当前位置: 仪器信息网 > 行业主题 > >

负刚度隔振技术

仪器信息网负刚度隔振技术专题为您整合负刚度隔振技术相关的最新文章,在负刚度隔振技术专题,您不仅可以免费浏览负刚度隔振技术的资讯, 同时您还可以浏览负刚度隔振技术的相关资料、解决方案,参与社区负刚度隔振技术话题讨论。

负刚度隔振技术相关的资讯

  • 新品上市-环刚度试验机 高密度管材抗压测试
    热塑性塑料波纹管排水管导管高密度管材抗压测试 环刚度试验机ZB-810型50KN伺服控制环刚度试验机主要适用于各类管材的环刚度指标测试,更换不同夹具,还可以做拉伸、弯曲等试验。环刚度试验机仪器特点:1. 采用高精度力量传感器,具有精度高,线性好等优点;2. 动力系统采用伺服电机+伺服驱动器+台湾ABBA滚珠丝杆+同步带传动,运行平稳,噪音低;3. 上下夹具同轴度好且整体机械结构刚度高;4.采集数据量处理能力强,可同时对多条测试曲线进行对比分析;5.安全设施专业化,具有过载自动保护停机、上下行程限位保护停机、漏电自动断电保护;6.位移、速度、力量三闭环控制系统,同步采集频率达120Hz以上,即使在材料屈服阶段也能保证数据真实可靠;7.可实现定速度、定位移、定荷重(可设定保持时间)、定荷重增率、定应力增率、定应变增率等控制模式加上多阶控制模式可满足不同的测试要求;8.软件操作界面可实现中英文及其它小语种任意切换,试验报告可通过Excel或Word文档格式输出。关于正瑞泰邦江苏正瑞泰邦电子科技有限公司坐落在历史文化名城扬州,由成立于2007年的江都市天璨试验机械厂经过十年发展而来。公司拥有专业的技术开发和售后服务团队,主要生产物理性能测试仪器及相关软件开发,产品涉及材料力学性能试验、材料燃烧测试、高低温环境试验、橡胶加工设备四大板块;销售网络遍布全国并远销韩国、日本、中东等地区。主要服务于石油化工企业、原材料检测单位、高校及第三方检测机构等。 多年来,我们一直坚持以“多元化、一站式”服务为中心,站在用户角度思考问题,急用户之所急,尽量为用户提供所需要的成套设备及工具。特别是在用户实验室建设初期,我们免费提供经验及方案供参考,得到了广大用户的好评。同时,我们拥有自主进出口权,可以为用户在海外实验室提供“门到门”(DTD)服务;真正做到生产、销售、送货上门、安装调试及售后一条龙服务。节约用户时间和精力是我们的售前服务初衷,快速、圆满的解决问题是我们的售后服务宗旨。
  • 欧库睿因i4系列主动隔振台:振动隔离的得力助手
    主动隔振台在现代科技和工业领域中扮演着重要角色。随着科技的进步,对测量精度和制造质量的要求不断提高,传统的被动隔振台已难以满足这些需求。主动隔振台以其优越的隔振性能和快速响应能力,广泛应用于科学研究、工业生产和高科技领域。科学研究领域在科学研究中,尤其是涉及纳米技术、微电子学和高分辨率显微镜的实验中,环境振动会极大地影响实验结果的精度。主动隔振台能够提供超低频率范围内的优异隔振性能,确保实验设备在极其稳定的环境中运行。其快速稳定时间和高固有刚度使得实验设备能够在极短时间内达到稳定状态,大大提高了实验效率和数据的可靠性。工业生产领域在精密制造和加工过程中,如半导体制造、光学仪器生产和超精密加工,环境振动同样是一个关键问题。主动隔振台通过即时产生反作用力来抵消振动,提供卓越的振动隔离效果。其宽带隔振能力和多自由度隔振功能,确保了生产设备在各种振动频率和方向上的稳定性。这不仅提高了生产精度和产品质量,还减少了设备的磨损和维护成本。医疗和生物科技领域在医疗和生物科技领域,如显微手术、医学成像和生物实验,环境振动对操作精度和成像质量的影响尤为显著。主动隔振台的高稳定性和快速响应能力,使得这些精密操作和实验能够在极为稳定的环境中进行,从而保证了操作的成功率和实验结果的准确性。其简单的操作方式和无需压缩空气的设计,进一步提高了使用的便利性和安全性。建筑振动隔离在建筑工程中,特别是高精度测量设备安装的建筑物,如天文台、精密实验室和高科技研究机构,主动隔振台也得到了广泛应用。它们能够有效隔离来自建筑物和外部环境的振动,确保高精度设备在最佳条件下运行。其标准化产品和定制化解决方案,满足了不同建筑环境和设备的特殊需求,提供了可靠的振动隔离保障。茂默科学在此推荐欧库睿因i4系列 桌面式主动隔振系统无低频共振:相较于气囊式被动隔振台,主动隔振台在低频范围内也能提供出色的隔振性能。超快稳定时间:稳定时间低至0.3秒,而普通被动隔振台的稳定时间为30秒-60秒。宽带隔振:主动隔振台的带宽为0.6/1Hz至200Hz,远超被动隔振台。六个自由度隔振:提供全方位的振动隔离,适应多种振动方向。即时反作用力:真正的主动隔振,通过即时产生反作用力来抵消振动。简便操作:按钮式操作解决方案,用户友好,易于使用。紧凑设计:设计紧凑,安装简便,适合各种工作环境。高度位置稳定性:在1Hz时的固有刚度通常是被动隔振台的20到30倍,确保设备的高度位置稳定。无需压缩空气:接电即可使用,无需额外的压缩空气支持。广泛适用:适用于分辨率测量设备与建筑振动隔离,拥有标准化产品和定制产品,满足多种需求。茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多色差仪相关的产品,Welcome to consult~咨询有惊喜哦!
  • 中物院唐昶宇团队和西南交大许阳光团队《Smart Mater. Struct.》:一种刚度增强三维内
    负泊松比结构材料是一种在受压时表现为横向收缩,在受拉时表现为横向膨胀的有序多孔介质。独特的变形特性赋予了负泊松比结构材料诸多优异的力学性能,如高剪切强度、高抗压痕/抗冲击性能、高抗断裂性及能量吸收等。自从Lakes等人首次报道负泊松比聚氨酯泡沫以来,众多研究者都致力于开发新型负泊松比结构材料并寻找其潜在应用。内凹蜂窝结构是一种典型的二维负泊松比结构材料,通过内凹机制使材料呈现负泊松比效应。然而,由于高孔隙率,其刚度远低于组成材料的刚度。通过加入加强杆、制备负泊松比复合材料、设计变梯度结构、引入层次结构等方法可以显著提高结构材料的刚度。然而,上述方法大多数适用于二维的内凹蜂窝结构,这就意味着其负泊松比效应只能在平面内方向出现。相比之下,三维内凹结构材料的工程应用潜力更大,但其刚度和负泊松比之间仍然存在此消彼长的问题且二者都与其胞元结构有着密切的关系。为满足日益增长的实际工程需求,需要设计一种既能保证负泊松比效应又能提升整体刚度的增强型负泊松比结构材料,并寻找胞元结构与泊松比和刚度的关联机制,最终实现通过结构参数对泊松比和刚度同时进行调控的目标。近日,中国工程物理研究院唐昶宇研究员团队和西南交通大学许阳光副教授团队共同设计了一种新型的三维内凹负泊松比结构材料并对其结构参数与等效弹性模量(与刚度相关)和泊松比的关联机理开展了系统的研究。通过在典型的三维内凹结构(图1a)上添加箭头结构来实现增强目的(图1b和图1c),利用微尺度3D打印机(nanoArch P150,摩方精密)制备了增强型结构样品(图1d)。结合实验和有限元模拟发现,三维增强型内凹结构的等效弹性模量和负泊松比可以通过不同的结构参数(即厚度比h、斜杆长度比a、竖杆长度比b和重入单元的角度q)进行调整。例如,通过优化结构参数,增强型内凹结构的等效弹性模量比典型内凹结构提高12.32倍,而二者的泊松比均为-0.28。 图1.(a)典型三维内凹结构(RS)单元;(b)带有加强杆的三维内凹结构(RRS)单元;(c)对应的几何构型以及(d)实验样品照片(从左至右为RRS1-5)此外,研究团队还探究了相对密度与等效弹性模量比、泊松比的关系,如图2所示。等效弹性模量比1,表明增强型内凹结构在相同相对密度下有更高的刚度。此外,在相同的相对密度下,增强型内凹结构可以实现保持几乎不变的泊松比但显著提高材料的刚度,如图2(b)所示。添加的箭头结构与内凹结构之间形成了一种双箭头结构,形成的双箭头结构进一步促使了新结构在受压时产生收缩。因此该增强型内凹结构能在几乎不变的泊松比下有更高的刚度。图3中的位移云图也表明增强型内凹结构具有负泊松比效应。图2.增强型内凹结构和典型内凹结构相对密度与等效弹性模量比、泊松比的关系 图3.在沿z方向的单轴准静态压缩试验下,试样RRS2在x方向上的位移云图总的来讲,该工作通过独特的结构设计,实现了在几乎不牺牲负泊松比效应的前提下显著提高材料的刚度,为进一步拓宽负泊松比结构材料的应用范围提供了一种有效的解决方案,也对这类结构超材料性能导向的结构逆向设计进行了有益探索。上述研究成果以题为“A 3D Re-entrant Structural Metamaterial with Negative Poisson’s Ratio Reinforced by Adding Arrow Structures”发表在《Smart Materials and Structures》期刊上。论文第一作者为中国工程物理研究院和西南交通大学联合培养的硕士研究生王杰,通讯作者为中国工程物理研究院的唐昶宇研究员和西南交通大学的许阳光副教授,中国工程物理研究院总体工程研究所的硕士研究生吴宗泽和浙江大学的肖锐研究员在研究工作的开展和论文撰写过程中提供了重要帮助。
  • 小身材,大作用——Accurion Nano系列主动隔振台
    随着科学技术的快速发展,精密仪器和设备在各个领域中的应用越来越广泛。这些精密仪器对环境的稳定性要求高,尤其是对振动的敏感度。在科研实验室、半导体制造、医药研究、光学设备以及高精度测量等领域,环境振动可能导致数据不准确、产品缺陷或实验失败。因此,如何有效隔离环境振动,保障仪器的稳定运行,成为了一个关键问题。应用领域科研实验室:在物理、化学、生物等实验室中,高精度仪器如原子力显微镜、光学显微镜和质谱仪等对振动非常敏感。主动隔振台能够有效隔离外部环境的微小振动,确保实验数据的准确性和可靠性。半导体制造:半导体制造过程中涉及的光刻、蚀刻和测试等环节,需要在极为稳定的环境中进行。主动隔振台可以大幅减少机械振动和地面振动对设备的影响,提高产品良品率。医药研究:在药物研发和生物技术研究中,诸如核磁共振成像(MRI)、X射线衍射仪等设备对环境振动有严格的要求。主动隔振台提供了一个稳定的工作平台,确保实验的准确性和可重复性。光学设备:光学设备如激光干涉仪和光谱仪对振动特别敏感。主动隔振台的应用可以提高这些设备的性能,确保测量和实验结果的精确度。高精度测量:在计量学和工程检测领域,主动隔振台可以提供一个无振动的测量环境,确保测量仪器的精度和稳定性。小型主动隔振台的市场需求和优势随着科技的进步和各领域对高精度、高稳定性要求的提升,小型主动隔振台的市场需求日益增加。小型主动隔振台具有以下优势:紧凑设计:小型主动隔振台设计紧凑,占用空间小,适合在各种有限空间内使用,如实验室通风橱和生物安全柜中。操作简便:这些设备通常操作简便,只需简单的设置和调整即可使用,降低了用户的操作难度。高性价比:相较于大型隔振设备,小型主动隔振台价格更为实惠,适合中小型实验室和企业使用。灵活应用:小型主动隔振台可以灵活应用于各种精密仪器的隔振需求,满足多样化的实验和生产环境要求。快速响应:小型主动隔振台具有超快的稳定时间,能够迅速应对环境变化,保持设备的稳定性。Accurion主动隔振台,欧库睿因 Nano系列:操作简单,高度稳定,专为小型和轻型应用而设计。产品概述Nano系列Accurion主动隔振台采用全新设计,专为小型和轻量的隔震应用而设计,例如原子力显微镜的隔震。该系统操作简便,不需要任何负载调整,只需释放运输锁即可使用,用户无需进一步操作。设计优势由于设计简洁,Nano系列隔震台价格实惠,并配有较小的外部控制器。通过数据线连接控制器和隔震台,这种设计确保隔震台本身不产生热量,因此不会影响隔震仪器。这在需要隔音罩且对热敏感的应用中尤为重要。控制器远离被隔震的仪器,以消除控制器电子器件可能产生的电磁干扰。承重桌选项主动隔震台可选配专门设计的焊接钢架结构承重桌。承重桌具有很高的水平和垂直刚度,是实现优秀隔离性能的理想实验桌。用户可以根据实际需要选择不同尺寸的承重桌。主要特征无低频共振:与气囊式被动隔振台相比,主动隔振台即使在低频范围内也能表现出色的隔振性能。超快稳定时间:稳定时间低至0.3秒(普通被动隔振台的稳定时间为30秒至60秒)。宽带隔振:主动隔振台带宽为0.6/1Hz至200Hz,远超被动隔振台。六自由度隔振:提供全方位的隔振效果。即时反作用力:真正的主动隔振,能即时产生反作用力来抵消振动。操作简便:按钮式解决方案,使用方便。设计紧凑:安装简便,占用空间小。高度位置稳定性:1Hz时固有刚度通常是被动隔振台的20到30倍。无需压缩空气:接电即可使用,简化操作。适用范围广:适用于将高分辨率测量设备与建筑振动隔离,提供标准化和用户定制产品。产品信息:尺⼨ :300x400x75mm载重:5-25kg或10-30kg 茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多相关主动隔振台的产品,Welcome to consult~咨询有惊喜哦!
  • 赫兹有限公司发布桌面式主动式隔振台+HERZ新品
    桌面式主动式隔振台+HERZ主要特点:TS-C系列是紧凑型动态隔振系统,可隔离所有六种平移和旋转振动模式。 与大型昂贵的被动系统相比,这款动态隔振系统价格适中,可在较小体积内实现良好隔振。使用压电力马达的惯性反馈不仅可以隔离建筑振动,还可以隔离系统本身的振动源。这意味着,例如,尽管通过操作员的手施加力,但由系统隔振的精密显微镜仍将保持静止。 该系统的固有刚度比1 Hz共振被动隔离器大25倍,具有出色的方向和位置稳定性。主动隔振系统的特征在于虚拟缺乏任何低频共振,这种共振困扰所有被动隔振系统。该系统设计旨在即使低至2-3 Hz频率以下也能提供优异的隔振性能,许多建筑物由于围绕垂直轴振荡而显示出较大的水平振幅。隔振开始于0. 7Hz左右,超过10Hz以上迅速增加至少40dB。 所有控制电路都内置在设备中。功耗小于2.5 W。该设备具有通用输入并且可连接到100至240 VAC的任何交流电源。该设计经过优化,可实现精密仪器的最佳隔振,例如扫描探针显微镜(AFM,STM),干涉仪和其他高分辨率仪器,从而使这些仪器实现最佳性能。经证实,该系统还可成功用于支持敏感实验,例如膜片钳、显微注射或LB膜上测量所用的液体槽。 简介:TS-C30 主动隔振台是 TS 系列最新创新产品,可为运行紧凑型纳米级显微镜提供强大的主动隔振性能。TS-C30 也是Herz最为实惠的主动隔振台,为需要低频隔振的研究人员提供更多价值和一系列直接有益于其应用的功能。 产品亮点:- 性能: 6 个自由度1.2 - 1,000 Hz 主动隔振,1,000 Hz+被动隔振- 3.3 Hz减振90%-11.5 Hz+减振99%- 技术: 先进压电传感器 & 执行器- 动态隔振: 内部反馈回路抑制共振- 高级设计: 拉丝金属搭配黑色阳极面板- 无障碍: 易于安装,使用简单 应用范围:- 原子力显微镜- 干涉测量- 轮廓测量- 显微操作系统- 更多! 性能: 性能图中突出显示的传递率曲线与TS-C30在宽频率范围内隔振的能力有关。传递率图是对任何给定实验室环境下性能的保守估计 ,并且适用所有六种振动平移和旋转模式(所有六个自由度). 性能对比图操作:AFM 的研究人员在两种独特条件下进行成像: 不含隔振系统和包含TS 系列隔振台。当使用TS系列隔振台搭载AFM时,所得图像表明图像质量和整体测量清晰度得到大幅提升。 技术参数: 频率:0.7 - 300 Hz负载范围: 0 - 40 kg尺寸: 300 x 300 x 70 mm ( L x W x H ) 11.8 x 11.8 x 2.75"隔振性能: 0.7 Hz - 300 Hz动态隔振, 更高频率主要被动隔振传递率: ~10 Hz以上传递率 静态顺应性: 27 μm/N最大负载 (中心负载): 40 kg/88.18 lbs重量: 9.2 kg/20.3 lbs 电气: 安全等级: 1功耗: 最大 2.50 W输入电压: 100–240 VAC, 50–60 Hz显示屏信号:用于示波器上显示的多路复用信号显示了包含和不含隔振的振动水平– 仅用于诊断目的。 面板:尺寸:300mm X 300mm材料:厚实铝板 主要特点:TS-C系列是紧凑型动态隔振系统,可隔离所有六种平移和旋转振动模式。 与大型昂贵的被动系统相比,这款动态隔振系统价格适中,可在较小体积内实现良好隔振。使用压电力马达的惯性反馈不仅可以隔离建筑振动,还可以隔离系统本身的振动源。这意味着,例如,尽管通过操作员的手施加力,但由系统隔振的精密显微镜仍将保持静止。 该系统的固有刚度比1 Hz共振被动隔离器大25倍,具有出色的方向和位置稳定性。主动隔振系统的特征在于虚拟缺乏任何低频共振,这种共振困扰所有被动隔振系统。该系统设计旨在即使低至2-3 Hz频率以下也能提供优异的隔振性能,许多建筑物由于围绕垂直轴振荡而显示出较大的水平振幅。隔振开始于0. 7Hz左右,超过10Hz以上迅速增加至少40dB。 所有控制电路都内置在设备中。功耗小于2.5 W。该设备具有通用输入并且可连接到100至240 VAC的任何交流电源。该设计经过优化,可实现精密仪器的最佳隔振,例如扫描探针显微镜(AFM,STM),干涉仪和其他高分辨率仪器,从而使这些仪器实现最佳性能。经证实,该系统还可成功用于支持敏感实验,例如膜片钳、显微注射或LB膜上测量所用的液体槽。 创新点: 与大型昂贵的被动系统相比,这款动态隔振系统价格适中,可在较小体积内实现良好隔振。使用压电力马达的惯性反馈不仅可以隔离建筑振动,还可以隔离系统本身的振动源。这意味着,例如,尽管通过操作员的手施加力,但由系统隔振的精密显微镜仍将保持静止。 该系统的固有刚度比1 Hz共振被动隔离器大25倍,具有出色的方向和位置稳定性。 主动隔振系统的特征在于虚拟缺乏任何低频共振,这种共振困扰所有被动隔振系统。该系统设计旨在即使低至2-3 Hz频率以下也能提供优异的隔振性能,许多建筑物由于围绕垂直轴振荡而显示出较大的水平振幅。隔振开始于0. 7Hz左右,超过10Hz以上迅速增加至少40dB。 所有控制电路都内置在设备中。功耗小于2.5 W。该设备具有通用输入并且可连接到100至240 VAC的任何交流电源。该设计经过优化,可实现精密仪器的最佳隔振,例如扫描探针显微镜(AFM,STM),干涉仪和其他高分辨率仪器,从而使这些仪器实现最佳性能。经证实,该系统还可成功用于支持敏感实验,例如膜片钳、显微注射或LB膜上测量所用的液体槽。 桌面式主动式隔振台+HERZ
  • 专为小型和轻型应用而生——Accurion Nano系列主动隔振台
    Accurion主动隔振台,欧库睿因 Nano系列:操作简单,高度稳定,专为小型和轻型应用而设计。产品介绍:Nano系列Accurion主动隔振台的采用新设计,适用于小型和轻量的隔震应用,例如用作原子力显微镜的隔震。该系统不需要任何负载调整,只需释放运输锁就可以使用,用户不需要进一步的动作。由于其设计简单,Nano系列隔震台的价格非常实惠,此外,Nano系列隔震台有一个较小的外部控制器,通过数据线连接到隔震台,这样设计的优点是隔震台本身不会产生热量,因此不会对隔震仪器产生影响,这对于在隔音罩内使用并且对热敏感的应用非常重要。控制器远离被隔震的仪器,以消除控制器电子器件产生的潜在电磁干扰。主动隔震台有专门设计的焊接钢架结构承重桌,这是可选附件。承重桌具有很高的水平和垂直刚度,是主动隔震台实现优秀隔离性能的理想实验桌。用户可以根据实际需要,选取不同尺寸的承重桌。Accurion主动隔振台主要特征:● 相⽐ 于气囊式被动隔振台,主动隔振台没有低频共振,即使在低频范围内也有出⾊ 的隔振性能。● 超快的稳定时间:低⾄ 0.3秒(普通被动隔振台的稳定时间为30秒⾄ 60秒)。● 主动隔振台带宽0.6/1Hz⾄ 200Hz(远超被动隔振台)。● 6个⾃ 由度主动隔振。● 真正的主动隔振:即时产生反作用力来抵消振动。● 操作简单:按钮式解决⽅ 案。● 设计紧凑,安装简便。● ⾼ 度的位置稳定性-1Hz时固有刚度通常是被动隔振台的20到30倍。● 接电即可,⽆ 需压缩空⽓ 。● 适⽤ 于将⾼ 分辨率测量设备与建筑振动隔离。● ⼴ 泛的适⽤ 范围:拥有标准化产品和用户定制产品。产品信息:尺⼨ :300x400x75mm载重:5-25kg或10-30kg 茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多相关主动隔振台的产品,Welcome to consult~咨询有惊喜哦!
  • VarioBasic系列主动隔振台:为精密实验室量身定制的高性能稳定平台
    实验室中的精密仪器和敏感实验往往要求高度精确的测量与控制,微小的振动都可能对实验结果产生不可忽视的影响。因此,为什么主动隔振台会成为众多实验室不可或缺的设备,以下是几个关键原因:1. 保护精密仪器的精确度与稳定性精密科学仪器如显微镜、光谱仪、电子显微镜、原子力显微镜(AFM)及各类光学平台等,对振动极其敏感。即使是微小的地壳振动、人员走动或空调运行等日常因素引起的震动,都可能导致测量结果失真、图像模糊或数据采集错误。主动隔振台通过动态监测并抵消外界振动,为这些精密设备创造一个几乎“零振动”的工作环境,确保实验结果的准确性和可重复性。2. 提升实验研究的质量与效率在生命科学、纳米技术、材料科学等领域,很多实验需要长时间曝光、微观结构观察或进行精密测量。若无有效的隔振措施,持续的外部振动会显著增加实验失败率,延长实验周期。主动隔振台能够有效减少因振动导致的重做次数,提升实验效率,同时保障研究成果的高质量。3. 促进创新研究与复杂实验的开展随着科学研究的深入,越来越多的前沿实验要求在极端条件下进行,如量子计算、生物分子成像等,这些实验对环境的稳定性和纯净度提出了更高要求。主动隔振台不仅能隔离低频到高频的广泛振动范围,还能适应不同的负载和实验条件,为科学家探索未知领域提供稳定的技术支撑平台,推动科学进步。4. 保障研究人员的安全与健康在进行某些涉及危险物质或高压环境的实验时,任何意外的振动都可能引发安全问题。主动隔振台通过减少外部干扰,不仅保护了实验的顺利进行,也间接保障了实验室人员的安全健康,营造了一个更加安全可靠的研究环境。综上所述,主动隔振台作为现代实验室基础设施的重要组成部分,对于维护实验的精确性、促进科研效率、推动科技前沿探索以及保障实验室安全均具有非常重要的作用。在此茂默科学推荐VarioBasic系列主动隔振台。基础信息:Vario Basic 40尺寸:396x120x111mm 载重:0-300kg,0-600kg Vario Basic 60尺寸:636x130x111mm载重:0-300kg,0-600kgVario Basic 90尺寸:932x130x111mm载重:0-300kg,0-600kg主要特征: 相比于气囊式被动隔振台,主动隔振台没有低频共振,即使在低频范围内也有出色的隔振性能。 超快的稳定时间:低至0.3秒(普通被动隔振台的稳定时间为30秒至60秒)。 主动隔振台带宽0.6/1Hz至200Hz(远超被动隔振台)。 6个自由度主动隔振。 真正的主动隔振:即时产生反作用力来抵消振动。 操作简单-按钮式解决方案。 设计紧凑,安装简便。 高度的位置稳定性-1Hz时固有刚度通常是被动隔振台的20到30倍。 接电即可,无需压缩空气。 适用于将高分辨率测量设备与建筑振动隔离, 广泛的适用范围:拥有标准化产品和用户定制产品。茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多隔振台相关的产品,Welcome to consult~咨询有惊喜哦!
  • “硬岩高压伺服真三轴试验机”研制项目通过验收
    7月7日,武汉岩土所承担的中科院科研装备研制项目“硬岩高压伺服真三轴试验机”,顺利通过了由中科院计划财务局组织的专家验收。   该设备基于横置滑动式对称加载结构,采用多级轨道设计,辅之可升降的定位装置,配合高刚度框架和快速响应伺服控制系统,成功解决了试样安装、偏心和加载空白角的难题,实现了硬岩真三轴应力应变全过程及渗透性测试,在深部地下工程、核废料深部处置及CO2地质封存等领域具有重要应用价值。   鉴于该试验机具有的科学意义和潜在价值,验收专家组建议继续拓展和完善设备功能,推进设备产业化。
  • 南方科技大学葛锜副教授《自然通讯》:离心式DLP多材料3D打印
    3D打印是近年来的一大研究热点。在该领域,研究人员近些年来从开发新技术、新材料、新应用等角度都作出了重大突破。但是,这些成果主要集中在实现单种材料的3D打印。与单材料3D打印不同,多材料3D打印能够在三维空间任意布置两种或者更多性质或功能截然不同的材料,这极大地丰富了3D打印的设计与制造能力。尽管如此,目前关于多材料3D打印的研究成果相对较少。多材料3D打印的实现方式也主要以喷墨或者墨水直写为主。这些方法对于打印材料的多样性,多材料结构的特征尺寸都有一定的限制。数字光处理(Digital Light Processing - DLP)是一种高速、高精3D打印技术。但是,使用DLP技术实现多材料3D打印主要面临如何快速、有效地去除在材料切换过程所导致的大量粘附在结构上的残余液体这一关键问题。尽管过去的研究提出了擦拭、流体喷射等残余液体去除方法,但由于除液介质与打印结构会发生直接接触,使得打印的多材料结构面临尺寸小、适配材料有限、污染严重、功能集成度低等限制。针对上述问题,南方科技大学葛锜副教授团队提出了离心式DLP多材料3D打印方法,研发了Centrifugal Multimaterial (CM ) 3D打印系统,用于制造大幅面复杂三维异质结构,并从体素尺度实现对结构的成分、性能与功能的精准控制。如图1所示,CM 3D打印系统可实现最大幅面180 mm × 130 mm的多材料打印,并可同时打印四种以上材料。CM 3D打印系统适用于打印包括水凝胶、软/硬高分子材料、形状记忆高分子、导电弹性体,甚至陶瓷在内的各种不同功能与性能的材料,打印材料的模量可跨越8个数量级(103 Pa to 1011Pa)。如图2所示,受哺乳动物快速转动身体实现脱水启发,CM 3D打印系统在多材料切换过程中,通过快速转动打印结构产生的离心力,实现残余液体的快速无接触去除。这种通过离心力去除残液的方法受结构尺寸、形状,以及树脂粘度影响较小。例如,陶瓷浆料残液在CM 3D打印系统中可以轻松去除。图1.由 CM 3D打印系统制造的各种复杂三维异质结构。图2.离心式残余去除原理。如图3所示,CM 3D打印系统能够实现黑白材料间无污染切换。黑白材料过渡界面尺寸100微米,优于其它多材料3D打印技术。这一优异特性使得我们可以设计与打印数字材料(Digital Materials)。通过精确调控软硬体素微观空间分布来,我们可以轻松调控数字材料的宏观力学性能。图3.CM 3D打印系统实现数字材料一体化打印。如图4所示,CM 3D打印系统能够将不同刚度、不同电导率的材料快速一体化集成。利用这一优势,我们设计并一体化打印了集驱动、弯曲传感、压力传感、温度传感于一体的软体驱动器,实现了抓取不同物体的信号识别,以及不同温度下抓取信号感知和信号纠正。图4.CM 3D打印系统实现多重感知集成软体驱动器。如图5所示,CM 3D打印系统能够一体化成型陶瓷生胚和高分子材料。利用这一优势,我们可以打印具有悬垂甚至悬空部分的陶瓷结构。我们设计并打印了陶瓷轴承结构。在打印结构中,陶瓷滚子由高分子材料支撑。通过高温烧结,高分子材料被去除,打印的陶瓷轴承可以自由转动。图5.CM 3D打印系统一体化打印陶瓷-高分子集成结构。上述成果近日在《自然通讯》(Nature Communications)上以论文形式发表,论文标题为“多功能异质结构的离心3D打印”(Centrifugal Multimaterial 3D Printing of Multifunctional Heterogeneous Objects)。南方科技大学葛锜副教授为论文唯一通讯作者,南方科技大学机械与能源工程系2020级博士生程健翔为论文的第一作者。本研究得到了国家重点研发计划、国家自然科学基金和深圳市科技创新委员会的支持。原文链接:https://doi.org/10.1038/s41467-022-35622-6来源:高分子科学前沿摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。
  • 世界最大的35吨振动台在东菱公司诞生
    近日,从苏州传来一个振奋人心的消息:具有自主知识产权的世界最大推力的35吨电动振动台在苏州东菱振动试验仪器有限公司诞生了! 这一巨大成就,彻底打破了数十年来国外在电动振动技术方面对我国的封锁和禁运,改变了国际振动界的格局,把我国振动技术推进到国-际先进水平,使我国濒临衰亡的振动产业“枯木逢春”,让中国人民扬眉吐气,为中华民族增添了光彩。 振动试验台是力学环境试验设备的一个主要手段,对于导弹、卫星、飞机、船舶及汽车、电子等尖端产业的科研、生产有着重要意义,属于当前世界管制产品目录,过去长期被美、英、日等主要西方国家独占。 长期以来,我国振动试验系统的研究、制造水平远远落后于国际。十一年前,国内仅有的三家振动台生产单位,自主研发能力滞后,只能生产2吨推力以下的小振动台,且技术从国外引进,价格昂贵。2吨以上产品外国对我国严密封锁和禁运。这严重影响了我国国防科技工业的发展。 民营高科技企业苏州东菱公司在创业初期,就树立了与美国ling电子公司、英国ling动力公司这两个研制振动台的国际王牌企业一争高低的目标。十一年来,东菱公司(即东方之菱)总经理王孝忠横下一条心,率二百多名东菱人,走上了自主创新之路。多种学科、多个专业的人员,齐心协力,坚韧不拔,锲而不舍,攻克了一个又一个难题。先后研制出5吨、6吨、10吨、12吨、16吨、18吨等十大系列、近百款振动台,其中30多款产品处于世界领先水平,目前,已销往美、英、日、德、俄等20多个国家和地区。且成功地参与了神州5号、6号载人航天飞船的振动试验。在北京卫星环境试验中心的国防招投标中,东菱公司与美、英两国的“菱”公司相遇,“三菱角逐,花落东菱”。这个研发过程,为35吨台的诞生,积累了丰富的经验,创造了良好的条件,致使35吨台的研制比较顺利地完成。 动圈是电动振动台最关键的部件,其动力学特性的优劣直接影响到振动台活动系统的一阶轴向的共振频率的高低,从而影响到振动台工作频率的上限和一系列技术指标的高低。共振频率越高,使用频率的上限就越高,可作的实验就越多,对用户越有利。因此,他们将提高共振频率作为科技创新和攻关的重中之重。他们对动圈骨架的结构进行了优化设计,使动圈结构的质量和刚度,得到合理的分布和协调利用,更创新设计了台面部的传力角板,有效地增加了动圈骨架的刚度,从而使共振频率这一核心技术指标远远领先于世界同类产品的先进水平。 他们创新了驱动线圈的绕组结构与绕线工艺,提高了冷却效果。驱动线圈绕组的冷却效果不佳,是世界电动振动台厂家的共同难题。他们针对目前国际上冷却效果很差的传统的串联冷却结构,大胆创新,施用了全新的并联冷却结构,即将驱动线圈绕组从中间引出冷却水管,使原来的单路冷却变为双路冷却,成倍地提高了驱动线圈绕组的冷却效果,从而攻克了驱动线圈绕组冷却不足的难关。同时,他们还在设计和工艺上,进行了其它一系列的创新和改造,攻克了在更大电流、电压条件下线圈嘴电化学腐蚀、动圈驱动导线严重发热和内短路环冷却不足和易烧坏等许多技术难关,从而保证了35吨振动台顺利制成。 35吨的问世,引起了国际同行的极大关注和震惊。眼下,一批又一批前来东菱公司洽谈业务的外国朋友,听到35吨台研发成功的消息,一个个竖起了大拇指,情不自禁地惊呼“中国人登上世界振动技术的‘珠峰’了,实在了不起!”
  • 聊一聊电液伺服疲劳试验机的核心技术
    导读试验机行业是一个传统而又新型的行业。随着新材料的应用和新技术的发展,更高的质量要求带动市场对试验机提出更精确和更高性能的要求,从而获得更加真实、科学的试验数据,为技术发展夯实基础。力试科仪(LSI)专注力学试验仪器设备的研发、制造、销售和服务。其中,研发是试验机的核心和源头,高端试验机的研发,离不开与时俱进的核心技术。公司自创办以来,自主创新研发了多个主打高端产品,电子万能材料试验机、电液伺服疲劳试验机、多轴协调加载系统和各类专用试验机。这次,我们先来聊一聊电液伺服疲劳试验机的核心技术。力试电液伺服疲劳试验机可用于各类材料的力学性能测试,例如低周疲劳、高周疲劳、裂纹扩展、断裂韧性等常规力学测试,同时也可以集成高低温、湿度、腐蚀环境箱进行复杂环境的耦合试验。这么一个可广泛用于航空航天、汽车、船舰、军工、冶金、建材、科研院校、质量检测等领域的“全能”产品,它的核心技术可分为三点进行阐述(试验机机械结构设计、测量控制系统、软件)。一、试验机机械结构设计1) 加载系统的同轴度在试验中,不同轴的情况会导致试样在拉伸试验中产生弯曲,会对试样造成“提前破坏”,弹性模量也会产生较大的偏差。我们通过不断地迭代创新,设计了对中系统调节环,它用于高精度夹具,圆试样和扁平试样的高同轴度夹持,配套系统对中套件,可以非常直观地对试样夹持前后左右以及角度方向实现六自由度的精确调整。配合标准同轴度测量试样,应变采集系统和分析软件,可以极大地改善试验加载的同轴度。2) 伺服液压缸伺服液压缸是疲劳试验机的核心部件,可直接影响到试验的准确性、可重复性和效率。力试应用独创的先进密封技术,专业的高端加工工艺,经过大量的对比试验来选择制造材料,对精度的要求极高。每个伺服液压缸的零件无一不经过严格的质检,确保装配到每台试验机上的伺服液压缸达到力试的质量要求。先进的密封技术赋予伺服液压缸极低的摩擦力和超长的寿命,在100Hz的高频下保证具有满足高端试验的精度和可靠性,并且能够实现拉压过零试验的完美控制。3) 油源液压秉承安全、高效运行的原则,融入节能、环保的现代设计理念。HPS-HE系列油源为全新一代静音液压动力系统,为实验室内液压驱动设备高效提供动能的同时,让用户尽享安静、清洁的空间。大流量液压站采用多泵组并联设计,根据需要启用一组或者几组油泵,极大的节约了能源,并有效减少了占地空间。主要特点有:a. 具有“零压”启动、高\低压切换功能;b. 恒压变量系统,保证系统压力的同时,最大化节能;c. 全密闭式结构,良好的隔音、绝热、环保效果;d. 外部无任何泄漏,避免灰尘、油液混合成垢;e. 内部优化布局,介质温度保持均匀;f. 有效的通风设置,保证良好通风、通气效果;g. 液晶操控面板,易于参数设置、监控;h. 可进行远程、本机操控;i. 可供多台设备运行,且具有先开后关功能。二、测量控制系统1) 控制器控制器是试验机设备的核心部件,一方面它在上位机软件的指挥下实现对试验设备的动作控制;另一方面它实时采集试验过程中试样上产生的力、形变,以及其它可能发生的物理量变化,在系统内都能根据控制算法将采集到的物理量变化又反馈到控制上。控制器关键性能:a. 系统频率:控制器的系统频率作为控制系统的关键指标,它决定控制器的闭环控制能力,系统频率越高意味着可以执行反馈控制的能力越强,可以支持试验机设备的动作越快,控制精度也越高。b. 采样频率:指控制器在每个时间片有效的采样数,对于大多数控制器而言,采样频率与系统频率一致,运行速度越高的试验需要控制器的采样频率越高,才可保障在短时间试验过程中有足够的力、变形、位移等的采样数据。c. 试验频率:试验频率是指设备用于疲劳试验时,每秒可支持的循环次数,它由多方面的因素决定(包括设备可支持的最大移动速度、加速度以及过零点时的平稳切换能力等因素有关),控制器可支持的试验频率则是最重要环节。d. A/D分辨率:是指控制采集系统模数转换能力,常见的A/D芯片有24位、20位、16位等,不同的A/D芯片能力不同,可提供的分辨率存在差异。e. 曲线吻合度:控制能够按预定的轨迹函数执行,控制器的控制算法起到关键作用。f. 稳定性:对于疲劳试验或长时间蠕变、松弛等试验,很多试验时间以月为单位,系统的稳定性十分关键。2) 力值测量系统力值测量系统是试验机不可或缺的测量部分,几乎所有类型的静态和动态材料物理性能测试设备,都离不开对力值的测量。无论是拉伸、压缩、冲击、剪切、剥离、疲劳还是断裂力学试验,力值都是最重要的测量指标。常见的力传感器有应变式、压力式、压电式以及加速度计等类型。力值测量系统关键指标:a. 零点漂移:是指在传感器静置状态下,发生的力值变化,一般而言,变化范围越小,说明传感器越稳定或环境干扰越小,但静止不变时,也有可能是传感器系统的灵敏度不够或A/D分辨率高导致。b. 温度漂移:是指传感器在环境温度变化情况发生的力值偏移。c. 非线性度:在传感器的量程范围内,线性好坏常用非线性度指标,非线性度值越低,说明线性越好。d. 特殊的,疲劳试验机的测力传感器一直处于高频交变的工作状态,弹性体相关的迟滞性、蠕变特性等和普通的静态测力传感器有很大的区别,一般疲劳机的力传感器在这些方面的指标远优于常规的载荷传感器。3) 变形测量系统变形测量系统是试验机常用的测量部件,它一般用于测量试样标距内的变形、弯曲扰度、裂纹开口宽度变化、压缩高度变化以及冲击产生的变形等。a. 变形测量系统按照是否接触试样,可分为接触式引伸计和非接触引伸计。常用的接触式变形测量装置包括:电子引伸计、全自动引伸计、千分表、扰度计、电容感应式引伸计、电磁感应式引伸计等.常用的非接触式变形测量装置包括:视频引伸计、激光位移计、红外位移计等。非接触式引伸计具有对试样无损伤测量的特点,对于软材料、复杂环境、大变形测量方面有不可替代的优势。b. 变形测量系统按照温度适用范围又可分为;常温引伸计、低温引伸计和高温引伸计等。变形测量系统关键指标与力传感器的关键指标基本相似。c. 应变疲劳对引伸计有更高的要求,需要更高的分辨率和响应频率。特别是高温应变疲劳引伸计,具有很高的技术难度。4) 位移测量系统与力传感器测量系统和变形测量系统稍有不同,位移测量系统一般是伴随机器提供,它主要用以捕获设备横梁或作动器的移动变化,是设备实现精准移动控制的重要测量部件。位移计常见有用于间接测量的固定在电机轴上的旋转编码器和直接用于测量横梁或作动器运动的LVDT、光栅尺、拉线编码器、磁滞伸缩计等。电子万能试验机一般采用旋转编码器,实现横梁位移的间接测量,位移的分辨率是通过编码器的线数、丝杆螺距、减速比等参数间接计算获得;而液压机和大多数的疲劳试验机则多以直接测量为主,位移的分辨率直接体现在位移传感器上。无论是间接测量还是直接间接,由于受到试验机机架、力传感器连接部件和试样夹具等部分的柔度影响,往往作用到试样上的变形,不能简单等同于位移测量值,两者之间实质上存在较大偏差。三、DynamicExpert试验软件力试自主知识产权多用途动态测试软件DynamicExpert ,是款易上手却不失专业性的试验软件。它具有简单直观的方案编辑界面、灵活方便的曲线调整功能、可配置的实时循环数据运算功能、强大的数据存储功能、丰富的试验波形支持以及快捷的试样保护功能。a. 试验机试验应用技术:先进复合材料试验软件包,低周疲劳试验软件包、裂纹扩展试验包(恒载增K、降K、恒K )、断裂韧性试验包(KIC、CTOD、J1C试验、阻力曲线)、谱载试验软件包、弹性体试验软件包等;特别是裂纹扩展实时自动降K 、 弹性体动刚度、弹性刚度、阻尼刚度、损耗角、能量、阻尼系数的核心算法跟多个权威客户家进行了多次数据对比验证。b. 软件的高密度据数据存储技术:力试的疲劳试验软件实现了高达10^8寿命试验数据全部通道数据高密度数据存储、数据检索查询功能,并且正在申请自主知识产权。c. 实时数据处理技术:循环载荷峰谷值、动态模量、塑性应变、弹性应变、刚度、损耗角等实时数据高性能运算处理。d. 在软件的稳定性、可靠性、扩展性定制、软件的开放性、可升级性等方便;力试的软件经过了多家客户的耐久测试,在多个客户现场经历过3000小时以上,系统不重启、软件不卡、不出异常的考验。e. 软件控制方面:已经实现了相位自动调整、加载起点终点同步协调控制功能;试样保护模块有效了解决了夹持载荷过大的问题。 结语力试深知,试验机的核心技术便是企业的核心技术。我国试验机产业要想取得良性发展,必须注重技术创新,牢牢掌握核心关键技术。正如文章导读所说,新材料技术的应用和技术在不断发展,这也表明试验机行业绝不能停滞不前。力试重视技术人才的引进和培养,提高企业专利意识,加强与高校、企业的交流合作。近两年的基础研发投入(R&D)为7.87%、10.95%,比肩发达国家的企业基础研发投入,取得多项成就,在国产试验机行业中大放光彩。我们会继续秉承自主创新精神,加强交流合作、开拓视野,在关键领域、卡脖子的地方下大功夫,集合精锐力量取得更大的突破。本文作者:力试科仪
  • 诊断试剂和制药领域的LyoBead技术:Why, How, What?
    生物制剂对温度变化特别敏感,需要特定的储存条件才能长期保持其生物活性。试剂脱水处理降低了温度敏感性,驱动冻干珠技术在诊断试剂和制药领域不断发展。 最近,英国Biopharma Group技术业务经理Mattia Cassanelli博士在网络研讨会上介绍了LyoBead技术在诊断和制药领域的应用,并介绍了冻干珠在不同领域的应用。1、什么是LyoBeads?冻干珠(LyoBeads)是定制化的冻干球体,每单位冻干珠含有特定含量的物料。 在制药和诊断行业中最常见的是PCR预混试剂冻干珠,其能够在室温下长期存储。也被用于微流体、药物输送和细菌的冻干,满足市场需求的增长。2、为什么使用LyoBeads?冻干珠的主要好处是便于使用。开发一种配方,可在不同的温度或不同的容器中进行多种应用,减少研发投资。冻干珠性质稳定,可以在冻干机上高量生产,包装前可散装存储。在冻干后,球形的冻干珠表面积*化,复水时间也可以缩短。3、LyoBeads在研发中的应用在对冻干珠的配方进行筛选时,有三个主要测试阶段:相容性、初筛选和复筛选。作为相容性步骤的一部分,根据经验和初始热分析结果,建议选择多达30种辅料。然后对这些赋形剂进行测试,以检查其在液体状态下的相容性,确保不会发生干扰。从这些最初的测试中,选出一些有希望的候选液体配方进行冻干。所有候选配方都使用相同的冷冻干燥循环处理。样品在相同的工艺条件下进行比较。对最优的干燥产品进行表征。在某些情况下,统计分析方法(实验设计DoE)可扩展配方候选列表,以确定基于特定参数的*配方,如活性药物成分(API)的玻璃化转变温度(Tg’)、冻干珠的机械性能和冻干后的产品活性。遵从法规定义设计空间,确定每个批次的*冻干条件。研发出LyoBead配方,就可以扩大生产规模。4、案例研究诊断试剂-PCR技术本研究旨在延长已开发的COVID-19检测PCR检测的液体制剂的保质期。试剂需要在室温下以高通量(96孔格式)储存,并且其反应质量不受影响。此外,还需要考虑在短时间内提高产量。使用冷冻干燥显微镜对液体制剂进行热分析,逐渐升高温度,直观地确定塌陷点。使用Lyotherm(BioPharma Group)的进一步分析,结合电阻抗和差热分析(DTA),确定配方的玻璃化转变温度。基于以上热分析结果,将酶、缓冲液、引物、探针等一起配置冻干珠溶液配方,并采用相容性、初筛、复筛的方式确定*配方成分。目测评估珠粒的形态和精致度,随后通过改进的差示扫描量热法(DSC)进一步表征产物的热性能。为了了解产品在储存过程中的表现,需评估吸湿性及机械稳定性。 图1:研发-PCR冻干珠动态水分吸附(DVS)测量样品在给定温度下吸附水分的情况,并将指示产品在特点情况下可以储存多长时间。冻干产品在储存和运输过程中会受到机械应力。使用MicroPress (Biopharma Group)对冻干蛋糕施加控制压力,可以测量冻干珠在不被破坏的情况下承受的应变百分比。用曲线上的断点来形象地说明这一点,这些断点表明产品是易碎的。 图2:研发-LyoBeads的机械性能然后评估最稳健的产品复水性。冷冻干燥的产品可以更快更容易地复水,因为冻干过程会留下微小的孔隙。可以通过电子显微镜检查这些孔的大小、分布和连通。总之,根据上述研究,测试并比较了几个用于COVID19 PCR检测的候选物。在确定了主要候选产品并优化了循环条件后,对几个批次进行了验证,确认了可用于商业用途的*冻干珠产品。生物制品-细菌疫苗在这项研究中,目标是开发一种含有灭活的革兰氏阴性菌的口服疫苗的合适制剂,该制剂长期稳定并可快速复水。对不同形式和方法的研究表明,冻干珠是理想选择。该研究还为技术转让和新的生产线提供了支持。研究表明,快速冷冻冻干珠不会破坏细菌,是制作冻干珠的首选方法。在*次筛选循环之后,相容性测试和后处理分析确定了合适的冻干保护剂。BioPharma协助将该技术转移到客户所在地,并帮助在现场创建高效运行流程。药品.口服片剂口服片剂在放入包装之前需要研磨和压片。在本研究中,目标是试验使用冻干珠制备口服给药的药物产品。冻干珠的设计不需要研磨和压片,这在技术上和商业上都是有益的。分析和优化冻干珠需要DOE方法来*化参数。该方法使用前面描述的几种技术分析API的活性、溶解速度、冷冻状态下的热稳定性和干燥球体的机械性能。 通过计算残留水分含量和调制差示扫描量热法(MDSC)分析,确定了冻干机出样最合适的时间。这些研究确保了冻干珠的高效生产的发展,与研磨和压片产品相比,冻干珠吸收更少的水分,并且生产更快、更经济。营养品-益生菌本案例研究是关于口服益生菌的。*的配方需要数以百万计的益生菌在加工后保持活力。长保存期和短复溶时间也是基本目标。冻干珠是*形式,但这些2mm的珠子不是快速冷冻的,而是在含有钙离子的缓冲液中由藻酸盐形成的聚合物。在几个冷冻干燥循环的相容性研究中,确定了合适的冷冻或冻干保护剂和*冷冻速率。在冷冻干燥显微镜上观察冻干珠的任何物理结块或形状损失。改变冷冻干燥循环中的压力和温度能够为该产品创造适当的设计空间。 图3:四个循坏,研究合适的设计空间5、结论在制药和诊断领域,冻干珠是制造可长期储存的稳定产品的简单解决方案。一旦生产出来,珠子可以放入任何容器中,以适应不同的产品变化,并且可以在包装前批量储存。然而,有不同的方法来创造这些液珠,需要通过兼容性测试、初筛选和复筛选进行优化。LyoBeads可用于许多不同的领域,上面的案例研究中描述了其中的几个领域。这些珠子最重要的应用之一是在PCR中,其中在室温下储存的稳定冻干产品可以加速和增加PCR筛选分析的通量。6、问答环节Q:冻干珠生产型冻干机 SP Ultra冻干机是专门针对IVD行业的需求开发的一款机型,占地面积小(0.77m2),冻干面积大(*可达2.13m2)。可选择温度比较法,压力升测试法,皮拉尼与电容压差法等完善的PAT工具来开发、优化冻干工艺及控制整个过程。没有常规生产型冻干机臃肿的体积,恰恰好地满足了IVD企业的生产需要,在国内外受到广泛好评。 Q:如何确定产品可承受的*压力?MicroPress使用线性执行器轻轻压缩冻干饼,以确定冻干饼的刚度(杨氏模量)和强度(破坏时的*应力)。Q:液氮冷冻冻干珠,与标准的西林瓶灌装冻干相比,在冻干过程中有什么差异? 液氮冷冻冷却速度会快得多,产生非常小的冰晶。可能会增加产品的耐升华性,但考虑到珠子的表面积与体积之比远高于标准小瓶,整体升华速率仍然会非常快。Q:如何控制LyoBeads的静电?通过使用适当的赋形剂和容器,可以最大限度地减少静电问题。
  • 万测电液伺服疲劳试验机科技成果鉴定会成功召开 —核心技术达到国际领先水平
    2023年 11月23日,中国机械工业联合会在湖北省武汉市组织召开了由深圳万测试验设备有限公司研制完成的“电液伺服疲劳试验机”科技成果鉴定会。针对万测公司研制的25kN、50kN、100kN、250kN、500kN系列电液伺服疲劳试验机完成鉴定。鉴定委员会由航空、航天、高校、科研、检测等行业内11位知名专家组成。西北工业大学、中国疲劳协会常务理事童小燕教授受邀担任鉴定委员会主任,全国钢标委分技术委员会秘书长董莉受邀担任鉴定委员会副主任。 鉴定委员会专家认真听取了项目负责人做的成果技术总结报告、中国机械工业联合会处长马敬坤宣读的查新报告、检测报告、用户意见等,现场考察新系列设备,经质询与讨论,对该成果给予充分肯定,一致认为该系列产品综合性能与国外同类先进产品相当,并集成国外同类产品诸多优点。其中工作台与作动器一体化设计,伺服作动器、高温炉、静音油源、试验保护功能、试验软件等技术达到国际领先水平。鉴定委员会一致同意通过鉴定。 万测电液伺服疲劳试验机主要用于检测金属、非金属材料的静态和动态力学性能。可通过拉伸、压缩、弯曲、拉拉、压压和拉压等力学加载方式,实现高周疲劳、低周疲劳、裂纹扩展、断裂韧性等失效试验,实现正弦波、三角波、方波等各种波形输出。该设备横梁上置,作动器下置形成封闭式框架结构,机架刚度大,无反向间隙,稳定性好;作动器采用双向作用油缸设计,空间设计合理;移动横梁升降、锁紧、试样夹持均由旋钮操作,灵活方便。 本次鉴定会的成功召开不仅是对万测疲劳试验机产品的巨大肯定,充分体现万测公司的自主研发实力。更是推动了疲劳试验机国产化替代,解决多个疲劳测试卡脖子问题,大大促进了国产试验机技术发展。未来,万测将继续坚持技术创新,自主研发的企业根本战略,为试验机行业发展贡献更多力量!
  • 国内首套超精密主动减振器面世:应用于高端电镜、量测/检测设备等
    7月10日,华中科技大学与光谷“明星”企业——武汉格蓝若智能技术股份有限公司签署成果转化合作协议,由后者出资8000万元,对华中科技大学陈学东院士团队超精密主动减振技术进行产业转化。据悉,陈学东院士团队20年磨一剑,创新性地研发了准零刚度、频变阻尼、协同控制等超精密主动减振核心技术,突破了降频率与保承载、减共振与抑高频、减振动与稳位姿三大技术矛盾,解决了高性能主动减振关键核心技术难题。先后荣获国家技术发明二等奖2次、国家科技进步二等奖1次。超精密主动减振器是高端制造装备、精密仪器设备的核心功能部件,是保证这些装备高精度超稳定运行的关键。产品应用于半导体高端制造设备、高精密机械加工车床、量测/检测设备、高端电子显微镜、科学仪器/设施、机载光电系统等领域。该产品不仅可以高效隔离外部振动,还通过实时采集振动信息,基于先进的控制策略生成多维振动控制信号,精准抑制各种内外部扰动导致的台体振动,实现被减振部件接近“绝对静止”的状态。与国外长期从事主动减振技术研发的企业相比,国内企业在该领域的技术积累较少,特别是超精密主动减振技术长期落后于国外企业。格蓝若和陈学东院士团队,一举突破了超精密主动减振器关键技术壁垒,打破国外垄断,实现国产自主可控。专门承载此技术成果的武汉格蓝若精密技术有限公司于6月25日正式挂牌成立,基于前期合作研发成果,公司推出超精密型、抗冲击型、适用真空型等20余款超精密主动减振器,减振支撑形式包括空气弹簧、金属弹簧、磁浮弹簧、复合弹簧等,可以满足从公斤级到数十吨级设备的高性能减振需求。在当日的活动上,格蓝若作为湖北省人形机器人整机技术攻关“链主”,还展示了人形机器人样机产品,该人形机器人主要面向劳动作业型场景,身高180cm,体重100kg,自由度31+2,移动速度>5km/h,负重能力>40kg,最大关节扭矩380Nm,具备高通用性、高机动性、高负载能力、具身智能等特点。
  • “变革性技术关键科学问题”重点专项:2021年拟拨6.37亿,围绕材料等5领域部署
    3月29日,科技部发布了国家重点研发计划“变革性技术关键科学问题”重点专项2021年度项目申报指南。“变革性技术关键科学问题”重点专项,重点支持相关重要科学前沿或我国科学家取得原创突破,应用前景明确,有望产出具有变革性影响技术原型,对经济社会发展产生重大影响的前瞻性、原创性的基础研究和前沿交叉研究。指南中明确,该重点专项2021年拟部署项目的国拨概算总经费为6.37亿元,将围绕空间、电子信息、材料、地学及生命等5个领域方向部署项目,优先支持34个指南方向。1. 月球内部圈层结构与演化过程的研究利用历史数据特别是嫦娥系列月球探测数据,以重、磁、电、震、热等几大核心要素,开展多物理场的综合研究,构建月球内部圈层结构模型,剖析月球内部圈层结构特性及其形成的机理,研究月球大尺度演化历史中的重大事件,构建新的月球演化理论框架,实现对月球内部圈层结构和月球演化过程认知的新突破。2. 空间超冷原子奇异物理性质研究发展空间微重力条件下制备、测量、精密调控10~100pK量级温度超冷原子的新方法和新思路,研究超冷原子气体的奇异物理特性。研究10~100pK温度下,光晶格中超冷原子的量子相变,研究这种极端条件下产生的新物态,以及这些物态的新物理性质和动力学过程;研究物质波辐射和相干特性,并对其进行精密探测,探索异核量子少体奇异分子特性;基于空间超冷原子气体,发展探测超出标准模型的新粒子与新相互作用的新思路,研究包括轴子与类轴子粒子在内的暗物质备选 粒子的新奇量子态。为空间超冷原子相关科学实验提供科学依据和研究基础。3. 新型空间高能辐射探测的重要科学问题研究面向新一代更高性能、国际领先的空间暗物质粒子、宇宙线和伽马射线的探测需求,开展关键科学问题研究。研究大接收度、宽能量动态范围条件下,从海量杂乱信息中智能判选有效事例的科学问题和优化方法,充分利用多种探测器的能量、时间和簇射形状等信息,实现多种类粒子的高效准确获取;研究高精度高分辨率的电荷重建测量算法,降低高能宇宙线碎裂效应和簇射反冲效应的影响,发展多变量分析和粒子鉴别算法,提升对电子和光子的测量能力;研究核子、电子特别是伽马光子的高精度能量和方向/径迹重建算法,最大限度地修正簇射反冲效应和不同入射角度的影响;研究利用电离效应、地磁刚度、穿越辐射等多种标定手段相结合的可靠在轨标定方法,确保测量能标的准确性;开展实验进行验证。4. 天体爆发现象的高能辐射研究利用多波段多信使天文观测设备和手段,对双致密星并合引力波电磁对应体、X射线双星、快速射电暴、高能中微子以及伽马暴和磁星进行探测研究,研究X射线中子星和黑洞双星、快速射电暴、高能中微子以及伽马暴和磁星暴发的产生机制,破解黑洞、中子星和磁星等致密星的形成和演化以及双致密星的并合机制,研究强引力场、强磁场、高密度下的物理规律, 测量引力波速度和哈勃常数等基础物理参数。5. 多源卫星数据在轨智能融合理论与方法面向快速获取信息的需要,探索多源卫星数据在轨智能融合新理论与新方法。研究单平台多载荷自融合系统架构, 研究多源异构卫星数据信息相关性度量理论与方法,建立多星协作认知模型,突破单星分辨率与探测识别精度极限,开展多星协作对提升状态判读与动态过程预测准确性的理论与数值分析,研究基于知识与数据双驱动的多源数据智能融合方法与低能耗硬件加速计算方案,研制多源数据融合在轨处理试验系统并进行航空 验证。6. 基础三维无源元件的单片高集成度自卷曲技术针对微型电子系统对高集成度基础无源元件的需求,研究单片自卷曲技术。研究自卷曲结构的薄膜应力生长调控机制和异质晶体薄膜集成结构的应变诱导卷曲力学机理;提出高频、高磁导率纳米颗粒磁流体芯及其毛细注入机制;研究力-电-热多物理场耦合规律,建立等效分析模型;探索零功耗的自卷曲结构可重构方法,实现基础无源元件电性能可调。 7. 电磁矢量高分辨成像理论与系统研究针对单一波束宽度范围内多目标分辨的需求,开展基于电磁矢量的高分辨成像理论与技术研究,突破多目标分辨的电磁衍射极限限制。研究非线性电磁矢量波前调制理论与技术,探索可重构矢量调制材料特性同系统非线性状态数量最大化的联系;研究基于波前非线性调制的信号处理与成像算法;研制短基线稀疏阵列三维成像雷达原理样机,开展飞行试验,为电磁矢量高分辨三维成像技术应用奠定技术基础。8. 红外微分体制和硅基单片集成的探测芯片技术针对红外高背景辐射环境中微弱目标的红外探测跨代技术所需要的芯片技术,构建红外成像芯片的微分体制和硅基单片集成体制;研究微分物理量原位直接探测的方法,基于光-电联合调控对不同的光场要素实现原位集成式微分感知的技术;研究基于胶体量子点的硅基单片集成短波红外探测芯片,重点突破量子点的批量化合成、暗电流抑制和弱信号采集技术;建立适应微分体制和硅基单片集成体制的红外成像芯片关键技术。9. 面向宽温域功能器件的连续组分外延薄膜技术与材料以宽温域实用功能器件为牵引目标,发展水平方向化学组分连续变化的外延薄膜生长技术和匹配的水平空间跨尺度表征技术;制备连续组分铁电和热电功能材料单晶薄膜;获得居里温度和热电优值等关键参量随精细组分的定量化规律;研究连续组分外延薄膜宽温域下参量调控机制;研制基于连续组分外延薄膜的宽温域连续响应功能器件。10. 面向半导体集成的铁电调控新功能器件面向半导体集成多功能电子和光电子器件的发展需求,开展铁电氧化物薄膜和二维层状材料与第二、三代半导体相兼容的异质集成技术和可控制备工艺的研究;研究铁电-半导体界面特性及其功能器件极化调控规律,突破常规晶体管的性能瓶颈;构建铁电多功能性调控金属离子发光物理模型和技术方法,革新传统的发光触发和调制技术,研究铁电氧化物的多功能性与半导体光电特性的耦合,实现基于新机制的半导体集成的铁电功 能调控光电子器件。11. 生物过程启示的陶瓷材料室温制备关键科学问题研究自然制造过程中生物材料组成和显微结构形成过程的典型特征;研究生物环境、类生物环境、生长因子等条件下陶瓷材料合成和显微结构形成动力学过程,开展生物合成陶瓷材料结构形成动力学的跨尺度理论模拟和计算;研究微纳尺度限域环境、外场(光、力、电)等辅助条件对物质传输、反应和组装致密化机制的影响,设计和研发陶瓷材料室温制备装备,优化制备工艺参数,研制宏观尺寸工程陶瓷材料。12. 大尺寸异形构件的热防护材料及其制造技术面向大尺寸异形构件整体制造及热防护的需求, 研究多元超高温陶瓷复合材料高温长时抗氧化机制,优化设计宽温域抗烧蚀多元超高温陶瓷组分;研究反应熔渗法制备大尺寸构件的多元超高温陶瓷生长机制,发展陶瓷与碳/碳材料结构功能一体化的梯度复合方法;研究大尺寸构件碳基体与陶瓷相的定向引入方法、应力形成机制与变形控制方法,形成大尺寸异形构件整体制造与分区域热防护制备技术。13. 劣质地下水改良的原位调控理论与技术研究面向劣质地下水分布区安全供水的重要需求,研究原位调控含水层条件下原生劣质地下水中氟、砷、氨氮等典型有害组分的去除机理,构建水质改良原位调控理论体系;开发典型原生劣质地下水中有害组分及赋存状态的原位与现场快速检测方法,研发劣质地下水多相态条件下有害组分反应性溶质运移模型,探索强化吸附除氟、强化固定除砷和强化生物脱氮等原位改良技术,建立典型原生劣质地下水原位调控的技术方法体系。14. 中国东部深层高温地热的形成机制、分布特征和资源评价针对中国东部深层高温地热的动力背景、生成与聚集机制、分布规律等开展研究。通过地球物理、地质、地化综合研究,解析地幔、岩石圈和地壳结构及其热物理参数;查明中国东部新/活动构造特别是控热构造的三维分布与时空演化特征; 开展有效热源分析,建立地热场挽近时期构造-热演化历史;结合地震、电、磁、重力等地球物理数据、地质地球化学资料,探索精细刻画浅部地壳热结构新的计算模型;开展干热岩结构力学成 因、压裂、特别是临界CO2压裂改造方法与机理研究。15. 富氦天然气成藏机制及氦资源分布预测技术研究有效氦源的评价参数及氦气释放机制,揭示控制氦源效率及潜力的关键因素;研究复杂地质介质中氦的运载机制及控制因素,揭示地质条件下温度、压力、介质特征对氦气运移、富集的控制;研究富氦气藏成藏过程及关键控制因素,阐明古老克拉通地台区富氦气藏、深大断裂/岩浆活动区富氦气藏、非常规天然气(页岩气、煤层气等)富氦气藏的成藏条件、动态富集过程及关键控制因素;建立氦源效率、有效性及潜力评价技术、复杂地质条件氦气运载效能评价技术、富氦气藏成藏条件及富氦天然气有利分布区带及勘探目标预测技术,综合集成构建氦资源评价预测技术。16. 火星的宜居环境和生命信号探索研究基于我国和国际上已有数据,结合火星陨石、模拟样品的实验室研究,充分参考地球类火星的极端环境条件,研究火星表面水成矿物的分布、含量和形成环境,水成地貌特征和古沉积环境演化,为生命可能产生的大概率区域提供参考;研究火星表层以下水冰分布,并寻找可能的地下宜居环境;分析火星陨石中的硫等挥发性元 素的同位素组成和不同氧气含量下硫等挥发性元素的光化学反应过程;研究地球临近空间、柴达木盆地等类火星极端环境中的生物多样性、分布特征和适应机制,开发地球代表性生物标志物在模拟火星环境中的检测方法,提出若干可测量的关键检测技术指标。17. 空间微重力燃烧的基础性研究面向先进能源动力和高性能发动机提高能效、燃烧源污染物的控制、地面和载人航天防火技术,通过一系列的微重力燃烧实验,得到解耦浮力效应的科学实验数据,促进对燃烧现象科学本质的认识和模型的建立,推动燃烧科学和技术的创新。具体内容包括:层流近极限燃烧特性研究;射流火焰湍流转捩及火焰结构特性研究;载人航天火灾行为及材料防火安全研究;航空航天液体燃料燃烧机理研究;微重力燃烧的碳烟生成研究,火焰合成特 种材料研究。18. 空间环境中新材料制备原理与特种成形技术基于空间环境的特殊条件,探索新材料变革性制备原理与特种成形技术。揭示超高温金属材料的液态热物理性质,探索空间快速凝固动力学规律;研究新型大块非晶与稀土磁性合金的空间制备与成形过程,优化非晶/纳米晶软磁合金组织和磁性能;探索空间环境中液相分离机理,发展高性能稀土镁合金特种成形技术;研究无机功能晶体的空间生长动力学及其生物医学特性,实现其结构和缺陷的主动调控;建立有机功能材料和纳米复合材料的空间合成新途径,发展新型凝胶润滑材料和含浸润滑剂多孔纳米复合材料。19. 空间胚胎发育和生命孕育研究研究空间微重力对哺乳动物和人类生殖细胞及其支持细胞协同发育的影响,从分子、细胞、组织等多个层面,系统地探究微重力环境对生殖细胞及其支持细胞协同发育的影响;研究空间 微重力下体外培养和分化胚胎干细胞为各类功能细胞、组织及器官的特性变化及基本规律;研究空间环境低敏感小鼠品系的筛选和构建,空间小鼠培养关键科学与技术问题。20. 日—地和日球层边界探测中的重要科学问题围绕理解日—地多圈层耦合过程和日球层边界的复杂系统开展重要科学问题研究。基于光谱成像观测研究日冕磁场、密 度、温度、速度的空间分布及其快速演化;建立太阳风结构的多视角观测的反演方法,研究其在行星际空间中的传播特征和演化规律,研究太阳风与地球磁层相互作用的关键区域(包括磁层顶、极光区和磁尾)的成像特征;建立数据驱动的内/外日球层全链条三维多元太阳风动力学演化模型,模拟背景太阳风环境及太阳风暴大尺度结构的传播与演化;研究太阳风边际结构及动态特性,星际介质对太阳风的侵入作用;研究太阳风超 热粒子及异常宇宙线的起源、加速和演化,银河宇宙线在太阳系边际的调制传输机制。21. 基于范德华外延—剥离转印的半导体器件制作新方法面向未来信息系统对高性能半导体器件的需求,突破衬底对器件性能的限制,探索基于范德华外延—剥离转印的器件制作新方法,实现不依赖外延关系的衬底选择,为高效率光电器件和大功率射频器件的研制提供变革技术。22. 基于声波新原理激励小型化天线技术面向低频天线机动化和高频天线芯片化的重大应用需求,研究多频段小型化声波激励天线新机理、新材料和新工艺,突破天线尺寸数量级缩减的技术瓶颈和传统天线辐射效率与带宽的物理极限,实现天线技术在尺寸和性能上的跨越。23. 具有开放扩展架构的模块化移动终端技术针对传统移动终端更新换代导致的资源浪费,研究可持续演进的模块化终端新形态,通过软件、模块升级与按需组合,支持多频段、多体制无线接入,实现终端由封闭向开放扩展架构的转变。24. 超铺展液滴调控技术用于高效农药利用的基础研究面向农药高效利用的重大需求,研究农作物叶面独特的微观结构和性质对农药液滴撞击在其表面迸溅和沉积的影响机制;构筑适用于多种作物和农药的新型高效表面活性剂超铺展剂体系,与农药活性调控技术相结合,解决农药的残留问题;与高效植保装备和精准施药技术相结合,构建能够使农药喷雾在作物和杂草间靶向喷洒、高效选择性沉积、抗风雨侵蚀的颠覆性技术,突破传统方法的极限,全面提升农药利用率;推动精准农业的实用化,完成农田农药喷洒测试。25. 高灵敏高速高温超导单光子探测材料与器件面向自由空间光通信对轻质小型、高灵敏光子探测器的迫切需求,聚焦星间激光通信等航空航天国家重大战略,开展新型结构高温超导薄膜制备过程与跨尺度物性理论研究和工艺优化设计;揭示基于量子金属态的新型超导量子效应形成机制;建立微结构与库珀对输运特性的构效关系和评价准则;发展基于高温超导体量子金属态的高灵敏、高速单光子探测原型器件。26. 稀土基新型电子相变半导体与敏感电阻器件围绕国家战略,从电子材料角度变革现有突变式敏感电阻元器件技术;发展稀土镍基氧化物等新型电子相变材料的非真空制备技术并结合理论计算优化其制备工艺;发展其金属绝缘体相变温度在宽温区范围的精准设计方法;研究其高压诱导电子相变特性与机理;研究其氢致电子相变特性、机理、与潜在器件应用;制作稀土基突变式热敏、压力敏感电阻原型器件。27. 分布式光纤地震成像与反演的关键技术及应用研究针对我国页岩气等非常规油气安全、高效开发关键需求,探索三分量分布式光纤地震传感技术;基于井中与地面光纤传感记录,开展裂缝发育、流体运移成像与反演方法研究,开展地下介质结构动态成像与物性参数动态反演方法研究;开展非常规油气开发现场及周边区域野外监测示范。28. 南极冰下复杂地质环境多工艺钻探理论与方法针对南极复杂冰下地质环境研究需求,变革现有冰层钻进及冰下地质钻探取样技术,探索面向南极恶劣地表环境和暖冰、脆冰与冰岩界面等复杂冰下地质环境的多工艺钻探取样理论与方法,提高复杂冰层钻进速度和增加冰下基岩取心长度。29. 高铁地震学研究针对高铁路基安全、地震预测、智慧城市地下空间探测与监测等重大问题需求,变革性地把高铁噪声源转变为可利用的优质震源,探索以高铁震源为代表的移动组合震源激发地震波场新理论,发展基于移动组合震源的地下介质结构探测、动态监测等系列新技术。30. 高通量培养筛选鉴定健康相关微生物的关键技术建立健康相关微生物菌自动分离培养及性状分析平台,揭示重要肠道细菌及代谢产物对“微生物—代谢—免疫”轴影响的微观机理;建立多组学大数据分析技术与人工智能算法,揭示临床常用药、疾病与健康相关的微生物组特征以及代谢、免疫特征;建成中国健康人体微生物实体库和微生物组的健康大数据库,突破微生物组研究关键技术,发展具有应用前景的微生物组干预技术,促进新型健康药物研发。31. 空间领域青年科学家项目针对太阳活动和空间天气的智能预报,地月空间探索等领域中的基础科学问题开展研究。32. 电子信息领域青年科学家项目针对碳基结构与硅基片上集成技术、语义通信理论与编码方法、多功能毫米波无源元件设计理论与实现技术、光电融合计算加速技术等领域中的基础科学问题开展研究。33. 材料领域青年科学家项目针对强自旋轨道耦合材料、二维量子材料、光—电—磁功能材料、柔性材料、生物医药材料等新概念功能材料与器件领域中的基础科学问题开展研究。34. 地学领域青年科学家项目针对地球与生命早期协同演化的金属同位素示踪技术与原理,关键带水文生物的地球化学研究,热带、中高纬度气候系统与我国极端天气气候的关系,涡旋运动与海洋生态系统储碳过程的关系等领域中的基础科学问题开展研究。
  • SHK-A313伺服液压高低温压力试验机技术方案
    SHK-A313伺服液压高低温压力试验机技术方案采用了液压动力源驱动,电液伺服控制技术,计算机数据采集处理,可实现闭环控制及自动检测的高精度材料试验设备,其由试验主机、油源(液压动力源)、测控系统、环境试验器具四部分组成。 功能主要用于砖、石、水泥、混凝土等建筑材料的抗压强度试验,也可用于其他材料的力学性能试验。本机采用液压加荷,电子测力,具有负荷数字显示、加荷速率显示、负荷最大值保持,以及过载保护和断电数据保持等功能。设备特点本机采用专利技术伺服泵控制,油缸上置式,四柱结构,机架强度刚度好,无变形(at:≤25T),位置采集系统采用0.005mm精度光栅尺,采集点置于力传感器下方,有效避免应变式传感器自身变形带来的系统误差。控制系统采用本公司与东华大学最新研发的多通道全闭环系统,连续加载荷平稳,可实现多级液压加载,多级试验力保持,自动采集数据处理闭环补偿控制,具备数据处理分析存储绘制功能。另配备-40-150℃环境试验箱,可实现不同温度点的测试需求。技术参数最大试验力(kN)200试验机示值准确度等级0.5级试验力测试量程10%-100%FS(全程不分档)变形测量范围1%-100%FS变形示值相对误差±0.5%/以内变形分辨力:最大变形量的1/300000试验力加载速率范围0.02%-2%FS/s立柱间有效距离500垂直空间(mm)700压缩空间(mm)300活塞移动速度范围(mm)0-100mm/min活塞行程(mm)350主机外形尺寸720×2000×2600mm环境箱温度范围-40-150℃环境箱内尺寸300X400X500mm总功率(kW)(三相五线制)6KW(AC380V 50Hz)重量(kg)1600
  • 南洋理工大学Hu Xiao教授课题组《Int. J. Mech. Sci.》: 3D打印板晶格机械超
    超材料是经过精心构造的材料;它们通常由周期性排列放置的单元块组成。这些材料所表现出的特性和功能与其组成材料有所不同,它们不仅仅是结合了其组成材料的特性和功能,还能形成一些由结构影响的独特性能。其中,机械超材料是一类人为设计的微观物理结构组成的、具有特殊机械性能的超材料。由于其在结构设计、尺寸和材料组件方面的可调整性,机械超材料为改善材料的机械行为和特性提供了新的机会,并为各种领域提供了多功能应用的潜质。过去的几十年中,人们不断地在追求材料的轻质化和高性能。一些报道指出简单立方(SC)板晶格在纳米尺度上可以达到力学性能的理论极限,这种板晶格机械超材料由于其理论上优异的机械特性和可人工调节设计的低密度而逐渐受到人们的关注。但是此类复杂结构的研究在过去一直受到制造技术的限制,因此新型3D打印技术的出现使得对这种晶格结构的深度研究成为可能。近期,新加坡南洋理工大学Prof. Hu Xiao团队提出了利用微立体光刻技术(PμSL),采用新型面投影微立体光刻设备(nanoArch S140, 摩方精密BMF)来打印高精度的立方板晶格结构,并成功制备出微米级到厘米级的简单立方晶格结构。该团队研究了打印模型的单元数量、开孔直径等对压缩性能的影响,并且将打印出来的结构与其他目前报道的机械超材料等进行了压缩性能的比较。结果表明,增加单元数量可显著提高抗压强度和能量吸收能力,打印的立体板晶格结构的比能量吸收能力甚至可以超过不锈钢晶格结构和目前文献报道过的其他聚合物晶格材料。图 1.(a)以往文献中使用的理想单元板晶格模型。(b) 本工作中使用的理想板晶格单元。(c) 修改后带孔的可打印立方板晶格单元。(d) 实验样品Cubic444-0.5mm。(e)有限元模拟von Mises带孔板晶格的压缩-Cubic444-0.5mm。(f) PμSL打印技术示意图。该研究中,简单立方晶格模型的理想化单元设计以及修饰后带孔单元的设计如图1 (a)-(c)所示。打印后的一组4*4*4的模型如图1 (d)所示,是一边长为1厘米的立方块,里面整齐堆垛了64个立方晶格单元,除此之外,还打印了另外两组:8*8*8,12*12*12的立方晶格结构。打印出来的所有样品都与设计的模型高度相似,具有非常高的打印精度,其中最薄的壁厚甚至能达到80微米。为了评估打印好的晶格模型的压缩性能,对所有晶格结构做了压缩测试。图2展示了压缩后立方晶格的刚度、强度、能量吸收能力与晶格结构的立方单元边长孔径比之间的关系。图 2.(a) d/l = 0.4时的立方板晶格的实验压缩应力-应变曲线。(b) 立方板晶格的压缩刚度与 d/l的关系拟合曲线。(c)立方板晶格的压缩强度吸收与 d/l的关系。(d) 立方板晶格的压缩能量与 d/l的关系。结果表明,在d/l = 0.4时观察到的强度变化是由于样品从正常结构到超材料结构的力学行为的巨大差异。当 d/l 很小 (d/l 30%)的样品。偏离拉伸主导行为的结果可以在图2d的能量吸收结果中看到。Cubic 444样本组具有低能量吸收值,对应于拉伸主导晶格的典型脆应力 - 应变行为。然而,Cubic 888和Cubic 121212具有更高的能量吸收,这对应于增加的弯曲特性即允许在失效前发生更大程度的变形。因此随着一个立方厘米内单元晶格数量的增加,晶格结构的能量吸收效率产生超乎寻常的增长。随后,将立方板晶格与具有相同相对密度相似单元大小的立方桁架结构和蜂窝结构进行了比较,如图 3(a)所示。在失效前,立方板晶格具有比桁架结构更大的应变和更高的刚度。与蜂窝相比,虽然蜂窝的垂直面表现出出色的机械性能,但其侧面压缩吸收的能量、压缩强度以及刚度都极低,几乎不具有支撑性,所以蜂窝从不同方向进行压缩的性能差异极其明显。而立方板晶格的三向力学性能相对来讲更均匀,它在三向上具有相同的结构特性,足够承受来自三维方向上的压力。同时,该团队将打印的所有晶格结构与最近报道的许多其他不锈钢或者聚合物基晶格材料的相对压缩能量吸收能力都进行了对比,如图 3(b)所示,其大范围可调节的能量吸收值最高约15 J/g,能力远高于文献报道的其他晶格材料,具有极高的应用潜能。图3. (a)不同结构类型样品的刚度、压缩强度和能量吸收比较柱状图。(b) 比能量吸收(SEA)比较图。
  • 《Materials & Design》: 基于Pμ SL制造的双相微点阵超材料及其无人机应用
    近年来基于3D打印的微格点阵超材料吸引了大量的关注,点阵超材料具有优异的比强度、比刚度,良好的减震降噪、吸能缓冲效果、突出的吸声和屏蔽等许多独特的功能特性,被誉为结构-功能一体化材料,在生物医学、电池电极以及运动器材、无人机减重等领域都有独特应用。其中,在无人机上应用超材料可以有效减轻其重量,减少其飞行所需的推力和功耗,从而提高电池续航时间与飞行持续时间,进而更好地拓展无人机在民用、军事、侦察,救援和娱乐等领域的应用。此外,微格点阵超材料出色的能量吸收能力可以帮助无人机抵抗飞行过程中的撞击和碰撞,点阵镂空结构还可以促进无人机的散热。为优化点阵超材料的机械性能,人们提出了多种多样的设计策略,其中,受晶体学启发的超材料设计策略颇具代表性。例如,已被广泛采用的经典多孔晶格点阵结构如体心立方点阵结构(BCC)、面心立方点阵结构(FCC)、八度桁架点阵结构(OCT)等均是受晶体学中原子/离子排列的启发而形成的超材料设计。近日,香港城市大学机械系及纳米制造实验室(NML)陆洋、生物医学工程系Pakpong Chirarattananon和西安电子科技大学高立波等报道了一种受金属硬化机制中的第二相粒子强化机制启发的多级微点阵超材料设计新策略。该策略思路如下:通过将OCT单元作为第二相粒子引入BCC点阵结构的45°对角平面,从而得到一种先进的OCT-BCC双相微点阵超材料。与原始BCC点阵超材料相比,该OCT-BCC双相微点阵超材料的压缩比强度沿水平方向和纵向显著增加了〜300%和〜600%,同时也伴随着刚度和能量吸收能力的显著提高。图1 基于双相增强概念设计,通过面投影微立体光刻(PμSL)3D打印的OCT-BCC双相微点阵超材料图2 OCT-BCC双相微点阵超材料与原始BCC微点阵材料的3D打印和力学测试为了证明这种先进的OCT-BCC双相微点阵超材料的制造可扩展性和实际应用潜力,该工作还通过摩方精密开发的基于面投影微立体光刻(PμSL)的3D打印技术(nanoArch P130, S140, BMF Precision, Shenzhen, China)成型了尺寸为5.0 cmx2.0 cm x 1.0 cm的大尺寸OCT-BCC双相微点阵超材料,并将其成功集成到微型无人机(MAV)的机身中。和原本的实心机身对比,集成了OCT-BCC双相微点阵超材料的轻量化机身重量减少了~ 65%,从而使得微型无人机的飞行时间实现了~ 40%的显著提升。图3 OCT-BCC双相微点阵超材料应用于微型无人机构件以实现减重及服役时间提升该工作不仅提出了一种有效的超材料增强设计方法,而且还展示了高精度PμSL (nanoArch P130, S140, BMF Precision, Shenzhen, China)3D打印超材料在微型无人机等领域的巨大应用潜力。相关成果以题为“3D printing of dual phase-strengthened microlattices for lightweight micro aerial vehicles”的论文发表在国际知名期刊Materials& Design上。
  • 香港城大: 基于Pμ SL制造的双相微点阵超材料及其无人机应用
    近年来基于3D打印的微格点阵超材料吸引了大量的关注,点阵超材料具有优异的比强度、比刚度,良好的减震降噪、吸能缓冲效果、突出的吸声和屏蔽等许多独特的功能特性,被誉为结构-功能一体化材料,在生物医学、电池电极以及运动器材、无人机减重等领域都有独特应用。其中,在无人机上应用超材料可以有效减轻其重量,减少其飞行所需的推力和功耗,从而提高电池续航时间与飞行持续时间,进而更好地拓展无人机在民用、军事、侦察,救援和娱乐等领域的应用。此外,微格点阵超材料出色的能量吸收能力可以帮助无人机抵抗飞行过程中的撞击和碰撞,点阵镂空结构还可以促进无人机的散热。为优化点阵超材料的机械性能,人们提出了多种多样的设计策略,其中,受晶体学启发的超材料设计策略颇具代表性。例如,已被广泛采用的经典多孔晶格点阵结构如体心立方点阵结构(BCC)、面心立方点阵结构(FCC)、八度桁架点阵结构(OCT)等均是受晶体学中原子/离子排列的启发而形成的超材料设计。近日,香港城市大学机械系及纳米制造实验室(NML)陆洋、生物医学工程系Pakpong Chirarattananon和西安电子科技大学高立波等报道了一种受金属硬化机制中的第二相粒子强化机制启发的多级微点阵超材料设计新策略。该策略思路如下:通过将OCT单元作为第二相粒子引入BCC点阵结构的45°对角平面,从而得到一种先进的OCT-BCC双相微点阵超材料。与原始BCC点阵超材料相比,该OCT-BCC双相微点阵超材料的压缩比强度沿水平方向和纵向显著增加了〜300%和〜600%,同时也伴随着刚度和能量吸收能力的显著提高。图1 基于双相增强概念设计,通过面投影微立体光刻(PμSL)3D打印的OCT-BCC双相微点阵超材料图2 OCT-BCC双相微点阵超材料与原始BCC微点阵材料的3D打印和力学测试为了证明这种先进的OCT-BCC双相微点阵超材料的制造可扩展性和实际应用潜力,该工作还通过摩方精密开发的基于面投影微立体光刻(PμSL)的3D打印技术(nanoArchP130, S140, BMF Precision, Shenzhen, China)成型了尺寸为5.0 cmx 2.0 cm x 1.0 cm的大尺寸OCT-BCC双相微点阵超材料,并将其成功集成到微型无人机(MAV)的机身中。和原本的实心机身对比,集成了OCT-BCC双相微点阵超材料的轻量化机身重量减少了~ 65%,从而使得微型无人机的飞行时间实现了~ 40%的显著提升。图3 OCT-BCC双相微点阵超材料应用于微型无人机构件以实现减重及服役时间提升采用OCT-BCC微点阵超材料的微型无人机相较普通实心构件的无人机飞行时间提升达40%(视频10倍提速)该工作不仅提出了一种有效的超材料增强设计方法,而且还展示了高精度PμSL (nanoArch P130, S140, BMF Precision, Shenzhen, China)3D打印超材料在微型无人机等领域的巨大应用潜力。相关成果以题为“3D printing of dual phase-strengthened microlattices for lightweight micro aerial vehicles”的论文发表在国际知名期刊Materials& Design上。官网:https://www.bmftec.cn/links/10
  • 香港城大《Materials & Design》: 基于Pμ SL制造的双相微点阵超材料及其无人机应用
    近年来基于3D打印的微格点阵超材料吸引了大量的关注,点阵超材料具有优异的比强度、比刚度,良好的减震降噪、吸能缓冲效果、突出的吸声和屏蔽等许多独特的功能特性,被誉为结构-功能一体化材料,在生物医学、电池电极以及运动器材、无人机减重等领域都有独特应用。其中,在无人机上应用超材料可以有效减轻其重量,减少其飞行所需的推力和功耗,从而提高电池续航时间与飞行持续时间,进而更好地拓展无人机在民用、军事、侦察,救援和娱乐等领域的应用。此外,微格点阵超材料出色的能量吸收能力可以帮助无人机抵抗飞行过程中的撞击和碰撞,点阵镂空结构还可以促进无人机的散热。为优化点阵超材料的机械性能,人们提出了多种多样的设计策略,其中,受晶体学启发的超材料设计策略颇具代表性。例如,已被广泛采用的经典多孔晶格点阵结构如体心立方点阵结构(BCC)、面心立方点阵结构(FCC)、八度桁架点阵结构(OCT)等均是受晶体学中原子/离子排列的启发而形成的超材料设计。近日,香港城市大学机械系及纳米制造实验室(NML)陆洋、生物医学工程系Pakpong Chirarattananon和西安电子科技大学高立波等报道了一种受金属硬化机制中的第二相粒子强化机制启发的多级微点阵超材料设计新策略。该策略思路如下:通过将OCT单元作为第二相粒子引入BCC点阵结构的45°对角平面,从而得到一种先进的OCT-BCC双相微点阵超材料。与原始BCC点阵超材料相比,该OCT-BCC双相微点阵超材料的压缩比强度沿水平方向和纵向显著增加了〜300%和〜600%,同时也伴随着刚度和能量吸收能力的显著提高。图1 基于双相增强概念设计,通过面投影微立体光刻(PμSL)3D打印的OCT-BCC双相微点阵超材料图2 OCT-BCC双相微点阵超材料与原始BCC微点阵材料的3D打印和力学测试为了证明这种先进的OCT-BCC双相微点阵超材料的制造可扩展性和实际应用潜力,该工作还通过摩方精密开发的基于面投影微立体光刻(PμSL)的3D打印技术(nanoArch P130, S140, BMF Precision, Shenzhen, China)成型了尺寸为5.0 cmx 2.0 cm x 1.0 cm的大尺寸OCT-BCC双相微点阵超材料,并将其成功集成到微型无人机(MAV)的机身中。和原本的实心机身对比,集成了OCT-BCC双相微点阵超材料的轻量化机身重量减少了~ 65%,从而使得微型无人机的飞行时间实现了~ 40%的显著提升。图3 OCT-BCC双相微点阵超材料应用于微型无人机构件以实现减重及服役时间提升采用OCT-BCC微点阵超材料的微型无人机相较普通实心构件的无人机飞行时间提升达40%(视频10倍提速)该工作不仅提出了一种有效的超材料增强设计方法,而且还展示了高精度PμSL (nanoArch P130, S140, BMF Precision, Shenzhen, China)3D打印超材料在微型无人机等领域的巨大应用潜力。相关成果以题为“3D printing of dual phase-strengthened microlattices for lightweight micro aerial vehicles”的论文发表在国际知名期刊Materials& Design上。官网:https://www.bmftec.cn/links/10
  • 附清单|2023年度四川省科学技术奖受理项目公示
    近期,四川省科学技术厅官方网站公示了2023年度四川省科学技术奖受理项目,共收到有关单位和专家提名的项目(人选)共1128项(人),其中:科学技术杰出贡献奖候选人6人,杰出青年科学技术创新奖30人,自然科学奖73项、技术发明奖25项、科学技术进步奖987项、国际科学技术合作奖7项。详情如下:根据《四川省科学技术奖励办法实施细则》的有关规定,已对省科学技术奖项目(人选)进行形式审查,现将形式审查合格拟受理的通用项目在科技厅网站(http://kjt.sc.gov.cn)予以公示,公示期为15个工作日。公示项目详细情况请点击http://202.61.89.121/home/reveal。形式审查合格的专用项目在一定范围内公示。自公示之日起15个工作日内(2023年8月30日前),任何单位和个人对受理结果有不同意见的,可以在公示期内以书面形式提出,逾期不予受理。为便于核实查证,确保客观公正处理异议,异议应当以书面形式提出,并表明真实身份,提供有效联系方式和证明观点的必要证据材料。以个人名义提出的,应当在异议材料上签署真实姓名、单位及联系方式,并提供身份证复印件。以单位名义提出的,须写明单位名称、联系人和联系方式,并加盖单位公章。我厅按有关规定对异议提出者的相关信息予以保护。  联系方式:科技奖励与科普处 028-86718520、86710813科技监督与诚信建设处 028-86728905地    址:成都市学道街39号邮政编码:6100162023年度四川省科学技术奖受理项目自然科学奖 (71项)序号项目名称完成单位完成人提名者1强湍流下太阳大气高分辨光学层析成像机理与方法中国科学院光电技术研究所饶长辉、朱磊、顾乃庭、张兰强、饶学军、鲍华中科院成都分院2脑功能核心网络及其在神经精神疾病诊治上的意义电子科技大学尧德中、罗程、高山、段明君、蒋思思、龚津南、贺辉电子科技大学3面向渐变退化和不完备信息的重大装备可靠性理论与方法电子科技大学黄洪钟、刘宇、米金华、李彦锋、彭卫文、黄承赓电子科技大学4类脑视觉计算理论、关键技术与应用电子科技大学李永杰、高绍兵、杨开富、邓涛、张显石、颜红梅电子科技大学5水中结合态新污染物的(微) 界面赋存、自源转化与无害化控制机制四川大学、同济大学、浙江工业大学郭洪光、楚文海、邓靖、王敬荃、程鑫四川大学6固-液界面相互作用机制研究及调控方法电子科技大学邓旭、王德辉、孙强强、陈龙泉、杨金龙、宋佳宁电子科技大学7图像质量增强的精准建模与高效计算研究电子科技大学邓良剑、黄捷电子科技大学8西南小麦产量性状遗传解析与育种利用四川农业大学马建、魏育明、李伟、陈国跃、江千涛、兰秀锦、陈光登、邓梅教育厅9高强度金属材料的界面强韧化及调控机理四川大学黄崇湘、王艳飞、王清远、王明赛四川大学10锂离子电池用低成本高性能SiOx/C负极的构建及其储锂机理西华师范大学、东北大学秦皇岛分校李明齐、罗绍华、曾春梅南充市11抑郁症影像遗传机制电子科技大学陈华富、廖伟、李娇、游自立、段旭君、崔茜电子科技大学12低维阵列型光电探测器光电双效耦合机理与调控方法电子科技大学、武汉理工大学、华中科技大学巫江、任翱博、李明钰、徐浩、姬海宁电子科技大学13高维信号的特征子空间表征理论与方法电子科技大学朱策、刘翼鹏、叶茂电子科技大学序号项目名称完成单位完成人提名者14功能高分子复合材料形态调控中的新发现四川大学邓华、傅强、张琴、王柯、陈枫四川大学15植物多酚生物质基环境功能材料四川师范大学毛卉、廖洋、马骏、赵仕林教育厅16新型功能陶瓷材料的组成/结构调控与力—电性能优化研究成都大学、四川大学陈渝、王皓民、黄志勇教育厅17纳米尺度下超细长结构多模态耦合振动理论研究西南交通大学、西南石油大学李翔宇、赵翔、陈小超、李映辉西南交通大学18复杂网络的学习算法设计及其在金融网络动态预警中的应用西南财经大学熊文军、陈姚、黄迟、陈小龙、罗子健、王未、谭福、王潇潇教育厅19基于结构生物学的原创小分子药物发现四川大学陈俐娟、游劲松、欧阳亮、杨建洪、王誉熹、杨林玉四川大学20深部资源开采岩石各向异性体破裂机制与理论四川大学、深圳大学、重庆大学谢和平、李存宝、张茹、李铭辉、王俊四川大学21随机控制的最优性条件与结构性理论四川师范大学、四川大学张海森、尹忠旗、王天啸教育厅22高效有机电致发光材料及器件电子科技大学陶斯禄、杜晓扬、林慧、张明、何泽宇电子科技大学23恒河猴心脑微循环结构与功能磁共振新技术研发与应用四川大学华西医院郜发宝、徐紫谦、陈榆舒、王磊、张钰四川大学24多属性共识一致型群决策理论与方法四川大学徐玖平、吴志彬、吴巍四川大学25高速远程滑坡超强运动特性动力学机理成都理工大学胡伟、许强、李延教育厅26肾缺血再灌注损伤的发生机制与保护作用研究宜宾市第二人民医院解德琼、代庆、郝雯宜宾市27利用大样本M巨星研究人马座星流和麒麟座星环的结构及起源西华师范大学、中国科学院上海天文台、中国科学院国家天文台李静、钟靖、薛香香、刘超南充市28不确定多智能体系统智能决策与控制电子科技大学、成都大学胡江平、施开波、彭知南、武艳芝电子科技大学序号项目名称完成单位完成人提名者29面向复杂背景的目标跟踪信息融合基础理论与方法四川大学沈晓静、宋恩彬、罗应婷、王治国、朱允民四川大学30高温超导涂层导体强磁通钉扎生成机制与电磁耦合特性调控西南交通大学、上海交通大学、上海超导科技股份有限公司马光同、王亚伟、朱佳敏、赵跃、周鹏博、洪智勇西南交通大学31多功能高分子载体的结构调控与药物递送西南交通大学周绍兵、郭星、杨光、王毅、黄学辉西南交通大学32复杂环境下脆性材料复合型断裂准则及断裂机理研究四川大学、西昌学院董世明、华文、汤淮子、李念斌、李一凡、李建雄四川大学33新型高效成炭阻燃体系的设计、制备及机理西南科技大学、四川大学胡小平、汪秀丽、王鹏吉、李文雄、杨文雪教育厅34限域组装调制化学发光与传感应用成都理工大学张信凤、许淑霞、黄荣富、李显明教育厅35基于词、语句和篇章的多粒度语义计算研究乐山师范学院、西南交通大学金澎、孙锐、陈兴元、王红军教育厅36核酸药物高效递送系统的应用基础研究四川大学孙逊、张志荣、石三军、龚涛、汪琴、万瑜、韩剑锋四川大学37发展型偏微分方程反问题的条件稳定性和数值算法电子科技大学、四川大学窦芳芳、付晓玉电子科技大学38四川盆地东南缘萤石-重晶石矿床超常富集与成因机制成都理工大学邹灏、曹华文、李阳、陈海锋、刘行教育厅39多视角图像精细理解机理与方法西南交通大学吴晓、杨燕、赵波、王浩、彭强西南交通大学40基于盲源分离的无线环境感知和干扰消除方法四川轻化工大学、西南民族大学、电子科技大学骆忠强、李成杰、朱立东教育厅41猪产肉性状的遗传和营养调控基础四川农业大学李明洲、陈代文、李学伟、黄志清、龙科任、余冰教育厅42罕见骨病基础与临床一体化研究四川大学华西医院余希杰、陈香、田丽、汪秀文、谢莹、鲁凌云、赵茜四川大学43新型类Fenton体系的构建及其去除废水中抗生素类新污染物的作用机制四川师范大学、清华大学刘咏、王诗宗、龚小波、王建龙、陈勇省环境科学学会序号项目名称完成单位完成人提名者44手性伯胺催化剂的设计、合成及在有机不对称合成中的应用西华师范大学、中国科学技术大学刘全忠、罗时玮、康泰然、陈泽琴 、邓玉华南充市45复杂高维视觉数据高效表示与精准检索理论及方法电子科技大学杨阳 、沈复民、申恒涛、徐行、宋井宽、谢宁电子科技大学46高集成度导波与辐射结构的电磁特性调控机理研究成都大学高山山、朱晓玲、徐嘉莉教育厅47小波变换域Copula统计模型图像表示与应用宜宾学院、成都信息工程大学李朝荣、覃凤清、黄源源教育厅48情绪障碍性疾病的神经影像学机制四川大学华西医院贾志云、龚启勇、陈紫琪、田方芳、张华为、彭薇四川大学49学习相关核心认知能力的认知及交互机制四川师范大学、电子科技大学刘强、徐鹏、胡中华、李发礼、伍希教育厅50恶性外来入侵植物紫茎泽兰致动物毒性及其机理研究四川农业大学、贵州农业职业学院、云南农业大学胡延春、廖飞、吴国星、任志华、邓俊良农业农村厅51多策略自适应学习的智能优化理论与方法西华师范大学、中国民航大学陈华月、赵慧敏、陈涛、邓武、赵海军南充市52肠道菌群及其与肥胖症和肠道炎症的相关性成都大学、四川农业大学郭秀兰、王康宁 、唐仁勇、王国泽教育厅53格与一致零模的结构及其应用四川师范大学、乐山师范学院王学平、屈小兵、舒乾宇、孙峰、赵姗教育厅54人造黑色素材料的结构设计与关键性能调控四川大学、华东师范大学李乙文、顾志鹏、朱方、程义云四川大学55液舱晃荡模拟方法及控制机理四川大学、河海大学林鹏智、薛米安、郑金海、苑晓丽、刘鑫四川大学56鸽营养添加物的保肝作用机制研究四川农业大学王讯、赵玲、李英伦教育厅57界面化学键耦合强化电极材料及其电荷传输机制四川大学、中南大学张云、吴昊、纪效波、侯红帅、刘恒四川大学58框架核酸药物关键理论研究四川大学林云锋、田陶然、张陶、马文娟、张雨欣、李松航四川大学序号项目名称完成单位完成人提名者59川方医院制剂抗新冠病毒及其变种作用机制研究成都医学院、西南交通大学、成都中医药大学附属医院、浙江中医药大学贾旭、阳泰、黄新河、张松、开国银、谌敏教育厅60贡嘎山土壤磷生物地球化学循环及其生态环境效应中国科学院、水利部成都山地灾害与环境研究所中国科学院成都生物研究所吴艳宏、周俊、邴海健、祝贺、李家宝、孙宏洋中科院成都分院61新型有机电光材料的制备及性能调控策略成都师范学院邓国伟、李仲辉、张小玲、杨敏教育厅62纳米荧光探针性能调控、传感机理及多模式应用基础理论与方法四川旅游学院、四川大学、四川轻化工大学姚军、杨美、范红松教育厅63纤维素气凝胶多孔网络结构调控机制与功能化四川大学黄华东、钟淦基、徐玲、刘春燕、张亮青四川大学64新颖量子薄膜创制与超灵敏超导探测应用基础研究电子科技大学熊杰、杨超、张文旭、王显福、李言荣电子科技大学65有机半导体材料分子设计合成与性能调控四川师范大学赵可清、胡平、汪必琴、余文浩教育厅66文丘里结构通道内气泡输运及高效碎化机制四川大学孙立成、莫政宇、杜敏、赵梁、黄江、唐继国四川大学67网格变换的几何守恒理论及其在复杂流动模拟中的应用中国空气动力研究与发展中心计算空气动力研究所毛枚良、燕振国、邓小刚、姜屹、闵耀兵、朱华君朱广生68低功耗高精度模数转换器芯片设计理论电子科技大学庄浩宇电子科技大学69马氏过程的位势理论及相关问题四川大学、南京大学胡泽春四川大学70氢气绿色制取及其清洁利用的低成本、高效催化剂设计与作用机制西南石油大学、苏州大学、中国科学技术大学陈鑫、杨瑞枝、刘庆华教育厅71复杂山地环境遥感机理模型与反演适用方法中国科学院、水利部成都山地灾害与环境研究所、西南交通大学、中国农业科学院农业资源与农业区划研究所李爱农、赵伟、边金虎、尹高飞、段四波、张正健中科院成都分院序号项目名称完成单位完成人提名者技术发明奖 (17项)1特种石墨材料制备及产业化关键技术研究巴中意科碳素股份有限公司朱仕高、张正权巴中市2核反应堆智能一体化堆芯探测器组件拆除装置研制中国核动力研究设计院、四川大学安彦波、李娜、湛卉、黄宗仁、曹锐、余志伟、张卫华、钟元章、刘昌文、杨其辉中国核动力研究设计院3高速列车车轮状态检测与智能运维技术西南交通大学、成都铁安科技有限责任公司、江西奈尔斯西蒙斯赫根赛特中机有限公司、中国铁路成都局集团有限公司张卫华、彭建平、宋冬利、曾元辰、赵波、张甬成、金明亮西南交通大学4平面相控阵天线近全空域波束扫描理论、技术及应用电子科技大学、成都锦江电子系统工程有限公司、北京机电工程研究所、成都航空职业技术学院丁霄、王任、王秉中、王建宁、梁锋、陈志新、邓建华电子科技大学5经典发酵食品内源有害胺生物合成解析及现代调控四川省食品发酵工业研究设计院有限公司、四川大学、四川东坡中国泡菜产业技术研究院张其圣、唐垚、迟原龙、范智义、汪冬冬、陈功省食品科学技术学会6海底可燃冰固态流化井下双层管开采关键技术与装备研发及应用西南石油大学、中海油研究总院有限责任公司、中海石油深海开发有限公司王国荣、李清平、何玉发、唐洋、钟林、张俊斌、金颢 、龚彦、苟如意教育厅7面向广义芯片的全自主系列化紫外(350~450nm)光刻机中国科学院光电技术研究所、电子科技大学胡松、赵立新、刘俊伯、王建、龚健文、钟其水、朱咸昌、杜婧、周吉、杨金中科院成都分院8深层/超深层钻完井工具关键材料西南石油大学、四川华宇石油钻采装备有限公司、西安交通大学、中油国家油气钻井装备工程技术研究中心有限公司王小红、张彦峰、邓宽海、闫静、杨昌平、林元华、梅宗斌教育厅9山洪水沙灾害防治关键技术四川大学、中国水利水电科学研究院许唯临、刘兴年、孙东亚、王协康、周家文、闫旭峰、黎小东四川大学序号项目名称完成单位完成人提名者10外骨骼机器人运动协作增强技术及应用电子科技大学、布法罗机器人科技(成都)有限公司、华中科技大学、上海电气自动化设计研究所有限公司程洪、邱静、黄瑞、宋广奎、邹朝彬、张琴、黄艋电子科技大学11复杂地海背景低空多目标雷达高效检测精准跟踪技术电子科技大学孔令讲、易伟、张寅、李武军、袁野、毛德庆、张国鑫电子科技大学12铁路无砟轨道动刚度调控技术西南交通大学、浙江天铁实业股份有限公司、中铁二院工程集团有限责任公司、北京交通大学韦凯、王平、王博、马蒙、庞玲、周炯浩、周昌盛西南交通大学13面向新一代通信的宽频数字射频功率放大器芯片关键技术及应用电子科技大学、中国工程物理研究院电子工程研究所、复旦大学罗讯、杨秉正、殷韵、程序、舒一洋、周杰电子科技大学14地震弱信号智能识别与隐蔽气藏群刻画关键技术及应用中国石油天然气股份有限公司西南油气田分公司、西南石油大学、电子科技大学、四川科力特油气技术服务有限公司陈康、黄旭日、文龙、冉崎、钱峰、彭达、张光荣四川石油管理局有限公司15多种类型动车组共线运营条件下高铁自适应站台门关键技术西南交通大学、中国铁路成都局集团有限公司、中铁二院工程集团有限责任公司、成都唐源电气股份有限公司倪少权、占栋、陶世杰、罗俊、赵海宁、谢明生、景博西南交通大学16高效多功能土传病害防治微生物制剂创制与应用四川省农业科学院植物保护研究所、成都特普生物科技股份有限公司、农业农村厅植物保护站、四川省农业科学院刘勇、黄永、黄小琴、张国芝、张蕾、陈绍超、杨潇湘、裴文亮、张重梅、周西全农业农村厅17基于新型光纤材料的高性能中红外光纤激光的产生技术电子科技大学、吉林大学李剑峰、秦冠仕、罗鸿禹、贾志旭、朋汉林电子科技大学序号项目名称完成单位完成人提名者科学技术进步奖 (816项)农业组 (40项)1加工型无花果新品种选育及优质高效生产关键技术创新与应用四川农业大学、威远县无花果科学研究所、四川省食品发酵工业研究设计院有限公司、四川金四方果业有限责任公司、中国农业大学、四川德顺源食品股份有限公司张小艾、李金平、柏红梅、游勇、马会勤、赵宏友、张莉、苏辉、徐永宁
  • 深圳技术大学285.00万元采购切割机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 激光隐形切割机采购公告 广东省-深圳市-坪山区 状态:公告 更新时间: 2024-03-28 招标文件: 附件1 附件2 附件3 附件4 激光隐形切割机招标项目的潜在投标人应在(本公告附件中)获取招标文件,并于2024年4月8日14:00(北京时间)前递交投标文件。 一、项目基本情况: 1.项目编号:SZDL2024000411 2.项目名称:激光隐形切割机 3.预算金额(单位:元):2,850,000.00 4.最高限价(如有):2,850,000.00 5.采购需求: 标的名称 数量 单位 简要技术需求(服务需求) 备注 激光隐形切割机 1 套 详见招标文件 6.合同履行期限:详见招标文件用户需求书。 二、申请人的资格要求: 1.具有独立法人资格或具有独立承担民事责任的能力的其它组织(提供营业执照或事业单位法人证等法人证明扫描件,原件备查)。 2.本项目不接受联合体投标,不接受投标人选用进口产品参与投标。 3.参与本项目投标前三年内,在经营活动中没有重大违法记录(由供应商在《政府采购投标及履约承诺函》中作出声明)。 4.参与本项目政府采购活动时不存在被有关部门禁止参与政府采购活动且在有效期内的情况(由供应商在《政府采购投标及履约承诺函》中作出声明); 5.具备《中华人民共和国政府采购法》第二十二条第一款的条件(由供应商在《政府采购投标及履约承诺函》中作出声明)。 6.未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单(由供应商在《政府采购投标及履约承诺函》中作出声明)。 注:“信用中国”、“中国政府采购网”以及“深圳市政府采购监管网”为供应商信用信息的查询渠道,相关信息以中标通知书发出前的查询结果为准。 三、获取招标文件 时间:2024年3月28日18:30至2024年4月8日14:00(北京时间)。 地点:登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。 方式:在线下载。 售价:免费。 凡已注册的深圳市网上政府采购供应商,按照授予的操作权限,可于2024年3月28日18:30至2024年4月8日14:00 期间登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的采购文件。投标人如确定参加投标,首先要在深圳政府采购智慧平台网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)网上报名投标,方法为在网上办事子系统后点击“【招标公告】→【我要报名】”;如果网上报名后上传了投标文件,又不参加投标,应再到【我的项目】→【项目流程】→【递交投标(应答)文件】功能点中进行“【撤回本次投标】”操作;如果是未注册为深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)的供应商,请先办理密钥(请点击),并前往深圳公共资源交易中心绑定深圳政府采购智慧平台用户(地址:深圳市南山区沙河西路深圳湾科技生态园9栋B4座6楼627室;电子密钥办理咨询电话:0755-83948165),再进行投标报名。在网上报名后,点击“【我的项目】→【项目流程】→【采购文件下载】”进行招标文件的下载。 四、提交投标文件截止时间、开标时间和地点 1.投标截止时间:所有投标文件应于2024年4月8日14:00(北京时间)之前上传到深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)。具体操作为登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,用“【我的项目】→【项目流程】→【递交投标(应答)文件】”功能点上传投标文件。本项目电子投标文件最大容量为100MB,超过此容量的文件将被拒绝。 2.开标时间和地点:定于2024年4月8日14:00(北京时间),在深圳市加乐咨询有限公司(深圳市福田区深南路1003号A座大中华国际金融中心10楼)公开开标。供应商可以登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,在“【我的项目】→【项目流程】→【开标及解密】”进行在线解密、查询开标情况。 3.在线解密:投标人须在开标当日14:00-14:30期间进行解密,逾期未解密的作无效处理。解密方法:登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,使用本单位制作电子投标文件同一个电子密钥,在“【我的项目】→【项目流程】→【开标及解密】”进行在线解密、查询开标情况。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目实行网上投标,采用电子投标文件。 2.采购文件澄清/修改事项:2024年4月3日00:00(北京时间)前,供应商如果认为采购文件存在不明确、不清晰和前后不一致等问题,可登录深圳公共资源交易中心网(http://zfcg.szggzy.com:8081/)→“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,在“【我的项目】→【项目流程】→【提问】”功能点中填写需澄清内容。2024年4月5日00:00(北京时间)前将采购文件澄清/修改情况在“【我的项目】→【项目流程】→【答疑澄清文件下载】”中公布,望投标人予以关注。 (重要提示:“提出采购文件澄清要求”不等同于“对采购文件质疑”,供应商提出的澄清要求内容如出现“质疑”字眼,将予以退回。供应商如认为采购文件存在限制性、倾向性、其权益受到损害,应在采购文件公布之日起七个工作日内以书面形式提出质疑。请质疑供应商根据深圳公共资源交易中心网( https://www.szggzy.com/fwdh/fwdhzfcg/bszn1/content_203163.html )所发布的质疑指引、质疑函模板填写质疑函并提交质疑材料。质疑材料可以采用现场或邮寄方式提交,采用邮寄方式提交的,交邮时间应在本公告发布之日起七个工作日内。质疑材料现场提交、邮寄地址:深圳市福田区深南路1003号A座大中华国际金融中心10楼。质疑咨询电话:0755-82997987。根据《深圳经济特区政府采购条例》第四十二条“供应商投诉的事项应当是经过质疑的事项”的规定,未经正式质疑的,将影响供应商行使向财政部门提起投诉的权利。) 3.深圳市加乐咨询有限公司有权对投标人就本项目要求提供的相关证明资料(原件)进行审查。供应商提供虚假资料被查实的,则可能面临被取消本项目中标资格、列入不良行为记录名单和三年内禁止参与深圳市政府采购活动的风险。 4.本招标公告及本项目招标文件所涉及的时间一律为北京时间。投标人有义务在招标活动期间浏览深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/),在深圳公共资源交易中心网上公布的与本次招标项目有关的信息视为已送达各投标人。 5.本项目不需要投标保证金。 七、对本次招标提出询问,请按以下方式联系 1.采购人信息 名称:深圳技术大学 地址:深圳市坪山区兰田路3002号 联系方式:谢老师 0755-23256076 2.招标代理机构 名称:深圳市加乐咨询有限公司 地址:深圳市福田区深南路1003号A座大中华国际金融中心10楼 联系方式:王工 0755-82997987 技术支持:0755-86500023 八、附件 采购文件szczf:-详见后面附件- 采购文件PDF:-详见后面附件- 采购文件DOC:-详见后面附件- 通用附件: 1、请下载并使用相应的深圳智慧采购平台投标文件制作专用软件打开招标文件(.szczf格式)。 2、供应商端操作手册。 深圳市加乐咨询有限公司 2024年3月28日 [SZDL2024000411-A]激光隐形切割机.docx SZDL2024000411-A激光隐形切割机采购公告.pdf [SZDL2024000411-A]激光隐形切割机.pdf [SZDL2024000411-A]激光隐形切割机.szczf 附录.中小企业及残疾人福利性单位相关文件.zip × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:切割机 开标时间:2024-04-08 14:00 预算金额:285.00万元 采购单位:深圳技术大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:深圳市加乐咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 激光隐形切割机采购公告 广东省-深圳市-坪山区 状态:公告 更新时间: 2024-03-28 招标文件: 附件1 附件2 附件3 附件4 激光隐形切割机招标项目的潜在投标人应在(本公告附件中)获取招标文件,并于2024年4月8日14:00(北京时间)前递交投标文件。 一、项目基本情况: 1.项目编号:SZDL2024000411 2.项目名称:激光隐形切割机 3.预算金额(单位:元):2,850,000.00 4.最高限价(如有):2,850,000.00 5.采购需求: 标的名称 数量 单位简要技术需求(服务需求) 备注 激光隐形切割机 1套 详见招标文件 6.合同履行期限:详见招标文件用户需求书。 二、申请人的资格要求: 1.具有独立法人资格或具有独立承担民事责任的能力的其它组织(提供营业执照或事业单位法人证等法人证明扫描件,原件备查)。 2.本项目不接受联合体投标,不接受投标人选用进口产品参与投标。 3.参与本项目投标前三年内,在经营活动中没有重大违法记录(由供应商在《政府采购投标及履约承诺函》中作出声明)。 4.参与本项目政府采购活动时不存在被有关部门禁止参与政府采购活动且在有效期内的情况(由供应商在《政府采购投标及履约承诺函》中作出声明); 5.具备《中华人民共和国政府采购法》第二十二条第一款的条件(由供应商在《政府采购投标及履约承诺函》中作出声明)。 6.未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单(由供应商在《政府采购投标及履约承诺函》中作出声明)。 注:“信用中国”、“中国政府采购网”以及“深圳市政府采购监管网”为供应商信用信息的查询渠道,相关信息以中标通知书发出前的查询结果为准。 三、获取招标文件 时间:2024年3月28日18:30至2024年4月8日14:00(北京时间)。 地点:登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。 方式:在线下载。 售价:免费。 凡已注册的深圳市网上政府采购供应商,按照授予的操作权限,可于2024年3月28日18:30至2024年4月8日14:00 期间登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的采购文件。投标人如确定参加投标,首先要在深圳政府采购智慧平台网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)网上报名投标,方法为在网上办事子系统后点击“【招标公告】→【我要报名】”;如果网上报名后上传了投标文件,又不参加投标,应再到【我的项目】→【项目流程】→【递交投标(应答)文件】功能点中进行“【撤回本次投标】”操作;如果是未注册为深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)的供应商,请先办理密钥(请点击),并前往深圳公共资源交易中心绑定深圳政府采购智慧平台用户(地址:深圳市南山区沙河西路深圳湾科技生态园9栋B4座6楼627室;电子密钥办理咨询电话:0755-83948165),再进行投标报名。在网上报名后,点击“【我的项目】→【项目流程】→【采购文件下载】”进行招标文件的下载。 四、提交投标文件截止时间、开标时间和地点 1.投标截止时间:所有投标文件应于2024年4月8日14:00(北京时间)之前上传到深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)。具体操作为登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,用“【我的项目】→【项目流程】→【递交投标(应答)文件】”功能点上传投标文件。本项目电子投标文件最大容量为100MB,超过此容量的文件将被拒绝。 2.开标时间和地点:定于2024年4月8日14:00(北京时间),在深圳市加乐咨询有限公司(深圳市福田区深南路1003号A座大中华国际金融中心10楼)公开开标。供应商可以登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,在“【我的项目】→【项目流程】→【开标及解密】”进行在线解密、查询开标情况。 3.在线解密:投标人须在开标当日14:00-14:30期间进行解密,逾期未解密的作无效处理。解密方法:登录“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,使用本单位制作电子投标文件同一个电子密钥,在“【我的项目】→【项目流程】→【开标及解密】”进行在线解密、查询开标情况。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目实行网上投标,采用电子投标文件。 2.采购文件澄清/修改事项:2024年4月3日00:00(北京时间)前,供应商如果认为采购文件存在不明确、不清晰和前后不一致等问题,可登录深圳公共资源交易中心网(http://zfcg.szggzy.com:8081/)→“深圳政府采购智慧平台用户网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)”,在“【我的项目】→【项目流程】→【提问】”功能点中填写需澄清内容。2024年4月5日00:00(北京时间)前将采购文件澄清/修改情况在“【我的项目】→【项目流程】→【答疑澄清文件下载】”中公布,望投标人予以关注。 (重要提示:“提出采购文件澄清要求”不等同于“对采购文件质疑”,供应商提出的澄清要求内容如出现“质疑”字眼,将予以退回。供应商如认为采购文件存在限制性、倾向性、其权益受到损害,应在采购文件公布之日起七个工作日内以书面形式提出质疑。请质疑供应商根据深圳公共资源交易中心网( https://www.szggzy.com/fwdh/fwdhzfcg/bszn1/content_203163.html )所发布的质疑指引、质疑函模板填写质疑函并提交质疑材料。质疑材料可以采用现场或邮寄方式提交,采用邮寄方式提交的,交邮时间应在本公告发布之日起七个工作日内。质疑材料现场提交、邮寄地址:深圳市福田区深南路1003号A座大中华国际金融中心10楼。质疑咨询电话:0755-82997987。根据《深圳经济特区政府采购条例》第四十二条“供应商投诉的事项应当是经过质疑的事项”的规定,未经正式质疑的,将影响供应商行使向财政部门提起投诉的权利。) 3.深圳市加乐咨询有限公司有权对投标人就本项目要求提供的相关证明资料(原件)进行审查。供应商提供虚假资料被查实的,则可能面临被取消本项目中标资格、列入不良行为记录名单和三年内禁止参与深圳市政府采购活动的风险。 4.本招标公告及本项目招标文件所涉及的时间一律为北京时间。投标人有义务在招标活动期间浏览深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/),在深圳公共资源交易中心网上公布的与本次招标项目有关的信息视为已送达各投标人。 5.本项目不需要投标保证金。 七、对本次招标提出询问,请按以下方式联系 1.采购人信息 名称:深圳技术大学 地址:深圳市坪山区兰田路3002号 联系方式:谢老师 0755-23256076 2.招标代理机构 名称:深圳市加乐咨询有限公司 地址:深圳市福田区深南路1003号A座大中华国际金融中心10楼 联系方式:王工 0755-82997987 技术支持:0755-86500023 八、附件 采购文件szczf:-详见后面附件- 采购文件PDF:-详见后面附件- 采购文件DOC:-详见后面附件- 通用附件: 1、请下载并使用相应的深圳智慧采购平台投标文件制作专用软件打开招标文件(.szczf格式)。 2、供应商端操作手册。 深圳市加乐咨询有限公司 2024年3月28日 [SZDL2024000411-A]激光隐形切割机.docx SZDL2024000411-A激光隐形切割机采购公告.pdf [SZDL2024000411-A]激光隐形切割机.pdf [SZDL2024000411-A]激光隐形切割机.szczf 附录.中小企业及残疾人福利性单位相关文件.zip
  • 美国Rtec仪器有限公司副总裁肖军为材料学院师生作报告
    12月15日下午,美国Rtec仪器有限公司副总裁、摩擦检测技术委员会副主席肖军博士做了题为《摩擦检测的挑战和新发现》的专题报告。院党委副书记、副院长韩明臣,部分老师、研究生、本科生聆听了报告。肖军博士从摩擦学的来源、定义讲起,介绍了摩擦学在当今社会的广泛应用。摩擦学是一个交叉学科,材料、机械、化工等都有涉及,摩擦又是一个很复杂的系统,各种环境影响因素较多,摩擦磨损失效引起的重大事故很严重,如中东飞机尾翼失效断裂坠海、气象卫星在外太空因为固体润滑打不开等事故。接着,他又从摩擦磨损仪器测量的角度分析了现今研究所面临的问题与挑战。第一,摩擦测定不像其它材料性能有固定的标准,不同摩擦配副有不同的侧重点,而且简化的摩擦机理测试跟实际工程应用有较大差距,他特别强调了模拟真实环境的重要性。第二,磨损检测传统的称重法已不再适用所有方面,在线监测深度技术精度要求高但运动误差大,一直不理想。磨损一般用三维形貌计算磨损体积,但必须离线。第三,在加载方式方面,砝码加载由于表面影响会产生波动,不是恒定力,摩擦系数测量误差大。采用伺服机构控制加载可以与时间对应保持恒定力。第四,机体刚度要高,不能产生振动等。肖军博士介绍了Rtec仪器设备公司解决以上问题的办法,同时列举了公司针对不同实验要求生产的摩擦仪器、各功能模块的优点等,例如高低温模块、高真空模块、湿度模块等。最后他介绍了世界各地各高校研究所利用Rtec公司的仪器所取得的科研成果。 报告会开阔了同学们的视野,提高了同学们对材料学科的学习热情。(通讯员:马韶霞 齐田田 王辰)
  • “先进结构与复合材料”重点专项2021申报指南:拟安排6.32亿元启动37个项目
    5月13日,科学技术部发布国家重点研发计划“先进结构与复合材料”重点专项2021年度项目申报指南。指南中明确:2021年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕高性能高分子材料及其复合材料、高温与特种金属结构材料、轻质高强金属及其复合材料、先进结构陶瓷与陶瓷基复合材料、先进工程结构材料、结构材料制备加工与评价新技术、基于材料基因工程的结构与复合材料7个技术方向。按照“基础前沿技术、共性关键技术、示范应用”三个层面,拟启动37个项目,拟安排国拨经费6.32亿元。其中,拟部署9个青年科学家项目,拟安排国拨经费3600万元,每个项目400万元。1. 高性能高分子材料及其复合材料1.1 高性能全芳香族纤维系列化与规模化制备关键技术(共性关键技术)研究内容:针对航空航天、武器装备等亟需的高强高韧结构材料应用需求,开展高性能全芳香族纤维制备关键技术及其应用研究。揭示大分子刚性链结构、纤维纺丝成型、凝聚态及其性能之间的内在规律,攻克全芳香族纤维制备共性科学问题;研究高强/高模芳纶纤维成型和热处理工艺,突破制备关键制备技术及成套装备;研究高伸长耐高温芳纶III纤维、芳纶纸及其蜂窝应用技术;探讨高性能液晶纺丝聚芳酯聚合物结构设计、固态缩聚反应动力学和纤维冷却成型机理,攻克聚芳酯纤维制备关键技术。1.2 面向高端应用的阻燃高分子材料关键技术开发(共性关键技术)研究内容:面向5G通讯和轨道交通等高端制造业的需求,形成一批具有国际领先水平和自主知识产权的合成树脂材料及应用技术。重点开发PCB的无卤高阻燃、高Tg、低介电性能的环氧树脂;高阻燃耐老化热塑性弹性体TPE和聚脲弹性体无卤阻燃技术及应用;研发本征阻燃高温炭化不熔滴聚酯和低热释放本征阻燃聚碳酸酯合成技术;本征阻燃尼龙66工程化制备及其应用,完成万吨级规模化生产与应用示范。1.3 低成本生物基工程塑料的制备与产业化(共性关键技术)研究内容:面向生物基高分子材料成本高和高性能工程塑料牌号少的问题,集中开发低成本生物基呋喃二甲酸(FDCA)、异山梨糖醇的制备技术;开发1,4-环己烷二甲醇(CHDM)和2,2,4,4-四甲基环丁二醇(CBDO)的国产化制备技术,基于生物基单体和新型单体开发PEF、PCF、PIF和PETG等生物基聚酯以及PIC、PCIC等生物基聚碳酸酯,从单体、聚合物到后端应用全链条研究。精细调控产品结构,研究产品的耐温性能、力学性能、阻隔性能等,开发不低于8种高性能聚酯和聚碳酸酯产品,并在包装领域得到应用。2. 高温与特种金属结构材料2.1 高温合金纯净化与难变形薄壁异形锻件制备技术(共性关键技术)研究内容:针对国产高温合金冶金质量差、材料综合利用率低、力学性能波动大等问题,研究镍基高温合金纯净熔炼、返回料处理和再利用技术,返回料与全新料混合重熔工艺;开发难变形高温合金成分优化及纯净熔炼、铸锭均匀化热处理、合金铸锭均质开坯、棒料细晶锻制、大型薄壁异形环形件整体制备等工艺技术,建立合金工艺与成分、组织和性能的影响关系,实现高温合金棒材和锻件组织均匀性和性能一致性的优化控制,完成合金制备工艺、材料与构件质量评估及在先进能源动力装备的考核验证。2.2 高品质TiAl合金粉末制备及3D打印关键技术(共性关键技术)研究内容:针对电子束3D打印所需的低氧含量球形TiAl合金粉末,研究铝元素挥发、粉末球形度差、空心粉高问题,突破工业化生产球形TiAl合金粉末和工业化TiAl构件增材制造关键技术;开展增材制造TiAl合金的材料—工艺—组织—缺陷—性能一体化系统研究及典型服役性能测试,突破构件增材制造工艺及性能控制关键技术,掌握包括材料、工艺、组织调控、性能特征及典型应用,为新一代航空发动机高温关键构件制造及工业化应用提供技术支撑。2.3 光热发电用耐高温熔盐特种合金研制与应用(示范应用)研究内容:针对太阳能光热发电产业低成本高效发电可持续发展需求,以下一代低成本高效超临界二氧化碳光热发电系统中耐高温氯化物混合熔盐特种金属材料及其制造技术为研究对象,研究耐高温不锈钢、高温合金板材及其焊接界面在高温氯化物、硝酸盐中的腐蚀机理和服役寿命预测技术,研究满足氯化物和硝酸盐熔盐发电系统用的耐高温不锈钢、高温合金板材成分和组织设计及其批量制造技术,开发耐高温熔盐不锈钢、高温合金成型和焊接行为及其先进制备技术,发展高温合金长寿命高吸收率吸热涂层,实现高性能不锈钢、高温合金产品开发及应用示范。2.4 海洋工程及船用高端铜合金材料(共性关键技术)研究内容:针对舰船和海洋装备泵体、管路及阀门等耐蚀性差、服役寿命短、高端材料依靠进口的问题,研究海洋工程及船用新型高性能铜合金材料设计、成分—组织—工艺内禀关系、腐蚀行为及耐蚀机理,开发耐高流速海水冲刷型铜合金承压铸件制备、超大口径耐蚀铜合金管材加工及管附件成形、海洋油气开采用高耐磨高耐蚀铜合金管棒材加工及热处理组织性能调控等高质量低成本工业化制造技术,开展产品应用技术研究,实现高端铜合金典型产品示范应用。3. 轻质高强金属及其复合材料3.1 苛刻环境能源井钻采用高性能钛合金管材研究开发及应用(示范应用)研究内容:针对我国油气、可燃冰等能源钻采高耐蚀和轻量化的紧迫需求,研究苛刻环境下高强韧耐蚀钛合金多相组织强韧化、抗疲劳机理,以及高温、高压、腐蚀、疲劳等服役环境下材料损伤及失效机理;建立服役环境适应性材料设计方法及油气井钻采用钛合金钻杆、油套管服役性能适用性评价方法;开发高性能大规格钛合金无缝管材成套工艺技术及关键应用技术;制定专用标准规范,开展苛刻服役条件下应用研究,实现工业化规模稳定生产,在典型应用场景实现示范应用。3.2 先进铝合金高效加工及高综合性能研究(共性关键技术)研究内容:针对汽车、飞行器以及船舶等提速减重、绿色制造的迫切需求,开展以铸代锻、整体成型、短流程、低排放的高效加工技术研究,研发高综合性能的先进铝合金材料;开展先进铝合金材料综合性能评价及加工技术效能评价,形成铸锻一体成型的新型高综合性能铝合金高效加工技术,将铸造、增材制造等铝合金提升到变形铝合金强度水平。3.3 高性能镁合金大型铸/锻件成形与应用(共性关键技术)研究内容:针对商用车、高速列车、航空航天等领域的轻量化紧迫需求,探索热—力耦合条件下大容积镁合金凝固与形变过程中成分—组织—性能演变规律与调控技术,开发适合于大型铸/锻件的高性能镁合金材料;研究大型镁合金铸/锻件组织均匀化与缺陷调控机理,开发高致密度铸造成形技术、大体积熔体清洁传输及半连续铸造技术、挤锻复合一体成形技术;开展大型承载件的结构设计、产品制造、腐蚀防护及使役性能评价等技术研究,并实现示范验证与规模化应用。3.4 新型结构功能一体化镁合金变形加工材制造技术(共性关键技术)研究内容:针对航空航天、轨道交通、能源采掘、电子通信等重大装备升级换代的紧迫需求,研究新型强化相对镁合金力学性能与功能特性的协同调控机理,发展新型结构功能一体化镁合金材料与新型非对称加工技术,开发大规格高强阻尼镁合金环件、宽幅阻燃镁合金型材、高强可溶镁合金管材、高强电磁屏蔽/高导热镁合金板材的工业化制造成套技术及关键应用技术,并实现典型示范应用。3.5 极端环境特种服役构件用构型化金属基复合材料(示范应用)研究内容:针对航空航天特种服役构件用耐疲劳高强韧铝基复合材料、耐热高强韧钛基复合材料以及岛礁建设与隧道掘进等重大工程用高耐磨钢铁基复合材料,开发铝、钛基复合材料用合金粉末的低成本制备技术,解决传统制粉技术细粉出粉率低、氧含量高等技术难题,实现高端铝、钛合金粉末规模化制备。探索复合材料体系—复合构型设计—复合技术—宏微观性能耦合机制与协同精确控制机理,开发跨尺度分级复合构型的定位控制、界面效应与组织精确调控、性能及质量稳定性控制、大型结构件塑性加工与热处理、低成本批量制备等产业化关键技术,开展特种服役性能评价、全寿命预测评估与应用技术研究,建立相关标准规范,实现其稳定化生产与应用示范。3.6 高端装备用高强轻质、高强高导金属层状复合材料研制及应用(示范应用)研究内容:针对高速列车、先进飞机、防护车辆等高端装备轻量化、高性能化的迫切需求,研究高性能多层铝合金板材、铜包铝合金等层状复合材料界面结构与复合机理,探索应用人工智能、大数据等前沿技术优化界面调控的理论与方法,阐明铝合金复合板材的叠层结构、复合界面、陶瓷颗粒第二相等在高应变速率下抵抗冲击的作用机理;开发防护车辆、特种装备等用抗冲击多层高强铝合金复合板材的工业化制造成套技术及复合板材的性能评价等关键应用技术;开发高速列车、航空航天、电力电器等高端装备用铜包铝合金复合材料短流程高效工业化生产成套技术及多场景应用关键技术,实现在高端装备上的示范应用。4. 先进结构陶瓷与陶瓷基复合材料4.1 高端合金制造及钢铁冶金用关键结构陶瓷材料开发及应用(示范应用)研究内容:面向冶金产业提升的发展需求,研究高端合金制造及钢铁新技术领域用关键结构陶瓷材料组分设计与制备技术,开发高品质高温合金制备用结构陶瓷材料、冶金领域用高效节能硼化锆陶瓷电极、薄带连铸用结构功能一体化陶瓷材料的规模化生产工艺,开展应用评价技术研究,建立规模化生产线,研制关键生产设备,制定制备及检测标准。4.2 低面密度空间轻量化碳化硅光学—结构一体化构件制备(基础前沿技术)研究内容:针对空间遥感光学系统的应用需求,研究低面密度空间轻量化碳化硅光学—结构一体化构件的结构拓扑设计,开展复杂形状碳化硅构件的增材制造等新技术、新工艺研究,开发低面密度复杂形状碳化硅构件的近净尺寸成型与致密化烧结技术,开展低面密度空间轻量化碳化硅光学—结构一体化构件的光学加工与环境模拟试验研究,实现满足空间遥感光学成像要求的低面密度碳化硅光学—结构一体化构件材料制备。4.3 高性能硅氧基纤维及制品的结构设计与产业化关键技术(示范应用)研究内容:针对高效隔热防护服、高强芯片、高保真通讯电缆等对高性能硅氧基纤维及制品的应用需求,研究硅氧前驱体化学组成、结构重组、多级微纳结构演变对纤维成型的影响规律,攻克硅氧基无机制品高温均匀化熔制拉丝关键技术,开发高强玻璃纤维;研究前驱体分子缩聚和纳米/微米多级孔组装结构演变对孔结构形成的影响规律,突破多孔玻璃纤维常温挤出成型技术,开发低介电、低热导、轻质柔性玻璃纤维;研究模拟月球和火星环境的微重力、高真空环境下玄武岩材料熔制技术及深空环境对纤维成型的作用机制,开发高性能连续玄武岩纤维;开展高性能玻璃纤维及复合制品产业化示范,形成千吨级生产线;开发极端环境的模块化连续玄武岩纤维成型装置,实现微重力下自主成纤中试。5. 先进工程结构材料5.1 海洋建筑结构用耐蚀钢及防护技术(共性关键技术)研究内容:针对海洋建筑结构对长寿命钢铁材料的需求,研究高盐雾、高湿热、强辐射等严酷海洋环境下,钢铁结构材料的失效机理与材料设计准则;防腐涂层的成分设计、制备技术、涂装工艺及腐蚀评价;耐蚀钢板/钢筋的成分设计、制备技术、焊接技术及腐蚀评价;复合钢板的制备技术、焊接技术及腐蚀评价;海洋建筑结构用钢的服役评价、设计规范及示范应用。开展免维护海洋结构用低合金耐蚀钢板及复合钢板的成分设计及制备技术研究;开展防腐涂层设计与制备技术、钢板与涂层耦合耐蚀机理研究;研究低成本耐蚀钢筋母材与覆层协同耐蚀机制与制备技术;开展耐蚀钢连接技术研究;建立复杂海洋环境钢材及构件的服役评价及全寿命周期预测方法。6. 结构材料制备加工与评价新技术6.1 金刚石超硬复合材料制品增材制造技术(示范应用)研究内容:围绕深海/深井勘探与页岩气开采、高端芯片制造等国家重大工程对长寿命、高速、高精度超硬材料制品的需求,开展高性能金刚石刀具、磨具和钻具等结构设计和增材制造技术研究,结合新型金刚石超硬复合材料工具宏观外形和微观异质结构的理论设计和数值模拟,重点突破增材制造用含金刚石的球形复合粉体关键制备技术和含超硬颗粒的多材料增材制造关键技术,完成典型工况条件下服役性能的评价。6.2 高强轻质金属结构材料精密注射成形技术(共性关键技术)研究内容:针对5G基站、消费电子、无人机或机器人等领域对高强轻质结构零件的迫切需求,研究粉末冶金高强轻质金属结构材料及其注射成形工艺过程精确控制原理与方法、小型复杂构件精密成形、低残留粘结剂设计及杂质元素控制、强化烧结致密化及合金的强韧化。重点突破粉末冶金高强轻质钢设计及其粉末制备、低成本近球形钛合金微细粉末制备、可烧结高强粉末冶金铝合金及近球形微细粉末制备、组织性能精确调控等关键技术,实现高强轻质金属复杂形状制品的稳定化宏量生产。6.3 大型复杂薄壁高端金属铸件智能液态精密成型技术与应用(共性关键技术)研究内容:面向大涵道比涡扇航空发动机、新能源汽车等对超大型复杂薄壁高端金属铸件的需求,打破传统“经验+试错法”研发模式,探索基于集成计算材料工程、大数据与人工智能相结合的金属铸件智能液态精密成型关键技术。研究超大型复杂薄壁金属铸件凝固过程的组织演变与缺陷形成机理,建立多物理场耦合作用下铸件组织与缺陷的预测模型,发展数据驱动的材料综合性能与铸造工艺多因素智能化寻优方法,形成金属铸件智能液态精密成型数字孪生模型及系统。6.4 复杂工况下冶金领域关键部件表面工程技术与应用(示范应用)研究内容:针对冶金领域高温、重载、高磨损等复杂工况对关键部件表面防护技术的迫切需求,开展复合增强表面工程材料及涂镀层结构的理性设计,开发高效率、高性能激光熔覆、堆焊、冷喷涂、复合镀等技术及多技术结合的复合表面工程技术,攻克复杂工况下冶金领域关键部件表面耐高温、耐磨损、抗疲劳涂镀层制备的关键技术,开展其服役性能评价和寿命预测,并应用于挤压芯棒、结晶器、除鳞辊等典型部件,在大型钢铁冶金企业得到示范应用。7. 基于材料基因工程的结构与复合材料7.1 结构材料多时空大尺寸跨尺度高通量表征技术(基础前沿技术)研究内容:针对高温合金、轻合金和高性能复合材料等的工程化需求,基于先进电子、离子、光子和中子光源,集成多场原位实验与多平台关联分析技术,研发晶粒、组成相、相界面、化学元素、晶体缺陷与织构的多时空跨尺度高通量表征、智能分析与快速评价技术,研发大尺寸多尺度组织结构和宏微观力学性能高通量表征技术与试验装备,实现典型工程化结构材料制备、加工和服役过程中内部组织结构的动态演化和交互作用规律的高效研究,建立材料成分—组织—性能的多尺度统计映射关系与定量模型,在典型结构材料的改性、工艺优化和服役评价等方面得到实际应用。7.2 金属结构材料服役行为智能化高效评价技术与应用(共性关键技术)研究内容:针对金属结构材料腐蚀、疲劳、蠕变等服役性能评价耗时长、成本高的问题,通过多物理场耦合、宏微观跨尺度损伤建模,融合智能传感、信号处理、机器学习等现代技术,研发材料服役性能物理实验与模拟仿真实时交互和数字孪生的智能化高效评价技术和装置;研究金属结构材料数据虚实映射与数据交互规则,建立数据关联平台,加速材料服役性能数据的积累,形成关键金属结构材料安全评价数据系统;集成结构模型与损伤模型,发展基于大数据技术的金属结构材料服役安全评价和寿命预测的新技术和新方法,并获得实际应用。7.3 基于材料基因工程的新型高温涂层优化设计研发(共性关键技术)研究内容:针对海上动力装备用热端部件及其海洋腐蚀环境,发展高温涂层的高通量制备技术,开展新型高性能高温涂层成分和组织结构的高通量实验筛选和优化研究;研发涂层—基体界面结构和性能多尺度高效模拟设计和预测技术,研发涂层高温力学性能、界面强度、残余应力和高温腐蚀性能等的高通量实验技术,开展涂层与界面性能和工艺优化研究;综合利用材料基因工程关键技术,研发出具有重要工程应用前景的新型超高温、耐腐蚀涂层。7.4 高强韧金属基复合材料高通量近净形制备与应用(共性关键技术)研究内容:针对航空航天领域高强韧金属基复合材料应用需求,围绕非连续增强金属基复合材料强韧性失配及复杂构件成形加工周期长、成本高、材料利用率低的突出问题,结合利用材料基因工程思想和近净形制备技术原理,研发铝基、钛基复合材料高通量近净形制备技术及其高通量表征技术;测试和采集基体/增强相界面物理化学数据,建立基体/增强相界面热力学和动力学物性数据库;研究铝基、钛基复合材料成分—构型—工艺—界面—性能交互关联集成计算技术,实现材料体系与构型及其近净形制备工艺方案与参数的高效同步优化,并在航空航天等领域得到工程示范应用。7.5 先进制造流程生产汽车用钢集成设计与工程应用(示范应用)研究内容:鉴于钢铁工业绿色制造、生态发展对先进制造流程生产高端钢铁材料的迫切需求,基于材料基因工程的思想,针对近终形流程生产汽车用钢,采用多场耦合和跨尺度计算技术,集成材料开发与产品应用的跨尺度计算模型,构建一体化集成计算平台,建立材料基础数据和工艺、产品数据库,开发基于数据挖掘和强化机制的组织性能定量关系模型,实现产品成分—工艺—组织—性能的精准预报;开展在近终形流程生产汽车用钢的示范应用,研制出代表性产品并实现工程应用。7.6 增材制造用高性能高温合金集成设计与制备(共性关键技术)研究内容:针对航空发动机、高超声速飞行器、重载火箭等国家大型工程所需高温合金精密构件服役特点和增材制造物理冶金特点,应用材料基因工程理念,发展多层次跨尺度计算方法和材料大数据技术,形成增材制造用高性能高温合金的高效计算设计方法、增材制造全流程模拟仿真技术与机器学习技术,结合高通量制备技术和快速表征技术,建立增材制造用高性能高温合金的材料基因工程专用数据库;发展适合高温合金增材制造工艺特性的机器学习、数据挖掘、可视化模拟等技术,开展增材制造用高温合金高效设计与全流程工艺优化的研究工作,实现先进高温合金高端精密构件的组织与尺寸精密化控制,并在航空航天等领域得到工程示范应用。7.7 极端服役条件用轻质耐高温部件高通量评价与优化设计(共性关键技术)研究内容:发展基于大数据分析和数据挖掘的高温钛合金、钛铝金属间化合物等轻质耐高温部件组织结构与疲劳、蠕变等关键性能的定量预测模型;研制实时瞬态衍射、原位成像表征装置,发展三维无损检测高效分析技术;研究高温腐蚀环境下组织结构演化和性能退化机理、高温和循环载荷等多因素耦合作用下的损伤累积及高通量评价与寿命预测技术;基于极端环境服役性能需求,利用机器学习和数据挖掘技术,实现轻质耐高温材料的成分、组织、制备工艺、服役性能的高效优化,并在航空、航天、核能等领域实现在极端服役条件下工程示范应用。8. 青年科学家项目8.1 车载复合材料LNG高压气瓶制造基础及应用技术研究内容:针对车载复合材料液化天然气(liquefiednaturalgas,LNG)高压气瓶的制造与应用,研究LNG介质相容的树脂基复合材料体系设计与制备;耐极端环境复合材料LNG气瓶结构设计技术;复合材料LNG高压气瓶抗渗漏、抗漏热和抗振动技术;复合材料LNG高压气瓶制造技术;复合材料LNG高压气瓶的性能评价技术。8.2 新一代结构功能一体化泡沫的制备和应用研究内容:面向结构功能一体化泡沫技术迭代的迫切需求,开发具备负泊松比和高耐火保温等功能的泡沫,主要针对新型多级结构负泊松比结构泡沫材料、耐高温聚酰亚胺泡沫和高温可发泡防火材料等开展攻关,并开展其复合材料研究,在结构支撑、保温隔热等领域得到应用。8.3 单晶高温合金先进定向凝固技术及其精确模拟研究内容:针对当前航空发动机单晶涡轮叶片生产合格率低、冶金缺陷频发的现状,开展单晶高温合金及叶片高温度梯度液态金属冷却(LMC)定向凝固技术研究,突破LMC技术中动态隔热层配置、晶体取向控制、模壳制备、低熔点金属污染控制等关键技术,实现LMC技术的多场耦合、多尺度精确模拟,研究复杂结构单晶叶片在高梯度定向凝固中的缺陷形成、演化机理,发展缺陷控制技术。8.4 海洋油气钻采关键部件用高强高韧合金研究内容:针对海洋油气随钻测量和定向钻井、海底井口设备关键部件主要依靠进口问题,开展时效硬化型高强韧镍基、铁镍基耐蚀合金设计、高纯净低偏析冶金、强韧化机理、应力腐蚀疲劳失效寿命评估理论与方法等基础共性技术和产业化关键技术研究,实现高强韧、大规格、高均质耐蚀合金和超高强度高耐蚀合金稳定批量生产和工程化应用。8.5 基于增材制造技术的超轻型碳化硅复合材料光学部件制造研究内容:面向空间光学系统轻量化的发展需求,研究新型超轻型碳化硅复合材料光学部件预制体增材制造用粉体原料的设计与高通量制备技术;开发基于增材制造技术的碳化硅复合材料光学部件基体成型与致密化技术;开发基于增材制造技术的碳化硅复合材料光学部件表面致密层制备技术;开展超轻型碳化硅复合材料光学部件的加工验证研究。8.6 基于激光技术的材料服役行为多维度检测技术和装备研究内容:针对核电、海工等领域极端条件下结构材料服役性能远程在线、多维度、智能化检测的发展需求,开展基于激光技术的光谱、表面声波、超声或多种方法融合的材料组分、结构特性、力学性能、缺陷特征检测新原理和新方法研究,发展极端条件下结构材料服役行为的实时、原位、无损监检测技术,研制与材料基因工程大数据、人工智能分析算法和机器人技术深度融合的材料多维、多尺度在线监检测原型装置,实现多场耦合极端环境下材料多层次、多维度服役性能原位无损在线测量及示范应用。8.7 超高刚度镁基复合材料的集成计算设计与制备研究内容:以航空、航天或高铁领域为应用场景,针对超高刚度镁基复合材料特点,发展高刚度镁合金集成材料计算软件和镁基复合材料高通量实验技术,开展基于弹性变形抗力提升的镁合金基体成分设计和增强体种类、尺寸和分布形态对镁合金刚度和强韧性影响规律的研究工作,研发多尺度增强体复合构型强化的镁合金材料高效制备与组织调控技术,建立高刚度镁基复合材料及其典型构件的全流程制备技术,并实现在重大工程中的应用验证。8.8 增材制造先进金属材料的实时表征技术及应用研究内容:研发基于同步辐射光源的原位表征技术与装备,动态捕捉增材制造过程中高温下微秒级时间尺度和微米级局域空间内的相变和开裂;通过高通量的样品设计和多参量综合表征手段,揭示动态非平衡制备过程中材料组织结构的演化和交互作用规律。面向典型高性能结构材料,揭示增材制造快速熔化凝固超常冶金过程对稳定相、材料组织结构和最终性能产生影响的因素,快速建立材料成分—工艺—结构—性能间量化关系数据库;结合材料信息学方法,发展增材制造工艺和材料性能高效优化软件,在典型增材制造材料的设计与优化中得到应用。8.9 新一代抗低温耐腐蚀高强韧贝氏体轨道钢研究内容:针对低温下贝氏体钢中亚稳残余奥氏体易转变为脆性马氏体,增加贝氏体钢轨道安全服役隐患的问题,研究腐蚀、低温环境下贝氏体轨道钢(含钢轨和辙叉)的失效破坏机制,建立贝氏体轨道钢“夹杂物特性—组织结构—常规性能—服役条件—失效方式及寿命评估”数据库,开发适用于腐蚀、低温环境的新一代高强韧性、长寿命贝氏体轨道钢及其冶金全流程制造关键技术。近期会议推荐:【复合材料性能表征与评价网络研讨会】该网络会议对听众免费,会议日程及报名二维码如下:
  • WB-LFV-25KN生物力学电液伺服疲劳试验机
    WB-LFV-25KN生物力学电液伺服疲劳试验机 1.设备用途及总体要求 1.1. 设备名称:25KN生物力学电液伺服疲劳试验机 1.2. 数量:1套 1.3. 用途:此系统适合各种材料的生物力学性能试验,包括拉伸、压缩、弯曲、扭转、高、低周、蠕变和蠕变疲劳交互作用等。如:接骨板、椎间融合器、膝关节、脊柱固定器、金属涂层、髋关节、髓内钉等的力学鉴定。设备设计、制造应符合ISO国际标准,所有零部件和各种仪表的计量单位必须全部采用国际单位(SI)标准。 1.4. 设备的结构应保证有足够的动静态强度、刚度、稳定性和高精度,采用先进技术,保证系统具有良好的动态品质,所选伺服系统执行组件精度高,可靠性好,抗干扰能力强,响应速度快。 1.5. 设备必须具有国际上同行业近年内的先进设计、制造水平,采用新工艺、新材料、新技术(专有技术)。 1.6. 设备必须具有质量的高可靠性,良好的操作性和维修性,能稳定的连续工作。 1.7. 设备必须符合中国有关环保和安全标准。 1.8. 试样的测量,试验控制及数据存储、处理全部计算机化,并且数据具有安全性、可靠性和可移动性。 1.9. 物理量单位制:测量值的单位设置要符合国际标准单位制。公制单位和英制单位并可互相转换。 2. 工作环境 环境要求:设备必须满足用户的工作条件。 电源条件:电压:220V/380V± 10%,单相和三相。 频率:50Hz± 2Hz。 环境条件:温度条件10~35℃,湿度条件10%~80%。 工作时间:设备可长时间连续工作。 3. 设备主要技术规格及参数 *3.1. 轴向/扭向载荷能力: +/-25kN/+/-100Nm。 载荷测量精度:满程的+/-0.005% 或示值的+/-0.5%(1%到100%的量程范围内)。 位置测量精度:满程的0.5%。 座动器行程:+/-50mm。 座动器扭转范围:+/-130度。 3.2. 横梁位置控制:全行程液压升降、液压锁紧。 3.3.先进的控制性能包括: -控制方式:可选择位置、载荷/应变控制方式,并带幅值控制功能。 -动态响应自适应控制系统。以1KH频率连续更新PID参数,无需用户在PID调节时作参数设置,可自动补偿试样刚度。 -5KHz闭环控制速率。 -6个参数控制:比例、积分、微分(PID) -串行,并行及串级控制。 *-先进的全数字化信号处理技术,系统分辨率为19位,在满量程使用范围内免除了量程的人工转换。 -传感器的自动识别,自动标定。使机器自动具有过载保护功能。 -传感器的测量信号具有100Hz到1000Hz范围内多种滤波器,提供了高精度,低漂移,低噪声性能。 -每个通道有32位分辨率1KHz的波形信号发生器,有正弦波,三角波,方波,半正弦波,半三角波,半方波,斜波,双斜波,梯形波。并可接受由计算机下载的或模拟输入获得的数字化驱动数据。 -各通道可以每秒5000点的数据经Hs488接口进行数据文件的数据回放。 -试样的保护功能,可选择适当的载荷使试样不破坏。 - 控制系统应具有可扩展功能,能满足同时带动三台同样的试验机。 3.4. 试验振动频率:0.01Hz~50Hz。 3.5. 带应变测量通道,所有传感器均具有自识别功能。 3.6. 量程 负荷、应变、位移,全量程标定,全量程使用。 4.功能要求 *4.1.使用功能 具备符合ASTM F 2077、ISO 14879、ASTM F 1717、ASTM F 1160、ISO 7206-4、ISO 7206-6、ISO 7206-8、ASTM F 1264、 ASTM F 382、ISO 9585标准的试验夹具及附件并能方便地进行上述标准中规定地各项生物力学试验。提供设备操作和维修专用工具;提供设备保修期后运行1年所需的备品备件。 4.2.控制系统主机应为DELL品牌、满足以下配置:CPU:P4、3.0GHz及以上; 内存:2GB及以上; 硬盘:120G及以上; 高性能显卡; 19&Prime 纯平液晶彩显;48X CD-RW并带可擦写光驱; 3.5英寸软驱、激光打印机; 鼠标及键盘。 4.3. 计算机闭环控制 4.3.1. 计算机测控系统应测控精确,能自检定/自调零/自动复位。 4.3.2. 数据传输快速、准确。 4.3.3. 计算机精确控制,采用目前最先进的DSP技术进行数字处理。 4.3.4. 有自诊断及遇到故障时报警的功能,系统能在外界突然停电状态下可保存数据及自我保护装置,过载保护、行程极限保护、温度保护等功能。 4.4.测力传感器 +/-25kN/100Nm。 抗过载力: 300%,抗侧向力:40%。 测量精度: 满程的0.005% 或示值的+/-0.5% (1%到100%的量程范围内)。 4.5油路分配器 每分钟20升的油路分配器,带过滤器和储能器。 4.6伺服阀:每分钟10升(10升2个)。 *4.7. 液压动力源 液压泵站 一套,满足能同时带动三台同样的试验机的要求。 包括:油泵,马达,油箱,热交换器和电器控制柜。 - 静音型:噪音58dB。 -带压力表和压力调节系统。 -采用2&mu m的过滤器。 -金属过滤芯可重复使用。 -PLC控制,可显示油温, 电机温度,过滤器状态等。 -具有多种保护功能,包括:油温过高,油面过低,油压过低,马达过流保护。 -带温度调节阀的热交换器。系统需冷却水。 -含液压油。 -一套3米长油管。 4.8.液压动力源冷水机 液压动力源冷却方式为循环水冷,供方提供冷水机,满足三台同样试验机同时工作时的冷却需要。 4.9 软件要求 -多周高/低周疲劳试验应用软件包; -静态软件包,有拉/压/弯曲试验程序; -软件应能实现上述所有标准中要求的各项试验,软件界面友好、使用方便。 5.设备附件、备件及技术资料 5.1. 标准配置(以下各项单独报价,并计入投标总价)。 5.1.1. ASTM F 2077椎间融合器测试夹具及水浴。 5.1.2. ISO 14879膝关节测试夹具。 5.1.3. ASTM F 1717脊柱固定器测试夹具。 5.1.4 ASTM F 1160金属涂层剪切及弯曲疲劳测试夹具。 5.1.5 ISO 7206-4、ISO 7206-6髋关节测试夹具、水浴、试样安装标定器一套。 5.1.6 ASTM F 1264髓内钉及锁紧螺钉动静态性能测试夹具及水浴 ASTM F 382、ISO 9585 接骨板四点弯曲及疲劳性能测试夹具。 5.1.7.上述标准中需要配备水浴的,均需提供水浴。同时,需提供安装试样所需的附件及工具。 5.1.8循环泵和加热装置,最高温度50度,用于水浴的温度控制和循环。 5.1.9液压夹具 25kN/100Nm拉伸/扭转复合液压夹具,用于常温试验。 夹面尺寸:板材0-12.7mm,圆棒3-12.7mm 。 5.1.10可变标距引伸计,l套 -标距:12.5, 25, 50mm,应变量+/-40%, +/-20%, +/-10% -温度:-70-+200℃ 5.1.11. 提供相适应的安装工具及3000小时以上维护备件。 5.2. 技术资料 (光盘形式给出) 提供必要的技术资料,其中包括:操作手册及必要维护手册、安装图及安装调试说明书、总体结构图、部件装配图、控制原理图、材料试验软件操作说明书、机械易损件图。以上资料提供二套,应在发货前三个月内寄出一套。 5.3. 提供出厂合格证明书和传感器标定证书各2份。 注:带*的指标为必须满足的指标。 13581584194 联系人 WB-LFV-25KN生物力学电液伺服疲劳试验机 1.设备用途及总体要求 1.1. 设备名称:25KN生物力学电液伺服疲劳试验机 1.2. 数量:1套 1.3. 用途:此系统适合各种材料的生物力学性能试验,包括拉伸、压缩、弯曲、扭转、高、低周、蠕变和蠕变疲劳交互作用等。如:接骨板、椎间融合器、膝关节、脊柱固定器、金属涂层、髋关节、髓内钉等的力学鉴定。设备设计、制造应符合ISO国际标准,所有零部件和各种仪表的计量单位必须全部采用国际单位(SI)标准。 1.4. 设备的结构应保证有足够的动静态强度、刚度、稳定性和高精度,采用先进技术,保证系统具有良好的动态品质,所选伺服系统执行组件精度高,可靠性好,抗干扰能力强,响应速度快。 1.5. 设备必须具有国际上同行业近年内的先进设计、制造水平,采用新工艺、新材料、新技术(专有技术)。 1.6. 设备必须具有质量的高可靠性,良好的操作性和维修性,能稳定的连续工作。 1.7. 设备必须符合中国有关环保和安全标准。 1.8. 试样的测量,试验控制及数据存储、处理全部计算机化,并且数据具有安全性、可靠性和可移动性。 1.9. 物理量单位制:测量值的单位设置要符合国际标准单位制。公制单位和英制单位并可互相转换。 2. 工作环境 环境要求:设备必须满足用户的工作条件。 电源条件:电压:220V/380V± 10%,单相和三相。 频率:50Hz± 2Hz。 环境条件:温度条件10~35℃,湿度条件10%~80%。 工作时间:设备可长时间连续工作。 3. 设备主要技术规格及参数 *3.1. 轴向/扭向载荷能力: +/-25kN/+/-100Nm。 载荷测量精度:满程的+/-0.005% 或示值的+/-0.5%(1%到100%的量程范围内)。 位置测量精度:满程的0.5%。 座动器行程:+/-50mm。 座动器扭转范围:+/-130度。 3.2. 横梁位置控制:全行程液压升降、液压锁紧。 3.3.先进的控制性能包括: -控制方式:可选择位置、载荷/应变控制方式,并带幅值控制功能。 -动态响应自适应控制系统。以1KH频率连续更新PID参数,无需用户在PID调节时作参数设置,可自动补偿试样刚度。 -5KHz闭环控制速率。 -6个参数控制:比例、积分、微分(PID) -串行,并行及串级控制。 *-先进的全数字化信号处理技术,系统分辨率为19位,在满量程使用范围内免除了量程的人工转换。 -传感器的自动识别,自动标定。使机器自动具有过载保护功能。 -传感器的测量信号具有100Hz到1000Hz范围内多种滤波器,提供了高精度,低漂移,低噪声性能。 -每个通道有32位分辨率1KHz的波形信号发生器,有正弦波,三角波,方波,半正弦波,半三角波,半方波,斜波,双斜波,梯形波。并可接受由计算机下载的或模拟输入获得的数字化驱动数据。 -各通道可以每秒5000点的数据经Hs488接口进行数据文件的数据回放。 -试样的保护功能,可选择适当的载荷使试样不破坏。 - 控制系统应具有可扩展功能,能满足同时带动三台同样的试验机。 3.4. 试验振动频率:0.01Hz~50Hz。 3.5. 带应变测量通道,所有传感器均具有自识别功能。 3.6. 量程 负荷、应变、位移,全量程标定,全量程使用。 4.功能要求 *4.1.使用功能 具备符合ASTM F 2077、ISO 14879、ASTM F 1717、ASTM F 1160、ISO 7206-4、ISO 7206-6、ISO 7206-8、ASTM F 1264、 ASTM F 382、ISO 9585标准的试验夹具及附件并能方便地进行上述标准中规定地各项生物力学试验。提供设备操作和维修专用工具;提供设备保修期后运行1年所需的备品备件。 4.2.控制系统主机应为DELL品牌、满足以下配置: CPU:P4、3.0GHz及以上; 内存:2GB及以上; 硬盘:120G及以上; 高性能显卡; 19&Prime 纯平液晶彩显;48X CD-RW并带可擦写光驱; 3.5英寸软驱、激光打印机; 鼠标及键盘。 4.3. 计算机闭环控制 4.3.1. 计算机测控系统应测控精确,能自检定/自调零/自动复位。 4.3.2. 数据传输快速、准确。 4.3.3. 计算机精确控制,采用目前最先进的DSP技术进行数字处理。 4.3.4. 有自诊断及遇到故障时报警的功能,系统能在外界突然停电状态下可保存数据及自我保护装置,过载保护、行程极限保护、温度保护等功能。 4.4.测力传感器 +/-25kN/100Nm。 抗过载力: 300%,抗侧向力:40%。 测量精度: 满程的0.005% 或示值的+/-0.5% (1%到100%的量程范围内)。 4.5油路分配器 每分钟20升的油路分配器,带过滤器和储能器。 4.6伺服阀:每分钟10升(10升2个)。 *4.7. 液压动力源 液压泵站 一套,满足能同时带动三台同样的试验机的要求。 包括:油泵,马达,油箱,热交换器和电器控制柜。 - 静音型:噪音58dB。 -带压力表和压力调节系统。 -采用2&mu m的过滤器。 -金属过滤芯可重复使用。 -PLC控制,可显示油温, 电机温度,过滤器状态等。 -具有多种保护功能,包括:油温过高,油面过低,油压过低,马达过流保护。 -带温度调节阀的热交换器。系统需冷却水。 -含液压油。 -一套3米长油管。 4.8.液压动力源冷水机 液压动力源冷却方式为循环水冷,供方提供冷水机,满足三台同样试验机同时工作时的冷却需要。 4.9 软件要求 -多周高/低周疲劳试验应用软件包; -静态软件包,有拉/压/弯曲试验程序; -软件应能实现上述所有标准中要求的各项试验,软件界面友好、使用方便。 5.设备附件、备件及技术资料 5.1. 标准配置(以下各项单独报价,并计入投标总价)。 5.1.1. ASTM F 2077椎间融合器测试夹具及水浴。 5.1.2. ISO 14879膝关节测试夹具。 5.1.3. ASTM F 1717脊柱固定器测试夹具。 5.1.4 ASTM F 1160金属涂层剪切及弯曲疲劳测试夹具。 5.1.5 ISO 7206-4、ISO 7206-6髋关节测试夹具、水浴、试样安装标定器一套。 5.1.6 ASTM F 1264髓内钉及锁紧螺钉动静态性能测试夹具及水浴 ASTM F 382、ISO 9585 接骨板四点弯曲及疲劳性能测试夹具。 5.1.7.上述标准中需要配备水浴的,均需提供水浴。同时,需提供安装试样所需的附件及工具。 5.1.8循环泵和加热装置,最高温度50度,用于水浴的温度控制和循环。 5.1.9液压夹具 25kN/100Nm拉伸/扭转复合液压夹具,用于常温试验。 夹面尺寸:板材0-12.7mm,圆棒3-12.7mm 。 5.1.10可变标距引伸计,l套 -标距:12.5, 25, 50mm,应变量+/-40%, +/-20%, +/-10% -温度:-70-+200℃ 5.1.11. 提供相适应的安装工具及3000小时以上维护备件。 5.2. 技术资料 (光盘形式给出) 提供必要的技术资料,其中包括:操作手册及必要维护手册、安装图及安装调试说明书、总体结构图、部件装配图、控制原理图、材料试验软件操作说明书、机械易损件图。以上资料提供二套,应在发货前三个月内寄出一套。 5.3. 提供出厂合格证明书和传感器标定证书各2份。 注:带*的指标为必须满足的指标。 WB-LFV-25KN生物力学电液伺服疲劳试验机 1.设备用途及总体要求 1.1. 设备名称:25KN生物力学电液伺服疲劳试验机 1.2. 数量:1套 1.3. 用途:此系统适合各种材料的生物力学性能试验,包括拉伸、压缩、弯曲、扭转、高、低周、蠕变和蠕变疲劳交互作用等。如:接骨板、椎间融合器、膝关节、脊柱固定器、金属涂层、髋关节、髓内钉等的力学鉴定。设备设计、制造应符合ISO国际标准,所有零部件和各种仪表的计量单位必须全部采用国际单位(SI)标准。 1.4. 设备的结构应保证有足够的动静态强度、刚度、稳定性和高精度,采用先进技术,保证系统具有良好的动态品质,所选伺服系统执行组件精度高,可靠性好,抗干扰能力强,响应速度快。 1.5. 设备必须具有国际上同行业近年内的先进设计、制造水平,采用新工艺、新材料、新技术(专有技术)。 1.6. 设备必须具有质量的高可靠性,良好的操作性和维修性,能稳定的连续工作。 1.7. 设备必须符合中国有关环保和安全标准。 1.8. 试样的测量,试验控制及数据存储、处理全部计算机化,并且数据具有安全性、可靠性和可移动性。 1.9. 物理量单位制:测量值的单位设置要符合国际标准单位制。公制单位和英制单位并可互相转换。 2. 工作环境 环境要求:设备必须满足用户的工作条件。 电源条件:电压:220V/380V± 10%,单相和三相。 频率:50Hz± 2Hz。 环境条件:温度条件10~35℃,湿度条件10%~80%。 工作时间:设备可长时间连续工作。 3. 设备主要技术规格及参数 *3.1. 轴向/扭向载荷能力: +/-25kN/+/-100Nm。 载荷测量精度:满程的+/-0.005% 或示值的+/-0.5%(1%到100%的量程范围内)。 位置测量精度:满程的0.5%。 座动器行程:+/-50mm。 座动器扭转范围:+/-130度。 3.2. 横梁位置控制:全行程液压升降、液压锁紧。 3.3.先进的控制性能包括: -控制方式:可选择位置、载荷/应变控制方式,并带幅值控制功能。 -动态响应自适应控制系统。以1KH频率连续更新PID参数,无需用户在PID调节时作参数设置,可自动补偿试样刚度。 -5KHz闭环控制速率。 -6个参数控制:比例、积分、微分(PID) -串行,并行及串级控制。 *-先进的全数字化信号处理技术,系统分辨率为19位,在满量程使用范围内免除了量程的人工转换。 -传感器的自动识别,自动标定。使机器自动具有过载保护功能。 -传感器的测量信号具有100Hz到1000Hz范围内多种滤波器,提供了高精度,低漂移,低噪声性能。 -每个通道有32位分辨率1KHz的波形信号发生器,有正弦波,三角波,方波,半正弦波,半三角波,半方波,斜波,双斜波,梯形波。并可接受由计算机下载的或模拟输入获得的数字化驱动数据。 -各通道可以每秒5000点的数据经Hs488接口进行数据文件的数据回放。 -试样的保护功能,可选择适当的载荷使试样不破坏。 - 控制系统应具有可扩展功能,能满足同时带动三台同样的试验机。 3.4. 试验振动频率:0.01Hz~50Hz。 3.5. 带应变测量通道,所有传感器均具有自识别功能。 3.6. 量程 负荷、应变、位移,全量程标定,全量程使用。 4.功能要求 *4.1.使用功能 具备符合ASTM F 2077、ISO 14879、ASTM F 1717、ASTM F 1160、ISO 7206-4、ISO 7206-6、ISO 7206-8、ASTM F 1264、 ASTM F 382、ISO 9585标准的试验夹具及附件并能方便地进行上述标准中规定地各项生物力学试验。提供设备操作和维修专用工具;提供设备保修期后运行1年所需的备品备件。 4.2.控制系统主机应为DELL品牌、满足以下配置: CPU:P4、3.0GHz及以上;内存:2GB及以上; 硬盘:120G及以上; 高性能显卡; 19&Prime 纯平液晶彩显;48X CD-RW并带可擦写光驱; 3.5英寸软驱、激光打印机; 鼠标及键盘。 4.3. 计算机闭环控制 4.3.1. 计算机测控系统应测控精确,能自检定/自调零/自动复位。 4.3.2. 数据传输快速、准确。 4.3.3. 计算机精确控制,采用目前最先进的DSP技术进行数字处理。 4.3.4. 有自诊断及遇到故障时报警的功能,系统能在外界突然停电状态下可保存数据及自我保护装置,过载保护、行程极限保护、温度保护等功能。 4.4.测力传感器 +/-25kN/100Nm。 抗过载力: 300%,抗侧向力:40%。 测量精度: 满程的0.005% 或示值的+/-0.5% (1%到100%的量程范围内)。 4.5油路分配器 每分钟20升的油路分配器,带过滤器和储能器。 4.6伺服阀:每分钟10升(10升2个)。 *4.7. 液压动力源 液压泵站 一套,满足能同时带动三台同样的试验机的要求。 包括:油泵,马达,油箱,热交换器和电器控制柜。 - 静音型:噪音58dB。 -带压力表和压力调节系统。 -采用2&mu m的过滤器。 -金属过滤芯可重复使用。 -PLC控制,可显示油温, 电机温度,过滤器状态等。 -具有多种保护功能,包括:油温过高,油面过低,油压过低,马达过流保护。 -带温度调节阀的热交换器。系统需冷却水。 -含液压油。 -一套3米长油管。 4.8.液压动力源冷水机 液压动力源冷却方式为循环水冷,供方提供冷水机,满足三台同样试验机同时工作时的冷却需要。 4.9 软件要求 -多周高/低周疲劳试验应用软件包; -静态软件包,有拉/压/弯曲试验程序; -软件应能实现上述所有标准中要求的各项试验,软件界面友好、使用方便。 5.设备附件、备件及技术资料 5.1. 标准配置(以下各项单独报价,并计入投标总价)。 5.1.1. ASTM F 2077椎间融合器测试夹具及水浴。 5.1.2. ISO 14879膝关节测试夹具。 5.1.3. ASTM F 1717脊柱固定器测试夹具。 5.1.4 ASTM F 1160金属涂层剪切及弯曲疲劳测试夹具。 5.1.5 ISO 7206-4、ISO 7206-6髋关节测试夹具、水浴、试样安装标定器一套。 5.1.6 ASTM F 1264髓内钉及锁紧螺钉动静态性能测试夹具及水浴 ASTM F 382、ISO 9585 接骨板四点弯曲及疲劳性能测试夹具。 5.1.7.上述标准中需要配备水浴的,均需提供水浴。同时,需提供安装试样所需的附件及工具。 5.1.8循环泵和加热装置,最高温度50度,用于水浴的温度控制和循环。 5.1.9液压夹具 25kN/100Nm拉伸/扭转复合液压夹具,用于常温试验。 夹面尺寸:板材0-12.7mm,圆棒3-12.7mm 。 5.1.10可变标距引伸计,l套 -标距:12.5, 25, 50mm,应变量+/-40%, +/-20%, +/-10% -温度:-70-+200℃ 5.1.11. 提供相适应的安装工具及3000小时以上维护备件。 5.2. 技术资料 (光盘形式给出) 提供必要的技术资料,其中包括:操作手册及必要维护手册、安装图及安装调试说明书、总体结构图、部件装配图、控制原理图、材料试验软件操作说明书、机械易损件图。以上资料提供二套,应在发货前三个月内寄出一套。 5.3. 提供出厂合格证明书和传感器标定证书各2份。 注:带*的指标为必须满足的指标。
  • 岛津推出《电子探针在汽车材料中的应用》数据集
    汽车行业是一个涉及多种材料的综合性产业,材料应用的多元化是其突出的特点,虽然钢铁材料仍占主导地位,更安全、更节能、更环保的发展趋势要求,使得汽车轻量化设计越来越受到重视,高强合金、轻金属和非金属材料的应用发展前景广阔。 轻量化是汽车的发展趋势,在更安全的前提下,资源友好和环境友好的可持续发展战略使命也对汽车材料的应用和发展提出了更高的挑战。世界各国都在努力改进和研发新的汽车材料,提高材料的比强度、降低构件的重量、减少制造的成本和耗能。 主要涉及以下几个关键性材料: 一、高强度钢和超高强度钢的开发:可用于车身车架、横纵梁等关键部位。世界各国和各大车企都在大力参与开发各种高强度钢板,如冷轧含磷板、双相钢(DP 钢)板以及目前最先进的相变诱发塑性钢(TRIP 钢)板等。 二、轻金属包括镁合金、铝合金和钛合金等的应用呈现出越来越广的趋势。 (1)铝合金:密度约是钢铁的三分之一,现已广泛用于汽车发动机、变速器、差速器壳体、铝轮毂、转向节及各种换热器等部位,是汽车上应用最多的轻质金属材料。而且随着铸锻焊、冲压等制造技术的发展,会有更多的部件采用铝合金制造。(2)镁合金:镁合金的密度仅相当于铝合金材料的 66%左右,但在比强度和刚度等机械性能要明显优于钢铁和铝合金,而且在成型效率和尺寸稳定性方面也有很大的优势。目前镁合金在汽车上一般可用于发动机气缸体、壳体、进气歧管、方向盘、转向器、轮毂等零部件。由于镁元素化学特性特别活波,工艺难以控制这在一定程度上限制了镁合金的应用。 (3)钛合金:具有密度小、质量轻、比强度高、耐腐蚀及高低温性能优异等特点,使之可以在一些恶劣的工作条件中保障汽车的性能。但由于钛合金原材料获取困难,加工成本较高。在汽车制造中,一般将高强耐热钛合金用来生产发动机配气系统、曲轴连杆机构和底盘零件,例如气门、气门弹簧、凸轮轴、连杆、涡轮转子和紧固件等。 三、非金属材料在整车占比也在不断扩大。 其中塑料占很大比例,塑料在汽车上的应用有密度低,成形性好,耐腐蚀,弹性形变可吸收冲击能量,除常规的热塑性和热固性塑料外,也包括塑料纤维增强的复合材料。另外,陶瓷、复合材料和功能材料在车用材料领域也占有重要地位。 岛津公司作为全球著名的分析仪器厂商,自 1875 年创业以来,始终坚持创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术。早在上世纪 60 年代岛津公司就开始研制和生产电子探针,独有的 52.5°高检出角及兼顾高灵敏度和高分辨率的全聚焦晶体,可在微米级的微小区域到最大 90×90mm 的广域范围中可进行精准分析。电子探针 EPMA(Electron Probe Micro Analyzer)是将聚焦电子束照射到样品,通过激发样品发出的电子信号进行细微结构的观察,通过检测指定区域内发出的元素特征 X 射线进行定性、定量及面分析等多种测试分析。 为了更好的服务于岛津电子探针 EPMA 客户,岛津公司分析中心也开展了汽车行业多种材料的测试分析工作。本文集即是对这一工作的阶段性总结,供相关工作者参考。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 盘点:分子诊断常用技术50年的沿革与进步
    一、基于分子杂交的分子诊断技术  上世纪60年代至80年代是分子杂交技术发展最为迅猛的20年,由于当时尚无法对样本中靶基因进行人为扩增,人们只能通过已知基因序列的探针对靶序列进行捕获检测。其中液相和固相杂交基础理论、探针固定包被技术与cDNA探针人工合成的出现,为基于分子杂交的体外诊断方法进行了最初的技术储备。  (一)DNA印迹技术(Southernblot)  Southern于1975年发明了DNA印迹技术,通过限制性内切酶将DNA片段化,再以凝胶电泳将长度不等的DNA片段进行分离,通过虹吸或电压转印至醋酸纤维膜上,再使膜上的DNA变性与核素标记的寡核苷酸探针进行分子杂交,经洗脱后以放射自显影鉴别待测的DNA片段-探针间的同源序列。这一方法由于同时具备DNA片段酶切与分子探针杂交,保证了检测的特异性。因此,一经推出后便成为探针杂交领域最为经典的分子检测方法,广为运用于各种基因突变,如缺失、插入、易位等,及与限制性酶切片段长度多态性(restrictionfragment length polymorphism,RFLP)的鉴定中。Alwine等于1977年推出基于转印杂交的Northernblot技术也同样成为当时检测RNA的金标准。  (二)ASO反向斑点杂交(allele-specificoligonucleotide reverse dot blot,ASO-RDB)  使用核酸印迹技术进行核酸序列的杂交检测具有极高的特异性,但存在操作极为繁琐,检测时间长的缺点。1980年建立的样本斑点点样固定技术则摆脱了传统DNA印迹需要通过凝胶分离技术进行样本固定的缺点。通过在质粒载体导入单碱基突变的方法,构建了首条等位基因特异性寡核苷酸探针(allele-specificoligonucleotide,ASO),更使对核酸序列点突变的检测成为可能。1986年,Saiki[3]首次将PCR的高灵敏度与ASO斑点杂交的高特异性结合起来,实现了利用ASO探针对特定基因多态性进行分型。其后为了完成对同一样本的多个分子标记进行高通量检测,Saiki[4]又发明了ASO-RDB,通过将生物素标记的特异性PCR扩增产物与固定于膜上的探针杂交显色,进行基因分型、基因突变的检测。该法可将多种寡核苷酸探针固定于同一膜条上,只需通过1次杂交反应,即可筛查待检样本DNA的数十乃至数百种等位基因,具有操作简单、快速的特点,一度成为基因突变检测、基因分型与病原体筛选最为常用的技术。  (三)荧光原位杂交(fluorescencein situ hybridization,FISH)  FISH源于以核素标记的原位杂交技术,1977年Rudkin首次使用荧光素标记探针完成了原位杂交的尝试。在上世纪8090年代,细胞遗传学和非同位素标记技术的发展将FISH推向临床诊断的实践应用。相比于其它仅针对核酸序列进行检测的分子诊断技术,FISH结合了探针的高度特异性与组织学定位的优势,可检测定位完整细胞或经分离的染色体中特定的正常或异常DNA序列 由于使用高能量荧光素标记的DNA探针,可实现多种荧光素标记同时检测数个靶点。  如今,FISH已在染色体核型分析,基因扩增、 基因重排、病原微生物鉴定等多方面中得到广泛应用。通过比较基因组杂交(comparativegenomic hybridization,CGH)与光谱核型分析(spectralkaryotyping,SKY)等FISH衍生技术,使其正在越来越多的临床诊断领域中发挥作用。  (四)多重连接探针扩增技术(multiplexligation-dependent probe amplification,MLPA)  MLPA技术于2002年由Schouten等[6]首先报道。每个MLPA探针包括2个荧光标记的寡核苷酸片段,1个由化学合成,1个由M13噬菌体衍生法制备 每个探针都包括1段引物序列和1段特异性序列。在MLPA反应中,2个寡核苷酸片段都与靶序列进行杂交,再使用连接酶连接2部分探针。连接反应高度特异,只有当2个探针与靶序列完全杂交,连接酶才能将2段探针连接成1条完整的核酸单链 反之,如果靶序列与探针序列不完全互补,即使只有1个碱基的差别,就会导至杂交不完全,使连接反应无法进行。连接反应完成后,用1对荧光标记的通用引物扩增连接好的探针,每个探针扩增产的长度都是唯一的。最后,通过毛细管电泳分离扩增产物,便可对把核酸序列进行检测。由于巧妙地借鉴了扩增探针的原理,MLPA技术最多可在1次反应中对45个靶序列的拷贝数进行鉴定。  该技术具备探针连接反应的特异性与多重扩增探针杂交的高通量特性。经过MRC-Holland公司10余年的发展,MLPA技术已成为涵盖各种遗传性疾病诊断、药物基因学多遗传位点鉴定、肿瘤相关基因突变谱筛查、DNA甲基化程度定量等综合分子诊断体系,是目前临床最为常用的高通量对已知序列变异、基因拷贝数变异进行检测的方法。  (五)生物芯片  1991年Affymetrix公司的Fordor[7]利用其所研发的光蚀刻技术制备了首个以玻片为载体的微阵列,标志着生物芯片正式成为可实际应用的分子生物学技术。时至今日,芯片技术已经得到了长足的发展,如果按结构对其进行分类,基本可分为基于微阵列(microarray)的杂交芯片与基于微流控(microfluidic)的反应芯片2种。  1.微阵列芯片  (1)固相芯片:微阵列基因组DNA分析(microarray-basedgenomic DNA profiling,MGDP)芯片:将微阵列技术应用于MGDP检测中已有超过十年的历史,其技术平台主要分为2类,即微阵列比较基因组杂交(array-basedcomparative genome hybridization,aCGH)和基因型杂交阵列(SNParray)。顾名思义,aCGH芯片使用待测DNA与参比DNA的双色比对来显示两者间的拷贝数变异(CNV)的变化,而单核苷酸多态性(singlenucleotide polymorphism,SNP)芯片则无需与参比DNA进行比较,直接通过杂交信号强度显示待测DNA中的SNP信息。随着技术的不断进步,目前市场上已出现可同时检测SNP与CNV的高分辨率混合基因阵列芯片。MGDP芯片主要应用于发育迟缓、先天性异常畸形等儿童遗传病的辅助诊断及产前筛查。经验证,使用MGDP芯片进行染色体不平衡检测与FISH的诊断符合率可达100%,表达谱芯片(geneexpression profiling array,GEParray):1999年,Duggan等首次使用cDNA芯片绘制了mRNA表达谱信息。随着表观遗传学在疾病发生发展中的作用日益得到重视,目前也已出现microRNA芯片、长链非编码RNA(longnoncoding RNA,lncRNA)芯片等。类似于MGDP芯片,GEP芯片使用反转录后生成的cDNA文库与固定于芯片载体上的核酸探针进行杂交,从而检测杂交荧光信号的强度判断基因的表达情况。  相较于基因组杂交,GEP芯片对生物学意义更为重要的转录组信息进行检测,对疾病的诊断与预后判断具有特殊的意义。目前使用GEP芯片对急性髓细胞白血病、骨髓增生异常综合征等血液病及神经退行性变等进行诊断、分类及预后评估已经获得了令人满意的效果   (2)液相芯片:传统固相芯片将检测探针锚定于固相载体上捕获目的序列,而Luminex公司的xMAP技术则通过搭配不同比例的2种红色荧光染料,将聚苯乙烯微球标记为不同的荧光色,并对其进行编码得到具有上百种荧光编号的微球。通过xTAG技术将不同的特异性杂交探针交联至编码微球上,使得不同的探针能够通过微球编码得以区分。利用混合后的探针-微球复合物与待测样本进行杂交,使微球在流动鞘液的带动下通过红绿双色流式细胞仪,其中红色激光检测微球编码,绿色荧光检测经杂交后核酸探针上荧光报告基团的信号强度,一次完成对单个样本中多种靶序列的同时鉴定。目前,该技术已在囊性纤维化等遗传性疾病诊断、多种呼吸道病毒鉴定及人乳头瘤病毒分型取得了广泛的应用。  2.微流控芯片  1992年Harrison等首次提出了将毛细管电泳与进样设备整合到固相玻璃载体上构建“微全分析系统”的构想,通过分析设备的微型化与集成化,完成传统分析实验室向芯片上实验室(lab-on-chip)的转变。微流控芯片(microfluidicchip)由微米级流体的管道、反应器等元件构成,与宏观尺寸的分析装置相比,其结构极大地增加了流体环境的面积/体积比,以最大限度利用液体与物体表面有关的包括层流效应、毛细效应、快速热传导和扩散效应在内的特殊性能,从而在1张芯片上完成样品进样、预处理、分子生物学反应、检测等系列实验过程。  目前使用微流控芯片进行指导用药的多基因位点平行检测是主要临床应用领域。  二、核酸序列测定  测序反应是直接获得核酸序列信息的唯一技术手段,是分子诊断技术的一项重要分支。虽然分子杂交、分子构象变异或定量PCR技术在近几年已得到了长足的发展,但其对于核酸的鉴定都仅仅停留在间接推断的假设上,因此对基于特定基因序列检测的分子诊断,核酸测序仍是技术上的金标准。  (一)第1代测序  1975年Sanger与Coulson发表了使用加减法进行DNA序列测定的方法,随后Maxam在1977年提出了化学修饰降解法的模型,为核酸测序时代的来临拉开了序幕。  Sanger等于同年提出的末端终止法(Sanger测序法)利用2' 与3' 不含羟基的双脱氧核苷三磷酸(ddNTP)进行测序引物延伸反应,ddNTP在DNA合成反应中不能形成磷酸二酯键,DNA合成反应便会终止。如果分别在4个独立的DNA合成反应体系中加入经核素标记的特定ddNTP,则可在合成反应后对产物进行聚丙烯酰胺凝胶电泳(polyacrylamidegel electrophoresis,PAGE)及放射自显影,根据电泳条带确定待测分子的核苷酸序列。AppiedBiosystems公司在Sanger法的基础上,于1986年推出了首台商业化DNA测序仪PRISM 370A,并以荧光信号接收和计算机信号分析代替了核素标记和放射自显影检测体系。该公司于1995年推出的首台毛细管电泳测序仪PRISM 310更是使测序的通量大大提高。Sanger测序是最为经典的一代测序技术,仍是目前获取核酸序列最为常用的方法。  (二)第2代测序  1.焦磷酸测序(Pyro-sequencing)  不同于Sanger测序法所使用的合成后测序理念,Ronaghi分别于1996年与1998年提出了在固相与液相载体中通过边合成边测序的方法-焦磷酸测序。其基本原理是利用引物链延伸时所释放的焦磷酸基团激发荧光,通过峰值高低判断与其相匹配的碱基数量。由于使用了实时荧光监测的概念,焦磷酸测序实现了对特定位点碱基负荷比例的定量,因此在SNP位点检测、等位基因(突变)频率测定、细菌和病毒分型检测方面应用广泛。由于荧光报告原理不同,其对于序列变异的检测灵敏度从Sanger测序的20%提高到了5%。但由于该技术的仪器采购与单次检测成本较高,目前尚未得到大规模的临床使用。  2.高通量第2代测序  目前常见的高通量第二代测序平台主要有Roche454、IlluminaSolexa、ABISOLiD和LifeIon Torrent等,其均为通过DNA片段化构建DNA文库、文库与载体交联进行扩增、在载体面上进行边合成边测序反应,使得第1代测序中最高基于96孔板的平行通量扩大至载体上百万级的平行反应,完成对海量数据的高通量检测。该技术可以对基因组、转录组等进行真正的组学检测,在指导疾病分子靶向治疗、绘制药物基因组图谱指导个体化用药、感染性疾病的病原微生物宏基因组鉴定及通过母体中胎儿DNA信息进行产前诊断等方面已经取得了喜人的成绩。然而,由于该技术需要对DNA进行片段化处理,测序反应读长较短(如Solexa与SOLiD系统单次读长仅50bp),需要对数据进行大规模拼接,因此对分子诊断工作者掌握生物信息学知识提出了更高要求,以利于后期的测序数据分析。  (三)第3代测序  第3代测序技术的核心理念是以单分子为目标的边合成边测序。该技术的操作平台目前主要有Helicos公司的Heliscope、PacificBiosciences公司的SMRT和OxfordNanopore Technologies公司的纳米孔技术等。该技术进一步降低了成本,可对混杂的基因物质进行单分子检测,故对SNP、CNV的鉴定更具功效。但是目前其进入产品商业化,并最终投入临床应用仍有很长的距离。  三、基于分子构象的分子诊断技术  (一)变性梯度凝胶电泳(denaturinggradient gel electrophoresis,DGGE)与单链构象多态性(singlestrand conformation polymorphism,SSCP)  1970~1980年间,Fischer等与Orita等分别提出了利用核酸序列变异所导至双链变性条件差异与单链空间折叠差异,通过变性与非变性PAGE对变异序列进行分离鉴定的方法,即DGGE与SSCP。上述2项技术均通过变异核酸分子在空间构象上的差异,通过特定条件下电泳速率的变化进行检测。正因为核酸分子构象具有序列特异性,且对于序列的改变非常敏感,常常1个碱基的变化也能得到鉴定。但由于DGGE与SSCP均必须进行PCR后开盖电泳的操作,现已不常见于临床检测。  (二)变性高效液相色谱(denaturinghigh-performance liquid chromatography,dHPLC)  1997年,Oefner和Underhill建立了利用异源双链变性分离变异序列、使用色谱洗脱鉴定的技术,称为dHPLC,可自动检测单碱基置换及小片段核苷酸的插入或缺失。对于存在一定比例变异序列的核酸双链混合物,其经过变性和复性过程后,体系内将出现2种双链:一种为同源双链,由野生正义链-野生反义链或变异正义链-变异反义链构成的核酸双链 另一种为异源双链,即双链中1条单链为野生型,而另1条为变异型。由于存在部分碱基错配的异源双链DNA与同源双链DNA的解链特征不同,在相同的部分变性条件下,异源双链因存在错配区而更易变性,被色谱柱保留的时间短于同源双链,故先被洗脱下来,从而在色谱图中表现为双峰或多峰的洗脱曲线。由于该技术使用了较高分析灵敏度的色谱技术进行检测,可快速检出5%负荷的变异序列。但需注意的是,由于该技术主要通过异源双链进行序列变异检测,其不能明显区分野生型与变异型的纯合子。  (三)高分辨率熔解分析(high-resolutionmelting analysis,HRMA)  2003年,Wittwer等首次革命性地使用过饱和荧光染料将PCR产物全长进行荧光被动标记,再通过简单的产物熔解分析对单个碱基变化进行鉴定。该技术的原理也是通过异源双链进行序列变异鉴定。待测样本经PCR扩增后,若存在序列变异杂合子,则形成异源双链,其熔解温度大大下降。此时由于双链被饱和染料完全填充,其产物熔解温度的变化便可通过熔解曲线的差异得以判定。对于变异纯合子而言,HRMA也可利用其较高的分辨率完成PCR产物单个位点A:T双键配对与G:C三建配对热稳定性差异的鉴定,但是对于Ⅱ、Ⅲ类SNP的纯合子变异则无法有效区分。  如何利用DNA构象对序列进行推测,从而避免成本较高的序列测定或操作繁琐的杂交反应一直是分子生物学研究与应用的热点问题。目前,使用构象变化对序列变异进行间接检测的便捷性已得到一致肯定,尤其是HRMA可完成对变异序列单次闭管的扩增检测反应。但需要注意的是,由于基于构象变化的分子检测手段多无法通过探针杂交或核酸序列测定对检测的特异性进行严格的保证,因此其只适合大规模的初筛,而真正的确诊仍需要进行杂交或测序的验证。  四、定量PCR(quantitativePCR,qPCR)  相比于其他分子诊断检测技术,qPCR具有2项优势,即核酸扩增和检测在同一个封闭体系中通过荧光信号进行,杜绝了PCR后开盖处理所带来扩增产物的污染 同时通过动态监测荧光信号,可对低拷贝模板进行定量。正是由于上述技术优势,qPCR已经成为目前临床基因扩增实验室接受程度最高的技术,在各类病毒、细菌等病原微生物的鉴定和基因定量检测、基因多态性分型、基因突变筛查、基因表达水平监控等多种临床实践中得到大量应用。但伴随着qPCR技术的迅猛发展,有关这项技术的质量管理问题也日益突出,如何消除各类生物学变量所引起的检测变异,减少或抑制实验操作与方法学中的各种干扰因素是qPCR技术面临的难题。  (一)实时荧光定量PCR(real-timePCR)  1.双链掺入法  1992年Higuchi等通过在PCR反应液中掺入溴乙锭对每个核酸扩增热循环后的荧光强度进行测定,提出了使用荧光强度与热循环数所绘制的核酸扩增曲线,定量反应体系中初始模板的反应动力学(real-timePCR)模型,开创了通过实时闭管检测荧光信号进行核酸定量的方法。核酸染料可以嵌入DNA双链,且只有嵌入双链时才释放荧光,在每1次的扩增循环后检测反应管的荧光强度,绘制荧光强度-热循环数的S形核酸扩增曲线,以荧光阈值与扩增曲线的交点在扩增循环数轴上的投影作为循环阈值(Cyclethreshold,Ct),则Ct与反应体系中所含初始模板数量呈负指数关系,推断初始模板量。随后Morrison[22]提出了使用高灵敏度的双链染料SYBR GreenI进行反应体系中低拷贝模板定量的方法。这一方法操作简便,但由于仅使用扩增引物的序列启动核酸扩增,其产物特异性无法得到充分保证。虽然在实时荧光定量PCR反应后可通过熔解曲线对产物特异性进行检验,但其特异性明显逊于使用荧光探针进行检测,因此双链掺入法并未在临床实践中得到认可。  2.Taqman探针  由于双链掺入法存在特异性较低的问题,1996年Heid[23]综合之前发现的Taq酶的5' 核酸酶活性与荧光共振能量转移(fluorescenceresonance energy transfer,FRET)探针的概念提出了使用Taqman探针进行qPCR的方法。TaqMan探针的本质是FRET寡核苷酸探针,在探针的5' 端标记荧光报告基团,3' 端标记荧光淬灭基团,利用Taq酶具有5' 3' 外切酶活性,在PCR过程中水解与靶序列结合的寡核苷酸探针,使荧光基团得以游离,释放荧光信号。从而使能够与靶序列杂交的探针在扩增过程中释放荧光,通过real-timePCR的原理对其进行定量。由于其超高的特异性与成功的商品化推广,Taqman探针已经成为目前临床使用最为广泛的qPCR方法,其在各种病毒基因定量检测、基因分型、肿瘤相关基因表达检测等方面具有着不可替代的地位。  3.分子信标  同样在1996年,Tyagi等提出了使用分子信标(moleuclarbeacons)进行qPCR的方法,分子信标是5' 与3' 端分别标记有荧光报告基团与淬灭基团的寡核苷酸探针,其两端具有互补的高GC序列,在qPCR反应液中呈发夹结构,荧光基团与淬灭基团发生荧光共振能量转移(FRET)而保持静息状态。当PCR反应开始后,茎环结构在变性高温条件下打开,释放荧光 在退火过程中,靶序列特异性探针则与模板杂交保持线性,不能与模板杂交的探针则复性为茎环结构而荧光淬灭,通过检测qPCR体系中退火时的荧光信号强度,便可以real-timePCR原理特异性检测体系中的初始模板浓度。相比于Taqman探针,分子信标使用发卡结构使荧光基团与淬灭基团在空间上紧密结合,大大降低了检测的荧光背景,其检测特异性较Taqman探针更高,更适合等位基因的分型检测。  4.双杂交探针  1997年,Wittwer等发表了使用分别标记荧光供体基团与荧光受体基团的2条相邻寡核苷酸探针进行qPCR的方法。双杂交探针所标记的供体基团和受体基团的激发光谱间具有一定重叠,且2条探针与靶核酸的杂交位置应相互邻近。仅当2条探针与靶基因同时杂交时,供体与受体基因得以接近,从而通过FRET发生能量传递,激发荧光信号,荧光信号强度与反应体系中靶序列DNA含量呈正比。由于使用了2条探针进行靶序列杂交,该方法的特异性比传统单探针检测体系得到了极大地提升。  (二)数字PCR  早在上世纪90年代就出现了使用微流控阵列对单次qPCR反应进行分散检测的概念。基于这一理念,Vgelstein与Kinzter于1999年发表了数字PCR(digitalPCR)的方法,对结肠癌患者粪便中的微量K-RAS基因突变进行了定量。相比于传统的qPCR方法,数字PCR的核心是将qPCR反应进行微球乳糜液化,再将乳糜液分散至芯片的微反应孔中,保证每个反应孔中仅存在≤ 1个核酸模板。经过PCR后,对每个微反应孔的荧光信号进行检测,存在靶核酸模板的反应孔会释放荧光信号,没有靶模板的反应孔就没有荧光信号,以此推算出原始溶液中待测核酸的浓度。因此,数字PCR是1种检测反应终点荧光信号进行绝对定量的qPCR反应,而非以模板Ct值进行核酸定量的real-timePCR。  经由Quantalife公司开发(已于2011年被BIO-RAD收购)的微滴式数字PCR是首款商品化的数字PCR检测系统,目前已被广泛运用于微量病原微生物基因检测、低负荷遗传序列鉴定、基因拷贝数变异与单细胞基因表达检测等多个临床前沿领域。与传统qPCR相比较,该技术具有超高的灵敏度与精密度,使其成为目前qPCR领域的新星。  五、对未来5年的展望  半个世纪以来分子诊断的高速发展离不开分子生物学技术日新月异的进步。概而言之,在过去的50年中分子诊断技术取得了三大转化与3项提升:即报告信号检测从放射核素标记向荧光标记转化,操作方法由手工操作向全自动化转化,检测分析通量从单一标志物向高通量多组学联合判断转化 检测灵敏度、精密度、特异性的快速提升。  在未来5年中,我国分子诊断事业将迎来两方面的进步。随着卫生监管部门对分子诊断重要性的认识不断深入与越来越多高学历、高素质人才的进入,分子诊断将会出现理念的革命性进步,高通量技术将更多的进入临床的实际应用中。随着技术的进一步发展,传统针对特定基因异常、病原微生物感染鉴定的方法学,也将在检测的各项分析性能与操作便捷程度上取得长足的进步。对于传统人力与时间成本较高的检测方法学,将出现两极分化的态势,即Southern等经典的检测金标准将得到保留 而ASO-RDB等灵敏度、特异性均不能满足实际临床需求的方法将快速被新型技术所取代。最终,分子诊断也必将一改目前仅仅用于病原微生物基因检测与部分遗传性疾病诊断的局面,形成由肿瘤学、遗传学、微生物学、药物基因组学四足鼎立,快速发展的景象。
  • AFSEM原位微区表征系统 助力新型纳米探针构筑及纳米热学成像研究
    获取材料甚至是器件整体的热学特性,是相关研究与开发当中非常有意义的课题。随着研究对象特征尺寸的不断减小,研究者们对具有高热学分辨率和高水平方向分辨率的表面温度表征方法以及与之相应的仪器的需求也日益显著。在诸多潜在的表征技术当中,扫描热学显微镜(Scanning Thermal Microscopy)是其中颇为有力的一种,它可以满足特征线度小于100 nm的研究需求。然而,这种表征方法,对纳米探针的结构及功能特性有比较高的要求,目前商用的几种纳米探针受限于各自的结构特点,均有一定的局限性而难以满足相应要求,也就限制了相应表征方法的发展与应用。着眼于上述问题,奥地利格拉茨技术大学的H. Plank团队提出了基于纳米热敏电阻的三维纳米探针,用于实现样品表面温度信息的超高分辨表征。相关成果于2019年六月发表在美国化学协会的期刊ACS Applied Materials & Interfaces上(ACS Appl. Mater. Interfaces, 2019, 11, 2522655-22667. Three-Dimensional Nanothermistors for Thermal Probing.)。 图1 三维热学纳米针的概念、结构、研究思路示意图 H. Plank等人提出的这种三维纳米探针的核心结构是一种多腿(multilegged)纳米桥(nanobridge)结构,它是利用聚焦离子束技术直接进行3D纳米打印而获得的,因而可以直接制作在(已经附有许多复杂微纳结构与微纳电路、电的)自感应悬臂梁上(self-sensing cantilever, SCL)。由于纳米桥的每一个分支的线度均小于100 nm,因而需要相应的表征策略与技术来系统分析其纳米力学、热学特性。为此,H. Plank研究团队次采用了有限元模拟与SEM辅助原位AFM(scanning electron microscopy-assisted in situ atomic force microscopy)测试相结合的策略来开展相应的研究工作,并由此推导出具有良好机械稳定性的三维纳米桥(垂直刚度达到50 N/m?1)的设计规则。此后,H. Plank引入了一种材料调控方法,可以有效提高悬臂梁微针的机械耐磨性,从而实现高扫描速度下的高质量AFM成像。后,H. Plank等人论证了这种新式三维纳米探针的电响应与温度之间的依赖关系呈现为负温度系数(?(0.75 ± 0.2) 10?3 K?1)关系,其探测率为30 ± 1 ms K?1,噪声水平在±0.5 K,从而证明了作者团队所提出概念和技术的应用潜力。 图2 三维热学纳米针的制备及基本电学特性 文中在进行三维纳米探针的力学特性及热学响应方面所进行的AFM实验中,采用了原位AFM技术,堪称一大亮点。研究所用的设备为奥地利GETec Microscopy公司生产的AFSEMTM系统,AFSEMTM系统基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM测试。此外,通过选择悬臂梁的不同功能型针,还可以在SEM或FIB系统的腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。着眼于本文作者的研究需求来讲,比如探针纳米桥的分支在受力状态下的力学特性分析,只有利用原位的AFM表征技术,才可以同时获取定量化的力学信息以及形貌改变信息。当然,在真空环境下使用原位AFM系统表征微区的力、热、电、磁信息的意义远不止于操作方便或同时获取多种信息而已。以本文作者团队所关注的微区表面热学分析为例,当处于真空环境下时,由于没有减小热学信息成像分辨率的、基于对流的热量转移,因而可以充分发挥热学微纳针的潜能,探测到具有高水平分辨率的热学信息。 图3 利用AFSEM在SEM中原位观测nanobridge的力学特性 图4 将制备所得的新型纳米热学探针安装在AFSEM上,并在SEM中进行原位的形貌测量:a)SEM图像;b)AFM轮廓图像
  • 多层各向异性复杂型面航空/天复合材料结构相控阵超声成像检测
    以碳纤维增强树脂基(Carbon Fiber Reinforced Plastic, CFRP)为代表的先进复合材料,具有高比强度和比刚度、良好的耐疲劳和耐腐蚀、易于大面积成型等优点,正越来越广泛地代替金属材料用作航空/天飞行器主承力构件。受制造工艺复杂、服役环境严苛影响,CFRP容易产生材料退化,甚至分层、纤维褶皱、孔洞等缺陷,威胁结构服役安全。超声无损检测技术是实现制造质量控制和服役性能评估的有效手段,但却面临材料形状复杂、多层结构、弹性各向异性因素共同作用所致超声传播行为复杂的挑战。现有超声检测技术主要是面向声学特性较为简单的各向同性均质材料,直接沿用至CFRP结构时不可避免地存在超声信号混叠、信噪比低、成像质量差等问题。针对以上难题,中国科学院深圳先进技术研究院郭师峰研究员团队开展了系列创新性研究工作,为航空/天复合材料结构无损检测与评估提供了理论和技术支撑,包括:(1)提出了利用相控阵超声和完全非接触激光超声原位测量超声群速度分布的新方法,解决了各向异性复合材料力学性能原位、高精度测量难题,为材料强度及其退化程度定量评估提供技术支撑;(2)建立了定量描述复杂形状、多层结构、弹性各向异性对CFRP声学特性影响规律的理论模型,为复杂超声传播行为理论分析和超声成像算法研究提供可靠的模型基础;(3)提出了基于计算机科学最短路径搜索算法的声线示踪新方法,解决了高分辨率超声成像算法聚焦法则高精度计算难题,大幅提升缺陷检测灵敏度和定位/量精度。上述研究工作为航空/天复合材料结构无损检测与评估提供了理论和技术支撑。2024年9月11-12日,仪器信息网组织召开第三届无损检测技术进展与应用网络会议,邀请领域内科研、应用等专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨。期间,郭师峰研究员团队中的曹欢庆副研究员将作大会报告《多层各向异性复杂型面航空/天复合材料结构相控阵超声成像检测》,介绍上述研究工作。本次会议于线上同步直播,欢迎材料、机械、工程、无损检测等相关科研工作者、工程技术人员、科技企业人士等报名,参会交流!关于第三届无损检测技术进展与应用网络会议无损检测,即在不破坏或不影响被检测对象内部组织与使用性能的前提下,利用射线、超声、电磁、红外、热成像等原理并结合仪器对物体进行缺陷、化学、物理参数检测的一种技术手段,被广泛应用于航空航天、交通运输、石油化工、特种设备、矿山机械、核电、冶金、考古、食品等各个领域。为推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网定于2024年9月11-12日组织召开第三届无损检测技术进展与应用网络会议,邀请领域内科研、应用等专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨,欢迎大家参会交流。会议链接:https://www.instrument.com.cn/webinar/meetings/ndt2024
  • 一举两得——拉曼光谱与流变学这对完美搭档,你get到了吗?
    安东帕MCR流变仪与Cora 5001拉曼光谱仪的组合拉曼光谱技术已经与多种技术实现联用,如微波合成-拉曼、SEM-Raman、AFM-Raman、DSC-Raman等,今天为大家介绍另一种与拉曼联用的完美组合——流变-拉曼组合!流变学——提供复杂流体的宏观材料函数,获取聚合物黏弹性特征。拉曼光谱——提供复杂流体的微观结构变化信息,提供分子结构、 应力、 修饰、 晶型等化学信息。安东帕Cora5001拉曼光谱仪流变-拉曼联用可以实时评估聚合物的某些特性,包括成分、分子结构、剪切流变性能等,还可以获得加工稳定性等重要信息。非常适合固体以及熔融体聚合物的表征分析。之所以拉曼光谱技术在“联用界”这么受青睐,主要是由拉曼技术的三大优势成就的:拉曼光谱一般采用的是非接触式、非破坏式的测量方式,这使得与之结合的另一种测量方法不会受到任何干扰;拉曼光谱可以很方便的使用拉曼探头收集信号,探头可使仪器的固定和组装变得更易实现;拉曼光谱采集过程非常方便,样品不需前处理,因此样品在进行另一项测试过程中无论发生相变、熔融、变形都可以随时获取光谱。有不少分析专家已慢慢认识到拉曼光谱或许可以成为原位-实时测量应用中光谱传感器的较优选择之一,当它与其他技术进行联用时,可以得到“1+12”的功效。下面就以一次聚乙烯的流变-拉曼联用实验展示这个完美组合的魅力吧!实验样品与仪器聚乙烯是半结晶热塑性弹性体,是工业中较常用的聚合物,实验采用HDPE(高密度聚乙烯)和LDPE(低密度乙烯)。HDPE的分子量超过300.000 g/mol,主要由无支链聚合物链组成,导致紧密堆积,因此在固态下具有高度结晶性。然而,LDPE却表现出长度不均匀的大分支。聚合物结晶度会影响其对形变的响应能力,这对于聚合物加工过程中的流动特性等非常重要。通过将拉曼光谱与流变学结合,可以用于监测熔融和结晶过程中黏弹性参数的变化,从而了解本体材料的物理特性,同时还可将其与化学结构和微观分子环境关联起来。图1:流变和拉曼联用设备示意图将安东帕的Cora 5001拉曼光谱仪通过特殊高温探头与安东帕的基于空气轴承的模块化紧凑型流变仪(MCR)结合起来(图1),用于实验测量。流变仪配置了帕尔帖温控系统(PTD)和测量平板(直径25mm)。为了防止热降解,在实验过程中采用连续氮气氛围。对于HDPE的测量,可以使用刻痕转子防止样品滑动。拉曼测量则使用785 nm的激发波长。实验过程首先分别将HDPE和LDPE颗粒加热至150℃和130℃,以获得均匀样品。随后,仪器以1K/min的速率降温,分别降至100℃和80℃,样品在降温过程中发生结晶。之后以相同的加热速率重新加热至最 高温度。每30s记录一个流变测量点,同时采集一条拉曼光谱,拉曼光谱的积分时间为10s。实验结果流变实验结果图2:HDPE和LDPE在温度扫描测量中的黏弹性行为比较HDPE和LDPE的流变数据如图2。在升温过程中,聚合物的无定形区域分子链活动性增强,发生软化,从而导致储能模量G‘和损耗模量G˝降低;当温度升至G˝大于G‘的交点之后,则表明熔融状态中主要表现的是黏性流动行为。对比LDPE和HDPE的黏弹性,可以看出HDPE比LDPE表现出更高的刚度,这是由于二者结晶性能不同。HDPE由于其支化度较低,其结晶度较高。G‘描述了材料的弹性行为,而G˝提供了有关材料行为的黏性贡献的信息,该黏性行为是由聚合物分子之间发生相对运动所损失的形变能决定的。拉曼实验结果图3:HDPE和LDPE的液体和固体的拉曼光谱拉曼光谱可以反映固液态的相变,如图2所示:对于HDPE和LDPE,固相中的1064cm-1特征峰,在液相中移向更高波数,且峰强变弱,半峰宽变宽;固相中1128cm-1和1169cm-1特征峰在液相中完全消失。这3个特征峰谱带与聚合物链内连续反式构象C-C伸缩振动有关。在固态中,由于反式构象有更好的填充能力,因此该构象数量非常多;而在液态中存在很多种不同构象的低序结构,且连续反式构象的占比非常低,因此在液相中与连续反式构象相关的拉曼谱带消失。1250cm-1-1450cm-1之间的光谱区域也出现了类似现象。拉曼特征峰向更高波数的移动表明分子内键能更强,这可能是由于液相中分子间相互作用弱于固相,从而有助于分子内相关化学键的振动导致的。图4:由MCR-ALS算法分解得到的成分1和成分2分别与液体和固体的拉曼光谱吻合根据样品的先验知识使用MCR-ALS算法将混合光谱分解为成分1和成分2,并同时得到各成分的载荷。MCR-ALS比手动摘选特征峰更有优势,因为它是将整个光谱视为目标组分来进行分析的。图4为HDPE的拉曼光谱分解结果:通过MCR-ALS得到的成分1和成分2的谱图分别与非晶态和晶态的拉曼光谱相吻合,表明该方法可以完全重构非晶态和结晶态的组分信息。流变-拉曼结合的实验结果图5:80℃-150℃温度区间内HDPE和LDPE各自的成分2的载荷与G’变化的比对图样品从80℃升温至150℃的过程中由结晶态转变至非晶态。基于拉曼光谱,通过MCR-ALS算法得到了在该温度范围内HDPE和LDPE的成分2及其对应的载荷,并与样品的储能模量G’进行对比,结果如图5。成分2(即C2)以及储能模量G’均与聚合物的结晶态有关。对于HDPE,在冷却曲线中C2约在113℃时开始大幅增加。在加热曲线中,C2在125℃之后开始降低,表明HDPE经历了从半晶态到完全非晶态的转变,并且化学成分与力学性质的变化趋势基本吻合。然而对于LDPE,分解出的成分2的光谱与HDPE的不同,而且在冷却及加热曲线中C2的变化斜率非常小,这表明LDPE的结晶似乎受到了阻碍,且C2变化曲线参数与力学性质相差很大,这点与HDPE有很大差异性。HDPE和LDPE的流变-拉曼实验可以充分说明流体所表现出来的流变性质与其组成、分子结构有密切关系。结论安东帕的流变仪与Cora 5001拉曼光谱仪的结合可实现原位监测,即在同一时间尺度上洞察宏观力学行为和微观分子的变化。当聚合物的物理化学特性强烈依赖于它经历的应力、应变、应变率、环境温度时,可以通过流变-拉曼的组合获取聚合物的较为真实的参数,为聚合物制造和加工提供更加全面科学的分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制