当前位置: 仪器信息网 > 行业主题 > >

风味特征研究

仪器信息网风味特征研究专题为您整合风味特征研究相关的最新文章,在风味特征研究专题,您不仅可以免费浏览风味特征研究的资讯, 同时您还可以浏览风味特征研究的相关资料、解决方案,参与社区风味特征研究话题讨论。

风味特征研究相关的论坛

  • 祁门红茶特征风味稳态化关键技术研究及产业化示范

    【序号】:1【作者】:【题名】:[b]祁门红茶特征风味稳态化关键技术研究及产业化示范[/b]【DOI】:【年、卷、期、起止页码】:【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SNAD&dbname=SNAD&filename=SNAD000001846863&uniplatform=NZKPT&v=TjRX_0fSS4sjusiQcP7wsjj5-x6ngYHNizG0DOgiUmHwdAuUs4BE1f1371BkYvV_lC-5ccWLKt8%3d

  • 多源光谱特征组合的COD光学检测方法研究

    【作者】:【题名】:多源光谱特征组合的COD光学检测方法研究【期刊】:【年、卷、期、起止页码】:【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?filename=GUAN201411045&dbcode=CJFQ&dbname=CJFD2014&v=t4rSBhLh-EjJsJCYC0yhbJ9cJoPGs6jh5kKtp2k6Vj0vhzuLeqNMWh4WvTTAZvDS

  • 【原创大赛】《指示剂4:二甲基黄指示剂变色特征色空间方法的研究》

    【原创大赛】《指示剂4:二甲基黄指示剂变色特征色空间方法的研究》

    指示剂3:二甲基黄指示剂变色特征色空间方法的研究 该文即《指示剂3:二甲基黄色度值的CIE 1976(L*,a*,b*)色空间数字化特征》的相关分析结果,故略去重复内容。1. 实验部分1.1试剂、仪器与测量条件略。1.2 实验内容1.2.1 二甲基黄测定的数据根据《指示剂3:二甲基黄色度值的CIE 1976(L*,a*,b*)色空间数字化特征》的相关内容,将测定数据汇总于表1.表1. 二甲基黄色度值的CIE 1976(L*,a*,b*)色空间的数据PHL*a*b*体积V C* H*△E1△E1-V△E2△E2-V△E3△E3-V0.44 100.41 0.83 -2.58 11.40 2.71 -1.26 2.74 24.06 0.00 0.00 18.88 165.58 0.46 100.18 2.35 -3.66 40.10 4.35 -1.00 4.35 10.86 1.87 4.67 20.23 50.44 0.56 99.84 3.69 -5.37 119.23 6.52 -0.97 6.52 5.47 2.20 1.85 22.17 18.59 0.66 100.00 3.12 -5.99 157.02 6.75 -1.09 6.75 4.30 0.85 0.54 22.60 14.40 0.76 100.00 2.58 -5.89 174.53 6.43 -1.16 6.43 3.68 0.56 0.32 22.36 12.81 0.85 100.00 2.40 -5.94 189.53 6.41 -1.19 6.41 3.38 0.18 0.10 22.37 11.80

  • 【转帖】白花蛇舌草超高效液相色谱特征图谱研究Ⅰ—非强极性组分特征谱研究

    摘要 目的:发展中药白花蛇舌草的超高效液相色谱(UPLC)特征图谱,考察富集后的非强极性化合物特征图谱较总提物特征图谱在药材质量控制方面的优势。方法:对不同产地白花蛇舌草及其伪品水线草的总提物及其非强极性组分特征图谱进行相似度考察和主成分分析。结果:不同产地白花蛇舌草原药材包括对照药材利用总提物特征图谱进行分析,尽管能得到一定的聚类效果,但并不是很明显。而将其中的强极性组分有效去除,再对非强极性组分进行特征图谱统计分析时,不同产地不同品种的原药材聚类效果很好。结论:非强极性组分特征图谱较含有强极性组分的总提物特征图谱,更有利于中药材及其制剂的质量控制。关键词:白花蛇舌草;UPLC;特征图谱,非强极性组分

  • 【转帖】白花蛇舌草超高效液相色谱特征图谱研究Ⅱ—强极性组分特征图谱研究

    摘要 目的:发展中药白花蛇舌草强极性组分的超高效液相色谱(UPLC)特征图谱,进一步加强中药材的质量控制。方法:建立不同产地白花蛇舌草及其伪品水线草中强极性组分的UPLC亲水模式分析方法,并对其特征图谱进行相似度考察和主成分分析。结果:强极性化合物特征图谱增加了中药材特征图谱的信息量,该组分特征图谱同非强极性组分特征图谱一样具有地域性。结论:强极性组分特征图谱和非强极性组分特征图谱共同应用,有利于提高中药材质量控制的水平。关键词:白花蛇舌草;UPLC;特征图谱;强极性组分

  • 微生物对黑土添加麦秸后腐殖质结构特征影响的红外光谱研究

    引言  土壤有机质(SOM)是土壤中具有结构性和生物性的基本物质,既是生命活动的条件,也是生命活动的产物。从化学本质角度,SOM中60%~90%为腐殖物质(HS),因此HS是SOM 研究的核心和主体。HS是经土壤微生物作用后,由多酚和多醌类物质聚合而成、含芳香环结构和脂族特征、新形成的一系列黑色至棕黑色的非晶形准高分子有机化合物,其形成与转化对土壤肥力、固碳和环境解毒均有重要意义。众所周知,微生物是土壤中最为活跃的部分,它们参与土壤有机质的分解、腐殖质的合成以及养分元素的转化。HS的形成是以微生物为主导的生物化学过程,但不同微生物种类对土壤HS结构和性质的影响目前还知之甚少,尤其是外源添加有机物料,经过微生物培养后,HS各组分的结构和性质是否发生变化,更不得而知。本研究针对这一问题,采用红外光谱法研究黑土添加麦秸后,接种不同种类微生物(细菌、真菌、放线菌和混合菌)培养180d,针对土壤中水溶性物质(WSS)、富里酸(FA)和胡敏酸(HA)特征峰和吸收强度的变化,旨在探索微生物在HS形成方面的作用及其转化机理,为有效培肥土壤、增大土壤环境承载力、促进碳循环提供理论参考和基础保障。

  • 【第三届原创参赛】一注射液特征图谱的建立和谱效学初步研究

    [size=3][font=宋体][color=#f10b00]维权声明:本文为03yx2原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现的,均属侵权违法行为,我们将追究法律责任。[/color][b] 摘要:目的[/b][/font][font=Times New Roman] [/font][font=宋体]采用混料均匀设计不同配比注射液,建立最佳配比标准特征图谱以及谱效学研究。[b]方法[/b][/font][font=Times New Roman] [/font][font=宋体]采用混料均匀设计不同配比,以经验方组为对照组,以小鼠脑组织保护为药理模型,确定最佳药效下的配方组,同时采用液相色谱梯度洗脱建立了[/font][font=Times New Roman]8[/font][font=宋体]个配比组方的指纹图谱,[/font][font=Times New Roman] [/font][font=宋体]并[/font][font=宋体]通过多元回归逐步法初步确定了最佳配比特征峰的谱效关系。[b]结果[/b][/font][font=Times New Roman] [/font][font=宋体]确定了最佳药效模型下的配比组方,建立了最佳配比组方特征图谱,确定[/font][font=Times New Roman]11[/font][font=宋体]个共有峰,其中[/font][font=Times New Roman]9[/font][font=宋体]号峰为阿魏酸峰,为该指纹图谱的参照峰。供试品溶液的指纹图谱与标准指纹图谱中的全部[/font][font=Times New Roman]10[/font][font=宋体]个共有峰对应,且顺序一致,具有显著性药效作用为[/font][font=Times New Roman]3[/font][font=宋体],[/font][font=Times New Roman]8[/font][font=宋体],[/font][font=Times New Roman]9[/font][font=宋体],[/font][font=Times New Roman]11[/font][font=宋体]号峰。[b]结论[/b][/font][b][font=Times New Roman] [/font][/b][font=宋体]研究所得的标准特征图谱稳定性、重复性好,可作为最佳配比复方注射液特征性指纹图谱,为中药注射液的研制和再评价提供初步参考。[/font][/size][size=3][b][font=宋体]关键词:[/font][/b][font=宋体]复方[/font][font=宋体]注射液;特征图谱;高效液相色谱;谱效关系;[/font][size=3][font=Times New Roman] [/font][/size][/size]

  • 【分享】优劣奶粉各的性格特征!

    识别奶粉质量的优劣,应从奶粉的颜色、风味、组织状态、声音及包装等几方面进行鉴定。 [size=4][font=黑体]优质奶粉的特征:[/font] [/size]包装:包装完整,标识有商标、生产厂名、生产日期、批号、保存日期等。不同材料的包装,其保存期限不同。我国轻工部规定:马口铁罐密封充氮包装的奶粉,保存期限为2年 非充氮包装的为1年 瓶装的为9个月,袋装的为6个月。 颜色:颜色为乳白色或乳黄色,色泽均匀,有光泽。 组织状态:塑料袋装的奶粉用手捏时,感觉柔软、松散,有轻微的沙沙声 玻璃罐装的奶粉,将罐慢慢倒置,轻微振摇时,罐底无黏着的奶粉。 声音:装在马口铁罐内的奶粉虽然看不见,但可听其声音。摇动马口铁罐,使其发出“沙沙”声响,声音清晰。 风味:具有消毒牛奶的纯味。全脂奶粉具有味甜、细腻适口的奶香味 脱脂奶粉则味道较淡。 冲调:取一勺奶粉放入玻璃杯内,用开水充分调和后,静置5分钟,水与奶粉溶在一起,没有沉淀。

  • 求助文献一篇:β-受体激动剂质谱裂解特征研究

    【序号】:1【作者】: 应永飞; 朱聪英; 周炜; 屈健; 陆春波; 汪以真;【题名】:β-受体激动剂质谱裂解特征研究【期刊】:中国兽药杂志【年、卷、期、起止页码】:【全文链接】:http://kns55.zh.eastview.com/KCMS/detail/detail.aspx?filename=ZSYY201501013&dbcode=CJFD&dbname=CJFD2015

  • 求助文献一篇:β-受体激动剂质谱裂解特征研究

    【序号】:1【作者】: 应永飞; 朱聪英; 周炜; 屈健; 陆春波; 汪以真;【题名】:β-受体激动剂质谱裂解特征研究【期刊】:中国兽药杂志【年、卷、期、起止页码】:【全文链接】:http://kns55.zh.eastview.com/KCMS/detail/detail.aspx?filename=ZSYY201501013&dbcode=CJFD&dbname=CJFD2015

  • NQI专项“纳米几何特征参量计量标准器研究及应用示范”项目实施方案论证会暨启动会...

    [align=left] 9月8 日,"十三五"国家重点研发计划"国家质量基础的共性技术研究与应用"重点专项(以下简称"NQI专项")"纳米几何特征参量计量标准器研究及应用示范"项目实施方案论证会暨启动会在中国计量科学研究院和平里院区召开。来自北京航空航天大学、西安交通大学、哈尔滨工业大学、中国科学院微电子研究所、全国标准物质管理委员会、中科院自动化所等单位的专家,以及中国计量科学研究院院长方向、相关职能部门负责人和项目参与单位技术骨干等参加了论证会。我院承担了项目中的两项子课题,课题负责人曹丛参加了项目论证会。[/align][align=left]  西安交通大学蒋庄德院士代表项目组向咨询专家组介绍了项目总体情况和实施方案,各课题负责人分别汇报了课题实施方案。专家组认真听取了汇报,一致认为:项目实施方案目标明确、研究内容设置合理、技术路线切实可行、保障措施有力,同意通过论证。[/align][align=left]  该项目拟研制从16nm到2000nm的一维、二维栅格和线宽等几何特征参量计量标准器,实现高精度定值、校准和溯源,并建立从国家到地方直至产业的全链条、全覆盖的纳米几何量值传递溯源体系,面向集成电路、国防军工、先进制造和生物医药等典型产业开展应用示范。该标准器的研制和应用,将从根本上解决我国纳米计量标准器缺失,以及量传体系与产业脱节的问题,并将打破国外垄断,提升产品质量和国际竞争力。[/align]

  • 【我们不一YOUNG】基于网格化水质自动监测的平原河网区汛期水污染特征研究与成因解析

    [font=&][color=#666666]汛期污染是制约我国水环境质量改善的重要因素。基于26个水质自动监测站的数据,研究了太湖流域典型平原河网区城市——平湖的河网水质时空变化和汛期污染特征,通过相关性分析锁定重点控制区域,探究不同特征降雨对重点控制区域地表水水质影响,并使用绝对主成分-多元线性回归受体模型结合现场调研解析了重点控制区域汛期污染成因。结果表明:平湖市河网在汛期水质下降明显,东湖及其入/出湖河流水质综合污染指数比非汛期高出35.8%~67.9%,溶解氧和总磷是主要不达标因子。东湖入湖河流平湖塘中段是整个平湖河网汛期水污染控制核心区域,其氨氮和总磷浓度受降雨影响大,水质下降后直接影响东湖水质(r=0.464,P<0.01),间接影响各出湖河流水质(r>0.445,P<0.01)。从降雨特征来看,场次降水量对平湖塘氨氮和总磷影响最为显著(r>0.695,P<0.01),其次是降雨持续天数和降雨类型(r>0.514,P<0.05),而雨前干旱天数影响不显著(r<0.245)。污染成因解析表明,降雨时段平湖塘氨氮和总磷浓度升高,主要与生活污水溢出(25.7%)、地表径流污染(24.9%)以及底泥或管网沉积物等未知污染因素(40.1%)有关,个别泵站设计规模偏小且科学调度不足,导致生活污水溢流排放是最主要的污染途径。研究结果对汛期河网水质提升精准施策具有重要参考意义。 [/color][/font]

  • 风味物质的研究

    有哪位大神做过花椒风味物质的测定实验的啊?目前我查的资料显示:1.酰胺类的麻味物质如山椒素等多位同分异构体,GC-MS分离效果不好,测定的方法多为液相色谱PS且麻味物质标准品又很难制备 2. 香味物质主要是花椒油,文献基本都是SPME-GC-MS; 目前我们在设备选型,我想问问GC-MS是不是就一定不好做麻味物质?非得还买一台液相吗?

  • 生物识别:常见的生物特征识别方式

    生物识别:常见的生物特征识别方式生物识别技术主要是指通过人类生物特征进行身份认证的一种技术,这里的生物特征通常具有唯一的(与他人不同)、可以测量或可自动识别和验证、遗传性或终身不变等特点。所谓生物识别的核心在于如何获取这些生物特征,并将之转换为数字信息,存储于计算机中,利用可靠的匹配算法来完成验证与识别个人身份的过程。一、生物识别技术概念生物识别技术的特征分类生物识别的涵义很广,大致上可分为身体特征和行为特征两类。身体特征包括:指纹、静脉、掌型、视网膜、虹膜、人体气味、脸型、甚至血管、DNA、骨骼等;行为特征则包括:签名、语音、行走步态等。生物识别系统则对生物特征进行取样,提取其唯一的特征转化成数字代码,并进一步将这些代码组成特征模板,当人们同识别系统交互进行身份认证时,识别系统通过获取其特征与数据库中的特征模板进行比对,以确定二者是否匹配,从而决定接受或拒绝该人。下表对五类主要的人体生物特征的自然属性进行了比较自然属性虹膜指纹面部DNA静脉唯一性因人而异因人而异因人而异亲子相近同卵双胞胎相同唯一性稳定性终身不变终身不变随年龄段改变终身不变终生不变抗磨损性不易磨损易磨损较易磨损不受影响不受影响痕迹残留不留痕迹接触时留有痕迹不留痕迹体液、细胞中含有不留痕迹遮蔽情况可戴手套面罩不能戴手套不能戴手套不需接触从上表列出的特性可以看出,某一应用领域可能特别需要某种生物特征,如刑侦应用与静脉、指纹识别、亲子鉴定与DNA等。与其他生物特征相比,虹膜组织更适合于信息安全和通道控制领域。例如,虽然多种特征都具有因人而异的自然属性,但虹膜的重复率极低,远远低于其他特征。又如,容易留痕迹可以给刑侦带来很大方便,但痕迹易被他人利用来造假,则不利于信息安全。再则,虹膜相对不易因伤受损,更加大大减少了因外伤而导致无法进行识别的可能性。而静脉识别更完美,精确度可以和虹膜识别媲美,无需接触,操作方便,适应人群广泛。二、几种常见的生物特征识别方式1.指纹识别指纹是指人的手指末端正面皮肤上凸凹不平产生的纹线。纹线有规律的排列形成不同的纹型。纹线的起点、终点、结合点和分叉点,称为指纹的细节特征点。指纹识别即指通过比较不同指纹的细节特征点来进行鉴别。由于每个人的指纹不同,就是同一人的十指之间,指纹也有明显区别,因此指纹可用于身份鉴定。指纹识别技术是目前最成熟且价格便宜的生物特征识别技术。目前来说指纹识别的技术应用最为广泛,我们不仅在门禁、考勤系统中可以看到指纹识别技术的身影,市场上有了更多指纹识别的应用:如笔记本电脑、手机、汽车、银行支付都可应用指纹识别的技术。2.静脉识别静脉识别系统就是首先通过静脉识别仪取得个人静脉分布图,从静脉分布图依据专用比对算法提取特征值,通过红外线CMOS摄像头获取手指静脉、手掌静脉、手背静脉的图像,将静脉的数字图像存贮在计算机系统中,将特征值存储。静脉比对时,实时采取静脉图,提取特征值,运用先进的滤波、图像二值化、细化手段对数字图像提取特征,同存储在主机中静脉特征值比对,采用复杂的匹配算法对静脉特征进行匹配,从而对个人进行身份鉴定,确认身份。全过程采用非接触式。3.虹膜识别虹膜是位于人眼表面黑色瞳孔和白色巩膜之间的圆环状区域,在红外光下呈现出丰富的纹理信息,如斑点、条纹、细丝、冠状、隐窝等细节特征。虹膜从婴儿胚胎期的第3个月起开始发育,到第8个月虹膜的主要纹理结构已经成形。除非经历危及眼睛的外科手术,此后几乎终生不变。虹膜识别通过对比虹膜图像特征之间的相似性来确定人们的身份,其核心是使用模式识别、图像处理等方法对人眼睛的虹膜特征进行描述和匹配,从而实现自动的个人身份认证。英国国家物理实验室的测试结果表明:虹膜识别是各种生物特征识别方法中错误率最低的。从普通家庭门禁、单位考勤到银行保险柜、金融交易确认,应用后都可有效简化通行验证手续、确保安全。如果手机加载“虹膜识别”,即使丢失也不用担心信息泄露。机场通关安检中采用虹膜识别技术,将缩短通关时间,提高安全等级。4.视网膜识别视网膜是眼睛底部的血液细胞层。视网膜扫描是采用低密度的红外线去捕捉视网膜的独特特征,血液细胞的唯一模式就因此被捕捉下来。视网膜识别的优点就在于它是一种极其固定的生物特征,因为它是“隐藏”的,故而不可能受到磨损,老化等影响;使用者也无需和设备进行直接的接触;同时它是一个最难欺骗的系统,因为视网膜是不可见的,故而不会被伪造。另一方面,视网膜识别也有一些不完善的,如:视网膜技术可能会给使用者带来健康的损坏,这需要进一步的研究;设备投入较为昂贵,识别过程的要求也高,因此角膜扫描识别在普遍推广应用上具有一定的难度。5.面部识别面部识别是根据人的面部特征来进行身份识别的技术,包括标准视频识别和热成像技术两种。标准视频识别是透过普通摄像头记录下被拍摄者眼睛、鼻子、嘴的形状及相对位置等面部特征,然后将其转换成数字信号,再利用计算机进行身份识别。视频面部识别是一种常见的身份识别方式,现已被广泛用于公共安全领域。热成像技术主要透过分析面部血液产生的热辐射来产生面部图像。与视频识别不同的是,热成像技术不需要良好的光源,即使在黑暗情况下也能正常使用。6.手掌几何学识别手掌几何学识别就是通过测量使用者的手掌和手指的物理特征来进行识别,高级的产品还可以识别三维图象。作为一种已经确立的方法,手掌几何学识别不仅性能好,而且使用比较方便。它适用的场合是用户人数比较多,或者用户虽然不经常使用,但使用时很容易接受。如果需要,这种技术的准确性可以非常高,同时可以灵活地调整性能以适应相当广泛的使用要求。手形读取器使用的范围很广,且很容易集成到其他系统中,因此成为许多生物特征识别项目中的首选技术。7.DNA识别人体内的DNA在整个人类范围内具有唯一性(除了同卵双胞胎可能具有同样结构的DNA外)和永久性。因此,除了对同卵双胞胎个体的鉴别可能失去它应有的功能外,这种方法具有绝对的权威性和准确性。DNA鉴别方法主要根据人体细胞中DNA分子的结构因人而异的特点进行身份鉴别。这种方法的准确性优于其它任何身份鉴别方法,同时有较好的防伪性。然而,DNA的获取和鉴别方法(DNA鉴别必须在一定的化学环境下进行)限制了DNA鉴别技术的实时性;另外,某些特殊疾病可能改变人体DNA的结构组成,系统无法正确的对这类人群进行鉴别。8.声音和签字识别声音和签字识别属于行为识别的范畴。声音识别主要是利用人的声音特点进行身份识别。声音识别的优点在于它是一种非接触识别技术,容易为公众所接受。但声音会随音量、音速和音质的变化而影响。比如,一个人感冒时说话和平时说话就会有明显差异。再者,一个人也可有意识地对自己的声音进行伪装和控制,从而给鉴别带来一定困难。签字是一种传统身份认证手段。现代签字识别技术,主要是透过测量签字者的字形及不同笔划间的速度、顺序和压力特征,对签字者的身份进行鉴别。签字与声音识别一样,也是一种行为测定,因此,同样会受人为因素的影响。9.亲子鉴定(基因识别)由于人体约有30亿个核苷酸构成整个染色体系统,而且在生殖细胞形成前的互换和组合是随机的,所以世界上没有任何两个人具有完全相同的30亿个核苷酸的组成序列,这就是人的遗传多态性。尽管遗传多态性的存在,但每一个人的染色体必然也只能来自其父母,这就是DNA亲子鉴定的理论基础。三、生物特征识别在中国的发展状况我国生物特征识别行业最早发展的是指纹识别技术,基本与国外同步,早在80年代初就开始了研究,并掌握了核心技术,产业发展相对比较成熟。而我国对于人脸识别、虹膜识别、掌形识别等生物认证技术研究的开展则在1996年之后。1996年,现任中国科学院副秘书长、模式识别国家重点实验室主任的谭铁牛入选中科院的“百人计划”,辞去英国雷丁大学的终身教职务回国,开辟了基于人的生物特征的身份鉴别等国际前沿领域新的学科研究方向,开始了我国对人脸、虹膜、掌纹等生物特征识别领域的研究。目前,中科院自动化研究所是我国最具权威的生物特征识别认证科研机构,在人脸识别、虹膜识别、指纹识别、掌纹识别等领域均已取得了国内或国际领先的研究成果。以国内顶级科研单位、著名高校的生物特征识别科研成果为依托,北京中科虹霸、北京行者、中科奥森、北京数字指通、北大高科、杭州中正生物认证有限公司、上海银晨科技、道肯奇等一批生物特征识别领域的高新技术公司慢慢发展起来,带动着行业的发展。自2003年后,生物特征识别行业步入成长期,主要特征有:产品体系已建立,技术标准逐渐完善,行业内企业数量激增(全球目前从业公司已上千家),产品成本已大幅度下降,技术已获得客户广泛认可,各领域应用渐趋普及,行业体系也已成型。在此阶段,中国生物特征识别行业开始诞生了一批在细分市场具有领导优势的企业,如北京艾迪沃德指纹科技(IDworld)、北大高科、中控电子在科刑侦和社保指纹门锁指纹考勤等领域,都取得了一定优势。以中科院自动化所科研成果为依托的北京中科虹霸科技有限公司在虹膜识别产业化方面积极探索,于2006年10月研发出国内第一款嵌入式网络化虹膜识别仪,其性能达到国际领先。部分企业在技术研发等领域也取得突破,如亚略特、银晨科技在人脸识别等技术上都取得了领先水平。

  • 核磁共振_应用研究水泥浆体中可蒸发水的1H 核磁共振弛豫特征及状态演变

    应用背景水泥基材料作为一种多相复合材料,其水化硬 化过程中的相组成和转变一直是人们关注的热点。水作为水泥基材料的重要组分,与水泥粉体混合后初始以液相状态填充在水泥颗粒的间隙,在随后的水化硬化过程中,一部分参与水化反应变成化学结合水,成为凝胶产物微晶的一部分,这部分水通过干燥蒸发的方法也不能去除,因而也被称为不可蒸发水;现代水泥基材料科学的研究表明,不可蒸发水的含量与材料水化反应的程度和产物的晶体结构相关,而可蒸发水的含量及其状态与材料的抗冻性、抗腐蚀性、徐变、干燥收缩等性能关系密切.由于水泥水化反应随时间变化的连续性,不可蒸发水和可蒸发水的含量及状态也在不断变化.研究水泥基材料中水的相转变,探索不同状态的水的演变规律,对于充分认识水泥基材料的组成和结构,揭示材料的劣化机理具有重要意义.低场核磁共振技术对多孔介质中水的研究应用已逐步从生命科学、地球物理等领域扩展到建筑材料领域,该方法可在不破坏样品的前提下,利用水分子中质子的弛豫特性研究水含量及其分布的变化,具有快速、连续、无损的优势。下面简单介绍采用核磁共振测试系统水泥浆体中可蒸发水的1H 核磁共振弛豫特征及状态演变。核磁共振分析各试样弛豫信号经反演后的分布如图 1 所示http://pic.yupoo.com/niumagqw2/FzHASNRH/ZttTn.png,所有样品的 弛豫时间分布均呈1 个或2 个主峰,并伴有少量微弱的次峰。主峰分布在0.1~10.0 ms 的范围内,随着养护时间的延长,弛豫峰逐步向左移动,即分布趋向于短弛豫时间。试样弛豫时间分布趋短是由于随着龄期的增长水化产物不断增多,逐步将原先较大的孔隙填充细化,未反应的可蒸发水逐渐分布在较小的孔隙中.如图2 所示,各试样平均弛豫时间随龄期增长而下降,早期1~7 d 内下降快,之后变化平缓。http://pic.yupoo.com/niumagqw2/FzHASxqc/fV08h.png从上图中可以看出中的3 条曲线变化趋势一致,其斜率均由 水灰比大的试样其平均弛豫时间大于水灰比小的,饱水养护的大于密闭养护的。(参考文献:水泥浆体中可蒸发水的1H 核磁共振弛豫特征及状态演变》 硅 酸 盐 学 报 2009, Vol.37, NO.10

  • 新模型可将原子核两种特征统一

    中国科技网讯 在费米子系统下,原子核既有液体特征,又有类似于分子的特征。据物理学家组织网7月30日报道,最近法国一个研究小组通过模拟中子星提出了一种新模型,将这两方面统一起来,并首次证明了核子聚集成簇的一个必要条件。核子的类分子性质有助于人们理解元素是怎样合成的,而这是生命出现的关键。相关论文发表在最新一期《自然》杂志上。 在描述原子核的时候,科学家通常把它当作是一滴直径约为千万亿分之一米的量子液。一方面,在研究包含大量质子和中子的重核裂变时,这种类似液体的性质能提供合理的解释;另一方面,轻原子核却像是由中子和质子构成的微小的“分子”或“原子簇”。在从铍到镍这些轻核中,聚集成簇是常见特征。 “分子—原子核”和“液态—原子核”这两种观点同时存在。最近,来自巴黎第十一大学核物理研究所、法国原子能委员会(CEA)的一个研究小组和克罗地亚萨格勒布大学合作,提出把这两方面统一起来的新模型。 研究人员找到了一种原子核从液态转化到晶体状态的机制,并以氖-20为例,用能量密度函数的理论框架,涵盖了原子核的簇状态和量子液两个方面特征。通过方程显示,聚簇条件与界定原子势深度有关,势的深度决定了单个核子轨道的能量间隔,也就是相应波函数的区域,由此决定了原子核聚集的密度,这是核子聚集成簇的一个必要条件。 研究人员解释说,轻原子核更多表现出类分子的行为(倾向于变成结晶状态),重原子核则表现出更多类似液体的行为。当中子和质子之间的相互作用不够强,不足以将它们固定在原子核内时,它们就会处于一种量子液的状态,质子和中子离开原位。反过来,在晶体状态时,核内中子和质子固定在一定间隔距离内,“原子核分子”就处于一种量子液和晶体的中间态。 此外,他们还预测了会出现更多明显的聚簇结构,研究的长期目标是对各种状态的原子核形成统一理论。(常丽君) 《科技日报》(2012-8-1 二版)

  • 【“仪”起享奥运】不同炮制时间茜草炭的色度值与特征图谱的相关性研究

    [size=16px][font=Arial, &][color=#333333]目的[/color][/font][font=Arial, &][color=#333333] 考察茜草炭炮制过程中饮片色度值与超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法(UPLC)特征图谱的相关性。 [/color][/font][font=Arial, &][color=#333333]方法[/color][/font][font=Arial, &][color=#333333] 采用UPLC建立茜草及茜草炭的特征图谱,并采用分光测色仪测定其色度值:明暗度值(L*)、红绿色值(a*)、黄蓝色值(b*),对茜草炭炮制过程中饮片色度值与特征图谱进行相关性分析。 [/color][/font][font=Arial, &][color=#333333]结果[/color][/font][font=Arial, &][color=#333333] 随着炮制时间的延长,茜草炭较茜草饮片特征图谱的相似度逐渐降低 异茜草素、6-羟基甲基异茜草素单位峰面积先增大后减小,其余共有峰单位峰面积均呈减小趋势 L*、a*、b*值整体上逐渐减小,而△E*逐渐增大。L*、a*、b*值分别与羟基茜草素、6-羟基甲基异茜草素、茜草素呈极显著正相关。主成分分析共提取2个主成分,累积方差贡献率为88.292%。聚类分析结果显示,炮制0~6 min的样品聚为一类,炮制8~34 min的样品聚为二类。正交偏最小二乘法判别分析结果显示,6-羟基甲基异茜草素、异茜草素、a*、b*是茜草炭饮片炮制过程中发生质量变化的主要指标。 [/color][/font][font=Arial, &][color=#333333]结论[/color][/font][font=Arial, &][color=#333333] 不同炮制时间茜草炭饮片的色度值与UPLC特征图谱密切相关,可为茜草炭饮片炮制的在线监控和质量评价提供较全面的判断依据。[/color][/font][/size]

  • 【“仪”起享奥运】基于高通量测序的6种甘肃道地药材中药饮片污染微生物群落特征研究

    [font=Arial, &][color=#333333]目的[/color][/font][font=Arial, &][color=#333333] 研究6 种甘肃道地药材中药饮片中污染微生物的群落特征,建立6种中药饮片负载微生物的种属及其丰度信息数据库,为6种中药饮片微生物限度标准制定提供依据。 [/color][/font][font=Arial, &][color=#333333]方法[/color][/font][font=Arial, &][color=#333333] 收集市售当归、党参、黄芪、甘草、板蓝根和半夏6种中药饮片各30批,合计180批,参照2020年版《中国药典》,检查180批中药饮片样品的需氧菌总数(total aerobic microbial count, TAMC)、霉菌和酵母菌总数(total combined yeasts and molds count, TYMC)、耐胆盐革兰阴性菌(bile-tolerant gram-negitive bacteria, BGB)及沙门菌,并基于16S rDNA高通量测序方法研究中药饮片中污染微生物的群落特征。 [/color][/font][font=Arial, &][color=#333333]结果[/color][/font][font=Arial, &][color=#333333] [color=#333333]本研究以当归、党参、黄芪、甘草、板蓝根和半夏6种共计180批中药饮片为研究对象,[/color]180批样品均检出需氧菌、酵母菌和霉菌。首先参照2020年版《中国药典》采用传统培养法对微生物污染情况进行分析,180批样品均检出需氧菌、酵母菌和霉菌。通过16S rDNA高通量测序对每种中药饮片进行了微生物多样性分析,建立了6种中药饮片负载微生物的种属及其丰度信息数据库,污染微生物分布于38个门、935个已鉴定属,不同类别中药饮片中的优势菌属具有明显差异。植株自身和加工储存环节引入是饮片微生物群落的两种重要来源。 [/color][/font][font=Arial, &][color=#333333]结论[/color][/font][font=Arial, &][color=#333333] 研究表明,16S rRNA高通量测序方法比传统培养法能够获得更加全面的中药饮片中污染微生物群落信息, 不同类别中药饮片中的优势菌属具有明显差异。中药饮片微生物污染具有一定的致病风险,饮片的微生物限度标准亟待完善,饮片生产加工过程控制亟待加强。[/color][/font]

  • 【金秋计划】黄连-苦参不同配比中特征性成分的量-质变化相关性研究

    黄连味苦性寒,具有清热燥湿、泻火解毒的功效。《中国药典》2020年版规定黄连为毛茛科黄连属植物黄连Coptis chinensis Franch.、三角叶黄连C. deltoidea C. Y. Cheng et Hsiao或云连C. teeta Wall.的干燥根茎。以上3种分别习称“味连”“雅连”“云连”,经课题组前期调研以味连产量最多,主产于我国重庆、湖北、四川等地[1]。现代研究表明,黄连含有多种活性成分,可发挥多种药理作用[2],包括抗炎、抗病毒、抗菌、抗癌、镇痛、抗抑郁、降血糖等作用,临床应用极广[3]。苦参性寒、味苦,为豆科苦参属植物苦参Sophora flavescens Ait.的干燥根,主产于我国内蒙古、河南、山东、安徽等地[1],具有抗菌、抗肿瘤、镇痛、抗炎、防治心力衰竭、心律失常及心肌缺血等多种功效[4-5]。 现代研究表明,生物碱类化合物是黄连及苦参的主要活性成分。苦参碱、氧化苦参碱可发挥抗炎、镇痛效果[6-7],其机制可能与降低促炎因子,升高抗炎因子有关;氧化苦参碱、苦参碱也可发挥抗肿瘤作用,其机制可能与抑制癌症基因表达,促进肿瘤细胞凋亡,抑制肿瘤细胞生长有关[8];而苦参碱、氧化苦参碱、槐定碱也可对多种菌株具有一定的抑菌作用[9]。木兰花碱可通过活性氧(reactive oxygen species,ROS)/鼠类肉瘤病毒癌基因(Kirsten rat sarcoma viral oncogene,KRAS)/单磷酸腺苷活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)通路抑制结直肠癌SW480细胞的增殖和有氧糖酵解,从而发挥对结直肠癌的治疗效果[10];药根碱、巴马汀、表小檗碱、黄连碱、小檗碱可联合发挥降糖作用[11],其效果可能与调控丝氨酸-苏氨酸激酶1(serine/threonine kinase 1,LKB1)/ AMPK/CREB分子调节转录共激活剂2(CREB-regulated transcription coactivator 2,TORC2)信号通路抑制肝脏糖异生等有关[12];小檗碱具有抗炎作用,可保护螺旋神经节细胞免受巨细胞病毒诱导的凋亡作用,其机制与通过途径抑制线粒体活性氧的产生有关[13]。 除此之外,小檗碱、表小檗碱、巴马汀等生物碱类成分也可联合发挥抗心律失常作用[14]。基于此,选择苦参中苦参碱、槐定碱、氧化苦参碱及黄连中木兰花碱、非洲防己碱、药根碱、表小檗碱、黄连碱、巴马汀、小檗碱来作为黄连-苦参药对的代表性药效成分,用于研究该类成分溶出量与药对配比的关系。药对作为中药配伍的最小单元,是复方研究的重要组成部分之一[15]。用于不同疾病的治疗时,不同量的配比会有不同效果的相关呈现,因此,首先需要对黄连-苦参药对配比的不同物质基础,即量-质[16]相关性进行剖析比较,为进行量-效[17]相关性提供依据,为临床合理配比提供参考[18]。 1 仪器与试药 1.1 主要仪器 Waters e2695型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统,Waters 2998型二极管阵列检测器(PDA),美国Waters公司;BBA224S-CW型电子天平,赛多利斯科学仪器(北京)有限公司;TGL-16C型离心机,上海安亭科学仪器厂;EPED-E2-20TS型超纯水一体机系统,南京易普易达科技发展有限公司;GM-0.5B型真空泵,天津市津腾实验设备有限公司;KH-500V型超声器,昆山禾创超声仪器有限公司。 1.2 药品及试剂 1.2.1 药材与饮片 本研究所选择黄连(产地重庆石柱黄水,批号20230411)及苦参(产地内蒙古赤峰市,批号2020121604)药材,均经南京中医药大学药学院刘圣金教授鉴定,分别为毛茛科黄连属植物黄连C. chinensis Franch.的干燥根茎和豆科苦参属植物苦参S. flavescens Ait.的干燥根。 1.2.2 对照品 表小檗碱(批号J24HB186173)、盐酸小檗碱(批号S01A10K94340)、盐酸黄连碱(批号T21S11C125202)、药根碱(批号D18GB171805)、盐酸巴马汀(批号Z16J10X79792)、非洲防己碱(批号W14J8Z37548)、木兰花碱(批号R21M9F61834)、苦参碱(批号M14GB141405)、氧化苦参碱(批号G14N11KL130769)、槐定碱(批号F18F7S9784),HPLC质量分数均≥98%,均购自上海源叶生物科技有限公司。 1.2.3 试剂 乙腈、甲醇,色谱纯,安徽天地高纯溶剂有限公司;磷酸、盐酸、无水乙醇,分析纯,国药集团化学试剂有限公司;纯净水,屈臣氏集团(香港)有限公司;磷酸二氢钾,分析纯,南京化学试剂股份有限公司。 2 方法与结果 2.1 不同配比黄连-苦参药对指纹图谱的建立 2.1.1 色谱条件 色谱柱为Venusil XBP C18(2)(250 mm×4.6 mm,5 μm);柱温30 ℃;体积流量0.8 mL/min;流动相为乙腈-3 g/L磷酸二氢钾溶液(加入200 μL磷酸调节pH值),梯度洗脱:0~10 min,10%乙腈;10~25 min,10%~24%乙腈;25~35 min,24%乙腈;35~60 min,24%~35%乙腈;60~62 min,35%~60%乙腈;62~65 min,60%~10%乙腈;65~70 min,10%乙腈;分析时间70 min,进样量10 μL;检测波长220 nm。 2.1.2 混合对照品溶液的制备 取非洲防己碱、药根碱、表小檗碱、盐酸小檗碱、盐酸巴马汀、盐酸黄连碱、木兰花碱、苦参碱、氧化苦参碱、槐定碱对照品各适量,分别置于10 mL量瓶中,加甲醇溶解并定容,即得各对照品储备液。分别取适量上述11种对照品储备液,置于同一10 mL量瓶中,加甲醇稀释并定容,制得上述成分质量浓度分别为0.20、0.16、0.24、0.25、0.25、0.44、0.26、0.21、0.80、0.36 mg/mL的混合对照品溶液。 2.1.3 供试品溶液的制备 制备黄连药材粉末(过二号筛)及苦参药材粉末(过三号筛),将上述黄连及苦参依照5∶1、4∶1、3∶1、2∶1、1∶1、1∶2、1∶3、1∶4、1∶5共9个质量比例,进行称取后分别充分混合,并称取单一黄连药材粉末及单一苦参药材粉末作为对照药材,各比例药对总质量及单一药材质量均为12 g。每个比例平行称取各药对3份,将药对以10倍量水浸泡0.5 h后,煎煮1.5 h,取1次滤液;将滤渣加入8倍量水煎煮1.5 h,取2次滤液。将2次滤液混合后抽滤,12 000 r/min离心(离心半径10.4 cm)10 min,取上清液,取1 mL上清液加入4 mL甲醇,以0.45 μm微孔滤膜滤过,即得供试品溶液。 2.1.4 精密度试验 依照黄连与苦参比例1∶3,精密称取黄连药材粉末3 g及苦参药材粉末9 g,按照“2.1.3”项下方法制备供试品溶液,再按“2.1.1”项下色谱条件进样测定6次,考察特征峰的保留时间和峰面积一致性。以盐酸小檗碱的保留时间和峰面积为参照分别计算相对保留时间及相对峰面积。计算得各共有峰相对保留时间的RSD<0.20%,相对峰面积的RSD<2.13%,结果表明仪器精密度良好。 2.1.5 稳定性试验 依照黄连与苦参比例1∶3,精密称取黄连药材粉末3 g及苦参药材粉末9 g,按照“2.1.3”项下方法制备供试品溶液,再按“2.1.1”项下色谱条件每隔4 h进样1次,共测定24 h,考察特征峰保留时间和峰面积的一致性。以盐酸小檗碱的保留时间和峰面积为参照分别计算相对保留时间及相对峰面积。计算得各共有峰相对保留时间的RSD<0.21%、相对峰面积的RSD<2.46%,结果表明该供试品溶液在室温放置24 h内稳定性良好。 2.1.6 重复性试验 依照黄连与苦参比例1∶3,精密称取黄连药材粉末3 g及苦参药材粉末9 g,平行制6份,按照“2.1.3”项下方法制备供试品溶液,分别按“2.1.1”项下色谱条件进样分析,考察特征峰保留时间和峰面积的一致性。以盐酸小檗碱的保留时间和峰面积为参照分别计算相对保留时间及相对峰面积。计算得各共有峰相对保留时间的RSD<0.18%、相对峰面积的RSD<1.57%,表明该方法重复性较好。 2.1.7 黄连-苦参药对指纹图谱的建立及相似度评价分析 将黄连及苦参药材依照“2.1.3”项下方法制备成供试品溶液(S1~S9依次为黄连-苦参比例为5∶1、4∶1、3∶1、2∶1、1∶1、1∶2、1∶3、1∶4、1∶5),再按“2.1.1”项下色谱条件进样分析,记录色谱图。将图谱输入《中药色谱指纹图谱相似度评价系统(2012版)》,设置编号S7的样品(黄连-苦参为1∶3)图谱为参照,采取中位数法[19],将时间窗宽度设置为0.1 s,进行多点校正,建立黄连-苦参药对的HPLC指纹图谱和对照指纹图谱(R,图1),指认9批黄连-苦参药对的16个共有峰。采用《中药色谱指纹图谱相似度评价系统(2012版)》对9批黄连-苦参药对进行相似度评价[20]。结果显示,9批黄连-苦参药对和R之间的相似度均大于0.95,这表明各批次黄连-苦参药对的相似性较好,整体质量稳定,可以用于考察黄连-苦参药对水煎液。以分离度较好、峰面积较大的小檗碱(峰16)为参照峰(S),得到9批黄连-苦参药对16个共有峰相对保留时间的RSD为0.175%~0.894%,提示各批次黄连-苦参药对共有峰的保留时间稳定 2.1.8 黄连-苦参药对指纹图谱色谱峰归属认定 通过比对单味药的色谱峰[21],不同比例配伍黄连-苦参药对HPLC指纹图谱16个共有峰中峰2~6号共5个峰均来源于单味药苦参,峰1、7~16号共11个峰来源于单味药黄连(图1)。通过对比混合对照品溶液色谱图(图2)及黄连、苦参及样品HPLC叠加图(图2)对各样品指纹图谱的各峰进行定性认证[22],得到2、3、6号峰分别为苦参碱、槐定碱、氧化苦参碱,属于单味药苦参;8、11~16号峰分别为木兰花碱、非洲防己碱、表小檗碱、药根碱、黄连碱、巴马汀、小檗碱,属于单味药黄连。 2.1.9 黄连-苦参药对各共有峰相对峰面积差异分析 将各比例药对中黄连-苦参药对生药量以黄连、苦参单煎样品的生药量为标准,换算成一致的量,并以黄连及苦参单煎样品峰面积作为参比,比较不同配比黄连-苦参药对的共有峰相对峰面积,结果见表2。可知在不同程度配比下,各共有峰相对峰面积均有不同程度的变化,绝大部分表现出显著性差异。除属黄连药材的10、13号峰各相对峰面积相比药材单提均有所下降外,其余峰均表现为升高,表明配比后成分的溶出对苦参总体表现为促进作用,而对黄连的不同成分表现为促进和抑制的不同作用。1、5、7号峰在黄连-苦参为2∶1时相对峰面积最大;2~4、8、10号峰在黄连-苦参为5∶1时相对峰面积最大;11~16号峰在黄连-苦参为4∶1时相对峰面积最大;6号峰在黄连-苦参为1∶3时相对峰面积最大;9号峰在黄连-苦参为3∶1时相对峰面积最大,提示在方剂中使用不同配比黄连-苦参药对治疗疾病,可能与不同配比下药对中成分的溶出变化有关[23]。 2.2 不同配比黄连-苦参药对中差异性成分含量测定 2.2.1 色谱条件 按照“2.1.1”项下色谱条件进行测定。设定在波长为205 nm时,对苦参碱、槐定碱、氧化苦参碱进行测定;在波长为220 nm时,对木兰花碱进行测定;345 nm时,对非洲防己碱、表小檗碱、药根碱、黄连碱、巴马汀、小檗碱进行测定。此时各指标性成分均为最大吸收波长。 2.2.2 混合对照品溶液的制备 依照“2.1.2”项下方法制备混合对照品溶液。 2.2.3 供试品溶液的制备 依照“2.1.3”项下方法制备9个比例的黄连-苦参药对供试品溶液,每个比例制备3个供试品溶液作为平行对照。 2.2.4 线性关系考察及检测限、定量限 对照品母液的配制:取苦参碱、槐定碱、氧化槐果碱、木兰花碱、非洲防己碱、表小檗碱、药根碱、黄连碱、巴马汀、小檗碱对照品各适量,分别置于10 mL量瓶中,加甲醇溶解并定容,制得上述成分质量浓度分别为0.98、0.40、0.85、0.35、0.31、0.35、0.36、0.36、0.35、0.81 mg/mL的对照品溶液。 取各对照品母液,逐级稀释0、2、4、8、16、32、64倍,按照“2.1.1”项下色谱条件进行测定。以各差异性成分的质量浓度为横坐标(X)、峰面积为纵坐标(Y)绘制标准曲线,进行线性回归,得回归方程,结果见表3,表明各成分线性关系良好。 依照信噪比,即S/N为3∶1及S/N为10∶1对各成分的检测限及定量限进行检测,结果见表3。 2.2.5 精密度试验 依照黄连与苦参比例1∶3,精密称取黄连药材粉末3 g及苦参药材粉末9 g,按照“2.1.3”项下方法制备供试品溶液,按“2.1.1”项下色谱条件连续进样6次,记录各差异性成分的峰面积。结果显示,苦参碱、槐定碱、氧化苦参碱、木兰花碱、非洲防己碱、表小檗碱、药根碱、黄连碱、巴马汀、小檗碱峰面积的RSD分别为1.40%、2.13%、1.37%、2.11%、0.91%、0.69%、1.25%、1.19%、0.17%、0.14%,结果表明仪器精密度良好。 2.2.6 稳定性试验 依照黄连与苦参比例1∶3,精密称取黄连药材粉末3 g及苦参药材粉末9 g,按照“2.1.3”项下方法制备供试品溶液,于室温放置0、4、8、12、16、20、24 h,按“2.1.1”项下色谱条件进样分析,记录各差异性成分的峰面积。结果显示,苦参碱、槐定碱、氧化苦参碱、木兰花碱、非洲防己碱、表小檗碱、药根碱、黄连碱、巴马汀、小檗碱峰面积的RSD分别为1.57%、2.24%、2.22%、2.46%、0.22%、0.16%、0.65%、0.05%、0.14%、0.20%,表明各差异性成分在室温放置24 h内稳定性较好。 2.2.7 重复性试验 依照黄连与苦参比例1∶3,精密称取黄连药材粉末3 g及苦参药材粉末9 g,按照“2.1.3”项下方法平行制备供试品溶液6份,再按“2.1.1”项下色谱条件进样分析,记录各差异性成分的峰面积,并根据标准曲线计算含量。结果显示,苦参碱、槐定碱、氧化苦参碱、木兰花碱、非洲防己碱、表小檗碱、药根碱、黄连碱、巴马汀、小檗碱质量分数的RSD分别为1.16%、1.24%、1.33%、1.57%、1.05%、1.19%、1.42%、1.30%、1.21%、1.22%,表明该方法重复性良好。 2.2.8 加样回收率试验 依照黄连与苦参比例1∶3,精密称取黄连药材粉末3 g及苦参药材粉末9 g,平行称取6份,分别加入含有苦参碱0.31 mg、槐定碱0.20 mg、氧化苦参碱1.52 mg、木兰花碱0.07 mg、非洲防己碱0.08 mg、表小檗碱0.27 mg、药根碱0.06 mg、黄连碱0.22 mg、巴马汀0.21 mg、小檗碱0.79 mg的对照品溶液5 mL,按照“2.1.3”项下方法制备供试品溶液,再按“2.1.1”项下色谱条件进样分析,记录各标志性成分的峰面积,并计算平均加样回收率。结果显示,苦参碱、槐定碱、氧化苦参碱、木兰花碱、非洲防己碱、表小檗碱、药根碱、黄连碱、巴马汀、小檗碱的平均加样回收率分别为100.2%、100.1%、100.3%、100.2%、101.2%、100.7%、99.8%、101.1%、100.60%、101.0%,RSD分别为0.67%、0.97%、0.89%、0.97%、0.56%、0.70%、0.57%、0.71%、0.99%、0.85%,表明该方法准确度良好。 2.2.9 不同配比黄连-苦参药对水煎液成分含量测定及比较 取9个不同比例的黄连-苦参药对药材粉末,精密称定,按照“2.1.3”项下方法制备供试品溶液,再按“2.1.1”项下色谱条件进样分析,记录各差异性成分的峰面积,并根据标准曲线计算苦参碱、槐定碱、氧化苦参碱、木兰花碱、非洲防己碱、表小檗碱、药根碱、黄连碱、巴马汀、小檗碱的含量。将各比例药对中黄连-苦参药对生药量以黄连、苦参单煎样品的生药量为标准,换算成一致的量,计算各特征性成分的含量。通过SPSS 27.0软件,对数据进行单因子方差分析和显著性检验[24],结果见表4。 对含量测定结果进行系统分析。黄连-苦参比例为4∶1时,所得非洲防己碱、表小檗碱、巴马汀、小檗碱含量为各比例最高,且黄连总生物碱含量最高,与单药材提取具有显著性差异(P<0.05);黄连-苦参比例为5∶1时,所得苦参碱、槐定碱、木兰花碱含量为各比例最高,与单药材提取具有显著性差异(P<0.05);黄连-苦参比例为1∶3时,氧化苦参碱含量为各比例最高,与单药材提取具有显著性差异(P<0.05);黄连-苦参比例为1∶1时,苦参总生物碱含量为各比例最高。与黄连、苦参各药材单提相比,各比例下苦参中总生物碱类成分的溶出均有不同程度的提升,黄连中总生物碱类成分在黄连-苦参5∶1及4∶1比例下溶出表现为提升,其他比例表现为降低。随着药对中黄连比例的降低,黄连中整体生物碱类成分呈现下降趋势。对苦参中差异性成分进行比较,随着药对中黄连比例的降低,苦参碱、槐定碱在药液中的溶出降低,而氧化苦参碱的溶出提升,3种成分呈现“U”型分布,提示3者之间的相互影响关系。 3 讨论 本研究考虑与临床应用一致,黄连-苦参药对选择水回流提取法,选择分离效果最佳的乙腈-磷酸二氢钾溶液体系,对黄连及黄连-苦参药对的色谱条件进行优化,并在190~440 nm进行全波长扫描,于220 nm下进行指纹图谱建立以求全面对待测样品的差异性成分进行测定。结果表明,本研究建立的黄连-苦参药对指纹图谱稳定有效,可全面的测定黄连-苦参药对中的标志性成分。 大量文献研究发现,黄连-苦参药对在方剂中多采用1∶5至5∶1区间配比,故选择典型的9个配比进行量-质传递对比性研究。生物碱类成分作为黄连-苦参药对的主要药效成分,研究生物碱类成分在传统方剂煎煮过程中的溶出差异,可以为临床用药提供参考。故采用建立指纹图谱方式进行定性验证,确定稳定可测的生物碱类成分,并根据“2.1.8”项下结果,选择苦参中苦参碱、槐定碱、氧化苦参碱及黄连中木兰花碱、非洲防己碱、表小檗碱、药根碱、黄连碱、巴马汀、小檗碱进行研究[25-26]。 本研究在最佳吸收波长下,对黄连-苦参药对不同配比中10个差异性成分进行含量测定,分析差异性成分在不同配比下的溶出变化。苦参中3种差异性成分的溶出量随黄连比例的降低呈现“U”型分布,而黄连中7种差异性成分溶出量随黄连比例的降低整体呈现降低趋势。在黄连-苦参药对中,高黄连比例更容易促进药对中差异性成分的溶出。初步分析,当黄连-苦参药对中黄连占比的降低,可能会通过改变溶液中pH值、酸碱度等性质,对二者差异性成分的溶出产生影响,也可能对其中成分的相互转化产生促进作用,其具体产生机制有待深入研究。黄连-苦参药对被应用与各类中医经典方及现代经验方剂中[27-28],但其配伍面对临床不同疾病的合理应用仍需深入研究。 本研究首次将黄连-苦参相须药对与中医传统经验方剂药效相结合,探究差异性成分药理作用与临床疾病治疗的联系。黄连-苦参比例为5∶1时,所得苦参碱、槐定碱、木兰花碱含量为各比例最高;非洲防己碱、表小檗碱、药根碱、黄连碱、巴马汀、小檗碱含量较高,相比各药材单提含量有所提升,与单药材提取均具有显著性差异(P<0.05),与《普济方》中“相须为用,其效益彰”的方解一致,发挥各成分共同药效,达到“清热燥湿”效果。氧化苦参碱具有抗肿瘤作用,当黄连-苦参比例为1∶3时,其溶出量达到最大并与单药材提取具有显著性差异(P<0.05),与临床上使用参白解毒方进行抗结直肠道腺瘤[29]的治疗方式一致。药根碱可发挥降糖作用,在黄连-苦参比例为1∶1时含量最高,与国医大师李玉奇治疗消渴症时采用方剂中黄连-苦参药对[30]的配比一致,证明了方剂中黄连-苦参使用该比例配比的合理性。 综上所述,本研究成果预期可为开展黄连-苦参药对的量-效关系研究提供数据支撑,为临床不同疾病采用药对适宜配比用量、开发黄连-苦参药对新方剂提供借鉴。

  • SIM塑化剂特征离子和非特征离子

    菜鸟又开始提问啦判断是否为塑化剂会有些不确定,SIM 特征离子的比例都合适但是有些非特特征离子的丰度很大,不知道是否该判?SIM 特征离子和标准图谱都能对上,但是非特征离子丰度大了很多?这种是不是塑化剂呢?全扫描的时候是判断一个物质是按丰度比进行的?这两种不同方法,判断的时候方法也不同?

  • 计量文化的三个标志性特征

    计量工作历史悠久、与时俱进,同时也与质检各项工作密切相关。研究计量文化意义深远。个人之见,在文化层面,计量具有三个标志性特征:  第一,哲学特征  在此谈谈哲学中的对立统一、质量互变和否定之否定。其实,对立统一中矛盾的双方只有在量的积累达到一定程度时才会发生转化,也就是引起质变;质变后又会在新的起点上重新发生新的量变,由此呈现出螺旋式上升的轨迹,这就是否定之否定。由量变到质变,这是一切事物发生、发展变化的主要特征。计量工作有两个功能:一个是检验、检测物质在量变过程中的量值。譬如,在贸易交接中是否缺斤短两;在定量包装中是否授予C标志等。另一个是看量值的变化是否引发或触及了质变,如燃油中所含辛烷的含量,牛奶中所含蛋白质的含量,棉花纤维的长度是否达标,这就由计量涉及质量。因此,计量文化所研究的问题,实际上也是个哲学问题,即量和质的问题,这是典型的哲学特征。  在计量检验、检测工作中,还有一个“不确定度”的概念。也就是说,无论计量仪器、设备多么精密,其检验结果也不会绝对准确,反映在文字上就是“正负”的表述。当然,在不同领域内,这个“正负”有不同的标准、不同的要求。这又涉及哲学中的绝对与相对、偶然与必然、个别与一般。首先,任何检验结果都是相对准确,不是绝对准确;其次,我们对于任何产品的计量、质量问题的检验,都不可能整个批次一一进行,只能抽检,这就涉及个别与一般、偶然与必然。一般寓于个别之中,必然寓于偶然之中。所以,计量文化也是哲学,任何其他工作,不管多么重要,都不如计量文化与哲学如此接近。这就是计量文化哲学特征。  第二,量化特征  计量工作有一个明显的优势,就是靠仪器设备检测,凭数据说话。它不是凭眼看、嘴尝、手摸来定性,最不能容忍的是“大概齐”、“也许是”、“差不多”等似是而非的结论,应完全依靠客观数据。因此,在长期的实践过程中,逐步形成了“一个态度、一种作风、两种精神”的文化特征。一个态度,即科学严谨的工作态度。对于检验检测的对象,无论是人还是物,都一丝不苟、精益求精。一切都以检验结果为准。  一种作风,即实事求是、求真务实的工作作风。对于检验结果,一是一、二是二、不忽悠、不掺水分、不分贵贱、不畏权贵。  两种精神:首先是高度负责的精神。对于检验报告,要经得起时间的检验,经得起历史的考验。你有疑问,我们敢于承诺,可以换一个地方再检,无论到哪里,都是一样的;其次是与时俱进的精神。计量,作为质检工作的技术基础,也是国民经济的技术基础,它是与科学技术相辅相成、相互促进、共同发展的。从古代的“结绳记事”、“布手知尺”,到今天的量子物理、军事科学、医学科学,都反映计量与时俱进的足迹。  第三,标准特征  在司法领域的审判工作中,有句很实际、很重要的话,叫“以事实为依据,以法律为准绳”。计量工作,也可以说“以数据为依据,以标准为准绳”。计量检验、检测工作讲究标准先行,也就是先建标,而且建标也不是随意的,要从国家基准逐级进行量传,有些还需要比对。另外,对于计量仪器、设备,需要首先进行计量检定,否则,不能用于检验检测工作。什么是对、什么是错,什么为正确、什么为错误,一切都要看标准,靠标准说话。

  • SDE、SPME、溶剂浸提均无法测出风味是为什么?

    各位老师,我们实验室测定莲藕煮制后的风味,不管用什么方法都无法测出莲藕的风味,峰非常少利用溶剂浸提(正戊烷/二氯甲烷 2:1)混匀震荡1小时,峰非常少,甚至测定不出任何物质同时蒸馏萃取(20mL二氯甲烷)2小时,只有四个峰(乙基苯 间二甲苯 苯并环丁烯 对二甲苯),萃取液可以明显闻到莲藕风味SPME(50/30 DVB/CAR on PDMS萃取头)峰很少,出现很多萃取头固定相的峰应该不是仪器的事,安捷伦、默塞飞都有测定, 溶剂浸提采取的是唯一一篇相关文献《不同品种莲藕的风味特性及加工稳定性研究_罗庆》,完全重复不出来恳请各位老师给出建议!

  • 【我们不一YOUNG】风味(Flavor)气味(Odor)和GC-O

    [align=center][font=DengXian]风味[/font](Flavor)[font=DengXian]气味[/font](Odor)[font=DengXian]和[/font]GC-O[/align]Flavor[font=DengXian](风味)[/font]=Aroma[font=DengXian](香气)[/font]+ Taste[font=DengXian](滋味),两者相互有影响[/font]Aroma/Odor[font=DengXian](香气或气味)是人的鼻子能够感受的挥发性物质,可以识别到许多气味细微差别。[/font]Taste [font=DengXian](滋味)是人的舌头能够感受的非挥发性物质,能感受到滋味特征为数不多,例如,甜,酸,苦,咸,鲜味等。[/font]GC-O[font=DengXian]是一种可以选择检测气味相关化合物(香气化合物)的技术,没有其它技术能够替代[/font]GC-O[font=DengXian]的。[/font][font=DengXian]虽然有不同种类的电子鼻存在,但没有人的鼻子的能力[/font][font=DengXian]鼻前嗅闻:在口腔内没有食物的情况下,通过鼻子感知气味([/font]ODP[font=DengXian]使用)[/font][font=DengXian]鼻后嗅闻:通过鼻子感知口腔内食物的气味[/font]

  • 特征X荧光之俄歇电子篇 可能理解不透彻 请大家指教

    [size=18px]前几天在重新温习X荧光知识的时候,突然出现了一个名字-俄歇电子,这个名称还就在我的脑子中挥之不去了,当时一时间想不起什么才是俄歇电子,后来在网上查了查,把自己的理解和大家分享一下,大家也看看我说的对不对,欢迎大家交流指教。一说到俄歇电子,我看到有的仪器是以根据俄歇电子能谱,来研究固体表面结构和表面物理化学性质的变化等,所以我就对这一概念就更加好奇了。我查到俄歇电子能谱(Auger Electron Spectronmetry,简称AES)。首先先要明确的就是我理解的一个概念,就是当X射线照射样品时,并非所有产生的空穴都会形成特征X荧光,就是我们之前举例说的跃迁-回迁-释放能量的过程,在这个过程中不是所有空穴都会产生特征X荧光的,我的理解是当X射线照射样品时,如下图(特征X射线产生):[/size][img=,530,519]https://ng1.17img.cn/bbsfiles/images/2024/03/202403191439566241_1826_2645693_3.jpg!w530x519.jpg[/img][size=18px]当x射线照射样品后1号电子获得能量跃迁,出现空穴,2号电子进行空穴的填补,并释放特征X荧光,重点来了,在2号去补缺空穴时释放的特征X荧光恰好激发了3号电子,使之形成了新的空穴,这个被激发跃迁的3号电子就是俄歇电子。不知道我这样的理解对不对,请专家指教。同时也请大家帮我看看对不对,一起讨论下![/size]

  • 果蔬中风味物质提取与检测

    果蔬中风味物质提取与检测

    [b]果蔬中风味物质提取与检测这里主要给大家介绍了多种果蔬中风味物质的提取技术和检测分析技术,以满足人民日益增长的营养健康需要。[img=,675,430]https://ng1.17img.cn/bbsfiles/images/2018/12/201812161920016324_5438_2166779_3.png!w675x430.jpg[/img][color=#333333]随着人们生活水平的提高,人们对果蔬的要求也不断提高,不但要求果蔬要有高的营养价值,而且要求果蔬具有好的风味。因此,研究果蔬的风味物质已成当今的热点。[/color][color=#333333][img=,690,496]https://ng1.17img.cn/bbsfiles/images/2018/12/201812161921143085_4082_2166779_3.png!w690x496.jpg[/img][/color][color=#333333][b]1. 果蔬中风味物质的提取技术[/b][/color][color=#333333][b][/b][/color][/b]目前,风味物质提取的方法主要有顶空取样技术、同时蒸馏萃取技术、固相微萃取技术、搅拌棒吸附萃取技术和超临界流体萃取技术等。[b][color=#333333][b][/b][/color][/b][color=#f97a66][b][b]①[/b]顶空取样技术(HS)[/b][/color]:其原理是将待测样品放入一个密闭的容器中,样品中的挥发成分便从果蔬基质中释放出来进入容器的顶空,其在顶空中含量的多寡只由基本的物理-化学定理所决定。其又分为静态顶空取样技术(SHS)和动态顶空取样技术(DHS)。[b][color=#333333][b][/b][/color][/b][color=#f97a66][b][b]②[/b]同时蒸馏萃取技术(SDE)[/b][/color]:方法最初由Lickens和Nicker-son于1964年提出,是一种将水蒸汽蒸馏和有机溶剂抽提结合起来的方法,即首先从样品中蒸馏出挥发性物质,再使用低沸点溶剂萃取蒸馏液。[b][color=#333333][b][/b][/color][/b][color=#f97a66][b][b]③[/b]固相微萃取技术(SPME)[/b][/color]:由加拿大Waterloo大学Pawlisyzn及其合作者于1900年提出的。由Supelo公司(美国)1994年推出其商业化产品。它是通过利用微纤维表面少量的吸附剂从样品中分离和浓缩分析物的技术,集采样、富集和进样于一体,尤其适合与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]联用,为样品预处理开辟了一个全新的局面。[b][color=#333333][b][/b][/color][/b][color=#f97a66][b][b]④[/b]搅拌棒吸附萃取技术(SBSE)[/b][/color]:是一种用于从溶液样品中分离和浓缩的新技术。搅拌棒由密封在玻璃管中的磁核和厚的聚二甲基硅氧烷涂层组成,萃取机理和固相微萃取非常相似。[b][color=#333333][b][/b][/color][/b][color=#f97a66][b][b]⑤[/b]超临界流体萃取技术(SFE)[/b][/color]:是一种以超临界流体代替常规有机溶剂对食品中风味物质进行提取分离的新技术,在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。[b][color=#333333][b][/b][/color]2. 果蔬中风味物质的检测分析技术[color=#333333][b][/b][/color][/b]目前,较为先进的果蔬风味分析技术有[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、液相色谱法、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]测定法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-吸闻技术、电子鼻技术等。[b][color=#333333][b][/b][/color][color=#f97a66][b][b][b]①[/b][/b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术(GC)[/b][/color]:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法是比较适合于挥发性风味物质分析测定的方法之一,它具有灵敏度高、分离效果高和定量分析正确的特点,被广泛的用于果蔬等风味的研究中。[/b][color=#f97a66][/color][color=#f97a66][b][b]②[/b]液相色谱技术(LC)[/b][/color]:液相色谱技术是在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]原理的基础上发展起来的分离风味物质的技术。该方法最大特点是物质在低温情况下可进行分离,在处理对热不稳定的物质时尤为重要,此外也可用来分析产生香味但察觉不到挥发性的组分,利用待测物对光的作用,可用荧光、紫外、示差等检测器检测。[color=#f97a66][b][b]③[/b][url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url](GC-MS)技术[/b][/color]:当样品注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],经色谱柱分离后的物质由分子分离器进入电离室,被电子轰击形成离子,其中部分离子进入离子检测器。经过质谱快速扫描后导出组分的质谱图,以此作为定性、定量分析的依据。[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]技术综合了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]高分离能力和质谱高鉴别能力的优点,实现了风味物质的一次性定性、定量分析。[color=#f97a66][b][b]④[/b][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url](HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])技术[/b][/color]:[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]技术以液相色谱作为分离系统,质谱为检测系统,样品在质谱部分被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。[color=#f97a66][b][b]⑤[/b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-吸闻(GC-O)技术[/b][/color]:GC-O最早是由Fullerl于1964年提出,是将气味检测仪同分离挥发性物质的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]相结合的技术。其原理是在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱末端安装分流口,GC毛细管柱分离出的流出物按照一定的分流比,一部分进入仪器检测器(通常为氢火焰离子检测器(FID)和质谱(MS)),另一部分通过传输线进入嗅闻端口让人鼻(即感官检测器)进行感官评定。[color=#f97a66][b][b]⑥[/b]电子鼻(EN)技术[/b][/color]:电子鼻也称人工嗅觉系统,是模仿生物鼻的一种电子系统,主要根据气味来识别物质的类别和成分。其工作原理是模拟人的嗅觉器官对气味进行感知、分析和判断。[b]3. 展望[/b]随着科技的发展,仪器分析手段的进步及人们对果蔬风味成分的了解和需求增多,果蔬风味物质的分离及分析检测方法将会更加先进,更加完善,以满足人民日益增长的营养健康需要! [b][b][color=#383938]参考文献:[/color][/b][/b] 王文亮, 孙卿, 曹世宁,等. 香菇风味物质形成机理研究进展. 山东农业科学, 2015(6):145-147. 陈昆松. 果实风味物质形成基础与调控立项报告. 科技创新导报, 2016, 13(7):165-166.[b][/b]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制