当前位置: 仪器信息网 > 行业主题 > >

分析评估

仪器信息网分析评估专题为您整合分析评估相关的最新文章,在分析评估专题,您不仅可以免费浏览分析评估的资讯, 同时您还可以浏览分析评估的相关资料、解决方案,参与社区分析评估话题讨论。

分析评估相关的资讯

  • 化学品测试分析和评估实验室建设要求印发
    日前,环保部印发《化学品测试分析和评估实验室建设要求》。文件中建设内容包括基础设施、化学分析设备及系统、生物测试设备及系统、计算毒理学及风险评估系统等。   其中,化学分析设备及系统中包含的仪器设备有:   实验室常规仪器和耗材,如试剂柜、样品柜、天平、纯水仪、移液器、常用玻璃仪器、采样设备等。   分析仪器设备,如BOD仪、COD仪、液相色谱、液相色谱质谱、气相色谱、气相色谱质谱、总有机碳分析仪、原子吸收仪、电感耦合等离子体质谱、离子色谱仪等。   聚合物分析设备,如凝胶色谱仪等。   样品前处理设备,如微波消解仪、固相萃取仪、氮吹仪、旋转蒸发仪、加速溶剂萃取仪、凝胶色谱净化系统等   详情如下: 关于印发《化学品测试分析和评估实验室建设要求》的通知   各省、自治区、直辖市环境保护厅(局),新疆生产建设兵团环境保护局,辽河保护区管理局,各直属单位,各有关测试机构:   为提高我国化学品测试分析和评估能力,落实《国家环境监管能力建设&ldquo 十二五&rdquo 规划》和《化学品环境风险防控&ldquo 十二五&rdquo 规划》,进一步提升化学品环境管理技术支撑能力,我部制定了《化学品测试分析和评估实验室建设要求》(以下简称《建设要求》),现印发给你们。   相关实验室可按照《建设要求》加强化学品测试分析和评估能力建设,符合条件的单位可向环境保护部提出区域化学品实验室申请,经验收合格后,由环境保护部授予区域化学品实验室资格。   附件:化学品测试分析和评估实验室建设要求   环境保护部   2014年2月18日
  • 恒美-高智能土壤环境测试及分析评估系统设备-新品
    点击了解更多产品详情→高智能土壤环境测试及分析评估系统设备 传统的土壤养分检测方法通常需要将样品送到实验室进行分析,费时、费力、成本高。然而,随着科技的进步,高智能土壤环境测试及分析评估系统设备的出现,为农民和农业专业人员提供了一种方便、快捷、准确的土壤养分检测方法。 传统的土壤养分测试方法需要将土壤样本送往实验室进行分析,通常需要等待数天或更长时间才能得到结果。高智能土壤环境测试及分析评估系统设备可以在田间或实验室快速测量土壤中的养分含量,几分钟内即可得出结果。 高智能土壤环境测试及分析评估系统设备可以准确测量土壤中氮、磷、钾等关键养分的含量。通过分析土壤样本,农民和农业专业人员可以了解土壤的肥力状况,并确定是否应施用肥料以及应施用什么类型和用量。 同时,通过改良和调理土壤,还可以提高土壤的保水能力和抗旱能力,减少水资源的浪费。这有助于农业可持续发展,为农民提供更好的生计和社会福利。
  • 欧盟REACH法规中关于物质评估的情况分析
    物质评估的概述   我们都知道,REACH法规下有三大类型评估:物质评估、注册卷宗符合性评估、测试提案的评估,三者又统称为卷宗评估。其中,物质评估的目的是为了评估优先列入欧盟滚动条计划(CoRAP清单)中的物质是否对人体健康和环境存在危害,从而促进对物质的安全管理。CORAP清单物质依据条款成熟的标准筛选,相关标准已在ECHA网站发布。   由于是一个滚动计划,因此CoRAP清单会定期加入新物质或被修订,而CORAP物质的筛选标准也将会被更新。对于标准的修订,工业界持积极态度,并希望标准中关于筛选透明性的内容能够在下次CORAP复审前被讨论。   目前,首批CoRAP物质已于2012年2月29日正式发布,并需要在2012年到2014年由不同成员国完成物质评估。其中2012年需要完成36个物质的评估,分别由17个成员国完成。当某一物质的评估启动时,相应的评估成员国将有12个月的时间来完成评估,并明确下一批关注的物质。在评估过程中,评估成员国可能会制作决议草案要求物质的注册人在规定的时间内进一步提供信息,这些信息要求可以在REACH法规要求的信息范围之外。   如果某物质经过评估(必须在物质评估启动的12个月内或在决议草案要求的信息提交后的12个月内完成)确认其用途确实存在危害,那么评估成员国就可以采取进一步的行动,包括:   就物质的致癌性、致突变性、生殖毒性、呼吸致敏性或其他危害特性制作和提交统一分类和标签提案   就物质进入高关注度物质候选清单制作和提交相关提案   提交物质的限制提案   REACH法规范围之外的行为,如欧盟范围内的职业暴露限值或国家措施。   需要强调的是,物质存在于CoRAP清单本身对物质的生产、进口或使用没有法律效应,只是预示着成员国将重点详细关注物质的某些方面,后续将通过评估明确其风险,并依据评估结果确定管理措施。因此,CoRAP清单不能被看成是一份黑名单,无论是工业界还是政府官方都需要通过适当的沟通交流明确这种观点。   物质评估的现状   目前工业界对物质评估过程的经历有限,因此现在对物质评估的状态给出详细的分析还为时过早,但仍可以对一些前期经验、已有的实践和建议进行总结和分析。   目前欧盟成员国对物质评估的实施还不是很统一,例如一些成员国会要求注册人提供物质完整的研究报告和扩展的SDS(eSDS),因而带来一些实践操作和法律问题。因为完整的研究报告很可能归第三方机构所有,注册人不具备共享完整研究报告的权力,而报告的发布将会导致注册人违反了其与第三方机构间的合约。此外,一些注册人认为在注册过程中已经完成的工作不应该再被欧盟成员国要求重新启动,欧盟成员国应该重点关注导致物质进入CoRAP清单的特定节点,因此,需要搭建充足的入口以获取大量的研究总结信息。   不管怎样,物质评估还有待进一步的完善,所有的利益相关方都应该参与这个过程一边实践一边改进,从而促进物质评估过程的顺利有效实施。而在这个过程中,ECHA应该积极发挥协调作用。   应对物质评估的主动性   在物质评估的相关会议中,有关方面均指出成员国和注册人在对待物质评估时都需要具有前瞻性,也就此给出了一些建议:   一旦某成员国确定要评估某物质,则该成员国应尽早与物质的领头注册人(LR)取得联系,这样可以帮助成员国更全面的掌握物质的某些详情,如市场情况、一般用途和特性等。 物质的所有注册人需要通过对话确定其中一个注册人(一般来说是领头注册人)与评估成员国进行交流和沟通。   首批面临评估的物质的注册联合体已经自行组织起来,LR也已开始通过非正式的交流与评估成员国取得了联系,并在SIEF中协调着联合注册人的相关工作。在接下来的决议制定过程中,LR将代表物质对应的所有联合注册人提交评议。   由于物质的评估有严格的时间控制,因此注册人需要在评估开始前就完成对注册卷宗的更新,否则更新的内容将不会被考虑进物质的评估中。当然如果卷宗的更新确实无法在评估开始前完成,那么领头注册人需要事先与评估成员国联系以确定信息更新的时间和内容。   在评估报告最终发布前,评估成员国应该与注册人进行面对面的沟通,以明确任何一个疑惑点以及讨论解决关注点的最好途径。此前,一些官方机构表示他们只愿意在一份决议草案已经准备好后与注册人见面,以基于一种科学的基础对决议的内容进行讨论,而在其他方面官方机构并不愿意与注册人进行当面交流。   由于列入CoRAP的物质还要经过严格的物质评估过程,因而会给相关企业带来很大风险,企业切不可抱着获得注册号就已完成注册的想法,而是应该积极关注物质的评估过程,以便在ECAH要求进一步提供信息的时候能够及时提供必要的数据,确保自身的贸易不受影响。
  • 半导体封装材料的性能评估和热失效分析
    前言芯片封装的主要目的是为了保护芯片,使芯片免受苛刻环境和机械的影响,并让芯片电极和外界电路实现连通,如此才能实现其预先设计的功能。常用的一种封装技术是包封或密封,通常采用低温的聚合物来实现。例如,导电环氧银胶用于芯片和基板的粘接,环氧塑封料用于芯片的模塑封,以及底部填充胶用于倒装焊芯片与基板间的填充等。主要的封装材料、工艺方法及特性如图1所示。包封必须满足一定的机械、热以及化学特性要求,不然直接影响封装效果以及整个器件的可靠性。流动和粘附性是任何包封材料都必须优化实现的两个主要物理特性。在特定温度范围内的热膨胀系数(CTE)、超出可靠性测试范围(-65℃至150℃)的玻璃化转变温度(Tg)对封装的牢固性至关重要。对于包封,以下要求都是必须的:包封材料的CTE和焊料的CTE比较接近以确保两者之间的低应力;在可靠性测试中,玻璃转化温度(Tg)能保证尺寸的稳定性;在热循环中,弹性模量不会导致大的应力;断裂伸长率大于1%;封装材料必须有低的吸湿性。但是,这些特性在某种类型的环氧树脂里并不同时具备。因此,包封用的环氧树脂是多种环氧的混合物。表1列出了倒装焊底部填充胶的一些重要的特性。随着对半导体器件的性能要求越来越高,对封装材料的要求同步提高,尤其是在湿气的环境下,性能评估和热失效分析更是至关重要,而这些都可以通过热分析技术给予准确测量,并可进一步用于工艺的CAE模拟仿真,帮助准确评估封装质量的优劣与否。表1 倒装焊中底部填充胶的性能要求[1]图1. 主要封装材料、工艺方法及特性[2]热性能检测梅特勒托利多全套热分析技术为半导体封装材料的性能评估和热失效分析提供全面、创新的解决方案。差示扫描量热仪DSC可以精准评估封装材料的Tg、固化度、熔点和Cp,并且结合行业内具有优势的动力学模块(非模型动力学MFK)可以高精准评估环氧胶的固化反应速率,从而为Moldex 3D模拟环氧塑封料、底部填充胶的流动特性提供可靠的数据。如图2所示,在非模型动力学的应用下,环氧胶在180℃下所预测的固化速率与实际测试曲线所表现出的固化行为具有非常高的一致性。热重TGA或同步热分析仪TGA/DSC可以准确测量封装材料的热分解温度,如失重1%时的温度,以及应用热分解动力学可以评估焊料在一定温度下的焊接时间。热机械分析仪TMA可以精准测量封装材料的热膨胀、固化时的热收缩、以及CTE和Tg,动态机械分析仪DMA提供封装材料准确的弹性模量、剪切模量、泊松比、断裂伸长率等力学数据,进一步可为Moldex 3D模拟芯片封装材料的翘曲和收缩提供可靠数据来源。图2. DSC结合非模型动力学评估环氧胶的固化反应速率检测难点1、 凝胶时间凝胶时间是Moldex 3D模拟环氧塑封料、底部填充胶流动特性的非常重要的数据来源之一。目前,行业内有多种测试凝胶时间的方法和设备。比如利用拉丝原理的凝胶时间测试仪,另有国家标准GB 12007.7-89环氧树脂凝胶时间测定方法[3],即利用标准柱塞在环氧树脂固化体系中往复运动受阻达到一个值而指示凝胶时间。但是,其对柱塞的形状和浮力要求较高,测试样品量也很大,仅适用于在试验温度下凝胶时间不小于5 min的环氧树脂固化体系,并且不适用于低于室温的树脂、高粘度树脂和有填料的体系。由此可见,现有测试方法都存在测试误差、硬件缺陷和测试范围有限等问题。梅特勒托利多创新性TMA/SDTA2+的DLTMA(动态载荷TMA)模式结合独家的负力技术可以准确测定凝胶时间。在常规TMA测试中,探针上施加的是恒定力,而在DLTMA模式中,探针上施加的是周期性力。如图3右上角插图所示,探针上施加的力随时间的变化关系,力在0.05N与-0.05N之间周期性变化,这里尤为关键的一点是,测试凝胶时间必须要使用负力,即不仅需要探针往下压,还需要探针能够自动向上抬起。图3所示案例为测试导电环氧银胶的凝胶时间,样品置于40μl铝坩埚内并事先固定在TMA石英支架平台上,采用直径为1.1 mm的平探针在恒定160℃条件下施加正负力交替变换测试。在未发生凝胶固化之前,探针不会被样品粘住,负力技术可使探针自由下压和抬起,测试的位移曲线表现出较大的位移变化。当发生交联固化,所施加的负力不足以将探针从样品中抬起,位移振幅突然减小为0,曲线成为一条直线。通过分析位移突变过程中的外推起始点即可得到凝胶时间。此外,固化后的环氧银胶片,可通过常规的TMA测试获得Tg以及玻璃化转变前后的CTE,如图3下方曲线所示。图3. 上图:TMA/SDTA2+的DLTMA模式结合负力技术准确测定凝胶时间. 下图:固化导电环氧银胶片的CTE和Tg测试.2、 弯曲弹性模量在热循环过程中,弹性模量不会导致过大的应力。封装材料在不同温度下的弹性模量可通过DMA直接测得。日本工业标准JIS C6481 5.17.2里要求使用弯曲模式对厚度小于0.5mm、跨距小于4mm、宽度为10mm的封装基板进行弯曲弹性模量测试。从DMA测试技巧角度来讲,如此小尺寸的样品应首选拉伸模式测试。弯曲模式在DMA中一共有三种,即三点弯曲、单悬臂和双悬臂,从样品的刚度及夹具的刚度和尺寸考虑,三点弯曲和双悬臂并不适合此类样品的测试。因此,单悬臂成为唯一的可能性,但考虑到单悬臂夹具尺寸和跨距小于4mm的要求,市面上大部分DMA难以满足此类测试。梅特勒托利多创新性DMA1另标配了单悬臂扩展夹具,可方便夹持小尺寸样品并能实现最小跨距为1mm的测试。图4为对厚度为40μm的基板分别进行x轴和y轴方向上的单悬臂测试,在跨距3.5mm、20Hz的频率下以10K/min的升温速率从25℃加热至350℃。从tan delta的出峰情况可以判断基板的Tg在241℃左右,以及在室温下的弯曲弹性模量高达12-13GPa。图4. DMA1单悬臂扩展夹具测试封装基板的弯曲弹性模量.3、 湿气对封装材料的影响湿气腐蚀是IC封装失效的主要原因,其降低了器件的性能和可靠性。保存在干燥环境下的封装环氧胶,完全固化后在高温和高湿气环境下也会吸湿发生水解,降低封装体的机械性能,无法有效保护内部的芯片。此外,焊球和底部填充环氧胶之间的粘附强度在湿气环境中放置一段时间后也会遭受破坏。水汽的吸收导致环氧胶的膨胀,并引起湿应力,这是引线连接失效的主要因素。通过湿热试验可以对封装材料的抗湿热老化性能进行系统的评估,进而对其进行改善,提升整体性能。通常是采用湿热老化箱进行处理,然后实施各项性能的评估。因此,亟需提供一种能够提高封装材料湿热老化测试效率的方法。梅特勒托利多TMA/SDTA2+和湿度发生器的联用方案,以及DMA1和湿度发生器的联用方案可以实现双85(85℃、85%RH)和60℃、90%RH的技术参数,这也是行业内此类湿度联用很难达到的技术指标。因此,可以原位在线环测封装材料在湿热条件下的尺寸稳定性和力学性能。图5. TMA/SDTA2+-湿度联用方案测试高填充环氧的尺寸变化.图5显示了TMA-湿度联用方案在不同湿热程序下高填充环氧的尺寸变化。湿热程序分别为20℃、60%RH、约350min,23℃、50%RH、约350min,30℃、30%RH、约350min,40℃、20%RH、约350min,60℃、10%RH、约350min,80℃、5%RH、约350min。可以看出,在60%的高湿环境下高填充环氧在350min内膨胀约0.016%,后续再降低湿度并升高温度,样品主要在温度的作用下发生较大的热膨胀。图6为DMA-湿度联用方案在双85的条件下评估PCB的机械性能的稳定性,测试时间为7天。可以看出,PCB在高湿热的环境下弹性模量有近似6%的变化,这与PCB的树脂材料发生吸湿后膨胀并引起湿应力是密不可分的,并且存在导致器件失效的风险。图6. DMA1-湿度联用方案测试PCB的弹性模量.4、 化学品质量对于封装结果的影响封装过程中会使用到各类的湿电子化学品,尤其是晶圆级封装等先进封装的工艺流程,对于清洗液、蚀刻液等材料的质量管控可以类比晶圆制造过程中的要求,同时针对不同工艺段的化学品浓度等配比都有所不同,因此如何控制使用的电子化学品质量对于封装工艺的效能有着重要的意义。下表展示了部分涉及到的化学品浓度检测的滴定检测方案,常规的酸碱滴定、氧化还原滴定可以基本满足对于单一品类化学品浓度的检测需求。指标电极滴定剂样品量85%H3PO4酸碱玻璃电极1mol/L NaOH0.5~1g96%H2SO4酸碱玻璃电极1mol/L NaOH0.5~1g70%HNO3酸碱玻璃电极1mol/L NaOH0.5~1g36%HCl酸碱玻璃电极1mol/L NaOH0.5~1g49%HF特殊耐HF酸碱电极1mol/L NaOH0.3~0.4gDHF(100:1)特殊耐HF酸碱电极1mol/L NaOH20-30g29%氨水酸碱玻璃电极1mol/L NaOH0.9~1.2gECP(acidity)酸碱玻璃电极1mol/L NaOH≈8g29%NH4OH酸碱玻璃电极1mol/L HCl0.5~1gCTS-100清洗液酸碱玻璃电极1mol/L NaOH≈1g表1. 部分化学品检测方法列表另一方面,对于刻蚀液等品类,常常会用到混酸等多种物质混配而成的化学品,以起到综合的反应效果,如何对于此类复杂的体系浓度进行检测,成为实际生产过程中比较大的挑战。梅特勒托利多自动电位滴定仪,针对不同的混合液制订不同的检测方案,如铝刻蚀液的硝酸/磷酸/醋酸混合液,在乙醇和丙二醇混合溶剂的作用下,采用非水酸碱电极针对不同酸液pKa的不同进行检测,得到以下图谱,一次滴定即可测定三种组分的含量。图7. 一种铝刻蚀液滴定曲线结论梅特勒托利多一直致力于帮助用户提高研发效率和质量控制,我们为半导体封装整个产业链提供完整专业的产品、应用解决方案和可靠服务。梅特勒托利多在半导体封装行业积累了大量经验和数据,希望我们的解决方案给半导体封装材料性能评估的工作者带来帮助。参考文献[1] Rao R. Tummala. 微系统封装基础. 15. 密封与包封基础 page 544-545.[2] Rao R. Tummala. 微系统封装基础. 18. 封装材料与工艺基础 page 641.[3] GB12007.7-89:环氧树脂凝胶时间测定方法.(梅特勒-托利多 供稿)
  • 全国首个化学毒物质谱分析评估软件著作权花落湖南
    日前,湖南省职业病防治院研发的“化学毒物质谱大数据评估系统 V1.0”,经国家版权局审核,正式获得计算机软件著作权登记证书。这也是我国首个化学毒物质谱分析评估软件著作权。湖南省职业病防治院副院长邓晓彬介绍,毒物筛查是救治危急重症中毒患者的重要环节,检测结果影响着临床决策,提升毒物筛查的速度和精准度对于提高急性中毒患者救治能力具有重要意义。随着工业化速度的加快、化学品种类的剧增,近年来职防院承接的中毒样品检测工作难度和复杂度都在不断增加,对中心实验室检测能力、承载能力及检验人员的专业能力提出了更高要求。长期以来,数据处理的速度和精准度是毒物筛查的重要瓶颈。化学毒物质谱大数据评估系统V1.0是聚焦化学中毒筛查中液质联用仪采集的质谱大数据后期运算、判断问题,基于专业数据平台,采用数据自动抓取和多维向量算法,综合得出客观结果的一套分析评估系统。
  • 评估UPLC/UV分析中的交叉污染
    评估UPLC/UV分析中的交叉污染 目的 为证实ACQUITY UPLC® I-Class系统对于多种样品(包括极高浓度的样品)均具有低交叉污染性能。 背景 当需要在同一次色谱分离中同时定量高浓度及低浓度的组分时所面临的最大的挑战是需解决样品残留问题。通常,为观察低含量的与主要分析物相关的杂质,必须注射高浓度的样品。为对分析物中的杂质进行精确分析,必须解决好分析物的样品残留问题,以使得不会因为低估存在于样品中的杂质的量,从而影响杂质计算值。在进行杂质分析时,样品浓度需达很高,且解决途径可能颇具挑战性。应注意稀释液、流动相、以及清洗溶剂的组分,以使样品残留量较低。系统设计在解决样品残留问题上也具有重要作用。通常,样品导入分析系统的方式越简单,则越容易解决样品残留问题,特别是当采用注射方法导入多种疏水性及极性差异较大的化合物时。 ACQUITY UPLC I-Class系统可以轻松解决颇具挑战性的某些相关化合物分析时的交叉污染问题。 解决方案 ACQUITY UPLC I-Class系统在设计上可实现低交叉污染,因而在用于分析多种相关化合物时具有极佳性能。Sample Manager的流通针式进样(FTN)设计可带来优化的高精度注射,并获得极佳的样品回收率。在等度运行期间使用梯度溶液清洗针头的内部,且在色谱运行期间清洗针头外部。 这样就很好地解决了样品残留问题,并且不会使总注射循环时间增加。为证实使用ACQUITY UPLC I-Class系统可很容易解决样品残留问题,选择性质差异较大的三种不同化合物。氯已定较粘稠,且通常非常难以完全自进样器去除。邻苯二甲酸二辛酯是疏水性极强的一种化合物,且需要高浓度的乙腈来使它从色谱柱上洗脱。咖啡因是亲水性物质,且通常不难以从进样器上去除,因而使其成为极佳的探针化合物,用以确定没有样品仍残留于该系统中。按UV响应为1.5 AU ± 0.1 AU的浓度注射各化合物,并测定在随后的空白注射中的样品残留量。如图1所示,对所有 这些化合物,均未检测到可测得的样品残留量。为确定每种化合物的样品残留量,制备高浓度的样品(20x至40x浓缩),并注射至ACQUITY UPLC I-Class FTN。测定每种化合物在首次空白注射中的样品残留量,得知这三种性质差异较大的分析物的样品残留量均少于0.001%。 小结 解决多种分析物的样品残留问题的能力是一个分析系统的重要性能。不论分析物的性质为何,ACQUITY UPLC I-Class系统的设计均可产生极低的交叉污染。Sample Manager的FTN注射平台的设计简单、灵活,因而可简单直观地对方法进行优化;因而可满足挑战较大的应用的要求, 例如分析低浓度相关化合物。 联系人: 张林海 沃特世公司市场部 86(21) 61562642 lin_hai__zhang@waters.com 周瑞琳(Grace Chow) 泰信策略(PMC) 020-83569288 grace.chow@pmc.com.cn
  • 产品EMC设计分析与风险评估技术高级研修班培训通知
    产品EMC设计分析与风险评估技术高级研修班培训通知培训时间:2023年3月11日-12日 培训地点:北京主办单位:电子工业出版社 培训讲师:郑军奇课程背景:本课程基于“国家标准GB/T38659.1—2020 EMC风险评估 第1部分:电子电气设备”全面解读并传授EMC设计分析方法和风险评估技术。培训内容:EMC基础及风险评估技术;产品结构设计EMC分析方法;原理图和PCB的EMC分析方法;产品设计EMC风险评估技术。报名及缴费:详见海报页二维码。报到地点:北京市丰台区金家村288号华信大厦电子工业出版社。报到时间:2023年3月11日上午08:00。住宿安排:根据反馈的住宿信息表,由工作人员预定,费用自理。未尽事宜请与工作人员联系(联系人:牛平月15101124402)。课程背景本课程基于“国家标准GB/T38659.1—2020 EMC风险评估 第1部分:电子电气设备”全面解读并传授EMC设计分析方法和风险评估技术。本课程面向工程实践,以解决问题和理论解读作为最主要的授课目标,学员学习后不但能解决自己产品的EMC设计缺陷,还能举一反三,再次设计新的产品并达到良好的EMC效果。另外,课程也配合大量的EMC设计案例,通过EMC案例的分析,向学员介绍有关EMC的实用设计与诊断技术,减少设计人员在产品的设计与EMC问题诊断中误区。同时通过案例说明EMC设计原理,让学员更好地理解EMC设计的精髓。培训中首创提出“EMC风险评估技术”,将EMC设计提高到方法论阶段,把零散的EMC设计技术点融合在一起形成一种EMC设计的套路,系统指导产品设计,并形成一种新的产品EMC合格评定方法。讲师资历郑军奇,EMC领域知名专家,全国无线电干扰与标准化技术委员会秘书长,国际无线电干扰特别委员会(IEC/CISPR)副主席。郑军奇老师,知名EMC专家,EMC高级顾问,长期从事EMC理论与工程研究,具备丰富的EMC实践和工程经验。专注于各类医疗、民用、工业用、军用、汽车零部件产品的EMC标准、EMC测试设备、产品EMC设计方法、EMC测试方法、EMC诊断方法、EMC整改方法的研究。发表EMC相关论文数篇,拥有多项EMC专利。对于产品EMC设计方法的研究具有较深的造诣,研究成果涉及PCB、滤波、接地、屏蔽、接口电路等各个方面。他是“EMC设计风险评估法”的创始人,“风险评估法”首次将产品的EMC设计提升到了方法论阶段,被广大企业的研发部门所采纳。他又是专业的EMC讲师,数百场的EMC培训经验,受到企业与学员的高度评价,是中国EMC工程应用领域培训领跑者,培训实践性强、解析透彻、生动易懂是他培训的最大特点。同时,他也是:国际无线电干扰特别委员会(IEC/CISPR)副主席;全国无线电干扰与标准化技术委员会 ,秘书长;工信部国家信息技术紧缺人才认证(NITE)讲师;IEC、ISO注册专家;CISPR/S/AHG3召集人。出版EMC专著有: 《电磁兼容(EMC)测试与案例分析》2006年;《产品EMC设计风险评估(分析)法》2008年;《电磁兼容(EMC)测试与案例分析 第二版》2010年;《电磁兼容(EMC)测试与案例分析 第三版》2018年;《EMC TEST AND CASE STUDY》英文版 2018;《EMC设计分析方法与风险评估技术》2020年。面向人群EMC设计工程师、EMC整改工程师、EMC认证工程师、硬件开发工程师、PCB LAYOUT工程师、开发部门主管、结构设计工程师、测试工程师、品管工程师,系统工程师等。课程大纲EMC设计分析与风险评估技术3月11日09:0~12:00第一篇:EMC基础及风险评估技术3月11日14:00~17:00第二篇:产品结构设计EMC分析方法3月12日09:00~12:00第三篇:原理图和PCB的EMC分析方法3月11日14:00~17:00第四篇:产品设计EMC风险评估技术优质售后服务,提升培训效果参训学员或者企业在课程结束后,可以享受电子工业出版社的电磁兼容技术方面优质售后服务,作为授课之补充,保证效果,达到学习目的。主要内容如下: (一)【技术问题解答】培训后一年内,如有课程相关技术问题,可通过电话、邮件联系我社,我们将第一时间协助解决;(二)【定期案例分享】分享不断,学习不断;(三)【技术交流群】加入技术交流群,与行业大咖零距离沟通;(四)【研讨会】免费的线上或者线下研讨会。
  • 新品研发|红外二氧化碳分析仪评估大气质量【2024】
    红外二氧化碳分析仪在环境保护领域发挥着重要的作用。作为一种先进的监测设备,它可以快速、准确地测量大气中的二氧化碳浓度,为环境监测提供有力支持。 产品链接https://www.instrument.com.cn/netshow/SH104275/C520219.htm 首先,红外二氧化碳分析仪的监测结果有助于评估大气质量和环境状况。通过对二氧化碳浓度的实时监测,可以了解大气中温室气体的含量,评估温室效应的情况,为制定相应的环保政策提供科学依据。同时,红外二氧化碳分析仪还可以检测其他污染物,如一氧化碳、氮氧化物等,为环境治理提供全面的数据支持。 其次,红外二氧化碳分析仪在环境监测中具有显著优势。它具有高灵敏度和准确性,能够实现快速、准确的二氧化碳浓度测量。这种仪器还具有较长的使用寿命和较低的维护成本,适用于长期、连续的监测任务。同时,红外二氧化碳分析仪还具有较好的稳定性和可靠性,能够在各种恶劣环境下正常工作。 此外,红外二氧化碳分析仪的应用领域也十分广泛。除了环境监测外,它还被广泛应用于工业生产和燃气检测等领域。通过在现场实时监测CO和CO2的浓度,可以及时发现有害气体的存在,并采取相应的措施进行处理。同时,红外二氧化碳分析仪无需试剂,减少了对环境的污染,降低了成本,更为环保。 综上所述,红外二氧化碳分析仪是环境保护领域的重要工具。通过快速、准确地测量二氧化碳浓度,有助于评估大气质量、研究气候变化和制定有针对性的环境保护措施。
  • SU-LFH土壤环境测试及分析评估系统设备中标上海海洋大学
    上海海洋大学(Shanghai Ocean University)是上海市人民政府与国家海洋局、国家农业部共建的农林类高等院校。前身为始建于1912年的江苏省立水产学校,1952年更名为上海水产学院,1985年更名为上海水产大学,2008年更名为上海海洋大学。截至2014年5月,上海海洋大学有浦东新区沪城环路校区、杨浦区军工路校区、杨浦区民星路校区3个校区,主校区沪城环路校区占地约1600余亩,规划建设面积58.6万平方米。学校设有12个学院,设置47个本科专业及方向,有博士后科研流动站2个、一级学科博士学位授权点3个、一级学科硕士学位授权点10个。学校有全日制普通本专科生12800余人、研究生2800余人。 上海海洋大学是国家海洋水质监测和土壤污染监测的重点学校,2013年4月份,我公司为上海海洋大学提供SU-LFH土壤环境测试及分析评估系统设备1批,为土壤污染监测提供了安全保障。SU-LFH土壤环境测试及分析评估系统设备功能特点:※数字线路,高度智能程序,人性化设计,全部中文菜单显示操作流程和测试状态。※配备国际标准RS232接口,内置式电子时钟、内置式存储芯片,外设各种高精度专业测试传感器,不锈钢结构耐腐蚀。※ 可以测试并显示年、月、日、小时、分钟、土壤水分、温度、硬度、紧实度、大气温度、腐蚀性有毒液体温度、土壤及化肥中的氮、磷、钾、有机质、酸碱度、腐殖酸、盐分, 随机配备《土壤多参数数据采集系统软件》和《土壤养分测试及分析评估系统》软件,可对70多种农业、果树、经济作物的土壤氮、磷、钾、有机质、酸碱度、含盐量、微量元素、矿物质需求量进行数据分析,为用户在化肥使用量,土壤酸碱度、含盐量的评估、调节,水肥控制几个方面的决策提供数据参考,处理结果采用标准OFFICE文档格式存档备案或者打印、远程发送。※测试数据上传给微机,自动进入软件系统,生成数据库,自行设计绘制各种数据的工作曲线,用户可以根据自己工作需要,按照曲线关系验证土壤水分、硬度、紧实度温度及养分间的关联性。测试数据可更接发送电子邮件?实现数据资源共享和远程监控。※配备TDR高精度水分传感器、PT100高精度温度传感器、土壤硬度、紧实度传感器。※使用者购买后即可开箱使用。用户配备该系统设备后,基本具备一个微型基层土壤分析及配方施肥实验室的功能。主要技术参数:一、水分部分测量参数:土壤容积含水量单 位:%(m3/m3)量 程:0~100%(m3/m3)精 度:0~50%(m3/m3)范围内为±2%(m3/m3)测量区域:90%的影响在围绕中央探针的直径3cm、长6cm的圆柱体内稳定时间:通电后约1秒响应时间:响应在1秒内进入稳态过程工作电压:12V—24V DC工作电流:50~70mA,典型值50 mA输出信号:4~20mA标准电流环密封材料:ABS工程塑料探针材料:不锈钢电缆长度:标准长度5m 遥测距离:小于1000米二、温度测试部分测试范围:-60℃-99℃精度:±0.5℃ 灵敏度:0.1℃测试深度:20cm三、紧实度(硬度)测试部分测量深度:0-450mm测量范围:0-500kg;0-50000kpa测量精度:以公斤为单位:1kg,以压强为单位:100kp环境温度:-55℃-90℃ 四、土壤成分测试部分(一)养分测量技术指标:(1)稳 定 性:A值(吸光度)三分钟内飘移小于0.003(2)重 复 性:A值(吸光度)小于0.005(3)线性误差:小于3.0%(4)灵 敏 度:红光≥4.5 ×10-5 蓝光≥3.17×10-3(5)波长范围:红光620±4nm 蓝光440±4nm(6)抗 震 性:合格(注:技术指标均高于国家标准)(二)PH值(酸碱度)测量技术指标: (1)测试范围:1~14 (2)误 差:±0.1(三)盐量(电导)测量技术指标:(1)测试范围:0.01%~1.00% (2)相对误差:±5%
  • 高智能土壤环境测试及分析评估系统设备_【源头直发】_土壤检测
    (云唐厂)高智能土壤环境测试及分析评估系统设备_【源头直发】_土壤检测  最近这几年,高智能土壤环境测试及分析评估系统设备的使用越来越多,所以现在市面上的仪器各种各样,那在这么多的仪器中我们如何选购好的产品呢?哪个牌子的仪器比较好呢?在这我们毛遂自荐一下,我们公司生产的仪器使用范围广泛,受到许多农民的信赖与认可,适用于各级农业检测中心,农业科技院校、肥料生产、农资经营、农技服务、种植基地、农机推广、林木、花卉、环保、蔬菜基地等单位,可快速检测出土壤、空气、水、植株和肥料中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质含量、土壤含盐量及土壤PH值等。高智能土壤环境测试及分析评估系统设备叫做土壤肥料养分检测仪也被称为农业测土仪,可以实现测土配方这一理念,让农民合理科学的施用肥料,仪器可快速测试土壤、化肥、植株中的氮、磷、钾、有机质、腐殖酸、含盐量、酸碱度并可由计算机储存进行数据储存、远程发送、打印。它应用缓解了各地农民朋友测土配方施肥的需求,同时也为肥料生产企业实现专业化、系统化、信息化、数据化提供了可靠的依据。仪器凭借自身优势,被应用到各个领域,不管是农业检测中心还是肥料的生产厂家以及大大小小的种植季基地,都能看到它的身影,其主要用途是测量出土壤养分含量,准确的了解土壤养分含量,可以指导农民正确检测土壤施肥。精确的施肥不仅能够提高作物的产量和品质, 还能有效地避免由于过量施肥而导致的环境问题。
  • 中国标准化研究院发布《感官分析方法 定量描述感官评价小组表现评估导则》国家标准征求意见稿
    各有关单位及专家:根据国家标准化管理委员会国家标准制修订计划(计划号:20230268-T-469),由全国感官分析标准化技术委员会(SACTC 566)归口管理,中国标准化研究院等单位负责起草的《感官分析方法 定量描述感官评价小组表现评估导则》国家标准已形成征求意见稿,按照《国家标准管理办法》的有关规定,现向社会各界公开征求意见,请填写《意见反馈表》,盖章或签字后于2024年2月26日前,以Email的形式反馈给我们,逾期未回复意见的按无意见处理。感谢您对我们工作的支持。秘书处联系人:钟葵电话:010-57825133电子邮箱:zhongkui@cnis.ac.cn联系地址:北京市昌平区永安路36号中国标准化研究院昌平实验基地附件:1.《感官分析方法 定量描述感官评价小组表现评估导则》国家标准(征求意见稿)2.《感官分析方法 定量描述感官评价小组表现评估导则》国家标准(征求意见稿)编制说明3.《感官分析方法 定量描述感官评价小组表现评估导则》国家标准(征求意见稿)意见反馈表 中国标准化研究院二二三年十二月二十六
  • 热烈祝贺微纳激光粒度分析软件V3.0通过第三十五批软件产品评估及认定
    《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(国发〔2000〕18号,以下简称国发18号文件)印发以来,我国软件产业和集成电路产业快速发展,产业规模迅速扩大,技术水平显著提升,有力推动了国家信息化建设。但与国际先进水平相比,我国软件产业和集成电路产业还存在发展基础较为薄弱,企业科技创新和自我发展能力不强,应用开发水平急待提高,产业链有待完善等问题。济南微纳颗粒仪器股份有限公司是专业研发激光粒度仪,纳米粒度仪,喷雾粒度仪等产品的公司,自成立以来一直紧跟国家形势,不断研发新的应用在激光粒度仪上的激光粒度分析软件。在2016年济南微纳成功研制出激光粒度分析软件V3.0,并通过了第三十五批软件产品评估及认定, 2017年会投入市场使用,相信在社会各界监督下,微纳未来一定会做的越来越好。2016年12月26日至2016年12月30日山东省软件协会公布了2016年第三十五批软件产品评估及认定名单,现将部分获奖名单公布如下:
  • 全国感官分析标准化技术委员会关于公开征集《感官分析方法 定量描述感官评价小组表现评估导则》《感官分析实验室 质量控制指南》国家标准起草单位和起草专家的通知
    各有关单位:根据国家标准化管理委员会立项计划,由全国感官分析标准化技术委员会(以下简称“SAC/TC 566”)提出并归口的《感官分析方法 定量描述感官评价小组表现评估导则》《感官分析实验室 质量控制指南》国家标准项目批准立项。为广泛吸收感官分析领域各利益相关方参与,充分依托各方资源开展感官分析标准化工作,SAC/TC 566秘书处决定面向社会公开征集该两项国家标准项目的起草单位和起草专家,现将有关事项通知如下:一、项目介绍国家标准项目《感官分析方法 定量描述感官评价小组表现评估导则》计划号为20230268-T-469、《感官分析实验室 质量控制指南》计划号为20230267-T-469。二、报名要求同一单位报名起草参编人数不得超过两人。报名参加国家标准起草的单位应能为相应国家标准的起草提供以下资源支持:(一)技术专家支持:参与单位应能为标准研制提供专家支持,所推荐专家应具备较强的专业能力和文字水平,保障其充分参与国家标准制定过程并完成分担的技术任务;(二)经费支持:参与单位应能根据国家标准项目研制过程中调研、起草、研讨、审定、宣贯等阶段工作需要,通过承办会议、邀请专家等方式分担标准制修订的费用。三、起草组组建SAC/TC 566秘书处将根据标准前期参与情况和报名情况择优组建起草组。四、材料报送要求请有意向报名参加上述国家标准起草的单位填写《国家标准起草单位和起草专家报名表》(见附件2),并于2023年6月30日之前将报名表电子版(WORD)和盖章扫描件(PDF)通过电子邮件反馈至SAC/TC 566秘书处联系人邮箱,无需报送纸质材料。五、联系方式联系人:钟葵联系电话:010-57825133邮箱:zhongkui@cnis.ac.cn地址:北京市昌平区永安路36号中国标准化研究院实验基地全国感官分析标准化技术委员会(SAC/TC 566)2023年5月19日附件:附件1 关于公开征集《感官分析方法 定量描述感官评价小组表现评估导则》、《感官分析实验室 质量控制指南》国家标准起草单位和起草专家的通知.pdf附件2 2023年8号文-关于公开征集国家标准单位和专家的通知.docx
  • 解析色差数据与目视评估差异及解决策略
    在色彩管理中,使用分光光度仪(色差仪)进行色差评估是公认的科学方法。通常,仪器测量的色差数据与目视评估结果相符:小的色差人眼难以识别,而大的色差则明显可见。但存在测量结果与目视评估不一致的情况,如小色差被视为不可接受,或大色差反而被认为可接受。这种不一致可能由多因素引起,需进一步分析。一、仪器光学结构选择恰当吗?在色彩管理中,正确选择和设置分光光度仪(色差仪)的光学结构对于确保测量结果的准确性和客观性至关重要。分光光度仪通常具有不同的几何结构,主要包括0°/45°、d/8°以及多角度结构,其中d/8°结构又分为包含镜面反射(SCI)和排除镜面反射(SCE)两种状态。不同的几何结构会对同一样品的测量结果产生影响,因此选择合适的仪器配置是实现与目视评估一致性的关键。对于大多数普通颜色样品,0°/45°或SCE(排除镜面反射)结构的测量结果往往与人眼目视评估更为一致。针对具有高镜面反射特性的样品,如金色或银色材料,SCI(包含镜面反射)配置提供的测量结果通常更接近目视观察结果。对于具有特殊视觉效果的颜色样品,采用多角度光度仪进行测量能更好地捕捉样品的色彩变化,从而实现与目视评估的最佳一致性。从左至右为0/45°,d/8°,和多角度反射示意图二、仪器光源类型的选择与视角选择在色彩测量过程中,选择与应用场景一致的仪器光源类型是确保测量结果准确性和客观性的关键因素之一。国际照明委员会(CIE)定义了多种标准照明体,旨在模拟不同环境下的光源条件。由于同一样品在不同照明体下的颜色数据会有所差异,因此,确保所选照明体与目视评估时的光源类型相匹配是至关重要的。例如,如果目视评估是在户外自然光下或使用D65类型灯箱进行的,那么在进行色差测量时,应选择D65作为仪器中的标准照明体。这样做可以保证测量结果与目视评估之间的一致性,进而提高色彩评估的准确度和可靠性。正确匹配照明条件不仅有助于准确反映样品在特定光照下的颜色,也是实现客观、科学色彩管理的基础。视角,亦称为标准观察者角度,是国际照明委员会(CIE)在制定颜色评估标准时定义的一个概念,用于描述样品在观察者眼中形成的视觉投影角度。CIE定义了两种主要的视角标准:2°和10°。2°视角主要用于小样品或从较远距离观看的情况,而10°视角则适用于较大样品或近距离观察的场合。三、仪器色差公式是最优的吗?国际照明委员会(CIE)自1976年起发布了多个色差公式,包括DE*1976、DE94和DE2000,以适应色差评估的不同需求和提高计算的准确性。此外,其他组织如英国染料协会和德国标准局分别提出了DEcmc和DEp等色差公式。这些公式的开发反映了一个核心问题:色差计算具有固有的局限性,无法完全复制人眼对颜色差异的感知,因此需要通过不断的修正和更新来提高计算标准的准确度。统计研究显示,早期的DLab*色差公式与人眼感知的一致性大约为75%,而DE94和DEcmc公式的一致性可以达到95%,DE2000公式的表现则更为优秀。采用更新的色差公式有助于减小计算结果与人眼观察之间的偏差,从而提供更准确的颜色评估。例如,在评估浅灰色样品时,使用DE*1976公式得出的色差值为0.5可能会被目视评估为明显的色差;而对于大红色样品,即便色差值达到3.0,人眼观察可能仍然认为是可接受的。使用DE2000公式对相同的样品进行计算,两种情况下的色差值均可得到更接近于1.0的结果,这表明DE2000公式在匹配人眼感知方面的性能更加接近实际观察。这种进步说明了选择更新的色差公式对于提高颜色评估准确性的重要性。下图是DEcmc在不同颜色区域的形状和大小,可见他在精确性上相对于DE*有较大改进: 上图为CMC容差数据与眼睛不一致的状况,有可能是仪器的选择或设置不恰当造成的,也有可能是目视评估偏差造成的。当我们遇到这类问题时,不妨从这几个角度看一下目视评估工具和流程是否标准。四、目视光源符合标准吗?确保目视评估的光源与仪器测量使用的CIE标准照明体一致是色彩评估的关键。这样做可以保证评估结果与测量数据之间的匹配。然而,实际使用的照明光源与CIE规定的标准可能存在偏差,导致结果不一致。为了减少这种偏差,重要的是选择尽可能接近CIE标准的光源进行目视评估,以提高颜色评估的准确性和客观性。D65光谱在不同配置灯箱中皆不相同这实际上是一种光的同色异谱现象,看上去都是白光,但其内部不同色光的能量不同,那么想他的样品在下面看到不同的结果就不足为奇了。CIE对于光源的质量制定了等级标准(A,B,C,D,E级),为了获得与仪器数据一致的结果,选择一台高等级的灯箱是很有必要的。在进行颜色评估时,目视环境的影响不容忽视。人眼评估产品颜色时,周围环境的亮度和存在的其他颜色可能会显著影响感知结果。研究表明,在中性灰色背景下进行颜色评估可以获得最准确的结果。因此,许多专业的灯箱内部都采用孟塞尔N7亚光灰色涂层,该涂层的L值约为70,a和b*值接近于0,提供了一个理想的中性环境以减少外部因素的干扰。实际中,任何可视物体都可能被视为光源,对颜色评估产生影响,包括穿着的衣物等。例如,某些情况下,两个色块A和B在特定背景下的颜色差异可能看起来很大,但当它们被放置在中性背景下单独比较时,这种差异可能会消失,显示出颜色实际上是一致的。这强调了控制评估环境,特别是背景和光照条件,以确保颜色评估的准确性和客观性的重要性。右图中A块和B块的颜色差异看上去非常大,但当我们将A和B单独移出来进行对比时,它们就看上去一致了。在进行颜色评估时,对比两个大小不一的样品会引入评估偏差,这并不符合标准的评估方法。为了确保评估结果的准确性和一致性,建议对比的样品在大小和形状上保持一致,并且在评估环境中对称放置。如果出于某些原因,样品大小不可避免地不一致,可以采取部分遮盖较大样品的方法,以确保可视面积与较小样品相似,从而减少由于大小差异引起的视觉偏差。另外,不推荐将样品叠放进行评估,因为这样做可能会因不同的层次和左右环境差异而影响评估结果。如果确实需要进行此类比较,建议在两侧分别放置多个相同的样品,以排除不同层次和环境差异对评估结果的潜在影响。通过这些措施,可以提高颜色评估的准确度和可靠性。颜色感知是一个涉及眼睛和大脑的复杂过程,不仅受到观察对象的光学特性影响,还与观察者的生理、心理状态及文化背景等因素密切相关。因此,在进行颜色评估时,确保评估者没有视觉上的生理缺陷(如色盲或弱视)是基本要求。目前,有多种颜色识别工具可用于测试和分析个体的颜色敏感性,以确保只有适合的人员参与颜色评估工作。上图为孟塞尔色觉测试FM100尽管科学家和专业组织努力提高颜色数据化的准确性,旨在缩小仪器测量与目视评估间的差异,但仍面临挑战。仪器测量基于理想原理,如完全漫反射照明,而目视评估常发生在非理想光源下,同时还需考虑光泽度、透明性等外观参数。此外,仪器通常提供单一视角数据,而目视评估涵盖多方向观察。这些差异难以短期内完全消除。我们期望通过适当的工具和方法设置,最大限度减少这种不一致性,提升颜色评估的准确与客观性。五、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 新型评估体系可详细监测小城市空气质量
    最近,俄罗斯秋明国立大学提出了一种详细评估城市气候和空气质量的体系,有助于在不设大型气象中心的小城市组织环境质量监测。相关论文发表在《环境科学与政策》杂志上。  当空气中含有大量有害物质和灰尘时,会危害环境质量。在这种情况下,空气检测经典统计监测模型不能很好发挥作用,需要扩展性的、一体化的方法和模型。秋明国立大学的科研人员制订出一种扩展方法,可用于更详细地评估城市环境质量。  这种评估体系的关键特点之一是“按需工作”。在大城市可能配备有空气质量连续监测和预报体系,但在问题同样严重的小城市可能没有。根据科学家的说法,当需要详细分析小城市环境质量时,通常方法的缺点也变得尤为明显。  研究人员提出的方法原理与天气预报模型相同,能更详细地计算空气流动。研究人员在俄罗斯北部小城阿帕季特进行了一项计算机试验:一个具有高分辨率的模型显示,污染羽流覆盖了整个城市,与此同时,传统模型却显示污染将被风吹往偏离城市的方向。  “秋明国立大学参与这个方向的研究工作,为在全新水平上研究秋明北部的社会生态问题并测试我们的研究成果提供了机会。我们目前在分析纳德姆市的环境状况。这项研究将帮助我们更深入地理解一些关键生态因素,确保生活在俄罗斯北部严酷自然气候条件下的人们的生活质量。”秋明国立大学低温学和冷冻学国际中心冷冻学术系高级研究员罗曼费奥多罗夫介绍说。  研究人员还指出,空气质量监测是联合国可持续人类发展计划的一部分,为实现这些目标,世界气象组织正在积极发展创建扩展性整体一体化方法,以开展详细环境评估。
  • 基于超高效液相色谱-质谱法的肽段分析中非特异性吸附评估及通用型最小化策略
    近年来,蛋白质组学技术在肽和蛋白质类新型治疗药物的蓬勃发展以及临床新型大分子生物标志物的深入发掘中被日益广泛应用。应用方式的迭代对生物大分子的分析技术提出了更高的要求。基于蛋白质特征肽段检测的自下而上的蛋白质组学技术(bottom up proteomics)是现有研究中具有较高灵敏度与分辨率的蛋白质定性定量方法。开发多肽的生物分析方法是极具挑战的,除了所需的低检出限外,多肽的非特异性吸附性质,使其极易在接触到的材料表面发生吸附,进而导致分析全流程中待测物的丢失或干扰,给定性和定量分析引入巨大风险。例如在蛋白组学研究的质谱数据库搜索中,即使系统中微量肽段的损失或残留亦可能导致假阳性或假阴性结果。而在高灵敏度的多肽定量方法的开发中,肽段的非特异吸附对定量分析的线性、准确度和精密度均有负面影响。低浓度肽段溶液的吸附性质会更加明显,表现形式为标准曲线的非线性,最终导致定量限的不必要升高以及方法的重复性差。已有一些研究在分子水平上解释这种吸附行为,然而目前对其潜在的机制和相互作用仍然知之甚少。Eeltink等基于分子动力学模拟,提出了一种三相分子机制解释肽段从溶液吸附到强相互作用不带电固定相上的原理。Kristensen等研究了样品容器对阳离子多肽吸附的影响,当1 μmoL/L肽溶液在硼硅酸盐或聚丙烯瓶中存储1 h后,肽段的回收率仅有10%~20%。也有研究通过在溶剂中添加有机试剂、酸/碱性溶液、表面活性剂、吸附竞争剂或调整流动相组成等方法减少这类吸附。这些研究论文大多对一组特定的多肽和/或表面材料进行研究,但均未给出可用来预测多肽吸附特性的规律,也未给出通用的解决吸附的方法。本研究选择牛血清白蛋白(BSA)作为模型蛋白质,以其酶解后的肽段作为包含亲水性和疏水性多肽的“典型”多肽组样本。首先通过超高效液相色谱-高分辨质谱(UPLC-HRMS)的测定,分析常见多肽理化参数与上述多肽组的非特异吸附程度的关联性。然后基于超高效液相色谱-三重四极杆质谱(UPLC-QQQ-MS/MS)建立对强吸附肽段吸附程度的评估方法,从样品制备至分析测定建立全过程试验设计,考察不同材质的制备、储存耗材对肽段吸附的影响,以及考察不同色谱条件对肽段残留的影响,最终提出多肽全流程分析中减少非特异性吸附的通用型策略。01样品制备方法取10 mg BSA溶于10 mL水中,制得1 mg/mL蛋白储备液,进一步以水稀释为100 μg/mL的工作液。取200 μL上述工作液于蛋白质低吸附离心管中 加入65 μL 500 mmol/L碳酸氢铵和60 μL 50 mmol/L二硫苏糖醇,于60 ℃水浴加热60 min对蛋白质进行还原 放冷至室温后加入120 μL 50 mmol/L碘代乙酰胺,于暗处反应30 min进行烷基化 加入100 μg/mL的胰蛋白酶5 μL,于37 ℃水浴中酶解8 h,加入甲酸20 μL终止反应,12000 g离心15 min后,取200 μL上清置于蛋白质低吸附的进样瓶中作为混合肽段溶液待测。02超高效液相色谱-高分辨质谱方法参数色谱条件:色谱柱采用Waters Acquity Premier Peptide CSH C18(100 mm×2.1 mm, 1.7 μm) 柱温为40 ℃ 流速为0.25 mL/min 流动相A、B两相分别为0.1%甲酸水溶液和0.1%甲酸乙腈溶液。洗脱梯度为0~1 min, 1%B 1~13 min, 1%B~40%B 13~13.1 min, 40%B~90%B 13.1~16 min, 90%B 16~16.1 min, 90%B~1%B 16.1~20 min, 1%B。进样器温度10 ℃ 进样量5 μL。质谱条件:毛细管电压3 kV,锥孔电压30 V,离子源温度120 ℃,脱溶剂气温度450 ℃,锥孔气流速25 L/h,脱溶剂气流速800 L/h。电喷雾电离(ESI)源、正离子模式下测定,MSE模式采集,扫描范围m/z 50~2000 数据采集时使用亮氨酸脑啡肽校正液进行实时质量校正,以保证采集质量数的准确性与重复性。采集后的数据使用Unifi软件处理。03相对残留量的测定和肽段分级策略将上述混合肽段溶液经上述条件采集、Unifi软件分析后,可得BSA酶解后肽段组的实际肽段组成和每个肽段的响应值Area(供试品溶液)。在进样上述供试品溶液后连续进样3针空白溶剂,以3针空白溶剂中检测到的对应肽段响应之和Area(Blank 1+Blank 2+Blank 3)计为该肽段的残留总量,该肽段的相对残留量为肽段的残留总量与肽段响应值的比值。基于肽段的响应与相对残留量,可将BSA酶解后的肽段组分为如下四类:Class Ⅰ,响应高且无残留的肽段 Class Ⅱ,响应高但有残留的肽段 Class Ⅲ、Class Ⅳ分别为响应低,无吸附和有吸附的肽段。响应的高低以是否大于中位数计,有无残留以Area(Blank 1+Blank 2+Blank 3)是否有检出判断。04超高效液相色谱-三重四极杆质谱方法参数色谱条件:色谱柱采用Waters ACQUITY UPLC BEH C8(100 mm×2.1 mm, 1.7 μm) 柱温30 ℃ 流速0.4 mL/min 流动相A、B两相分别为0.2%甲酸水溶液和0.2%甲酸乙腈溶液。洗脱梯度为0~2 min, 2%B 2~5 min, 2%B~60%B 5~5.1 min, 60%B~90%B 5.1~8 min, 90%B 8~8.1 min, 90%B~2%B 8.1~11 min, 2%B。进样器温度10 ℃ 进样量5 μL。洗针液为90%乙腈水溶液(含0.2%甲酸)。质谱条件:离子化电压5500 V 气帘气压力0.14 MPa 离子源温度500 ℃ 喷雾气、辅助加热气压力0.38 MPa。ESI源正离子模式下测定,多反应监测(MRM)模式采集,12条Class Ⅱ类肽段的离子对、碰撞能量(CE)、去簇电压(DP)值经Skyline软件协助优化后结果如原文表1所示。文章信息色谱, 2022, 40(7): 616-624 DOI: 10.3724/SP.J.1123.2021.12012张莹1,2, 杨静1,2, 马跃新1,2, 曹玲2*, 黄青2*1.南京中医药大学药学院, 江苏 南京 2100232.江苏省食品药品监督检验研究院, 国家药品监督管理局化学药杂质谱研究重点实验室, 江苏 南京 210019
  • 我国疫苗监管体系通过WHO评估
    3月1日,国家食品药品监管局在京召开“中国疫苗监管体系通过WHO评估总结电视电话会议”。国家食品药品监督管理局局长邵明立、卫生部副部长尹力、国家食品药品监督管理局副局长吴浈、世界卫生组织驻华代表蓝睿明博士、世界卫生组织总部专家拉奥里贝尔加比博士出席会议。各省、自治区、直辖市及新疆生产建设兵团、计划单列市和副省级省会城市食品药品监督管理局(药品监督管理局)设立分会场。   世界卫生组织(WHO) 专家贝尔加比博士在会上宣布:“中国疫苗监管体系通过了WHO的评估。中国企业可以就自己生产的疫苗向WHO申请预认证。”此次评估的顺利通过证明我国疫苗监管体系达到国际标准,也开启了我国疫苗产品走向世界的大门。   “我们衷心祝贺国家食品药品监管局取得这一重要成就”,WHO驻华代表蓝睿明博士表示:“它肯定了中国的监管部门有能力确保入市疫苗都是质量可靠的疫苗。”   为迎接此次评估,自2009年7月起,国家食品药品监管局统一制定“路线图”,周密组织,切实推进此项工作。在各个关键环节全面完善疫苗质量管理体系,指导企业加强疫苗生产质量管理,积极修订和发布新版GMP,为顺利通过评估奠定了基础,全面而且出色地展示了我国药品监管的水平和形象。   2010年12月13日至17日,WHO启动了为期5天的正式评估。来自WHO总部、WHO驻华代表处、美国食品药品管理局、法国健康食品卫生局等机构的评估专家,对我国疫苗国家监管体系进行了全面评估,同时分组到上海、江苏、河北等地,对上市后监管包括接种后异常反应监测、临床试验监管等工作,开展了深入、细致、严格的检查。评估结果显示,有2个板块获得满分,另外5个板块的成绩也很优秀,达到了世界卫生组织的监管体系标准。   通过WHO的评估,也为我国疫苗产业做大做强、提升产业竞争力,实施“走出去”战略迈出了重要一步。我国是疫苗生产大国,现有疫苗生产企业30 余家,年生产能力达到近10亿剂,居世界前列。通过WHO评估,意味着我国疫苗企业从此可以申请WHO的预认证,其通过预认证的产品有可能进入联合国疫苗采购计划,或者获得其他国家和地区的认可而采购。日前,食品药品监管部门已邀请WHO专家,对申请预认证的企业开展前期培训指导,支持引导企业积极参与国际竞争,开拓国际市场。   贝尔加比博士表示:“中国在一两年中有可能会成为平价疫苗的主要供应国之一,而且中国的疫苗出口,无疑将对120多个发展中国家和中等收入国家的免疫规划工作作出贡献。”   国家食品药品监管局局长邵明立、卫生部副部长尹力在会上讲话,中国食品药品检定研究院、中国疾控中心、河北省食品药品监管局代表发言。 中国疫苗监管体系通过世界卫生组织评估总结电视电话会现场   相关链接:   我国疫苗监管体系通过WHO评估背景资料   3月1日,世界卫生组织(WHO)在北京宣布,我国疫苗监管体系通过了WHO的评估。WHO开展的疫苗国家监管体系评估,是WHO对一个国家疫苗的监管机构或体系的职能评估。评估的顺利通过证明了我国疫苗监管能力得到较大提升,同时也为我国疫苗生产企业参与国际竞争、提高国际竞争力奠定了基础。   国家疫苗监管体系通过WHO评估,是疫苗生产企业申请WHO预认证,参与疫苗国际招标采购的前提。通过WHO的评估,意味着中国疫苗产品进入国际市场有了更好的平台,将以安全可靠的疫苗产品为世界卫生事业做出更大的贡献,也标志着我国食品药品监管和医药卫生事业向国际先进水平迈出了新的步伐,为中国医药产业的发展赢得了更为广阔的空间。   评估:88个关键性指标“一票否决”   疫苗国家监管体系评估涵盖了疫苗监管的全过程,涉及到所有参与国家疫苗监管的机构,包括药品监管部门、卫生行政部门、药品不良反应监测机构、疾病预防控制机构、药品检验机构等。   WHO评估内容包括7个板块(1个监管体系6项职能):国家监管体系、上市许可工作、上市后监管包括接种后异常反应监测、批签发、实验室管理、监管检查、临床试验监管,覆盖了从疫苗研发到使用的各个环节。7个板块下共设置183个分指标,其中关键性分指标88个。   WHO规定,只有88个关键性分指标全部通过,而且其他非关键性指标半数以上通过,才能通过评估。也就是说,88个关键性分指标如果有一项不能通过,将被“一票否决”。在评估指标中,所有内容都围绕一个核心问题:监管体系是否规范,能否保障疫苗产品的安全、有效。   国家食品药品监管局自2009年7月统筹计划安排评估至2010年12月13日正式接受WHO的评估,期间开展了一系列周密组织和切实推进工作。在各个关键环节全面完善疫苗质量管理体系,指导企业加强疫苗生产质量管理,积极修订和发布新版药品生产质量管理规范(GMP),做了大量细致的工作,为顺利通过评估奠定了基础,全面而且出色地展示了我国药品监管的水平和形象。   2010年12月13日~17日,WHO启动了为期5天的正式评估。来自WHO总部、WHO驻华代表处、美国食品药品管理局、法国健康食品卫生局等机构的评估专家,对我国疫苗国家监管体系进行了全面评估,同时分组到上海、江苏、河北等地,对上市后监管包括预防免疫接种后的异常反应监测、临床试验监管等工作,开展了深入、细致、严格的检查。   评估结果显示,有2个板块获得满分,另外5个板块的成绩也很优秀,达到了世界卫生组织的监管体系标准。这表明我国可以很好地保证预防接种安全,世界各国完全可以放心采购和使用我国疫苗。   监管:5大环节多管齐下   近年来,国家药品监管部门一直高度重视疫苗质量安全监管工作,结合监管工作的需要,从5大环节入手,先后采取强化疫苗监管的措施,为保证疫苗的安全、有效奠定了坚实基础。   第一,严格技术标准,规范审评审批,从源头确保疫苗质量安全。在技术标准方面,我国疫苗的质量标准总体上与国际上发达国家及WHO相一致,有些品种的部分安全性指标比国外还要严格,如杂质残留的标准和相关检验项目设定等。在审评审批方面,采取了高标准、严要求的管理模式,在企业完成临床试验申请生产注册后,采取技术审评、生产现场检查与样品复核检定三合一的方式进行。   在2009年甲型H1N1流感防控工作中,我国坚持联防联控的工作机制,通过科技攻关在研发环节发挥关键作用,使国产疫苗在全球率先上市,为我国甲流防控工作赢得了先机,也赢得了国内外的广泛赞誉。2010年7月,WHO总干事陈冯富珍博士访问中国食品药品检定研究院,高度赞扬了我国为全球防控甲流做出的突出贡献。   第二,实行批签发制度,对上市或进口疫苗进行强制性检验、审核,检验不合格或者审核不被批准者不得上市或者进口。批签发制度是国际上对生物制品管理的通行做法,是WHO要求各国政府对疫苗实行监管的职能之一。我国自2001年开始试行生物制品批签发管理,2006年1 月起对所有预防用的上市疫苗全部实行批签发管理。   据中国食品药品检定研究院副院长、生物制品检定首席专家王军志介绍,我国目前采取的批签发模式不仅对企业生产和检定记录进行审核,而且也对关键项目进行实验室检验,对保障疫苗质量和安全起到了积极的作用。2010年,共签发40个生产企业(国内32家、国外8家)生产的51个品种疫苗、近5000批,约9亿多人份疫苗。   第三,强化生产环节监管,保证疫苗质量。自2007年起,将疫苗类产品纳入高风险产品重点监管,每年均以跟踪检查方式对疫苗生产企业进行生产现场的监督检查。同时,将疫苗类预防性生物制品生产企业作为首批重点监管的企业,自2007年3月起实施派驻监督员制度。 2008年,疫苗类产品等高风险类产品作为首批药品品种之一,率先纳入药品电子监管码管理系统,实施了“一品一码”的药品电子监管码管理。2009年起,疫苗生产企业全面实施质量受权人制度,进一步强化企业质量保证体系建设,确保产品质量安全。   今年3月1日起,新版药品生产质量管理规范(GMP)将正式施行。国家食品药品监管局制定了新版药品GMP实施步骤,对疫苗生产提出如下要求:一是自2011年3月1日起,凡新建疫苗生产企业、疫苗生产企业新建(改、扩建)车间均应符合新版药品GMP要求。现有疫苗的生产应在2013年12月31日前达到新版药品GMP要求。二是要求疫苗生产企业建立和完善企业质量管理体系,配备必要的质量管理人员 建立和更新各类管理软件并验证和试运行,并组织开展企业员工的培训。三是要求企业在实施新版GMP开展软、硬件技术改造的同时,加强对在产疫苗产品生产及质量的管理,确保上市疫苗的质量安全。   第四、加强规范和要求,强化经营环节监管。卫生部和国家食品药品监管局专门制定了《疫苗储存和运输管理规范》,对各级卫生行政部门和食品药品监管部门强化疫苗储存和运输监管工作做出明确规定。食品药品监管部门加强抽验检查,对市场流通的疫苗进行严格监管。   第五,加强上市后监管,保证疫苗使用安全。2005年6月,国务院颁布实施了《疫苗流通和预防接种管理条例》,对预防接种异常反应的定义、范围等做了明确规定。2010年6月,卫生部和国家食品药品监管局联合发布《全国疑似预防接种异常反应监测方案》,对疑似预防接种异常反应(AEFI)的监测报告、调查诊断、数据分析和利用、反应的处置等从技术上提出了明确要求,为系统开展我国AEFI监测奠定了坚实基础。   中国疾控中心免疫规划中心主任梁晓峰表示,卫生部门与食品药品监管部门还建立起共享的“全国AEFI监测信息管理系统”,提高了监测能力和质量。特别是在2009~2010年度全国甲流疫苗预防接种和2010年麻疹疫苗强化免疫活动中,该系统发挥了重要作用,通过监测也进一步证实了甲流疫苗和麻疹疫苗的安全性。   机遇:疫苗产业瞄准国际市场   此次评估也为我国疫苗生产企业进入国际市场提供了有利契机。   我国是疫苗生产大国。现有疫苗生产企业30余家,年生产能力达到近10亿剂,居世界前列。其中,部分疫苗的研发生产水平达到国际先进水平,基本满足了国内卫生防疫的需要,为保障人民群众的健康做出了重要贡献。   因为有较强的生产能力和较齐全的生产品种,WHO对我国疫苗生产一直十分关注,期待我国能为世界疾病预防,尤其是不发达国家和地区的疾病预防接种提供产品支持。目前,我国虽然是疫苗生产大国,但还不是出口大国,只有部分企业少量的单一品种,以赠送的方式或者国家间单一贸易的方式出口。通过WHO评估,意味着我国疫苗企业从此可以申请WHO的预认证,其通过预认证的产品有可能进入联合国疫苗采购计划,或者获得其他国家和地区的认可而采购。通过WHO的评估,为我国疫苗走向世界,为我国疫苗产业做大做强、提升产业竞争力,实施“走出去”战略迈出了重要一步。   目标:推动药品监管再上新台阶   国家食品药品监管局局长邵明立表示,疫苗国家监管体系顺利通过世界卫生组织的评估,给我们以极大鼓舞,增强了接受国际检验的信心和勇气。希望大家以此为起点,在加快完善药品监管体系、积极促进医药产业国际化上,眼光放得更长远些,步子迈得更大些。   邵明立表示,此次评估中,WHO充分肯定了我国疫苗监管体系取得的明显进步,同时也对下一步如何完善监管体系、严格监管规范、提升安全水平,提出了具体意见和建议。食品药品监管部门将认真对照WHO的标准要求,以切实保障公众用药安全为目标,毫不松懈地加强疫苗监管体系建设,不断提高疫苗安全保障水平。   此次通过评估,为疫苗生产企业进入国际市场、参与国际竞争创造了条件机遇。监管部门鼓励有能力、有条件的疫苗生产企业,充分利用这个平台,积极主动申请WHO预认证。鼓励企业按照WHO的要求,加大科研投入,认真完善生产质量管理体系,不断提高产品研发能力和产品质量保障水平,切实增强企业核心竞争力。要通过“走出去”战略,在市场竞争中培育和提升我国疫苗企业“中国制造”的国际竞争力。食品药品监管部门已邀请WHO 专家,对申请预认证的企业开展前期培训指导,支持引导企业积极参与国际竞争,开拓国际市场。   食品药品监管部门将以此次评估工作为基础,适应全球化发展趋势,进一步加大与国际组织以及其他国家和地区的交流与合作。学习、借鉴国际先进管理理念、管理制度和管理手段,不断完善药品监管制度和管理规范。在国际交流合作中,及时引进国外高端检验检测、监测评价的技术方法和设施设备,努力提高药品审评审批、检验检测、标准提高的能力和水平。学习借鉴发达国家的人才培养和激励机制,为完成“十二五”监管发展目标提供宝贵的人力和智力支持。
  • 国家标准《江河生态安全评估技术指南》发布,明晰28个评估指标
    近日,国家市场监督管理总局、国家标准化管理委员会正式发布我国首部江河生态安全评估国家标准《江河生态安全评估技术指南》(GB/T43474-2023),将于2024年4月1日施行。《指南》明晰了江河生态安全的概念,规定了江河生态安全评估的原则、工作流程、指标体系和评价方法,提出了江河生态环境压力、江河生态系统健康、江河生态服务功能、江河生态风险4个专项指标、12个分项指标、28个评估指标的指标体系、计算方法和赋值标准,具体指标体系见下表:本文件规定了江河生态安全的评估原则和评估工作流程。本文件适用于内陆江河(不包括湖泊、水库)生态安全状况的评估,地方政府的相关评估工作可参照执行。本文件由全国环境管理标准化技术委员会(SAC/TC207)提出并归口。本文件起草单位:中国环境科学研究院、中国标准化研究院、广东工业大学、中国科学院南京地理与湖泊研究所、北京师范大学、贵州茅台酒厂(集团)循环经济产业投资开发有限公司、北京信息科技大学.浙江绿凯环保科技股份有限公司、中电建生态环境集团有限公司、中工武大设计集团有限公司、华设设计集团环境科技有限公司、中节能铁汉生态环境股份有限公司、中国电建集团华东勘测设计研究院有限公司、北京建工土木工程有限公司、中建三局第二建设安装有限公司、陕西省水利电力勘测设计研究院中交第二航务工程局有限公司、上海勘测设计研究院有限公司、山东黄河勘测设计研究院有限公司、中交生态环保投资有限公司、中建三局绿色产业投资有限公司、北控水务(中国)投资有限公司、中铁四局集团有限公司。本文件主要起草人:张远、马淑芹、夏瑞、王秀腾、高俊峰、丁森、高欣、贾晓波、钱昶、江源、杨中文李飞龙、王璐、陈焰、贾蕊宁、蔡永久、黄琪、张雅静、林翎、黄进、张晓昕、谢尚侃、谢珺、张迪、黄、刘静徐秉声、张逦嘉、霍晓东、方菲、王正发、张艳敏、程文明、曹亚丽、王磊、李俊民、魏俊、郑立志、郭志明、袁小兵、闫星、仇正中、胡伟、赵修江、王传全、格菁、彭增亮、孙笑非、汤丁丁、周艳、冒建华、刘永杰陈文尹、秦林。
  • 重磅上市|土壤呼吸测定仪评估土壤健康与活性
    型号推荐:重磅上市|土壤呼吸测定仪评估土壤健康与活性 ,土壤呼吸作为土壤生态系统中的关键过程,直接反映了土壤的健康状况、微生物活性及碳循环动态。土壤呼吸测定仪作为现代土壤科学研究的得力工具,其在农业、生态及环境科学领域发挥着不可替代的作用。本文将详细阐述土壤呼吸测定仪的四大作用。 一、评估土壤健康与活性 土壤呼吸测定仪通过精确测量土壤释放的二氧化碳量,直接反映了土壤中微生物的呼吸作用强度和土壤有机质的分解速率。这一 数据是评估土壤健康状态和生物活性的重要指标,为土壤管理和改良提供了科学依据。 二、指导农业生产与施肥 土壤呼吸与土壤肥力及作物生长密切相关。通过土壤呼吸测定仪的监测,农民可以了解土壤中有机物质的分解速率和养分供应情况,从而制定科学的种植计划和施肥方案。这有助于提高农业生产效率,减少化肥的过量使用,降低环境污染。 三、监测生态系统碳循环 土壤是全球碳循环的重要环节,土壤呼吸作用的变化直接影响大气中二氧化碳的含量。土壤呼吸测定仪的应用,使得科研人员能够深入探究土壤碳排放规律,为理解全球气候变化、制定碳减排政策提供重要数据支持。 四、评估生态修复效果 在生态修复项目中,土壤呼吸测定仪可用于监测修复后土壤生态系统的恢复情况。通过对比修复前后的土壤呼吸速率,可以评估修复措施的有效性,为优化修复方案提供数据支持。 五、仪器特点 1、Android安卓操作系统,更便捷的人机交互操作 2、7寸高清触摸屏,操作简单、界面清晰 3、气体流量可通过仪器设定,可以进行不同流量下土壤呼吸强度的试验 4、专用动态分析软件,可在安卓显示屏上实时显示实验过程,省去往电脑端拷贝数据,整理分析; 5、支持wifi、4G联网;数据可无线上传至云平台 6、存储空间16G,可存储100000+条数据 7、数据可直接通过USB接口导出到U盘 8、检测完成可直接打印并上传检测数据结果 9、支持GPS定位; 土壤呼吸测定仪在评估土壤健康、指导农业生产、监测碳循环及评估生态修复效果等方面发挥着重要作用。随着科学技术的不断进步,土壤呼吸测定仪的精度和智能化程度将不断提高,为土壤科学研究和生态环境保护贡献更大力量。
  • 高中精度监测,摸清碳排放家底 打造碳监测评估体系“济南案例”
    什么是碳监测?碳监测是指监测二氧化碳吗?还能监测其他气体吗?又是怎样监测?说到碳监测,不少人都抱有这样或那样的疑惑。齐鲁晚报齐鲁壹点记者走进山东省济南生态环境监测中心(以下简称省济南监测中心),带领大家一起了解“碳监测”这个新鲜事物。开展高中精度碳监测摸清城市碳排放量“家底”2021年9月,山东省济南市被生态环境部列为碳监测综合试点城市之一。作为一个全新的课题,碳监测开始进入省济南监测中心的工作范畴。“广义的碳监测不等同于二氧化碳监测,指的是包括二氧化碳、甲烷、氧化亚氮、六氟化硫、全氟化碳、氢氟化碳、三氟化氮等在内的多种温室气体监测。”据省济南监测中心监控与统计室副主任碳专班成员高素莲介绍,碳监测是指对温室气体排放强度、环境中浓度、生态系统碳汇以及对生态系统影响等碳源汇状况及其变化趋势进行监测。相比PM2.5等大气污染物,碳监测难度更高、对精确性要求更高。现阶段的碳监测,济南采用了“天空地”的立体监测方式,通过天基——卫星遥感监测,空基——无人机监测,地基——高精度监测、中精度监测、移动走航车监测、地基遥感监测等手段进行监测。“在地面监测中,目前国际上主流的碳监测网络采用的多是高精度监测方法。”高素莲表示,环境空气中微小的二氧化碳浓度变化对应着巨大的二氧化碳排放量,所以对精度要求比较高。“以二氧化碳为例,高精度监测设备精度能到0.05%,是常规二氧化硫监测设备精度(5%左右)的近百倍。”济南市作为8个综合试点城市之一开展城市温室气体监测评估工作,主要目标是通过开展地面大气主要温室气体浓度监测,探索自上而下的碳排放量反演方法,初步形成技术指南,做好可推广、可应用、可示范的技术储备,为城市碳排放量核算结果提供校验参考。高素莲表示,“自上而下”碳排放量同化反演的方法可与传统的“自下而上”的清单编制方法互相验证,更有利于摸清城市碳排放量“家底”。智能跟踪监测温室气体建立“天空地”一体化立体监测网络济南是全国8个山东省唯一一个碳监测评估综合试点城市之一,为城市碳监测评估体系建设做出了先行探索,初步建成的温室气体“天空地”一体化立体监测网络体系,实现全市域、多指标、长时段温室气体智能跟踪监测。“温室气体采样头通常设置在高度约为50米的高塔之上。”据高素莲介绍,基于监测站点建设的代表性、前瞻性等原则,济南市充分考虑城市现有整体布局,分别在二氧化碳高、中、低值区域及背景点设置监测点位。“同时还在新旧动能转换起步区单独设置监测点位,更加有利于低碳政策效果评估。”监测点位已经布设完成,那么,碳监测设备又是如何工作的呢?省济南监测中心预报室副主任付华轩对气体采样监测过程进行了详细介绍。“首先通过采样泵,将样品气经由采样管路抽进地面站房,在站房内,样品气要先经过一级除水设备在4℃条件下去除明水,而后利用冷阱将气体制冷至零下50℃左右,进一步除去其中的水汽。”付华轩表示,去除水汽之后,样品气才能进入高精度分析仪分析。“分析仪会对样品气中的二氧化碳、甲烷、氧化亚氮、一氧化碳、水汽等进行检测,并通过数据采集软件将分析数据实时上传至中国环境监测总站。这样一个碳监测过程才算完成。”据悉,目前济南市已建成20个二氧化碳中精度监测站点和35个甲烷中精度监测站点,二氧化碳中精度监测数据首个实现与中国环境监测总站联网传输。中精度监测结果为探究济南市二氧化碳浓度时间和空间分布特征提供第一手资料。温室气体仪器分析方法全国领先打造城市碳监测评估的“济南案例”目前,“天空地”一体化立体监测网络已经投入使用,初步获得了城市二氧化碳、甲烷等温室气体浓度变化特征,同时编制了二氧化碳、甲烷等温室气体排放清单,掌握了温室气体区域及行业排放特征。据介绍,济南市在重点行业企业试点开展温室气体自动监测,并依托现有环境监测监控平台开发温室气体管理模块,实现温室气体数据自动联网传输。目前已有4个重点行业25个监测点位实现温室气体自动监测和数据联网传输。在碳监测工作的探索实践中,省济南监测中心还探索建立温室气体仪器分析方法,实现一次进样同时分析CO2、CH4、N2O、SF6、CO共5种气体组分,在全国保持领先水平。完成国家环境保护环境监测质量控制重点实验室开放课题《环境空气 二氧化碳、甲烷、一氧化碳的测定 气相色谱法监测质控技术研究》,建立手工监测温室气体质量控制体系,填补了国内空白。不过,碳监测在我国尚处于起步阶段,监测技术体系尚不健全,相关的监测标准、规范、指南等也是在试点进程中不断完善和发展的。高素莲表示,济南的碳监测评估体系在建立过程中也是在摸着石头过河,实施方案经历过很多次修改完善和论证比选。值得关注的是,当前,碳监测技术人才相对缺乏,技术人员也是边学习、边提高、边应用,在项目实施过程中不断完善和丰富技术体系。下一步,济南将按照国家试点工作要求,继续推进各项试点任务,不断完善“天空地”一体化温室气体监测体系,深化数据挖掘和分析,加强经验总结和凝炼,为城市应对气候变化工作成效评估提供坚实的数据支撑,为城市碳监测评估体系建设贡献典型的“济南案例”。
  • Analytical Chemistry: ADE-OPI-MS寡核苷酸高通量分析法可用于准确评估TdT酶活性
    酶促DNA生物合成技术被誉为第三代DNA合成技术,是DNA合成的未来。TdT酶的催化效率是影响酶促DNA生物合成效率的关键问题之一。然而,目前针对TdT酶催化效果的筛选评价还没有很好的工具方法,阻碍了TdT酶活性的提升及酶促DNA合成技术的发展。近日,由天津中合基因科技有限公司与中国科学院天津工业生物技术研究所江会锋研究员团队合作的科研项目取得重大进展,成功研发出一种基于声波滴液喷射-开放式接口-质谱(ADE-OPI-MS)的寡核苷酸高通量分析方法,该方法能够根据寡核苷酸的含量快速、准确地评估TdT酶的活性,为TdT酶活性评估手段带来了革命性的改变,助力酶促DNA生物合成技术快速迭代升级。相关成果发表在分析化学领域国际知名期刊Analytical Chemistry(JCRQ1)。经研究团队的反复实验,已经对寡核苷酸MRM离子参数以及TdT基质效应等条件进行了优化,实现3秒完成一个样本的检测,一次性检测384个反应样品,大幅超越了传统凝胶分析法,单个样品分析效率提升了约60倍。在实际应用过程中,研发团队仅用2天时间,就完成了上万个TdT突变体的检测筛选,而同样的工作,使用传统方法则需要两周,这充分体现了该方法的高效性、先进性和实用性。TdT突变体的高通量筛选关于中合基因:中合基因于2022年在天津成立,是一家以酶促DNA生物合成技术为核心,专注开展相关装备及试剂研发的高新技术企业,核心产品广泛应用于合成生物学、生物医药、基础科研、DNA存储等生命科技领域。
  • 视觉评估:当人眼无法精确测量色彩时
    人眼由 200 多万个部件组成,其复杂程度仅次于大脑。今天,当我驾车行驶在路上时,风景中的色彩提醒了我为什么喜欢每年的这个时候。在我所在的地区,树木开始变成明亮的金黄色和橘红色。每天,我都会为人类眼睛对色彩的惊人视觉评估能力而惊叹不已。秋天也是让我关注当地商店货架上色彩的季节,因为我在考虑下一个秋天的衣橱、装饰品或令人舒心的炖锅大餐。色彩的视觉评估再一次刺激了我的感官......也刺激了我的购物欲。01 神奇的人眼眼睛是人体最重要、最复杂的部分之一。它由 200 多万个工作部件组成,其复杂程度仅次于大脑。这也就不难理解为什么视觉对我们的身份和感知世界的方式如此重要。我们的视觉评估指导着我们的感受、我们对服装的选择、我们吃的食物以及我们购买的产品。我们每天都在用视觉来做决定和选择,尽管每个人的视觉评估都不尽相同,但它仍然比我们的味觉或嗅觉更加一致。我们能够解读多达 500 种灰色和 1 000 多万种不同的颜色组合,难怪科学家和制造商都想更多地了解颜色是如何影响人们的。02 视觉感知的缺陷毫无疑问,人眼是一种神奇的工具,无论其主观行为如何,在许多行业中,人眼仍被用于评估色彩标准。视觉评估是生产过程中的重要工具,但它也有不足之处。尽管眼睛能够分辨出如此多不同的色彩模式,但它仍然缺乏色彩记忆,很难回忆起之前看过的物体的准确色调。仅这一点就可能存在问题,但这还没有考虑到有 8%的人眼睛存在生理功能障碍,导致他们对颜色的感知与大多数人大相径庭。因此,视觉评估的一致性可能成为生产和制造过程中色彩评估的噩梦。当眼睛出现疲劳时,即使是资质最高、训练有素的眼睛也会变得不可靠。每天都必须使使用其眼睛观测的人经常成为视觉疲劳和慢性疲劳综合症 (CFS) 的牺牲品。 这类疲劳的症状包括视力模糊、不耐光和头痛。这不仅会影响个人的视觉评估能力,而且会产生长期影响,并已证明会造成永久性损害。03 人眼技术的优势科学家对视觉评估的研究已有 100 多年的历史,但在 20 世纪初,科学家们才率先用新的色彩分析技术取代了存在问题的人眼。这种新仪器在科学、政府和工业之间建立了联系。利用色彩的复杂性,仪器色彩评估取代了肉眼评估。现在,色彩匹配已成为一门科学,可以准确地重复和量化,以满足制造和科学的需求。随着技术的发展,科学家们能够利用色彩的复杂性,创造出超越视觉评估的新型色彩分析仪器。04 真实世界的应用今天,色彩技术比以往任何时候都更加重要。比色技术的飞速发展扩大了仪器色彩评估和分光色度仪在各种工业环境中对物体色彩评估和管理的应用。色彩分析被广泛用于评估质量和产品安全,现代技术在提高效率的同时,还确保减少许多行业的产品浪费。选择合适的色彩测量工具可能是一项挑战,因此,寻找一家具有悠久历史、丰富经验和无与伦比的客户支持的公司非常重要。要找最好的公司,HunterLab 是不二之选。我们拥有 60 多年的经验,在瞬息万变的全球市场中不断寻找满足客户需求的方法。现在就联系 HunterLab,看看我们为什么是色彩测量领域真正的领导者。
  • 我国将建食品安全风险监测评估体系
    就在地沟油、洗虾粉和时下热议的“化学火锅底料”等一系列食品安全事件频出时,食品安全监管也成为众矢之的,对此,卫生部部长陈竺强调,“十二五”期间,将重点建设食品安全风险监测评估体系,解决食品安全风险监测评估能力不足、水平不高等突出问题。   日前,陈竺表示,各地要及时制定2011年食品安全风险监测方案并组织实施,发现食品安全隐患或风险,要立即通报相关监管部门并及时上报,同时建立健全食品安全风险监测评估预警和事故应急处置体系,组织制定实施本地区的食品安全风险监测方案,全面完成食品安全风险监测工作。各级卫生行政部门要加强对食品安全风险监测数据的收集和利用,充分利用监测结果开展预警工作。不过,在食品安全方面,目前仅有大约1/3的省级疾病预防控制机构能够承担2010年国家食品安全风险监测计划的全部监测项目。   相关专家指出,开展风险监测与评估,预控食品质量,预防食品安全事故,是解决食品安全问题的重要途径之一,在这方面,需要开展食源性疾病哨点监测,对重点食品或重点食品污染物及社会关注的食品安全热点问题开展调查并进行危险度评估,提出防止策略,这样才能逐步完善各地的食品安全风险监测和评估体系。
  • 肿瘤治疗:利用多种测序技术系统性评估体外类器官培养体系
    结直肠癌是最多发的癌症之一,病死率高居全球第二。目前,利用患者肿瘤组织构建的类器官模型已成为研究肿瘤发生分子机制的常用研究手段。多种肿瘤类器官已被成功构建,包括结直肠癌、乳腺癌、膀胱癌、前列腺癌、胃癌等。然而,这些研究大部分仅在大量细胞系综平均的水平评估了患者组织衍生的类器官的各种分子特征,如基因突变、基因组拷贝数变异以及基因表达等变化,并未在单细胞水平进行评估,从而无法系统地评估构建的类器官个体内部的肿瘤细胞异质性情况,特别是由于构建类器官的成功率常常不是很高,同时得到同一个患者的体内肿瘤单细胞组学数据以及在体外建成类器官后的配对单细胞组学数据非常困难。为了系统地评估结直肠癌类器官培养系统,解析类器官与对应的体内肿瘤上皮细胞之间的异同以及不同培养体系对类器官基因表达特征的影响,北京大学生物医学前沿创新中心(BIOPIC)汤富酬教授团队与北京大学第三医院普通外科付卫教授团队合作,对来自6名结直肠癌患者的体内肿瘤组织和癌旁正常组织,以及对它们进行体外培养建立的相应的类器官进行了高精度单细胞转录组测序,并结合全基因组甲基化测序、全基因组测序、全外显子组测序以及靶位点Sanger测序等,对两种常见结直肠类器官培养体系从转录组、基因组和DNA甲基化组三个层面进行了系统的比较和评估(图1)。该研究成果于2022年4月28日以“Systematic evaluation of colorectal cancer organoid system by single-cell RNA-Seq analysis”为题在线发表在 Genome Biology 上。图1 实验设计方案示意图该研究有以下3个主要发现:1、肿瘤组织来源的类器官能准确反映对应体内肿瘤上皮细胞(癌细胞)在基因表达、基因突变以及DNA甲基化等方面的关键特征。通过探索体内肿瘤特异性基因表达模式,该研究发现肿瘤来源的类器官高表达体内肿瘤上皮细胞(癌细胞)特异性表达的基因。并且,肿瘤组织来源的类器官也维持了体内肿瘤上皮细胞特异性的基因调控网络特征。另外,通过对全基因组(WGS)、全外显子组(WES)以及DNA甲基化组(PBAT)数据进行分析,该研究发现肿瘤类器官能非常好地维持体内肿瘤上皮细胞(癌细胞)在基因突变和DNA甲基化等方面的关键特征(图2)。这表明现有培养体系中的结直肠癌肿瘤类器官非常好地维持了对应患者体内癌细胞的关键生物学特征,因而使用肿瘤类器官筛选的癌症治疗候选药物应该对对应患者体内的癌细胞也会有类似的杀伤效果。现有的肿瘤类器官是肿瘤杀伤药物筛选的优秀平台。图2 体内外肿瘤细胞和正常肠上皮细胞的基因组拷贝数变异、DNA甲基化以及基因突变的比较2、癌旁正常组织来源的类器官在转录组水平上表现出部分肿瘤样特征,但保持正常的基因组和全局DNA甲基化组特征。首先该研究鉴定了体内肿瘤上皮细胞和癌旁正常肠上皮细胞的差异表达基因,并研究了这些差异基因在体外肿瘤类器官和正常肠上皮类器官的表达情况。结果显示,体外正常肠上皮类器官和肿瘤类器官均高表达体内肿瘤上皮细胞特异性表达的基因。为了进一步验证此结果,该研究对体内组织和体外类器官进行了肿瘤特异性表达基因CEACAM6的免疫荧光染色。与单细胞转录组数据一致,CEACAM6仅在体内肿瘤上皮细胞中高表达,而在体内癌旁正常肠上皮细胞中则不表达。然而,体外培养的肿瘤类器官和正常肠上皮类器官均高表达CEACAM6蛋白,此结果与单细胞转录组测序结果一致(图3)。该研究的癌旁正常组织都取自距离肿瘤组织边缘至少10厘米以外的区域,其正常组织内部混杂大量肿瘤细胞的可能性非常低,但为了进一步排除正常组织类器官有可能是混杂在癌旁正常组织中的肿瘤细胞体外扩增而导致这一现象,该研究进一步探究了体外肿瘤类器官和正常肠上皮类器官的基因突变和基因组拷贝数变异情况。结果显示只有肿瘤类器官呈现与对应患者体内肿瘤细胞相似的基因组拷贝数变异和基因突变,而正常肠上皮类器官的基因组与体内正常肠上皮细胞一致,没有肿瘤细胞特异性的基因突变和基因组拷贝数变异,从而排除了正常组织类器官起源于癌旁正常组织中混杂部分肿瘤上皮细胞的可能性。这些数据显示,在转录组和蛋白水平上,肿瘤上皮类器官和正常肠上皮类器官都表现出肿瘤样特征。这表明现有的培养体系使得正常肠上皮类器官也具有部分肿瘤细胞特征,因而用同一个患者得到的肿瘤类器官和癌旁正常肠上皮类器官进行配对药物筛选以筛选出特异性对肿瘤细胞有选择性杀伤效果(杀伤肿瘤类器官,但是不杀伤正常肠上皮类器官)的候选药物目前是无法实现的。图3 CEACAM6免疫染色荧光结果3、条件培养基在肿瘤类器官的长期培养方面优于化学成分确定培养基(分子培养基)。首先,该研究通过MKI67的表达情况对不同培养基中的细胞增殖情况进行了评估(图4)。在化学成分确定培养基(分子培养基)中,正常组织来源的类器官相比肿瘤来源的类器官具有更快的细胞增殖速度。而在条件培养基中,正常组织来源的类器官和肿瘤来源的类器官的细胞增殖速度相当。这说明化学成分确定培养基(分子培养基)更有利于正常肠上皮细胞的生长,而条件培养基对正常肠上皮细胞和肿瘤上皮细胞(癌细胞)的生长没有明显偏好性。而这一特点通过线粒体突变在不同培养基中培养的癌细胞的谱系追踪得到了进一步验证。图4 体内组织以及体外两种培养基中的类器官细胞表达MKI67的比例此外,该研究结果表明,条件培养基比化学成分确定培养基(分子培养基)更能真实地反映对应体内肿瘤上皮细胞(癌细胞)与正常肠上皮细胞的差异。与体内相应的癌细胞相似,在条件培养基中培养的肿瘤类器官呈现肠上皮干祖细胞标志基因OLFM4高表达和肠上皮分化成熟标志基因CA2低表达的特征,正常组织类器官呈现相反的OLFM4低表达和CA2高表达的模式(图5)。然而,在化学成分确定培养基(分子培养基)中,无论是正常组织类器官还是肿瘤类器官都具有相似的OLFM4高表达和CA2低表达的模式,无法准确模拟对应体内不同类型上皮细胞基因表达的不同特征。这表明现有的两种培养体系对维持对应体内肿瘤细胞关键生物学特征都有效,但是条件培养基要优于化学成分确定培养基(分子培养基),因而条件培养基是基于类器官的肿瘤发生分子机制研究和药物筛选的首选培养体系。图5 不同条件下的肿瘤细胞和正常上皮细胞的CA2和OLFM4的表达综上所述,该项研究对结直肠癌体内肿瘤组织、体内癌旁正常组织,以及配对的在两种不同培养体系中建立的肿瘤类器官、癌旁正常组织类器官进行了高精度单细胞转录组分析,并结合全基因组测序、全外显子组测序、DNA甲基化组测序以及靶位点Sanger测序的结果,系统地评估了类器官模型在研究结直肠癌肿瘤发生分子机制上的可靠性和局限性。该研究发现,现有的培养体系中的肿瘤类器官非常好地维持了对应结直肠癌患者体内癌细胞的关键生物学特征,现有的肿瘤类器官是肿瘤发生分子机制研究以及肿瘤杀伤药物筛选的优越平台。现有的培养体系使得正常肠上皮类器官也具有部分肿瘤细胞特征,因而无法用同一个患者得到的肿瘤类器官和正常肠上皮类器官进行配对筛选,以便得到对肿瘤细胞有选择性杀伤效果的候选药物。现有的两种培养体系对维持结直肠癌肿瘤细胞关键生物学特征都有效,但是条件培养基要优于化学成分确定培养基(分子培养基),因而条件培养基是结直肠癌肿瘤发生分子机制研究和药物筛选的首选培养体系。
  • 中国构建突发性水环境风险评估预警技术体系
    记者14日从国家重大科技专项水专项第一阶段主题评估会上了解到,中国正在构建流域突发性水环境风险评估预警技术体系,该体系预计将于2015年全部建成并向全国推广。这意味着中国水环境风险应急管理能力将获得有效提升。   2010年大连新港溢油事故、2012年广西龙江镉污染事件、2014年兰州水厂苯污染事件&hellip &hellip 近年来,中国水环境事件频繁发生。水专项技术总师、中国环境科学研究院院长孟伟院士在接受记者采访时说,这表明中国已经进入了经济社会发展的环境高风险阶段,过去工业布局不合理,工厂过分靠近取水口造成的历史欠账正在逐步凸现。   据悉,中国现有流域水环境监测体系不完善,流域风险评估预警能力薄弱,可满足现场、快速和应急的监测技术不足。为此,水专项从&ldquo 十一五&rdquo 期间开始构建流域突发性水环境风险评估预警技术体系,着力加强&ldquo 从水源地到水龙头&rdquo 的全过程管理、预警、监控。   孟伟介绍,经过5年实施,相关技术已在部分流域开始应用。从三峡库区的水环境风险预警平台的运行情况看,水环境监察应急管理效率提升显著,平均出警时间由原来30分钟以上缩短至10分钟以内,水环境应急处置时间从1-2天缩短至1-2小时,累积避免和减少直接、间接经济损失超过1亿元。   &ldquo 水专项已进入中期爬坡的关键阶段。&rdquo 孟伟表示,项目形成的《突发性污染事故保护水生态系统的特征污染物风险控制阈值确定技术规范》等技术规范已被纳入2011年国家环境标准制修订计划,相关成果还有望在近期出台的国务院&ldquo 水十条&rdquo 中得以体现。
  • 加拿大就评估含硒物质的安全性收集意见
    加拿大环境部于10月1日前向利益相关方征求意见,以决定某些含硒物质是否有毒性或可能有毒,同时评估是否以及如何控制这些物质。   被审查的化学物质有:硒化镉(CdSe)、硒氰酸钾、1,1'-硒基双十二烷、二氧化硒(SeO2)、硫化硒、二硫化硒 (SeS2)、硒、亚硒酸、硒化氢 (H2Se)、氧氯化硒、亚硒酸钠、亚硒酸铜、硒化银 (AgSe)、硒化铅(PbSe)、硒化钯(PdSe)、硫硒化镉(Cd2SeS)、硫硒化镉(Cd(Se,S))、硒硫化镉橙(颜料橙20)、硒酸钠、硒化亚铜 (Cu2Se)、二乙基二硫代氨基酸硒盐和硒硫化镉红(颜料红108)。   要求提供信息的进口商包括:2012年期间进口总量大于100千克且这些含硒物质浓度按重量计大于等于0.001%的企业,进口的物质不论是(一)混合物或被计划用于住宅打蜡、油漆、涂料、油墨、粘合剂、密封剂或清洗或织物护理中使用的产品 或(二)用于混合物或地板清洁或食物表面处理的产品 或(三)用于六岁以下儿童用玩具。要求提供信息的个人还包括于2012年期间使用的总数量大于100千克的物质,不论单独使用或在上述产品制造过程中作为混合物使用,按重量计浓度≥0.001%。针对信息的要求将不适用于运输经过加拿大的物质,或包含在害虫控制产品法案第2(1)段所指的害虫控制产品中。
  • 析维参加第二届全国农产品质量安全风险评估学术研讨会
    公司总机:021-5523 5799咨询电话:400-021-8862农产品质量安全风险评估是实现农产品质量安全科学监管和风险防控不可或缺的坚实基础。面对当前的新形势、新任务,推进农产品质量安全风险评估的科学发展显得尤为重要。为进一步强化农产品质量安全风险评估科学研究,加强学术交流以提升风险评估能力水平,中国农业科学院农业质量标准与检测技术研究所于2020年9月24-25日召开了第二届全国农产品质量安全风险评估学术研讨会。本次会议设立了院士论坛、大会报告、专题报告、墙报展示等形式,邀请了相关科研院所、高等院校、以及风险评估、检验检测、仪器设备研发等机构的科研、教学、质检及管理的专家及技术人员,共同探讨交流农产品质量安全风险评估领域的前沿热点与研究进展。作为中国农科院质标所在实验室现场气体供应方面多年的合作伙伴,上海析维医疗科技有限公司也参加了此次学术盛会。析维展品NG1000氮气发生器以其小巧的体型和简洁流畅的外观设计引发了很多嘉宾的兴趣。析维智能打标机作为直接打印试管表面的新产品,在现场直接运行打印,也让很多参观的老师跃跃欲试。
  • 基于海洋放射性核素时空演化体系的海洋核安全评估技术
    基于海洋放射性核素时空演化体系的海洋核安全评估技术林武辉1,5,杜金秋2,拓飞3,曹少飞4,张翊邦5,祁第1,陈立奇1,余克服5(1. 集美大学港口与海岸工程学院 极地与海洋研究院,厦门 361021;2. 国家海洋环境监测中心,大连 116023; 3.中国疾病预防控制中心辐射防护与核安全医学所,北京 100088;4. 中国辐射防护研究院,太原 030006;5. 广西大学 海洋学院,南宁530004)摘要:本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全评估的基石,提出本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史与现状,有利于评估过去12年以来日本福岛核电站修复进程中相关修复措施的有效性。之后,本文指出在利用海洋数字孪生技术的基础上,针对上述三种海洋核安全评估技术对应提出从寻找人类核活动历史的可靠“档案馆”、健全海洋放射性核素的基准/标准限值和探索长期低剂量生物辐射效应与风险三个角度展望未来海洋核安全评估技术需求与发展方向,以期为国内外新形势下我国海洋核安全评估与管理提供一定借鉴。核安全是核能发展与核技术利用的生命线。自1984年成立国家核安全局以来,我国已经形成法律、条例、部门规章、标准、导则等不同层次的核安全制度体系[1],以保护人类和环境免受电离辐射危害。核安全和深海安全是总体国家安全观的有机组成,二十大报告中也明确指出“强化……核、太空、海洋等安全保障体系建设”。在加快建设海洋强国战略背景下,海洋核安全也应该是国家安全保障体系的重要环节。1. 新形势下的海洋核安全需求海洋占地球表面积约71%,占地球总水量约97%,是地球气候的重要调节器,也为人类生存和发展提供了重要的资源和生态服务功能[2]。然而,20世纪人类大气核试验产生69%的人工放射性核素137Cs(780 PBq)直接沉降进入海洋[3],部分沉降进入陆地环境中的人工放射性核素通过河流仍在持续不断输入海洋[4, 5];福岛核事故泄漏的放射性核素总量的80%最终进入太平洋[6];过去60多年来,英国和法国的乏燃料后处理厂也一直向北大西洋和北冰洋排放137Cs、129I、236U等人工放射性核素[7-13]。日本在2023年8月24日已经启动福岛核污水排海计划,预计持续30年[14, 15]。海洋数值模拟显示,福岛核污水将通过海洋环流逐步迁移扩散至全球海域,未来也将进入我国海域[16, 17]。此外,在复杂的国际形势下,我国周边海域日益频繁的核动力航母和核潜艇活动也有可能增加海洋核污染风险。2023年修订通过的《中华人民共和国海洋环境保护法》中首次新增“加强海洋辐射环境监测”。因此,海洋核安全具有重要的研究意义和强烈的社会需求。2. 全面构建海洋中放射性核素本底基线的时空演化体系天然放射性核素(比如宇生放射性核素14C、原生放射性核素238U等)通过河流、大气沉降和地下水等自然过程,持续不断地进入海洋;核电站、乏燃料后处理厂、核医学等活动以及日本福岛核事故所产生的人工放射性核素也持续排入海洋[18]。当今海洋存在几十种天然和人工放射性核素,不同核素活度水平从104 Bq/m3到10-5 Bq/m3[19],相差9个数量级。海洋中同一种放射性核素也存在一定的时空分布特征。比如,自20世纪60年代美苏停止大气核试验以来,我国海水中人工放射性核素90Sr随着时间总体呈现指数下降趋势[4]。空间上海洋中人工放射性核素存在“双峰型”纬向分布特征,即南北半球40°—60°的纬度带存在全球落下灰(Global fallout)活度高值[20]。由于切尔诺贝利核事故和英法乏燃料后处理厂运行的影响,北欧海域中90Sr、137Cs、129I、239+240Pu等人工放射性核素均显著高于其它海域[21-23]。海水中90Sr和137Cs的活度随深度增加,总体活度呈现下降趋势,而海水中239+240Pu却经常出现次表层峰值现象[24]。精准甄别海洋中人为新增放射性核素的种类与含量不仅是异常辐射信号判别与不同人类核活动溯源技术的前提,也是海洋核安全评估的核心。过去十多年来,作者和团队已经围绕海洋中多种介质(海水、沉积物、生物、悬浮颗粒物、大气等)的210Po[25]、210Pb[25]、234Th[26]、238U[27]、226Ra[27]、228Ra[28]、228Th[28]、232Th[27]、40K[27]、90Sr[4]、137Cs[29]、239,240Pu[29]、14C[29]、3H[15]等十多种天然和人工放射性核素,从放射性核素的源汇过程及其物理—海洋生物地球化学调控机制的角度长期开展海洋与核技术的多学科交叉研究,初步构建海洋放射性核素本底基线的时空演化体系。针对海洋中放射性核素的时空演化历史数据,国际上IAEA与日本筑波大学已经建立Marine Radioactivity Information System (MARIS)[30, 31]与Historical Artificial Radionuclides in the Marine Environment (HAM-Global 2021)[32-34]两个数据库。然而,MARIS和HAM数据库中我国辽阔海域放射性核素的历史资料数据却极度缺乏。我国海洋放射性核素监测工作始于20世纪60年代的大规模大气核爆。在20世纪60~90年代期间,卫生部门李树庆、中国科学院海洋研究所李培泉和原国家海洋局第三海洋研究所蔡福龙等人开展海洋中放射性核素研究[35-37];唐森铭和商照荣重点对20世纪中后期我国海域放射性调查进行总结[38]。我国历次海洋污染基线调查积累了部分海洋放射性监测数据。滨海核电站建设和运行过程中也持续开展海洋放射性监测。虽然我国生态环境部门、自然资源部门、卫生系统、中国科学院与高校系统、地方政府部门和核电公司等不同机构基于业务管理和科研的需求已经积累一些海洋放射性监测的历史数据,但数据零散分布于多个不同管辖部门,不仅缺乏统一的全国性海洋放射性核素监测数据库,而且缺乏基于时空演化视角的系统分析,不利于数据挖掘、解译、利用和管理。总之,全面构建海洋放射性核素本底基线的时空演化体系则是海洋核安全评估的基石。中国近海放射性核素本底基线的时空演化体系构建将有助于科学评价我国滨海核电和其它滨海核设施的影响[4]。开阔大洋放射性核素本底基线的时空演化体系构建可以用于评价其它国家人类核活动(核电站事故、核试验、核材料的海洋倾倒、核潜艇与核动力航母活动等)的影响,并对我国海域的潜在影响进行预报与预警评估,也是我国维护国家安全和人民生命健康、深度参与全球海洋治理、构建海洋命运共同体的重要体现。因此,全面构建海洋中放射性核素本底基线的时空演化体系对于海洋核安全具有重要意义。3. 海洋核安全评估技术活度与剂量是定量表征放射性核素的独特物理量,不同于元素和同位素的常见表征方式。在海洋核安全评估中,活度浓度和剂量率是重要的定量参数,对应常见单位为Bq/m3(或者Bq/kg)和Gy/h(或者Sv/h)。为此,本文总结提出本底基线法、活度限值法和剂量限值法开展海洋核安全评估。3.1 本底基线法自20世纪中叶以来,人类在核能发展与核技术利用的进程中已经产生大量的人工放射性核素[20]。其释放进入地球环境中的长半衰期人工放射性核素(比如239,240Pu、137Cs等)甚至被视为定义“人类世”(继全新世后,人类活动作为重要地质营力所主导的地质新时代)的重要代用指标[20, 29]。全面构建海洋中放射性核素本底的时空演化体系,准确掌握海洋中人工放射性核素的历史本底基线水平,是进一步精准甄别人为新增放射性核素和开展海洋核安全评估的前提。短半衰期的人工放射性核素(比如131I、134Cs、106Ru、110mAg等)通常不存在于天然环境本底之中,其定性或者定量的异常检出可以直接指示短期内人为新增的海洋核污染源(比如核事故、核潜艇活动等)。中长半衰期的人工放射性核素(比如90Sr、137Cs、239,240Pu、129I等)则需要考虑人类核活动的历史排放而残留的本底基线的时空演化特征后,借鉴人为新增信号和本底噪声处理技术,开展人为新增海洋核污染源的定量甄别。此外,核素活度比值(比如134Cs/137Cs、90Sr/137Cs等)和原子比值(比如129I/127I、240Pu/239Pu等)也常作为核素特征指纹,指示判别不同人类核活动源项。3.2 活度限值法不同放射性核素存在不同程度的放射毒性,比如极毒组的239Pu、高毒组的90Sr、中毒组的137Cs、低毒组的3H等。在海洋核安全评估过程中,法律法规和标准规程等对海洋中不同毒性的放射性核素活度限值做出一些规定[39, 40]。比如,福岛核事故后日本政府规定海产品中134+137Cs的活度限值为100 Bq/kg[12]。我国的海水水质标准(GB3097-1997)和食品中放射性物质限制浓度标准(GB14882-94)分别规定了海水和海产品中部分放射性核素的活度限值。我国海洋沉积物尚没有相应放射性核素标准限值规定。鉴于部分地区经常采用海砂作为建筑材料,我们可以参考建筑材料放射性核素限量(GB6566-2010)的部分放射性核素的活度限值标准,评估海洋沉积物中的放射性核素。值得注意的是,国际上不同组织机构(国际原子能机构、世界卫生组织、国际粮农组织)和地区(中国、欧盟、美国、日本等)基于科学认识、国情现状和社会发展需求等综合因素,对相同介质中的同种放射性核素活度限值的规定经常存在一定差异[19, 40]。3.3 剂量限值法处于不稳定状态的放射性核素发生衰变并发射不同能量的α、β、γ粒子。活度可以衡量单位时间内放射性核素发射的粒子数,剂量则更精细刻画不同类型的粒子所产生的能量沉积和危害。比如,我国的电离辐射防护与辐射源安全基本标准(GB18871-2002)中规定公众的年有效剂量为1 mSv。针对海洋生物,欧盟开发的ERICA软件推荐10 μGy/h的剂量率限值作为筛选阈值(screening level)[41]。IAEA、ICRP、美国和加拿大等也推荐不同的剂量率限值(40~400 μGy/h)用以评估放射性核素对海洋生物的影响[42]。截至目前,我国法规标准尚未涉及放射性核素对海洋生物的剂量限值规定。4. 日本福岛核电站港口区的海洋核安全评估日本福岛核事故已经泄漏大量人工放射性核素进入海洋[6],福岛核污染水也已经启动排入太平洋[14]。这些放射性核素可能通过海洋水文动力驱动下的“随波逐流”和海洋生物洄游驱动下的“搭乘便车”等过程进入我国海域[12]。作为福岛核污水排海的利益攸关方,我国公众和政府始终高度关注由此引发的海洋核安全问题。距离福岛第一核电站最近的港口区(图1a,1 km范围内)是日本福岛核事故后污染最严重的海域。港口区属于日本领海,其它国家都无法进行采样而获取相关数据。港口区的海洋核污染历史与现状不仅是世界了解福岛核事故后海洋核污染的重要窗口,而且直接反映日本福岛核电站修复进程与修复措施的有效性。本文聚焦福岛核事故后污染最严重的海区——港口区,系统汇总IAEA的MARIS数据库、日本东电公司(TEPCO)、日本经济产业省(METI)和日本原子能规制委员会(NRA)等多方的大量数据,全面构建福岛核事故前后海水中137Cs的历史活度曲线(图1b),利用本底基线法、活度限值法和剂量限值法,联合开展海洋核安全评估。本底基线法显示,福岛核事故后日本福岛附近海域的海水137Cs活度从1.3 Bq/m3骤升至1.9×1012 Bq/m3(图1b中红色箭头)。截至2023年9月的最新数据,港口区海水中137Cs活度为5.1×103 Bq/m3,仍然比2011~2015年期间我国海域的海水中137Cs平均活度(1.05 Bq/m3)高3个数量级。值得警惕的是,2016年以来福岛港口区海水中137Cs活度并没有显著下降趋势,甚至出现多次周期性异常升高事件。活度限值法显示,2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)高于我国海水水质标准(GB3097-1997)中海水137Cs活度限值(700 Bq/m3)。日本监测数据显示港口区的海洋鱼类通过生物富集吸收海水中高浓度的137Cs,进一步导致部分鱼类体内137Cs(1.8×104 Bq/kg)显著超过日本规定的限值标准(100 Bq/kg)[43]。本文基于港口区的海水中137Cs活度数据,利用欧盟开发的ERICA软件开展海洋鱼类的辐射剂量评估。福岛核事故后海水中137Cs峰值活度(1.9×1012 Bq/m3)可以导致游泳鱼类和底栖鱼类的辐射剂量率为2.9×107 μGy/h和3.1×109 μGy/h,均大大超出欧盟推荐的剂量率筛选阈值(10 μGy/h)。2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)对底栖鱼类产生的剂量率为11.2 μGy/h,也高于欧盟推荐的剂量率筛选阈值(10 μGy/h)。因此,三种海洋核安全评估技术获得的定量评估结果均显示,港口区的海洋核污染仍然较为严重。图1 中国海、日本福岛近海、福岛第一核电站港口区等海区的海水137Cs活度历史曲线。中国海和日本福岛核事故前的福岛近海数据来自MARIS数据库[44],核事故后的福岛近海数据来自NRA[45],核事故后的港口区数据来自TEPCO和METI[46, 47]Fig. 1 Historical 137Cs activity in seawater from the China seas, Fukushima offshore, and the port area nearby the Fukushima Daiichi Nuclear Power Plant. The data of the China seas and the Fukushima offshore before the Fukushima Nuclear Accident (FNA) was obtained from the MARIS database[44], the data of the Fukushima offshore after the FNA was provided by the NRA[45], and the data of the port area after the FNA was derived from TEPCO and METI[46, 47]5. 总结及展望新形势下的海洋核安全需求极为迫切。本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全研究的基石,提出本底基线法、活度限值法和剂量限值法的三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史和现状。然而,面对海洋中核素种类众多、活度差异巨大、时空分布不均、迁移行为各异、生态影响复杂以及危害程度不一等现状难题,海洋核安全的科学评估仍然存在较大挑战性。基于本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,本文强调融合海洋数字孪生技术,尝试从以下三个角度展望海洋核安全评估技术未来的发展方向(图2)
  • 选择合适的光源—解析D65与TL84的关键区别及目视评估技巧
    太阳是生命之源,其洋溢的光辉赋予地球以生命力,促使自然界万物繁荣生长,保障了人类文明的持续发展。它主要通过辐射的光能向我们传递生命所需的能量。更为神奇的是,太阳光中包含的多彩光谱,不仅滋养了大地,还为我们的世界披上了绚烂的色彩,丰富了我们的视觉体验。在今天我们探讨一下“光源”这一主题。光,作为一种电磁波,其分类依据是波长。电磁波的波长不同,其应用领域也各异。特别地,人眼能够感知的光波范围介于380nm至780nm之间,其中400nm至700nm的波段尤其关键,几乎涵盖了人类可见的所有色彩。我们平日所见的白光,实际上是这一波段中各种色光的综合体。为了统一颜色的评估标准,国际照明委员会(CIE)制定了一系列用于颜色评估的常用光源标准,并对不同光源的性能进行了评价,这些将在课堂上逐一介绍。一、颜色评估常用的标准光源有四种:在颜色评估中,标准光源的选择至关重要,共有四种常用标准光源:①D65光源:被认为是模拟平均日光的光源,广泛应用于各行各业。它旨在模仿自然白天的太阳光环境。②A光源:此光源类似于白炽灯发出的光,其色温较低,发出偏黄色的光。主要用途包括模拟橱窗照明条件下的光环境,以及用于进行同色异谱效果的评估。③F2光源:亦称为CWF(Cool White Fluorescent)这是一种冷白色的荧光灯光源,特别在北美的商店中得到广泛使用。针对出口至北美市场的产品,常常需要按照此类光源的条件来进行颜色评估和匹配。④F11光源,也被称作TL84光源:这种光源是一种窄频带的白色荧光灯,是欧洲商店中的常见照明方式。对于销售或出口到欧洲的产品,通常要求在此种光源下进行颜色评估以确保颜色的准确性和一致性。二、光谱功率分布与光源特性光谱功率分布描述了光源在不同波长上的功率密度,这与物体反射光谱的概念相似。它为光源的性质提供了最详尽的描述,可以视为光源的独特“指纹”。不同类型的光源显示出不同的分布特征。在380至780纳米的可见光范围内,光谱分布越是均衡平滑,光源对物体颜色的还原性就越高。接下来,我们将展示几种常用光源的光谱功率分布图。光谱功率分布为我们提供了关于光源色光特性的全面信息,尽管如此,由于数据量庞大(在380-780nm范围内以5nm间隔存在101个数据点),这使得信息的交流与分享变得复杂。光源的色彩影响,尽管可以通过其光谱功率分布细致了解,但人眼更直观地感知到的是光源的总体色彩倾向。国际照明委员会(CIE)的xy色度坐标系统能够简明地表示光源的整体色度位置,从而简化了颜色信息的传达。在这个系统中,x轴值越大表示颜色趋向红色,y轴值越大表示颜色趋向绿色,而当两者值都减小时,颜色则偏向蓝色。以坐标点(0.33,0.33)代表纯白色,D65光源的色度坐标为(0.31,0.32),显示为带有轻微蓝色调的白色,这种坐标表示形式被用来界定色品。典型的光源大多发出白光,但根据其特性,这些光源可能偏向红黄色调或蓝色调。这引发了一个问题:是否存在一个单一的参数能够准确描述光源的色相特征?为了解决这个问题,国际照明委员会(CIE)引入了色温(CCT,Correlated Color Temperature)的概念,通过一个简单的参数来表征光源的色相。色温的概念基于黑体(或完全辐射体)的行为。黑体在未被加热时不发光,但当其温度升高时,会开始发光并随着温度的不同变换光的颜色。具体来说,低温下黑体发出红色光;温度升高时,光色转向黄色;再进一步增加温度时,光变为白色;当温度达到更高时,会发出蓝光。因此,光源的色相可以通过与黑体在特定温度下发出相同颜色的光相对应的温度值来定义。这一过程在色度图上表现为随温度增高,光的色相沿着特定轨迹变化的现象。色温是用来描述光源颜色的一个参数,采用开尔文(K)作为度量单位。例如,A光源的色温是2890K,表明其发出的光接近低温下黑体的红色光;D65光源的色温为6500K,表示其光色类似于中午阳光下黑体的光色;F2光源,色温为4150K,介于A光源与D65光源之间,发出偏冷的白光。即便是色光看起来相同的不同光源,照射在同一物体上时,所反射的光色可能会有所不同。这是因为光源的显色性能各异,由其光谱功率分布的差异引起。例如,两个均为D65标准的光源中,一个分布更均匀的光源能够使物体颜色表现得更为鲜明和饱满;而另一个光源如果存在明显的光谱波峰和波谷,可能会导致某些颜色的丢失,使得物体颜色显得不那么吸引人。CIE定义了显色指数(CRI)来衡量光源展现物体自然色彩的能力,范围从0到100,数值越高表示显色性能越好。例如,自然光和白炽灯的CRI为100,而CWF荧光灯的CRI只有65,说明它在颜色还原方面表现不佳。为评价人造光源模拟自然日光(D65标准)的质量,CIE设立了从A至E的日光模拟等级,A级最佳,E级最差。光源亮度的单位是坎德拉(cd),1cd定义为特定方向上,频率为540×10^12赫兹的单色光源的光通量,这是衡量光强的标准。光照射到物体上的强度,即照度,衡量单位面积接收的可见光量,以勒克斯(Lux,Lx)为单位。根据ASTM标准,不同颜色的样品推荐不同的照度级别以确保准确评估:浅色样品推荐540 Lx;中等颜色样品,一般评估810-1880 Lx,精确评估1080-1340 Lx;深色样品推荐2150 Lx。三、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 全国农业科研机构科研综合能力开始评估
    农业部办公厅关于开展全国农业科研机构科研综合能力评估工作的通知   “十一五”以来,我国农业科技事业取得了长足发展,农业科技创新能力不断增强、体制机制逐步完善、国际影响日益扩大,各级各类农业科研机构创新和服务能力均有较大提高。全面调查采集农业科研机构相关信息,系统分析我国农业科研资源的布局、结构和质量,科学评估农业科研机构的创新能力和服务能力,对于促进农业科技宏观决策、进一步加快农业科技事业持续科学发展,具有十分重要的意义。为全面了解“十一五”以来我国农业科研机构科研水平、科技服务能力和科技队伍的发展情况,决定开展“十一五”全国农业科研机构科研综合能力评估工作。现将有关事项通知如下:   一、工作目标和任务   全面调查了解全国农业科研机构中科研人员的数量和结构,深入分析全国农业科研机构的科研基础和条件,准确反映全国农业科研机构的科技创新、成果转化、科技服务活动及成果产出情况,科学评估全国农业科研机构的个体和区域整体创新能力、服务农业能力,系统总结宣传各地在农业科技创新和管理中的经验和做法。   二、有关要求   (一)加强组织领导   这次评估工作涉及面广、工作量大、技术性强,有关部门和单位务必高度重视,加强组织领导,相互协调配合,确保工作进度和质量。评估工作由我部科技教育司负责组织,科技发展中心负责具体实施,科技教育司和科技发展中心共同成立“十一五”全国农业科研机构科研能力综合评估工作组,负责评估工作的组织协调和评估指标的制订、调查表设计、人员培训及数据分析等事宜。各省(区、市)的农业科研机构评估组织工作和报送数据审核工作原则上由省农业(农牧、农村经济)厅(局、委、办)科教处牵头负责,各参与单位要明确分管领导、指定专人负责。部属“三院”的评估组织工作和报送数据的审核工作由院科技局(处)负责。   为便于工作联系,请各省(区、市)农业(农牧、农村经济)厅(局、委、办)科教处、部属“三院”科技局(处)于6月10日前将联系人名单(见附表)传真或发电子邮件至农业部科技发展中心办公室。   (二)开展人员培训   评估工作组将组织对各省(区、市)农业(农牧、农村经济)厅(局、委、办)科教处、部属“三院”联系人以及各省农科院科技处相关人员进行统一培训(具体时间、地点另行通知)。培训结束后,各省(区、市)农业(农牧、农村经济)厅(局、委、办)科教处和部属“三院”科技局(处)要迅速开展对本省、本院各参评单位填报评估调查表人员进行培训,以确保评估数据采集工作顺利进行。   (三)做好数据填报   这次农业科研机构评估范围为全国地(市)以上独立运行的科研实体(研究所、研究中心、研究院),包括种植、畜牧、渔业、农垦、农机、兽医、信息情报、测试标准等专业领域的科研单位。数据采集以研究所(中心、院)为单位进行,由专人负责填报(纸质和电子稿同时报送)。统计范围为2006年1月1日至2010年12月31日。各单位要严格按照要求,准确、及时地填好《全国农业科研机构科研综合能力评估调查表》(可在农业科教信息网下载,网址:www.stee.agri.gov.cn)。   (四)确保时间进度   这次评估工作于2011年5月启动。具体时间进度为:   1.筹备启动阶段。时间为5月初至6月上旬,设计评估调查表、制定评估指标、印发评估工作通知,报送各地、部属“三院”联系人。   2.人员培训阶段。时间为6月中旬,对各省、部属院联系人和各省农科院科技处人员开展集中培训。   3.数据采集与上报阶段。时间为6月下旬至7月上旬,各科研机构填报、审核数据 7月上旬各省、部属“三院”上报数据。   4.数据汇总和分析阶段。时间为7月中旬至8月底,汇总、分析和处理数据,8月底前完成评估结果报告。   5.工作总结和结果发布阶段。时间为9月上旬,总结评估工作,公布评估结果。   联 系 人:蔡彦虹 李仕宝   联系电话:010-59199399,59199373   传真:010-59199374   E-mail: caiyanhong@agri.gov.cn或lishibao@agri.gov.cn   附:全国农业科研机构科研综合能力评估联系人名单 全国农业科研机构科研综合能力评估联系人名单 姓名 单位 职务 固定电话 移动电话 E-Mail   填报人:   注:本表由省(自治区、直辖市)级农业(农牧、农村经济)厅(局、委、办)科教处、部属“三院”科技局(处)通过传真或E-Mail报送。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制