当前位置: 仪器信息网 > 行业主题 > >

伏虫脲残留分析

仪器信息网伏虫脲残留分析专题为您整合伏虫脲残留分析相关的最新文章,在伏虫脲残留分析专题,您不仅可以免费浏览伏虫脲残留分析的资讯, 同时您还可以浏览伏虫脲残留分析的相关资料、解决方案,参与社区伏虫脲残留分析话题讨论。

伏虫脲残留分析相关的方案

  • LCMS分析谷物中的烯啶虫胺残留
    复杂食品基质中农药多残留的分析近年来是个热点,实现高通量分析、高灵敏度检测和高效分离是亟待解决的重要课题-1 J。笔者建立了谷物中烯啶虫胺残留的快速高分离度液相色谱(rapid res01ution1iquid ehromatography,RRLC)与三重串联四级杆质谱(QQQ)联用的检测方法。
  • PH计在豆粕残留尿素酶活性分析中的应用
    大豆粕是我国使用最广泛的饲料之一,它具有营养成分高、使用方便等化点。我国豆油生产中,广泛N用"溶剂浸出”的制备工艺。该方法具有出油率高,k豆怕中的蛋白质变性少等优点.但是在溶浸过程中。大豆原料受热的温度只有50~60℃,大豆中的尿素酶只受到较小的破坏(豆粕中的尿素酶是影响动物生理活动的物质).当牲畜食用了含尿素酶量多的饲料,牲畜体内的尿素酶活性受到抑制、影响了体内蛋白质的分解.消化.吸收等正常能力,因而容易引起腹泻。另外,尿素酶还能催化水解尿素,故出大量的二氧化碳与氨、当部分氨进入血液。将会提高血氨浓度而导致牲畜中毒。因此,在豆粕生产过程中,需将豆粕中的尿素酶控制在一定的范围内。据国内外一些文献报道,作为牲畜饲N用豆粕的球素酶活性应小于0.3 pH上升值(见美国大豆协会标准)。控制温度是破坏大豆粕中残留尿素酶的主要手段。在生产中,一般利用回收豆柏残留溶剂过程中的蒸点热量来破坏尿素酶。目前,国内外大都采用关国谷物化学学会的A.A,C.C方法测定大豆粕中的残留尿素酶,并将此法称为pH上升法。几年来,我们参考了这个方法、对我国各地的豆粕进行了多次测定,并取得了很理想的效果。
  • 氟虫脲农残筛查的整体解决方案以及方法包介绍-三重四极杆串接气质
    方法包是赛默飞世尔科技色谱质谱部应用部门针对客户需求提出的简易仪器使用流程,方法包内所涉及的化合物均为常见的能在 GC/MS 上检测的化合物,如农药残留、多环芳烃、多氯联苯、多溴联苯和多溴联苯醚、邻苯二甲酸酯等。方法包的作用就是能使客户更快更简便得使用仪器,尽快上手。方法包包括进样方法,数据处理方法(TraceFinder 方法文件夹),相关应用文章,相关标准,色谱柱信息,前处理方法,数据文件等,客户可以直接调用进样方法和数据处理方法完成氟虫脲等化合物的定性定量分析。
  • LC/MS/MS 分析大麻中氟虫腈残留
    由于大麻对癌症、多发性硬化症和肌萎缩侧索硬化症(ALS)等疾病具有治疗效果,美国超过半数的地区已经将医用大麻的使用合法化。与传统的农作物一样,农药有时也用于大麻种植中,以保护大麻免受虫害,并提高产量除农药外,大麻的生长条件也有利于霉菌和真菌的生长,这些霉菌和真菌会产生致癌的真菌毒素,包括赭曲霉素A 和黄曲霉毒素。因此,对大麻中农药和真菌毒素的检测对于确保消费者安全和质量控制来说至关重要。珀金埃尔默应用开发团队分析了添加在大麻花提取物中的所有66 种农药(包括典型的用GC-MS/MS 方法分析的极度疏水性农药和含氯农药)和五种真菌毒素,其分析结果远远低于加利福尼亚州规定的残留限值。LC-MS/MS 仪器使用电喷雾离子源(ESI)和大气压化学电离源(APCI)以及采用简单的溶剂提取方法,该方法对所有分析物的回收率都达到了70%-120%的可接受范围。
  • LC/MS/MS 分析大麻中氟啶虫酰胺残留
    由于大麻对癌症、多发性硬化症和肌萎缩侧索硬化症(ALS)等疾病具有治疗效果,美国超过半数的地区已经将医用大麻的使用合法化。与传统的农作物一样,农药有时也用于大麻种植中,以保护大麻免受虫害,并提高产量除农药外,大麻的生长条件也有利于霉菌和真菌的生长,这些霉菌和真菌会产生致癌的真菌毒素,包括赭曲霉素A 和黄曲霉毒素。因此,对大麻中农药和真菌毒素的检测对于确保消费者安全和质量控制来说至关重要。珀金埃尔默应用开发团队分析了添加在大麻花提取物中的所有66 种农药(包括典型的用GC-MS/MS 方法分析的极度疏水性农药和含氯农药)和五种真菌毒素,其分析结果远远低于加利福尼亚州规定的残留限值。LC-MS/MS 仪器使用电喷雾离子源(ESI)和大气压化学电离源(APCI)以及采用简单的溶剂提取方法,该方法对所有分析物的回收率都达到了70%-120%的可接受范围。
  • 使用LC/MS/MS 及QuEChERS 样品制备分析浆果中的杀虫剂残留
    杀虫剂在农业中应用广泛,用于保护植物免受各种虫害和提高作物产量。但大量使用杀虫剂会危害人体健康。因此全世界都制定有严格的法规,限定其在食品中的最高残留限值。在常规使用的实验方法中,LC/MS/MS 以其具有高灵敏度、高可靠性和精度的特点,已成为一种首选方法。本研究使用独特的层流UPLC-ESI-MS/MS 三极四杆质谱仪对4 种品牌的非有机浆果中的40 种杀虫剂进行确证和定量分析。结果表明,QuEChERs 分离方法可快速可靠地分离深色的浆果样品中的杀虫剂残留。
  • GC-NCI-MS法分析果汁中拟除虫菊酯农药残留
    纯果汁和果汁饮料由于具有天然、营养与保健等性能使消费量迅速增长,而果汁中农药残留问题直接影响到食品的质量和安全。果汁中农药残留量一般是原果品中的30%~50%,因此要求分析方法必须具有较高的选择性和灵敏度。负化学源(NCI)被称为“软电离源”,对含电负性基团的物质具有较高的选择性和灵敏度;拟除虫菊酯类农药的分子大都含有-F、-CI、-Br或-COO-等强电负性基团,所以气相色谱-负化学离子源-质谱法(GC-NCI-MS)可成为此类痕量农药残留的特征分析方法。
  • 大米中灭幼脲残留量的测定(方法改良)
    适用范围适用于水果、蔬菜及粮食中灭幼脲的测定(该实验选用基质为大米)参考标准:《GB/T 5009.135-2003 植物性食品中灭幼脲残留量的测定》《NY/T 1720-2009水果、蔬菜中杀铃脲等七种苯甲酰脲类农药残留量的测定 高效液相色谱法》
  • 基于CSR大体积进样技术和GCNCIMS联用测定复杂基体中的氟虫腈残留
    气相色谱- 质谱(GC-MS)法是多种农药残留同时检测常用和重要的分析技术。GC-MS 一般采用普通分流不分流进样方式、电子轰击电离(EI) 实现多农药残留同时分析,可同时检测氟虫腈等上百种农药,但很多农药检出限难以满足有关法律法规的要求。采用大体积进样和负化学电离(NCI)气相色谱-质谱法可显著提高方法的灵敏度。
  • 茶叶中的伏虫脲残留分析:在QuEChERS方法萃取后优化净化流程,进行UPLC-MS/MS和GC-MS/MS分析
    本应用案例介绍了用于干茶叶农药多残留分析的QuEC hERS萃取和SPE净化法。首先向茶叶样本加水进行溶胀,然后使用DisQuE试剂按照CEN QuEChERS方法萃取。取三份萃取液进行后续分析。对第一份进行dSPE净化,然后进行UPLC-MS/MS分析碱性/中性农药;对第二份使用SPE萃取柱进行净化,然后进行GC-MS分析碱性/中性农药;对第三份进行SPE净化,然后进行LC-MS/MS分析不适于使用PSA(乙二胺-N-丙基硅烷)净化的酸性农药。下表列出的是使用这三种净化法从干的红茶中提取出的农药的回收率。
  • 全新一代三重四极杆液质联用TSQ Quantis 检测鸡蛋中氟虫腈及其代谢物残留
    氟虫腈又名锐劲特曾是广泛用于农业生产的一种苯基吡唑类高效杀虫剂,但近年来在禽类和蛋鸡上的非法使用,会导致禽肉和鸡蛋中氟虫腈残留,同时环境中残留的氟虫腈通过生物富集作用可以进入食物链,最终都会给人类健康带来潜在的危害,因此我国规定 2009 年 10 月 1 日起禁用氟虫腈。
  • 农药残留氨基甲酸盐杀虫剂(Carbamate Pesticide)分析
    高效液相色谱柱后衍生技术应用在农药残留氨基甲酸盐杀虫剂 (Carbamate Pesticide)方面的分析分析1. 氨基甲酸盐杀虫剂分析柱Pickering Labs氨基甲酸盐分析柱利用EPA和AOAC的指定方法,保证了氨基甲酸盐残余物的良好分离。对于C18柱,两种水/甲醇梯度模式可以用来分别对甲醇中和水中的样品进行分析。扩展的分析法采用C8柱结合水/甲醇或水/氰甲烷梯度洗脱可以将23种氨基甲酸盐进行分离。甲醇与氰甲烷之间选择性的不同可以分别被用来对各自的出峰进行鉴定。
  • 使用GC/MS/MS对难分析基质中虫螨畏残留农药的快速分析
    在农业领域,农药被广泛用来保护农作物以及提高作物产量。因此,政府、食品生产者和食品销售商都有责任确保被人类食用的食品中残留农药的浓度水平在法规规定的最大残留水平以下(MRLs)。已经通过的欧盟EC396/2005法规,对超过300种商业食品中的500多种农药设定了相应的MRLs1。这些农药中多数农药的MRLs值被默认设置为0.01mg/kg,而这一数值恰好是许多常规分析方法典型的检测极限。因此,需要具有价廉、快速(通常分析周期48 h)的,且能对各种食品中浓度在0.01 mg/kg或低于0.01 mg/kg的多种残留农药进行分析的实验分析方法。要完成这一工作,通常利用一种通用溶剂从样品中对农药进行萃取后,基于LC/MS/MS和GC/MS技术的联合,使用多残留方法,可实现残留农药的分析。利用乙腈为萃取溶剂和分散固相萃取方法的QuEChERS(Quick, Easy, Cheap, Effective, Rugged and Safe, 快速、方便、价廉、高效、可靠和安全)分析程序,就是这样一个例子2。由于乙腈易于与LC/MS/MS匹配,并可分析数百种农药,而越来越被广泛使用。对于许多弱极性(非极性)的半挥发性农药,不宜用LC/MS进行分析,而可用GC/MS进行分析。然而,乙腈溶剂对于GC/MS而言是一个问题。
  • 应用气相串联四极杆质谱分析 Ayurvedic Churna 中的除虫脲农药残留
    针对多种农药建立一种快速、灵敏的定量方法是每一个农残分析实验室的主要目标。采用上文建立的农残测试方法,可在 28 分钟内对 200 余 种农药化合物完成筛查和定量分析。QuEChERS前处理方法具备高回收率和良好的重复性。配有 TRACEGuard 的 TR-5MS 色谱柱可有效分离所有目标化合物。三重四极杆质谱仪 TSQ 8000 GC-MS/MS TraceFinderTM 软件联合使用,有效节省数据处理时间,从而实现了高通量检测。在待测样本进行前处理的短暂时间内即可完成方法线性、专属性、回收率和重复性测试。TSQ 8000 系统具备超高灵敏度,即使是对经过 QuEChERS 快速处理的复杂样品基质仍能实现高灵敏检测和可信定量。本方法可应用于如混合植物药等复杂基质样本中痕量农药残留的检测和确证。最低检测限可低至 2.5 ng/g。依据现行的指导规范,本次测试的农残浓(0.0023 和 0.0027 mg/kg)已低于尤纳尼测试指南所规定限值。
  • 改善碱性化合物分析的峰形以及利用多次冲洗功能减少残留
    本文中为您介绍使用Nexera X3和Shim-pack Arata C18分析碱性化合物和通过多次冲洗功能减少残留的案例。
  • 固相萃取法用于土壤中磺酰脲类除草剂残留量的测定
    磺酰脲类除草剂是一种能有效防除阔叶杂草的除草剂,它具有低毒和高选择性的优点。但残留药害十分突出,容易影响地表水的水质,所以,其在生态方面尤其是土壤中的安全性受到人们的高度重视。土壤中微量的磺酰脲类除草剂残留就可对当茬及后茬作物造成药害,且对环境带来的污染和生态毒性也十分严重。因此,对磺酰脲类除草剂在土壤中环境行为进行研究具有重要意义。本文用SPE400全自动机械臂固相萃取仪对土壤中磺酰脲类除草剂残留量的整个检测过程中的净化环节进行了实验,有效的缩短了样品中目标物的固相净化所需要的时间,提高了工作效率,也节约了人力。
  • 使用QuEChERS结合SB-C18液相色谱柱 测定苦瓜中除虫脲农药残留
    本文采用含有 PSA 的 Agilent Bond Elut QuEChERS 对样品进行分散固相萃取净化,并结合高效快速液相色谱柱、LC/QQQ 实现对苦瓜样品中农药残留的快速分析。该方法简单、快速、灵敏、准确、环境污染少,可有效简化前处理步骤,在短时间内即可完成38 种农药残留的定性与定量检测,且所用的 RRHD SB-C18 色谱柱耐用性强,分离效果好,能大幅度降低检测成本。
  • LC/MS/MS 分析大麻中噻虫啉残留
    由于大麻对癌症、多发性硬化症和肌萎缩侧索硬化症(ALS)等疾病具有治疗效果,美国超过半数的地区已经将医用大麻的使用合法化。与传统的农作物一样,农药有时也用于大麻种植中,以保护大麻免受虫害,并提高产量除农药外,大麻的生长条件也有利于霉菌和真菌的生长,这些霉菌和真菌会产生致癌的真菌毒素,包括赭曲霉素A 和黄曲霉毒素。因此,对大麻中农药和真菌毒素的检测对于确保消费者安全和质量控制来说至关重要。珀金埃尔默应用开发团队分析了添加在大麻花提取物中的所有66 种农药(包括典型的用GC-MS/MS 方法分析的极度疏水性农药和含氯农药)和五种真菌毒素,其分析结果远远低于加利福尼亚州规定的残留限值。LC-MS/MS 仪器使用电喷雾离子源(ESI)和大气压化学电离源(APCI)以及采用简单的溶剂提取方法,该方法对所有分析物的回收率都达到了70%-120%的可接受范围。
  • LC/MS/MS 分析大麻中灭虫威残留
    由于大麻对癌症、多发性硬化症和肌萎缩侧索硬化症(ALS)等疾病具有治疗效果,美国超过半数的地区已经将医用大麻的使用合法化。与传统的农作物一样,农药有时也用于大麻种植中,以保护大麻免受虫害,并提高产量除农药外,大麻的生长条件也有利于霉菌和真菌的生长,这些霉菌和真菌会产生致癌的真菌毒素,包括赭曲霉素A 和黄曲霉毒素。因此,对大麻中农药和真菌毒素的检测对于确保消费者安全和质量控制来说至关重要。珀金埃尔默应用开发团队分析了添加在大麻花提取物中的所有66 种农药(包括典型的用GC-MS/MS 方法分析的极度疏水性农药和含氯农药)和五种真菌毒素,其分析结果远远低于加利福尼亚州规定的残留限值。LC-MS/MS 仪器使用电喷雾离子源(ESI)和大气压化学电离源(APCI)以及采用简单的溶剂提取方法,该方法对所有分析物的回收率都达到了70%-120%的可接受范围。
  • LC/MS/MS 分析大麻中氯虫酰胺残留
    由于大麻对癌症、多发性硬化症和肌萎缩侧索硬化症(ALS)等疾病具有治疗效果,美国超过半数的地区已经将医用大麻的使用合法化。与传统的农作物一样,农药有时也用于大麻种植中,以保护大麻免受虫害,并提高产量除农药外,大麻的生长条件也有利于霉菌和真菌的生长,这些霉菌和真菌会产生致癌的真菌毒素,包括赭曲霉素A 和黄曲霉毒素。因此,对大麻中农药和真菌毒素的检测对于确保消费者安全和质量控制来说至关重要。珀金埃尔默应用开发团队分析了添加在大麻花提取物中的所有66 种农药(包括典型的用GC-MS/MS 方法分析的极度疏水性农药和含氯农药)和五种真菌毒素,其分析结果远远低于加利福尼亚州规定的残留限值。LC-MS/MS 仪器使用电喷雾离子源(ESI)和大气压化学电离源(APCI)以及采用简单的溶剂提取方法,该方法对所有分析物的回收率都达到了70%-120%的可接受范围。
  • LC/MS/MS 分析大麻中螺虫乙酯残留
    由于大麻对癌症、多发性硬化症和肌萎缩侧索硬化症(ALS)等疾病具有治疗效果,美国超过半数的地区已经将医用大麻的使用合法化。与传统的农作物一样,农药有时也用于大麻种植中,以保护大麻免受虫害,并提高产量除农药外,大麻的生长条件也有利于霉菌和真菌的生长,这些霉菌和真菌会产生致癌的真菌毒素,包括赭曲霉素A 和黄曲霉毒素。因此,对大麻中农药和真菌毒素的检测对于确保消费者安全和质量控制来说至关重要。珀金埃尔默应用开发团队分析了添加在大麻花提取物中的所有66 种农药(包括典型的用GC-MS/MS 方法分析的极度疏水性农药和含氯农药)和五种真菌毒素,其分析结果远远低于加利福尼亚州规定的残留限值。LC-MS/MS 仪器使用电喷雾离子源(ESI)和大气压化学电离源(APCI)以及采用简单的溶剂提取方法,该方法对所有分析物的回收率都达到了70%-120%的可接受范围。
  • LC/MS/MS 分析大麻中灭多虫残留
    由于大麻对癌症、多发性硬化症和肌萎缩侧索硬化症(ALS)等疾病具有治疗效果,美国超过半数的地区已经将医用大麻的使用合法化。与传统的农作物一样,农药有时也用于大麻种植中,以保护大麻免受虫害,并提高产量除农药外,大麻的生长条件也有利于霉菌和真菌的生长,这些霉菌和真菌会产生致癌的真菌毒素,包括赭曲霉素A 和黄曲霉毒素。因此,对大麻中农药和真菌毒素的检测对于确保消费者安全和质量控制来说至关重要。珀金埃尔默应用开发团队分析了添加在大麻花提取物中的所有66 种农药(包括典型的用GC-MS/MS 方法分析的极度疏水性农药和含氯农药)和五种真菌毒素,其分析结果远远低于加利福尼亚州规定的残留限值。LC-MS/MS 仪器使用电喷雾离子源(ESI)和大气压化学电离源(APCI)以及采用简单的溶剂提取方法,该方法对所有分析物的回收率都达到了70%-120%的可接受范围。
  • 氮吹仪在测定黄瓜、番茄中敌菌灵和异菌脲的残留量中的应用
    敌菌灵是一种杀菌剂,常用于防治蔬菜灰霉病、、斑枯病、霜霉病、茭白胡麻叶斑病等,具有低毒、内吸性、杀菌谱广等特点,广泛应用于粮食蔬菜等农作物。异菌脲是一种触杀型杀菌剂,对葡萄孢属、核盘菌属、小核菌属、链孢霉属均具有较好抑菌活性,主要用于蔬菜灰霉病、番茄早疫病、苹果斑点落叶病和轮纹病的防治。我国在2014年发布的《食品安全国家标准 食品中农药最大残留限量》限量指标中指出,黄瓜、番茄中敌菌灵的最大残留限量值(MRL)均为10mg/kg,异菌脲的最大残留量(MRL)分别为2mg/kg和5kg/kg。
  • 岛津:超高效液相色谱三重四极杆质谱联用法测定尿液中诺氟沙星残留
    本文利用岛津液质系统LCMS-8060开展了尿液中28种磺胺类、喹诺酮类抗生素的检测,尿液经缓冲溶液调节pH值后,使用HLB固相萃取小柱进行净化浓缩,然后使用UHPLC-MS/MS检测,方法简单、快速、灵敏度高,适用于尿液中的多种抗生素残留检测。
  • LC/MS/MS 分析大麻中噻虫嗪残留
    由于大麻对癌症、多发性硬化症和肌萎缩侧索硬化症(ALS)等疾病具有治疗效果,美国超过半数的地区已经将医用大麻的使用合法化。与传统的农作物一样,农药有时也用于大麻种植中,以保护大麻免受虫害,并提高产量除农药外,大麻的生长条件也有利于霉菌和真菌的生长,这些霉菌和真菌会产生致癌的真菌毒素,包括赭曲霉素A 和黄曲霉毒素。因此,对大麻中农药和真菌毒素的检测对于确保消费者安全和质量控制来说至关重要。珀金埃尔默应用开发团队分析了添加在大麻花提取物中的所有66 种农药(包括典型的用GC-MS/MS 方法分析的极度疏水性农药和含氯农药)和五种真菌毒素,其分析结果远远低于加利福尼亚州规定的残留限值。LC-MS/MS 仪器使用电喷雾离子源(ESI)和大气压化学电离源(APCI)以及采用简单的溶剂提取方法,该方法对所有分析物的回收率都达到了70%-120%的可接受范围。
  • LC/MS/MS 分析大麻中吡虫啉残留
    由于大麻对癌症、多发性硬化症和肌萎缩侧索硬化症(ALS)等疾病具有治疗效果,美国超过半数的地区已经将医用大麻的使用合法化。与传统的农作物一样,农药有时也用于大麻种植中,以保护大麻免受虫害,并提高产量除农药外,大麻的生长条件也有利于霉菌和真菌的生长,这些霉菌和真菌会产生致癌的真菌毒素,包括赭曲霉素A 和黄曲霉毒素。因此,对大麻中农药和真菌毒素的检测对于确保消费者安全和质量控制来说至关重要。珀金埃尔默应用开发团队分析了添加在大麻花提取物中的所有66 种农药(包括典型的用GC-MS/MS 方法分析的极度疏水性农药和含氯农药)和五种真菌毒素,其分析结果远远低于加利福尼亚州规定的残留限值。LC-MS/MS 仪器使用电喷雾离子源(ESI)和大气压化学电离源(APCI)以及采用简单的溶剂提取方法,该方法对所有分析物的回收率都达到了70%-120%的可接受范围。
  • 西瓜中氯吡脲残留量的测定
    氯吡脲(1-(2-chloropyridin-4-yl)-3-phenylurea),化学名称为1-(2-氯-4-吡啶)-3-苯基脲,是一种苯脲类的植物生长调节剂,作用于细胞的有丝分裂、增大和分化,因而又称大果灵、吡效隆。但如食用含氯吡脲残留的食品,可能会给人体带来蛋白质代谢的紊乱、肺气肿等危害。
  • 测定农产品中敌菌灵和异菌脲残留量的前处理方法.doc
    建立了采用固相萃取—高效液相色谱法同时测定黄瓜、番茄中敌菌灵和异菌脲农药残留量的方法,并优化了实验条件。精密度和准确度都较高,操作简单快捷、方法准确可靠,使用本方法完全可以满足黄瓜、番茄中敌菌灵和异菌脲农药残留量的日常监测需求。
  • 使用 Bond Elut EMR-Lipid 前处理方法结合 HPLC-MS/MS 分析动物性食品中残留的氟虫腈及其代谢产物
    该解决方案具有快速、灵敏度高、操作简单的特点,完全可以满足动物性食品中残留的氟虫腈及其代谢物的定性和定量要求。此外,采用 EMR-lipid dSPE 增强型脂质去除净化管可更有效去除动物性食品中的脂质。
  • 大米,香菇中烯虫酯残留量检测方案(固相萃取仪)
    适用范围适用于大米、小麦、玉米、橙子、葡萄、番茄、马铃薯、菠菜、蘑菇、花生和茶叶中烯虫酯残留量的测定。(本实验样品大米)参考标准《SN/T 0693-2019 出口植物源性食品中烯虫酯残留量的测定》
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制