当前位置: 仪器信息网 > 行业主题 > >

分子能级

仪器信息网分子能级专题为您整合分子能级相关的最新文章,在分子能级专题,您不仅可以免费浏览分子能级的资讯, 同时您还可以浏览分子能级的相关资料、解决方案,参与社区分子能级话题讨论。

分子能级相关的资讯

  • 中科院揭示量子点激子精细能级裂分及量子拍频新机制
    近日,中科院大连化学物理研究所研究员吴凯丰团队等在胶体量子点超快光物理研究中取得新进展。团队观测到CsPbI3钙钛矿量子点中激子精细结构裂分导致的系综量子拍频,并提出了一种通过温度诱导晶格畸变进而调控裂分能的新机制。相关成果发表于《自然—材料》。在半导体量子点中,形貌或晶格对称破缺导致的电子—空穴各向异性交换作用使激子能级发生精细结构裂分(FSS)。FSS亮激子态可用于量子态相干操控或偏振纠缠光子对发射,观测和调控FSS对这些应用至关重要。由于FSS能量对量子点的尺寸、形貌非常敏感,通常需要在液氦温度下测定单个或少数量子点的发射谱来测定FSS。因此,在系综水平观测FSS极具挑战,尤其是定量调控FSS尚未有报道。本工作中,研究团队利用圆偏振飞秒瞬态吸收光谱(即瞬态圆二色谱),在液氮到室温区间测定了溶液合成、成本低廉的CsPbI3钙钛矿量子点系综的亮激子FSS。研究发现,FSS能量可通过量子点尺寸进行调控,在液氮温度下最高可达1.6meV。更有趣的是,同一样品的FSS能量展现出强烈的温度依赖性,温度越低,裂分越大,这在以往的外延生长或胶体量子点体系都未有观测到。通过变温的晶格结构表征,结合美国能源部能源前沿研究中心Peter Sercel博士的有效质量模型理论计算,研究团队发现这种温度依赖的FSS源于CsPbI3钙钛矿高度动态的晶格结构:降温能加剧Pb-I八面体扭曲,降低晶格对称性,进而增大FSS。此外,这些晶格扭曲的正交相量子点却仍然拥有准立方相晶面,该特性使亮激子之间产生避免交叉的精细结构能量间隙,实验上观测到的系综层面量子拍频正是对应于该能量间隙。该工作精准测定了胶体量子点系综的亮激子精细结构裂分,提出了通过温度诱导CsPbI3量子点晶格畸变进而调控亮激子裂分能的新原理,展示了其在量子信息科学领域的重要应用潜力。文章链接:https://doi.org/10.1038/s41563-022-01349-4
  • 欧洲大型强子对撞机刷新质子流对撞能级纪录
    据美联社报道,世界最大的粒子加速器——欧洲大型强子对撞机(LHC)3月19日刷新了由它保持的一项世界纪录,对撞机内的两束质子流被分别加速至3.5万亿电子伏特的能级,是原纪录的三倍。   欧洲核子研究中心称,两束质子流分别以3.5万亿电子伏特的能级在大型强子对撞机所在的环形隧道中运行。大型强子对撞机于2003年开始兴建,投入达100亿美元,位于法国和瑞士边境地下100米深、长17英里(约合27公里)的环形隧道中。   预计,在未来几天科研人员将使两束质子流对撞,展开一系列试验来研究原子内部微小粒子的奥秘,以揭开物质的形成之谜。   去年11月30日,大型强子对撞机(LHC)内的两束质子流被加速至1.18万亿电子伏特的能级,比之前该记录的保持者——美国费米国家实验室加速器——创造的能量多出20%,成为世界上“最强大的机器”。美国费米国家实验室加速器2001年曾创下0.98万亿电子伏特的纪录。   大型强子对撞机以创纪录的能级运行,将有助于揭开粒子物理的一些未解之谜,比如暗物质和暗能量是否存在。科学家还希望在微观上查明宇宙大爆炸之后瞬间内所发生的一切。科学界普遍认为,宇宙诞生于大约140亿年前的大爆炸。   自从去年大型强子对撞机重启以来,欧洲核子研究中心报告称已经取得了一系列成就。大型强子对撞机最初开始启动后,遭遇了一系列故障,科研人员不得不花费14个月时间对其进行维修和改进。去年冬天,欧洲核子研究中心用2个半月时间对大型强子对撞机停机进行改进,以做好准备迎接更高能级的对撞试验。   欧洲核子研究中心加速器负责人史蒂夫迈尔斯说:“将质子流加速到3.5万亿电子伏特能级表明大型强子对撞机的整体设计是可靠的,也表明我们自其2008年9月关闭以来所做的改进是有效的。”   不过,大型强子对撞机自上月底重新启动后显现两处“缺陷”,科研人员决定让这一世界最大的粒子加速器2011年底停机,为期将近1年,以实施“修复”。   欧洲大型强子对撞机是世界最大的粒子加速器,用于研究宇宙起源和各种基本粒子特性。大型强子对撞机在接近绝对零度的温度下(温度低于外太空)运行,以便让大约2000个超导磁体最有效地引导质子。欧洲核子研究中心(CERN)是世界上最大的粒子物理研究中心,现有20个成员国,同时获得了日本、印度、俄罗斯和美国等众多国家的支持。
  • 大型强子对撞机“开撞” 刷新最高能级纪录
    大型强子对撞机30日启动总能量达7万亿电子伏特的质子流对撞,成功刷新质子流对撞最高能级纪录,首次达到设计目的。   成功对撞   对撞试验于当地时间30日6时(北京时间30日12时)开始。按照计划,两束能量均为3.5万亿电子伏特的质子流将在超导磁铁吸引下“迎头相撞”。   法新社报道,由于质子流中部分质子流失,首次试验失败。   欧洲核子研究中心负责人罗尔夫霍耶尔说:“我们不应忘记这是一台新机器……我们要为暂时性的小问题做好准备,我相信我们会克服这些小问题。”   核子研究中心束流部门负责人保罗科利尔说,“当你有这样一台复杂机器时就会出现这种问题……我们会重新注入(质子)。”   数小时后,两束质子流在第三次尝试时成功对撞。核子研究中心控制室内响起掌声。   大型强子对撞机2008年9月10日正式启动,一度因氦泄漏停机,历时14个月、花费4000万美元后得以修复。   去年年底,对撞机重启后实现总能量高达2.36万亿电子伏特的质子流对撞,创下质子流对撞能级纪录。   对撞不易   两束质子流19日开始在大型强子对撞机内流通,为30日对撞做准备。尽管每束质子流带有上万亿个质子,但质子极为微小,在两束质子流交汇过程中发生对撞的质子数量很少。   欧洲核子研究中心加速器及技术负责人史蒂夫迈尔斯说,令质子发生对撞堪称一项挑战,“这就像从大西洋两岸(向对岸)扔出一些针,令这些针在半路上迎头相撞”。   路透社认为,虽然两束质子流成功迎面交汇,质子第一次发生对撞也可能需数小时,甚至数日。   大型强子对撞机自问世以来受到学术界热切关注,但也遭受不少疑虑。一些人甚至担心,对撞试验会生成黑洞以致地球毁灭。   欧洲核子研究中心科学家否认对撞试验会对人类构成威胁。他们说,对撞产生的任何“洞”都将在顷刻间消失,不会产生任何危害。   能量之源   大型强子对撞机建于瑞士和法国交界地区地下100米深处、总长大约27公里的环形隧道内,大约7000名科研人员参与对撞机建设。   对撞机旨在借助总能量达7万亿电子伏特的质子流对撞模拟宇宙大爆炸后最初状态,以便对宇宙起源和各种基本粒子特性展开深入研究,包括“寻找”希格斯波色子以及研究暗物质与暗能量。   按照粒子物理学标准模型预言,希格斯波色子是物理学家从理论上推断出的一种基本粒子,是物质的能量之源。研究人员希望借助对撞试验发现希格斯波色子的“真面目”,证实这种粒子的存在。   欧洲核子研究中心科学家德斯皮奥那哈齐弗蒂亚杜说,希格斯波色子将为探寻生命起源提供线索。   按照核子研究中心负责人霍耶尔的说法,对撞试验成功后,电脑将整理出大量试验数据,可能需花费数月才能得出科学结论。   霍耶尔说,研究人员希望在今年年底前对暗物质“有所发现”。
  • 为新药研发打造高能级平台|清华大学膜生物学国家重点实验室临安分室成立
    在国家积极推动科技成果应用转化的时代背景下,越来越多的科学家、科研人员走上了创新及成果转化之路。这不,清华大学的科学家们就来临安开展科技创新及成果转化了。今天,清华大学膜生物学国家重点实验室(简称膜国重)膜结构及人工智能生物学分室落地青山湖科技城,并举行揭牌仪式。膜生物学是研究什么的?膜生物学国家重点实验室主任、清华大学生命科学学院教授俞立给我们做了科普:身体疾病均因生物蛋白异常所致。膜生物学就是专门从事细胞膜蛋白的生物结构与功能研究的,然后研发出能修复变异蛋白的抗体或生物分子。当然,发现抗病分子只是科学研究走出的第“1”步。“因为也许这个分子有很强的毒副作用,需要对其进行不断地改良和驯化,才能用于治病。”俞立介绍,所以从发现生物分子到走向临床应用,再到商业化推广,还要走很多步,也许是“1-10”,甚至是“1-100”,这就是为什么一款新药从研发到上市要历经十多年时间。膜生物学实验室要做的就是发现和改良可以用来治病的分子,为新药研发提供基础研究。具体包括:药物靶点结构解析、膜蛋白结构助力药物研发、生物大分子的人工智能(AI)解析、高端显微成像等等。俞立介绍,膜国重分室将以生物膜结构与功能的重大科学问题为核心,开发包括新型成像装置在内的结构生物学、细胞生物学的膜生物学新技术系统和设备。青山湖科技城的冷冻电镜平台,将支持膜国重团队对重要膜蛋白及新型药物靶点进行高效率、大规模、高通量的结构解析及机制研究。同时,杭州已建成国内一流水平的AI和云算力平台,膜国重团队落地临安,将有利于应用AI进行重要膜蛋白结构解析与机制研究,建设生物结构数据库,为创新药物开发提供设施和大数据支持。未来,膜国重分室将建成国内领先的生物领域公共技术开放平台,为生命健康领域的设备创新和开发提供应用测试场景,同时,还将在人才引进及科研队伍建设、科技研发及成果推广、公共技术服务平台建设等方面展开深度合作,如吸引国内外高层次人才项目,开发科技成果在临安落地转化,与当地企业开展产学研合作等等。清华大学与青山湖科技城的合作始于2021年,那一年,清华大学成果转化项目水木未来全球冷冻电镜项目落地青山湖科技城。经过两年多的建设,目前,一期6台冷冻电镜设备已全部投运,已经服务了国内和全球数百家科研单位的医药企业,为创新药物研发提供了“重器”保障,为临安打造生命健康创新策源地提供了设施和人才支撑。正是基于这样的合作背景,去年开始,临安区与清华大学一直洽谈推进高能级平台合作事宜,并就膜生物学国家重点实验室在青山湖建立分室达成了一致。青山湖科技城党工委委员、管委会副主任王力表示,青山湖分室作为支持膜国重总室基础科研成果验证及转化的高能级载体,将有力地提升青山湖科技城整体创新能级,成为立足杭州、辐射全国的生命科学创新策源及科研成果转化的驱动引擎。未来,临安将依托清华大学顶尖的科创、人才资源,积极发展生命健康领域的新质生产力。建立国内首个存储结构生物学的数据库,打造国内领先的公共技术服务平台。通过开展“政产学研”合作,全力推动生命健康领域的科技成果概念验证和落地转化,推动高端冷冻电镜等膜生物领域相关设备研发制造及产业化。
  • 科学家首次在超冷原子分子混合气中实现三原子分子的量子相干合成
    中国科学技术大学潘建伟、赵博等与中国科学院化学研究所白春礼小组合作,在超冷原子双原子分子混合气中首次实现三原子分子的相干合成。该研究中,科研人员在钾原子和钠钾基态分子的Feshbach共振附近利用射频场将原子和双原子分子相干地合成了超冷三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出了重要一步。2月9日,相关研究成果发表在《自然》(Nature)上。   量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。量子计算研究的终极目标是构建通用型量子计算机,但实现该目标需要制备大规模的量子纠缠并进行容错计算。当前量子计算的短期目标是发展专用型量子计算机,即专用量子模拟机,其能够某些特定问题上解决现有经典计算机无法解决的问题。例如,超冷原子分子量子模拟,利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位的研究,因而在化学反应和新型材料设计中具有广泛应用前景。   超冷分子将为实现量子计算打开了新思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级复杂,通过直接冷却的方法来制备超冷分子十分困难。超冷原子技术的发展为制备超冷分子提供了新途径,可绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。利用光从原子气中合成分子的研究可以追溯到20世纪80年代。激光冷却原子技术的出现使得光合成双原子分子得以快速发展,并在高精度光谱测量中取得了广泛应用。在光合成双原子分子成功后,科研人员开始思考能否利用量子调控技术从原子和双原子分子的混合气中合成三原子分子。在2006年发表的综述文章[Rev. Mod. Phys. 78,483, (2006)]中,美国国家标准局教授Paul Julienne等人回顾了光合成双原子分子过去二十年的发展历史,并指出从原子和双原子分子的混合气中合成三原子分子是未来合成分子领域的重要研究方向。由于光合成的双原子分子气存在密度低、温度高等缺点,无法用来研究三原子分子的合成。随着超冷原子气中Feshbach共振技术的发展,利用磁场或射频场合成分子成为制备超冷双原子分子的主要技术手段。从超冷原子中制备的双原子分子具有相空间密度高、温度低等优点,并且可以用激光将其相干地转移到振动转动的基态。自2008年美国科学院院士Deborah Jin和叶军的联合实验小组制备了铷钾超冷基态分子以来,多种碱金属原子的双原子分子先后在其他实验室中被制备出来,并被广泛应用于超冷化学和量子模拟研究中。   2015年,法国国家科学研究中心教授Olivier Dulieu等在理论上分析了从原子双原子分子混合气中合成三原子分子的可行性 [Phys. Rev. Lett. 115, 073201 (2015)]。 但由于三原子分子的相互作用复杂,无法精确计算,因而理论上无法预测三原子分子的束缚态的能量以及散射态和束缚态的耦合强度。中国科学技术大学研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振[Science 363, 261 (2019)]。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的观测为合成三原子分子提供了新机遇。但由于原子和分子的Feshbach共振十分复杂,理论上难以理解,能否和如何利用Feshbach共振来合成三原子分子成为具有挑战性的问题。   该研究中,合作研究小组首次实现了利用射频场相干合成三原子分子。在实验中,科研人员从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。在钠钾分子的射频损失谱上观测到射频合成三原子分子的信号,并测量了Feshbach共振附近三原子分子的束缚能。该工作为量子模拟和超冷化学的研究开辟了新道路。超冷三原子分子是模拟量子力学下三体问题的理想研究平台。三体问题十分复杂,即使经典的三体问题由于存在混沌效应也无法精确求解。在量子力学的约束下,三体问题变得更加难以捉摸。如何理解和描述量子力学下的三体问题是少体物理中的重要难题。此外,超冷三原子分子可以用来实现超高精度的光谱测量,为刻画复杂的三体相互作用势能面提供了重要基准。由于计算势能面需要高精度地求解多电子薛定谔方程,超冷三原子分子的势能面也为量子化学中的电子结构问题提供了重要信息。   研究工作得到科技部、国家自然科学基金委、中科院、安徽省、上海市等的支持。   论文链接
  • 上海印发市重点实验室建设发展方案,将引导购置高能级仪器设备
    2月8日,上海市科委制定并发布《上海市重点实验室建设发展方案(2023-2025年)》(下称《方案》)。《方案》提出,到2025年,结合本市重点产业与区域发展需求,计划重组和新建一批市重点实验室,另组建若干市区共建市重点实验室;分信息、医药、农业、制造、工程、能源、材料、数理、化学、生物学、海洋、环境、天文与空间、地球科学、综合交叉15个领域进行布局;并引导市重点实验室持续购置高能级的科研仪器设备,开展进口减免税和通关便利服务。《方案》全文如下:上海市重点实验室建设发展方案(2023-2025年)上海市重点实验室(以下简称“市重”)作为我市科技创新体系的重要组成部分,是组织高水平科学技术研究、集聚培养优秀科技人才、开展高水平合作交流的科创基地。为培育构建在沪高水平科技力量,更好推进新时期市重建设发展,按照《上海市推进科技创新中心建设条例》《2021—2035年上海中长期科学和技术发展规划》《关于进一步深化科技体制机制改革增强科技创新中心策源能力的意见》《上海市重点实验室建设与运行管理办法》等文件要求,制定本建设发展方案。一、发展现状与建设需求(一)现状与成效我市历来重视科学研究基地平台建设。自1991年至今,市科委会同有关部门,围绕信息、医药、制造、工程、材料等领域方向,遴选建设了170余家市重。经过长期发展,这些市重在开展基础研究和关键核心技术攻关、推动学科发展、引育优秀科技人才、获得创新性成果等方面发挥了重要作用。以“十三五”时期为例,市重建设取得如下成效:——成为组织开展高水平科技研究的重要基地。建设数量稳步增长,布局不断优化,基本覆盖全市区域,依托单位结构日趋多元化。支撑科研任务能级不断提升,获科研经费总额取得较大突破,承担国家级项目和每百人获立项数在上海各类科研平台中名列前茅。高质量科研产出不断涌现,攻关取得了一批高水平基础研究成果和关键核心技术,世界顶级学术期刊发表及被引、省部级以上科技奖励、PCT专利数量等领先于上海平均水平。——成为集聚培养科技人才的重要平台。人员规模持续扩大,形成了高职称、高学历、年轻化的人才队伍,集聚两院院士情况、获人才称号情况、高被引科学家占比、H指数得分等在全市范围内均名列前茅;人才团队形成梯次储备,中青年骨干成长迅速,人才高地和蓄水池作用日益凸显。——成为高效配置创新资源的实践模式。以大型科学仪器为代表的科研基础条件不断完善,对外开放共享取得新突破;在定期评估制度引导下,投入和产出综合效率达到优良,并根据领域、定位和功能不同,呈现明显分类发展态势;成为科技体制改革新抓手,有力支撑在沪高校院所加强二级研究院建设,开展“实体化”和“有组织科研”。(二)形势与需求党的二十大报告强调,必须坚持创新在我国现代化建设全局中的核心地位,强化国家战略科技力量,优化配置创新资源,优化国家科研机构、高水平研究型大学、科技领军企业定位和布局,形成国家实验室体系。党中央、国务院提出重组全国重点实验室体系,强化“四个面向”,做到支撑有力、前沿领先、根基深厚,为我市市重建设发展指明了方向、形成了参考。当前,上海科技创新中心建设正加快从形成基本框架向形成核心功能迈进。科创中心“十四五”规划明确提出,围绕“四个面向”,聚焦优势领域,加强顶层设计和统筹协调,推进国家实验室建设和发展,推动全国重点实验室优化重组,加强市重等基地布局,形成战略目标明确、运行机制高效、资源整合有力的高水平科技力量体系化布局。与此同时,新的科技发展和范式变革为市重建设发展进一步丰富内涵。科学探索不断向宏观拓展、向微观深入,科研范式呈现多学科交叉、数据驱动、平台支撑等新的特点;以新一代信息技术、生物技术为代表的前沿科技正重塑产业体系并催生“核爆点”,创造出更丰富的未来场景和创新价值。市重建设亟待顺应这一发展趋势,抢占科技制高点和产业增长点,在育新机、开新局中把握未来发展主动权。此外,应当看到,市重仍存在一些问题不足:一是适应新时期创新发展的布局尚不足,顶层设计仍需完善;二是原始创新能力和经济社会发展支撑能力还需加强;三是管理运行体制机制需不断优化,外部合作体系亟待加强;四是多部门共同推进和多元投入机制尚未形成等。这些问题都需要通过新一轮建设发展予以解决。为此,开展市重体系布局,是支撑国家级实验室在沪发展、培育我市高水平科技力量、应对科研组织和创新能力各项挑战的一项基础性、长期性工作。二、建设思路和发展目标(一)指导思想和目标全面贯彻党的二十大精神,以习近平新时代中国特色社会主义思想为引领,坚持“四个面向”,加强顶层设计和系统布局,加大体制机制创新力度,着力提升市重的原始创新力、学科带动力、应用支撑力、人才集聚力,产出一批原创科技成果,引育一批高水平科技人才,支撑相关产业创新发展,构筑上海实验室体系,全面提升科技创新策源能力,为建设上海科技创新中心提供有力支撑。到2025年,结合本市重点产业与区域发展需求,计划重组和新建一批市重,另组建若干市区共建市重,成为本市高水平科技力量的重要组成,覆盖各领域主要方向,集聚两院院士和科研团队、大型科研仪器设备,承担我市战略任务能力、支撑企业创新和产业高地发展水平、对外开放合作态势、科研基础条件和学术影响力明显提升。(二)基本原则坚持系统布局。加强顶层设计,构建市重发展体系,面向“十四五”,强化不同类别市重的功能定位和目标任务。坚持价值导向。围绕我市经济社会发展和产业需求,推动市重聚焦重大科学问题和技术难点,注重原始创新,聚集优秀人才,提升学术影响力,促进成果产业化。坚持融通发展。坚持开放合作,加强不同创新主体、市重与市重之间的协同创新,强化“全过程创新”,注重产业赋能。对标国际国内领先水平,强化市重能力建设。坚持统筹管理。加强制度建设,强化分类管理,完善评估机制。加强统筹协调,突出依托单位责任,发挥各部门和地方政府作用。引导多元投入,强化财政稳定支持。三、布局方向分信息、医药、农业、制造、工程、能源、材料、数理、化学、生物学、海洋、环境、天文与空间、地球科学、综合交叉15个领域进行布局。四、能力建设(一)强化实验室功能定位坚持“四个面向”,围绕上海市重大需求,准确定位市重研究类型,形成主攻方向,做本领域特色鲜明、优势显著的科技“特长生”。基础研究类、应用基础研究类市重侧重于提出本领域新原理、新方法,提升学术影响力,开展原始创新;前沿技术研究类市重侧重于推动本领域技术更新和自主发展,支撑关键核心技术突破和工程化实现;市区共建类市重侧重于推动科技赋能“3+6”产业、“五大新城”建设发展,提升区域创新能力。通过持续布局建设,推动研究水平达到本领域(行业)领先或具有代表性,避免“大而不强”或低水平“拼盘”。(二)强化重大科研任务引领以在沪战略科技创新平台和重要科研任务为统领,逐步支持市重融入本市科研任务攻关体系,不断提升科技创新能力和水平。鼓励开展与在沪战略科技力量的科研合作,对有条件承接、高质量完成上述任务的科研单位申报市重予以优先支持。支持有条件的市重牵头组织本领域的上海市重点科研项目,推动科研成果获得应用。(三)强化高水平人才引育鼓励市重聘请具有领导能力、德才兼备的科学家或本领域高水平的带头人担任主任,形成结构合理的高水平科研队伍,建立开放、流动、竞争、协同的用人机制,加大海外高层次人才团队引进力度。以信任为基础,支持青年人才挑大梁、当主角。优化人员职称职务晋升机制,对科研人员、实验技术人员、管理人员分类聘用和管理,制定以创新成果质量和贡献、重大攻关任务完成情况等为依据的评价标准。强化优秀人才激励机制,提供与其能力和贡献相一致、具有竞争力的薪酬待遇。鼓励制订针对优秀人才的连续支持计划。(四)强化条件保障和多元投入支持市重建设良好科研实验条件,提供一定规模、相对集中的物理空间,保障高能级科研仪器设备的高效运转,有计划实施科研仪器设备的更新改造、自主研制。鼓励开展多元化投入试点,在争取推进部门、所在区经费投入的基础上,积极吸纳企业、基金、社会捐赠、“拨投结合”等社会经费投入,同时加大成果转化收益奖励向科研团队、技术骨干等的分配力度,力争形成较高的投入强度。(五)强化产学研合作和产业赋能鼓励高校、科研院所、医疗机构、企业等加强产学研合作,共同申报市重。重视科技成果转化,引导创新链不同环节的市重建立“创新群”,开展“全过程创新”,强化创新链产业链融合,在评估中予以倾斜支持。加强知识产权全过程管理。坚持全球视野,加强国际学术交流,构建国际科技合作平台。鼓励实验室科研仪器设备、科学数据等按规定向社会开放共享,积极开展科普活动。(六)强化创新文化营造引导市重科研人员树立长期奋斗的价值观,紧紧围绕科学目标和任务,坚持潜心钻研、严谨求实,坚守学术道德和科研伦理,践行学术规范。构建良好治理结构,充分发挥学术委员会的决策咨询与学术指导作用,保持创新活力。加强科研诚信建设,推动建立容错机制,形成宽容失败、鼓励争鸣的良好氛围。五、保障措施(一)加强工作统筹建立由市科委总体统筹,市教育、国资、经济信息化、卫生健康、农业等各委办局、各区、中科院上海分院等共同参与的组织管理体系,形成多层次、多部门共同推进市重建设的工作格局。市科委会同有关部门制定市重发展政策和规章制度,指导市重建设运行,组织开展评估。各部门、各区、中科院上海分院等负责前期规划、培育和遴选推荐,开展对市重以及依托单位的日常管理。(二)完善全过程管理依据《上海市重点实验室建设与运行管理办法》,优化市重建设运行全过程管理。在遴选立项阶段,强化择优遴选布局,扎实开展建设期满验收工作。在管理运行阶段,注重学术交流制度的日常化开展,开展建设运行情况检查,提升市重运行效率。在考核评估阶段,优化市重分类评价、中长期评价、代表性成果评价机制,建立良性有序的动态重组与退出制度。(三)强化依托单位和主任责任坚持和加强党的领导,依托单位负责市重建设运行的保障,鼓励依托单位探索市重建设与人才聘评的特区政策及创新机制,推动资源、人才、项目、基地统一配置,持续加大保障力度。试点选择1—2家长期运行成效显著、组织管理有力、保障充足的依托单位,下放市重重组自主权。健全市重主任负责制,明确主任负责实验室建设发展、完成各级部门委托的重大科研任务,在科研组织实施、经费和条件配置、工作人员聘任等方面拥有自主权。(四)优化资源配置和保障支持市重以“揭榜挂帅”“定向委托”等方式承担本市科研任务。市重人才团队在同等条件下优先推荐市级表彰和奖励,为市重申报国家人才计划开辟“绿色通道”。引导市重持续购置高能级的科研仪器设备,开展进口减免税和通关便利服务。企业市重优先享受各类科技惠企政策。强化市重绩效评估结果与财政支持相衔接,持续完善市重稳定支持机制。引导各部门、所在区将市重纳入本行业、本区的高水平科技力量体系,加强人才、经费、政策等保障。六、组织实施(一)方案、规划与指南公布采取“三年方案+领域规划+每年征集指南”的公布方式。先期发布2023—2025年建设发展方案作为总体规划,在2024年底前逐个出台所有领域布局规划,定期发布公开指南。每个领域采取持续征集方式,即三年内对每个领域的市重进行持续征集,不在一次指南征集内完成全部布局。(二)推荐与评审各推进部门按照《上海市重点实验室建设与运行管理办法》要求组织开展推荐工作,对所推荐市重形成排序清单。由市科委组织开展评审,择优予以立项。同一市重通过单个推进部门推荐,不得多头推荐;联合组建的市重,由第一依托单位的推进部门推荐。针对具有重大战略意义的方向及其依托单位,可采取定向委托方式建设。鼓励存量市重根据规划开展重组,不占推荐名额限制。(三)评估与退出市科委委托第三方专业机构,以创新价值、能力、贡献为导向,按领域对市重周期内的整体运行状况进行综合评估。通过评估,引导市重参与国家和地方重大科技任务攻关、开展重组、引进海外高层次人才等。突出动态调整、优胜劣汰,对于评估成绩不佳的市重,按规定予以调整或撤销。
  • Science:STM中用氢分子制作量子传感器 颠覆传统测量技术
    加州大学欧文分校(University of California Irvine)的物理学家近日在扫描隧道显微镜(Scanning Tunnel Microscope)中将氢分子与太赫兹激光(Terahertz Laser)配合使用制作量子传感器,这项技术在测量材料化学特性时呈现出前所未有的时间和空间分辨率。图片来源:加州大学欧文分校Wilson Ho实验室。在扫描隧道显微镜的超高真空中,一个氢分子被固定在银尖和样品之间。太赫兹激光的飞秒脉冲激发分子,使其成为量子传感器。  这种新方法也可用于分析二维材料,在先进的能源系统、电子学和量子计算机中十分有用。  加州大学欧文分校物理、天文和化学系的研究人员描述了科学家如何将两个键合氢原子定位在STM的银尖和一个由平整的铜表面组成的样品之间,该表面上排列着氮化铜的“岛”。这项研究发表在《科学》杂志上。  科学家们能够利用持续数万亿分之一秒的激光脉冲,在低温和极高真空环境下刺激氢分子,并识别其量子态的变化,从而获得样品的原子尺度和延时图像。  这个项目代表了测量技术的进步,并拓展了我们探索科学问题的方法。现有仪器不基于这一量子物理原理,因此依靠探测两能级系统中态相干叠加的量子显微镜要更加灵敏。——Wilson Ho(研究人员之一)和加州大学欧文分校物理学、天文学和化学系教授Donald Bren   根据何的说法,由于氢分子的取向在上下两个位置之间波动,并且在一定程度上水平倾斜,氢分子是两能级系统的一个例子。科学家们可以利用激光脉冲激励系统从基态循环到激发态,从而实现两种状态的叠加。  循环振荡非常短,仅持续几十皮秒,但科学家们通过测量“退相干时间”和循环周期,能够探测到氢分子与其周围环境的相互作用。  氢分子成为量子显微镜的一部分,因为无论显微镜扫描到哪里,氢都在尖端和样品之间。它是一种非常灵敏的探针,可以让我们看到低至0.1埃的变化。在这个分辨率下,我们可以看到样品上电荷分布的变化。  ——Wilson Ho(研究人员之一)和加州大学欧文分校物理学、天文学和化学系教授Donald Bren  STM针尖与样品之间的距离约为6埃或0.6纳米,这几乎是不可能实现的微小距离。  Ho和他们的研究同事建立了一个STM,可以检测该区域的微小电流,并提供光谱数据,证明氢分子和样品成分的存在。根据何教授的说法,这是第一次利用太赫兹诱导的单分子整流电流进行化学精确光谱分析。  根据何教授的说法,利用氢的量子相干性在这种细节层次上分析材料的能力在催化剂的研究和工程中非常有用,因为它们的功能通常取决于单个原子大小的表面缺陷。  只要氢能吸附到材料上,原则上,你就可以用氢作为传感器,通过观察材料的静电场分布来表征材料本身。  ——加州大学欧文分校物理学和天文学研究生王立坤(研究第一作者)  加州大学欧文分校物理学和天文学专业的研究生夏云鹏与何和王一起进行了这项实验,该实验由美国能源部基础能源科学办公室资助。  期刊原文:Wang, L., et al. (2022) Atomic-scale quantum sensing based on the ultrafast coherence of an H2 molecule in an STM cavity. Science. doi.org/10.1126/science.abn9220.
  • 重庆:提升先进传感器和智能仪器仪表产业发展能级
    3月18日,重庆市政府印发《重庆市战略性新兴产业发展“十四五”规划(2021—2025年)》(下称《规划》),提出到2025年,全市战略性新兴产业规模将实现万亿级,战略性新兴产业主营收入超过10亿元的企业突破100家,规模以上工业战略性新兴产业企业达到1500家,新型研发机构数量突破300家。《规划》提出,重庆“十四五”战略性新兴产业发展将围绕“创新驱动、聚焦重点、集群发展、绿色低碳、开放协作”这5个要素进行。其中,重庆市将通过实施战略性新兴产业5类工程,包括集群梯次发展工程、优质企业培育工程、科技创新引领工程、应用示范推广工程和成渝协同发展工程,在发展战略性新兴支柱产业方面,重点建设集成电路、新型显示、新型智能终端、新能源汽车和智能汽车、生物医药、先进材料、高端装备制造、绿色环保、软件和信息技术服务、新兴服务业等10类产业;在面向未来的先导性产业方面,重点建设卫星互联网、氢能与储能、生物育种与生物制造、脑科学与类脑智能和量子信息等5类产业。其中,在高端装备制造方面,《规划》提出,顺应装备高端化、智能化、成套化发展趋势,聚焦汽车、3C(计算机、通讯和消费电子)、无人机等产业发展迫切需求,进一步提升关键基础件的精度和可靠性,提升传感器和智能仪器仪表产业发展能级,提升新能源装备竞争优势,推动智能制造装备迈向中高端水平,在若干细分领域打造西部领先、国家重要的产业集群。提升先进传感器和智能仪器仪表产业发展能级。面向重庆市智能终端、智能汽车、智能制造和智慧城市等领域应用需求,发展互补金属氧化物半导体(CMOS)图像传感器、车身传感器/控制器、超声波传感器、流量传感器、惯性传感器、位移传感器、智能安防设备等传感设备。支持龙头企业整合市内外创新资源建设国家级产业创新平台,牵头开展核心技术攻关、产业孵化、产业招商等工作,提升产业发展能级。依托汽车、智能终端、装备制造等产业优势,加强产业链上下游合作,完善先进传感器及智能仪器仪表配套体系。推动智能制造装备迈向中高端水平。瞄准六轴机器人、双腕机器人、双旋机器人等工业机器人细分领域,提升产品的柔性化程度及低成本生产能力。依托机器人检测与评定中心,进一步完善机器人检验与认证体系,加快推动重庆市乃至西部地区机器人检测认证工作迈向制度化、规范化。拓展焊接、喷涂、柔性抛光等工业机器人应用领域。完善伺服电机、减速器、视觉系统、控制系统、视觉传感器、力矩传感器和碰撞传感器等关键零部件配套体系。发挥齿轮产品等制造优势,发展精密级高效磨齿机、滚齿机、数控加工中心和数控锻压机等中高档数控机床,引进培育高速钻攻中心等高端数控机床企业。紧抓增材制造产业高速发展契机,引进培育激光、电子束、离子束驱动的增材制造装备企业及超细合金粉末、高性能塑料粉末等企业,打造增材制造装备产业链。推动增材制造装备在工业机械、航空航天和汽车等领域的应用。在高端装备制造产业发展重点方面,《规划》提出,加快仪器仪表基地、呼吸机用流量与压力传感器、智能安防设备产业园等项目建设,扩大传感设备规模。此外,《规划》还部署了五项保障措施,包括加强组织领导、加强政策扶持、加强产业引培、加强人才供给和加强考核监测。
  • 研究实现半导体SERS基底性能提升和无机小分子检测
    表面增强拉曼技术(Surface-enhanced Raman Spectroscopy,SERS)是无损、高灵敏、高特异性光谱技术,在反应监测、生物医学检测、环境监测等学科中颇具应用价值。近年来,半导体SERS基底的性能调控备受关注。然而,半导体SERS增强效果普遍较弱,难以应用于散射截面较小的无机物质的检测,因此研究人员致力于寻找可以提升半导体基底SERS性能的策略,从而提升半导体SERS基底对无机物质的响应性。   基于这一研究目标,中国科学院苏州纳米技术与纳米仿生研究所研究员赵志刚团队设计了一系列不同尺寸的氧化钼纳米晶和量子点,发现了小尺寸的量子点在晶格缺陷和尺寸效应的双重作用下SERS性能显著提升,提出了基于多重共振耦合电荷转移路径实现高效化学增强效应的SERS作用机制,并实现了对无机小分子联氨(N2H4)的低浓度检测。   如图1所示,量子点产生了明显的带隙变化和荧光发光现象,可以归结为尺寸限域效应和小尺寸半导体中产生多重缺陷能级的共同作用。如图2所示,量子点对多个探针分子产生了灵敏SERS响应,其中,对无机小分子联氨具有良好的SERS性能。研究通过进一步的表征得出量子点表面联氨分子的检测性能具有明显的尺寸依赖性,且在2 nm尺寸下的极限浓度为4*10-5 mol/L。如图3所示,研究分析不同尺寸下能带结构的变化,提出了2nm量子点高效SERS效应的机制为由于尺寸限域效应和晶格缺陷共同作用下能带结构中存在的多重共振耦合电荷转移路径。   该研究首次实现了半导体SERS基底对无机小分子直接、灵敏的检测,对拓宽半导体SERS基底的应用具有重要意义。相关研究成果以Quantum Effects Enter Semiconductor-Based SERS: Multiresonant MoO3xH2O Quantum Dots Enabling Direct, Sensitive SERS Detection of Small Inorganic Molecules为题,发表在Analytical Chemistry上。研究工作得到国家重点研发计划、国家自然科学基金、中科院等的支持。图1.量子点能带结构和荧光发光效应表征图2.量子点的SERS性能表征谱图图3.量子点高效SERS性能作用机制示意
  • 我国在两亲性分子水溶液太赫兹光谱研究获最新进展
    p & nbsp & nbsp & nbsp & nbsp 近日,中国科学院重庆绿色智能技术研究院太赫兹技术研究中心研究团队利用太赫兹光谱技术研究液体环境中两亲性化合物与水相互作用规律,阶段性研究成果以& quot Determination of Critical Micelle Concentrations of Surfactants by Terahertz Time-Domain Spectroscopy & quot 为题在《IEEE Transactions on Terahertz Science and Technology》期刊上发表(DOI: 10.1109/TTHZ.2016.2575450)。 /p p   研究团队以典型两亲性分子为研究对象,利用太赫兹光谱技术分析了表面活性剂分子从单体到胶束变化过程中分子水化层的变化规律:低于临界胶束浓度(CMC)时,溶液太赫兹吸收系数与浓度负相关 高于CMC,溶液太赫兹吸收系数与浓度正相关,并据此提出了一种利用太赫兹光谱技术无标记检测表面活性剂临界胶束浓度(CMC)的方法。在酸溶液环境中,H3O+的增多使得液体环境中水合网络增强而提高了溶液的吸收系数,离子型表面活性剂CMC降低而非离子型表面活性剂CMC升高表明不同两亲性分子与水分子相互作用具有差异。 /p p   生物分子与水相互作用的能级处于太赫兹波段,在此频率范围内表现出较强的吸收和谐振,太赫兹光谱包含其他电磁波段无法探测到的信息是理解生命活动基本物理化学过程的重要基础资料,利用太赫兹光谱获得生物分子信息成为了目前学术界的热点问题。脂类作为天然两亲性物质,是构成了细胞膜系统的主要物质,是所有细胞的重要做成部分,继续利用太赫兹光谱技术研究天然两亲性化合物将为深入理解细胞膜结构的动态变化规律提供理论基础。 /p p & nbsp & nbsp & nbsp & nbsp a href=" http://ieeexplore.ieee.org/xpl/login.jsp?reload=true& amp tp=& amp arnumber=7497010& amp url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7497010" target=" _blank" title=" " 文章链接 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201607/insimg/0852a761-68ae-4df9-9765-f3d38f33fbea.jpg" title=" W020160728625552060807.png" / /p p style=" text-align: center " 太赫兹光谱技术检测 /p
  • 藉由以GDA和SnO2形成的分子桥接触的材料介面达成高效且稳定的太阳能电池
    █ 重点摘要最近,陕西师范大学向万春团队利用光焱科技公司的测试设备,开发出以甘蓝胺(GDA)埋入SnO2/钙钛矿界面上分子桥优化钙钛矿太阳电池。该研究结合先进的测试设备与材料开发策略,实现了电池转换效率从22.6%提升到24.7%,并显著改善了稳定性。1. 使用分子改性剂甘蓝胺(GDA)在SnO2/钙钛矿的埋底界面上构建分子桥,从而产生优异的界面接触。2. 通过GDA和SnO2之间的强烈相互作用实现的,明显调节能级。此外,GDA可以调节钙钛矿晶体的生长,产生晶粒尺寸增大且无针孔的钙钛矿薄膜,缺陷密度显着降低。3. 经过 GDA 修改的钙钛矿太阳电池表现出开路电压(接近1.2V)和填充因子的显着改善,从而使功率转换效率从 22.6% 提高到 24.7%。此外,GDA 器件在最大功率点和 85°C 热量下的稳定性均优于对照器件。█ 研究背景钙钛矿太阳能电池因具理论上可达25%的高转换效率,受到广泛关注,但钙钛矿材料易受温湿度影响降解,SnO2与钙钛矿界面难以实现有效电荷传输,使实际效率较预期低,制约了商业化进程。如何提升钙钛矿太阳电池转换效率和长期稳定性是当前研究热点。充分发挥精密量测设备的优势,开发高性能钙钛矿材料与界面工程技术,实现电池效率和稳定性的同步提升,是目前的研究方向。█ 研究成果陕西师范大学向万春团队设计开发出甘蓝胺(GDA)分子材料,优化SnO2与钙钛矿界面。X射线衍射分析表明,GDA调控钙钛矿晶粒生长,生成高质量钙钛矿薄膜,增加晶粒尺寸,降低缺陷密度。此外,GDA 可以调节钙钛矿的生长以形成高质量的薄膜,从而减少缺陷和相关的非辐射电荷复合。因此,经过GDA修饰的 PSC 表现出接近1.2 V的令人印象深刻的VOC和 24.70%的效率,高于对照器件的22.60%和离子类似物醋酸胍(GAAc)修饰的PSC的24.22%,同时迟滞现象减少最后,与对照和GAAc修改的器件相比,GDA 修改也大大提高了最大功率点 (MPP)跟踪和85 °C热量下的器件稳定性。该研究成果发表在《Angewandte Chemie International Edition》█ 研究方法采用设备本研究采用光焱科技AM1.5G太阳光模拟器(AAA class solar simulator)以及Si标准参考电池SRC2020(NREL-certified silicon cell ),量子效率量测设备 QE-R。█ 结果与讨论要点1:分子与SnO2和钙钛矿的桥接作用研究团队选择GDA作为钙钛矿界面改性剂的原因有两方面:其一,GDA具有高热稳定性和良好的溶解性,在界面形成和沉积过程中能够提供稳定的支撑。其二,GDA分子含有羧基和GA基团,可以与SnO2和钙钛矿形成强的配位作用,从而在两者之间建立桥梁,改善界面接触,有助于提高载流子传输效率和减少电荷复合。研究团队通过实验和密度泛函理论计算证明了GDA与SnO2之间的化学相互作用,主要源于GDA中的羧基与SnO2表面的欠配位Sn4+结合。傅里叶变换红外光谱(FTIR)测量也支持了这一观点,显示出GDA分子与SnO2层之间的相互作用。要点2:GDA对SnO2层的改性研究团队使用顶视扫描电子显微镜(SEM)和原子力显微镜(AFM)表征了GDA对SnO2层形貌和粗糙度的影响。GDA修饰导致SnO2表面的纳米粒子层变得更加均匀和连续,粗糙度减小,有利于钙钛矿薄膜的均匀成核和结晶,从而提高界面电荷转移效率。通过紫外光电子能谱(UPS)测量,研究团队观察到经过GDA修饰的SnO2能级发生改变,费米能级上升,有利于界面电荷传输。这些结果进一步表明,GDA修饰影响了SnO2的能级结构,从而改善了PSC界面性能。要点3:下界面改性对钙钛矿层的影响研究团队研究了经过GDA改性和未经GDA改性的SnO2层上钙钛矿层的性能。通过SEM和XRD表征,研究团队发现GDA修饰有助于形成更平坦和致密的钙钛矿薄膜,提高了结晶度。这对于减少电荷缺陷和提高电荷传输效率非常重要。要点4:下界面改性对钙钛矿薄膜结晶的影响通过原位XRD测量,研究团队研究了GDA修饰对钙钛矿薄膜结晶过程的影响。结果显示,GDA改性影响了中间相的形成,导致晶格膨胀。此外,研究团队发现GDA修饰还影响了钙钛矿薄膜的晶粒尺寸和结晶动力学,进一步改善了薄膜质量。要点5:器件性能与稳定性研究团队制备了经过GDA修饰和未经GDA修饰的PSC,并评估了它们的性能和稳定性。结果显示,经过GDA修饰的器件在光电转换效率(PCE)和稳定性方面都表现出优势。GDA改性有助于抑制非辐射电荷复合,提高载流子提取效率,并减少界面陷阱密度。这导致了更高的PCE和更好的稳定性。█ 结论该研究运用精密的光伏测试设备,开发出甘蓝胺分子材料修饰SnO2/钙钛矿界面,显著提升了钙钛矿太阳电池的转换效率和长期稳定性。研究证明先进测试设备的应用为材料开发提供了有力支撐,也为实现高效稳定钙钛矿太阳电池的低成本批量生产提出了新的设计思路。期待不同领域的产学研单位通力合作,加快高效钙钛矿太阳电池的实际应用进程。
  • Nat Metab|上交大童雪梅团队揭示非氧化磷酸戊糖途径调控Treg细胞功能及其分子机制
    点评 | 朱锦芳(NIH)2022年5月23日,上海交通大学基础医学院生化与分子细胞生物学系童雪梅教授课题组及其合作团队,上海市免疫学研究所李斌研究员课题组和复旦大学附属华山医院/脑科学转化研究院杨辉研究员,在Nature Metabolism杂志在线发表题为 Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics 的研究论文,揭示非氧化磷酸戊糖途径(非氧化PPP)对调节性T(Treg)细胞代谢模式及细胞功能的调控机制。Nature Metabolism同期发表伦敦帝国理工学院Margarita Dominguez-Villar博士为该研究撰写的News & Views特评,认为该文章发现非氧化PPP在Treg细胞活化和功能调控中的中心地位(a central regulator)。表达特征转录因子Foxp3的Treg细胞是一类具有免疫抑制功能的CD4+ T细胞亚群,维持机体免疫系统稳态,防止免疫过激诱发自身免疫病。已知葡萄糖酵解、脂肪酸氧化和氨基酸分解代谢等都参与 Treg 细胞功能调控。PPP是一条不产生ATP的葡萄糖分解代谢途径,由生成NADPH的氧化PPP和产生5-磷酸核糖的非氧化PPP组成。非氧化PPP包括4个代谢酶催化的5步可逆反应,可以通过改变代谢物流向来满足细胞的功能需求。非氧化PPP是否参与免疫细胞如Treg细胞的代谢与功能调控尚不清楚。转酮醇酶TKT是非氧化PPP中催化两步可逆反应的代谢酶。童雪梅团队已发现TKT在肝脏、脂肪和肠道中调控糖脂代谢平衡的重要作用(Li M et al, Cancer Research, 2019 Tian N et al, Diabetes, 2020 Tian N et al, Cell Death & Disease, 2021)。在本研究中,研究人员通过构建Treg细胞特异性敲除TKT的小鼠模型,深入探究非氧化PPP是否和如何调控Treg细胞代谢及功能。他们研究发现,Treg细胞特异性敲除TKT的小鼠出生3周后发生严重自身免疫性疾病,并且在断奶之后相继死亡,其表型与缺失Foxp3基因的小鼠相似。进一步研究发现,敲除TKT在不影响Treg数目和转录因子Foxp3 水平的情况下,阻断Treg细胞的免疫抑制功能。为了排除炎症反应的影响,研究者根据Foxp3基因位于X染色体和雌鼠X染色体选择性失活的特点,构建了在同一只鼠中既有TKT缺失又有TKT正常表达的Treg细胞嵌合小鼠模型。该小鼠Treg细胞的转录组和表观遗传组分析表明,TKT缺失导致Treg细胞中87.9%的差异表达基因被下调,染色质可及性降低。这些被下调的基因几乎全部为效应性Treg特征性基因,表明非氧化PPP对调控Treg细胞免疫抑制功能是必需的。研究者进一步发现,TKT缺失导致Treg 细胞NADPH 减少和氧化应激增加,葡萄糖进入线粒体氧化减少,脂肪酸氧化增加,氨基酸分解代谢显著增强,分解代谢重构使线粒体功能受损。同时,被氧化应激和线粒体损伤诱发的还原性TCA循环使α-酮戊二酸/琥珀酸及α-酮戊二酸/富马酸比率降低,DNA甲基化增加,抑制Treg细胞特征性功能基因表达,导致其免疫抑制性功能丧失。文章也发现非氧化PPP中的另外一个代谢酶——转醛醇酶(TAL),对维持效应性Treg特征性功能基因表达也不可或缺。此外,在自身免疫性病人外周血 Treg细胞中,TKT水平显著降低。综上所述,此研究首次揭示非氧化PPP对于调控Treg细胞中糖、脂和蛋白质分解代谢稳态、维持代谢物依赖的表观遗传修饰和功能基因表达有关键作用,即非氧化PPP可以通过整合三大营养物质代谢和表观遗传修饰控制Treg细胞功能。这项研究将为通过调控Treg功能防治自身免疫性疾病和其它免疫相关疾病提供新策略新手段。非氧化 PPP 通过整合代谢组和表观遗传组调控Treg细胞功能上海交通大学医学院博士生刘琪、阿拉巴马大学伯明翰分校博士生朱方明和上海市免疫学研究所博士生刘鑫男是该研究论文的共同第一作者。此项研究得到复旦大学生物医学研究院叶丹研究员、海军军医大学附属长征医院风湿免疫科徐沪济主任、上海交通大学附属仁济医院沈南主任、上海交通大学基础医学院徐天乐教授、清华大学药学院胡泽平研究员、阿拉巴马大学伯明翰分校胡晖教授等合作实验室的大力协助。通讯作者为童雪梅教授、李斌研究员和杨辉研究员。专家点评朱锦芳Jeff Zhu (Chief, Molecular and Cellular Immunoregulation Section, NIH)调节性T细胞(Tregs)在维持免疫耐受和免疫稳态中发挥关键作用,并且参与调节感染和癌症中的各种免疫反应。一方面,Treg功能的丧失通常与自身免疫和过度炎症有关;另一方面,肿瘤微环境中激活的Treg往往会抑制肿瘤免疫。因此,了解Treg的产生、激活及其获得抑制性功能的机制不仅将拓展基础免疫学认知,而且将为各种免疫相关疾病提供新颖有效的临床疗法。不同的代谢途径在控制Treg和效应性辅助型CD4+ T(Th)细胞的发育和分化中作用不同。经典观点认为,Tregs更倾向于脂肪酸氧化,而效应Th细胞主要利用葡萄糖作为能量来源。在本项工作中,童雪梅团队及其合作实验室共同发现,非氧化磷酸戊糖途径(非氧化PPP)在控制Treg细胞激活和抑制功能中起着关键作用。非氧化PPP是葡萄糖分解代谢的一个分支,它在Treg和效应性Th细胞中的功能尚不清楚。令人惊奇的是,在Treg中敲除非氧化性PPP中的重要酶—转酮醇酶(TKT),小鼠会产生致死性自身免疫病。Treg细胞特异性 TKT 缺失导致其失去免疫抑制功能,却不影响其发育和Foxp3蛋白表达。机制上,童雪梅及其合作团队发现TKT缺失诱导线粒体氧化应激和还原性TCA循环,导致α-酮戊二酸(α-KG)水平降低。α-KG作为重要的表观遗传辅助因子,能调控组蛋白和DNA去甲基化酶的功能。TKT缺失时,Treg中众多基因的DNA甲基化增加,染色质可及性下降。并且,α-KG补充能够改善由Treg特异性TKT 缺失引起的自身免疫反应。此外,在临床自身免疫性疾病患者外周血Treg中,TKT水平被下调。Treg获得抑制功能需要被激活,TKT缺失诱发的自身免疫反应是由活化Treg特征性基因表达减少所导致的。由于Treg细胞群体的异质性,单细胞分析可以为TKT如何调节Treg激活和表观修饰提供一个更清晰的解释。然而,该研究发现在大约1000个激活态Treg特征基因中,只有124个受到TKT缺失的影响,却诱发了显著的小鼠自身免疫病表型,表明这个小的基因群体包含对Treg功能至关重要的效应分子,例如IL-10和TIGIT等。因此,本项研究发现令人印象非常深刻。本项工作不仅促进我们全面认识Treg细胞激活和功能的机理,而且在未来治疗人类疾病方面具有潜在重要转化价值。原文和特评链接:https://www.nature.com/articles/s42255-022-00575-z,https://www.nature.com/articles/s42255-022-00574-0
  • 通过费米能级调控和氧缺陷工程增强BiVO4/BiOBr的光催化降解性能
    1. 文章信息标题:Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering页码:Chemical Engineering Journal, 2022: 137757.2. 文章链接专用链接:https://www.sciencedirect.com/science/article/pii/S13858947220324423.期刊信息期刊名:Chemical Engineering JournalISSN:1385-8947影响因子:16.744分区信息:中科院一区Top JCR分区(Q1)涉及研究方向:工程技术: 化工;环境4. 作者信息:南京理工大学刘纯(首要作者),王风云(首要通讯作者),夏明珠(第二通讯作者),陈群(第三通讯作者)5. 光源型号:北京中教金源(CEL-HXF300, Beijing China Education Au-light Co., Ltd.)(300 W氙灯,可见光)、CEL-PF300-T9氙灯光源系统(集成一体,光电化学专用)附:正文和补充材料中标明了光源型号文章简介:构建氧空位(Ov)作为一种传统且有效的方法已被广泛用于提高光催化活性,但其对界面电荷转移途径的影响仍不明确。在此,我们通过简便的方法合成了 BiVO4/BiOBr-Ov (BVB-Ov) 光催化剂。随后,各种表征结果验证了通过将BiVO4与含氧空位的BiOBr(BiOBr-Ov)结合成功制备BVB-Ov复合材料。光催化降解实验结果表明,20% BVB-Ov 对土霉素(OTC)的降解率极高(91%),远高于 20% BiVO4/BiOBr(71%)。此外,从液相色谱-质谱 (LC-MS) 分析中推断出三种可能的降解途径。光电化学、光致发光 (PL) 和时间分辨 PL (TRPL) 研究表明,20% BVB-Ov 具有最快的光生载流子分离和传输速率。开尔文探针力显微镜 (KPFM) 技术和密度泛函理论 (DFT) 计算表明,氧空位的引入调节了 BiVO4 和 BiOBr 之间费米能级的相对位置。我们最终结合了 DFT 计算、能带分析、俘获实验和电子顺磁共振 (EPR) 结果,证实了氧空位的存在导致光生载流子传输路径从 II-型到 Z-型的改变。这项工作为氧空位协调界面电荷转移途径提供了见解和指导。本文亮点:1. 制备了一种新型 BiVO4/BiOBr-Ov Z-型异质结。2. 氧空位的存在导致光生载流子传输路径从 II-型到 Z-型的改变。3. 基于 DFT 计算的结果解释了内部电场和带边弯曲。4. 讨论了Z型光催化的机理。5. • O2- 和h+是OTC 降解的主要自由基。
  • 4.16亿元!天津工业大学一流学科群和高能级研发创新平台设备更新项目批复(附设备清单)
    7月4日,天津市发展和改革委员会发布了《关于天津工业大学一流学科群平台和高能级研发创新平台设备更新项目可行性研究报告的批复》。经委托天津国际工程咨询集团有限公司组织专家评审,原则同意该项目可行性研究报告,项目建设主体为天津工业大学,项目代码:2405-120000-89-03-702469。该项目位于天津市西青区宾水西道399号天津工业大学现址内。主要建设内容及规模:主要购置设备280台(套),主要为非织造智能工厂平台模拟系统等;替换原有老旧设备279台(套),主要为复合纺丝机、真空镀膜机、半导体及光学薄膜制备系统等设备(购置设备清单详见附件)。总投资金额为41587万元,通过申请中央资金和学校自筹等多种渠道解决。附件天津工业大学一流学科群平台和高能级研发创新平台设备更新项目设备清单表序号仪器设备名称数量(台/套)1柔性薄膜制备系统12天然木质素染料提取浓缩干燥专用设备13连续长丝3D成型系统14计算机基础教学与创新实验平台15图形图像实训系统设备16人工智能计算平台17人工智能实训与创新平台18纳米纤维智造平台19CAD/CAM数字化智能教学实训系统110户外功能性服装智能缝制系统111多通道超声波细胞粉碎机系统112超大隔距双针床经编机113柔性电极印刷系统114软包电池产线系统115生理参数模拟人台系统116呼吸综合模拟系统117纺织服装数智化实验教学系统118双面无缝成形针织小样机119染料-助剂-纤维界面作用与影响实验教学套装120转移印花与数码印花实验教学套装121熔喷纳微纤维水刺复合实验线122溶液喷射/微射流纳微纤维实验机123非织造成网固网系统124立式熔喷机125针织经纬编衬纱编织机126多功能全成型电脑横机127静电可调针织钩编系统128数字化小样纺纱精梳系统129环锭纺细纱自动接头机130单面高速提花无缝针织内衣机131双面全成形经编机132红外摄像机133紫外-可见-近红外分光光度计134多功能生物3D打印机135高真空电阻蒸发镀膜机136多结构复合纤维熔融纺丝实验线137动态纸页成型器138非织造智能工厂平台模拟系统139功能性纳米颗粒修饰改性微纳米纤维的制备体系140材料微纳米结构激光加工设备141超薄切片机142复合材料老化机组143纺织装备系列仿真软件144高精度视线交互系统145纺织关键工况物理模拟系统146数字工程师培训考核平台247二维材料制备系统148高真空多靶磁控溅射系统149HVPE沉积机台150服务器151电输运与磁致伸缩测量系统152布里奇曼定向凝固炉153高真空单辊旋淬及喷铸与电弧熔炼及吸铸系统154雾化气相外延沉积机台155物理气相沉积机台156晶圆表面修整抛光机157晶圆键合机158晶圆清洗湿法刻蚀机159虚拟仪器项目式实践与机器视觉平台160信号与系统综合实验平台161数据通信实验平台262软件无线电创新平台163光纤通信技术综合实验系统164大载重多功能无人机与四轴消防无人机系统165多旋翼搜救与测绘无人机群166多用途垂直起降固定翼无人机467大负载长续航物流运输无人机468智能双轴机械手缆控无人潜航器169无人机应急指挥调度平台170机载通信装备171无人系统教学仿真系统172共直流母线变频电源173电机结构虚拟化开发平台174高性能电机控制系统快速原型开发平台175现代电机系统教学实验平台176DSP教学实验平台177超声金属电极键合机178高频变压器179功率半导体器件互连烧结机180综合展示系列设备181多功能五合一绣花机182SLA系列光固化打印机183视觉成像系统184服装数字化教学系统185服装智能制造教学系统186服装综合性教学系统187微机原理实验平台188电路实验平台189电工学电子技术实验平台190电工学电工技术实验平台191实验教学数字化平台192电工电子多功能实训平台193电子类竞赛综合实训平台194数控车铣实验平台195纺织智能制造成品码垛实训平台196数字化设计与制造实训教学平台197非遗工艺创新-非金属激光加工系统198多材料金属3D成型机199激光钣焊成型系统1100数控加工智能制造生产线1101机器人创新实训平台1102传统机械加工实训平台1103精密铸造实训平台1104智能制造产线孪生教学系统1105虚拟现实元宇宙教学系统1106面向实验室安全监测的智能巡检机器人1107陶瓷粉末快速成型机1108高温连续碳纤维3D成型设备1109全彩树脂3D成型机1110高分子材料烧结快速成型机111110激光器超大SLA3D成型机1112金属激光加工系统1113教学(外语)视听设备及数据存储设备1114数字经贸融合创新教学平台1115数智化企业仿真创新教学平台1116金融科技智能融合创新教学平台1117交互式教学平台12118外语教学系统7119数字人系统8120工作站软件3121桌面工厂(设计版)4122化工原理及专业实验平台1123化工过程实训平台1124人工智能数学大模型平台11256寸半自动光刻机2126光刻预制处理实验平台1127高性能工作站11281940nm光纤激光器1129多工位有机无机蒸发镀膜系统11301910nm光纤激光器1131拉曼光纤激光器2132通用人工智能大模型训练设备4133手眼耳脑具身智能机器人集群系统1134人工智能专业课程实践平台1135医学大数据处理平台1136医工融合新工科创新育人平台1137高性能超精密航空航天金属构件复合加工平台1138高精度空天集群博弈位姿定位系统1139航空发动机燃烧室流场重构-燃烧诊断系统1140GPU服务器2141三维扫描建模系统1142惯性三维运动捕捉系统1143AIoT实验实训系统5144智能网联车实验平台1145深度学习开发平台1146智能复合机器人2147面向工业智能应用的算力租户科研服务平台1148高性能AI算力云资源管理平台1149生物制药实践教学平台1150药物制剂与新释药技术教学平台1151核心路由器2152核心交换机5153智能空间管理系统1154视觉管理设备4155视觉借还设备1156智慧管理服务平台1157AI学科馆员与咨询设备1158复合材料高压成型系统1159智能缝合系统11603D多层织物织造系统1161高性能碳纤维超薄织物织造系统1162复合材料连续纤维3D打印设备1163复合材料特种热压机1164碳碳复合材料制备系统1165磁控溅射镀膜系统(Magnetronsputteringdepositionsystem)1166飞秒激光器(Femtosecondlaser)1167台式超速离心机1168氮化物分子束外延生长系统1169紫外激光晶圆划片机1170科研通风设备1171能量转换设备8172能量转换设备20173电驱动离心式冷热高效交换机组2174大型双曲线横流自然通风水冷冷却器5175一体化高效节能冷温水传递系统18176冷冻水式高效组合空气换热处理设备机组1合计280
  • 重庆:提升智能仪器仪表产业发展能级
    3月18日,重庆市人民政府印发《重庆市战略性新兴产业发展“十四五”规划(2021—2025年)》(以下简称《规划》)。《规划》指出,2020年,重庆市规模以上工业战略性新兴产业产值由2015年的4000亿元增加至7600亿元,占全市规上工业总产值比重由2015年的18.7%提升至32%;规模以上战略性新兴产业增加值超过2300亿元;全社会研发经费投入逐年递增,占GDP的比重由2015年的1.57%提高到2020年的2.11%;规上工业企业研发投入强度为1.61%。累计获批建设国家重点实验室10个、国家企业技术中心37家,国内外知名高校院所来渝建立创新机构、产业研究院101家;发布国内首个自主开发180nm全套硅光工艺PDK、全球首款Micro—LED智能手表;铝合金产业基本实现对国家所需重点关键铝材品种全覆盖,西南铝业集团成为国内唯一的国产大飞机铝材供应商。《规划》提出到2025年的发展目标,在新型智能终端、新型显示、软件和信息技术服务、先进材料、生物医药、新能源汽车和智能汽车、新兴服务业等领域形成若干千亿级的战略性新兴产业集群,在集成电路、高端装备制造、绿色环保等领域形成若干500亿级的产业集群,卫星互联网、氢能与储能、生物育种与生物制造、脑科学与类脑智能、量子信息等产业在全国形成一定优势。《规划》明确了十类战略性新兴支柱产业,涉及集成电路、新型显示、新型智能终端、新能源汽车和智能汽车、生物医药、生物医药、高端装备制造、绿色环保、软件和信息技术服务以及新兴服务业。其中,高端装备制造要求提升先进传感器和智能仪器仪表产业发展能级。《规划》还提出了五种面向未来的先导性产业,包括卫星互联网、氢能与储能、生物育种与生物制造、脑科学与类脑智能以及量子信息。其中,在量子信息产业发展重点中提到,开展激光器、调制器、探测器等核心器件技术研究,实现量子通信领域核心元器件自主可控。《规划》明确了五项重大工程,包括集群梯次发展工程、优质企业培育工程、科技创新引领工程、应用示范推广工程和成渝协同发展工程。《规划》部署了五项保障措施,包括加强组织领导、加强政策扶持、加强产业引培、加强人才供给和加强考核监测。《规划》原文:重庆市战略性新兴产业发展“十四五”规划(2021—2025年).doc
  • Nature|潘建伟、白春礼团队合作,首次实现利用射频场相干合成三原子分子
    中国科学技术大学潘建伟、赵博等与中国科学院化学所白春礼小组合作,在超冷原子双原子分子混合气中首次实现三原子分子的相干合成。在该研究中,他们在钾原子和钠钾基态分子的Feshbach共振附近利用射频场将原子和双原子分子相干地合成了超冷三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出了重要一步。2月10日,这一重要研究成果发表在国际权威学术期刊《自然》杂志上。图:从超冷原子和双原子分子混合气中利用射频场合成三原子分子的示意图量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。量子计算研究的终极目标是构建通用型量子计算机,但实现这一目标需要制备大规模的量子纠缠并进行容错计算,仍然需要长期不懈的努力。当前量子计算的短期目标是发展专用型量子计算机,即专用量子模拟机,它能够在某些特定的问题上解决现有经典计算机无法解决的问题。例如,超冷原子分子量子模拟,利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位的研究,因而在化学反应和新型材料设计中具有广泛的应用前景。超冷分子将为实现量子计算打开新的思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级非常复杂,通过直接冷却的方法来制备超冷分子非常困难。超冷原子技术的发展为制备超冷分子提供了一条新的途径。人们可以绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。利用光从原子气中合成分子的研究可以追溯到上世纪八十年代。激光冷却原子技术的出现使得光合成双原子分子得以快速的发展,并在高精度光谱测量中取得了广泛的应用。在光合成双原子分子取得成功之后,人们开始思考能否利用量子调控技术从原子和双原子分子的混合气中合成三原子分子。在2006年发表的综述文章[Rev. Mod. Phys. 78,483, (2006)]中,美国国家标准局的Paul Julienne教授等人回顾了光合成双原子分子过去二十年的发展历史,并指出从原子和双原子分子的混合气中合成三原子分子是未来合成分子领域的一个重要研究方向。由于光合成的双原子分子气存在密度低、温度高等缺点,一直无法用来研究三原子分子的合成。后来随着超冷原子气中Feshbach共振技术的发展,利用磁场或射频场合成分子成为制备超冷双原子分子的主要技术手段。从超冷原子中制备的双原子分子具有相空间密度高、温度低等优点,并且可以用激光将其相干地转移到振动转动的基态。自2008年美国科学院院士Deborah Jin和叶军的联合实验小组制备了铷钾超冷基态分子以来,多种碱金属原子的双原子分子先后在其他实验室中被制备出来,并被广泛地应用于超冷化学和量子模拟的研究中。超冷基态分子的成功制备重新唤起了人们对合成三原子分子的研究兴趣。2015年,法国国家科学研究中心的Olivier Dulieu教授等在理论上分析了从原子双原子分子混合气中合成三原子分子的可行性 [Phys. Rev. Lett. 115, 073201 (2015)]。 但由于三原子分子的相互作用极其复杂,无法精确计算,因而理论上无法预测三原子分子的束缚态的能量以及散射态和束缚态的耦合强度。中国科学技术大学的研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振,相关成果发表于《科学》杂志 [Science 363, 261 (2019)]。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的成功观测为合成三原子分子提供了新的机遇。但由于原子和分子的Feshbach共振非常复杂,理论上难以理解,能否和如何利用Feshbach共振来合成三原子分子依然是实验上的巨大挑战。在该项研究中,中国科学技术大学的研究小组和中科院化学所的研究小组合作,首次成功实现了利用射频场相干合成三原子分子。在实验中,他们从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。他们成功地在钠钾分子的射频损失谱上观测到了射频合成三原子分子的信号,并测量了Feshbach共振附近三原子分子的束缚能。这一工作为量子模拟和超冷化学的研究开辟了一条新的道路。超冷三原子分子是模拟量子力学下三体问题的理想研究平台。三体问题极其复杂,即使经典的三体问题由于存在混沌效应也无法精确求解。在量子力学的约束下,三体问题变得更加难以捉摸。如何理解和描述量子力学下的三体问题一直都是少体物理中的一个重要难题。此外,超冷三原子分子可以用来实现超高精度的光谱测量,这为刻画复杂的三体相互作用势能面提供了重要的基准。由于计算势能面需要高精度地求解多电子薛定谔方程,超冷三原子分子的势能面也为量子化学中的电子结构问题提供了重要的信息。该研究工作得到了科技部、自然科学基金委、中科院、安徽省、上海市等单位的支持。论文链接: https://www.nature.com/articles/s41586-021-04297-2
  • 分子科学从这里起源——记化学所分子科学创新历程
    开栏寄语:  2016年10月,中国科学院化学研究所将迎来60周岁生日。60年来,几代化学所人不懈努力,顽强拼搏,勇攀高峰,形成了“创新、求是、团结、奉献”的优秀文化,为我国科技事业、国民经济和国防建设作出了重要贡献。如今,化学所以基础研究为主,正在有重点地开展国家急需的、有重大战略目标的高新技术创新研究,并与高新技术应用和转化工作相协调发展,已成为具有重要国际影响、我国最高水平的化学研究机构之一。本报即日起将推出系列文章,以纪念为化学事业奋斗终身的前辈,也向正在“三个面向”“四个率先”的要求下,为化学科学发展、国民经济和国防建设奋战的科研工作者致以崇高的敬意。▲化学所规划图▲化学所分子楼  化学,是研究物质形成、结构、性能和变化的科学。上世纪90年代,科学家已经在认识分子结构和化学键的本质上积累了丰富的知识。彼时,化学家已瞄准了新的科学目标,即从需求出发设计并合成具有特定化学、物理特性的分子。  中国科学院化学研究所自1956年成立以来,一直把握着世界化学前沿的脉搏,引领中国化学学科相关领域的发展。  当化学学科逐渐走进“分子时代”时,化学所在国内率先提出面向世界科学前沿的分子科学研究计划。多年来,化学所依靠深厚的历史积淀,以扎实的基础研究,突破了诸多关键技术,培养了一大批分子科学领军人才,成为我国分子科学领域的高地。  “弄潮”分子科学  上世纪90年代末,党中央、国务院作出建设国家创新体系的重大决策,决定由中科院开展“知识创新工程”试点。根据该项试点工作的部署,1999年3月,中科院化学所首批进入了中科院知识创新工程,并启动了分子科学中心的建设,希望办成世界上有影响的、国际一流水平的分子科学中心,成为国际交流的窗口,同时建设和完善面向国家重大战略需求的先进高分子材料基地。  该中心由中科院化学所与当时的感光化学所相关部分整合而成,时任化学所所长朱道本被聘任为该中心的主任。  中国科学家“弄潮”分子科学的蓝图就此展开。  朱道本说:“一个人的力量是有限的,有了领导和同事们的支持,才能把分子科学中心建好。”启动伊始,他带领化学所多名研究人员详细调研了德国马普研究所、日本分子科学中心等世界一流的化学研究机构。  1999年4月初,经过详细论证,由14名院士和科研、管理专家组成评委会,在化学所原有研究单元的基础上,论证首批进入中心的单元。分子动态学、有机固体、工程塑料、高分子物理、纳米科技、光化学、胶体和界面等实验室和研究组入选。  “首批进入中心的196人,平均年龄是39.8岁,‘杰青’获得者有10名,‘百人计划’9名。”朱道本告诉《中国科学报》记者。  这些在世纪之交时种下的分子科学“种子”,在十多年里不断开花结果。以有机固体实验室为例,朱道本带领研究小组创造了新的高效合成方法,筛选出了具有自主知识产权、综合性能优异的电子/空穴传输材料 李永舫带领研究小组构建了高性能有机器件,使单结聚合物太阳能电池的能量转换效率提高到10%以上,始终保持了世界领先的水平 李玉良首次在铜表面上合成了具有本征带隙sp杂化的二维碳的新同素异形体石墨炔,开辟了人工化学合成碳同素异形体的先例。  如今,中科院化学所已在分子科学的多个领域位列世界前沿。  “奠基”分子纳米科技  纵观历史,观测手段的每一次进步都能推动人类认识世界的步伐。例如,在生物学上,X光衍射技术为分子生物学的发展奠定了基础。而天文学上,射电望远镜的发明则极大地拓宽了天文学家观测的视野。  分子科学领域也不例外。上世纪80年代,国际上纳米科学与技术的迅猛发展,以STM为代表的纳米表征技术的发明揭示了纳米尺度的微观世界,有力地推动了分子科学的发展。  1987年,在美国加州理工学院专攻扫描隧道显微学技术(STM)的白春礼,携带STM的研制资料和关键元器件回国,在中科院和化学所领导的支持下创立了STM实验室。  当时,STM仪器尚未实现商业化,自行研制STM仪器成为该实验室成立之初的主要目标。1988年,白春礼和同事们在科研经费不足的情况下,只花了不到半年时间,成功研制出中国第一台STM仪器。  “因为实验用房紧张,研制工作在化学所4号楼的一间地下室里开展。”参与STM仪器研发的实验室人员对这段历史记忆犹新,“1988年4月12日,实验室的日历永远记住了这个时间。”  中国科学院化学研究所上一任所长万立骏告诉《中国科学报》记者:“有了STM这个利器,中科院化学所纳米科学的发展得到了极大的支撑。”  1989年初,研究团队还开发了原子力显微镜(AFM),助力分子科学研究直接观察非导体的表面原子结构。超高真空扫描隧道显微镜、低温扫描隧道显微镜、激光检测原子力显微镜、弹道电子发射显微镜等纳米检测仪器也陆续成功研发。  研究人员正是依靠这些自主研发的仪器,对有机导体、有机铁磁体、非线性光学材料、高温超导材料、矿物和生物大分子等一系列物质开展了研究,取得了许多重要的研究成果。  2001年,以白春礼、王琛、万立骏为学术带头人的创新团队获得国家自然科学基金委员会的支持,标志着实验室进入一个新的发展阶段。一年后,该实验室正式被批准为中科院重点实验室。  在科研领域方面,该实验室已从STM研究拓展到纳米材料科学、单分子科学、纳米器件、纳米生物学等广大的纳米学科领域。  从基础到应用:一个都不能少  在中科院化学所分子科学研究走过的历程中,研究人员基于高水平的基础研究,开展了丰富的应用研究和产业化探索,分子科学的创新链条也得到了充分延展。  纳米绿色印刷是化学所全链条创新的典范。宋延林带领的团队先后实现了包括绿色制版、绿色版基和绿色油墨在内的完整纳米绿色印刷产业链技术。从2010年起,该团队与企业合作,推动项目产业化示范和制版中心建设,已经取得多项国际领先的技术成果,在国内外产生了广泛的影响。  有机光导鼓关键技术则始于上世纪80年代。王艳乔等科研人员完成技术研发后,于2000年建成我国首条有机光导鼓自动化生产线,结束了我国有机光导鼓的技术与产业空白局面,创造了良好的经济和社会效益。  在聚丙烯催化剂研发方面,肖士镜、谢光华和胡友良等研究人员成功制备出高活性、高立构规整性的聚丙烯催化剂,并于1992年在辽宁营口实现了催化剂的产业化,替代了进口催化剂。而在甲醇/一氧化碳羰基合成方面,袁国卿等带领研发团队研制出系列新型的螯合型催化剂。2004年起,该类催化剂陆续被大型企业广泛应用,共生产醋酸1100万吨,创造利润40多亿元。  中科院化学所所长张德清指出,多年来,在分子科学领域,化学所形成了分子合成、分子组装与功能及与材料、环境、生命、能源等交叉的全覆盖研究领域。  2013年,中科院发展规划局组织国际知名科学家对化学研究所进行了现场专家诊断评估。“国际评估专家认为化学所是中国最好的化学研究机构,也提出了许多中肯的意见,让我们未来的发展有了更清晰的方向和更大的空间。”张德清表示。
  • 香港科技大学成立“分子神经科学”国家重点实验室
    经国家科技部批准,香港科技大学6月22日正式成立“分子神经科学”国家重点实验室,致力推动分子神经科学研究,探索老年痴呆症等神经退化性疾病的治疗。这是香港科大成立的首个国家重点实验室。   香港科大22日为该实验室举行揭幕仪式。特区政府创新科技署署长王荣珍在仪式上说,创新科技是香港六大优势产业之一,期望香港科大继续将世界级的科研技术应用在日常生活中,促进香港的经济和社会发展。   香港科大校长陈繁昌说,香港要增强区内竞争力,科技是一个重要渠道。香港科大会配合国家制定的长远科技发展战略,并发挥在这方面的优势。   香港科大1999年即成立分子神经科学中心,以进行相关领域的研究。目前学校跨学科神经科学团队已超过20人,研究项目2001年被大学教育资助委员会确定为卓越学科研究领域。   香港科大成立“分子神经科学国家重点实验室”后,将致力探索大脑运作机制,通过了解神经细胞的发展、功能及柔软性,帮助了解不同神经病学的机理,以及协助开发有关药物。   据介绍,香港科大希望通过建设国家重点实验室,将“分子神经科学研究”发展成为国际级科研枢纽,提升分子神经科学的基础研究,并促进内地和香港的生物技术科研合作。分子神经科学国家重点实验室将与中国科学院神经科学研究所的神经科学国家重点实验室建立伙伴关系,共同开发神经科学的前瞻性研究。
  • 分子细胞卓越中心等开发出首个DNA损伤修复测序数据资源库
    近日,《核酸研究》(Nucleic Acids Research)在线发表了中国科学院分子细胞科学卓越创新中心吴薇研究组与广州国家实验室完成的最新合作研究成果(DNA Damage Atlas:an atlas of DNA damage and repair)。该研究整合开发了首个DNA损伤修复高通量测序数据的数据资源库(DNA Damage Atlas,DDA)。DNA损伤在细胞正常生命代谢活动中时有发生,发生损伤后如不能及时修复或修复时发生错误,易形成体细胞突变和结构变异,引起肿瘤等重大疾病。为研究DNA损伤修复过程,科研人员开发了多项用于直接或间接检测DNA损伤和修复过程的高通量测序技术。然而,随着各种测序技术所产生数据的快速累积,如何进行统一的标准化分析并整合以供研究使用是亟需解决的问题。DDA收录了来自262个数据集的6030个样本数据,涵盖了针对不同DNA损伤类型的59种测序技术。基于对数据进行质控、回贴等标准化处理,DDA进一步鉴定了DNA损伤修复热点(hotspots),并其特征展开一系列下游分析。高度重复序列端粒和核糖体DNA(ribosomal DNA,rDNA)是DNA损伤的热点,但既往研究中,因分析困难而在测序数据分析中被忽视。因此,DDA专门构建了新的分析流程,挖掘端粒和rDNA区域的损伤修复信号。DDA作为大规模、高质量的DNA损伤修复数据库,为DNA损伤修复分子机制研究提供了资源平台,有助于剖析疾病中突变发生机理和挖掘治疗靶点。研究工作得到国家重点研发计划、上海市市级科技重大专项和广州国家实验室的支持。 DDA构建流程和功能展示
  • 2011年上半年上市仪器新品:分子光谱类
    相关新闻 2011年上半年上市仪器新品:原子光谱类   分子光谱仪是分析化学和生命科学实验室的常用分析工具,测量的是光与待测样品之间的相互作用情况。光波长在紫外、可见、红外等区域时,样品对光的吸收、发射、反射,特征地反映了样品不同分子振动、转动、及相互作用的一些能级变化,不同分子的这种特征吸收、发射、反射是不同的。   分子光谱可分为分子吸收光谱、分子发射光谱、拉曼光谱,紫外-可见、红外光谱等属于分子吸收光谱,分子荧光、分子磷光等属于分子发射光谱,拉曼光谱属于分子散射。分子光谱技术是非破坏性的,可用于分析液态、气态和固态样品。   2011年的上半年,分子光谱领域新产品新技术不断推出。以仪器信息网新品栏目和相关资讯中发布的分子光谱新产品10多台。其中有4台红外光谱仪、3台近红外光谱仪、2台拉曼光谱仪、3台紫外可见分光光度计、1台荧光分光光度计、5台光纤光谱仪。   从众多新品中可以看出:   (1)方便携带、坚固耐用的小型化仪器是分子光谱仪器发展趋势之一。如PerkinElmer的红外光谱Spectrum Two、HORIBA智能型倒置显微拉曼光谱仪等,特别值得一提的是国产仪器厂商——上海元析推出B-500新型紫外可见分光光度计,采用点滴测试方式,大大的节省试剂用量,是专门针对生物领域试剂金贵而设计的一款专用仪器,最低测试溶液量达5微升。   (2)行业专用仪器越来越多,是分子光谱仪器另一个发展趋势。如天瑞仪器MIR3043P便携式翡翠鉴定仪、必达泰克的Gem Ram TM 系列宝石专用拉曼光谱仪等。   各类产品更多详细内容见如下各分类,排名不分先后。     红外光谱仪: PerkinElmer发布红外新品   PerkinElmer今年隆重推出功能更为强大,扩展更为无限的新款红外光谱产品——Frontier。Frontier拥有杰出的透射谱技术、高超的灵敏度和可配置性,能够确保其在苛刻的应用领域表现优越,能够帮助检测药物的安全,分析复杂的化学材料性能,并能满足研究与学术领域各种严格的要求。Frontier的模块化设计、可再升级功能以及卓越的信噪比,保证其在近红外、中红外和远红外光谱分析中获得最佳光谱性能。 PerkinElmer红外新品家族Frontier、Spectrum Two   PerkinElmer近期刚刚推出的 Spectrum Two 便携式红外光谱产品,在突出方便携带,坚固耐用的同时,更创新性的采用了无线控制系统,该系统集成了依照ASTM等要求建立的一系列标准方法,使得用户可以一键式完成检测。 Spotlight 红外成像系统   利用PerkinElmer光学技术的灵活性,可以随时将Frontier 升级到Spotlight 红外成像系统,该系统将轻松完成材料微观表面信息与化学成分组成同步采集工作,并能够直观显示出同质与异质区域,从而加速材料表征分析的研究进度。 天瑞仪器便携式翡翠鉴定仪面市 MIR3043P便携式翡翠鉴定仪   2011年7月,天瑞仪器珠宝首饰检测系列2011年度新品——MIR3043P便携式翡翠鉴定仪正式向市场投放。MIR3043P是一款利用红外线谱分析原理,专用于检测翡翠A、B货的便携型光谱仪器,可实现对手镯、玉佩等翡翠饰品的快速鉴定,检测全程仅需10-60秒,且不会对样品造成任何损害。   MIR3043P首次将可变波长滤波器技术引入了分析测试仪器,辨假准确率可达100%。再加上微机电MEMS技术的应用,从而实现仪器的小型化,整机质量只有5 kg。另外,高发光效率的红外光源、高灵敏度红外热释电传感器、全数字调制解调等术的引入也为检测数据的精准和可靠保驾护航。   近红外光谱仪: FOSS发布两款新的近红外分析仪   2011年7月,福斯集团公司在全球发布两款高性能的多功能近红外分析仪, NIRS DS 2500 和NIRS DA 1650。这两款新一代的近红外分析仪具有以下主要特点: NIRS DS 2500多功能近红外分析仪   NIRS DS 2500光谱扫描范围宽(400-2500nm)。无论测试蛋白、水分还是高要求的指标,如纤维、灰分、氨基酸,NIRS DS 2500均可在1分钟内给出快速、准确的测定结果,确保了原料收购、生产控制和产品质量控制。   NIRS DS 2500预装定标模型,可分析多种类型样品。NIRS DS 2500 可以完全兼容NISYSTEM II分析方案和XDS分析方案,确保很好利用已有的NIR SYSTEM II和XDS数据库,直接整合,而不损失测试性能。 NIRS DA 1650多功能近红外分析仪   NIRS DA 1650是一款二极管阵列型近红外分析仪,扫描范围为1100-1650nm,适合于对水分、蛋白、脂肪等指标做准确的分析,它完全兼容福斯其他的近红外分析仪,例如InfraXact 和ProFoss在线分析仪,确保定标数据的快速使用和整合。 赛默飞世尔科技推出用于药品加工的全新近红外光谱仪 Thermo Scientific Tru Process近红外光谱仪   2011年3月29日,赛默飞世尔科技有限公司今日宣布推出全新Thermo Scientific TruProcess分析仪——适用于实时混合分析、干燥及其他过程分析技术(PAT)应用的近红外光谱仪。Truprocess采用微电子机械系统(MEMS)技术,将传统的近红外光谱仪转化为生产线近红外传感器。Truprocess体积小,重量轻,可以与绝大部分的的药品加工设备相连接。它具有集成的位置传感器和无线通信,可以在一秒钟内完成扫描,有能力监测高达25RPM转速的混合。该分析仪也可与Thermo Scientific Method Development 软件相兼容,适用于定性分析和包括干燥、混合和水分分析在内的定量应用。   拉曼光谱仪: 必达泰克推出Gem RamTM 拉曼珠宝识别系统 Gem RamTM 拉曼珠宝识别系统   2011年7月,必达泰克推出宝石识别拉曼光谱仪系统—— Gem Ram TM 系列宝石专用拉曼光谱仪,轻巧便携,可以探知位置宝石样品的类型,并进行初步鉴定。配备了BWTEK公司的高性能拉曼光谱仪和GEM ID系列光谱库搜索识别软件,并且内置了GEM EXPERT机构提供的300多种宝石标准物拉曼光谱库和图片,可以方便的识别样品的相关信息。   本拉曼光谱仪系统采用785nm激光作为激发光源,配有光纤拉曼探头和采样附件,可以方便而准确的采样样品的拉曼信号,配备小型笔记本电脑,方便对仪器进行操控。所有的仪器和配件均集成在一个方便携带的检测箱里。集成度很高,方便现场使用。 HORIBA新款智能型倒置显微拉曼光谱仪 智能型倒置显微拉曼光谱仪XploRA INV   HORIBA Scientific发布了最新的智能型倒置显微拉曼光谱仪XploRA INV。XploRA INV 继承了XploRA 高自动化和结构紧凑占地面积小的优势,同时还具有倒置显微镜独有的分析功能,对于难度大、要求高的生物样品研究具有特别重要的意义,例如细胞研究、癌症探测、细胞内药物活性的表征、微反应器监控等。此外,XploRA INV 系统能够方便的和AFM联用,进行Raman-AFM联合分析以及TERS(针尖增强拉曼光谱)分析,使得超高空间分辨率的结构分析以及样品表面形貌分析得以同时实现。   紫外可见分光光度计: Dynamica (Asia)紫外可见双光束光度计DB20R面世 DB20R紫外可见分光光度计   2011年7月,dynamica (Asia)生命动力亚洲有限公司新款DB20R紫外可见分光光度计DB20R面世。DB20R在原有DB20以及DB20S的基础上,增强了软件的控制优势,由电脑控制主机,可针对DNA/RNA以及蛋白方法做补充,功能强大,控制和存储数据更加便捷。DB20R采用实时双光束光路设计,重现性好,性价比高,操作方便,附件多样。 RIGOL推出Ultra-6000系列紫外-可见分光光度计 Ultra-6000系列紫外-可见分光光度计   2011年6月8日, RIGOL委托中国分析测试协会在RIGOL科技园区组织召开了RIGOL Ultra-6000系列紫-可见分光光度计专家鉴定会。RIGOL Ultra-6000系列紫外-可见分光光度计杂散光超低、重复性好、信噪比高、软件功能齐全、外观设计美观。该仪器整机结构均为自主设计,关键技术具有自主知识产权,整机主要性能指标达到国外同类产品水平。 上海元析仪器有限公司推出新型紫外可见分光光度计 超微量紫外可见分光光度计(BIO SPECTROPHOTOMETER) B-500   2011年,上海元析仪器有限公司推出新型超微量紫外可见分光光度计(BIO SPECTROPHOTOMETER) B-500。B-500采用点滴测试方式,大大的节省试剂用量。专门针对生物领域试剂金贵而设计的一款专用仪器,最低测试溶液量达5微升。适于DNA、RNA、蛋白样品无稀释的快速检测。   荧光分光光度计: 上海棱光技术有限公司推出新品F97系列荧光分光光度计F97系列荧光分光光度计   F97系列荧光分光光度计是上海棱光技术有限公司最新研制成功的高端荧光分光光度计产品,采用双单色器、带激发光监视系统的比例双光路设计,150W滨松高品质氙灯、采用1200线/mm凹面光栅和大孔径非球面反射镜分光系统。软件设计包含多种分析功能。同时丰富的附件大大扩展仪器的应用范围,可支持液态、粉末、薄膜样品的测量,可对产生荧光互淬灭的高浓度样品实现测量,可对少至5μl的微量样品实现精确测量,也可配备自动进样系统等。产品体积小巧、结构紧凑、具有检测灵敏度高、扫描速度快、光谱测量范围宽、检测动态范围大和快速三维扫描等特点。   光纤光谱仪: 必达泰克正式发布Sol™ 2.6系列光纤耦合InGaAs阵列光谱仪 Sol™ 2.6Sol™ 2.6阵列近红外光谱仪   2011年1月4日,必达泰克正式发布Sol™ 2.6系列光纤耦合InGaAs阵列光谱仪。Sol™ 2.6光谱仪采用高性能线阵256元InGaAs阵列,具有高灵敏度和高动态范围的特点,致冷温度-15°C,标准光谱范围1550-2550nm。该型光谱仪最大的优势是配备自动校零功能、极低的噪声和高动态范围。四种光谱获取水平,在弱近红外应用中能够获得非常好的测量效果。Sol™ 2.6光谱仪同时配备了三级致冷,无需外部控制模块,可以直接5V DC供电,使用和集成更为方便,体积更小。Sol™ 2.6系列光谱仪在同级别的光谱仪中,具有最低的坏像素水平,非常适合应用于过程监控、质量控制和生命科学领域。 杭州晶飞科技有限公司推出近红外光纤光谱仪 近红外光纤光谱仪FLA6800   2011年5月,杭州晶飞科技有限公司推出近红外光纤光谱仪FLA6800,外观紧凑小巧,即插即用,操作方便,具有先进的电子系统和功能强大的探测器,高速数据采集电路系统。它的特点在于具有16位高精度高速A/D转换器、4K深度FIFO系统和USB2.0高速数据传输接口,可快速把仪器采集的数据上传到PC机中进行数据处理及显示。当通过USB与计算机连接时,将依靠计算机供电,无需外接电源,非常适合野外测试的需要。 海洋光学推高透光率低杂散光全息光谱 Torus 系列像差校正全息凹面衍射光栅光谱仪   2011年4月,海洋光学推出像差校正全息凹面衍射光栅光谱仪——Torus 系列。该光谱仪具有透光率高、杂散光更低、热稳定性好的特点,可用于液体、固体等的吸收、荧光测量。Torus可见波段光谱仪(360nm-825nm),杂散光水平:在400nm 处,约0.015%,较平面光栅等微型光纤光谱仪更低。Torus具有较高的光学分辨率(1500:1)和典型1.5纳米 (FWHM) 光学分辨率。STS 光谱仪有350-800纳米和650-1100纳米两种标准配置。 北京爱万提斯科技有限公司推出超高灵敏度的光纤光谱仪新品 超高灵敏度的光纤光谱仪(AvaSpec-Sensline)AvaSpec-ULS2048x16   2011年1月,北京爱万提斯科技有限公司推出超高灵敏度的光纤光谱仪新品(AvaSpec-Sensline)AvaSpec-ULS2048x16。AvaSpec-Sensline是一款为了满足一些有苛刻要求的用户而设计的具有极高灵敏度的高性能光谱仪。AvaSpec-Sensline光谱仪基于Avantes公司的超低杂散光AvaSpec ULS型光学平台,采用薄型背照式CCD探测器,量子效率高,在拥有超凡的高灵敏度的同时还具有极低的杂散光。AvaSpec-Sensline系列最先推出的产品为AvaSpec-ULS 2048x16-USB2和AvaSpec-ULS 2048x64-USB2两种。AvaSpec-Sensline光谱仪通常可用于要求极高灵敏度的光学测量,比如荧光测量和拉曼光谱测量以及弱光测量领域。   了解更多光谱仪器,请访问仪器信息网光谱专场   了解更多新品,请访问仪器信息网新品栏目
  • 辽宁“四大实验室”正式揭牌,省创新平台水平能级将迎“跨越式提升”
    9月5日,辽宁科技领域迎来“高光时刻”,辽宁材料实验室、辽宁辽河实验室、辽宁滨海实验室、辽宁黄海实验室正式揭牌。这4家辽宁实验室的成立,将使我省创新平台水平和能级实现“跨越式提升”,也意味着在辽宁大地,将有越来越多的原创科技成果竞相涌现。为贯彻落实习近平总书记关于科技创新的重要论述和在辽宁考察时的重要讲话精神,全面实施创新驱动发展战略,培育辽宁在优势科技、优势产业领域的战略科技力量,支撑具有全国影响力的区域科技创新中心和三大世界级产业基地建设,辽宁省委、省政府启动辽宁实验室建设,围绕新材料、智能制造、清洁能源及精细化工、高端装备制造等优势领域,布局建设4家辽宁实验室。辽宁材料实验室是辽宁省人民政府组建的省属新型研发机构,具有独立法人资质。实验室坐落在沈阳市浑南区,园区占地面积854亩,总建筑面积超过35万平方米,由中科院院士、副省长卢柯任实验室主任。实验室以打造具有国际影响力的综合性材料研究机构为宗旨,以引领材料科学和技术创新、推动材料可持续发展为目标,着力构建共性技术支撑平台、颠覆性技术创新平台、产学研与国际合作平台三大创新平台,实施基础前沿、关键技术、成果转化和人才培育四类专项项目,创新运行管理体制机制,提升原始创新能力,增强系统供给能力,培育优秀人才。实验室以“基于材料但超越材料,以材料创新推动技术进步”为基本建设理念;以“错位布局、优势互补、做现有研发体系未曾做和不易做的事情”为实验室架构设计和任务布局遵循的基本原则。在不远的将来,辽宁材料实验室将成为材料科技的国际创新高地,为技术进步作出重大贡献。辽宁辽河实验室以中科院沈阳自动化研究所为依托,联合中科院机器人与智能制造创新研究院、东北大学及省内部分龙头企业共同建设。实验室由中科院沈阳分院院长于海斌任实验室主任,设置“未来工业互联网前沿技术”“高端制造装备与自动化系统”“典型行业智能制造解决方案”三大研究方向,建设“产业数字化技术开发服务平台”和“未来工业互联网科研基础设施”两大科研设施,发挥我省产业数字化的场景资源优势和数字产业化的数据资源优势,紧密围绕我省装备制造业升级改造和原材料行业绿色转型发展需求,打造“可用、能用、好用”的产业智能化解决方案,助力智造强省建设。辽宁滨海实验室以中科院大连化物所为依托,联合融科储能、新源动力等重点企业共同建设。实验室由中国工程院院士、中科院大连化物所所长刘中民任实验室主任,聚焦国家能源安全和“双碳”战略目标,以“化石资源高效清洁利用、可再生能源、多能融合、精细化工与新材料、基础前沿交叉、能源战略研究”等为主要研究方向,围绕辽宁石油化工、洁净能源、冶金等重点产业开展“卡脖子”关键技术攻关,聚焦相关技术应用基础研究、中试验证、工业示范等过程,加速推进产业化进程,推进辽宁产业绿色低碳转型升级,助力辽宁经济高质量发展。辽宁黄海实验室以大连理工大学为依托,联合重工装备、瓦轴等重点企业共同建设。实验室由中科院院士、大连理工大学常务副校长贾振元任实验室主任,以显著提升我国高端装备制造技术自主创新能力为目标,以“高性能制造基础理论与共性技术研究、智能制造技术及装备与系统研究、制造领域关键装备设计与制造技术研究、高端装备关键基础件及基础工艺技术研究”为主攻方向,聚焦航空航天装备、工业母机、高端基础件等重点领域开展基础科学研究和关键技术攻关,解决高端装备制造产业“卡脖子”共性技术难题,打造国家高端装备制造领域的战略科技力量。未来,辽宁实验室将建设成为我国培育重大原创科技成果、攻克共性关键技术、引领产业创新发展的战略策源地,为维护国家“五大安全”提供科技创新的战略保障。
  • 沃特世向小分子分析、蛋白质解析领域迈进
    Synapt™ HDMS™ 质谱分析系统产品发布会在穗盛大召开 2007年8月19 日,上海 - 沃特世公司(NYSE: WAT)在广州珠江帝景酒店召开新产品发布会,正式向中国用户介绍其于今年年初荣获Pittcon® 最佳新产品金奖的Synapt™ HDMS™ 质谱分析系统(Waters® Synapt High Definition MS™ (HDMS) System)。这是第一台基于高效离子淌度测量和分离技术的高性能四极杆-飞行时间质谱仪。此次发布正值第五届中国蛋白质组学大会在穗举行,因此首次亮相的Synapt HDMS吸引了超过110位来自全国各地的蛋白质组学领域的专家和学者。 晚上19点30分,发布会以为产品亮灯作为序幕:四位客席嘉宾应邀上台,与沃特世中国区市场经理陈红女士共同主持这一仪式。在聚光灯的投射之下,白色巨型的Synapt HDMS仿真模型立刻成为全场的亮点。随后,沃特世中国市场总监舒放、亚太总部市场开发经理Mark Ritchie和应用培训经理吴麟堂,以及中国区质谱维修经理葛玉春等几位高层悉数到场进行精彩演讲,并演示了这一新产品所应用的先进技术。 “这是一套很好的产品。众所周知,蛋白质的结构决定其功能。但是,使用普通的质谱仪是不能观察到异构体的,这或多或少会影响检测结果的准确性。” 东北林业大学生命科学学院的李玉花院长说, “而Synapt HDMS的面世可以很好填补这一技术空白,大大丰富了常规质谱力所不能及的独特信息。” 深圳市南山区疾病控制中心柳洁主任也认为,“Synapt HDMS会在很大程度上有利于对离子空间比较结构的分析,在小分子研究、蛋白质解析、代谢物鉴定和生物制药等领域是一个极大突破。因此,这个产品无论是在全球还是中国的相应领域都有着极大的研究应用潜力”。 Synapt HDMS产品发布会在一片愉悦的氛围中圆满结束。沃特世中国市场总监舒放充满信心地表示,Synapt HDMS进入中国市场的策略是坚决的,也是务实的。“这种激动人心的分析手段,将会利用自身的技术优势,帮助相关领域内的研究人员轻松从事所有UPLC/MS/MS的应用分析。” 关于Synapt HDMS质谱 伴随2006年美国质谱年会上推出Synapt HDMS 质谱系统, 沃特世公司成为第一个将高效离子淌度测量与分离技术结合并商业化的公司,同时设计专业操作软件分析样品离子的大小,形状,电荷数及质量。 作为对该质谱系统创新科技的认可,Synapt HDMS 质谱系统在2007年匹茨堡分析仪器展览会上被评为最佳新产品金奖。 另外,行业通讯杂志—《仪器商业展望》也将Synapt HDMS 质谱系统评为2007年匹茨堡大会新产品最高奖。 欲知更多有关Waters Synapt HDMS质谱分析系统的信息,请访问www.waters.com/HDMS。 关于沃特世公司 沃特世公司(股票代码NYSE:WAT) 在全球范围内,通过传递实用,可持续发展的创新技术在人体保健,环境管理,食品安全和水质分析领域建立了商业优势。 拥有整合的分离科学,实验室信息管理,质谱和热分析技术,沃特世公司的技术突破和实验室解决方案为用户的成功提供了保证平台。 沃特世公司2006年收入为12.8 亿美元,在全球拥有4,700 名员工。沃特世公司致力于与全球用户一同推动科学发现并保障产品的卓越性能。 Waters, Synapt, High Definition MS和HDMS是沃特世公司拥有的商标。 媒体查询,请联络: 沃特世科技(上海)有限公司 谢迎锋 小姐 电话:+86 21 54263597 传真:+86 21 64951999 Email:xie_ying_feng@waters.com 网址:www.waters.com www.waterschina.com
  • 独辟蹊径!单分子与单细胞水平解锁生命过程中的相互作用
    生物结构和功能之间的联系是生命科学研究的关键,然而对这个领域的认识目前仍有很多空白。LUMICKS 是总部位于荷兰的生命科学仪器供应商,研发和生产动态单分子和细胞亲合力分析仪器,让研发人员能够在分子和细胞水平上建立结构和功能之间前所未有的桥梁。 LUMICKS 的产品在生物相互作用过程中施加和测量作用力,实现对分子和细胞的研究,从而能够对潜在的生物机制进行详细的实时分析。LUMICKS主要有两款产品,分别是C-Trap® 动态单分子显微镜和z-Movi® 细胞复合亲合力分析仪,目前众多世界顶尖大学研究所均为 LUMICKS的技术产品的用户,如哈佛大学,牛津大学,清华大学等。2020 年, LUMICKS 在北京设立了亚太区办公室 (卢米科思贸易(北京)有限公司)以服务于亚洲的客户。单分子&动态 观察生物分子机制的全幅图景现代的生物研究通常涉及多种实验技术与方法手段,想了解一个生物分子机制的全幅图景,我们既需要能够分析单个分子,也需要了解分子的动态过程。为什么单分子如此重要?首先单分子观察是对一个分子最直观的分析,眼见为实,这也是许多科学技术一直追求观察更小的单元的原因。其次,单分子技术允许科学家了解单个分子的性质,并非是一个群体的结果。众多技术,例如凝胶电泳、表面等离子共振等,提供的都是万千分子的平均读数,常常不能体现分子的多态性能。为什么我们需要观察动态过程?生物过程本身是动态发展的,只有了解生物分子的行为,才能够理解它们的机制,也才能够为制药、治疗等目标提供指导。结构生物学的方法能够精确到生物分子中的每个原子,然而每个结构都是一个静止的状态,因而目前很多结构生物学家们也在发展能够将静态结构与动态过程结合的方法。C- Trap 动态单分子显微镜填补了这一空白,既能够观察单分子尺度的生物分子,又可以实时观察DNA与蛋白互作、蛋白构象等动态过程。此外,C-Trap的光镊技术允许控制、操作单个 DNA、蛋白、细胞骨架等分子,在微米、纳米尺度下触摸、移动、控制生物分子,为研究人员带来前所未有的体验和结果。C-Trap动态单分子显微镜在动态单分子领域,LUMICKS的C-Trap 是行业首家商业化仪器。相较于其他解决方案,C-Trap 提供业内第一的测量精度和稳定性,真正实现对单分子过程的动态实时观察,高度集成易用的软件使得任何研究人员都可以操作,从样品制备到实验数据分析全流程支持帮助高效产出成果,以及来自全球工程师优质的售后服务。目前 C-Trap 仪器主要在高校的前沿研究中以及生物制药公司的研发中使用,相较于欧美,在中国的C-Trap 使用刚刚起步,未来将会逐步占领市场,成为生物实验室的必备仪器。C-Trap 动态单分子显微镜主要应用在DNA 结合蛋白、细胞骨架与分子马达活性、蛋白质折叠结构变化、细胞力学、生物相变与大分子相分离等领域。尤其在DNA的分子研究领域拥有非常多的应用:DNA 修复,基因编辑,DNA 转录,核小体结构功能等。客户发表在CNS杂志上的应用案例包括DNA 基因编辑过程中 cas9 蛋白与DNA 结合位点在靶、脱靶受哪些因素影响,DNA 损伤修复过程中 Rad 51 蛋白如何与其他蛋白协作,DNA 解旋酶在DNA 上的移动、解旋以及与其他蛋白的互动等等。由于 C-Trap 在生物领域广泛的应用,尤其适合多个研究室作为平台共享设备。免疫细胞治疗领域 复合亲合力测量正在受到瞩目过去的十几年里免疫细胞疗法极大地加速了临床肿瘤治疗的进展,但过继性细胞治疗的效果仍面临着很多挑战。尽管付出了巨大的资源和成本,非常多CAR-T研发团队的临床试验都以失败告终:接受免疫治疗的癌症患者中有很多对药物没有反应或者出现不良反应。这是由于免疫系统与癌细胞的动态环境本身非常复杂,因而众多体外检测方法并不能准确预测体内(临床)疗效。传统衡量免疫细胞效果的方法有很多种。分子水平上,如在研究TCR,CAR受体识别肿瘤表面抗原的特异性时,通常采用的表面等离子共振(SPR)或MHC四聚体(MHC Tetramer)等技术,优化筛选出与靶点亲和力(affinity)最佳的TCR/CAR设计。除此以外,也可以通过体外细胞实验,如细胞杀伤或细胞因子分泌检测去评估免疫细胞的激活及特异性杀伤能力。然而,这些体外实验数据一致性较低,需要更好的生物参数或者assay去预测体内及最终临床结果。什么是细胞复合亲合力(cell avidity)?它阐明了细胞间总的结合强度,这包括了:共受体结合、T 细胞受体(TCR)聚集、细胞粘附蛋白,甚至是结合的方向和分子键的价态。它揭示了一个细胞与另一个细胞之间的复杂的相互作用,而并不仅仅局限于一个蛋白受体与另一个蛋白抗体之间。因而细胞复合亲合力提供了更完整的、更具有生理学相关性的信息,反映了免疫细胞与肿瘤细胞之间更真实的相互作用,从而对免疫治疗期间的细胞响应和效果进行更准确的预测。在免疫细胞治疗领域,特别是CAR-T研发中,复合亲合力测量正在受到瞩目。2022年4月哈佛医学院发表在 《Nature》上的论文 “CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours” 指出“亲合力逃逸” (avidity escape)是实体瘤用来避免 CAR T 细胞杀伤的一种抗性机制,因而对于细胞复合亲合力的测量能够预测 CAR T 对于实体瘤的临床治疗效果。z-Movi 细胞复合亲合力 (Cell avidity) 分析仪,是免疫治疗细胞复合亲合力领域排名第一也是唯一的产品。z-Movi 提供了一套完整的实验解决方案,专注细胞治疗领域,简化免疫细胞筛选流程,一键测量细胞间的复合亲合力。从而帮助研究人员加速细胞治疗产品的筛选和药物开发,更准确高效地筛选出优秀的免疫细胞。z-Movi 细胞复合亲合力检测仪z-Movi 的应用领域主要包括CAR-T, TCR-T, NK/CAR-NK及Cell engager免疫疗法的研发。在CAR-T研发时,通过检测cell avidity,优化CAR的设计,可以降低脱靶效应等不良反应,提高T细胞功能。至于TCR-T,相比affinity,cell avidity与T细胞功能有更好的相关性,借助z-Movi评估不同突变TCR的功能。在NK/CAR-NK研发中,cell avidity也能够用来评估NK细胞的功能及CAR的设计,筛选合适的Donor NK。最后,通过检测不同双特异性抗体与效应细胞靶细胞的cell avidity,研发者能够更好地了解cell engager在细胞相互作用中的功效。未来,我们也将与更多科研院所合作,拓展z-Movi的应用,如树突细胞(Dendritic cell),巨噬细胞(macrophage)等。基于独一无二的测量和优秀的产品设计,z-Movi 已在一众生物制药公司中大放异彩,将来,z-Movi 也必将成为细胞免疫治疗实验室与研发团队中的必备设备。本文作者:王磊博士,LUMICKS 亚太区产品应用专家于晨露博士,LUMICKS 亚太区市场负责人本文为LUMICKS供稿。如有技术干货、科研成果、仪器使用心得、生命科学领域热点事件观点等内容,欢迎相关行业朋友投稿。投稿邮箱:lizk@instrument.com.cn
  • 步入式试验室性能及特点
    步入式试验室性能及特点:1、具有极宽的温湿度控制范围,可满足用户的各种需要。采用独特的平衡调温调湿方式,可获得安全、精确的温湿度环境。具有稳定、平衡的加热、加湿性能,可进行高精度、高稳定的温湿度控制。2、装备高精度智能化的温度调节器,温湿度采用LED数字显示方式。可选配温湿度记录仪。3、制冷回路自动选择,自控装置具有随温度的设定值自动选择运转制冷回路的性能,实现高温状态下直接启动制冷机,直接降温。4、内门装有大观察窗,可方便观察供试样品的试验状态。5、装有先进的安全、保护装置-漏电断路器、超温保护器,缺相保护器,断水保护器。高低温试验箱、恒温恒湿试验室、高低温湿热试验室、高低温交变湿热试验室、盐雾腐蚀试验室、以上试验室可根据客户要求定做。技术参数温度范围:-40℃~80℃(可交变温度范围:-40℃~60℃ )温度度动:±0.5℃温度均匀度:±2℃升温速率: 1.0℃~3.0℃/min降温速率: 0.7℃~1.0℃/min 温度范围:RT+10~400℃试验室类型步入式试验室,是配置有保护、加热、制冷的一系列装置,为大型零件、半成品、成品做环境测试的实验室。该实验室在箱体侧面设有带塞子的φ50mm测试孔,塞子材料为硅橡胶低发泡,能耐高低温,兼具保温效能。中文名 步入式试验室 温度度动 ±0.5℃ 温度均匀度 ±2℃ 升温速率 1.0℃~3.0℃/min箱体材料外箱材质:优质碳素钢板.磷化静电喷塑处理内箱材质:SUS304不锈钢优质光板保温材质:聚胺脂硬质发泡大门密封采用双层硅橡胶密封材料观察窗为多层导电膜钢化中空玻璃,为防止低温时玻璃结霜,特设内置式特制发热丝环绕,并设有照明灯,为观察提供照明控制系统采用:进口可编程触摸式液晶中文对话式显示,微电脑集成控制器保护系统整体设备超温/欠相/逆相/定时制冷系统过载/超压其它还有漏电、缺水、运行指示,故障报警后自动停机等保护加热加湿加热器采用瓷架镍铬丝电加热器,此加热器热惰性小,寿命长由仪表输出可控脉冲占空比PID信号,通过固态继电器来控制,控制平稳、可靠制冷系统压缩机:全进口半封闭德国谷轮;美国“艾高”干燥过滤器,台湾“冠亚”油分离器,意大利“卡士妥”电磁阀;冷冻系统采用单元或二元式低温回路系统设计;采用多翼式送风机强力送风循环,避免任何死角,可使测试区域内温度分布均匀;风路循环出风回风设计,风压、风速均符合测试标准,并可使开门瞬间温度回稳时间快;升温、降温、系统完全独立可提高效率,降低测试成本,增长寿命,减低故障率。步入式恒温恒湿室具有试验空间大,操作人员可以试验室对试验品进行操作的特点,为工业生产厂家的批量或者大型零件、半成品、成品提供了温湿度环境测试的条件。采用先进的中文液晶显示画面触摸屏,可进行各种复杂的程序设定,程序设定采用对话方式,操作简单、迅速。可实现制冷机自动运转,最大程度上实现自动化,可配制LAN通讯接口,便于用户远程距离程制和中央集中控制。可记录90天的温度、温度参数,相当配备无纸记录仪。东莞市海银环境测试设备有限公司成立于2010年,是国度高新技术企业,先后荣获ISO9001、国度AAA信誉体系等多项认证。 公司长期从事上下温实验箱,可程式恒温恒湿实验箱,冷热冲击实验箱,复层实环境老化实验箱,步入式上下温湿热实验箱,盐雾实验箱,紫外线加速老化实验机,振动实验台,跌落实验机,IP等级淋雨实验箱,IP等级沙尘实验箱,氙灯老化实验箱等牢靠性测试设备的研发和消费。 本着诚信、高效、感恩、共赢的运营理念,公司与中科院、清华大学、华为等数千家企事业单位坚持长期的良性协作。在此非常感激您的信任和选择,勤卓团队将会全力效劳您的协作需求。让我们携手,共创愈加高精尖的中国制造。
  • 珀金埃尔默收购中国传染病分子诊断公司
    上海浩源生物科技有限公司的加入将完善筛查业务,并使珀金埃尔默进入日益增长的中国核酸血液筛查市场   马萨诸塞州Waltham和中国上海 珀金埃尔默股份有限公司(2012年11月13)—(纽约证券交易所:PKI),是专注于人类与环境健康和安全的全球领导者。今天其宣布,已经完成对上海浩源生物科技有限公司的收购,该公司是一家中国的传染性疾病诊断公司。此次收购扩展了珀金埃尔默进入血液核酸检测筛查市场的竞争力,使得公司进入不断增长的中国分子临床诊断市场,从而进一步增强公司在中国、乃至全球诊断行业的领导者地位。   浩源公司为遍布中国的血库和临床试验室提供感染性疾病的分子诊断筛查技术,通过增加四种中国国家食品药品监督管理局(SFDA)批准的传染病检测,扩展了珀金埃尔默的产品系列。涉及的传染病诊断工具包括乙肝病毒(HBV)、丙肝病毒(HCV)和艾滋病病毒(HIV)的3合1血液筛查试剂盒,HBV、HCV的定量检测以及和沙眼衣原体与淋病奈瑟菌(CT/NG)联检试剂盒的。   公司主席兼首席执行官RobertF. Friel说:“通过将珀金埃尔默强大疾病筛查能力与浩源专有试剂和设备的整合,公司将为中国市场提供高灵敏度的系统和测试手段以保证血源性感染的质量,。”RobertF. Friel还认为:“将浩源的筛查产品与珀金埃尔默的诊断技术整合,将通过提供先进的技术,同时以以较低成本对传染性疾病进行准确诊断,从而进一步提高中国居民的健康水平。”   面临每年达15%增幅的血液需求,现在中国政府强制实施并资助捐献血液的流行疾病筛查。在中国政府最近的5年的规划中规定,到2015年底,将采用核酸技术检测所有的捐献血液。相比于抗体检测法,核酸检测技术缩短了传染性疾病从感染到被检出的时间段。在中国,有大约有78万人为艾滋病病毒携带者/艾滋病患者。世界卫生组织也报告了全球成人HBV的慢性感染率为8%-10%,14亿中国人中有3.2%感染HCV。   浩源公司的收购使珀金埃尔默能够对这些血库提供先进、高灵敏度的筛查方案,实现了输血前HBV、HCV和HIV病毒的早期检测。同时,该产品的整合除了加强了中国血库的安全性,也为将来在其他国家实施创造了机会。同时在临床上,浩源的产品有助于实现对患者进行更快、更有效的用药检测和治疗。此次交易涉及金额为现金3800万美元及未来可能产生的基于实现收入为目标的费用。此次收购预计对珀金埃尔默2012年、2013年连带至2014年初的每股盈余没有影响。   #   关于珀金埃尔默   珀金埃尔默股份有限公司是一家全球领先的致力于改善人与环境健康和安全的公司。公司2011年的上报收入约19亿美元,拥有约7000名员工,服务于150多个国家和地区的客户,并已位列“标准普尔500指数”名录内。欲了解更多信息,可致电1-877-PKI-NYSE,或登录www.perkinelmer.com。   非GAAP财务指标的运用   除按照美国公认会计准则(GAAP)编制的财务指标之外,本盈利报告还包含了非GAAP财务指标。我们之所以使用这些指标并将其调整为直接可与GAAP相比较的指标的原因,以及这些指标相关的信息被包含在下面的GAAP财务报告中。   我们使用术语“调整后的销售收入”来表示GAAP销售收入,其中包括了按照企业合并准则要求不能完全确认的在收购中所取得的合同的预计销售输入。我们使用另一个相关术语“调整后销售增长”来表示用于比较当期调整后销售与去年同期调整后销售的指标。我们认为这些非GAAP指标与GAAP指标配合使用将使我们和投资者们更好地评价我们进行技术投资所取得的业绩,也能更好地评价公司长期投资的趋势及公司进行长期投资的能力。调整后销售增长指标也能够更好地与前期、未来业绩以及同行之间的业绩进行比较。并购后的GAAP销售收入并不能够完全反映被收购企业的其他合同收入。非GAAP调整则试图反映出其全部收入金额。鉴于客户曾经签署过类似协议,尽管并不能保证客户在未来仍然会这样做,但我们仍认为投资者可以使用调整后销售收入作为并购企业持续盈利能力的指标。   影响未来绩效的因素   此次发布的信息包括了“私人证券诉讼改革法案”所要求的“预计”报表,包括但不限于与未来每股收益、现金流量、销售增长、其他财务业绩、与客户及终端市场相关的发展状况、业务发展计划和资产剥离计划等进行估计和预测的报表。诸如“认为”、“倾向于”、“预期”、“计划”、“期望”、“预计”、“预测”、“将”及类似的表述将会有助于我们识别出这些报表。这些报表都是基于管理层对当前所做的假设和期望,并不保证这些假设或期望将会被证实是正确的。许多重要的风险因素都可能导致实际结果与预计报表所描述、暗含或预计的绩效产生重大偏差。这些风险因素包括,但不限于:(1)目标产品市场下滑或并未像预计情况那样增长 (2)全球政治经济环境出现波动 (3)未能及时引入新产品 (4)我们进行收购和技术授权的能力,或者成功将收购业务和授权技术融入现有业务并使之盈利的能力,或者成功进行资产剥离的能力 (5)未能充分保护好我们的知识产权 (6)许可或授权上的损失 (7)有效竞争的能力 (8)季度经营绩效的波动以及我们调整业务应对未预期变化的能力 (9)第三方货物传递和进出口服务的中断,或者这些服务大幅度涨价 (10)原料供应的中断 (11)产品生产和销售导致我们遭受产品责任的诉讼 (12)未能遵从政府的相关管制规定 (13)管制性变化 (14)未能遵从健康行业管制 (15)国外业务相关的政治经济或其他风险 (16)我们留住关键管理人员的能力 (17)公司信息系统严重瘫痪 (18)未来融资能力 (19)限制贷款协议 (20)我们完全体现无形资产价值的能力 (21)股价产生重大波动 (22)普通股股利减少或消除 (23)上季度报告表10-Q及证券交易委员会要求的列报资料中所述“风险因素”项下列明的其他各类因素。我们并不负有任何义务在本报表发布日后更新这些预计报表。
  • iCS 2018第二天 分子光谱技术“魅力吸睛”
    p    strong 仪器信息网讯 /strong 2018年5月29日,由仪器信息网主办的第七届光谱网络会议(iCS 2018)暨第一届“光谱仪器在线展览会”(Spectroscopy Online Exhibition)正式开幕。本届网络会议为期三天(5月29日-31日),采取在线研讨会(iCS)、网上展览会、促销活动等多种形式全面展示光谱的最新技术和产品。 /p p   iCS 2018分设4个专场:原子光谱技术与应用进展、分子光谱技术与应用进展、近红外光谱技术与应用进展及拉曼光谱技术与应用进展。大会邀请了27位业内光谱专家、以及厂商技术人员针对不同的主题做精彩报告,为业界人士搭建一个交流平台,提高光谱研究与应用水平。 /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCS2018/" target=" _blank" img title=" 00.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/df8ee841-0974-484e-be9e-77727dc12a09.jpg" / /a /p p   5月30日,分子光谱技术与应用进展、近红外光谱技术与应用进展专场共安排了8位相关专家进行精彩的报告,累计报名人数依然超过1000人!用户互动持续火热,数十个用户问题得到沟通和解答! /p p   报告内容聚焦分子光谱的最新技术及应用,涵盖了分子荧光光谱,近红外光谱,基于固相萃取光谱的快检技术以及便携、专用和在线仪器等,并从多个角度介绍了这些分子光谱技术在过程/在线分析、快速检测、及科学研究等方面的应用。以下为报告内容简要,以飨读者。 /p p style=" TEXT-ALIGN: center" span style=" COLOR: #ff0000" strong 分子光谱技术与应用进展 img title=" 袁洪福.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/0b079c1a-3ddc-4a05-8615-f7cdb2d93cc0.jpg" / /strong /span /p p span style=" COLOR: #ff0000" /span & nbsp   分子光谱(近红外、红外和拉曼)产生于分子振动能级跃迁,即从分子水平上反映了物质的组成与结构信息,是一种物质定性和定量分析的理想信号。随着材料与科学仪器制造技术的发展,分子光谱仪器(包括傅里叶变换、光栅阵列、MEMS等)及其各种测量附件的发展也很快,不同用途的便携、专用和在线仪器等多种专用仪器不断涌现,目前技术上已经可以方便地获取气体、液体和固体等复杂形态物料的分子光谱,使得分子光谱分析已从实验室快速走向过程分析领域。分子光谱结合计算机信息处理技术,可以实现对过程物料多种性质的快速、无损、同时的定性和定量分析,称之为分子光谱过程分析技术。 /p p   本次讲座旨在介绍分子光谱过程分析技术和作者主持研究的分子光谱过程分析技术最新科研成果及其在智能制造领域中的应用展望。 /p p style=" TEXT-ALIGN: center" img title=" 周磊.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/ba795619-1a63-4440-a596-6362442563bb.jpg" / /p p   HORIBA发布Duetta新一代分子荧光光谱仪,吸收与荧光功能二合一,重新定义分子荧光系统。针对荧光定量定性分析中内滤效应(IFE)的问题,首次提出了A-TEEM技术,开发了独有的同步吸收-荧光光学设计,消除IFE,扩展浓度的线性区间,特别适用于有颜色,高浓度样品的分析 在荧光指纹图谱(EEM)分析中,CCD检测器眨眼间(1s)获得三维荧光光谱,避免样品有位置变动(抖动或沉降)影响的光谱结果,并可经过IFE校正(利用吸收信号校正荧光信号)获得更加准确的EEM图谱 超宽的CCD响应范围,远超常规PMT光谱仪的极限检测范围,实现一次采谱完美获得全谱范围响应信号(~1100nm),无拼接,无切换,解决近红外一区全谱测试,可进行全谱动态测试 首发EzSpec软件,使得荧光光谱仪进入智能触屏时代,摆脱鼠标键盘束缚 智能样品附件识别设计,支持热插拔标准附件,无需软件安装 整机免维护,换灯免服务人员,轻松使用。此次网络讲座就这款新产品的新技术与应用进行了介绍。 /p p style=" TEXT-ALIGN: center" img title=" 杜一平.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/cfc78213-ba62-49ef-807a-44f02cf3f5cd.jpg" / /p p   利用近红外光谱技术进行常量组分的快速检测已经比较成熟,但是微量甚至痕量物质的光谱快检还有很多问题,核心的难题是灵敏度和选择性问题。本讲座介绍基于固相萃取光谱的快检技术。 /p p   固相萃取光谱技术就是把固相萃取与光谱检测相结合,样品经固相萃取而富集被测组分,并分离干扰物质后,不经洗脱直接在固相材料上检测光谱,它简化了操作、有效提高了灵敏度和选择性,是很有潜力的新型快检技术。本讲座从实验装置和应用实例等方面详细介绍了该项技术。 /p p style=" TEXT-ALIGN: center" img title=" 李娜.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/761284ac-da2a-4db9-abda-053e8ca82ab0.jpg" / /p p   贵金属纳米簇是由几个至几十个贵金属原子组成的纳米材料,具有光致发光的特性。在各类模板分子中,DNA分子可通过编辑序列调控银纳米簇光学性质、本身可作为识别与组装基元,在分析应用中具有优势,因而常用作荧光贵金属纳米簇的模板。 /p p   本报告针对DNA模板保护的贵金属纳米簇研究中存在的问题开展了研究,在尺寸调控、发光机理研究、光谱探针模块化以及银纳米簇的分析应用方面进行了探索。 /p p style=" TEXT-ALIGN: center" span style=" COLOR: #ff0000" strong 近红外光谱技术与应用进展 img title=" 杨增玲.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/b51ea0c3-7a93-42a9-adad-2d1d2529e4b6.jpg" / /strong /span /p p   现代近红外光谱分析技术主要利用有机化学物质在近红外光谱区的光学特性而获取有效信息进行快速检测,是一种无损、环保的新式检测技术。该技术的开发利用最早始于农业领域,用于谷物中的水分和蛋白质的测定,之后在诸多领域得到了广泛的推广。 /p p   中国农业大学工学院生物质资源与利用实验室长期致力于循环农业的绿色检测技术研究,研究开发了循环农业中各环节物质成分含量及资源化利用关键参数的绿色速测技术、模型及配套设备,并探索性研究了近红外光谱技术在饲料行业、有机肥行业和厌氧发酵产沼气等生物质能行业过程分析中的应用。 /p p style=" TEXT-ALIGN: center" img title=" 王睿.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/dd58288c-f644-42ea-bc2a-1b587ff1edd2.jpg" / /p p   随着近红外光谱技术的发展,其应用场景不断的拓展,应用潜力被不断地挖掘出来。在棕榈油行业和新兴的化工行业,近红外技术的大面积推广使用,解决了实验室原有分析方法的繁琐、污染和高成本缺陷,大大提高了分析效率,节约了大量成本,为用户创造了价值。 /p p style=" TEXT-ALIGN: center" img title=" 刘全.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/7db56c13-aedd-4f11-b3fa-721a84cf9ce1.jpg" / /p p   当前,我国正在施行《中国制造2025》战略,“智能制造”、“工业4.0”、“互联网+”等口号给我们许多制造行业带来了大量活力。但是,化工行业因为其特殊性,许多化工生产企业目前却面临着安全、环保等方面的巨大压力。能否适应此阶段国家战略发展方向,采用新工艺、新技术进行产业升级,可能直接决定着一些化工生产企业的发展未来。 /p p   与所有制造业一样,信息化、智能化也是化工生产行业追求的目标,自动化是实现信息化、智能化的基础。但我国的化工生产行业,尤其是中小规模的精细化工生产企业,还没有完全实现自动化,其中一个方面是缺少有效的实时工艺过程信息(PI)采集手段、及基于过程信息的实时反馈控制系统,比如,许多化工生产企业目前还是依靠人工到生产现场取样、到实验室进行化验,车间操作人员再根据实验室化验结果来调控生产工艺参数。由此带来的问题是反馈速度慢、信息不及时、取样带来的危险和污染、实验室分析的高成本、严重人工依赖等。 /p p   因此,对化工生产流程中如反应、精馏、溶剂回收、萃取分离等单元操作过程进行实时在线分析,对提升化工生产企业的自动化、信息化水平具有重要意义。但是,化工生产条件相对恶劣、装置规模大、工艺参数苛刻、强腐蚀性、操作人员技术水平层次不齐等,又为在线分析手段的选择带来了挑战。 /p p   近红外光谱具有类似中红外光谱的信息,光谱数据易获取,样品无需预处理,可采用长距离光纤远距离安装,可多点监控,易于与DCS等控制系统集成等特点,使得该技术成为了目前化工生产行业最可靠的技术手段之一。本报告旨在分享作者在过去约15年的近红外应用开发工作中成功执行的一些过程分析项目的经验及这些项目为企业所带来的效益等。 /p p style=" TEXT-ALIGN: center" img title=" 罗苏秦.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/ab06cb05-7ed2-4944-920e-8afd14f01604.jpg" / /p p   近红外光谱包含了样品特有的分子振动信息(C-H, O-H, N-H)、样品的物理性质信息(密度, 硬度, 粒径)以及样品与测量仪器之间特有的交互作用信息(穿透, 漫射等)。传统以来, 我们多半认为近红外分析仅仅是建立有效的化学计量学模型,确认光谱与其性质的定量关系,并且强调近红外光谱的吸收波峰复杂而无法有效解析, 似乎建模似乎是近红外分析的唯一选项,但是回到基本层次, 近红外光谱技术的本身兼顾了化学与物理信息, 而解析光谱图是了解样品分子结构与其特征吸收谱带之间的因果关系。 /p p   为了更进一步的了解近红外光谱技术的化性与物性优势, 报告人探讨了以”看光谱图说故事”的方式解决一些制药工艺中的根本原因分析, 并回答以下的问题: 如何有效的解析近红外的光谱吸收特征信息? 如何直观近红外光谱图而能判断化性与物性的差别?如何对近红外光谱采取简单或复杂的数据分析手段? /p p   为促进国内外光谱工作者的在线采购与洽谈交流,加强合作,与第七届光谱网络会议同期举行的iCS 2018暨第一届光谱仪器在线展也拉开了序幕,共计14家仪器厂商参展。本次展会通过网上展览会、促销活动等多种形式全面展示光谱的最新技术和产品,为光谱行业参展商及买家搭建一个高效、便捷的交流与商贸平台! /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/zc/OnlineExhibition" target=" _blank" img title=" 11.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/3092ddb0-b204-435b-af42-6bdeb9f31d7e.jpg" / /a /p p style=" TEXT-ALIGN: left"   本次展会分设原子光谱、分子光谱、近红外光谱、拉曼光谱四大展区。将优质的光谱仪器产品、核心部件、解决方案、资料等内容同步在线集中展示给仪器用户。具有节约营销成本、品牌强势推广、目标用户精准、销售线索反馈四大优势。 /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/zc/OnlineExhibition/Area" target=" _blank" img title=" 22.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/700decc3-b8d4-40f8-817d-4f976d2cf939.jpg" / /a /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/zc/OnlineExhibition/Area" target=" _blank" strong iCS 2018暨第一届光谱仪器在线展品牌参展商 /strong /a /p p   5月31日,聚焦当前“火热”的拉曼光谱而开设的“拉曼光谱技术与应用进展专场”精彩继续,请继续关注仪器信息网后续报道。 /p p   报名参加iCS 2018请点击 a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCS2018/" target=" _blank" span style=" FONT-SIZE: 20px COLOR: #ff0000" strong “我要参会” /strong /span /a ! /p
  • 沃特世在2014年国际质谱大会(IMSC)上推出用于小分子数据分析的Progenesis QI 2.0版
    新一代软件加强了控制能力,独具Pathway Mapping、Process Automation功能及改进的化合物数据库通道日内瓦—(美国商业资讯)—沃特世公司(纽约证券交易所代码:WAT)近日在瑞士日内瓦举行的第20届国际质谱大会上,推出了2.0版Progenesis? QI。该软件是一款用于液相色谱-质谱(LC-MS)小分子组学数据分析的新一代软件。 继六月份推出适用于蛋白质组大分子组学数据分析的2.0版Progenesis QI,沃特世今天发布的软件进一步完善数据平台。Progenesis QI和Progenesis QI蛋白组学软件将液相色谱-质谱(LC-MS)的数据分析速度和精度都提升至新水平,使用户能快速定量和鉴定样品中发生显著变化的小分子、脂质化合物和蛋白质。 Progenesis QI 2.0版的新功能包括:Pathway Mapping能促进将现有发现纳入生物学情境中的过程,从组学数据中获得尽可能多的信息;Workflow Automation能在没有人为干预的情况下,使软件在多个处理阶段自行运转,不仅节省了宝贵的时间,还能在夜间和周末持续运转;改进的化合物数据库通道,提高了成功鉴别化合物的机会;与EZInfo 3.0的扩展统计功能完美结合,具有双向的数据流,只需通过单一的菜单导向命令,就可实现灵活的数据挖掘。 沃特世全球营销和信息部门副总裁Rohit Khanna博士表示:“未进行深入了解的新发现是无用的。最新版本的Progenesis QI拥有改进的界面,使得软件的使用比以前更直观快速,让用户对他们的研究更有信心,并能更深入地理解获得的结果。” Progenesis QI 2.0版拥有基于研究人员的工作方式的灵活、直观易学的工作流程。它有着高度可视化的用户界面。扩展后的功能拓宽了在制药、健康科学、食品、环境和化学研究等诸多研究领域的应用。 如需了解更多有关Progenesis QI 2.0版软件的信息,请访问http://www.nonlinear.com/progenesis/qi/。更多Progenesis QI生物信息学软件的信息,请访问:http://www.waters.com/waters/zh_CN/Progenesis-QI-Software/nav.htm?cid=134790655&locale=zh_CN关于Progenesis QI软件2014年4月,在德国慕尼黑的Analytica Conference(分析研讨会)上,沃特世继收购组学数据分析软件领域的全球领导者Nonlinear Dynamics Ltd.之后,推出了Progenesis QI和Progenesis QI蛋白质组学软件。2014年6月,沃特世发布了用于蛋白质组学的2.0版Progenesis QI,扩充了信息学套装。Progenesis QI软件使研究人员能采用独特的方法分析并可视化LC-MS数据,准确定量和鉴定化合物和蛋白质。Progenesis QI软件支持所有常用的LC-MS数据格式,具有直观的导向性工作流程,能使用户能在宝贵的样品中快速、客观、可靠地找到目标化合物。Progenesis QI 2.0版拥有pathway mapping、process automation和改进的化合物数据通道等新功能,能提供增强的控制能力和功能。
  • 分子细胞卓越中心揭示Hh信号通路通过Hilnc参与肝脏脂质代谢的新机制
    11月8日,Nature Metabolism在线发表了中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)赵允研究组的最新成果(Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2)。该研究揭示了Hedgehog(Hh)信号通路调控Hilnc(Hedgehog induced Long non-coding RNA)的表达,进而参与调控高脂诱导的肝脏脂质代谢过程的分子机理。  非酒精性脂肪肝(Non-alcoholic fatty liver disease,NAFLD)是常见的慢性肝病之一,其特征是肝细胞肿胀和/或小叶炎症,可导致肝纤维化,最终可能发展为肝硬化和原发性肝癌。研究表明,Hh信号通路在NAFLD的病人和小鼠的肝脏中均被激活,且Sonic Hedgehog的表达水平与NAFLD的严重程度密切相关。然而,肝细胞Hh信号在NAFLD或任何其他肝病中的功能及作用机制尚未确定。  赵允研究组发现,Hh信号通路可直接调控一个之前未定义的、在脂质代谢中起到重要作用的长链非编码RNA(Hilnc,Hedgehog信号诱导的长链非编码RNA),从而参与脂质代谢。突变Hilnc启动子区中的Gli结合位点在体内和体外均可显著降低Hilnc的表达。在高脂喂养下,HilncBM/BM(BM:Gli binding site mutation,Hilnc启动子区中的Gli结合位点突变小鼠)和Hilnc-/-(Hilnc基因敲除)小鼠可以抵抗饮食诱导的肥胖及脂肪肝的发生。研究还发现,Hilnc的缺失会明显减弱小鼠肝脏中PPAR信号通路相关基因的表达。Hilnc可以直接与mRNA结合蛋白IGF2BP2结合调节Pparγ的mRNA的稳定性,进而调控肝脏脂肪代谢。此外,科研人员还在人类基因组中发现了Hilnc的功能同源物——h-Hilnc。这一新发现的Hh-Hilnc-IGF2BP2-Pparγ信号轴,为进一步阐释Hh信号通路调控lncRNAs及lncRNAs如何参与系统性代谢过程提供了新证据,并为肥胖及脂肪肝相关疾病的新的潜在药物靶点的发现提供了理论依据。  研究工作获得分子细胞卓越中心动物实验技术平台、细胞分析技术平台和分子生物学技术平台的支持,并得到国家自然科学基金委、科技部、中科院、上海市等的资助。  论文链接
  • 干货|多模态分子影像探针研究进展,尽在第一届小动物活体成像网络会iSAI2024
    分子影像技术的发展除了需要先进的医学成像设备外,开发多功能的分子影像探针是实现分子成像的先决条件。分子探针作为分子影像中的重要组成部分,也是确保分子成像灵敏度和特异性的关键。分子影像探针包括多种纳米材料,根据成像设备的不同,分子探针分为光学、核医学、磁学、声学、光声材料等不同种类。目前,基于纳米材料开发的分子影像探针已逐渐应用于临床,在对肿瘤进行成像的同时,又实现了精准的癌症治疗和疗效评估。仪器信息网将于2024年6月6日举办“第一届小动物活体成像技术与前沿应用”主题网络研讨会(iSAI2024),全日程现已公布(点击查看)。本文为【成像探针篇】,大会当天将由首都师范大学周晶教授、上海科技大学研究员朱幸俊博士、中山大学附属第八医院(深圳福田)副研究员李萝园博士、上海交通大学长聘副教授熊丽琴博士、 上海科技大学研究员罗宗化博士、东华大学副教授魏鹏博士共6位嘉宾,围绕稀土近红外二窗(NIR-II)成像探针、正电子发射断层扫描(PET)分子探针、活性氧探针、微循环系统成像探针开发及应用展开分享,欢迎踊跃报名参加在线直播!会议链接/扫码报名:https://www.instrument.com.cn/webinar/meetings/sai240606.html ——02分子影像探针篇——关键词:稀土近红外二窗(NIR-II)成像探针、微循环系统成像探针、正电子发射断层扫描(PET)分子探针、活性氧探针。周晶 教授首都师范大学个人简介:教授,博士生导师,北京市青年拔尖人才。主持国家、省部级科研项目10项。在国际高水平学术期刊共发表学术论文70余篇,以通讯作者身份在国际高水平学术期刊Nat. Commun.、Adv. Mater.、Angew. Chem. Int. Ed.等发表论文50余篇。累计他引6000余次,单篇最高他引1400余次,5 篇为 ESI 高被引论文。获中国国家发明专利授权27项。入选全球学者库公布的“全球学者库顶尖前10万科学家”及全球前2%顶尖科学家科学影响力排行榜单。担任《中国稀土学报》(中、英文版)和《稀土》首届青年编委会委员。大会报告:稀土纳米近红外二区发光材料实现疾病精准成像稀土元素具有丰富的4f电子能级结构,基于稀土元素构建的稀土纳米荧光材料是一种极具应用潜力的荧光探针。值得一提的是,以特定的稀土元素作为发光中心,可实现波长大于1000 nm的近红外二区荧光发射。鉴于此,我们设计开发了系列近红外二区稀土纳米荧光成像探针,基于该类材料实现了体外和活体内重大疾病标志物的精准检测。朱幸俊 研究员上海科技大学个人简介:上海科技大学物质科学与技术学院研究员/助理教授,博士生导师。2017年博士毕业于复旦大学生物医学研究院,师从李富友教授。之后于斯坦福大学医学院和材料科学与工程学院进行博士后研究工作。研究领域包括稀土发光纳米材料、纳米递送系统与治疗探针、医学影像造影剂、神经调控材料与器件等。目前课题组致力于发展适用于生物医学的新型纳米材料和技术,通过构建纳米复合材料,实现高选择性、低侵入性的生物成像、疾病治疗和生理功能调控。已在Nature Communications, Chemical Society Reviews, Nano Letters, PNAS等国际知名期刊上发表研究论文30余篇,他引3000余次,多项研究成果入选科睿唯安ESI化学和材料领域前1%高被引论文。大会报告:发光纳米功能材料的生物医学应用在疾病的诊断与治疗过程中,病变的动态观测、药物的选择性递送和治疗措施的有效调控在提升疗效和减少副作用方面具有十分重要的意义,然而目前的诊疗方式在生物体内应用时仍然存在侵入性高、检测精度不足和时空可控性差等问题。为了应对这些挑战,我们发展了一系列具有光、热、声等刺激源响应的新型纳米复合材料(包括光学纳米探针、纳米治疗剂和纳米递药系统),并通过生物相容性和仿生化修饰,实现疾病生物微环境变化的精确诊断、非侵入性可控治疗和早期疗效监测,为未来的疾病诊疗技术提供新的思路。李萝园 副研究员中山大学附属第八医院(深圳福田)个人简介:李萝园,中山大学附属第八医院副研究员、硕士生导师,深圳市高层次专业人才,中山大学“百人计划”引进人才。主持多项国家自然科学基金项目、省部级科学基金,并获得清华-北大生命科学联合中心杰出博士后资助项目。共发表学术论文20余篇,以第一/通讯作者身份在国际高水平学术期刊Adv. Mater.、Adv.Sci.、ACS Nano等发表论文15篇(影响因子大于10.0的11篇),课题组长期刺激响应水凝胶、多功能给药系统和近红外光学成像探针的开发以及它们在生物医学领域的应用研究。大会报告:动态光响应近红外二窗成像在生物医学领域中的应用研究利用刺激响应水凝胶与稀土近红外二窗(NIR-II)成像探针构建局部动态光学成像(LDDI)技术用来诊断炎症进展状态。纳米探针可以通过原位NIR-II光激活监测炎症因子的波动,并随着波动产生信号的变化,提高靶向治疗的准确性。熊丽琴 长聘副教授上海交通大学个人简介:上海交通大学长聘副教授、博导。已发表学术论文50余篇,引用共计超过5000次(Google Scholar),主持国家自然基金委项目5项,授权中国发明专利3项、美国发明专利1项。主讲本科生课程《分子影像学与疾病早期诊断》、研究生课程《分子影像学技术与探针》,主编教材《分子影像探针》。曾获上海市浦江人才(A类),获上海市级教学成果奖,获蒋大宗青年论文竞赛一等奖,获上海交通大学“李兰馨青年教师奖”,获生物医学工程学院教学竞赛青年教师组二等奖,获80103班奖教基金,获“双一流”研究生优质课程建设项目。大会报告:微循环系统的分子影像学研究微循环主要包括微动脉、微静脉和毛细血管间的微血管循环和淋巴循环。如何构建性能稳定,与管壁作用力强,不易渗漏的探针,实现对小尺寸管道的高分辨成像是一个关键科学问题。针对此科学问题,我们建立了淋巴管及组织微血管的结构与功能成像新方法,极大地提高了分子影像在疾病诊断和治疗中的灵敏度和准确性。罗宗化 研究员上海科技大学个人简介:罗宗化,任上海科技大学生物医学工程学院助理教授、研究员、博导、上海科技大学分子影像与核素药物实验室主任。在中山大学药学院获得有机化学专业博士学位,随后在美国圣路易斯华盛顿大学做博士后研究,及担任该校回旋加速器中心核心研发科学家。主要致力于神经炎症和肿瘤相关疾病的 PET 分子影像技术的研发及应用。在分子探针开发研究领域具有丰富的经验,以第一作者或通讯作者发表SCI论文和摘要50余篇。入选上海高层次海外人才计划,主持国家自然科学基金青年项目和多项企业研发项目,担任Frontiers in Organic Chemistry, iRadiology, View Medicine等期刊副主编或青年编委。大会报告:PET分子影像技术在动物疾病模型中的应用研究正电子发射断层扫描(PET)分子影像技术在动物疾病模型中的应用日益受到关注。本研究旨在评估PET技术在动物疾病模型中的应用潜力,并探讨其对疾病机制和诊断效果的评估。通过开发合适的PET分子探针,利用PET分子影像技术实现对动物模型中生物学过程的定量测量,如受体结合、蛋白质表达等,为疾病研究和药物开发提供有力的工具和支持。魏鹏 副教授东华大学个人简介:魏鹏,2019年1月博士毕业于复旦大学化学系,随后进入东华大学化学与化工学院工作至今。近年来聚焦于活性氧激活型控释体系的构建。截止2024年4月底,累计以第一或通讯作者身份发表SCI文章25篇,其中包括Angew. Chem. Int. Ed.(4篇)、Adv. Mater.、Chem. Sci.(2篇)、Adv. Sci. (2篇)、Anal. Chem.等。同时,授权发明专利7项,包括美国专利、PCT专利各一项。基于前期研究成果,获得2022年度上海市自然科学奖二等奖(第二完成人)。主持的项目包括国家自然科学基金面上基金项目、青年科学基金项目、上海市青年科技英才扬帆计划等。大会报告:特定类型疾病区域活性氧的原位检测活性氧已被明确与多种类型的疾病密切相关,可以作为疾病诊断的重要标志物。因此,可以借助对特定疾病区域活性氧的原位监测,实现对疾病的早期诊断或研判疾病的进展。但是,如何使探针只在特定的疾病区域工作,以实现与特定类型的疾病相关联成为当前亟需解决的问题。针对这一问题,报告人开通过引入靶向基团或调控探针关联疾病微环境等方式,开发了多种类型的仅在特定类型疾病区域工作的活性氧探针,为相关疾病的诊断提供了分子工具。点击获取稿件提纲为帮助广大实验室用户及时了解小动物活体成像前沿技术、创新产品与解决方案,增强业内专家与仪器企业之间的交流学习,仪器信息网特别组织策划“小动物活体成像技术” 主题约稿活动。欢迎投稿,投稿文章一经采纳,将收录至【小动物成像技术】专题并在仪器信息网相关渠道推广.投稿邮箱:刘编辑liuld@instrument.com.cn电话联系:13683372576(同微信)。SkyView小动物活体CT多模态融合成像系统品牌:博鹭腾型号:SkyView勤翔小动物活体成像系统IVScope8500品牌:CLINX型号:IVScope纽迈分析小动物核磁共振成像仪NM42-040H-I品牌:纽迈分析型号:NM42-040H-I
  • 分子光谱学术论坛暨赛默飞新品发布会在京隆重召开
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 2019年12月10日,由赛默飞世尔科技(中国)有限公司(以下简称为“赛默飞”)及中国光学学会光谱专业委员会主办的“分子光谱学术论坛暨赛默飞新品发布会”在北京隆重召开。近百位分子光谱及相关领域的工作者齐聚一堂,交流分子光谱的新技术、新应用。大会上,多位专家进行了报告,分享了分子光谱及相关领域最新的研究进展和成果,增进了广大光谱科学工作者们之间的交流与探讨。同时,赛默飞还介绍了其最新上市的红外光谱和拉曼光谱产品——赛默飞Nicolet iS20傅里叶变换红外光谱仪、赛默飞Nicolet Summit傅里叶变换红外光谱仪和赛默飞DXR3系列拉曼光谱仪,并就其新产品的各项性能以及在分子光谱领域的实际应用进行了详细的介绍。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/0d41cc5d-7212-4ba2-b0cf-ed8b3bd48a09.jpg" title=" 会议现场.jpg" alt=" 会议现场.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 会议现场 /strong /p p style=" text-align: justify text-indent: 2em " 会议开始,中国光学学会光谱专业委员会主任、北京师范大学谢孟峡教授与赛默飞分子光谱全国销售总监李健分别致辞。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/9ce6f615-08a1-4004-b7c2-b813d3dc6e02.jpg" title=" 谢孟峡报告.jpg" alt=" 谢孟峡报告.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国光学学会光谱专业委员会主任、北京师范大学 谢孟峡教授 /strong /p p style=" text-align: justify text-indent: 2em " 致辞中,谢孟峡教授表示,他课题组从30年前便开始使用赛默飞品牌的红外光谱仪,经历几次更新换代,赛默飞的仪器为他的科研工作提供了很大的帮助,并感谢了赛默飞对分子光谱的发展做出的贡献。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/8f247cb2-3726-48c2-8ed0-f5af45e6b045.jpg" title=" 李健.jpg" alt=" 李健.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 赛默飞分子光谱全国销售总监 李健 /strong /p p style=" text-align: justify text-indent: 2em " 李健在致辞中对在场分子光谱及相关领域工作者的到来表示热烈欢迎,并对大家多年以来对赛默飞的支持表示了衷心的感谢。他指出,赛默飞非常注重产品研发领域的投入,本次会议就将为大家详细介绍赛默飞近一年最新发布的三款分子光谱领域新品。 /p p style=" text-align: justify text-indent: 2em " 随后,大会进入报告环节,北京理工大学张韫宏教授、中国农业大学闵顺耕教授和中国科学院青岛生物能源与过程研究所黄长水研究员分别带来了精彩的报告。 /p p style=" text-align: center " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/4706c012-eb5b-4a29-9b1c-e716635fd588.jpg" title=" 张韫宏.jpg" alt=" 张韫宏.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 北京理工大学 张韫宏教授 /strong br/ /p p style=" text-align: center " strong 报告题目:气溶胶微粒的FTIR研究 /strong /p p style=" text-align: justify text-indent: 2em " “雾霾”是大气细颗粒物污染物,其严重影响了人体的健康,而雾霾的主要来源是二次颗粒物,包括硫酸盐、硝酸盐、铵盐等二次无机气溶胶,以及二次有机气溶胶,它们都具有吸湿特性,因此,有关气溶胶的吸湿性研究,对治理雾霾有着实际的意义。张韫宏教授在报告中介绍了他课题组,如何利用气溶胶流管FTIR、ATR-FTIR、显微红外等方法,开展气溶胶的吸湿性、风化结晶、非均相化学反应动力学过程等方面的研究,展示红外光谱技术对气溶胶颗粒物研究的独特优势。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/225fff38-2b09-452e-bf41-97d0f284cbab.jpg" title=" 闵顺耕.jpg" alt=" 闵顺耕.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国农业大学 闵顺耕教授 /strong /p p style=" text-align: center " strong 报告题目:红外光谱法快速检测农药中隐性成分的研究 /strong /p p style=" text-align: justify text-indent: 2em " 我国是农药大国,目前工信部核准的农药企业有1870家,在农业部登记的企业有2213家,农药制剂产品41514个。在农药质量监管中,通常存在原料质量不稳定、添加隐性成分、配方变更等问题,其中隐性成分问题会造成作物减产、农残超标、环境污染等诸多危害。闵顺耕教授在报告中从样品前处理与红外光谱测定、农药红外光谱库、隐性成分定性鉴定、定量分析几个方面介绍了红外光谱在农药检测中的应用,证明其具有易用性、时效性、可行性和经济性等特点。 /p p style=" text-align: center " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/8bc8995a-ff65-4f9b-a44b-a93d0fb63015.jpg" title=" 黄长水.jpg" alt=" 黄长水.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国科学院青岛生物能源与过程研究所 黄长水研究员 /strong /p p style=" text-align: center " strong 报告题目:拉曼光谱原位监测新型碳纳米材料器件过程 /strong /p p style=" text-align: justify text-indent: 2em " 报告中,黄长水研究员从拉曼和碳材料、拉曼用于石墨烯半导体器件原位监测、拉曼用于碳基电池器件原位监测等几个方面介绍了拉曼光谱在功能性分子材料设计、新型能源存储和转化材料的开发等领域的应用。 /p p style=" text-align: justify text-indent: 2em " 在大会的最后,赛默飞红外应用经理张梦霖博士与赛默飞拉曼应用经理张衍亮博士分别对今年发布的红外光谱及拉曼光谱新品的各项性能及应用做了详细介绍。 /p p style=" text-align: justify text-indent: 2em " 赛默飞新品的性能及亮点: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 210px " src=" https://img1.17img.cn/17img/images/201912/uepic/ff9c8a5d-4ab5-441e-812f-3f7677d9e618.jpg" title=" 微信图片_20191211161349.png" alt=" 微信图片_20191211161349.png" width=" 300" height=" 210" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 赛默飞Nicolet iS20傅里叶变换红外光谱仪 /strong /p p style=" text-align: justify text-indent: 2em " 赛默飞Nicolet iS20傅里叶变换红外光谱仪采用了全新的LightDrive光学引擎,包含新型的高性能激光器、光源、干涉仪和半导体制冷温控(TEC)检测器等部件,其激光器、干涉仪和光源具有10年的超长质保。除了在性能上,其外观及软件也进行了优化,Nicolet iS20采用了触摸屏的集成操作面板、多色LED扫描条实时显示仪器状态,软件功能也得到了提升。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 267px " src=" https://img1.17img.cn/17img/images/201912/uepic/22979970-1ae6-4395-a197-6d178194b1a6.jpg" title=" 微信图片_20191211112146.jpg" alt=" 微信图片_20191211112146.jpg" width=" 300" height=" 267" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 赛默飞Nicolet Summit傅里叶变换红外光谱仪 /strong /p p style=" text-align: justify text-indent: 2em " 赛默飞Nicolet Summit傅里叶变换红外光谱仪同样引入了LightDrive光学引擎及超长的光学平台质保,在保证性能的同时做到了更小的体积,可以携带到任何环境进行样品检测,SMART背景采集功能也能帮助用户节约近50%的测样时间。Nicolet Summit还集成了一台Windows10电脑及Wifi功能,可以随时随地保持与实验室的连接。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/ec550c8a-ebaa-4068-850b-7b3df19d91fd.jpg" title=" 微信图片_20191211112139_副本.png" alt=" 微信图片_20191211112139_副本.png" / strong 赛默飞DXR3系列拉曼光谱仪 /strong /p p style=" text-align: justify text-indent: 2em " 赛默飞DXR3系列拉曼光谱仪分为三款仪器,分别为:DXR3显微拉曼光谱仪(便捷易用的研究性能、专注结果的软件)、DXR3智能拉曼光谱仪(快速便捷的散体样品分析、针对QA/QC的自动化采样及采样多功能化)和DXR3xi显微拉曼成像光谱仪(可视化驱动成像、具备3D可视化及先进颗粒分析功能的OMNICxi)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/a9cee1cb-f4a3-495f-8873-cf8de11cde35.jpg" title=" 专家合影.jpg" alt=" 专家合影.jpg" / strong 部分专家代表合影 /strong /p p style=" text-align: justify text-indent: 2em " strong 关于赛默飞世尔科技(中国)有限公司 /strong /p p style=" text-align: justify text-indent: 2em " 赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数超过5000名。产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制