只要保证一个角的采样正常即可。除了这类学习之外,上海也在做建筑物楼顶微气象条件的研究,以求尽量降低对监测的干扰。”   自动监测设备仪器应有增加   此次13个试点城市有一些共同的监测项目要求:高精度CO2、高精度CH4、高精度CO、高精度气象参数(风向和风速、温度、湿度、气压、降水量)等,而且要求至少有1个点位监测碳同位素(14CO2)。   综合性试点城市比基础性试点城市还多出了一些选测项目,例如边界层高度、风速的垂直廓线、生态系统CO/CH4通量、地基遥感CO2/CH4柱浓度、碳同位素(CO2)等项目。据悉,碳同位素(14CO2)等项目采用手工监测外,其他项目要采用在线监测。   中国环境监测总站高级工程师梁宵介绍,由于监测的精度要求高,项目种类多,碳监测要比常规的空气质量监测更复杂。“原有的监测网络中,并不能涵盖大气温室气体的监测因子。所以现行的监测网络仪器构成方面,可能会有一个相应的增加。”梁宵说。   因此,各试点城市也会自行开展一些仪器的比对测试。据了解,像上海、成都、重庆等经济实力和技术力量有条件的城市,都在计划展开仪器应用的研究,还有的在做一些卫星、遥感监测资料的分析,为当地“碳污同源”温室气体动态排放清单做准备。   除了地方自行自试,中国环境监测总站也正在组织开展碳监测仪器的性能质量适用性应用测试研究。“应用验证测试包括环境空气和重点行业废气排放碳监测相关的在线和便携监测仪器,基本上涵盖了目前市场上主流原理、技术相对成熟的国产和进口仪器设备,总站将在仪器验证测试和应用比对的基础上,形成环境空气和废气温室气体自动监测仪器相关技术标准和规范,为全国环境空气温室气体监测网络建设和重点行业温室气体排放监测管理提供科学可靠的技术支持。”梁宵透露,本项应用验证测试工作目前进展顺利,预计在2022年完成。   被问及在相关国产仪器能为碳监测试点城市提供多少支撑辅助能力时,梁宵表示“对于的固定源排放来讲,无论是C02还是CH4的监测,国产仪器设备成熟度相对较高。对于环境空气来讲,属于比较新的领域,监测方式和技术难度较大,国产仪器需加大研发力度,部分产品已经有了一定的突破,但仍需根据应用测试情况来进行综合评估,用数据来说话。”
  • 复杂样品自动化分析中的在线前处理技术① | 二维柱切换系统
    引 言随着检测技术的不断发展,特别是质谱仪的普及,对于复杂样品中微量成分的检测,已经变得更加容易。但为了实现准确定量,仍需将微量或者痕量的目标成分与复杂基质进行分离,以减少干扰。这样,原本简单快速的分析过程,却因为繁琐的前处理操作而变得低效,费时。更重要的是,前处理步骤越多,人为因素干扰就越多,分析结果重现性和准确度将无法保证。因此,为节省人力,并得到更加准确的分析结果,对自动化前处理装置的需求越来越多,各大仪器厂商也纷纷推出了此类产品,但由于价格昂贵,短时间内仍无法得到普及。 岛津中国创新中心一直致力于开发和引进全新的分析检测技术,帮助用户解决实际工作中的难题。此次,将为大家介绍复杂样品自动化分析中的在线前处理系列技术。在现有分析设备基础上,通过追加高压切换阀,应用超临界流体色谱技术,配备特殊填料柱,搭建多维柱切换系统,来实现含有复杂基质的生物样品以及食品药品的在线前处理,并实现准确快速的自动化分析。 今天,我们首先为大家介绍通过使用二维柱切换系统和稳定同位素内标实现全血中免疫抑制剂的快速监测技术。免疫抑制剂是对机体的免疫反应具有抑制作用的一类药物,主要用于器官移植抗排斥反应和自身免疫疾病的治疗。在临床上,免疫抑制剂的浓度必须维持在一个有效和安全的范围内,才能起到对治疗的促进作用。常用的免疫抑制剂如环孢素A(Cyclosporin A)、依维莫司(Everolimus)、西罗莫司(Sirolimus)和他克莫司(Tacrolimus)等,由于其治疗窗窄(治疗浓度与中毒浓度接近),并且其代谢过程容易受个体差异,环境等因素影响,因此对该类免疫抑制剂药物浓度进行监测,对于患者的治疗具有非常重要的指导意义。 图1. 四种常用免疫抑制剂结构式(依维莫司Everolimus、他克莫司Tacrolimus、环孢素A Cyclosporin A、西罗莫司Sirolimus) 目前,用于生物样品中免疫抑制剂的定量方法主要有免疫分析法、高效液相色谱法(HPLC)和LC-MS/MS法等,现有方法存在专属性差或者前处理复杂等缺点。为简化样品前处理过程,提高分析效率,并提高检测结果准确性,岛津公司开发了一套二维色谱质谱联用系统,并配合稳定同位素内标技术,实现了全血样品中的免疫抑制剂的快速监测。如下图所示,首先在第一维流路中,使用特殊的SPE小柱对全血样品中的免疫抑制剂进行在线捕集,并除去样品溶液当中的蛋白和盐。进一步,在第二维流路当中,分析流动相将免疫抑制剂从捕集小柱上洗脱至分析柱上进行分离,并通过岛津公司性能稳定的临床质谱LCMS- 8050CL进行检测定量。图2. 全血中免疫抑制剂在线捕集系统 如下图所示,该系统通过使用在线捕集系统和同位素内标技术,可以在1.4min以内完成全血当中四种免疫抑制剂的准确定量。该技术极大地简化了全血样品的前处理过程,提高了工作效率和分析的自动化程度,减少了人为误差,确保得到更加准确的结果。 图3. 全血中四种免疫抑制剂质谱色谱图(红线:同位素内标;黑线:未标记物)图4.四种免疫抑制剂和同位素内标的离子对信息
  • 傅里叶变换离子回旋共振质谱仪揭示高硫原油的生物降解机理
    p & nbsp & nbsp 全球已探明的油藏中很大一部分是含硫原油,有不少高硫原油经历了生物降解。此外,全球供给的原油含硫量呈逐年上升趋势,高硫原油泄露引发的环境问题也相当突出,微生物修复技术已被成功地应用于漏油事件的处理中。已有研究表明,无论是在有氧还是在厌氧条件下,微生物都可以将一些结构简单的模型有机硫化物(二苯并噻吩等)作为碳源和/或硫源,但对原油中结构复杂的有机硫化物的降解机理的研究仍不够深入。这是因为原油中的大多数有机硫化物不仅分子结构和组成都非常复杂,极性弱且不稳定难以离子化,其降解产物的浓度也非常低,因此很难对有机硫化物的降解机理进行深入的研究。近期,中国科学院广州地球化学研究所研究员廖玉宏课题组通过原油好氧生物降解模拟实验的方法,结合中国石油大学(北京)教授史权课题组研发的加入HCOONH4的方法来增强弱极性的硫化物的电离效率,采用广州地化所最新引进的傅里叶变换离子回旋共振质谱仪(FT-ICR MS,型号为SolariX XR 9.4T),研究了高硫原油的有氧生物降解过程。型号为SolariX XR 9.4T的傅里叶变换离子回旋共振质谱仪能够提供极高的分辨率和灵敏度,比常规的GC-MS都要高几个数量级,因而能很好地分辨出原油中各种浓度悬殊的有机硫化物及其降解产物。 /p p & nbsp & nbsp 模拟实验中使用的含硫原油来自江汉盆地潜江组,所用的降解菌富集培养自内蒙古扎赉特旗露头油砂矿的油浸土壤,培养的时间最长达到了17周,从0周(Z-0)到17周(Z-17)每隔1到数周取出一个油样进行分析。随着降解时间增加,原油中的正构烷烃逐渐减少(图2),最终正构烷烃几乎消耗殆尽,异构烷烃也部分损失,因此这些降解油处于轻微-中度生物降解阶段。与烷烃的减少相对应的是,原油中羧酸的含量随着生物降解的加剧而呈上升趋势。这与研究人员之前对一高蜡原油的好氧生物降解模拟实验结果一致(Pan & amp Liao*等, 2017,& nbsp Energy & amp Fuels)。这是因为烷烃发生末端氧化生成了羧酸。有趣的是,原油中的长链有机硫化物的降解似乎有着与烷烃降解类似的降解机理:随着降解时间增加,正构烷烃迅速减少直至基本被消耗完毕,随后发生降解的主要对象变成了只含有一个五元或六元硫环、与正构烷烃结构具有较高相似性的长链有机硫化物,说明长链有机硫化物在降解过程中也发生末端氧化形成了相应的有机酸类,这可以从原油中的含硫羧酸类化合物的快速增加得到印证。 /p p & nbsp & nbsp 此外,研究人员并没有发现原油中的亚砜和砜类化合物与对照组相比有明显增加,这也从另一侧面证实了长链有机硫化物的降解产物主要为含硫羧酸而不是亚砜和砜类,即降解优先从烷基侧链开始。此外,研究还发现有机硫化物的环数增加可以提高其抗生物降解性能(图3)。这与Oldenburg等(2017)在储层中观察到的含硫原油的降解规律类似。这样的相似性可能表明储层中含硫原油的生物降解是好氧和厌氧微生物共同作用的结果。 /p p & nbsp & nbsp 该项成果得到中科院先导科技专项B和A、国家自然科学基金面上项目以及有机地球化学国家重点实验室自主课题资助。论文近期发表在国际期刊Organic Geochemistry上,论文的第一作者为博士生刘卫民,通讯作者为廖玉宏,共同作者还包括广州地化所助理研究员潘银华、工程师蒋彬、实验员曾清,以及中国石油大学(北京)教授史权和佛罗里达州立大学教授许强。 br/ /p p 论文信息:Liu, W., Liao, Y.*, Pan, Y., Jiang, B., Zeng, Q., Shi, Q. and Hsu, C.S., 2018.& nbsp Use of ESI FT–ICR MS to investigate molecular transformation in simulated aerobic biodegradation of a sulfur-rich crude oil. Organic Geochemistry, Vol.123, pp.17-26. /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/c1f069a2-8da7-4870-adef-700bb0ae57ba.jpg" title=" 1.jpg" / /p p br/ /p p style=" text-align: center " 图1 广州地化所2016年引入的傅里叶变换离子回旋共振质谱仪(FT-ICR MS,型号为SolariX XR 9.4T) /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/cbee4a85-50c8-4a5b-b2cd-c36bebd20f5f.jpg" title=" 2.jpg" / /p p style=" text-align: center " 图2 降解油饱和烃的总离子流图 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/10c5643b-0356-4533-901b-38e1db1209b5.jpg" title=" 3.jpg" / /p p style=" text-align: center " 图3 含有1、2、3个硫原子的有机硫化物的相对丰度 /p p br/ /p
  • 【新品推荐】雷博等离子清洗机,解决复杂材料清洁难题!
    为进一步满足客户的实验工艺需求,雷博科仪特推出新款实验型等离子清洗机:PT13M-BE、PT13M-SE、PT13M-GE、PT40K-BE、PT40K-SE仪器介绍等离子清洗机(plasma cleaner)也叫等离子清洁机,或者等离子表面处理仪,是一种全新的高科技技术,利用等离子体来达到常规清洗方法无法达到的效果。等离子清洗可以除去器材表面细小的油膜、锈迹或其他油类污物,而且在等离子清洗后,不会在器材表面留下残余物。工作原理等离子清洗机是一种利用等离子体技术对材料表面进行处理的设备,其工作原理主要基于等离子体中的活性粒子与材料表面发生物理和化学反应,从而达到清洁、活化、改性等目的。应用工艺雷博科仪PT系列等离子清洗机主要应用于:亲水性处理、表面处理、疏水性处理、键合处理。亲水性处理操作真空等离子清洗机通过高频电源产生电场能量,使得气体分子发生电离和激发,形成含有大量正离子、电子和自由基等活性物质的等离子体。这些活性物质在与材料表面发生作用时,能够去除表面的污染物和有机物,同时在材料表面引入含氧极性基团,如羟基、羧基等,这些基团的引入增加了材料的亲水性。①准备阶段:将要处理的材料放入真空等离子清洗机中,设定适当的处理参数,如处理时间、气体种类和浓度等。②抽真空阶段:启动真空泵,将腔体内抽成真空状态。③注入气体:选择适当的气体(如氩气、氧气、氮气等)注入腔体,形成等离子体。④等离子照射:在一定的电压和电流条件下,产生等离子体,通过等离子体中的活性粒子与材料表面发生作用,去除表面污染物,并在表面引入亲水基团。⑤结束处理:停止等离子照射,取出材料,完成亲水性处理。我们的优势1.满足8寸以下基片使用2.可处理形状复杂的材料3.低温等离子体,能量低、密度高4.对处理产品无损伤,不改变材料特性5.高效清洗,快速达成需要的表面亲水性6.无环境污染、无化学品消耗、机台本身不产生污染物
  • 技术讨论:工业污水中COD去除方法及降解剂介绍
    废水处理厂出水和受污染的水中,能被强氧化剂氧化的物质(一般为有机物)的氧当量。在河流污染和工业废水性质的研究以及废水处理厂的运行管理中,它是一个重要的而且能较快测定的有机物污染参数,常以符号COD表示。那危险有哪些呢?使水体发黑,发臭,甚至危害到人体的健康。1、常见的是生化法。生化法常用SBR法,A/O之类的,根据不同情况选择。经过生化法处理之后,基本上COD的浓度可以降至中低浓度。 2、物理法常用的可以用格栅,筛网之类的,根据情况不同来选择。 3、化学法可以选择合适的COD降解剂,这种COD降解剂药剂是针对于生物法处理过后的中低浓度的COD而研发的。COD降解剂的简单介绍: 1、使用范围:适用于中低浓度的COD废水,在500ppm以内COD废水的效果佳。 2、使用原理:集合了氧化、反应沉降、吸附等处理技术,能将污水中的COD等污染物从水体中快速去除。 3、药剂特点: 1)反应速度快,大大缩短了处理流程 2)处理效果优,真正解决了COD的超标问题 3)环保无污染,添加后不会带来新的污染
  • 把一滴水做到极致:张新星团队揭示百草枯在小水滴中的自发超快降解
    夺命百草枯——好用的除草剂,危险的杀人药百草枯、敌草快等紫菁类农药由于其毒性高、无解药、难以降解(在水中半衰期23周,在土壤中半衰期6年)的特性,涉及到的自杀、误食、投毒事件数不胜数,近年来在媒体和社交网络上臭名昭著。从中毒机制来看,紫菁在人体内通过一系列电子传递反应生成大量具有高度氧化能力的活性氧物种,通过对人体脏器的快速氧化,导致服毒者在极大的痛苦中缓慢死亡。受害者遭遇惨痛,几乎无一幸免。有媒体将其形容为“给你后悔的时间,不给你活命的机会”(图1)。针对百草枯的极大危害,我国农业农村部已经停止了百草枯水剂在国内的销售和使用。然而,由于百草枯的除草效果极佳,很多不法商家将其经常冠以不同的商品名偷偷售卖,引发的案件造成了恶劣的社会影响。图1:左)曾经市面上常见的几种百草枯商品;右)2021年12月29日,央视网通报的又一起百草枯投毒案。鉴于此,近日,南开大学张新星研究员团队另辟蹊径,通过把紫菁化合物的水溶液喷雾成微米级大小的小水滴,并结合原位质谱检测手段,对紫菁降解产物进行了研究。实验中发现,在微液滴反应体系中,只需要几十微秒,就实现了紫菁降解的超快动力学,相关论文近期以“Spontaneous Reduction-Induced Degradation of Viologen Com-pounds in Water Microdroplets and its Inhibition by Host-Guest Complexation”为题发表在美国化学会会志JACS上。(论文链接:https://pubs.acs.org/doi/10.1021/jacs.1c12028)神奇的小水滴化学近几年来,以斯坦福大学的Richard Zare院士、普渡大学的Graham Cooks院士为代表的科学家,发现很多原本在液相中难以进行的化学反应,在通过载气喷雾或者超声雾化产生的微米级小液滴中(如图2中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且液滴的尺寸越小,这些现象越明显。图2:家庭中常见的加湿器,产生的微液滴中可以是微小的反应容器。Zare认为,微液滴的表面自然带有高达109 V/m的电场(相比之下,在空气中生成闪电的击穿电压仅有106 V/m)。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上为微液滴表面极高电场的存在提供了新的证据。张新星指出,本实验中紫菁化合物在微液滴中的自发降解现象,是通过微液滴表面自发生成的电子还原了正二价的紫菁化合物,生成了相对不稳定的紫菁正离子自由基,并以此为基础,通过Beta消除反应和霍夫曼消除反应进一步分解。而质谱为上述反应机理涉及的自由基和中间产物提供了有力的证据(图3)。图3:a) 微液滴喷雾装置的示意图;b) 乙基百草枯的降解产物的质谱解析图。把一滴水做到极致——小水滴化学的研究未来在记者的采访中,张新星表示,相比这项工作的应用价值——开发了一种新的十分简便的降解百草枯的方法,他更在意这项工作背后的科学意义。水对于很多化学体系来说都是极其稳定的、无污染的绿色溶剂,为什么体相的水被打散成小水滴之后就能促成原本无法发生的化学反应的进行?是由于微液滴表面的极高电场吗?那么微液滴表面自发生成的极高电场的物理来源是什么,是正负离子在微液滴表面自发生成的双电层吗?如果这是真的,这些离子都倾向于扩散到微液滴的表面的物理驱动是什么?微液滴表面极高电场解离氢氧根产生的电子是以自由电子还是以水合电子的形式存在?微液滴表面解离氢氧根同时产生了电子和羟基自由基,前者具有极高的还原性,而后者具有极高的氧化性,这对矛盾是如何共存的?几乎所有大气化学的模型研究都是在水的体相中进行的,而云彩和雾都是微液滴,那么此前所有体相中的大气化学研究是否需要重新审视?张新星表示,上述的问题,有的已经部分有了答案,有的还在探索之中。无论如何,这些问题的解答都必将推动分析化学和物理化学认知的进步。通讯作者简介张新星,复旦大学学士、美国约翰霍普金斯大学PhD,美国加州理工学院博士后,南开大学化学学院研究员,研究方向为分析化学、物理化学、科学仪器的智能制造等多学科综合交叉的科学技术问题,迄今已发表SCI论文75篇,含第一或通讯作者论文56篇。2017年入选国家第14批海外高层次人才引进计划,2021年入选了天津市杰出青年基金。2018年回国独立工作以来,以南开大学为通讯单位发表了论文32篇,其中包括PNAS 1篇,JACS 3篇,Angew. Chem. 7篇,Nat. Commun. 1篇,JPCL 2篇。在科研上,开发了多项国际上独特独有的新型(智能)装置用于多学科交叉的化学体系研究,并由此获得了2020年中国化学会第二届菁青化学新锐奖(本届全国共5名),2021年美国质谱学会ASMS新兴科学家称号(本届全球共11名,2015年该称号设立以来唯一中国大陆获得者),2021年中国物理学会质谱青年奖(全国唯一获奖人),以及2021年天津市科协优秀青年科技工作者等称号。原文信息:Spontaneous Reduction-Induced Degradation of Viologen Com-pounds in Water Microdroplets and its Inhibition by Host-Guest Complexation. 作者:宫矗、李丹阳、李熙来、张冬梅、邢栋、赵玲玲、苑旭、张新星* JACS
  • 【制药实验室系列访谈(二)】要尽量减少实验室仪器供应商数量,以降低数据管理的复杂性
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 为更好地理解当今制药实验室正面临的主要挑战,探寻提升实验室效率的可靠答案,仪器信息网开展了“对话制药实验室主管”系列访谈。本期受访嘉宾是北京睿创康泰医药研究院有限公司及全资子公司天津睿创康泰生物技术有限公司的董事长兼总经理贾慧娟。 /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 作为药企的最高管理者,贾慧娟所关注的问题很多,包括战略执行、经营模式、资金人才以及研发管理等。仅从研发管理者而言,她谈到最多的是实验室高效、可控运营的方法,尤其是在仪器选择方面的考量。 /span span style=" font-family: 楷体, 楷体_GB2312, SimKai text-align: center text-indent: 0em " & nbsp /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 400px height: 402px " src=" https://img1.17img.cn/17img/images/202008/uepic/5db2616b-e4e9-472a-aba8-96f82f5f41a5.jpg" title=" 111.png" alt=" 111.png" width=" 400" height=" 402" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center text-indent: 0em " 北京/天津睿创康泰医药研究院有限公司总经理贾慧娟 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 仪器信息网:请介绍您和所在实验室的工作职责。 /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 贾慧娟 /strong :作为北京睿创康泰医药研究院有限公司和天津睿创康泰生物技术有限公司的创始人、董事长和总经理,我的职责是多重的。从一个企业高层管理者的角色,要执行公司董事会提出的战略目标,制定公司发展战略,提出公司的业务发展规划、经营方针和经营模式等,并全面主持公司的发展工作,为企业的生存、发展操心。从研发管理者的角色,决定公司研发方向、业务发展方向、市场定位、合作伙伴及合作模式的选择等; /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 从研发实验室的管理者角色来讲, strong 对实验室的安全负责、负责研发项目的管理、研发团队的管理和建设、如何让实验室更高效、可控运营,如何降本增效、如何留住更优秀的人才、如何让实验室的日常工作更智能化、如何让各专业项目负责人实现无缝衔接,如何最大程度降低工作的重复性等。 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 仪器信息网:作为制药实验室管理者,您在工作中面临的困难和挑战有哪些? /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 贾慧娟 /strong :实验室日常工作中, strong 最担心的还是网络版工作站系统及服务器稳定性问 /strong 题,一旦出现问题,全公司的研发工作几乎停止,有些故障可能公司内部可以解决, strong 但有些故障必须要等工程师上门进行解决, /strong strong 这种情况下快的话要1-2天,如果缺少备件,时间则难以把控。 /strong 比如去年夏天,北京公司所在园区停电检修,网络版工作站服务器关机后,却无法正常启动,造成至少两天研发工作无法正常开展。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 仪器信息网:您的实验室在近期引进了哪些新产品或服务?具体为解决什么问题? /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 贾慧娟 /strong :近期公司正在考察痕量晶型杂质的定量检测设备,也就是药物制剂生产工艺过程可能会造成一种晶型向另外晶型转化不完全或稳定性考察期间、药物货架期期间,产生了另外一种晶型,我们需要引进一种新的仪器对药物中的晶型杂质进行定量分析。这对于规格较大,或者说活性成分含量高的药物不是什么难事,现在市面上的很多仪器或手段都可以实现,但我们要解决的问题主要集中在如下几方面: /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 活性成分在产品中的含量低(占单位制剂处方重量的5%),如果晶型杂质在最终产品中控制的限度为活性成分含量的5%,那也就是最终产品中晶型杂质的控制限度为0.25%,这个控制限度,对于化学降解产物或有关物质定量检测来讲还是比较容易实现的,但对于晶型杂质的定量控制,尚存在比较大的挑战。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 适合制剂中间体及成品的质量控制,即方法应具有非常好的重现性、便捷、操作简单、高效。仪器应适用面宽、成本及售后服务考虑。 /strong 已经调研并试用了四个不同供应商、不同品牌的仪器,从试用结果看,目前安捷伦的一款透射拉曼光谱有希望做到这样的灵敏度要求,但方法尚需进一步验证。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 仪器信息网:在提高实验室运行效率方面,您希望对当前实验室工作流程做哪些优化? /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 贾慧娟 /strong :我想着重介绍一下自动液体处理工作站在提高实验室运行效率方面发挥的作用。 strong 从工作内容角度来讲,药物研发过程中药学研究环节制约实验室运行效率的环节应该是药物质量研究部分 /strong ,尤其是做口服固体制剂研发,涉及大量的样品前处理、样品配制、样品分析等工作。 strong 在此工作过程中,我们希望有一个大体积的液体处理工作站,同时又能完成精密移取、定容、取样工作,避免交叉污染。 /strong 这一方面会显著提高工作效率,同时大大降低人为出错概率,节省出更多的实验人员。目前市面上的产品大部分面向生物分析,处理的样品体积小,另外生物基质的复杂性对交叉污染要求并不高(不关注杂质)。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 仪器信息网:对合规性的要求给实验室工作带来哪些考验?怎样满足越来越严格法规要求? /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 贾慧娟 /strong :合规性的要求给实验室工作带来的考验主要有以下几方面: strong 实验室原有的仪器设备不符合当前合规性要求 /strong ,比如,2014年购买的分析天平,本身不具有审计追踪系统,也无法对进行等级权限(管理员、高级用户、用户)的划分; strong 不同供应商仪器、不同功能仪器产生的电子数据管理的可靠性;人员的培训;新购入的新用途仪器使用过程的风险识别。 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 如果想满足越来越严格的法规要求, strong 其一,要对一些质量研究过程中容易产生高风险的环节更换具备审计追踪及权限管理的仪器;其二,要尽量减少实验室仪器设备的供应商,最大程度降低数据管理的复杂性,提高可靠性;其三,要加大与仪器供应商的沟通与培训,并针对每种仪器可能存在的风险点在开始就制定严密的控制程序。 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 仪器信息网:请谈谈您对我国药品检测技术发展的看法。 /strong /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 贾慧娟 /strong :近10年来,中国药品检测技术得到了空前的发展,尤其是很多国际CRO公司,如药明康德由于先前的主要业务面向于全球著名制药公司,因此,其检测的仪器设备与技术水平均必须与国际接轨,并与国际客户实现数据、谱图共享,因此,这些CRO公司把国际先进的检测技术、最先进的检测设备引入国内,国内药企通过与其合作也学习了相关的技术并逐渐完善和走向成熟;同时医药行业研发人员的频繁流动性,也促进了国内医药检测技术不断成熟和不断完善。 strong 近几年来国家从政策层面更加鼓励药品创新,基因技术、生物技术的飞速发展也对我国药品检测技术发展提出了更高的要求,但国内制药行业缺乏的不是仪器设备,而是对新型检测技术的开发和应用,尤其在生物药领域,这方面的人才更缺。对仪器供应端来讲,如何更多了解医药研发人员的需求,了解医药研发检测需求或许对二者的相互选择更有帮助。 /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong span style=" color: rgb(79, 129, 189) " 仪器信息网:请谈谈您对药品检测工作的看法。 /span /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 贾慧娟 /strong :药品检测工作从流程和工作内容上看繁琐、重复度高!这也是很多大学毕业生不愿意选择药物分析工作的原因之一;另外,药物质量研究在药品研发过程起到承上启下的作用,一个药物能够成功上市,每一个环节都离不开检测,贯穿药物从研发到上市,乃至整个药物的生命周期。个人认为这是一项非常神圣的工作,可以提高百姓用药安全和药品的有效性,有效控制和提升药品质量。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " span style=" color: rgb(79, 129, 189) " strong 详情点击查看专题:制药实验室如何实现高效率运营管理? /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " span style=" color: rgb(79, 129, 189) " strong /strong /span /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zt/PharmLabManage" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/202008/uepic/a0fc2e33-6f21-48c8-8077-9076dba951ee.jpg" title=" 安捷伦图片.jpg" alt=" 安捷伦图片.jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" / /a /p
  • 浅谈限塑令下的生物降解标准和仪器设备
    一、政策背景2020年1月16日,《国家发展改革委、生态环境部关于进一步加强塑料污染治理的意见》正式公布,塑料是重要的基础材料,在社会生产和居民生活中应用广泛。不规范生产、使用、处置塑料会造成资源能源浪费,带来生态环境污染,甚至会影响群众健康安全。中国党中央、国务院高度重视塑料污染问题,将塑料污染治理作为生态文明建设和实现高质量发展的重要内容加以推动;中央全面深化改革委员会将制定“白色污染”综合治理方案列为重点改革任务。随后,北京、上海、浙江、海南、广东、山东等各省市都出台了相关的政策法规,进一步加强塑料污染治理的意见。 二、塑料降解的标准:塑料的降解,一般从4个方面进行评估:(1)分解能力:最终的碎片化堆肥-这是通过以下方式进行的试验堆肥测试(EN 14045标准):测试材料的标本与生物废物堆肥了3个月。 在这段时间之后,测试材料残留物的质量必须小于原始质量的10%。(2)生物降解性:即可堆肥材料的能力在微生物的作用下被转化为二氧化碳。该标准包含必须在不到6个月时间内达到至少90%的生物降解的强制性阈值(实验室测试方法EN14046)。(3)生物相容性:堆肥残留物不能对生物成长过程造成负面影响。(4)重金属含量:在规定范围内,且不得对生物产生毒理作用。 三、生物降解性标准:围绕塑料降解的第2个要点,也就是生物降解性,目前常用于塑料生物降解的相关标准有:(1) GB/T 19277.1-2011(等同ISO 14855-1:2005)受控堆肥条件下材料最终需氧生物分解和崩解能力的测定 采用测定释放的二氧化碳的方法 第1部分 通用方法(2) GB/T 19277.2-2013(等同ISO 14855-2:2007)受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第2部分:用重量分析法测定实验室条件下二氧化碳的释放量 通用方法(3) ASTM D 5338 堆肥条件下塑料材料的好氧性生物降解试验方法(4) EN 13432 包装.通过合成及生物降解评定包装可回收性的要求 四、RTK-PBD塑料生物降解仪RTK公司推出满足GB/T 19277.1-2011和GB/T 19277.2-2013标准的塑料生物降解仪,二者区别如下:标准GB/T 19277.1(2011)GB/T 19277.2(2013)反应器数目每组3个每组2个反应器容积至少2 L,建议3 L500 mLCO2测量原理气相色谱或气体分析仪连续测量;碱液吸收固定后,手动滴定或者TOC测定天平称重 RTK公司是国家高新技术企业。RTK公司自主研发生产RTK-PBD塑料生物降解仪可用于塑料的生物降解性评估,另提供各类实验室生物发酵反应器(如CSTR反应器、UASB反应器、IC反应器、干法车库式反应器等)及其它定制服务。欢迎大家垂询!
  • 科学仪器助力中国科大在复杂有机团簇分子的形成和演化研究取得新进展
    记者从中国科学技术大学获悉,该校地球和空间科学学院甄军锋、秦礼萍团队,提出了一条星际大分子自下而上的生长过程中复杂有机化合物的形成气相生长的路径,为进一步深入了解它们在星际介质中的化学演化行为提供了理论和实验数据支持。研究成果于日前在国际学术期刊天文与天体物理学报《天文与天体物理学》上发表。 星际复杂有机分子被认为是更复杂的有机化合物的一部分,甚至是生命物质的重要组成部分。有机分子已知存在于恒星形成区域和行星形成的原行星盘中。然而,气相中的游离有机分子在紫外光照射下容易被破坏,单个紫外光子的能量就能够解离这些分子。多环芳香烃化合物及其衍生物可能在复杂有机化合物的演化过程中发挥重要作用,大型的多环芳香烃化合物分子或团簇以及非常小的尘埃颗粒可以有效地保护这些气相有机分子,避免其被紫外光解离破坏掉。中国科大供图 研究团队利用自主搭建的实验仪器平台研究有机分子-多环芳香烃团簇在离子-分子碰撞反应过程中的稳定性和堆积形成的途径:大质量的多环芳香烃阳离子和有机分子作为反应物的形成和演化途径,对多环芳香烃有机分子团簇的形成过程进行了一系列的理论计算。 实验及理论研究表明,复杂的有机分子或其他相关生命前分子可以有效地吸附在星际介质中的小尘埃颗粒上。根据实验及理论计算结果,有大量反应途径会产生非常复杂的具有三维结构的大质量的分子团簇。这些分子团簇为星际介质中自下而上中的大型复杂生命前分子提供了可能的形成和化学进化途径,表明气相星际物质在自下而上的生长过程中可以直接形成大型复杂的有机衍生物。这种有趣生命前分子团簇的产生,为有机物分子在星际空间中的演化过程提供了更深入的理解。 研究结果还表明,有机分子可以积聚在星际介质中的小尘埃颗粒上,同时这一积聚过程也支持了生命前分子可以通过彗星、陨石或星际尘埃颗粒输送到地球这一观点。
  • 科普:他们揭示了“复杂物理系统”背后的奥秘——2021年诺贝尔物理学奖成果解读
    物理学世界存在着很多“复杂系统”,大到多变的天气,小到金属中的原子运动… … 它们混乱随机,令人难以揣摩。而2021年诺贝尔物理学奖就授予了三名科学家,以表彰他们对“理解复杂物理系统做出的开创性贡献”。  对人类至关重要的一个复杂系统正是我们的地球气候。日裔美籍科学家真锅淑郎和德国科学家克劳斯哈塞尔曼的工作为人类对气候的认知打下了坚实的科学基础。  如今,二氧化碳等温室气体是导致地球大气升温的“罪魁祸首”这一认知已经为大众所熟知,但正是真锅淑郎论证了大气中二氧化碳浓度增加如何导致地球表面温度的升高。20世纪60年代,他领导了地球气候物理模型的开发,是第一个探索辐射平衡和气团垂直输送之间相互作用的人,他的工作为建立气候模型奠定了基础。  当代气候模型是基于物理法则,并从天气预测模型演变而来。天气由温度、降水、风或云等气象指标描述,并受海洋和陆地事件影响,气候模型是基于天气计算的统计属性,如平均值、标准偏差、最高和最低测量值等。比如,气候模型无法明确告诉我们明年12月北京的天气情况,却能告诉我们那个月北京的平均气温和降雨量。  气候模型不仅有助于理解气候,也有助于理解人类造成的全球变暖。为了解二氧化碳水平增加如何导致气温升高,真锅淑郎把空气团因对流而产生的垂直输送以及水蒸气的潜热纳入其中。为方便计算,他构建了一个一维模型,深入到大气层中40公里,并通过改变大气中气体的浓度来测试模型。他发现,氧和氮对地表温度影响可忽略不计,而二氧化碳的影响则很明显:当二氧化碳水平翻倍,全球温度上升超过2摄氏度。  天气是混乱多变系统的经典例子,为何气候模型依然可靠呢?在真锅淑郎的研究约10年后,克劳斯哈塞尔曼创建了一个将天气和气候相关联的模型,回答了这一问题。  哈塞尔曼将混乱变化的天气现象作为快速变化的噪音纳入计算,并证明这种噪音如何影响气候,从而为长期气候预报奠定了坚实科学基础。受爱因斯坦有关布朗运动的理论启发,他创建了一个随机气候模型,证明了快速变化的大气实际上会导致海洋缓慢变化。  哈塞尔曼还开发出可识别人类对气候系统影响的方法。他发现,气候模型以及观测和理论考量,均包含了有关噪音和信号特性的充分信息。例如,太阳辐射、火山有关颗粒或温室气体水平的变化会留下独特的信号和印记,可被分离出来。这种印记识别方法也可应用于研究人类对气候系统的影响,为进一步研究气候变化扫清障碍。  与真锅淑郎和哈塞尔曼相比,意大利科学家乔治帕里西的研究更聚焦于微观尺度。1980年左右,他发现了明显的随机现象如何受隐秘法则的支配,奠定了复杂系统理论的基石。  帕里西的研究与一个有趣的概念密切相关——“自旋玻璃”。这可不是一种玻璃,而是指磁性合金材料的一种亚稳定状态。“自旋玻璃”是一种超复杂和混乱的系统,如果我们观察一种“自旋玻璃”合金材料中的原子运动,就会发现当中的铁原子和铜原子随机混合。材料中占比很少的铁原子以一种令人迷惑的方式改变了整个材料的磁性,每个铁原子都相当于一个小磁铁,即一个“自旋”,同时受到身边其他铁原子影响。在普通磁铁中,所有“自旋”都指向同一个方向,而在“自旋玻璃”中,它们会“受挫”,有些“自旋”试图指向同一个方向,而另一些则完全指向相反的方向。  “研究‘自旋玻璃’就好像观看莎士比亚所写的人类悲剧,”帕里西说,“如果你想和两个人同时交朋友,但他们彼此厌恶,这就令人受挫。”  “自旋玻璃”为研究复杂系统提供了物理模型。1979年,帕里西取得突破性进展,成功利用一种名为“副本戏法”的数学工具描绘 “自旋玻璃”问题。这一方法后来也被用于很多复杂系统研究。  帕里西的开创性发现使理解和描述许多不同的、显然完全随机的复杂材料和现象成为可能,不仅对物理学影响深远,也给数学、生物学、神经科学和机器学习等领域的研究带来启示。
  • Nature长文回顾:mRNA疫苗不为人知的复杂历史
    1987年底,Robert Malone做了一个载入史册的实验。他用信使RNA(messenger RNA,mRNA)链和脂滴做了一道 “分子乱炖”,这道基因乱炖里的人体细胞吸收了mRNA,并开始用其合成蛋白 [1]。 Malone当时是美国加州索尔克生物研究所的研究生,他知道眼前的这一切会对医学产生深远影响,于是做了些笔记,并签上了名字和日期。他在1988年1月11日的笔记上写道,如果细胞能用被递送到其内部的mRNA合成蛋白,“RNA就能成为一种药物”。索尔克实验室的另一名成员也在笔记上签了名,以备后用。那年的年末,Malone用实验证明了青蛙胚胎也能吸收这些mRNA [2]。这是第一次有人用脂滴帮助mRNA顺利进入一种活生物。 在这些实验的基础上,诞生了历史上最重要也最赚钱的疫苗:已在全世界接种数亿剂的新冠mRNA疫苗。仅2021年一年,其全球销量就能达到500亿美元。辉瑞和BioNTech开发的新冠疫苗所使用的RNA序列(Ψ是尿苷U经过修饰后的形式)| 图源:Nik Spencer/Nature 当然,成功的道路并非一帆风顺。Malone的实验离不开前人的工作,而在Malone实验之后的很多年里,mRNA被认为作为药物或疫苗都太不稳定,而且太贵。数十家研究实验室和公司尝试了这个想法,但都无法找到脂质与核酸的完美配比——核酸是mRNA疫苗的基本成分。 今天,mRNA疫苗使用的很多新技术都是在Malone研究时期的多年后发明出来的,包括经过化学修饰的RNA和帮助这些RNA进入细胞的不同脂滴类型。不过,自诩 “mRNA疫苗发明者”的Malone依然认为自己的贡献被忽略了。他对《自然》表示,“历史把我遗忘了。”图源:Nik Spencer/Nature;改编自M. D. Buschmann et al. Vaccines9, 65 (2021) 随着各大奖项的陆续揭晓,谁对这项技术具有奠基性贡献的争论变得沸沸扬扬——在下个月(即将到来的10月的第一周)诺贝尔奖公布前夕显得尤为激烈。不过,一向只颁给少数几位科学家的权威奖项难免会漏掉mRNA医学发展史上的诸多贡献者。其实,mRNA疫苗的成功离不开数百位研究人员在30多年里的辛勤付出。 这也反映出科学发现是如何一步步成为改变人类生活的重大突破:几十年看不到曙光、各种拒绝、对潜在利益的你争我夺;当然也有源源不断的好奇心和面对质疑初心不改的豪情。 “这是很长的一串脚印。你永远不知道哪些东西将来会大派用场。” 美国亚利桑那州大学发育生物学家Paul Krieg说。Krieg在80年代中期也做出了自己的贡献。 mRNA的缘起 Malone的实验想法绝非凭空而来。早在1978年,就有科学家用名为脂质体的脂质膜结构将mRNA转运到小鼠 [3] 和人类 [4] 细胞内诱导蛋白质表达。这种脂质体能包裹并保护mRNA,之后与细胞膜融合,将这种遗传物质送入细胞。这些实验建立在对脂质体和mRNA的多年研究之上;脂质体和mRNA都是在60年代发现的(见下图)。图源:Nik Spencer/Nature;改编自U. Şahin et al. Nature Rev. Drug Discov. 13, 759–780 (2014)和X. Hou et al. Nature Rev. Mater. https://doi.org/gmjsn5 (2021). 但在当时,研究人员还没有把mRNA当作医疗产品看待,尤其是在实验室合成这种遗传物质的方式还没出现的情况下。他们其实希望用mRNA来研究基础的分子过程。大部分研究人员只能想办法使用来自兔子血细胞、培养的小鼠细胞或一些其他动物来源的mRNA。 事情在1984年出现了转机。当时,Krieg和哈佛大学发育生物学家 Douglas Melton 以及分子生物学家 Tom Maniatis 和 Michael Green 领导的一个团队合作,他们利用一种RNA合成酶(取自一种病毒)和其他工具在实验室得到了具有生物活性的mRNA [5]——这项技术的核心沿用至今。之后,Krieg将实验室合成的mRNA注射到青蛙卵子中,证明它和自身构建的mRNA没两样 [6]。 Melton和Krieg说,他们主要把合成mRNA当作研究基因功能和活性的工具。1987年,就在Melton发现这种合成mRNA能激活或抑制蛋白产生之后,他参与创立了一家名为Oligogen的公司 [后更名为吉利德科学公司(Gilead Sciences),总部在加州福斯特城],专门研究合成RNA抑制目标基因表达的方法,寻找治病的可能。但在他的实验室或合作者中,没有人想到疫苗。Paul Krieg(左)和Douglas Melton(右)研究在实验室合成mRNA的方法 | 图源:University of Arizona Kevin Wolf/AP Images for HHMI “众所周知,RNA极不稳定,” Krieg说,“关于RNA的一切都要非常小心。” 这或许解释了哈佛大学的技术研发部为何不给该团队的RNA合成技术申报专利。于是,该团队只能把他们的试剂让给威斯康星州麦迪逊的一家实验用品公司 Promega Corporation,这家公司专为研究人员提供RNA合成工具。作为回报,团队得到了一笔不多不少的专利使用费和一箱凯歌香槟。 专利之争 多年后,Malone在自己的实验中使用了哈佛团队合成mRNA的方法。但他添加了一种新的脂质体,这种脂质体带一个正电荷,能增强它与mRNA带负电的骨架的结合。这种脂质体由生物化学家 Philip Felgner 开发,他现在是加州大学欧文分校疫苗研发中心的主任。Philip Felgner(左)和Robert Malone(右)| 图源:Steve Zylius/UCI Robert Malone 虽然Malone成功用这种脂质体将mRNA送入了人体细胞和青蛙胚胎,但他从来没有拿到过博士学位。1989年,Malone因为和索尔克研究所的导师、基因疗法研究员 Inder Verma 不咬弦,提前结束了研究生学习,来到加州的初创公司Vical替Felgner工作。在那里,他们与威斯康星大学麦迪逊分校的合作者证明了这种脂质-mRNA复合物可以促进小鼠体内的蛋白产生 [7]。摘自Robert Malone的实验记录簿,上面记录了他们1989年合成mRNA并给小鼠注射的实验 | 图源:Robert Malone 事情从这里开始变得复杂了。Vical公司(联合威斯康星大学)和索尔克研究所都在1989年3月开始提交专利申请。但索尔克研究所很快放弃了申请,Verma则在1990年加入了Vical公司的顾问委员会。 Malone称他的前导师Verma和Vical公司达成了一桩幕后交易,使得相关知识产权最后归Vical所有。Malone等人被列为发明人,但他本人不能从之后的许可协议中获利,而他本来可以从索尔克授权的专利中获利。Malone的结论是:“他们利用我的想法发了财。” Verma和Felgner断然否认了Malone的指控。“这简直就是无稽之谈。” Verma告诉《自然》,撤回专利申请是索尔克研究所技术转移处的决定。(由于被指控性骚扰,Verma在2018年从索尔克辞职,但他至今仍否认这些指控。) Malone在1989年8月离开了Vical公司,理由是他与Felgner在 “科学判断上” 以及在 “对他本人的知识产权贡献上” 存在分歧。他从医学院毕业后接受了一年的临床培训,后来进入了学术界,打算继续研究mRNA疫苗,但一直拿不到经费。(1996年,他向加州的一个州立研究机构申请研究经费,用于研究预防季节性冠状病毒感染的mRNA疫苗,但申请失败。)Malone只能转而研究DNA疫苗和递送技术。 2001年,他转型从事商务和咨询工作。过去几个月里,他开始公开质疑以他早前研究为基础的mRNA疫苗的安全性。Malone说,疫苗产生的蛋白会损害人体细胞,而且疫苗的风险超过它对儿童和年轻人的益处——这种观点受到其他科学家和卫生专家的一再反驳。 生产难点 1991年,Vical 公司与大型疫苗生产商美国默克集团(Merck)达成了一项数百万美元的研究合作和许可协议。默克集团的科研人员用小鼠测试了这一mRNA技术,试图发明一款流感疫苗,但后来又放弃了。“生产成本和可行性迫使我们喊停。” 前默克研究人员、如今为各大公司提供疫苗研发咨询的 Jeffery Ulmer 说。 法国斯特拉斯堡有一家小型生物技术公司,名为Transgène,那里的研究人员也有同样的感受。1993年,Pierre Meulien 在该公司领导的一个团队与产业界和学术界合作,首次证明了包在脂质体中的mRNA能在小鼠体内诱导出一种特异性的抗病毒免疫应答 [8]。[另一个激动人心的进展出现在1992年,当时美国斯克里普斯研究所(Scripps Research Institute)的科学家用mRNA技术取代了大鼠体内缺少的一种蛋白,用来治疗代谢疾病[9]。但独立实验室又花了20年的时间才取得了类似的成功。]Pierre Meulien | 图源:IMI Joint Undertaking Transgène公司的研究人员为他们的发明申请了专利,并继续研究mRNA疫苗。Meulien当时估计他至少需要1亿欧元(约1.19亿美元)来优化整个平台,但他说自己没打算为这个 “高风险” 的项目向他的老板要这么多钱。Meulien现在已经是 Innovative Medicines Initiative 的主管,这是一家位于布鲁塞尔的公私合营企业。由于Transgène的母公司决定不再续费,这个专利便失效了。 Meulien的团队和默克的团队一样,后来都去研究DNA疫苗和其他基于载体的递送系统了。DNA疫苗平台最终获得了一些兽医上的应用许可,比如用来预防养鱼场出现感染。就在上个月,印度的监管当局批准了全球首个供人类使用的新冠DNA疫苗(参见:印度将推出全球首个新冠DNA疫苗)。但是,DNA疫苗在人体上的进展一直很慢,个中原因迄今仍未得到完全理解。 Ulmer认为,产业界在DNA技术上的发力也带动了RNA疫苗的进展,无论是生产和监管环节,还是序列设计和分子机制,“我们从DNA上学到的很多东西都可以直接用于RNA,” 他说,“这为RNA的成功奠定了基础。” 持续挣扎 从1990年代到2000年代的大部分时期里,几乎每个想做mRNA的疫苗公司都把目光投向了别处。传统观点总是觉得mRNA太容易降解,生产成本太高。瑞典卡罗林斯卡医学院病毒学家 Peter Liljeström 说:“这是一场持续的挣扎。” Liljeström在30年前开创了一种“自扩增”的RNA疫苗。 Matt Winkler说:“RNA用起来实在太难了。” Winkler于1989年在美国成立了最早专注于RNA的实验用品公司之一Ambion。“如果你当时问我是不是可以把RNA作为疫苗打到人体内,我肯定会当着你的面大笑。” mRNA疫苗的概念在肿瘤界倒是颇受欢迎,但研究人员主要想用它来治疗疾病,而不是预防疾病。从基因治疗师 David Curiel 的工作开始,许多学术人员和初创公司都在研究mRNA是否能用来对付癌症。这里的思路是:如果mRNA能编码癌细胞表达的蛋白,那么把mRNA注射到体内就可以训练免疫系统去攻击这些细胞。 目前就职于华盛顿大学医学院的Curiel在小鼠上成功了几次 [10]。但是当他向Ambion公司阐述其中的商业机遇时,公司告诉他:“我们看不到这个技术的任何经济潜力。” 相比之下,另一位癌症免疫学家取得了更多成功——1997年,全球第一家mRNA治疗公司由此诞生。Eli Gilboa 的建议是从血液中获得免疫细胞,“唆使” 它们吸收编码肿瘤蛋白的合成mRNA,再将这些细胞注射到体内,调动免疫系统攻击潜伏的肿瘤。 Gilboa和他在美国杜克大学医学院的同事在小鼠中演示了以上过程 [11]。到90年代末,学术合作者已经启动了人体试验,Gilboa的商业衍生公司 Merix Bioscience(后更名为Argos Therapeutics,现名为CoImmune)很快开展了自己的临床研究。整个技术看上去很有前景,但几年后,一个已经进入后期的候选疫苗在一次大规模试验中失败了,这类技术现在几乎已经很少有人关注。 虽然如此,Gilboa的工作还是产生了很重要的影响——这些工作让CureVac和BioNTech的创始人决定投身mRNA的研究——这两家德国公司现在已是全球领先的mRNA企业。CureVac的 Ingmar Hoerr 和BioNTech的Uğur Şahin告诉《自然》,在了解到Gilboa的工作后,他们也想做此尝试,但是是通过把mRNA直接注射到体内的方式。Ingmar Hoerr(左)创立了CureVac公司,癌症免疫学家Eli Gilboa(右)成立了第一家mRNA治疗公司 | 图源:Sebastian Gollnow/dpa/Alamy Eli Gilboa “出现了雪球效应。” 目前在迈阿密大学米勒医学院任职的Gilboa说。 创业加速器 Hoerr是第一个取得成功的。2000年,还在德国图宾根大学的他报道了直接注射也许能诱导小鼠体内的免疫应答 [12]。他在那年创立了CureVac(也位于图宾根),但感兴趣的研究人员或投资人很少。Hoerr在一场学术会议上报告了一些早期小鼠数据,他说,“当时第一排的一位诺贝尔奖得主站起来说,‘你这些都是胡说八道,全是胡扯’。”(Hoerr拒绝透露这位诺贝尔奖得主是谁。) 但慢慢地,资金开始源源不断地涌入,不到几年就开始了人体实验。该公司当时的首席科学官 Steve Pascolo 成了第一个实验对象:他给自己注射 [13] 了mRNA,现在腿部还有一个火柴头大小的白色伤疤,这是当时皮肤科医生为了做多点活检留下的。之后没多久,公司就启动了使用皮肤癌患者的肿瘤特异性mRNA的正规试验。 Şahin和他的免疫学家妻子 Özlem Türeci 也是在90年代末开始研究mRNA的,但成立公司的时间要比Hoerr晚。他们俩人在德国美因茨约翰内斯古滕贝格大学研究这项技术很多年,期间专利、论文、经费全部到位,并在2007年向一位亿万富翁投资人提交了一份商业计划书。Şahin 说:“如果能成功,将具有开拓意义。” 后来,他拿到了1.5亿欧元的创业资金。Özlem Türeci(左)和Uğur Şahin(右)联合创立了mRNA疫苗公司BioNTech | 图源:BioNTech SE 2021 同年,刚刚成立的mRNA公司RNARx得到了美国政府向小企业发放的一笔相对微薄的款项:97396美元。公司的两位创始人——生物化学家 Katalin Karikó 和免疫学家 Drew Weissman 当时都供职于美国宾夕法尼亚大学(简称宾大),他们做出了现在一些人认为非常关键的发现:改变mRNA的部分密码子能帮助合成mRNA躲过细胞的固有免疫防御。 22. Geall, A. J. et al. Proc. Natl Acad. Sci. USA 109, 14604–14609 (2012)
  • 防爆PH,让危险复杂工况监测更安全可靠!
    pH防爆PH让危险复杂工况监测更安全、更可靠需求现状针对复杂恶劣的工业过程监测,不少用户在选型时面临着防爆资格取证的困扰,放眼国内仪器仪表市场,拥有PH防爆资质取证的厂家也屈指可数。在我们接到的询价沟通中,不少客户在PH监测的需求上首要强调一点:你们有防爆资质吗?东润的PH计产品已取得防爆资质。资质证书的取得是一个准入门槛,是对客户提供专业服务的权威保障。东润更以20多年在仪器仪表行业的深耕承诺,拥有自主研发知识产权的东润,在拥有资质取证的准入基础上,针对复杂恶劣特殊工况,我们将用专注、专业、贴心的服务为您提供一站式、定制化解决方案!来看看我们的明星推荐产品吧,防爆PH闪亮全场… … 型号:PHD-99S品名:东润智能型防爆PH变送器亮点:防爆防爆证号:CE18.1239照片:防爆“证件照”产品概述PHD-99S型变送器是一款智能型工业在线检测仪表,隔爆结构设计,功能先进、性价比高,可适用于污水处理、废水监测、净水检测、酸碱中和以及化工反应等多种工业过程中pH/ORP值的监测与控制。仪表特点◎智能化仪表,通过两个按键标定及参数设置,查看电极的性能参数,操作简单方便;◎蓝色背光LCD,同时显示pH(mV)、温度、输出百分比;◎24VDC两线制,输出4-20mA对应量程可任意设置;◎手动/自动温度补偿,PT100/PT1000温度传感器可现场通过设置切换;◎标校及参数调整,通过按键操作;隔爆场合可使用磁棒在壳体外部进行,更安全可靠; 技术参数测量范围:pH: 0~14pH 仪器分辨率:0.01pH测量精度:±0.1pH仪器稳定度:±0.05pH/48小时温度补偿范围:-10~100℃模拟输出:1路4~20mA,回路负载500Ω环境温度:-10~55℃环境湿度:5%~90%,无冷凝防护等级:IP65供电:24VDC防爆等级:隔爆型 ExdIICT6Gb一站式服务电极+电缆+护套,在东润这些您可一站式购齐!东润自有机加工车间,可生产加工各种通用护套,同时也可根据客户现场工况的不同进行定制加工。欢迎垂询。
  • 【安捷伦】简化复杂分离 分析快人一步,二维液相最全应用文集免费获取!
    Agilent InfinityLab 二维液相色谱解决方案二维液相色谱是传统液相色谱技术的重要补充。Agilent InfinityLab 二维液相色谱解决方案确保您能够自动进行多步分离、离线分析和样品前处理,帮助您在面对最具挑战性的分析物和复杂样品做出明智决策,分析快人一步,让您可以得到需要的结果。将分离能力与应用需求相匹配InfinityLab 二维液相色谱的通用性可帮助您应对各种各样的应用。在单次运行中,您可以利用最大化的分离能力得到整个样品的完整信息,或切割出指定部分进行进一步分离。InfinityLab 二维液相色谱应用简报集 - 内容提要制药与生物制药寡核苷酸检测无需手动纯化直接分析合成的寡核苷酸——使用 Agilent InfinityLab 二维液相色谱解决方案进行在线脱盐和离子对反相液相色谱分析。传统方法痛点:由亚磷酰胺化学法合成的寡核苷酸通常使用阴离子交换色谱进行纯化,再进行 IP-RPLC 分析,阴离子交换纯化馏分的高含盐量会削弱寡核苷酸参与离子配对的能力。需要在 IP-RPLC 分析之前对样品进行脱盐,这一步骤通常使用离心过滤器手动完成。二维液相优势:在第一维(1D) 中进行在线脱盐,随后在第二维 (2D) 中进行 IP-RPLC 分析,提高了工作流程速度,避免了手动的样品前处理。多肽胰高血糖素使用 2D-LC 作为 MSD 分析的自动脱盐工具——由 MS 不兼容的 USP 方法直接进行药物多肽的质量选择检测。传统方法痛点:治疗性多肽和蛋白质的表征及杂质分析需要联合使用色谱分离和质量选择检测。然而,多肽和蛋白质的色谱分离方法通常使用 MS 不兼容的流动相。二维液相优势:多中心切割 (MHC) 二维液相色谱 (2D-LC) 作为质量选择检测的自动脱盐工具。在第一维中,使用 MS 不兼容的流动相根据 USP 39 分析多肽胰高血糖素,然后在第二维中进行自动脱盐和质量选择检测。脱酰胺胰岛素、氯二氟苯甲酸用于药物杂质分析的高分辨率采样二维液相色谱——隐藏在 API 峰下的相对浓度杂质的检测。传统方法痛点:分析与活性药物成分 (API) 有关的低浓度杂质对原料药的质量控制来说至关重要。当杂质与 API 的化学结构相似且浓度差异较大时,色谱分离与检测将变得困难。二维液相优势:高分辨率采样二维液相色谱实现两种紧邻洗脱的化合物的分离和定量。N,N-二乙基间甲苯酰胺 (DEET)多中心切割二维液相色谱在杂质分析方法开发中的应用传统方法痛点:在药物和精细化学品的开发和生产过程中,杂质分析非常重要。杂质通常与主要化合物结构相似,且相互间结构也相似。使用具有给定选择性的系统(色谱柱-溶剂组合)可能无法实现分离。二维液相优势:能发现可能存在的共洗脱化合物。此外通过向样品添加疑似杂质还可确证对杂质的鉴别。食品安全啤酒使用全二维液相色谱对不同类型的啤酒进行指纹图谱分析传统方法痛点:啤酒是一种成分非常复杂,常规一维液相峰容量有限,对复杂体系的分离能力有限。二维液相优势:对不同类型的啤酒进行全二维液相色谱分析。通过与标准物质进行对比分析及质谱检测,鉴定出啤酒中的苦味化合物。非靶向多样品分析(指纹图谱分析)能够对所分析的不同啤酒类型进行分类。轻松应用二维液相色谱完整的强大功能 安捷伦二维液相色谱解决方案使您能够执行任何分离模式:中心切割二维液相色谱、多中心切割二维液相色谱、全二维液相色谱和安捷伦独特的高分辨率采样二维液相色谱。从完整的全程解决方案中获益,解决方案结合了:- 强大的液相色谱仪器以获得可重现的结果- 直观的软件以实现简单的方法设置和便捷的数据分析- 完美匹配的色谱柱以达到最高的正交性和分离度- 应用和专业培训以获得最大二维液相色谱效率获取安捷伦二维液相色谱解决方案。扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • Pμ SL 3D打印技术在三维复杂组织支架中的应用
    3D打印技术近年来被广泛应用于组织工程应用中,利用这一技术可以稳定可靠加工特定尺寸的复杂三维支架,以有效构筑三维生物模拟环境用以相关生命科学研究。本文以类巴基球这一新型支架结构为例,展示面投影微立体光刻3D打印技术如何快速大面积制作三维精细复杂组织支架。 细胞在三维生理环境中的形貌和分化与其在二维组织培养环境中有很大的差别,近年来研究者们对三维结构系统中的细胞生理行为进行了广泛研究。然而,这些三维组织系统在化学组分、力学特性和形状等方面相比二维系统都复杂的多。如何稳定可靠加工出高质量的三维聚合物支架用于后续系统研究细胞的相关行为,仍是首要亟待解决的难题。3D打印凭借其任意复杂三维加工的优势,已被广泛应用于加工各类型组织支架。(如图1所示)图1 使用3D打印技术制作的各类型三维组织支架相比于其他3D打印技术,面投影微立体光刻(PμSL)3D打印技术具有打印精度高、打印速度快、大幅面跨尺度加工、材料适应范围广(聚合物、生物陶瓷等材料)等诸多优点,可适应多种支架结构的打印制作。如图1c所示,利用PμSL 3D打印技术加工的人工轴突支架,可用于直接观察和定量髓鞘形成过程,以及髓鞘化细胞对物理因素和药剂的反应。图1f所示的青蛙骨头支架,被用作生长因子传递的载体工具,最终实现了骨骼缺损中软骨到骨骼的再生。然而,对于一些新型的精细支架结构,由于其结构复杂程度高、特征尺寸小、以及大幅面小批量制作的需求,普通精度的面投影微立体光刻技术3D打印技术仍然难以满足其制作要求。如图2所示的镂空类巴基球结构组织支架(巴基球结构即C60的分子结构,此处讨论的结构由该结构衍变而来),单个支架整体尺寸为200 μm直径,其中的杆径为14 μm,表面开孔边长为25 μm。对于普通精度光固化3D打印技术,由于其设备光学分辨率通常大于50 μm,完全无法打印出14μm的特征细节。图2 类巴基球结构组织支架深圳摩方材料科技有限公司利用其开发的2 μm光学精度设备nanoArch® S130设备,成功实现了对这一新型支架结构的加工制作。对于结构中的十几微米杆径,用2 μm的高分辨像素点可轻易加工完成。另一方面,这一结构为高密度结构,即结构表面开孔只有二十几微米,特别是在Z方向上。这对于基于层层堆叠的3D打印技术同样是个巨大的挑战,即层与层之间既要保持良好的粘接性以实现稳定的支架结构,又要控制其每层固化厚度在合理的数值范围以保持所需的开孔尺寸。摩方材料通过调节打印材料固化深度、打印层厚及切片图片,有效地平衡了材料固化厚度和极小开孔尺寸之间的关系,最终制作出高质量的类巴基球结构组织支架,如图3所示。图 3 摩方材料nanoArch® S130打印的类巴基球组织支架结构本文以类巴基球结构组织支架为例,展示了面投影微立体光刻3D打印技术在三维组织支架方面的加工优势,为三维结构系统中的细胞生理行为的研究提供了良好的样件平台,可有效促进相关组织工程、再生医药等应用领域的发展。对于类巴基球这一新型3D组织支架的生物应用研究,本公众号将在后续进行详细报道。官网:https://www.bmftec.cn/links/10
  • 智能所将SERS技术用于复杂环境中肾上腺素的选择性检测
    p   近日,智能所杨良保研究员等利用表面共振增强拉曼光谱(SERRS)技术并结合界面组装的方法,实现了对复杂环境中肾上腺素的选择性检测。相关成果已发表在美国化学会旗下的ACS applied materials & amp interfaces (2017, 9, 7772-7779)杂志上。 /p p   近年来,表面增强拉曼光谱(SERS)技术由于可以进行无损、高灵敏的指纹识别检测而一直备受关注,已经广泛应用于各大基础研究领域。然而真实样品往往存在于复杂环境中,目前SERS技术应用于复杂环境中目标分子的检测面临多个难题,如目标分子快速分离和富集,背景信号的干扰、SERS基底均一性的控制等。 /p p   针对以上难题,研究人员将SERRS技术与界面组装相结合用于复杂环境中目标分子的检测。对于一些弱SERS活性的目标分子,通过设计拉曼探针与目标分子结合,使得入射光能量与目标分子中电子能量发生共振耦合,目标分子的拉曼散射光谱的强度将得到进一步增强。因此,SERRS能够实现复杂体系中特定分子的识别,适用于实际样品复杂条件下的选择性检测。然而直接对复杂体系检测,往往存在背景信号干扰和信号重复性差等问题。研究人员通过界面组装的方法,使得复杂体系中的目标分子被贵金属纳米材料表面的拉曼探针捕获后,快速分离并在界面富集,将在界面成膜的贵金属纳米材料用硅片转移,有助于进一步降低背景信号带来的干扰。值得强调的是,贵金属纳米材料倾向于形成规整排列的单层结构,有助于提高SERS基底的均一性,从而进一步改善复杂环境中SERS信号的重复性。该研究为各种复杂体系中的目标分子检测提供了一个新的途径。 /p p   该研究工作得到了国家自然科学面上基金(21571180),国家自然科学青年基金(21505138),中国博士后特别资助基金(2016T90590)及中国博士后基金(2015M571950)等项目的支持。 /p p   文章链接: a href=" http://pubs.acs.org/doi/abs/10.1021/acsami.6b15205" http://pubs.acs.org/doi/abs/10.1021/acsami.6b15205 /a /p p    p style=" TEXT-ALIGN: center" img title=" W020170504391376259648.jpg" src=" http://img1.17img.cn/17img/images/201705/noimg/85491f21-d8b4-4dd4-b820-73f6585db53e.jpg" / & nbsp /p p style=" TEXT-ALIGN: center" strong 复杂环境中肾上腺素选择性检测示意图 /strong /p p /p p /p p /p /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制