当前位置: 仪器信息网 > 行业主题 > >

负刚度隔振技术

仪器信息网负刚度隔振技术专题为您整合负刚度隔振技术相关的最新文章,在负刚度隔振技术专题,您不仅可以免费浏览负刚度隔振技术的资讯, 同时您还可以浏览负刚度隔振技术的相关资料、解决方案,参与社区负刚度隔振技术话题讨论。

负刚度隔振技术相关的论坛

  • 【求助】弹簧力及刚度检测标准

    我们公司检验弹簧需要弹簧力及刚度检验标准!但是我在网上查只有相关的弹簧技术条件,没有弹簧的弹簧力、弹簧刚度的检验标准!不知道是没有这方面的标准还是我还没有找到!谢谢!

  • 求助拉伸试验机刚度的测定

    各位:新室温国标GB/T 228.1-2010,附录F 考虑试验机刚度后估算的横梁位移,中的试验机刚度(CM、m)是怎么测的?请指教!

  • 环刚度试验机常见的夹头工装

    环刚度试验机的试验虽然可以做很多,但是常见的工装就那几种,今天我们就来了解一下。1.压缩试验装置:环刚度试验机的压缩采用双传感器,能够很好的减小单传感器由于管材变形带来的试验误差。2.拉伸附具:可用于热塑性塑料管材(包括聚乙烯、聚氯乙烯、硬聚氯乙烯、氯化聚氯乙烯、高抗冲聚氯乙烯、聚烯烃)等材料的管材的拉伸性能,以及管材原材料的拉伸试验。3.工具:用于客户简单安装、维修、操作的专用工具。4.内径变形测量装置:该装置不是所有的管材检测试验都需要,主要看该设备的实际应用。测量范围400-2600mm另外,对于我们常说的管材的环刚度试验,环柔度试验,扁平试验等都是通过该设备的压缩试验装置来实现,只不过在操作和数据采集和软件的处理上是不同的。还有关于用户因为其他材料的其他用途都要求配置的传感器所带的夹头工装不包含在内。

  • 水泥管环刚度试验机相关信息

    水泥管通常情况下采用标准GB/T 11836-2009《混凝土和钢筋混凝土排水管》用该材料的抗压强度的力学性能检测,但是对于水泥管还有一种设备环刚度试验机主要用于其它力学性能的检测,下面我们就来了解一下。 这里的环刚度试验机主要用于刚性水泥管的环刚度的力学性能检测,普遍用于输送液体、气体、松散固体的地下管道中,特别适用于市 政排水污用各类管材,主要用于≥ 10KN/ ㎡水泥管的环刚度,纵向回缩率,扁平试验,缝拉伸强度。 另外,刚性水泥管还有一个力学性能即冲击性能检测,通常该检测采用落锤冲击试验机来完成。

  • 【讨论】关于试验机的主机刚度问题

    现在大家选择机器很少提刚度参数,不知道用户不关心还是厂家不上心。有没有做试验机设计的同行,说一下自己的刚度参数吧!先抛砖引玉:机型:动静态万能试验机规格:100kN最大试验空间:1000mm刚度:1026×1,000,000N/m机型:318.10规格:100kN实验空间:1270mm刚度:260×1,000,000N/m

  • 【原创大赛】圆柱螺旋压缩弹簧负荷及刚度的检测

    【原创大赛】圆柱螺旋压缩弹簧负荷及刚度的检测

    摘 要 从速度对圆柱螺旋压缩弹簧负荷测试的影响、预载荷施加量对弹簧负荷测试的影响、弹簧刚度测试时弹簧变形量测试范围对弹簧刚度测试的影响几个方面分别进行实验并分析,确定了弹簧负荷以及刚度测试时的速度为(5mm/min~100 mm/min);确定了预载荷的施加量为(0.2N~0.5N);确定了弹簧刚度测试时的变形范围。 关键词:圆柱螺旋压缩弹簧、负荷、刚度、指定变形量、指定高度。 圆柱螺旋压缩弹簧(以下简称弹簧)在我国大量运用,但目前国内外还没有圆柱螺旋压缩弹簧负荷及刚度检测的国家及行业标准,因此在对弹簧负荷测试过程中的运行速度,以及在弹簧在指定变形量负荷测试时预载荷施加量,弹簧刚度测试时弹簧变形量的范围没有具体规定。但在弹簧负荷测试过程中, 快速压缩时自动采集的数据与慢速压缩或静止压缩采集的数据差别很大,另外,预载荷量的大小对指定变形量下弹簧负荷的测试也有影响。弹簧刚度的测量是在载荷的基础上进行的,测量刚度的办法是测量出弹簧的特性线,然后进行分析,而螺旋压缩弹簧的特性线是直线,其刚度就是特性线的斜率。但实际上弹簧的特性线不是理想的直线,这是由于弹簧的工作圈数有限、弹簧节距及其它几何参数的不均匀等原因使特性线的起始及结尾部分有些弯曲,所以测试弹簧的刚度应避开弯曲的部分,因此,必须对弹簧刚度测试时的变形量范围作出规定。本文将从弹簧测试时速度、预载荷对弹簧负荷测试的影响以及变形量范围范围对弹簧刚度测试的影响几个方面讨论。1:弹簧负荷的测量 在弹簧的负荷测试过程中,有两种方式:一种为指定变形量下的负荷(如图1),另一种为指定高度下的负荷(如图2)。在两种方法测试过程中,运行速度都会对弹簧负荷的测试结果有一定的影响。而在指定变形量下的负荷测试,必须先确定弹簧的自由高度才能对弹簧负荷进行进一步的测试,而在弹簧的生产过程中,每支弹簧的自由高度不一样,若对每一支弹簧都先进行自由高度的测试,不仅工作量繁琐,而且容易产生错误,因此在现有的微机控制电子式弹簧试验机程序编写中,都是先对弹簧施加一个预载荷,先测试出弹簧的自由高度,再进行弹簧指定变形下的负荷的测试。在此过程中,预载荷量的大小就对弹簧自由高度以及负荷的结果产生影响。

  • 如何应对汽车可靠性挑战?多功能刚度平台交出高分答卷

    随着汽车行业轻量化的发展趋势的日渐迅猛,许多车用零部件实行了以塑代钢,显然相比于传统的金属制备的零件,塑料零件的安全性、可靠性需要得到保证,因而对于汽车零部件如前端框架、进气歧管、碳罐等一些汽车零部件都在力学测试方面有了更加苛刻的要求。[img]http://p6-tt-ipv6.byteimg.com/large/pgc-image/fa2f33b24c754550b484a435784185c8[/img]根据各汽车零件功能多样性的特点,国高材分析测试中心引进了一套多功能刚度平台,可在不同环境下,对多种零件执行特定要求的测试,如:刚度测试、静/动态强度测试、动态冲击测试、疲劳耐久测试和静态加载/扭转测试等。为了让各位朋友深度理解满足不同零件要求的平台集成方法,以及多功能刚度平台对于汽车零件开发的意义,本文通过几个实际案例来进行阐述。◆◆1、 测试平台介绍◆◆[back=#3eebff][/back]多功能刚度平台具体有包括环境控制模块、力加载控制模块、软件控制模块,数据采集模块等四个部分组成,能够实现在不同的环境下(包括高温、常温以及低温),通过不同的力学控制方法,对不同类型的零件进行不同的检测。此多功能刚度平台主要承接的主要的项目包括汽车前端模块中重要汽车零部件前端框架锁扣区域的刚度强度,各安装点的刚度、强度。另外还包括汽车其他零件的力学测试,如动态的冲击实验、疲劳耐久试验和扭转试验等。由于汽车零部件在实际工况环境中,温度湿度会有变化,因而多功能刚度平台配置有体积约12立方的环境箱,更能准确检测零件某点/处在各种环境条件下的强度和刚度,有助于为产品材料或结构的优化设计提供数据支持。此外,多功能刚度平台备有10个高精度位移传感器,能够在某个区域受力情况下,同时监测其他10个监测点的位移变化,有助于将其结果与计算机仿真试验的结果进行对标,推进零件结构的再优化。◆◆2、 应用案例◆◆[back=#3eebff][/back][color=#1a74ff]01 刚度试验[/color]汽车零部件的刚度是指在施加不致毁坏车身的普通外力时,零部件不容易变形的能力。在实际工况环境下,汽车在行驶过程中会受到各种外力因素影响而变形,变形程度小的刚度好,一般情况下刚度较好时,强度也较好。图1为前端框架锁扣区域的X向刚度测试及其力和位移的曲线图,多功能刚度平台可针对汽车塑料零部件前端框架进行,包括锁扣安装点,前大灯安装点,喇叭安装点,散热器安装点等区域的刚度试验。[img]http://p9-tt-ipv6.byteimg.com/large/pgc-image/75e3a93113084eb1b986138089a6cbe1[/img][img]http://p9-tt-ipv6.byteimg.com/large/pgc-image/0b1ac8d98d25425683534c132435e441[/img][align=center]图1 前端框架锁扣区域的X向刚度测试及曲线图[/align]由于前端框架锁扣区域在受到外力作用时,不同区域的弹性变形量存在差异性,可根据指定要求分别测试包括钣金、模拟锁块和锁扣区域塑料件的弹性变形量。如上图1,静态加载600 N的力,速度100N/s,力保持时间2s,监测力稳定2s钟后的变形量。将位移传感器放置于靠近钣金的零件表面,同样采用上述的力加载方式,测定靠近钣金的零件表面的弹性变形量。图2-4是主要是对前端框架材料的力学性能的检测以及其在动态和静态的受力状况下发生的弹性变形以及剩余变形量的实时检测,有助于前端模块顺利开发以及保证使用过程中安全性得到保障。具体的实验项目包括:常温(23℃)和高温(85℃)静态试验,采用PID控制方法,力模式设置为静态,初始拉力设置为0 N,步进增加值为200 N,直至达到2200 N。根据力值传感器、位移传感器监测相应的测量点的弹性变形和残余变形量;高温(85℃),常温(23℃)以及低温(-30℃)动态试验,实验结果如下。[img]http://p26-tt.byteimg.com/large/pgc-image/d5e8617e442f41d889ddb1a43c184e1a[/img][img]http://p1-tt-ipv6.byteimg.com/large/pgc-image/d867688b83e3408f898b20049f3f1c7d[/img][align=center]图2 前端框架锁扣区域刚度测试及塑料件上各监测点位移传感器布置图[/align][img]http://p6-tt-ipv6.byteimg.com/large/pgc-image/ee4e34580a424d39bc506a2d47fe9e0a[/img][align=center]图3 前端框架高温(85℃)状态下静态试验位移随着力施加时间的变化曲线[/align][img]http://p9-tt-ipv6.byteimg.com/large/pgc-image/0136a2cd83884ec58dd3d038fa94b513[/img][align=center]图4 前端框架常温(23℃)状态下对前端框架施加瞬时动态推力2000 N后得到的变形量随着力施加时间的变化关系[/align]利用刚度平台,实时模拟在高温或者低温状态下,对前端框架施加静态的力加载,并且利用位移传感器对前端框架不同部位处进行弹性变形量以及残余变形量的实时监控结果(见图3)。结果表明在前端框架的不同部位由于注塑制件设计存在差异,部分区域设置加强筋等结构。不同监测点处,呈现具有明显差异的弹性变形。而在施加的力值达到一定的程度时,材料将会发生一定程度的塑性变形。同时前端框架动态实验的结果也表明在不同制件部位在受到瞬时推力或者瞬时压力时,形变量和参与变形量是具有明显的差异(见图4)。因而利用刚度平台实时监控在高温或常温状态下前端框架的变形情况有助于清晰的知道比较薄弱的部位,从而优化易变形部位的设计,并且一方面,前端框架的静态实验能够实际模拟了前端框架在受到风阻时,另一方面,前端框架的动态实验能够实际模拟前端框架在拉引擎盖和合上引擎盖的瞬时拉力和瞬时压力的实际工况。这将为前端框架的投入使用提供了更加可靠的安全保证。[b][color=#1a74ff]02 [/color][color=#49a3ff]静/动态强度测试[/color][/b]材料在外力作用下抵抗永久变形和断裂的能力称为强度。而静态试验是相对于动态试验而言,施加于试样的负载较小,形变速度足够缓慢或测定时间较短的强度试验。以安全带锁扣制件为例,测试锁扣区域的极限破坏拉力,如下图5-6所示。将金属样品固定于自制简易工装上,将锁扣件的档位调至最高档,运用安全带、铁块和螺母将作动缸和样品连接起来。调整样品和炮筒的角度,可以从两个方向对样品进行拉伸。样品在16500N的拉力作用下,保持了若干秒,均未出现断裂情况,材料性能符合相关标准要求。[img]http://p26-tt.byteimg.com/large/pgc-image/0a89280787c7436ab86d52a459815641[/img][img]http://p9-tt-ipv6.byteimg.com/large/pgc-image/7ff9906c4f6344bb8f9b50cf2495bda2[/img][align=center]图5 0°角方向拉伸测试及曲线图[/align][img]http://p3-tt-ipv6.byteimg.com/large/pgc-image/c0162947f9df4dd884258fb478d44840[/img][img]http://p26-tt.byteimg.com/large/pgc-image/b593f2588a7545508d1e8a19303f4414[/img][align=center]图6 45°角方向拉伸测试及曲线图[/align][b][color=#1a74ff]03 疲劳耐久测试[/color][/b]图7为一弹簧卷的耐久性能测试。样品在多周期条件下持续工作,观察其失效时间。通过疲劳参数来设定程序:幅度40 mm,设置频率1.0 Hz,控制弹簧卷的弹开次数5000,6000,6500,7000(直至出现裂纹或脱落,记录极限次数)。这样可以对弹簧卷的使用寿命进行有效评估。该项测试对于汽车上的功能件运用较多。[img]http://p26-tt.byteimg.com/large/pgc-image/e9d6f8e715f24e6894b49345ae846d47[/img][align=center]图7 弹簧卷片疲劳耐久试验图[/align]此外,此多功能刚度平台在其他测试项目,如蠕变测试,扭转测试,以及在其他零部件测试领域的应用也在整理中,后续会通过“国高材分析测试中心”发布。想了解更多关于国高材分析测试中心在汽车领域解决方案的小伙伴,可点击链接了解[url=http://guogaocai.mikecrm.com/HBV5Mknhttp://]http://guogaocai.mikecrm.com/HBV5Mkn[/url][color=#888888]*国高材分析测试中心原创内容,转载请注明出处[/color]

  • 【资料】高速轨道交通减振降噪技术的研究

    过量的噪声和振动将严重影响乘客和轨道交通沿线人们正常的生活、工作和休息、损害身心健康、降低工作效率;另一方面,噪声和振动还可能引起轨道交通系统相应的设备和结构以及周边建筑物和设备的疲劳损坏,缩短有效使用寿命。由此,轨道交通噪声和振动的控制已成为改善乘客舒适性和环境保护的重要内容之一。所以,减小列车的振动和噪声水平、减少轨道交通引起的振动和噪声问题就成为轨道交通车辆制造和系统建设中的十分重要的问题。   轨道交通振动与噪声源主要包括:   (1) 主要振动源   ◆ 列车与结构的动态相互作用;   ◆ 车辆动力系统振动;   ◆ 轨道结构振动;   ◆ 轮轨不平顺;   (2) 主要噪声源   ◆ 轮轨噪声,包括滚动噪声、冲击噪声、摩擦噪声。   ◆ 结构噪声(由于轮轨表面相互作用产生的振动通过轨道、桥梁和地基等传递导致相应结构振动而辐射噪声);   ◆ 车辆动力设备噪声,包括牵引电机、通风机以及压缩机等设备噪声,集电弓噪声;   ◆ 车辆运行时的空气动力噪声。   针对轨道交通的振动和噪声控制问题,开展过大量的研究工作。主要围绕振源与声源控制、振动传播与声传播控制以及材料和结构控制等三大方面展开研究并采取振动和噪声控制措施。   采用弹性车轮、充气橡胶车轮、阻尼车轮及弹性踏面车轮等技术,通常可减振降噪达到2-10dBA。   用改变车轮结构的方法来改变噪声的发射性能,降低轮轨噪声。国外的有些厂家,例如,德国通过把制动盘放在轮辐上来减少噪声的发射,其试验结果证明对1000Hz以上的噪声有明显的抑制作用,大约可降低噪声5dB左右。   采用减振降噪动力驱动系统,例如,运用线性电机驱动及径向转向架。温哥华、多伦多、底特律、大阪等在二十世纪八十年代的轨道交通系统中,采用了线性电机车辆。此外,由于采用径向转向架,车辆能顺利地通过曲线,减少轮轨磨耗和消除常规固定轴距转向架通过曲线时刺耳的尖叫声,所以,噪声比一般车辆降低近20dBA,特别适用于高架轨道交通系统。   轨道结构主要由钢轨、扣件及轨下基础组成。根据振动理论,轮轨之间的振动噪声与钢轨各部件的质量、刚度以及结构阻尼联系密切。轨道结构的减振降噪,主要是通过改变结构参数来实现的。   国外在轨道结构方面已尝试了许多减振降噪措施,主要有:   1. 采用焊接长钢轨;   2. 采用减振型钢轨;   3. 采用减振型扣件;   4. 采用减振型轨下基础;   5. 采用钢轨打磨技术。   这些措施均已被证明具有不同程度的减振降噪效果,适应于环保要求。   减振型轨下基础的研究也很有价值。为了适用于不同减振要求,各国都对传统的碎石道床与整体道床作了大量改进研究工作,开发了各种减振型轨下基础。主要有:在碎石道床的基础上,研制了弹性轨枕道床和道碴垫道床,增加道床弹性,有效降低道碴振动,与一般碎石道床相比,其减振效果可达5-15dB。在整体道床基础上,实用技术有短轨枕包套式和弹性长轨枕整体道床。在**新干线的特殊减振地段,采用了防振型板式轨道。在新加坡、香港地铁中,特殊减振地段采用浮置板结构,减振效果非常显著。进行轨道不平顺控制也能获得很好的减振降噪结果。例如,钢轨打磨后,在振动频率为8-100Hz范围内,振动下降4-8dBA,站台上的振动下降5-15dBA。证明了控制轨道不平顺是降低轮轨之间振动与噪声的有效措施。   目前,国外高架桥结构大多采用箱形梁形式。据**在山手线对各种构造形式、断面形式和不同跨度的桥梁所进行的对比试验结果,表明控空板形式噪声最低。近年来,新建的巴黎地区快速铁路高架桥和新加坡高架铁道均采用箱形梁。研究箱形梁的减振降噪是国际上在这一领域的热点。   吸声桥面和路面研究。高架轨道交通线的桥面是声的反射面,降低桥面的声反射,可以大大降低轨道交通列车通过时的噪声。   吸声结构研究。高架轨道交通噪声的各个声源中,桥梁振动的辐射噪声对周边环境,尤其是低楼层噪声敏感区的声环境有较大影响。高吸声、[wiki]安全[/wiki]、美观、易清洗保养是设计吸声结构的要点。   声屏障是降低轨道交通运行噪声的有效措施。美国、**、英国、法国、澳大利亚及香港地区,都在交通主干线上修建声屏障并取得了较好的噪声治理效果。   声屏障是地面和高架轨道交通采用的最常用的降噪方法。由于轨道交通的横截面通常尺寸紧凑,声屏障已经接近线路的设备限界,列车车身与屏障之间的距离很小,一般小于一米。车身外板的材料通常是不吸声的金属,如果声屏障也用不吸声或吸声系数很小的材料制成,则噪声的声波将在车身和声屏障间的窄弄中来回折射,最后从上方逸出,声屏障的降噪效果就很差,因此不吸声的隔声型声屏障不适合轨道交通。只有吸声系数大于0.8的声屏障才有比较好的降噪效果。   声屏障技术应用都比较普遍,现有的吸声型声屏障均为板式结构。频带窄,尤其是低频段吸声系数小,通常吸声系数只有0.5左右,是现有吸声型声屏障(或组合型声屏障的吸声单元)的共同缺点。   除此之外,现有吸声型声屏障还存在其他问题。总之,由于交通噪声主要成份分布在100~5kHz,单纯阻性吸声或抗性材料难以在如此宽的频率范围内达到满意的吸声效果,而将研究阻抗复合型声屏障作为拓宽吸声频带、提高降噪效果的主要方向。如何降低成本、厚度、尺寸和重量,提高使用寿命,是新型声屏障研制者的追求。

  • 液压伺服振动台

    Atlantic Packaging将使用该技术来帮助验证其单位负载包装解决方案的性能,展示他们安全有效地保持负载的能力。点击上面的图片查看一个简短的视频剪辑,解释了大西洋包装解决方案中心添加的技术。帮助实验实验室达到一个新的水平2022年1月25日通过专注于不断扩大的客户需求,Experior实验室已成为北美发展最快的独立测试实验室之一。Team Corporation很高兴向Experior交付这种新的高性能,定制72“x 72”T-Film滑台。新的振动筛系统和这种独特的T-Film滑台的添加将有助于扩大Experior的测试能力,从而打开新的机会之门,同时也将他们与竞争激烈的测试实验室区分开来。Experior实验室的Gerrit Lane解释了如何添加新的振动筛系统和高性能的定制72“x 72”Team Corporation T-Film滑台将帮助Experior实验室达到一个新的水平。t膜滑台的优点信任由NASA。经过验证和专利,t -膜轴承给这种滑台许多优点。与传统的滑动板放置在花岗岩表面的油膜上不同,这张桌子的滑动板由Team公司专利的T-Film静压轴承连续5乘5网格支撑。与标准油膜和线性轴承相比,Team Corporation轴承独特的倒t型提供了改进的刚度,负载转移,和力矩转移到反应基地。这最大限度地减少了滑板挠度和交叉轴振动。与传统设计相比,这也允许测试件具有更高的倾覆力矩和特殊的偏航约束。此外,静压轴承显著增加了负载能力,这意味着桌子可以容纳更重的物品。由于滑动板由轴承的连续网格提供了全面覆盖,任何形状或大小的部件都可以直接螺栓固定在T-Film轴承上,从而可以直接将几乎所有测试对象的负载直接传输到底座上。这种技术使轴承表现得就像一个固体铝块——t膜的典型选择材料。为了确保这些部件无缝连接在一起,激振器和滑台直接用螺栓固定在定制加工的底座上。工作台的精确校准和调试是在现场由团队人员在Verisurf的徕卡激光跟踪器的帮助下完成的。激光跟踪器可以保存滑移板的三维地图,精确到一千分之一英寸以上,可以用于监测相对于加工基座和钢建筑柱的运动或磨损。请点击此链接了解更多关于Team Corporation的信息T-Film滑动表。Experior实验室安装TEAM T-FILM滑台,以提高大型和重型振动测试的性能大、重试验件的高性能振动试验Experior实验室最近用另一种新的振动系统扩展了它的动态测试能力。新安装的系统结合了两个测试行业专家组件,一个新的Unholtz DickieT4000振动系统和一个团队 t型膜轴承滑台。与Experior实验室的其他型号T4000激振器类似,新系统提供3”冲程,具有40000力磅的正弦和随机振动能力。480kVA UD T4000放大器提高了其抗冲击能力,减少了磨损,提高了运行时间,以应对苛刻的振动运动。与UD T4000激振器配套的是一个定制的72“x72”高性能精密滑台,由设计和制造团队的公司。与传统的滑动板放在花岗岩表面的油膜上相比,TEAM工作台的滑动板由连续的5乘5的TEAM膜静压轴承网格支撑。t型膜轴承的设计允许直接传输几乎所有测试对象的负载直接进入底座,并通过静压轴承设计完成。t型膜轴承比标准油膜和线性轴承有几个优点。TEAM轴承独特的倒T型提供了改进的刚度,负载传递和改进的力矩传递到反应基座。这最大限度地减少了滑动板的偏转和交叉轴振动,也允许试验物品具有更高的倾覆力矩。此外,静压轴承显著增加了负载能力,这意味着工作台可以容纳更重的测试物品。振动测试Experior实验室’MIL-STD-790,NASA而且喷气推进实验室批准和ISO-17025:2005经过认证的实验室拥有多个最先进的电动振动测试系统,可以处理最苛刻的振动和冲击测试规范。对于超大和重型载荷的振动测试应用,Experior实验室的振动测试系统可以串联使用,为大型物品提供联合80000 lbf。这些应用包括火箭发动机、火箭级分离执行器、卫星、轨道反射器、电动汽车电池、铁路组件等等。定制的振动测试夹具和滑动板使我们可以测试几乎任何形状和大小的零件。振动测试功能?正弦扫描振动测试:220 G pk?随机振动测试:175 G rms?洁净室选择?复合环境:冷热温度下的振动?多达 300通道的振动测试数据记录?时间记录数据高达200kHz应用程序?正弦扫描振动测试?正弦静止振动试验?正弦突发振动试验?随机振动测试?正弦随机检验?随机对随机试验?风车旋转?振动测试?枪声振动测试?货物运输振动测试标准数据表ABS1138-001APTA PR-CS-S-006-98AECTP-400ASTM D3580ATPD-2404BAWES-3362-PRDNVGL-CG-0339IEC 60068 - 2IEC 61373美国国家航空航天局eee -本月- 002NAVMAT P-9492RTCA DO-160SSP 41172mil - hdbk - 2164 aMIL-PRF-6106MIL-STD-167MIL-STD-202MIL-DTL-3928MIL-STD-750MIL-STD-810MIL-STD-883MIL-STD-1540MIL-PRF-24623UN38.349CFR 178.985振动测试数据表振动/冲击白皮书振动测试设备振动测试技术恩典山毛榉Grace Beech是Experior实验室的项目工程师之一,主要专注于动力学。她负责在Experior实验室进行的大多数振动测试和冲击测试。格雷斯管理振动测试实验室的各个方面,包括夹具设计和评估,项目管理,振动测试能力评估,激振器故障排除和维护,以及调度。Grace于2014年加入Experior Laboratories。她带来了她之前在卓达航空公司的商务舱座椅部分工作的工程经验,以及她在TriSep公司振动测试部门担任制造工程师的经历。她持有加州大学圣巴巴拉分校机械工程学士学位。

  • 高频共振疲劳试验机sincotec

    德国Sincotec 公司技术描述德国SINCOTEC公司:公司位于德国中部工业区的Clausthal市。公司成立于上世纪六十年代,专注于共振疲劳试验系统的研发和试验工程技术咨询。SINCOTEC公司目前是全球zei大的共振疲劳试验机制造厂商,拥有POWER SWING 品牌。并且长时间来给其他主要高频试验机厂商提供OEM贴牌制造。德国SINCOTEC在共振试验系统领域是世界的领导者,不但在现有常规的电磁共振技术上优化改进控制和驱动技术,并且独创了领先的电动大位移(12毫米动态行程)共振技术- Power Swing MOT。在控制技术上Sincotec更是突破了常规高频疲劳试验机的力控模式,可提供更为灵活的位移和应变控制技术。SINCOTEC的试验机广泛的运用在材料试验、结构试验领域,从材料科研,到汽车零部件、航空航天应用。SINCOTEC公司目前已在中国拥有众多的客户,为不断提出试验苛刻要求的中国市场提供坚实的技术保证。 德国Sincotec公司是一家提供材料和结构动态测试系统的供应商,在高效节能的机电和电磁激励试验系统领域,是无可争辩的领导者。 Sincotec公司是疲劳特性和疲劳行为研究的专家。它的技术是为我们安全、可靠生产高疲劳强度的产品提供了强有力的保障。Sincotec系统广泛的应用于个工业领域,包括航空、汽车、铁路、钢铁、紧固件等疲劳行为和安全性极为关注的产品;大学实验室或研究机构也大量使用Sincotec的系统研究新型材料的力学特性。 Sincotec还结合丰富的测试经验和其研究中心近百套测试系统提供各种试验服务,包括复杂载荷、高低温、高压、腐蚀、震动等。Sincotec的测试中心满足DIN EN ISO/IEC 17025标准。Sincotec高频试验机动态标定满足ISO4965和ASTME467-98标准。 Sincotec的设备按驱动方式分为伺服马达驱动和电磁共振驱动。其以极低的能耗完成高达300Hz的常态或复杂环境状态各种疲劳试验,包括拉伸、压缩、弯曲、扭转、旋转及复杂应力状态等。 Sincotec可提供包括温度、腐蚀、高压、燃气等各种环境模拟装置。 德国Sincotec 高频疲劳试验机总体设计:SINCOTEC设备有足够的动静态高强度、高刚度、稳定性和高精度,采用先进技术,保证系统具有良好的动态性能,所选控制系统执行组件精度高,可靠性好,抗干扰能力强,响应速度快。SINCOTEC高频机器较大的空间设计和超刚性设计,为装备工件试验和附加环境装置提供空间。SINCOTEC机器遵守DIN EN ISO/IEC[img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306120102398498_2965_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306120102398478_8479_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306120102398498_2965_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306120102397703_9683_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306120102399124_3347_1602049_3.png[/img]

  • 前几天扫描荷叶表面,把针给扫断了。

    用的是NSG10探针,悬臂梁长95μm,刚度12N/M左右,轻敲模式,扫描面积90*90μm,扫描的时候就听见“咯咯咯”的脆响,激光点左右摆动幅度很大,结果针就断了。换了CSG10探针,悬臂梁长225μm,刚度0.2N/M左右,接触模式扫描,虽然针没断,但效果也不好,扫描过程中探针扭转严重。各位做实验的时候有遇到过类似的现象吗?如果想要扫描荷叶表面形貌,应该用哪种模式?是不是应该换一根软一点的针比较好?

  • 【分享】核磁共振技术的医学应用

    核磁共振成像(Nuclear Magnetic Resonance Imaging,NMRI),又称磁共振成像(Magnetic Resonance Imaging,MRI),核磁共振(MRI)又叫核磁共振成像技术。是继CT(CT成像是在X射线的基础上运用计算机技术,使平面重叠的X像可以清晰一个平面一个平面的扫描)后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。医学家们发现水分子中的氢原子可以产生核磁共振现象,利用这一现象可以获取人体内水分子分布的信息,从而精确绘制人体内部结构,进而发明了这一技术。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。   磁共振成像技术是核磁共振在医学领域的应用。人体内含有非常丰富的水,不同的组织,水的含量也各不相同,如果能够探测到这些水的分布信息,就能够绘制出一幅比较完整的人体内部结构图像,核磁共振成像技术就是通过识别水分子中氢原子信号的分布来推测水分子在人体内的分布,进而探测人体内部结构的技术。与用于鉴定分子结构的核磁共振谱技术不同,核磁共振成像技术改编的是外加磁场的强度,而非射频场的频率。核磁共振成像仪在垂直于主磁场方向会提供两个相互垂直的梯度磁场,这样在人体内磁场的分布就会随着空间位置的变化而变化,每一个位置都会有一个强度不同、方向不同的磁场,这样,位于人体不同部位的氢原子就会对不同的射频场信号产生反应,通过记录这一反应,并加以计算处理,可以获得水分子在空间中分布的信息,从而获得人体内部结构的图像。 自从核磁共振诞生起,它就以自已的卓越的成像能力而在医学检查领域占到一席之位。而且核磁共振技术在医学上的应用范围在不断扩大,检查准确率也在不断提高,发挥着某些不可替代的作用。而且,不同型号的核磁共振仪器正在千万的医院中得以应用,为人类的健康造福。人脑是如何思维的,一直是个谜。而且是科学家们关注的重要课题。而利用MRI的脑功能成像则有助于我们在活体和整体水平上研究人的思维。其中,关于盲童的手能否代替眼睛的研究,是一个很好的样本。正常人能见到蓝天碧水,然后在大脑里构成图像,形成意境,而从未见过世界的盲童,用手也能摸文字,文字告诉他大千世界,盲童是否也能“看”到呢?专家通过功能性MRI,扫描正常和盲童的大脑,发现盲童也会像正常人一样,在大脑的视皮质部有很好的激活区。由此可以初步得出结论,盲童通过认知教育,手是可以代替眼睛“看”到外面世界的。 20世纪中叶至今,信息技术和生命科学是发展最活跃的两个领域,专家相信,作为这两者结合物的MRI技术,继续向微观和功能检查上发展,对揭示生命的奥秘将发挥更大的作用。

  • 激光测振仪在笔记本电脑结构振动测试中的应用

    激光测振仪在笔记本电脑结构振动测试中的应用

    结构振动特性决定了结构工作的可靠性。振动测试中,常用的是传统的接触式测量方式,但对于轻质量结构,这种方式会产生附加质量和刚度问题,影响测试结果。笔记本电脑质量相对较轻,结构也复杂,其振动特性测量适合采用非接触测量方法,利用激光测振仪测量笔记本电脑结构的振动特性或开展模态测试分析。单点式激光测振仪可用于测量笔记本电脑结构的振动响应,扫描式激光测振仪可以用于笔记本电脑结构的模态测试分析或工作变形分析中。 [img=,558,311]https://ng1.17img.cn/bbsfiles/images/2019/03/201903271515449311_283_3859729_3.jpg!w558x311.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,也能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有出色的线性度,测试频带宽,最高可达10MHz。 OptoMET激光测振仪有四个系列:分别是Vector、Nova、Dual Fiber、Scan系列:Vector系列氦氖激光测振仪是通用性激光测振仪,适用与大多数非接触式振动测量应用场合。该系列激光测振仪特别适用于反射性表面或水中的测试,以及需要激光光斑尽可能小的应用场合。Nova系列激光测振仪采用不可见的短波红外激光(1550nm),这种激光束的输出功率超过传统红色氦氖激光10倍,但激光安全等级仍然是人眼安全的激光等级(Class I)。短波红外激光入射功率大,Nova系列红外激光测振仪适用于粗糙表面和低反射率表面的振动测量,长距离振动测量和高频振动测量。选用不同的光学镜头,包括一款准直镜头,Nova系列红外激光测振仪的工作距离覆盖0mm到300m。Dual Fiber双光纤短波红外激光测振系统包括一套短波红外激光测振仪和一套柔性光纤镜头,物镜包括准直镜头和聚焦镜头两种。这套激光测振仪内置了稳定的短波红外激光,在任何被测物表面的测量信号都有非常高的信噪比。多个光纤镜头可通过一个光纤开关连接至测振仪,因此,可以同时传输多个通道(2,4,8,16……),光纤开关带有电气接口(以太网、USB、TTL……),可以由 PC 远程控制。Scan系列扫描式激光测振仪和Nova系列一样采用短波红外激光进行测量。这套激光测振仪用于非接触式的振动测量,可对结构的振动进行可视化的测试和分析。采用这套仪器进行工作变形分析(ODS)或模态分析,过程就如同拍摄视频一样简单。通过预设定的测量点,激光测振仪可对整个被测面进行扫描式的测量。这种强大的扫描测振系统采用了当前最为先进的数字处理技术,同时集成了强大的数据采集、3D可视化以及数据分析软件。来源:嘉兆科技官网 来源链接:http://www.tnm-corad.com.cn/news/Show-5611.html

  • 关于机器人减速机的技术分享

    关于机器人减速机的技术分享

    机器人减速机采用双支撑支持机构和针轮机构。这种机构特点其具备高可靠性、高刚度、高精度、大力矩的特性;同时,为了支持更大的载荷,其内部装有大型角接触球轴承。出厂时该减速机内部已封装有润滑脂,独特的输入花键轴和电机法兰,可以与任何伺服电机相匹配。该减速机有法兰输出和轴输出两种输出形式。广泛应用于工业机器人、五面体加工中心以及数控旋转台等领域。机器人减速机机型为中空结构,这使设计拥有更发的灵活性,使线缆及其他必要的设备可以轻松穿过中空轴孔,在机器人的设计中采用这种中空方式结构设计,可使电缆由减速机中部穿过,使机器人结构简单,体积更小。同时也是一款高精度、高扭距、高刚度、高可靠性、承受大载荷、追求简单实用,已经在工业机器人、机床、半导体生产设备、包装机械、雷达等领域有广泛的应用。机器人减速机的寿命而言,扭力计算非常重要,并且要注意加速度的最大转矩值(TP),是否超过减速机之最大负载扭力。适用功率通常为市面上的伺服机种的适用功率,减速机的适用性很高,工作系数都能维持在1.2以上,但在选用上也可以以自己的需要来决定。http://ng1.17img.cn/bbsfiles/images/2013/11/201311041642_475303_2814155_3.jpg机器人减速机的技术优势:① 齿高较低,不需要很深的啮合距离就可以获得较大的啮合量,可承受较大的扭矩。② 齿宽较大,齿根弧度增大,减少发生断裂失效的风险。③ 由于所需柔轮变形量较小,可使柔轮的寿命得到极大提高。④ 多达20%~30%的齿参与啮合,齿面比压较小。

  • 【分享】生物力学试验机技术指标

    【分享】生物力学试验机技术指标

    生物力学试验机技术指标[~115583~]1.1. 设备名称:25KN生物力学电液伺服疲劳试验机1.2. 数量:1套1.3. 用途:此系统适合各种材料的生物力学性能试验,包括拉伸、压缩、弯曲、扭转、高、低周、蠕变和蠕变疲劳交互作用等。如:接骨板、椎间融合器、膝关节、脊柱固定器、金属涂层、髋关节、髓内钉等的力学鉴定。设备设计、制造应符合ISO国际标准,所有零部件和各种仪表的计量单位必须全部采用国际单位(SI)标准。1.4. 设备的结构应保证有足够的动静态强度、刚度、稳定性和高精度,采用先进技术,保证系统具有良好的动态品质,所选伺服系统执行组件精度高,可靠性好,抗干扰能力强,响应速度快。[img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624043_1602049_3.jpg[/img]

  • 【资料】核磁共振技术(共2讲)

    [B][center]核磁共振技术 (1)[/center][/B] 磁矩是由许多原子核所具有的内部角动量或自旋引起的,自1940年以来研究磁矩的技术已得到了发展。物理学家正在从事的核理论的基础研究为这一工作奠定了基础。1933年,GO斯特恩(Stern)和I艾斯特曼(Estermann)对核粒子的磁矩进行了第一次粗略测定。美国哥伦比亚的II拉比(Rabi生于1898年)的实验室在这个领域的研究中获得了进展。这些研究对核理论的发展起了很大的作用。当受到强磁场加速的原子束加以一个已知频率的弱振荡磁场时原子核就要吸收某些频率的能量,同时跃迁到较高的磁场亚层中。通过测定原子束在频率逐渐变化的磁场中的强度,就可测定原子核吸收频率的大小。这种技术起初被用于气体物质,后来通过斯坦福的F.布络赫(Bloch生于1905年)和哈佛大学的EM珀塞尔(Puccell生于1912年)的工作扩大应用到液体和固体。布络赫小组第一次测定了水中质子的共振吸收,而珀塞尔小组第一次测定了固态链烷烃中质子的共振吸收。自从1946年进行这些研究以来,这个领域已经迅速得到了发展。物理学家利用这门技术研究原子核的性质,同时化学家利用它进行化学反应过程中的鉴定和分析工作,以及研究络合物、受阻转动和固体缺陷等方面。1949年,WD奈特证实,在外加磁场中某个原子核的共振频率有时由该原子的化学形式决定。比如,可看到乙醇中的质子显示三个独立的峰,分别对应于CH3、CH2和OH键中的几个质子。这种所谓化学位移是与价电子对外加磁场所起的屏蔽效应有关。(1)70年代以来核磁共振技术在有机物的结构,特别是天然产物结构的阐明中起着极为重要的作用。目前,利用化学位移、裂分常数、H—′HCosy谱等来获得有机物的结构信息已成为常规测试手段。近20年来核磁共振技术在谱仪性能和测量方法上有了巨大的进步。在谱仪硬件方面,由于超导技术的发展,磁体的磁场强度平均每5年提高1.5倍,到80年代末600兆周的谱仪已开始实用,由于各种先进而复杂的射频技术的发展,核磁共振的激励和检测技术有了很大的提高。此外,随着计算机技术的发展,不仅能对激发核共振的脉冲序列和数据采集作严格而精细的控制,而且能对得到的大量的数据作各种复杂的变换和处理。在谱仪的软件方面最突出的技术进步就是二维核磁共振(2D—NMR)方法的发展。它从根本上改变了NMR技术用于解决复杂结构问题的方式,大大提高了NMR技术所提供的关于分子结构信息的质和量,使NMR技术成为解决复杂结构问题的最重要的物理方法。①2D—NMR技术能提供分子中各种核之间的多种多样的相关信息,如核之间通过化学键的自旋偶合相关,通过空间的偶极偶合(NOE)相关,同种核之间的偶合相关,异种核之间的偶合相关,核与核之间直接的相关和远程的相关等。根据这些相关信息,就可以把分子中的原子通过化学键或空间关系相互连接,这不仅大大简化了分子结构的解析过程,并且使之成为直接可靠的逻辑推理方法。②2D—NMR的发展,不仅大大提高了大量共振信号的分离能力,减少了共振信号间的重叠,并且能提供许多1D—NMR波谱无法提供的结构信息,如互相重叠的共振信号中每一组信号的精细裂分形态,准确的耦合常数,确定耦合常数的符号和区分直接和远程耦合等。③运用2D—NMR技术解析分子结构的过程就是NMR信号的归属过程,解析过程的完成也就同时完成了NMR信号的归属。完整而准确的数据归属不仅为分子结构测定的可靠性提供了依据,而且为复杂生物大分子的溶液高次构造的测定奠定了基础。④2D—NMR的发展导致了杂核(X—NMR),特别是13C—NMR谱的广泛研究和利用。杂核大多是低丰度,低灵敏度核种,由于灵敏度低和难以信号归属,以往利用不多。但X—NMR谱包含有大量的有用结构信息,新颖的异核相关谱(HET—Cosy)提供的异核之间的相关信息(如H—C,C—C,H—P,H—N)不仅为这些杂核的信号归属提供了依据,而且能提供H—NMR所不能提供的重要结构信息。⑤2D—NMR技术的发展也促进了NOE的研究和应用的发展。NOE反映了核与核在空间的相互接近关系,因此它不仅能提供核与核之间(或质子自旋耦合链之间)通过空间的连接关系,而且能用来研究核在空间的相互排布即分子的构型和构象问题。2D—NMR技术由于其突出的优点和巨大的潜力,在谱仪硬件能够满足2D—NMR实验(即进入80年代)以后的短短几年时间内,已有1000余篇论文和数十种评论和专著出现。

  • 有关核磁共振技术的简介及其应用

    磁矩是由许多原子核所具有的内部角动量或自旋引起的,自1940年以来研究磁矩的技术已得到了发展。物理学家正在从事的核理论的基础研究为这一工作奠定了基础。1933年,GO斯特恩(Stern)和I艾斯特曼(Estermann)对核粒子的磁矩进行了第一次粗略测定。美国哥伦比亚的II拉比(Rabi生于1898年)的实验室在这个领域的研究中获得了进展。这些研究对核理论的发展起了很大的作用。当受到强磁场加速的原子束加以一个已知频率的弱振荡磁场时原子核就要吸收某些频率的能量,同时跃迁到较高的磁场亚层中。通过测定原子束在频率逐渐变化的磁场中的强度,就可测定原子核吸收频率的大小。这种技术起初被用于气体物质,后来通过斯坦福的F.布络赫(Bloch生于1905年)和哈佛大学的EM珀塞尔(Puccell生于1912年)的工作扩大应用到液体和固体。布络赫小组第一次测定了水中质子的共振吸收,而珀塞尔小组第一次测定了固态链烷烃中质子的共振吸收。自从1946年进行这些研究以来,这个领域已经迅速得到了发展。物理学家利用这门技术研究原子核的性质,同时化学家利用它进行化学反应过程中的鉴定和分析工作,以及研究络合物、受阻转动和固体缺陷等方面。1949年,WD奈特证实,在外加磁场中某个原子核的共振频率有时由该原子的化学形式决定。比如,可看到乙醇中的质子显示三个独立的峰,分别对应于CH3、CH2和OH键中的几个质子。这种所谓化学位移是与价电子对外加磁场所起的屏蔽效应有关。(1)70年代以来核磁共振技术在有机物的结构,特别是天然产物结构的阐明中起着极为重要的作用。目前,利用化学位移、裂分常数、H—′HCosy谱等来获得有机物的结构信息已成为常规测试手段。近20年来核磁共振技术在谱仪性能和测量方法上有了巨大的进步。在谱仪硬件方面,由于超导技术的发展,磁体的磁场强度平均每5年提高1.5倍,到80年代末600兆周的谱仪已开始实用,由于各种先进而复杂的射频技术的发展,核磁共振的激励和检测技术有了很大的提高。此外,随着计算机技术的发展,不仅能对激发核共振的脉冲序列和数据采集作严格而精细的控制,而且能对得到的大量的数据作各种复杂的变换和处理。在谱仪的软件方面最突出的技术进步就是二维核磁共振(2D—NMR)方法的发展。它从根本上改变了NMR技术用于解决复杂结构问题的方式,大大提高了NMR技术所提供的关于分子结构信息的质和量,使NMR技术成为解决复杂结构问题的最重要的物理方法。①2D—NMR技术能提供分子中各种核之间的多种多样的相关信息,如核之间通过化学键的自旋偶合相关,通过空间的偶极偶合(NOE)相关,同种核之间的偶合相关,异种核之间的偶合相关,核与核之间直接的相关和远程的相关等。根据这些相关信息,就可以把分子中的原子通过化学键或空间关系相互连接,这不仅大大简化了分子结构的解析过程,并且使之成为直接可靠的逻辑推理方法。②2D—NMR的发展,不仅大大提高了大量共振信号的分离能力,减少了共振信号间的重叠,并且能提供许多1D—NMR波谱无法提供的结构信息,如互相重叠的共振信号中每一组信号的精细裂分形态,准确的耦合常数,确定耦合常数的符号和区分直接和远程耦合等。③运用2D—NMR技术解析分子结构的过程就是NMR信号的归属过程,解析过程的完成也就同时完成了NMR信号的归属。完整而准确的数据归属不仅为分子结构测定的可靠性提供了依据,而且为复杂生物大分子的溶液高次构造的测定奠定了基础。④2D—NMR的发展导致了杂核(X—NMR),特别是13C—NMR谱的广泛研究和利用。杂核大多是低丰度,低灵敏度核种,由于灵敏度低和难以信号归属,以往利用不多。但X—NMR谱包含有大量的有用结构信息,新颖的异核相关谱(HET—Cosy)提供的异核之间的相关信息(如H—C,C—C,H—P,H—N)不仅为这些杂核的信号归属提供了依据,而且能提供H—NMR所不能提供的重要结构信息。⑤2D—NMR技术的发展也促进了NOE的研究和应用的发展。NOE反映了核与核在空间的相互接近关系,因此它不仅能提供核与核之间(或质子自旋耦合链之间)通过空间的连接关系,而且能用来研究核在空间的相互排布即分子的构型和构象问题。2D—NMR技术由于其突出的优点和巨大的潜力,在谱仪硬件能够满足2D—NMR实验(即进入80年代)以后的短短几年时间内,已有1000余篇论文和数十种评论和专著出现。(2)NMR中新的实验和应用几乎每天都在出现,NMR技术本身今后将继续就如何得到更多的相关信息,简化图谱,改善和提高检测灵敏度等几方面进行发展,其中最富有发展前景的新技术有:①选择和多重选择激励技术,进一步发展多量子技术,通过采用先进的射频技术激发那些在通常情况下禁阻的,极其微弱的多量子跃迁。选择性地探测分子内核与核之间的特定相关关系。或通过特形脉冲(shaped pulse)和软脉冲选择性地激发某些特定的核,集中研究某些感兴趣的结构问题。②“反向”和“接力”的检测技术,在异核相关谱方面,采用反向检测(称之为inverseNMR,即通过H检测来替代以往的用杂核检测的测试方法)可大大提高异核相关谱的检测灵敏度(约1个数量级)。在同核相关谱方面,通过接力相干转移(RCT—1),多重接力相干迁移(RCT—2)和各向同性混合的相干转移技术(如HOHAHA)可用来解决复杂分子(包括生物大分子)的自旋偶合解析和信号归属问题。③发展并应用谱的编辑技术,利用NMR本身在激发和接收方面的多种多样的选择和压制技术,可对十分复杂的NMR信号进行分类编辑。④发展三维核磁共振(3D—NMR)技术,随着NMR的研究对象向生物大分子转移,NMR技术所提供的结构信息的数量和复杂性呈几何级数增加,近来已出现3D—NMR技术来替代2D—NMR方法,用于生物大分子的结构测定。初步探索的结果表明3D—NMR方法不仅进一步提高了信号的分离能力,并且能提供许多2D—NMR方法所不能提供的结构信息,大大简化结构解析过程。3D—NMR测定方法的广泛使用还有待于测定方法进一步改进和计算机技术的进步。⑤与分子力学计算相结合,发展分子模型技术。在NNR信号完全归属的基础上,利用NOE所提供的分子中质子间的距离信息、计算分子三维立体构造的技术近年来在多肽和小蛋白质分子的研究中取得了巨大的成功。以距离几何算法和分子动力学为基础的分子模型技术(molecular modelling)正在逐步应用于其它各种生物分子的溶液构象问题。但在大分子与小分子或小分子与小分子相互作用的体系还有许多问题有待解决,例如在运动条件不利的体系中如何得到距离信息和距离信息的精度等。(3)NMR波谱技术今后最富有前景的应用领域有以下几个方面:①继续帮助有机化学家从自然界寻找具有生物活性的新颖有机化合物,今后这方面的研究重点是结构与活性的关系。即研究这些物质在参与生命过程时与生物大分子(如受体)或其它小分子相互作用的结构特征和动态特征。②更多地用于多肽和蛋白质在溶液中高次构造的解析,成为蛋白质工程和分子生物学中研究蛋白质结构与功能关系的重要工具。并朝着采用稳定同位素标记光学CIDNP法与2D—NMR,3D—NMR技术相结合的方向发展。③NMR技术将广泛用于核酸化学,确定DNA的螺旋结构的类型和它的序列特异性。研究课题将集中在核酸与配体的相互作用,其中核酸与蛋白质分子、核酸与小分子药物的相互作用是最重要的方面。④NMR技术对于糖化学的应用将显示出越来越大的潜力,采用NMR技术来测定寡糖的序列,连接方式和连接位置,确定糖的构型和寡糖在溶液中的立体化学以及与蛋白质相互作用的结构特征和动态特征将是重要的研究领域。⑤NMR技术将更多地用于研究动态的分子结构和在快速平衡中的变化。以深层理解分子的结构,描示结构的动态特征,了解化学反应的中间态及相互匹配时能量的变化。⑥NMR技术将进一步深入生命科学和生物医学的研究领域,研究生物细胞和活组织的各种生理过程的生物化学变化。以上都是与溶液NMR研究有关的领域,近年来固体NMR研究的NMR成象(imaging)技术也取得了巨大的进步,并在材料科学和生物医学研究方面继续发挥重要的作用。

  • 横向振动测试试验技术

    LOCK紧固件横向振动试验机螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。LOCK紧固件横向振动试验机:按照ISO16130-2015、DIN 65151、DIN25201-4、GB/T 10431-2008(参考)Junker原理规定的水平横向振动测试标准,来检测紧固件在一定频率和闭环控制恒定振幅状态条件下,施加横向动态载荷下的自锁性能(防松性能)。根据设定的初始夹紧力或扭矩自动拧紧,启动测试,根据设定的测试参数条件,系统将记录并分析紧固件轴力、拧紧扭矩、恒定振幅、水平推力的变化。通过相关试验曲线,可以分析出螺栓/螺母在振动环境下的自锁性能(防松性能)和各项技术指标结果。[img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209210036540189_4645_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209210036540860_120_1602049_3.png[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制