当前位置: 仪器信息网 > 行业主题 > >

分子图像

仪器信息网分子图像专题为您整合分子图像相关的最新文章,在分子图像专题,您不仅可以免费浏览分子图像的资讯, 同时您还可以浏览分子图像的相关资料、解决方案,参与社区分子图像话题讨论。

分子图像相关的论坛

  • 【兔子图像】系列兔子图像分享,您换兔子图像了没?

    2010年即将逝去,2011悄悄走来。2011年是兔年,您有别具一格的兔子论坛头像么?您还为没有图像而发愁么?来吧我们为您寻找到系列兔子图像。在哪里更换论坛头像:http://www.instrument.com.cn/vip/myBbsPic.asp以下系列图像仅供参考嘻嘻哈哈布丁兔系列:http://ng1.17img.cn/bbsfiles/images/2010/12/201012141124_266842_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141124_266843_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141124_266844_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141124_266845_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141124_266846_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141124_266847_1622715_3.gif方形脑壳卡通兔子系列:http://ng1.17img.cn/bbsfiles/images/2010/12/201012141126_266848_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141126_266849_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141126_266850_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141126_266851_1622715_3.gif女生版的兔子系列:http://ng1.17img.cn/bbsfiles/images/2010/12/201012141126_266852_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141127_266853_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141127_266854_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141127_266855_1622715_3.gif其他:http://ng1.17img.cn/bbsfiles/images/2010/12/201012141127_266856_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141127_266857_1622715_3.gifhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012141127_266858_1622715_3.gif

  • 实验流场评估——数字粒子图像测速仪(DPIV)使用数字粒子图像测速仪(DPIV)

    实验流场评估——数字粒子图像测速仪(DPIV)使用数字粒子图像测速仪(DPIV),可以分析装置附近的脉动流条件,以确定心血管装置是否符合监管标准。疾病的触发因素(如剪切应力和停滞区域)可以高度精确地量化。先进的方法,包括适当的正交分解,也捕捉感兴趣的隐式流体力学现象。检查法ViVitro实验室测试为2D提供了关于设备周围流动的定量和定性的高速信息。定性输出包括基于颗粒条纹的流动评估,评估和描述任何流动分离、流动停滞、涡流形成、喷射性质、回流和其他流体机械现象的发生。定量输出包括心动周期不同阶段的速度、剪切应力和粒子停留时间。在心脏瓣膜手术期间,停滞流动可能导致潜在的血凝块形成。装置附近的高流速可能导致潜在的溶血和血小板活化。测量参数速度剪切应力(粘性剪切应力、雷诺剪切应力)停滞地区定性分析:湍流区域,流动分离,涡流形成,喷流计算的粒子停留时间(如果需要)范围经导管瓣膜;TMVR TAVI生物、聚合物、机械瓣膜:刚性或柔性静脉瓣膜和导管瓣膜导管腔静脉过滤器辅助心室装置任何植入流动模型中装置服务水平标准服务全方位服务适用标准ISO 5840-2:2021心血管植入物心脏瓣膜假体第2部分:外科植入的心脏瓣膜替代物ISO 5840-3:2021心血管植入物心脏瓣膜假体第3部分:心脏瓣膜[img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304301015561812_3608_1602049_3.png[/img]

  • 求对图像角度积分的DM script

    举个例子,对于晶体粉末的x光衍射,得到一个同心的多园环图案,想把这个2D图像变为1D图像,x轴是从圆心算起的半径长度,y轴是intensity。那么就需要在x轴的每一点,沿角度积分(0~360度,极坐标。看每一个园上有多少个pixal,对所有的intensity求和,然后除以pixal数。这样我们可以得到一维的衍射图,从peak的位置得出衍射信息。我想知道有这样现成的script么?多谢了。

  • 自清洗样品窗在动态颗粒图像技术的应用

    自清洗样品窗在动态颗粒图像技术的应用

    自清洗样品窗在动态颗粒图像技术的应用一、 从静态图像仪到动态图像仪早期的颗粒图像仪都是静态颗粒图像仪,基本上是基于显微镜设备改装的观测设备,制作静态样品,虽然在一定程度上解决了颗粒样品的形貌分析统计问题,但是也表现出了其固有的弱点,即因其参与观测统计的颗粒数量少,导致数据的代表性差。人为误差较大。因此在上世纪90年代末国外就开始进行动态颗粒图像仪的研制,英、法德等国家均推出过动态颗粒图像测试设备。而在本世纪初,国内的上海理工、天津海洋研究所等机构也开始探索颗粒动态测试的有效方法。直到2007济南某厂家首次正式面向市场推出真正意义上国内第一台动态颗粒图像分析仪Winner100。中国才真正具有了动态颗粒图像分析能力。二、 动态图像技术分析对微小颗粒而言,成像光路系统放大倍率越大,其景深也就越小,这一点严重制约动态颗粒图像仪的发展,如何将流动中的颗粒约束到一个平面上,这是动态颗粒图像仪最关键部分。目前国外现有的比较成熟的方式借鉴了细胞测量中的流体聚焦技术----鞘流技术,即将待测颗粒样品流入鞘液中,鞘液对其进行约束,形成一个一个从而获得清晰的颗粒图像。这种技术能够解决颗粒聚焦问题,但是其制备鞘液比较复杂,成本也很高,测量时间也较长,而且鞘液中的颗粒数量仍然不能够太多,因此对于颗粒测试的代表性仍然不强。关键部件鞘流池如果有大的颗粒进入很容易发生堵塞现象,清理疏通也都很费时费力。以国外很多粒度仪厂家也多采取这种实用价值有限的测试技术。近年国内厂家推出一种新型技术,即以流体力学的原理,使用液流的压力将颗粒约束在样品窗表面,使其基本在一个焦平面上运动,使成像效果显著提高。但是问题随之而来,在样品窗表面运动时,经常有颗粒粘连在表面上,越积越多无法处理。因此,此方法的使用价值也大打折扣。2014年济南微纳颗粒推出了一款带超声波自清洗装置的样品窗,才真正解决了这种颗粒在样品窗上粘连的问题,使其实用化程度大大提高,现在在碳化硅、氧化铝等磨料相关等行业已经广泛开始使用,并得到了用户的高度认可。三、 自清洗样品窗技术在以往的动态图像仪中,样品窗污染就会造成测试结果的准确性差。因此样品窗必须每隔一至两周就必须拆卸下来清洗,去除附着在上面的颗粒残留,非常麻烦,而且有的样品自身带有粘性或者静电的,甚至在测试过程中就会粘连到样品窗上,严重影响测试结果。济南微纳推出的可以进行自清洗的样品窗,彻底解决了以上问题,大大减少了样品窗的清洗频次,增加了样品窗寿命,有的甚至可以终生不必拆洗。 自清洗样品窗技术已经应用在微纳的Winner100D动态图像仪、Winner219动静态双模式全自动图像仪上,并解决了样品窗清洗问题。并且自清洗样品窗技术还可以应用在湿法激光粒度仪上,微纳也将进一步自清洗样品窗技术广泛的推广应用,为推动中国颗粒测试事业的发展尽最大努力。 http://ng1.17img.cn/bbsfiles/images/2015/11/201511201552_574512_3049057_3.png

  • 【讨论】过焦和欠焦的图像以及对phase 衬度的讨论

    【讨论】过焦和欠焦的图像以及对phase 衬度的讨论

    我在做电镜的时候(样品是高分子薄膜,特点是主要是无定型结构,也有部分多晶结构), 发现过焦和欠焦的图像十分不一样。(如下图)。 一般我们用欠焦的作为正确图像。 但仔细观察,其实欠焦的图像里面也可以隐约看过过焦的网络状结构。不知道这个因为聚焦变化引起的phase衬度是怎么影响图像的?我的体会是phase衬度其实表现的是薄膜表面的结构,欠焦的图像十分象SEM和AFM的图像。 一个大胆的猜测,欠焦是突出薄膜上表面的结构,过焦是突出薄膜下表面的结构?[img]http://ng1.17img.cn/bbsfiles/images/2007/02/200702160248_42358_1284971_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2007/02/200702160248_42359_1284971_3.jpg[/img]

  • 【资料】荧光图像的记录方法

    荧光显微镜所看到的荧光图像,一是具有形态学特征,二是具有荧光的颜色和亮度,在判断结果时,必须将二者结合起来综合判断。结果记录根据主观指标,即凭工作者目力观察。作为一般定性观察,基本上可靠的。随着技术科学的发展,在不同程度上采用客观指标记录判断结果,如用细胞分光光度计,图像分析仪等仪器。但这些仪器记录的结果,也必须结合主观的判断。  荧光显微镜摄影技术对于记录荧光图像十分必要,由于荧光很易褪色减弱,要即时摄影记录结果。方法与普通显微摄影技术基本相同。只是需要采用高速感光胶片如ASA200以上或24。以上。因紫外光对荧光猝灭作用大,如FITC的标记物,在紫外光下照射30s,荧光亮度降低50%。所以,曝光速度太慢,就不能将荧光图像拍摄下来。一般研究型荧光显微镜都有半自动或全自动显微摄影系统装置。

  • 正焦,过焦,还是欠焦,哪个图像正确?

    [img]http://ng1.17img.cn/bbsfiles/images/2006/07/200607070155_21103_1284971_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2006/07/200607070158_21104_1284971_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2006/07/200607070202_21105_1284971_3.gif[/img]图像是薄膜(film),是一个高分子(polymer)和小分子(C60)的混合体。高分子密度低,是白的,小分子密度高,是图像中黑色的部分。由于物象分离(phase separation),在TEM中可以看到黑白对比的区域。问题是在正焦的时候,图像中只有黑白区域,比较简单。在欠焦的时候,图中有白色晶体状长条出现,怀疑是高分子结晶。不过在过焦情况下,这白色长条又变成黑色长条。疑问:在defocus情况下多出的细微结构(图中长条形状)是薄膜本身结构么?还是由于TEM引进的假相? 如果是真的结构,为什么必须要在defocus下才能看到?因为这种结构在薄膜表面? 到底图像以什么为准?如果以欠焦为准,白色长条是高分子,如果以过焦为准,黑色长条是小分子晶体,这是相互矛盾的,肯定有一个是错的。请高手指教!

  • 【求助】征寻JEOL SEM的AU粒子验收图以及用户自拍图像!!!

    大家好, 我是日本电子的工程师,因为某些原因,想从大家手中征寻一些JEOL SEM的AU粒子验收图以及用户自拍图像,从而收集一些SEM的初始安装状态,以及目前用户的使用状态!尽可能地向中国用户提供更好的服务! 如果您方便的话,请将您的单位名称以及验收时间,机器型号标明!EPMA工程师,王凯

  • 【求助】请问谁会做SPM图像的量子化分析?

    请问谁会做SPM图像的量子化分析?就是像别人用SPM扫出图片,然后对其进行量子化分析,高斯分析,可以得到其分子的立体模型,键长等。不知谁会做,请指教,或者用什么软件可以做到!谢谢!

  • 美首次获得纳米粒子内单原子三维图像

    科技日报 2012年03月24日 星期六 本报讯 据美国物理学家组织网3月21日报道,美国科学家在3月22日出版的《自然》杂志上表示,他们发明了一种直接测量纳米材料原子结构的新方法,让他们首次得以看见纳米粒子内部的情况,并获得其单个原子及原子排列的三维图像。最新研究有望大大改进医学和生物学等领域广泛使用的X射线断层照相术获得图像的清晰度和质量。 加州大学洛杉矶分校物理学和天文学教授兼加州纳米系统研究所研究员苗建伟(音译)领导的团队使用一个扫描透射电子显微镜,在一个直径仅为10纳米的微小金粒子上方扫射了一束狭窄的高能电子。这个金纳米粒子由成千上万个金原子组成,每个金原子的大小仅为人头发丝宽度的百万分之一,它们与通过其上的电子相互作用,产生的阴影包含有金纳米粒子内部结构的信息,这些阴影被投射到扫描镜下方的一个探测器上。 研究小组从69个不同的角度进行测量,将每个阴影产生的数据聚集在一起,形成了一个纳米粒子内部的三维结构图。使用这种名为电子断层摄影术的方法,他们能直接看到单个原子的情况以及单个原子在特定的金纳米粒子内的位置。 目前,X射线晶体照相术是让分子结构内的原子三维可视化的主要方法。然而,这一方法需要测量很多几乎完全一样的样本,然后再将得到的结果平均。苗建伟说:“一般平均需要扫描数万亿个分子,这会导致很多信息丢失。而且,自然界中的大部分物质都是结构不如晶体结构那么有序的非晶体。”他表示:“现有技术主要针对晶体结构,目前还没有直接观察非晶体结构内部原子的三维情况的技术。探索非晶体材料的内部情况非常重要,因为结构上一点小小的变化都会大大改变材料的电学属性。例如,半导体内部隐藏的瑕疵会影响其性能,而新方法会让这些瑕疵无所遁形。” 苗建伟和他的同事已经证明,他们能为一个并非完美的晶体结构(比如金纳米粒子)摄像,晶体可小至0.24纳米,一个金原子的平均大小为0.28纳米。实验中的金纳米粒子由几个不同的晶粒组成,每个晶粒形成一块拼图,其中的原子采用些许不同的模式排列。纳米结构具有隐藏的晶体断片和边界,同由单一晶体结构组成的物质不同,新方法首次在三维层面实现了纳米粒子的内部可视化。 (刘霞)

  • 同一样品(金刚石线锯微粉),马尔文、库尔特、图像分析仪的对比

    同一样品(金刚石线锯微粉),马尔文、库尔特、图像分析仪的对比

    [b]这段时间做金刚石线锯微粉的质量控制工作,对马尔文、库尔特、图像分析仪的检测情况都研究了一下,有一点小心得,抛出来和大家讨论下。[/b]以下是我总结的报告:马尔文、库尔特和图像分析仪是线锯微粉质量检验中最常用的三种手段。马尔文是激光法,使用的是光散射理论,所测粒径一般认为是等效体积径;库尔特则是基于小孔电阻原理,所测粒径是等效电阻粒径;图像分析仪属于图像法,是利用电子技术、数字图像处理技术的一种测试方法,所测粒径是等效圆直径。[color=#ff0000]1、检测结果对比[/color]测试小样粒度6/12,是线锯专用金刚石微粉。图1是图像分析仪检测的显微图片,图2是对应的图像分析报告。从图1可以很清晰地看到磨粒的形貌、透明度、粒度分布等信息。图2是对图1采集的磨粒图像信息所做的分析报告,包括粒度分布图、粒度特征值、颗粒形状组成三部分,通过量化分析,可以方便地进行微粉的质量检验控制。显微图片和分析报告互为佐证,可以全面地反映微粉产品质量。[align=center][img=金刚石微粉,690,370]http://ng1.17img.cn/bbsfiles/images/2017/08/201708231602_01_2747413_3.bmp[/img][/align][align=center]图1 金刚石微粉颗粒形貌显微图片[/align][align=center][img=金刚石微粉,640,627]http://ng1.17img.cn/bbsfiles/images/2017/08/201708231604_01_2747413_3.bmp[/img][/align][align=center]图2 金刚石微粉图像分析报告[/align][align=left]图3是样品库尔特检验结果,图4是样品马尔文的检验结果。可见,无论库尔特和马尔文,只能反映粒度分布,不能对微粉形状组成(形貌)进行检测,这对微粉质量控制不利。[/align][align=center][img=金刚石微粉,690,655]http://ng1.17img.cn/bbsfiles/images/2017/08/201708231607_01_2747413_3.jpg[/img][/align][align=center]图3 金刚石微粉库尔特检测报告[/align][align=center][/align][align=center][img=金刚石微粉,690,383]http://ng1.17img.cn/bbsfiles/images/2017/08/201708231608_01_2747413_3.jpg[/img][/align][align=center]图4 金刚石微粉马尔文检测报告[/align][align=left][color=#ff0000]2、结果分析[/color][/align]对比三种检测结果,如表1所示。可见:D50的检测结果,按大小排序依次是图像法>激光法>电阻法;分布宽度的检测结果,按大小排序依次是激光法>电阻法>图像法。显然,以激光法检测粒度分布是不可取的。现在普遍认知是使用激光法检测D50,电阻法检测粒度分布,这也是有一定道理的。[align=center]表1 图像法、电阻法、激光法微粉检测结果对比[/align][table][tr][td][align=center] [/align][/td][td][align=center]D10[/align][/td][td][align=center]D50[/align][/td][td][align=center]D90[/align][/td][td][align=center]分布宽度[/align][/td][td][align=center]测试仪器[/align][/td][/tr][tr][td][align=center]图像法[/align][/td][td][align=center]8.62[/align][/td][td][align=center]9.65[/align][/td][td][align=center]10.86[/align][/td][td][align=center]23.2%[/align][/td][td][align=center]KBKL-Ⅱ图像分析仪[/align][/td][/tr][tr][td][align=center]电阻法[/align][/td][td][align=center]6.608[/align][/td][td][align=center]7.391[/align][/td][td][align=center]9.594[/align][/td][td][align=center]40.4%[/align][/td][td]Beckman Coulter Multisizer 3[/td][/tr][tr][td][align=center]激光法[/align][/td][td][align=center]5.897[/align][/td][td][align=center]8.389[/align][/td][td][align=center]11.864[/align][/td][td][align=center]71.1%[/align][/td][td][align=center]Hydro 2000MU(A)[/align][/td][/tr][/table][align=left]注:分布宽度(%)=(D90-D10)×100/D50[/align][align=left]库尔特是将所有颗粒等效为同体积的标准球形颗粒,以标准球形颗粒的粒径表示被测颗粒的粒径。适用于粒度分布窄的磨粒检测,样品浓度、分散等都会影响检测结果。库尔特最理想的情况是颗粒一个接一个通过,但实际上会出现多个颗粒同时通过的情况,还有一些颗粒通过感应区域时可能发生水平或垂直翻转的现象,这些不利于颗粒计数,测试值将小于真实值。马尔文是最常用的激光粒度仪,但目前用户对激光粒度仪的认识有一个误区,认为激光粒度仪检验结果稳定准确。其实激光粒度分析法法是一种拟合近似分析方法,而且不可校准,溯源性、可比较性差,分辨率低,对D50粒径的分析还比较准,但对D5、D10、D90 、D95粒径的分析误差就比较大,已不能满足磨料粒度分析的要求。因此激光粒度仪经常将不合格品检验成合格品,也经常将合格品检验成不合格品,所以,用户在利用激光粒度仪进行质量检验时,要特别引起注意。尤其是对于最终用户,不推荐用激光粒度仪作为磨料粒度质量把关的手段。[/align][color=#ff0000]3、感想[/color] (1)马尔文对D50粒径的分析较准,可用于对中值粒径D50检测。但由于并不反映粒度实际组成,更不能反映颗粒形貌,当微粉粒度,特别是形貌发生变化时,是无法有效发现的,而形貌变化将直接影响线锯微粉的上砂,库尔特同样不能有效反映微粉形貌的变化,所以不建议将马尔文、库尔特作为主要的微粉质量把关手段。 (2)微粉质量控制,需要制定产品质量标准,马尔文、库尔特由于无法反映形貌,可量化指标较少,无法依据它们制定有效的质量标准。带有高级图像分析功能的图像分析仪(如本试验所用仪器KBKL-Ⅱ图像分析仪),可以对粒度分布、粒度特征值、微粉形状组成等全面分析量化,以此制定质量标准,可有效控制产品质量。 (3)马尔文、库尔特测量速度快,重复性好,操作简单,但微粉变化时可靠性差,可作为常规检测手段。图像分析仪直观可靠,可作为微粉质量检测的主要手段。

  • FEI的镜子图像与衍射有90度旋转角

    我校有两台Fei的透射电镜,图像和衍射图都有90度的旋转角,这个可以调回来吗?我不是管理人员,只是在上面操作过,开始不知道情况,做出实验结果疑惑了半天,现在就这样用着,很别扭。对日本电子的电镜做的多些。

  • 请教各位大佬biacore图像倒置的问题

    请教各位大佬biacore图像倒置的问题

    最近在用Biacore T200做分子互作,F1是空白,后面几个是目标蛋白,分子量60kDa左右,跑的是核酸适配体,分子量12KDa,缓冲液是1×HBS-T,之前一直好好的,条件没变,但图像突然就倒置了,想请教一下可能有那些原因呢?[img=,690,426]https://ng1.17img.cn/bbsfiles/images/2023/02/202302091524257950_74_5429518_3.jpg!w690x426.jpg[/img]

  • 【分享】图像分析仪在金相分析中的应用

    图像分析仪在金相分析中的应用近年来,随着计算机技术和体视学的发展,图像分析仪被广泛地应用于金相分析中,使传统的金相分析技术从定性或半定量的工作状态逐步向定量金相分析方向发展。 金相工作者多年来一直从金相试样抛光表面上通过显微镜观察来定性地描述金属材料的显微组织特征或采用与各种标准图片比较的方法评定显微组织、晶粒度、非金属夹杂物及第二相质点等,这种方法精确性不高,评定时带有很大的主观性,其结果的重现性也不能令人满意,而且均是在金相试样抛光表面的二维平面上测定,其测量的结果与三维空间真实组织形貌相比有一定差距。现代体视学的出现为人们提供了一种由二维图像外推到三维空间的科学,即将二维平面上所测定的数据与金属材料的三维空间的实际显微组织形状、大小、数量及分布联系起来的一门科学,并可使材料的三维空间组织形状、大小、数量及分布与其机械性能建立内在联系,为科学地评价材料提供了可靠的分析数据。 由于金属材料中的显徽组织和非金属夹杂物等并非均匀分布,因此任何一个参数的测定都不能只靠人眼在显微镜下测定一个或几个视场来确定,需用统计的方法对足够多的视场进行大量的统计工作,才能保证测量结果的可靠性。如果仅靠人的眼睛在显微镜上进行目视评定,其准确性、一致性和重现性都很差,而且测定速度很慢,有些甚至因工作量过大而无法进行。图像分析仪以先进的电子光学和电子计算机技术代替人眼观察及统计计算,可以迅速而准确地进行有统计意义的测定及数据处理,同时具有精度高、重现性好,避免了人为因素对金相评定结果的影响等特点,而且操作简便,可直接打印测量报告,目前已成为定量金相分析中不可缺少的手段。 图像分析仪是对材料进行定量金相研究的强有力工具,也是日常金相检验的好帮手,可以避免人工评定带来的主观误差,从而也避免了扯皮现象。虽然在日常金相检验中,不可能也不必每次都使用图像分析仪,但当产品质量出现异常或金相组织级别处于合格与不合格之间而无法判别时,则可以借助图像分析仪对其进行定量分析,得出准确结果,确保产品质量。图像分析仪在金相分析中的应用,拓展了金相检验的检测项目,促进了检测水平的提高,对于提高检测人员的素质也是十分有益的。 图像分析仪的系统由金相显徽镜和宏观摄像台组成的光学成像系统,其用途是使金相试样或照片形成图像。金相显微镜可直接对金相试样进行定量金相分析;宏观摄像台适用于分析金相照片、底片及实物等。 为了能用计算机存贮、处理和分析图像,首先需将图像数字化。一帧图像是由不同灰度的一种分布所组成,用数学符号表示为j=j(x,y),x、y为图像上像素点的坐标,j则表示其灰度值。所以,一帧图像可以用一个m×n阶矩表示,矩中每个元素对应于图像中一像素点,aij的值即表示图像中属于第i行第j列的像素点的灰度值。CCD摄像机(电荷耦合器件摄像机)就是一种图像数字化设备。金相试样上的显微特征经过光学系统后在CCD上成像并由CCD实现光电转换和扫描,然后作为图像信号取出,由放大器进行放大,并量化成灰度级以后贮存起来,从而得到数字图像。 计算机根据数字图像中需测量特征的灰度值范围,设定灰度值阈值T。对于数字图像中任何一个像素点,若其灰度大于或等于T,则用白色(灰度值255)来代替它原来的灰度;若小于T则用黑色(灰度值0)来代替原来的灰度,可以把灰度图像转化为只有黑、白两种灰度的二值图像,然后再对图像进行必要的处理,使计算机能方便对二值图像进行粒子计数、面积、周长测量等图像分析工作。若采用伪彩色处理,则可把256个灰度级转换成对应的彩色,使灰度很接近的细节和其周围环境或其他细节易于识别,从而改善图像,更利于计算机处理多特征物图像。 图像分析仪通常都具有下列基本图像处理、分析功能:图像采集。 图像增强和处理:包括阴影校正,伪彩色处理,灰度变换,平滑、锐化;图像编辑等。 图像分割。 二值图像处理:包括形态学处理(腐蚀、膨胀、骨胳化等),二值图像的算术运算、联接、自动修补等。 测量:包括特征物统计,对其周长、面积、X/Y投影、轴长、取向角等参数进行统计测量。 数据输出。

  • 讨论图象与图像的区别

    近日公司购买了一台岛津的原子吸收分光光度计,前期忙没有细看产品使用说明书,待后来细看总觉得说明书上“图象”二字有问题,从网上查了一下,觉得下面这篇博文说的有道理,现引用该文章,以说明“图象”与“图像”的区别,请大家讨论。如果二者真如文章所说,我觉得是某些公司不负责任。研究图像处理的人查看论文的时候经常会遇到"图像“,”图象“的2种说法,今天好奇,想知道哪一种是正确的,在网上查了一下,得到如下结论: 根据现行国家规范,“图像”是正确的,“图象”是错误的。“像”与“象”是有区别的。要点如下: 1.“象”是“像”的古字,“像”是由“象”引申而得的后起字。“象”本义是一种兽类,《说文解字》:“象,南越大兽。”由此引申出自然界的“形状”“样子”“外貌”等一系列意义。现代汉语中,“象”只承担“自然界、人或物的形态、样子”这一意义,如“现象、形象、印象、意象、迹象、假象、表象、物象、景象、气象、天象”,都是自然界表现出来的。 2.“象”在语言发展历程中引申出“临摹”“酷似”意义,这时出现了分化字“像”。“像”由于加了人字旁而更有表意功能,它分担了“象”原来具有的“用模仿、比照等方法制成的人或物的形象”以及“模仿”等一系列与人类活动有关联的意义。如“人像、画像、肖像、遗像、图像、实像、虚像、录像”。在古汉语中,“象”与“像”在这类意义上常常混用。 3.清代学者段玉裁为《说文解字》注:“按古书多假象为像。”《说文解字》:“像,似也。”段玉裁注:“凡形像、图像、想像字皆当从人,而学者多作象。象行而像废矣。”在汉字改革初期,汉字简化方案中曾规定以“象”代“像”。1964 年公布的《简化字总表》将“象”作为“像”的繁体字处理,并在脚注中注明“在‘象’和‘像’意义可能混淆时,像仍用像”。这个将“像”“象”混用的规定在学术界引发了很大争议。第二版的《现代汉语词典》仍坚持用“图像”而不是“图象”。后来1986 年国家语言文字工作委员会重新公布《简化字总表》时,综合考虑段玉裁的意见和古汉语语料,将“象”与“像”分化,确认“像”为规范字,不再作为“象”的繁体字。由“像”承担“象”的部分后起意义。(但段玉裁主张“形象”作“形像”不被支持)只有在部分词中保持历史原貌,如“象形字”。 4.1990 年全国科技名词委曾经作出了“关于科技术语中‘象’与‘像’用法的意见”的规定,其中有一条是:在作形状,作名词性词素构成的复合词时用“象”,如:图象、录象、摄象等等。但90 年代中后期几种权威性语文辞书在修订或出版时都反对这种处理,而依照语文规范改为 图像、录像、摄像等等。迄今为止,仍有部分理科教材使用“图象”,这是历史原因造成的。 5.2001 年 10 月 18 日,全国科学技术名词审定委员会和国家语言文字工作委员会召开“关于‘象’与‘像’用法研讨会会议纪要”,据语文界专家意见分化,现象、形象、印象、意象、迹象、假象、表象、物象、景象、气象、天象、星象、浑象、蚀象、体象、危象、心象、想象等用象,人像、画像、肖像、遗像、图像、实像、虚像、声像、摄像、录像、放像、显像、视像、像章、像片等用像。“想象”推荐作“象”不作“像”。2002年,国家语委发布规范《第一批异形词整理表》,将“图像”“录像”“显像管”等定为推荐词形,再次引导社会规范使用。 6.即使是在繁体字使用地区,混用“象”与“像”也被看作不规范。在1998年版台湾《国语辞典》中明确指出,以“象”代“像”只是古汉语中的通假用法,在现代汉语中是错误的。 7.有的现代汉语语词中,有“象”也有“像”,如物象、物像都有,但注意两者意义不同!!至于想像-想象一组,汉语改革初期曾依段玉裁意见推荐“想像”,部分旧版科学类书籍用“想像”不用“想象”就是这个道理。后来的《辞海》《现代汉语词典》均选“想像”为推荐词形。但最近语言学家考虑到“想象”因1964年的失误而为广大群众所用,词频远远高于“想像”,且在古书《韩非子》中亦有对“想象”词源的说法,因而重新选择“想象”(及“想象力”)为规范的科学名词,2005年新版《现代汉语词典》依此将“想象”处理为推荐词形。 最后再强调一遍,“图像”的“像”表示“用模仿、比照等方法制成的人或物的形象”,和“好像”的“像”表示“模拟”意义一样,是坚决不能写成表示“自然界、人或物的形态、样子”意义的“象”的!owod说的“将来”毫无根据!汉语词汇规范化的一个很重要的原则,就是保持其稳定性,不会随随便便将已推行了几十年(况且台湾地区不用简化字,“象”“像”照样不能混用)的规范再改过来!本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/wqvbjhc/archive/2010/12/01/6047041.aspx

  • 【求助】请教关于图像处理软件

    我是图像处理的新手,刚刚接触。想请教一下大家用什么软件比较好。主要想对软件做以下分析:图像增强,边缘检测,面积统计,灰度分布,特征值提取等。看大家的发言,image-pro比较好,可是这个软件好像不能免费得到。想请大家推荐一下该用什么软件,(最好能免费使用的,有破解版的也行,不好意思的说)十分感谢

  • 动态图像仪与静态图像仪的发展

    动态图像仪与静态图像仪的发展一、图像法基本原理 根据在测量过程中颗粒是否运动,颗粒图像分析技术可分为静态颗粒图像分析仪与动态颗粒图像分析仪两种。 图像法是颗粒分析中唯一具有形貌分析能力的方法,可进行球形度,长径比等参数的分析统计,对某些行业有重要的意义。 颗粒在图像仪上成像,组成图像的最小单位是像素,每个像素有特定的尺寸。图像粒度仪就是通过统计每个颗粒在图像中所占的像素的多少,然后计算出它的面积,进而求出等面积圆的直径。准确的图像法测量都依赖于两个方面。一是图像获取,获得高质量额颗粒图像;二是图像处理,要有高效而准确的图像处理算法。二、我国动态图像仪的发展 静态图像仪是上个世纪八十年代才研发推出,由于静态颗粒图像仪取样的颗粒数有限,影响统计的代表性,以及存在颗粒数取向误差。上世纪末国外开始研发态图像仪,如荷兰、英国、法国、德国等不同品牌产品相继推出。我国上海理工大、天津国国家海洋研究中心也跟着研究过,但直到2007济南微纳才首次研发出国内第一台动态颗粒图像分析仪Winner100。并通过了济南市科技局的鉴定,专家评定为国内首创,达到国际先进水平。三、静态图像仪与动态图像仪的对比Winn99E显微颗粒图像仪是济南微纳研制的一款静态图像仪。使用过程是把少量样品放在载玻片上,用相应的分散介质分散均匀后。把载玻片放在显微镜载物台上,将物镜调至相应的放大倍数,让颗粒在镜头内显示清晰为止,即可观察颗粒的大小分布与形貌特征。也可以通过软件在电脑屏幕上直接观察颗粒的大小分布与形貌特征,通过图像分析,包括:灰度图、自动二值化、收缩、膨胀、消除边界黑点、消除颗粒粘连、消除空心、颗粒分析8种操作。软件会自动完成一系列图像处理操作,并进行颗粒的分析。静态图像分析仪最大的优点就是可以直观的观察样品的形貌,在小颗粒分布及形貌分析上更占优势。虽然静态颗粒图像仪有观测直观、数据丰富,但是取样量少、测试代表性不强。但是静态图像仪的市场价格比较便宜,在行业应用也比较普遍。 Winner100D动态颗粒图像仪,测样原理是由湿法激光粒度仪的循环系统配备先进的高速摄像系统,动态进样采集,通过软件分析获得具有代表性的粒径分布数据。 Winner100D在winner100的原理基础上,创新设计出封闭式大远景深远心光路,配合约束式平槽样品窗,大大提高颗粒清晰度。Winner100D已经解决了动态图像仪对运动图像易出现拖尾现象,成像质量也差,看不清颗粒形貌等问题。值得一提的是,本款产品软件中增加了颗粒圆形度(磨圆角)的计算模块,对颗粒圆形度的分析符合美国石油天然气标准:API_RP58.并且适应应用此版图的地质、磨料、石油天然气等行业规范、此计算模块为国内唯一,对于以上行业具有重要意义。此外,winner100D还是第一台应用了样品窗自清洗装置的颗粒测试设备,延长样窗寿命,但换洗频次大大降低,甚至可以终身不需拆洗。动态颗粒图像仪比较静态颗粒图像仪而言,测量的颗粒数目要更多,取样好代表性强;并且在介质中分散流动中进行测量,分散效果好,无需后续软件进行分割处理(注:图像分割算法再好结果也会损失颗粒信息)。动态颗粒图像仪在实际应用中更加的智能、快捷,操作简单,也是图像技术发展主要方向。四、图像技术的领先发展动态图像仪对微小颗粒而言,成像光路系统放大倍率越大,其景深也就越小,这一点严重制约动态颗粒图像仪的发展,如何将流动中的颗粒约束到一个平面上,这是动态颗粒图像仪最关键部分。目前国内外现有的方式借鉴了细胞测量中的流体聚焦技术----鞘流技术,即将待测颗粒样品流入鞘液中,鞘液对其进行约束,从而获得清晰的颗粒图像。这种技术能够很好的解决颗粒聚焦问题,但是其制备鞘液比较复杂,成本也很高,测量时间也较长,而且的关键部件鞘流池如果有大的颗粒很容易发生堵塞现象,清理疏通也都很费时费力。Winner100、Winner219采用新技术对动态颗粒进行平面约束,使得颗粒在流动的过程中都能够保持在一个平面内流动,从而获得清晰的颗粒图像,且操作简单方便。其中Winner219采用静态动态双模式进行测量,采用同一光路,只需更换测量平台即可进行方便切换。静态图像测量模式平台采用二位运动控制精密平台,可选择上部光源或者背部光源进行打光,制备好样品后,将样品放置于平台上即可进行自动化测量,采集图像完毕后软件会自动进行图像拼接,能够将样品拼接成完整图像,从而使得测量结果更加智能精确可靠。动态图像测量模式下,更换为动态颗粒测量平台(液路循环系统),颗粒在约束平面内流动的过程中进行拍照测量,简单实用,易于操作。Winner219全自动颗粒图像仪是目前国内最先进的图像仪器,也是机械视觉技术工业实用化的经典之作。随着技术的发展,相信不久的将来微纳将会在技术上自我超越,研发出更高端的图像仪器。

  • 求助,SU8010没有图像

    前两天对SU8010做了烘烤,今天机械合轴的时候发现居然没光斑。电镜的图像框里就只有黑色,调了亮度对比度都没用,高压也加上了,电流也正常,软件也没有报警,就是没有图像http://simg.instrument.com.cn/bbs/images/default/em09509.gif。哪位懂8010的大神帮看看可能是什么原因,十分感谢。

  • 【求助】(ok)求助关于图像处理分维方面的文献

    一、【作者】:薛东辉,朱光喜,朱耀庭【题名】:基于尺度分维的图像边缘检测方法研究【期刊】:华中理工大学学报【年卷期】:1996,24(8):1-3二、【作者】:薛东辉,朱光喜,朱耀庭【题名】:一种基于分形测度的图像边缘检测方法【期刊】:华中理工大学学报三、【作者】:马兆勉,陶纯堪【题名】:区域分形与人工目标检测【期刊】:物理学报,1999,48(12)2202-2207四、作者:朱红题名:图像分形特征提取快速算法期刊:西安电子科技大学学报,1998,25(1)119-121

  • 【原创】Low Power低能SEM 图像较差原因查询

    我们的JSM-6700F SEM 现在的Low Power 低能0.5KV 效果较差, 我们公司在香港有一台同样型号的SEM, 它的低能效果比我们好多了, 微小的差别就是香港的JSM-6700F 配了个LN2液氮杜瓦罐, 另外香港的二级真空泵是油扩散泵,我们的是涡轮分子泵.为了排除我们这边工程师操作的个人因素, 我们让香港那边的工程师过来调了3个多小时也调不出理想的效果.附图为HK SEM 低能图片, 我们的图片与之相比显得图像质量较粗糙,可能是信/噪比过大 或者是其他原因?请大侠们指教一二.谢谢.

  • 【原创】固体光图像传感器的器件技术的开展现状与趋向

    固体光图像传感器的器件技术的开展现状与趋向  1、固体光摄像器件—理想的星载光图像传感器  固体光电子图像传感器技术包括可见光硅图像传感器和短波、中波和长波红外焦平面阵列技术。由于图像传感器器件的不时开展,目前的固体图像传感器从可见光和近红外波段的CCD器件开展到了短波、中波和长波红外焦平面阵列。与星载反束光导摄像管相比起来,由于固体图像传感用具有一系列优点,十分适用于用作空间星载图像传感器,如:  (1)体积小,重量轻;  (2)无图像扭曲;  (3)光响应工作波段宽,可见光硅CCD和CMOS图像传感器的光谱响应可从紫外区延伸到红外区,而红外焦平面的光谱响应波段掩盖了从1mm~14mm和远红外更宽的电磁波谱区;  (4)高分辨率,可在焦平面上集成数十万、百万乃至千万像元的大格式阵列、完成大视场空间传感器;  (5)同焦平面信号处置,像CCD、CMOS和各种红外焦平面阵列器件,由于微型加工技术的开展,可采用混合式或单片集成方式把焦平面上光电转换的焦平面探测器阵列与信号处置电路集成微小的集成电路块,完成同焦平面信号处置;  (6)采用电子自扫描或注视工作形式工作,简化和完整取消机械扫描,完成系统小型化和微型化;  (7)低功耗工作,数伏电压下即可工作;  (8)低本钱;  (9)牢靠性高。  总之,小型化的小体积、轻重量、低功耗、低价钱和高性能、高牢靠性的固体空间光图像传感器为空间系统的设计和应用提供了极大的灵敏性。  2、可见光固体图像传感器  可见光固体图像传感器已使成像技术完成了小型、低功耗、低本钱和便携式应用、使成像系统技术了发作了反动性的变化。虽然迄今为止已开展了多种固体摄像器件,但是CCD器件和已在快速开展的CMOS图像传感器却占领了整个该范畴的95%的份额,CMOS是继CCD之后的后起之秀。  (1)图像传感器件  CCD图像传感器件技术已开展了三十多年,早已是成熟和提高应用到各种军用和民用系统的器件,在红外焦平典型面阵列技术适用化之前很长一段时间极受军用注重,目前仍在可见光波段普遍采用。  ①像元集成度:摄像阵列像元的几是摄像系统分辨率性能的关键性要素,目前的CCD器件已可依据系统应用目的请求同芯片集成或多芯片拼接,或多器件组合成恣意像素数的器件。  · 线阵:常用单芯片像元集成度为512、1024、2048、4096、5000、7450和8000等;多芯片像元集成是用二个或多个单线阵芯片组合起来构成数万像元的专长线阵列,常用作星载或机载多光谱传感器;  · 时间延迟与积分(TDI)阵列:常用的单芯片是2048×96、2048×144和4096×96的阵列;多芯片是用多个单芯片拼合起来,常用作星载或机载推帚式扫描传感器,加拿大的DLSA公司制造的这种传感器在全球很有名;  · 面阵列:大格式阵列像元集成度为1024×1024、2048×2048、4096×4096 少数如科学研讨和天文应用方面阵列达7000×9000、8192×8192和9126×9126元,最大的9126×9126元阵列是美国Farchild Imaging公司研制的;  ②像元尺寸:CCD的像元尺寸不能太小,过小将影响曝光性能,目前的大格式阵列像元尺寸已小达7.0mm×7.0µm;  ③灵活度,通常为几个Lux~Lux-1,加上加强器处于微光工作形式时为Lux-3;采取冷却时为Lux-5~Lux-7;  ④分辨率:大型阵列通常的电视分辨线为1000×1000TV线,依据系统请求可更高,光学尺寸通常为2/3、1/2、1/3、1/4in.,目前最小已做到1/7in.。  (2)CMOS图像传感器件  由于CMOS图像传感器件与CCD相比功耗更低,可完成极高帧速工作和低本钱化,.本钱仅为CCD的1/4,因此开展极快,可能最终在某些范畴取代CCD。  ① 像元集成度:由于器件技术的停顿,目前的像元集成度常用的为几十万到100万像素,如512×480和1280×1000,已能制出4096×4096和6144×6144元的阵列;  ② 像元尺寸:由于制造技术的不时改良,像元尺寸已可小达3.3mm×3.3mm;  ③ 高灵活度:在近红外光谱区(900nm)光电转换效率高达50%;  ④ 宽动态范围:CMOS的动态范围通常为60dB以上,已到达170dB;DALSA CMOS-1M28/1M751024×1024元摄像机的动态范围也高达1,000,000:1。  ⑤ 高帧速和超高帧速:随着CMOS图像传感器技术的开展,2003年中不时报道了高帧速和超高帧速CMOS图像传感器,美、日公司在高帧速工作方面获得了显著的停顿.。DALSA和红湖公司的CMOS图像传感器帧速居然高达100000frame/s。  ⑥ 功耗:CMOS最明显的特性是低功耗,目前高帧速工作时仅为50mW。  (3)趋向  CMOS图像传感器是目前和将来该范畴正在开展中的主流技术。CCD主要是在应用上想方法,依据不同的应用目的和系统设计计划组合应用。由于CCD图像传感器技术极为成熟, 预期最终CMOS图像传感器难以取代CCD图像传感器,将是二者长期共存的场面。但是, CMOS图像传感用具有本钱低、集成度高、低功耗的突出优点,假如再处理了影响性能和图像质量的噪声问题,CMOS就将成为极佳选择。  3、红外焦平面阵列  红外焦平面阵列技术的开展已惹起了商界和军界军火商的极大关注。红外焦平面阵列技术对军事配备更新换代的深远影响正在改动现代战场作战的特性和概念。  刚完毕的伊拉克倒“萨”战争再次显现了在现代战争

  • 动态颗粒图像分析仪的研制

    动态颗粒图像分析仪的研制摘要:本文论证了研制动态颗粒图像分析仪的必要性与背景, 介绍了winner100实现动态颗粒测试的方法以及技术特征。评价了动态颗粒图像分析仪的实用价值与科学意义。关键词.. 动态颗粒, 图像分析, 粒度与形状,3 维一、问题的提出颗粒是组成材料的基本单元, 影响材料的性能的不仅是颗粒的化学组成, 颗粒的大小与颗粒的形态对材料的性能影响巨大, 因此颗粒粒度与形态的检测越来越受到各行业的重视。目前检测颗粒大小和颗粒形态的方法有多种,激光粒度分析仪、沉降粒度仪、电阻法粒度亦、颗粒图像分析技术是最常用的技术。激光粒度分析仪、沉降粒度仪、电阻法粒度仪, 只能检测颗粒大小, 不能检测颗粒形状;颗粒图像分析技术是一种不仅可以检测颗粒大小也可以检测颗粒形状对唯一方法, 但是由于此种技术有几个致命的缺点限制了它的进一步发展:1.样品制备困难。颗粒在载玻片上很难得到充分的分散, 由于颗粒粘连使得颗粒分析的准确性大受影响; 2.颗粒处于静态, 非球形颗粒的取向会对测试结果造成偏离;3.由于显微镜的视场有限, 被测得颗粒数目受到很大限制, 因此取样的代表性差, 重复性不好。由于以上问题, 颗粒测试中急需一种性能更加优越的测试装置, 能够获得颗粒的准确图像, 操作简便, 满足颗粒形状和颗粒粒度分析的更高要求。国际上荷兰安米德公司、德国新帕泰克公司、德国莱驰公司均推出了同时测定颗粒粒与形状的图像分析仪。国内尚无此种产品, 济南微纳公司通过3年的攻关研制的winner100 颗粒图像分析仪填补了此项空白。二、动态颗粒测试的方法与技术特征Winner100突破了传统的颗粒图像仪的工作模式, 采用超声样品分散系统分散颗粒, 高速摄像头对动态颗粒图像进行采集, 1微秒可以采集一幅颗粒图像, 用计算机对图像进行分析处理, 达到对颗粒粒度与形态进行三维同时测试的目的。其主要技术特征有:1.彻底改变了手工制样操作繁琐的局面, 样品制备操作非常简单, 分散效果好; 2.采用功能强大的动态颗粒图像分析软件, 具有高速采样、自动颗粒图像处理, 实时显示当前图像、实时分析粒度分布、连续统计分析结果, 处理策略自行编程, 多种粒径定义选择, 粒度统计、形状分析等多种功能。打印报告允许自行编辑。3.动态测试使颗粒采样数量无限增加, 统计结果真实可靠, 代表性好、重复性高;4.动态测试使颗粒不同侧面得到采样, 实现了三维测试, 彻底消除了二维测试的颗粒取向误差;粒度测试结果可以与激光粒度分析仪比美。5.winner100动态图像分析专用软件具有强大的图像处理功能;6.支持多种粒径选择和多种粒度分布, 具有多种图像处理功能及其集成处理, 支持图像采集间隔设定与实时显示颗粒形貌与当时粒度分布和累计粒度分布, 记录并显示粒度波动图, 可以输出多种分析图表, 高性能的软件使使用者的颗粒分析工作变得十分轻松方便。7.本成果不仅可用于实验室颗粒分析, 也适用于颗粒在线粒度与粒形监测。对杜会经济发展和科学进步的意义本项目突破了显微静态图像分析的局限, 在国内率先提出动态颗粒图像分析的概念;由于颗粒运动中测试, 克服了二维颗粒图像分析的弊病, 大大提高了采样代表性, 消除了颗粒取向误差, 使颗粒粘连问题彻底解决。本项成果克服了静态颗粒图像仪的缺陷, 提供了一种对运动颗粒同时进行粒度与形状分析的先进手段, 具有操作简单, 测试范围广, 代表性好, 准确可靠, 直观可视, 适用于1-6000微米的各种固体颗粒。可以广泛应用于建材、化工、石油、金属与非金属、环保、轻工、国防等众多领域的实验室和在线颗粒粒度与形状分析。无疑, 对于提高我国各行业颗粒测试水平和经济发展具有重要的实用价值。颗粒测试的基础是颗粒的表征, 本项成果提供了一种颗粒动态测试的实用手段, 因此颗粒的三维表征问题就提到了议事日程上来, 颗粒的三维表征对颗粒学的进步与发展具有重要的意义。[color=blac

  • 【求助】求助高分辨图像分析

    【求助】求助高分辨图像分析

    做的Ni高分辨图像,对红色选定区域进行FFT变换,Apply Mask后得到的FFT花样标定后发现各点均为(220)晶面,再对花样进行Invese FFT 后得到的二维晶格象,测量3个方向的晶面间距均为0.2034nm 对应Ni(111)晶面间距 (对原高分辨图像测量亦得到相同的晶面间距),这样高分辨的晶面间距和衍射花样的标定结果就无法自洽。由于Ni具有 FCC和 HCP 2种结构,所以对照Ni XRD结果和 Ni FCC 和HCP标准图谱发现 只能和 FCC的图谱对应,和HCP的峰位相差较远。(其中测试出的Ni只有峰位为76度的(220)方向的峰,具有高取向性)。由于对多种原因进行分析 对 HRTEM图像不能自洽的问题都得不到合理解释,现求助各位老师,同学,期待大家可以给与解答。[img]http://ng1.17img.cn/bbsfiles/images/2007/07/200707041057_57117_1843436_3.jpg[/img]

  • 【求助】分享下高分子的SEM电镜图像,求分析。

    【求助】分享下高分子的SEM电镜图像,求分析。

    各位前辈,老师们,这是最近做的高分子实验的sem镜像图,两种材料为何图像是如此的想象?两者有何不同之处???不知按照这样的结构图看出的是什么样的结构???该如何分析?在其他帖子有看到sem镜像下是显示的晶粒,为何看这图有看不出所谓的晶粒?是不是因为材料的原因?请大家赐教,十分感谢!!上面两图是醋酸纤维素 下两个图是聚偏氟乙烯http://ng1.17img.cn/bbsfiles/images/2011/05/201105262139_296395_2305846_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/05/201105262145_296396_2305846_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/05/201105262146_296397_2305846_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/05/201105262146_296398_2305846_3.jpg

  • 【分享】图像分析仪在金相分析中的应用2

    一、图像分析仪的原理及功能简介  图像分析仪的系统由金相显徽镜和宏观摄像台组成的光学成像系统,其用途是使金相试样或照片形成图像。金相显微镜可直接对金相试样进行定量金相分析;宏观摄像台适用于分析金相照片、底片及实物等。  为了能用计算机存贮、处理和分析图像,首先需将图像数字化。一帧图像是由不同灰度的一种分布所组成,用数学符号表示为j=j(x,y),x、y为图像上像素点的坐标,j则表示其灰度值。所以,一帧图像可以用一个m×n阶矩表示,矩中每个元素对应于图像中一像素点,aij的值即表示图像中属于第i行第j列的像素点的灰度值。CCD摄像机(电荷耦合器件摄像机)就是一种图像数字化设备。金相试样上的显微特征经过光学系统后在CCD上成像并由CCD实现光电转换和扫描,然后作为图像信号取出,由放大器进行放大,并量化成灰度级以后贮存起来,从而得到数字图像。  计算机根据数字图像中需测量特征的灰度值范围,设定灰度值阈值T。对于数字图像中任何一个像素点,若其灰度大于或等于T,则用白色(灰度值255)来代替它原来的灰度;若小于T则用黑色(灰度值0)来代替原来的灰度,可以把灰度图像转化为只有黑、白两种灰度的二值图像,然后再对图像进行必要的处理,使计算机能方便对二值图像进行粒子计数、面积、周长测量等图像分析工作。若采用伪彩色处理,则可把256个灰度级转换成对应的彩色,使灰度很接近的细节和其周围环境或其他细节易于识别,从而改善图像,更利于计算机处理多特征物图像。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制