当前位置: 仪器信息网 > 行业主题 > >

复合矿物

仪器信息网复合矿物专题为您整合复合矿物相关的最新文章,在复合矿物专题,您不仅可以免费浏览复合矿物的资讯, 同时您还可以浏览复合矿物的相关资料、解决方案,参与社区复合矿物话题讨论。

复合矿物相关的论坛

  • 【讨论】喝矿物质水补充矿物元素?不可能!?

    喝矿物质水补充矿物元素?不可能!?《喝矿物质水未必更健康》追踪———  矿物质水由于其标准缺失,各生产厂家添加的矿物元素和添加量不统一而受到消费者及专家的质疑。本报也于7月11日在第2版以《喝矿物质水未必更健康》为题作了报道。不少消费者还致电本报热线对此展开了讨论,何先生就提出,在矿物质水没有统一标准的情况下,其质量是否稳定,它适合哪些人群食用呢?记者走访了四川大学公共卫生学院营养与食品卫生教研室副主任、博士李云。  “对矿物质水,我不是太主张。”李云开门见山地说。矿物质水主要是模拟矿泉水的构成,在水源中添加一定量的矿物质元素,使其发生反应,以达到水中含矿物质的效果。“矿物质水所使用的水源没有任何标识,加之所添加的矿物元素和添加多少没有统一标准,其质量可能不够稳定。”  矿物质水适合所有人群饮用吗?“只要是符合国家饮用水标准的产品,消费者都可以饮用。但严格说来,矿物质水每一瓶所添加的元素和含量都是一样的,而每消费者对矿物元素的需求量却不相同。”李云分析指出,比如有的人的体内所含钾元素已经达到饱和,如果喝的矿物质水中还添加了不少的钾元素,这就可能会对他的健康造成一定影响。  “总体而言,人体所必需的大部分矿物元素主要来自于粮食、水果等。也就是说,通过合理的膳食调整,是完全可以满足人体每天的矿物元素的需求的。”李云说。矿物质水通常情况只是起到补充水分的作用,它并不是补充矿物元素的主要途径。想以喝矿物质水来补充矿物元素,“这种作用可以忽略。”

  • 矿物中Hg的原子荧光分析

    矿物中Hg的原子荧光分析,主要是样品前处理,而前处理又要特别注意空白污染,样品处理要注意温度,太高太低都不是很好,我们目前是用125度,75%的王水,回收率在95~105%,完全符合地质探矿要求,不知道高手们是怎么处理的呢?可否分享?

  • 矿物类的物相分析

    我们单位想要做一些矿物类的物相分析有做过的朋友么?我想请教几个问题1,做矿物的XRD分析对衍射仪有什么特殊要求么?2,样品需要进行什么处理么,有特殊要求么?3,在谱图分析时有什么特别注意的或特殊处理的么?(之前做过几个矿物类的样品,但分析的结果都不太好,离所需的分析结果差距甚大)谢谢了先

  • 食品违规添加乳矿物盐和菊粉,这两种如何检测?

    食品违规添加乳矿物盐和菊粉,致2岁幼儿出现不适,乳矿物盐:以乳清为原料,经去除蛋白质、乳糖等成分牛奶碱性蛋白而制成的利于人体吸收的营养补充剂,但婴幼儿食品中禁止添加。乳钙、复合维生素等均属于乳矿物盐。菊粉:主要见于菊科植物,例如,菊芋的块茎、大理菊的块根、蓟的根。是以胶体形态含于细胞的原生质中。不知道这两种怎么检测,有相关标准和检验方法不???

  • 【我们不一YOUNG】矿物质

    [align=center][font=DengXian]矿物质[/font][/align][font=DengXian]矿物质([/font]Minerals[font=DengXian])是指食品中各种无机化合物,大多数相当于食品灰化后剩余的成分,故又称粗灰分([/font]Crudeash[font=DengXian],[/font]CA[font=DengXian])。矿物质在食品中的含量较少,但具有重要的营养生理功能,有些对人体具有一定的毒性。研究食品中的矿物质目的在于提供建立合理膳食结构的依据,保证适量有益矿物质,减少有毒矿物质,维持生命体系处于最佳平衡状态。[/font][font=DengXian]食品中矿物质含量的变化主要取决于环境因素。植物可以从土壤中获得矿物质并贮存于根、茎和叶中;动物通过摄食饲料而获得。[/font] [font=DengXian]食物中的矿物质可以离子状态、可溶性盐和不溶性盐的形式存在;有些矿物质在食品中以螯合物或复合物的形式存在。[/font]

  • 【讨论】矿物的d值是不是确定的

    请教:矿物的d值是不是确定的几个值,比如已知一个d值,能都判断这个是属于什么矿物的?还是说矿物的d值是不定的,在一个范围内都可以。谢谢。

  • 【求助】有哪位朋友有矿物分析资料

    1.矿山矿物的取样方法.2.矿物的样品制备3.矿物中各种元素的检测方法.4.X-荧光光谱的使用.各位朋友不好意思,我原来是土壤分析和农产品农药残留检测,现在想去国外的矿山工作,有哪位朋友有上面各种资料请提供一些.谢谢了!

  • 在线全二维矿物油分析系统

    [align=center][b]包装材料和食物中矿物油的检测方法[/b][/align]矿物油是石油原油经过物理分离(蒸馏,萃取),化学转化(加氢反应,裂解,烷基化和异构化)过程形成的烃类化合物,包括由直链,支链及环状饱和烃矿物油(MOSH)以及聚芳烃化合物组成的的芳香烃矿物油(MOAH)两大类[sup][/sup]。食物中矿物油问题由来已久,严重损害人们的身体健康和造成大量的经济损失。1981年世界最大的食品中毒案就是因误食被矿物油污染的菜籽油引起的。1999年8月,广州肇庆发生一起参杂液体石蜡的食用油,引发集体食物中毒事件,中毒人数多达700人;2008年,震惊国际的乌克兰10万吨葵花籽油被不明来源的矿物油污染事件,导致乌克兰葵花籽油被禁止出口欧盟国家。前几年,我国出现的“毒大米”和“毒瓜子”事件都是由于抛光引起的矿物油污染事件。2017年3月,海天,老干妈等矿物油超标事件,引发了国内对矿物油危害的关注[sup][/sup]。[b]1 食品中矿物油的来源[/b]食品中矿物油污染主要有三种方式。第一,食品接触材料中矿物油的迁移[sup][/sup]。食品接触材料导致的食品中矿物油污染情况最为严重,而接触材料中矿物油的来源主要是回收纸或再生包装中残留的胶印油墨的连接料,脱模剂,塑料包装中的润滑剂,蜡纸,麻袋包装中的粘合剂等。第二,食品加工过程中使用矿物油作为加工助剂。如我国GB2760-2011中规定矿物油和白油可作为加工助剂(润滑剂,消泡剂,脱模剂等)用于油脂,糖果,膨化食品和豆制品等的生产。第三,环境污染。食品从原料的收割,晾晒到加工过程中接触到才有发动机的润滑油,没有完全燃烧的汽油,轮胎和沥青的碎屑以及不洁净空气等,都会使食品收到矿物油污染[sup][/sup]。[b]2 矿物油的毒理学[/b]研究表明,C16-C35的饱和烃矿物油(MOSH)会蓄积在人体的各种组织和器官中,如皮下腹部脂肪组织,肠系膜淋巴结,脾脏,肝脏等[sup][/sup]。MOSH呈中低等毒性,大量蓄积容易引发微粒肉芽肿,诱发浆细胞瘤形成,改变免疫功能或诱发自身免疫反应,高剂量的长链MOSH甚至是肿瘤的启动因子[sup][/sup]。芳香烃矿物油(MOAH)可能含有可致癌的多环芳烃,已有研究表明对于男性的肝脏和女性的子宫具有较强的致癌作用[sup][/sup]。工业用的矿物油被人误食后,对人体造成的危害主要油急性中毒和慢性中毒,急性中毒严重时会引发油脂性肺炎,慢性中毒可引发皮炎,神经衰弱综合征等[sup][/sup]。[b]3 矿物油的相关法规和每日允许摄入量建议[/b]随着矿物油毒理学数据的不断披露,国际上陆续开展了人群膳食烃类矿物油暴露风险评估和立法工作。2005年,瑞士颁布Verordmung 817.023,21,2005法规,规定矿物油MOAH迁移量11[/td][td=1,1,179]≧500[/td][/tr][tr][td=1,1,256]矿物油(中低粘度)一级[/td][td=1,1,155]0~10[/td][td=1,1,223]8.5~11[/td][td=1,1,179]450~500[/td][/tr][tr][td=1,1,256]矿物油(中低粘度)二级[/td][td=1,1,155]0~0.01[/td][td=1,1,223]7.0~8.5[/td][td=1,1,179]400~480[/td][/tr][tr][td=1,1,256]矿物油(中低粘度)三级[/td][td=1,1,155]0~0.01[/td][td=1,1,223]3.0~7.0[/td][td=1,1,179]300~400[/td][/tr][/table][/align]4. [b]矿物油检测方法研究现状[/b]目前国内还未明确食品中矿物油的限量要求和检测方法,主要是由于检测方法的限制。关于食品中矿物油的定量检测,国内较先进的方法为使用离线[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-氢火焰离子化检测器(SPE-GC-FID)检测。但其缺点是检出限高,选择性和灵敏度差。随着对矿物油危害的重视,国内越来越多的学者重视矿物油检测方法的研究。如广东省检疫检验局检验技术中心,用SPE-GC-FID检测食品包装中矿物油,其最低检出限为7.79mg/kg(表1中MOSH的迁移限制为2mg/kg,无法满足),且只能检测矿物油中的MOSH[sup][/sup]。北京理化中心开发了银离子固相萃取-程序升温大体积进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法检测巧克力中的MOSH,因为采用的是离线萃取方法,人为影响特别大,重现性差[sup][/sup]。中国食品发酵工业研究院国家食品质量监督检验中心也采用离线SPE-GC-FID对食用植物油中的MOSH定量分析。并且自制SPE复合柱净化。由于自制的净化柱存在一定差异,进一步降低了实验重现性[sup][/sup]。总之,国内目前开发的矿物油检测方法,具有三大检测技术难题。一,采用离线检测方法,这种方法人为误差较大,实验重现性差,很难实现稳定,快速,准确的矿物油检测。二,具有局限性,只能检测矿物油中的MOSH,无法检测MOAH。三, 检出限太高,难以满足国际颁布的相关标准。国际上公认理想的食品中矿物油的检测方法是在线联用LC-GC检测技术,其大体积,不分流的GC进样方式能够更好的富集矿物油,降低检出限。LC-GC-FID在线联用检测矿物油的特点是可以将矿物油中的MOSH和MOAH分离,同时可以将样品提取液中的使用油脂,胡萝卜素,角鲨烯,以及植物中的天然奇数碳烷烃等干扰矿物油测定的物质分离除去,实现矿物油的富集。避免了人工样品前处理,加快了分析速度,提高了分析效率;降低了样品损失和遭受污染的风险,从而提高分析方法的可靠性和重现性[sup][/sup]。目前在许多应用方法中均使用了在线全二维LC-GC联用技术。特别是K.Grob博士和Maurus Biedermann[sup][/sup]使用了Brechubuhler AG公司生产的LC-GC仪器对矿物油进行检测,推动了矿物油检测方法的发展。Luigi Mondelo撰写的文章,Online Coupled LC-GC: Theory and Applications。详细解释了LC-GC在线联合方法的理论和应用。Brechubuhler AG公司的在线全二维矿物油分析系统(LC-GC)不仅可以突破一次进样检测矿物油中MOSH和MOAH两类物质的技术壁垒。而且检出限极低,一般情况为0.6ppm,在对米中矿物油的检测低至0.24ppm。同时,它通过在线富集,避免离线检测时的人为误差,提高实验重现性。下图是使用LC-GC检测矿物油色谱图[sup][/sup]。[align=center] [/align][img=,692,440]file:///C:/Users/Anne/AppData/Local/Temp/ksohtml/wpsE2B6.tmp.jpg[/img] [align=center]图1. 回收纸板中MOSH和MOAH[/align][align=center]从上到下的三张图分别为:LC色谱图中的MOSH和MOAH;GC色谱图中的MOSH;GC色谱图中的MOAH[/align][align=center][img=,692,441]file:///C:/Users/Anne/AppData/Local/Temp/ksohtml/wpsE2C8.tmp.jpg[/img] [/align][align=center]图2. 大米样品中MOSH的检出限为0.24ppm[/align][align=left] [/align][align=left] [/align][align=left] [/align][align=left] [/align][align=left] [/align][align=left] [/align][b]参考文献[/b][align=left] World Health Organization Evaluation of certain food additives.Geneva: WHO,2002[/align][align=left] EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on Mineral Oil Hydrocarbons in Food . 2012[/align][align=left] BarpL, KornauthC, WuergerT, RudasM, BiedermannM, ReinerA, ConcinN, GrobK. FoodChem. Toxicol., 2014, 72: 312-321[/align][align=left] GrobK. J.Verbr. Lebensm., 2014, 9:231-219[/align][align=left] 固相萃取-大体积进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法定量分析油茶籽油中的矿物油. 刘玲玲,武彦文,李冰宁,汪雨,杨一帆,祖文川,王欣欣. 分析化学. 2016,44(9):1419-1424[/align][align=left] MondelloL, ZoccaliM, PurcaroG, FranchinaFA, SciarroneD, MoretS, ConteL, TranchidaPQ.J. Chromatogr.A, 2012, 1259:221-226[/align][align=left] Vollmera, Birdermannm, Grudbckf, IngenhoffJE, BiedermannBremS, AltkoferW, GrobK. Eur. Food. Res. Technol., 2011,232:175-182[/align][align=left] 银离子固相萃取-程序升温大体积进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法定量分析市售巧克力中的饱和烷烃矿物油.李冰宁,刘玲玲,张贞霞,武彦文. 分析化学,2017,45(4):514-520[/align][align=left] 矿物油超标危害有多严重 海天,老干妈等油辣椒产品卷入. 周子荑,中国商报。2017(P05)[/align][align=left] 食品中烃类矿物油的污染情况及迁移研究进展. 杨春艳, 柯润辉, 安红梅, 王丽娟, 黄新望, 尹建军, 宋全厚. 食品与发酵工业, 2017, l43:258-264[/align][align=left] 警惕化妆品美丽背后的伤害.王本进. 首都医药, 2005(11): 26-27[/align][align=left] 食用植物油参入矿物油的鉴别. 白满英,李芳,魏义勇. 中国油脂, 2001, 26(3): 64-65[/align][align=left] Fifty-ninth report of the WHO Expert Committee on Food Additives: Evaluation of certain food additives . Geneva: WHO, 2002[/align][align=left] SPE-GC-FID法检测食品包装纸中的矿物油.李克亚, 钟怀宁, 胡长鹰, 陈燕芬, 王志伟. 食品工业科技, 2015, 19(048): 281-285[/align][align=left] SPE-PTV-GC-FID法定量分析食用植物油中的饱和烃类矿物油.杨春艳, 张九魁, 柯润辉, 王烁, 尹建军, 宋全厚.中国食品添加剂, 2018(1): 165-174[/align][align=left] Enrichment for reducing the detection limits for the analysis of mineral oil in fatty foods . Michael Zurfluh,Maurus Biedermann,Koni Grob. Journal für Verbraucherschutz und Lebensmittelsicherheit . 2014 (1) [/align][align=left] On-line coupled high performance liquid chromatography-gas chromatography for the analysis of contamination by mineral oil. Part 2: Migration from paperboard into dry foods: Interpretation of chromatograms . Maurus Biedermann,Koni Grob. Journal of Chromatography A . 2012[/align][align=left] Determination of mineral oil paraffins in foods by on-line HPLC-GC-FID: lowered detection limit contamination of sunflower seeds and oils . Katell Fiselier,Koni Grob. European Food Research and Technology . 2009 (4) [/align][align=left] On-line HPLC-GC-FID for the evaluation of the quality of olive oils through the methylethyl and wax esters. Maurus Birdermann, Carlo Mariani, Urs Hofstetter.[/align][align=left] Mineral oil, PAHs in food, Maurus Birdermann,Koni Grob[/align][align=left] MOSH MOAH Application note, Philippe Mottay, Brechubuhler AG.[/align]

  • 请教如何清洗矿物表面

    我合成了一些矿物,因以后的实验要求需要把矿物表面的杂质离子清洗掉,我以前用过电渗析法,但速度很慢,两三个月也洗不干净,请问用什么方法比较好。我急呀

  • 【求助】矿物的消化

    今天做矿物的消化,本来是想一次消化后连续测多个元素,结果消化的时候怎么也不彻底,我是用的湿法,加氢氟酸也无济于事、这是为什么呢?请高手指点。

  • 求矿物消解方法

    没做过矿物样品的消解,听说需要用到氢氟酸,高氯酸害怕,求大佬赐教,一般都是怎么消解的呢?

  • 【资料】关于矿物质水的五大疑团

    眼下的市场是由消费者驱动的,这意味着消费者拥有了绝对的选择权。但选择的多样化并不一定代表着物美价廉,因为繁杂的商品信息降低了消费者理性思考的能力,同时商家也能在摸透消费者选择机制后发出各类误导信息。  消费者如同握有非凡权利的令牌却不知道该指挥哪支军队。  据报道,矿物质水在06年异军突起,已经霸占了中国瓶装水大片江山。这个根本原因应该是消费者随着生活水平提高的健康需求,也要“归功”于某品牌近年来迎合这种需求强力推出的“更健康”的概念。但是当这样一瓶所谓“更健康”的水拿在手中细细端详,不禁要对这拥有美丽的名字的饮用水提出五大疑问。  矿物质水到底是什么水?它是自来水制成的!?  目前矿物质水还有没国家标准(这也是让人感到不安的一个原因),从浙江等几个省的地方标准来看,矿物质水是指纯净水经添加矿物质类食品添加剂或天然矿物提取液后制成的饮用水(浙江省饮用矿物质水地方标准DB33/339-2001)。纯净水一般都是用自来水加工灌装而成的,一直受到专家和消费者的诟病。那么以纯净水为基础的矿物质水是否也是用自来水制成的呢?  2004年,可口可乐在英国市场销售的Dasani矿物质水被揭露是由自来水生产的,从而引起英国人的强烈指责。从水质讲,英国的自来水比中国自来水更加安全(欧盟的饮用水指标比中国大陆更为严格);从生产技术和企业责任来说,可口可乐公司也应当比国内的一些企业更优秀;从监督机制来看,英国的力度更是强于中国大陆。试想,可口可乐的Dasani矿物质水尚且受到指责,那国内的矿物质水安全和质量究竟该如何评判呢?  矿物质水真的可以补充矿物质吗?它的矿物元素是人工添加的!?  众所周知,补充人体所需的矿物质和微量元素是一个综合概念,单独补充某一样的做法早已过时。矿物质和微量元素存在一个微妙的平衡关系,片面补充某一种,往往导致另外好几种的排泄增加,适得其反。比如过多的补充钙,就可能导致大量镁被尿液带走从而补了钙缺了镁。镁与钙的合理比例应该为:2:1。因此有医学专家认为,补充矿物质应该“协同作战”,最好就是自然态下的均衡吸收。  在自然态下,优质的天然水中所含的矿物质和微量元素呈现一个均衡的比例,或者说人类在漫长的进化过程中适应了这种奇妙的和谐。因此天然状态下的水中所含营养物质能起到一个“协同作战”的效果。比如优质天然水中的镁与钙比例就正好接近2:1。这就是为什么世界顶级瓶装水都始终强调自己含有“天然的”、“均衡的”矿物质和微量元素。  然而我们在矿物质水中看不到这种上苍赋予的和谐。矿物质水往往只往纯净水中添加某几种矿物质。比如前面提到某大品牌只加了只含有镁、钾两种矿物质,当然是只比纯净水“多一点”矿物质了。  如果人体长期只补充镁、钾两类矿物质,就可能导致相应比例的钙和铁,以及其他维生素族营养物质的流失。因此,矿物质水补充矿物质的作用值得质疑!  人体需要额外的硫酸盐和氯酸盐吗?  国内矿物质水添加的矿化液主要成分一般为硫酸镁和氯化钾。因此矿物质水在具有了镁离子和钾离子的同时,也具有了额外的硫酸根离子和氯离子。  硫酸镁又成为泻盐,超过390毫克每升便会引起腹泻。更为关键的是,硫酸根离子并非营养物质,所有国家的任何饮用水标准都只标明其含量不得超过多少,而没有必须达到多到的标准。氯酸盐也存在着同样的尴尬。  矿物质水怎么是酸性的?  随着生活品质的提升,人类对饮用水的要求也由单纯的安全上升到健康。健康水有一项重要指标就是pH值呈弱碱性。这项指标对标榜含有阳离子矿物质的矿物质水来说原本不算难事。  然而令人失望的是,国内矿物质水都呈酸性,有的甚至低于6.0。饮用水中矿物质的一个重要作用就是维持水的弱碱性。矿物质水中的矿物质显然没有这个用途。这样,“多一点”或者“更健康”也无从谈起了。  矿物质水怎么可以没有QS标志?  “QS”标志是“质量安全”的英文名称Quality Safety缩写,也是食品质量安全市场准入标志,表明食品符合质量安全基本要求。食品加印(贴)QS标志后有两点含义。1、该食品的生产加工企业经过了保证产品质量必备条件审查,并取得了食品生产许可证,食品包装、贮存、运输和装卸食品的容器、包装、工具、设备安全、清洁,对食品没有污染。2、该食品出厂已经经过检验合格,食品各项指标均符合国家有关标准规定的要求。  由此可见,QS标志乃是食品安全的第一道防线。然而目前所有的矿物质水,包括某些知名企业生产的水在内,都没有QS标志,这样的情况实在让已经身患“食品安全恐惧症”的中国人感到不安。  要知道,水是人体必需的生命物质,人体的70%是由水组成的,如果我们连喝水的安全都无法得到保证,我们又还能相信什么呢?

  • 申请开通岩石矿物版面

    新版名称:岩石矿物子版:岩石矿物种类、前处理、岩石矿物经典分析方法、岩石矿物仪器分析方法、岩石矿物分析相关标准原因:矿石种类繁杂,分析方法很多,涉及仪器也很多,容易出现一些问题,有了问题咋办,我们就可以在这里交流了。这么大的论坛,这么可以没有岩石矿物版面,官人们,赶快开通吧!初步设想:1、先把一些出名杂质的文献弄过来,供大家参考2、我可以把我的分析方法共享3、岩石矿物方面国标可以共享4、第一任版主,我来吧以上是本人初步设想,仅供参考!

  • 求助有多个峰,怎么确定是哪种矿物呢,还是有好几种矿物?

    求助有多个峰,怎么确定是哪种矿物呢,还是有好几种矿物?

    求助有多个峰,怎么确定是哪种矿物呢,还是有好几种矿物?红色的是测出来的。1370,410像赤铁矿,610是金红石?700是云母?在显微镜下看光学特征很像金红石,所以=想确定一下[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2021/12/202112221717329989_2326_3506103_3.jpg!w690x387.jpg[/img]第二个应该是赤铁矿无误把?[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2021/12/202112221718598185_7773_3506103_3.jpg!w690x387.jpg[/img]非常感谢各位大佬

  • 水中矿物油的测定

    用三波长法红外测水中矿物油时,要用到正十六烷、甲苯配置一定浓度的溶液来计算校正系数,请问这些试剂需要怎样级别的?分析纯?优级纯?HPLC级?急救呀

  • 矿物的Raman光谱

    测试到一种蛇纹石伴生矿物的拉曼光谱,但不能确认是什么?哪位大侠不吝赐教;文件在附件内,包括显微镜照片和TXT数据

  • 求助:矿物薄片

    我们实验课需要用到矿物晶相结构薄片(偏光显微镜或者金相显微镜上使用),但原来的已经使用太长时间了,想换一下,请问哪个地方有售?谢谢!

  • 【求助】矿物中化学成分的测定

    各位好: 现有一堆粒状的矿石(粉碎后)【粒度0.9mm~1.7mm】,怎么测其中的矿物成分,特别是其中水的存在方式。(怎么和其它化合物结合),怎么测啊? 谢谢。

  • XRD矿物含量计算

    求助,在学校测试中心做了样品的XRD,那边只给了我一个uxd文件和一个矿物拟合的图(见附件),求问谁能帮我算一下各种矿物的含量百分比?就根据得出的那几种矿物计算,谢谢

  • “国民女神”老干妈惊爆矿物油超标!真相究竟如何?

    “国民女神”老干妈惊爆矿物油超标!真相究竟如何?

    http://ng1.17img.cn/bbsfiles/images/2017/03/201703130950_01_932_3.jpg事件始末近日,第三方检测机构优恪网连续发布食品检测报告,结论引发争议。该报告称,在德芙“丝滑牛奶巧克力”及老干妈、老干爹、海天等10款畅销油辣椒产品中,矿物质油大幅偏高或超大幅偏高,被评为警示(D-)(最差级别),并建议消费者“谨慎购买”。多家媒体援引该报道进行了连续报道,称“矿物油超标恐伤肝致癌 ”,在各大媒体平台广为传播,引发了公众恐慌。3月6日,德芙品牌母公司玛氏食品(中国)有限公司发言人回应称,该机构报告中对德芙产品“矿物油含量超大幅偏高”的指控是没有依据的。中国目前还没有对于矿物油的规范指标,因此该报告的结论属于“未经证实而传播的谣言”,违反了我国食品安全法。该发言人称已草拟律师函。老干爹等辣椒油企业也迅速回应,称公司产品是符合国家的相关标准,每年多次自检和被抽检合格,否则根本无法在市场上流通。优恪网在上述报告里称,“矿物油可能对肝脏、脾脏及淋巴结等器官造成危害”“德国实验室在10款辣椒油中均检测出了多环芳烃化合物(PAHs)。PAHs中的一些物质可致癌,其中最广为人知的就是苯并芘。”有害风险被夸大在优恪网的报告里,被指矿物油“大幅偏高或超大幅偏高”的食品均查询不到具体的检测结果。食用矿物油在各国并无确切标准,只有一些国际组织和风险评估机构进行了限值建议,其原因主要是该物质的风险可控以及目前的研究并没有得出确切结论。世界卫生组织(WHO)为矿物油制定了终生安全剂量,是每天每公斤体重20毫克。而欧盟更为谨慎,规定是每天每公斤体重12毫克,如一个成年人体重60公斤,每天摄入720毫克也没问题。而优恪网检测参照的标准,主要是德国联邦风险评估研究所(BfR)建议,“从包装迁移到食品中碳链长度介于C17—C20之间的MOSH迁移量应该控制在4毫克/千克以内”;以及 2014年,德国联邦食品及农业部在一份德国日用品法的修订草案中的建议,“碳链长度介于C20—C35之间的MOSH迁移量不应超过2毫克/千克”。这一标准可能存在误用。“这样比较是移花接木。”中华预防医学会科学传播分会常委、知名科普专家钟凯博士指出,德国的“迁移量”限值是指包装材料在特定实验条件下“溶出”的矿物油的量,不是食品或其他产品中矿物油含量的限量值,食品中的含量和特定迁移量无换算关系。其次,在衡量危害时,“离开剂量谈毒性”是食品安全风险评估的黄金法则之一。钟凯说,根据欧盟的限值计算,食用矿物油对人体有害需要达到相当数量级,换算为巧克力“相当于每天吃这款巧克力240斤”。而实际上,中国人的巧克力年人均消费量仅有2两左右。所以,上述提到的食品远远达不到对人体产生“致癌”“有毒”危害的程度。“所谓的肝肾损害,可能来自于一些动物研究,但欧盟食品安全局明确表示,生化指标的变化并不能得出有损健康的结论。”钟凯强调,还有一些研究发现矿物油可以影响维生素的吸收,不过前提是“长期大量”摄入。“事实上,矿物油在食品和化妆品中的应用已经超过一个世纪,长期应用实践并没有发现它会导致健康问题。矿物油的使用和污染需要控制,这在国际上是比较一致的看法,但也是在合理可行的前提下。食品安全是高度专业化的领域,言论自由、舆论监督并不等于可以脱离科学的轨道。”钟凯对由检测机构发布报告引发的恐慌表示担忧。原文链接:http://www.wanhuajing.com/d715012图片转自微博“辟谣与真相”http://ng1.17img.cn/bbsfiles/images/2017/03/201703131031_01_932_3.png

  • 【求助】矿山矿物分析需要怎么样配置啊?

    矿山矿物分析需要怎么样配置啊?各位朋友帮帮忙哦,我知道要配置X-荧光光谱仪,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url],矿物破碎机,还有其他仪器就不是很清楚了,还有通风柜要有什么样的要求啊,消解设备需要什么要求啊

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制