当前位置: 仪器信息网 > 行业主题 > >

分散体系

仪器信息网分散体系专题为您整合分散体系相关的最新文章,在分散体系专题,您不仅可以免费浏览分散体系的资讯, 同时您还可以浏览分散体系的相关资料、解决方案,参与社区分散体系话题讨论。

分散体系相关的资讯

  • 网络小课堂 I 分散体的稳定性分析
    德国LUM是全球分散体系分析及颗粒表征的领先者,拥有多项专利技术,其下LUMi系列产品为分析颗粒表征提供了技术平台。广泛应用于食品、化妆品、家庭及个人护理、石油、化工、制药、复合材料等不同行业。可以帮助您以一种简单的方式了解析复杂产品,简化和加速您的配方研发和质量控制过程。l 液滴和颗粒的粒度分布l 密度分布和磁化l 颗粒分离速度分布l 直接加速和实时的稳定性动力学l 比较和预测货架期l 纳米和微米颗粒的计数/浓度l 拉伸和剪切强度l 产品特性 本次线上研讨会将给大家带来分散体基础性的理论知识以及ISO对分散体稳定性的表征原则角度探讨STEP技术在分散体行业的实际应用。后续我们会邀请LUM的技术专家给大家分享不同领域的实际应用解决方案,请大家定期关注我们的网络小课堂。 课题 – 分散体的稳定性分析主讲嘉宾:时间安排:2021年6月24日(周四)下午14:00-15:00 会议内容:课题 – 分散体的稳定性分析 ü 分散体状态变化机理ü 分散体稳定性的表征ü 分散体货架期预测ü STEP技术在分散体行业的应用 报名方法:扫描下方”二维码”或点击”阅读全文”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。会议平台:Cisco Webex邮箱:info@lumchina.cn
  • 网络小课堂 I 分散体的稳定性分析
    德国LUM是全球分散体系分析及颗粒表征的领先者,拥有多项专利技术,其下LUMi系列产品为分析颗粒表征提供了技术平台。广泛应用于食品、化妆品、家庭及个人护理、石油、化工、制药、复合材料等不同行业。可以帮助您以一种简单的方式了解析复杂产品,简化和加速您的配方研发和质量控制过程。l 液滴和颗粒的粒度分布l 密度分布和磁化l 颗粒分离速度分布l 直接加速和实时的稳定性动力学l 比较和预测货架期l 纳米和微米颗粒的计数/浓度l 拉伸和剪切强度l 产品特性 本次线上研讨会将给大家带来分散体基础性的理论知识以及ISO对分散体稳定性的表征原则角度探讨STEP技术在分散体行业的实际应用。后续我们会邀请LUM的技术专家给大家分享不同领域的实际应用解决方案,请大家定期关注我们的网络小课堂。 课题 – 分散体的稳定性分析主讲嘉宾:时间安排:2021年6月24日(周四)下午14:00-15:00 会议内容:课题 – 分散体的稳定性分析 ü 分散体状态变化机理ü 分散体稳定性的表征ü 分散体货架期预测ü STEP技术在分散体行业的应用 报名方法:扫描下方”二维码”或点击”阅读全文”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。会议平台:Cisco Webex 邮箱:info@lumchina.cn
  • 国家市场监督管理总局对《微细气泡技术 水中微细气泡分散体系气体含量的测量方法 第1部分:氧气含量》等67项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《跨境电子商务独立站经营评价指南》等67项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年8月2日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001899,查询项目信息和反馈意见建议。2024年7月3日相关标准如下:#项目中文名称制修订截止日期1微细气泡技术 水中微细气泡分散体系气体含量的测量方法 第1部分:氧气含量修订2024-08-022微细气泡技术 水中微细气泡分散体系气体含量的测量方法 第2部分:氢气含量修订2024-08-023敞开式直接电离质谱仪性能测定方法制定2024-08-024塑料扭转刚性试验方法修订2024-08-025激光器和激光相关设备 角分辨散射的试验方法制定2024-08-026光学和光子学 光学元件 复杂曲面光学元件几何参数测试方法制定2024-08-027医用输液、输血、注射器具检验方法 第2部分:生物学试验方法修订2024-08-028元素分析仪性能测定方法制定2024-08-02
  • 2022年分散体分析和物料测试国际会议
    2022分散体分析和物料测试国际会议International Conference for Dispersion Analysis & Materials Testing 2022举办者: LUM GmbH地址:Park Inn by Radisson Berlin Alexanderplatz Hotel, Alexanderplatz 7, Berlin, DE时间:2022年1月24-26日报名链接:请扫描下面的二维码注册相关信息2022年1月24日至26日,LUM GmbH将在德国柏林主办下一届分散体分析和物料测试国际会议。会议主办方将邀请全球LUM仪器用户向科学领域以及工业领域的专家分享LUMiReader PSA、LUMiReader X-Ray、LUMiFuge、LUMiSizer、LUMiSpoc、LUMiFrac(用于复合材料)和LumiFlector的使用经验和成果。 首批演讲嘉宾:HP Indigo Ltd., IsraelKIT(Institut für Mechanische Verfahrenstechnik und Mechanik), GermanyUniversity of Leeds, UKFriedrich-Alexander-Universität Erlangen-Nürnberg, Germany会议主题包括: 1.颗粒与表面表征 纳米和微米颗粒的粒度分布/汉森分散性参数/汉森溶解度参数/颗粒密度分布/颗粒表面表征 2.实时加速稳定性 分散体的直接加速稳定性试验/乳液和悬浮液中的实时分离/分散体的比较和预测货架期(ISO/TR 13097)/化妆品的稳定性测试(ISO/TR 18811) 3.物料测试 拉伸试验/剪切试验/涂层表征/复合材料表征/机械强度 4.工业处理过程 工业过程中颗粒的分离/分散性和可过滤性的表征/剪切和压缩屈服应力/上下游加工 科学委员会主席:LUM GmbH D.Lerche博士教授 会议主办方邀请全球LUM仪器用户介绍在LUMiSizer、LUMiFuge、LUMiReader、LUMiReader X-Ray和LUMiFrac的科学研究和工业应用方面的经验和成果。请将您的英文摘要以MS word文件的形式通过电子邮件发送至event@lum-gmbh.de 请扫描下面的二维码下载摘要格式:提交摘要的截止日期将很快公布。欢迎大家踊跃报名参加。 所有摘要将发表在www.dispersion-letters.com 报告作者可免费参加此次会议。
  • 2022年分散体分析和物料测试国际会议
    2022分散体分析和物料测试国际会议International Conference for Dispersion Analysis & Materials Testing 2022举办者: LUM GmbH地址:Park Inn by Radisson Berlin Alexanderplatz Hotel, Alexanderplatz 7, Berlin, DE时间:2022年1月24-26日报名链接:请扫描下面的二维码注册相关信息2022年1月24日至26日,LUM GmbH将在德国柏林主办下一届分散体分析和物料测试国际会议。会议主办方将邀请全球LUM仪器用户向科学领域以及工业领域的专家分享LUMiReader PSA、LUMiReader X-Ray、LUMiFuge、LUMiSizer、LUMiSpoc、LUMiFrac(用于复合材料)和LumiFlector的使用经验和成果。 首批演讲嘉宾:HP Indigo Ltd., IsraelKIT (Institut für Mechanische Verfahrenstechnik und Mechanik), GermanyUniversity of Leeds, UKFriedrich-Alexander-Universität Erlangen-Nürnberg, Germany会议主题包括: 1.颗粒与表面表征 纳米和微米颗粒的粒度分布/汉森分散性参数/汉森溶解度参数/颗粒密度分布/颗粒表面表征 2.实时加速稳定性 分散体的直接加速稳定性试验/乳液和悬浮液中的实时分离/分散体的比较和预测货架期(ISO/TR 13097)/化妆品的稳定性测试(ISO/TR 18811) 3.物料测试 拉伸试验/剪切试验/涂层表征/复合材料表征/机械强度 4.工业处理过程 工业过程中颗粒的分离/分散性和可过滤性的表征/剪切和压缩屈服应力/上下游加工 科学委员会主席:LUM GmbH D.Lerche博士教授 会议主办方邀请全球LUM仪器用户介绍在LUMiSizer、LUMiFuge、LUMiReader、LUMiReader X-Ray和LUMiFrac的科学研究和工业应用方面的经验和成果。请将您的英文摘要以MS word文件的形式通过电子邮件发送至event@lum-gmbh.de 请扫描下面的二维码下载摘要格式:提交摘要的截止日期将很快公布。欢迎大家踊跃报名参加。 所有摘要将发表在www.dispersion-letters.com 报告作者可免费参加此次会议。
  • LUM第11届分散体分析和材料测试国际会议(ICDAMT 2024)
    新闻发布颗粒表面特征及其理解三位候选人被提名2024年LUM青年科学家奖柏林,2024年4月15日:2024年6月10日和11日,LUM GmbH将在柏林主办第11届分散体分析和材料测试国际会议(ICDAMT 2024)。科学委员会主席兼LUM董事总经理Lerche教授博士:“自2014年以来,我们一直在宣传青年科学家奖(YSA),以表彰在颗粒和分散体表征以及材料测试领域的杰出科学成就,并根据规定的考核标准在会议上授予该奖项。来自德国、法国、印度、挪威和捷克等国家的年轻科学家响应号召,分分申请了该奖项。来自欧洲和印度的三名决赛选手最终被评委会提名。应邀请,他们将带着有趣的研究成果出席会议。完全独立于选择程序,颗粒表面特性及其表征的课题在所有指定的应用中都有令人振奋的发现,这是我们在自己的科学工作和与客户的合作中越来越多地遇到的趋势。”Amin Said Amin,德国杜伊斯堡-埃森大学能源与材料工艺颗粒科学与技术研究所(EMPI-PST),因其题为“开发系统选择探针液体的方法以确定炭黑材料的汉森溶解度参数”的工作而获得提名。当涉及到颗粒在液体中的分散时,Hansen溶解度参数(HSP或Hansen分散性参数,HDP)特别相关;它们表征了纳米颗粒的表面性质。HDP可以提供对电极、电解质和电化学系统的其他关键部件的开发和设计中的关键因素的理解。目前通过沉淀测定纳米颗粒HDP的方法是基于使用具有不同HSP的各种液体。这些实验耗时且部分对环境有害,并与潜在的健康风险有关。为了应对这一挑战,Amin和他的团队开发了一种两阶段策略,可以系统地选择更少的液体。分析多样本分散体系分析仪LUMiSizer® 用于这些研究。法国巴黎索邦大学勒芒分子与材料与软物质科学与工程研究所的Théo Merland成功提交了一份申请,描述了他在富勒烯水悬浮液方面的工作。巴克明斯特富勒烯(C60)因其高共轭性而成为一种有吸引力的分子,在(电光)和生物医学领域有着广泛的应用。在许多应用中,它的使用需要在水性介质中进行处理。然而,由于富勒烯是高度疏水的,它只能以ppm的水平分散在水中。Merland和他的团队开发了两种不同的方法将大量富勒烯分散在水中:Ouzo效应,富勒烯首先溶解在与水混溶的有机溶剂中;乳液蒸发,使用与水不混溶的溶剂。LUMiSizer® 用于测定纳米板,其中一些大于光散射方法的检测上限。此外,使用相同的装置表征富勒烯悬浮液的分离稳定性。班加罗尔纳米与软物质科学中心-Center for Nano and Soft Matter Sciences, Bengaluru的Priyabrata Sahoo和印度曼尼帕尔曼尼帕尔高等教育学院-Manipal Academy of Higher Education, Manipal, India以其在液相剥离中界面性质优于本体溶剂性质的科学成果入围决赛:总结了使用分散分析仪的实验研究。液相剥离(LPE)是获得二维(2D)材料(如石墨烯、氮化硼、MXene等)并在各种应用中利用其奇异特性的最成功技术之一。尽管LPE是一个简单且可扩展的过程,但剥离机制相当复杂,文献中尚未对此进行详细研究。Sahoo和他的团队的工作目标是了解溶质-溶剂界面在2D材料的LPE和分散稳定性中的作用。使用分散体分析仪(LUMiSizer® )来了解在不同溶剂中获得的分散体的剥离效率和稳定性。您可在会议上与入围者获取联系;我们诚挚邀请您到柏林参加学士会议。会议注册:https://conference2024.lum-gmbh.com/2014-2024LUM 青年科学家奖获得者回顾:https://www.youtube.com/watch?v=4JFF1TZkY0M会议摘要: https://www.lum-gmbh.com/files/Presse/Presse_2024/ICDAMT2024_web.pdf会议课题:https://www.lum-gmbh.com/files/Presse/Presse_2024/ICDAMT2024_web.pdf新闻联系: LUM GmbH, Justus-von-Liebig-Str. 3, 12489 Berlin, Germany, support@lum-gmbh.de, www.lum-gmbh.com
  • 【瑞士步琦】固体分散体技术和喷雾干燥在难溶性药物中的应用
    固体分散体技术和喷雾干燥在难溶性药物中的应用近年报道的新药种类近 90% 都是属于水难溶性药物;由于其溶解度偏低,需要的给药剂量比其他药物大得多,这就使得难溶性药物的临床治疗效果低于预期。水溶性较差的药物化合物,由于其固有的低水溶性和在相关吸收窗口期内无法溶解于胃肠道介质,因此口服制剂的制备极具挑战性。业界研究者认为活性药物溶出限制其速率,为了获得足够的生物利用率,了解如何提高溶解速率非常重要。常用提高溶出度或溶解速率的方法有:固体分散体,药物颗粒微纳米化和优化脂质剂型配方等。固体分散体作为近些年的研究热点一直被广泛关注,它的优势也非常明显:改善难溶于水的药物化合物的性质,提高药物溶出速率,并且生物利用率也有明显改善。通过搭配水溶性聚合物,固体分散体主要应用于速释型药物系统,同时近期有研究发现其在缓释系统的表现也同样优异。固体分散剂的制备方法有很多种,包括基于溶剂的雾化蒸发技术产生微粒和对所得固体分散体进行微粒化的熔融技术。其中溶剂蒸发法包括喷雾干燥,冷冻干燥,超临界流体技术,静电喷雾和静电纺丝等方法。喷雾干燥是最常用于制备固体分散剂的技术,由于喷雾干燥可以生成细小的液滴,具有高比表面积,所以是一类非常快速的干燥过程。市面中喷雾干燥有不同类型的装置,尽管雾化装置和雾化能力各不相同,但其中大多数元配件都有一定相通性。近年来,研究者对喷雾干燥颗粒形成机理的探索也逐年增加;已经提出相关模型用于解释喷雾干燥颗粒形成的过程,特别是溶媒蒸发阶段,这也是液滴固化形成干燥颗粒的关键阶段。自从 1872 年首台喷雾干燥设备发明制造以来,在工艺及硬件方面已取得很大进步,同时也完全扩展到工业应用场景中。喷雾干燥可以通过简单的一步制造法产生小颗粒,并可以一定程度控制颗粒的特性以达到改善其药物传递性能的目的,这就非常适合肠道部位短的吸收窗口期,保证药物在相对短的距离内扩散。此外,喷雾干燥固体分散体微粒溶解速度快,可以获得良好的溶解曲线,还可以用于控制固体分散体的质量属性,防止药物与载体相分离,以提高药物稳定性和生物利用度。利用喷雾干燥制得的固体分散体具有粗糙表面和多空内部结构,有效增加颗粒总表面积;对研究微观结构及微观结构对配方性能的影响来讲,是当前研究优化所用配方的一种有效方法。在喷雾干燥过程中,可以调整一系列参数用以控制干燥过程和最终的颗粒特性。喷干过程中重要参数包括入口温度和出口温度,雾化气体流速,料液流速,料液粘度和液体中物料的性质。入口温度和出口温度是物料功能性过程监控解决方案的重要参数,有相关研究表明入口和出口温度之间的比率会影响形成颗粒的特性以及回收率;干燥气流对颗粒特性似乎没有任何直接影响,但在操作过程中还是建议使用最大流速,因为它会影响入口温度和出口温度。
  • 邀请函 | 弗格2022第五届水性乳液分散体大会
    会议背景根据涂料、油墨、胶粘剂行业“十四五”发展目标,涂料、油墨、胶粘剂等行业预计年均增长4%左右,到2025年,涂料行业产量增长到3000万吨、胶粘剂增长到850万吨、油墨将接近100万吨。到2025年,环境友好的涂料品种占涂料总产量的70%,而目前我国水性胶产量已接近总产量的50%,水性油墨产量也接近20%。 另据弗格传媒统计,2021年我国水性乳液/分散体总产量预计将超过400万吨,水性涂料、胶粘剂、油墨的新增产能也有较大幅度提升,这为水性乳液/分散体的新增产能提供了坚实的支撑! 2018-2021年《水性新材料》杂志社分别在安徽合肥、浙江杭州首次召开了四届水性乳液/分散体大会,汇聚了80+水性乳液/分散体专题演讲,2000+代表参会,囊括了乳液/分散体、水性涂料、水性油墨、水性胶粘剂等产业链企业单位,获得与会代表的一致好评! 大昌华嘉科学仪器部在此特邀各位业界同仁莅临我们的展台,共同交流心得! 更好推动水性材料发展!(点击查看大图)DKSH展位号:6号会议时间:7月14日-7月15日会议地点:浙江-杭州 三立开元大酒店(五星,杭州市下城区绍兴路538号)
  • 济南微纳参加2019第二届水性乳液及分散体技术发展论坛
    2019年5月15至17日,弗格2019第二届水性乳液及分散体技术发展论坛在美丽的杭州召开,济南微纳颗粒仪器股份有限公司赴会做技术交流。凡是用水作溶剂或者作分散介质的涂料,都可称为水性涂料。依据涂料中粘合剂类别,水性涂料被分天然物质或矿物质(如硅酸钾)的天然水性涂料和人工合成树脂(如丙烯酸树脂)的石油化工水性涂料。常见的水性涂料主要有水性聚氨脂型、环氧树脂型、丙烯酸树脂型、无机水性涂料。环氧树脂具有优异的物化性能,如良好的附着力,优异的耐化学品性和耐溶剂性,硬度高,耐腐蚀性和热稳定性优良,水性环氧树脂涂料可广泛地用作高性能涂料、设备底漆、工业厂房地板漆、运输工具底漆、汽车维修底漆、工业维修面漆等。在所有的丙烯酸乳液、聚醋酸乙烯乳液、水性聚氨酯、水性环氧等乳液/分散体产品中,丙烯酸乳液仍然占据大部分市场份额;其中水性聚氨酯虽然只有约十几万吨的产量,但其优异性能也使得其在水性产品应用中拥有较大影响力。为了呈现我国水性乳液/分散体技术的zui新研究成果,促进技术与市场交流,更好推动水性材料发展,第二届水性乳液/分散体技术发展论坛特别邀请国内外大学教授、企业专家,与全行业人士携手共同促进水性技术成果转化,共同推动我国水性材料及分散体产品的技术进步与产业化发展。济南微纳作为激光粒度仪研发生产企业,在粒度测试领域贡献突出,颗粒粒度的大小对于水性材料的性能起着很重要的作用,拿涂料做例子,涂料粒子的粒径分布和涂料增稠机理对涂料的粘度及成膜的性能有很大影响。发现粒径小于350纳米的双峰乳液成膜弹性好、光泽度高、颜料分散均匀、干燥时间短且机械性能表现更好。水性乳液的颗粒粒径一般分为纳米级和微米级,针对纳米级别的水性材料我们推荐winner803纳米激光粒度仪,它采用双波长激光器,全自动切换,对于具有吸光属性的样品可进行有效检测,专注于有色颗粒粒度分析检测。 微米级水性材料我们推荐Winner2018湿法激光粒度分析仪,测试范围0.1到450微米,可满足一般水性材料测试需求。
  • 邀请函:KRÜSS诚邀您参加第六届水性乳液/分散体技术发展论坛
    展会信息当前涂料和油墨发展的趋势是绿色环保,强调环境友好和可再生性。水性涂料和水性油墨正在逐渐替代溶剂型涂料。KRÜ SS可以为评价涂料的分散效果、喷涂效能、铺展润湿能力的整个流程中提供科学的解决方案。KRÜ SS诚邀您参加2023年第六届水性乳液暨分散体技术发展论坛会议时间:2023.4.26 - 28展位号:25会议地址:杭州三立开元名都大酒店(浙江省杭州市拱墅区绍兴路)学术报告4月27日星期四09:55-10:20三立厅,报告主题:动态、静态表面张力和润湿性分析技术。典型应用涂料,油墨和乳液的静态表面张力涂料和油墨的动态表面张力接触角分析涂料和油墨等与基材的润湿性涂料,油墨与基材的粘结稳定性涂料等起泡性和消泡性分析会议背景根据涂料、油墨、胶粘剂行业“十四五”发展目标,涂料、油墨、胶粘剂等行业预计年均增长4%左右,到2025年,涂料行业产量增长到3000万吨、胶粘剂增长到850万吨、油墨将接近100万吨。到2025年,环境友好的涂料品种占涂料总产量的70%,而目前我国水性胶产量已接近总产量的50%,水性油墨产量也接近20%。另据弗格传媒统计,2021年我国水性乳液/分散体总产量预计将超过400万吨,水性涂料、胶粘剂、油墨的新增产能也有较大幅度提升,这为水性乳液/分散体的新增产能提供了坚实的支撑!
  • 邀请函 | KRUSS诚邀您参加第五届水性乳液/分散体技术发展论坛
    KRÜSS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜSS展会信息当前涂料和油墨发展的趋势是绿色环保,强调环境友好和可再生性。水性涂料和水性油墨正在逐渐替代溶剂型涂料。但水的表面张力比较高,为了增加润湿性,需要添加各种水性助剂。KRÜSS的表面张力,接触角等仪器可以提供快速的润湿性测量和分析。KRÜSS诚邀您参加2022年第五届水性乳液暨分散体技术发展论坛会议时间:2022.7.14 - 15展位号:26会议地址:杭州三立开元名都大酒店(浙江区杭州市拱墅区绍兴路)典型应用涂料,油墨和乳液的静态表面张力涂料和油墨的动态表面张力接触角分析涂料和油墨等与基材的润湿性涂料,油墨与基材的粘结稳定性涂料等起泡性和消泡性分析会议背景根据涂料、油墨、胶粘剂行业“十四五”发展目标,涂料、油墨、胶粘剂等行业预计年均增长4%左右,到2025年,涂料行业产量增长到3000万吨、胶粘剂增长到850万吨、油墨将接近100万吨。到2025年,环境友好的涂料品种占涂料总产量的70%,而目前我国水性胶产量已接近总产量的50%,水性油墨产量也接近20%。另据弗格传媒统计,2021年我国水性乳液/分散体总产量预计将超过400万吨,水性涂料、胶粘剂、油墨的新增产能也有较大幅度提升,这为水性乳液/分散体的新增产能提供了坚实的支撑!
  • 德国IKA/艾卡:产品故事之如何提高药用乳剂的分散均一和稳定性
    客户 某大学药学院乳剂是一种液体制剂,系指一相液体以液滴状态分散于另一相液体中形成的非均相液体分散体系。乳剂由于有利于药物的吸收和药效的发挥,广泛应用在临床,可以口服、外用、肌肉、静脉注射。为此,不断开发新的乳剂类型和提高乳剂的稳定性至关重要。挑战1. 乳剂分布均一,提高乳剂的稳定性;2. 实验室研发的乳剂扩大到工业生产。由于乳剂属热力学不稳定的非均相分散体系,经常会发生如下变化:分层、絮凝、转相、合并与破裂、酸败等。乳剂的颗粒大小分布可以在很大程度上提高乳剂的稳定性,而常用的批次式分散设备,粒径的分布区域过宽,不利于提高乳剂的稳定性;另一方面,如何将在实验室研发成功的乳剂顺利的扩大的工业生产,也是研发工作者不得面对的一个问题。解决方案Magic-Lab 实验型多功能乳化分散机根据上述实验需求,IKA提供了完美的解决方案——Magic-Lab配备三级分散DR模块。1)三级分散DR模块(2G/4M/6F),一次性加工就可达到狭窄的粒径分布;2)连续式分散设计,保证了物料与分散腔体的充分接触,解决了批次式分散机中物料不能充分处理而造成的粒径分布不均一;3)采用模块化设计,从研发到生产,无需改变方法,顺利过渡;4)专为实验级混合、分散、湿磨及粉液混合设计;5)各种模块下加热冷却方便,控制面板操作简便,可设置转速、定时等。客户受益1. 解决了研发中的粒径不均一的难题;2. 不必担忧后续的工业化生产基于Magic-Lab自身的特点,最大程度的保证了每次实验的重复性。“IKA的这款Magic-Lab非常实用,DR模块使用后,粒径更加均一化,同时也不必太过担心实验室到工业化生产的放大”药学院魏老师如是说。 关于IKA? ( www.ika.cn ) IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板, 恒温循环器,量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 韩国,巴西等国家都设有子公司. IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • 使用插入式电极检测有机体系下样品的Zeta电位
    关键词:Zeta电位、插入式电极、有机溶剂分散体系图1. 插入式电极分散在有机溶剂中的颗粒往往在表面也会带有一定量电荷。这些电荷产生的电势会增加颗粒之间的相互作用力,起到增加系统稳定性的作用。由于有机体系的极性普遍较低,颗粒上携带的电荷量极少,在Zeta电位测试过程中需要施加较强电场才能够引发足够明显的电泳运用,而且测试电极及其配套的样品池需要考虑到对于有机溶剂的耐受性。在这篇应用报告中,我们利用插入式电极,利用BeNano 90 Zeta纳米粒度电位仪检测了分散在甲醇和乙醇环境中的硅颗粒的粒径和Zeta电位。原理和设备 动态光散射技术DLS,也称作光子相关光谱PCS或者准弹性光散射QELS,是利用激光照射在样品溶液或者悬浮液上,通过光电检测器检测样品颗粒布朗运动产生的散射光波动随时间的变化。利用相关器的时间相关性统计学计算可以得到相关曲线,进而得到颗粒的布朗运动速度,即扩散系数D。通过斯托克斯-爱因斯坦方程,我们把颗粒的布朗运动速度和其粒径DH联系起来:其中kB为玻尔兹曼常数,T为环境温度,𝜂为溶剂粘度,DH为颗粒的流体力学直径。电泳光散射技术ELS是利用激光照射在样品溶液或者悬浮液上,检测向前角度的散射光信号。在样品两端施加一个电场,样品中的带点颗粒在电场力的驱动下进行电泳运动。由于颗粒的电泳运动,样品的散射光的频率会产生一个频移,即多普勒频移。利用数学方法处理散射光信号,得到散射光的频率移动,进而得到颗粒的电泳运动速度,即电泳迁移率μ。通过Herry方程,我们把颗粒的电泳迁移率和其Zeta电位ζ联系起来:其中ε为介电常数,𝜂为溶剂粘度,f(κα)为Henry函数,κ为德拜半径倒数,α代表粒径,κα代表了双电层厚度和颗粒半径的比值。丹东百特公司的BeNano 90 Zeta纳米粒度电位仪,使用波长671 nm,功率50 mW激光器作为光源,在90度角进行粒径检测,在12度角进行Zeta电位检测。采用PALS相位分析光散射技术。样品制备和测试条件1#纳米硅粉末样品分散在甲醇分散液中,2#纳米硅样品分散在乙醇分散液中,施加超声波进行分散。通过BeNano 90 Zeta内置的温度控制系统开机默认测试温度控制为25℃±0.1℃,样品注入玻璃粒径池采用动态光散射进行粒径池进行粒径测试。使用插入式电极进行Zeta电位测试。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论粒径测试图2. 动态光散射检测1#纳米硅样品的粒径分布曲线(上)和2#纳米硅样品的粒径分布曲线(下)通过使用动态光散射技术,得到当前分散条件下同样品的粒径和粒径分布。其中1#样品Z-均直径为365.2±0.8 nm,PDI为0.58;2#样品Z-均直径为41.0±0.3 nm,PDI为0.50。可以看出粒径测试结果具有很好的重复性,两个样品的PDI较大,分布都比较宽,这也可以从样品的粒径分布曲线中看出。图3. 使用插入式电极检测1#(上)样品和2#(下)样品的三次测试的相图通过电泳光散射,得到了样品的Zeta电位信息。图3中展示了三次重复性测试的相图,相图斜率代表了散射光由于电泳运动造成的频率的偏移。可以通过图中曲线看出,分散在甲醇中的1#样品斜率清晰,信噪比良好,而分散在乙醇中的2#样品相图相对嘈杂。对于样品的3次重复性结果列于表1中,可以看到纳米硅样品在甲醇和乙醇溶液环境中Zeta电位为负值,说明样品颗粒携带负电,三次测试结果的重复性较好。颗粒在甲醇环境中的Zeta电位幅值明显高于乙醇环境。
  • 应用 | 有机硅表面活性剂在乙醇-水体系中的起泡机制研究
    研究背景泡沫是一种气体分散于液体中的分散体系。通常,纯的液体是不会起泡的。泡沫产生的条件有两个:需要气体和液体充分接触,并使气体分散于液体中;还需要气泡产生的速度明显大于消泡的速度,使得气泡可以聚集成泡沫,行之有效的办法是在液体中加入表面活性剂。对于表面活性剂水基泡沫人们已经做了大量的研究,然而近年来水-低碳醇体系也有着较为广泛的应用, 例如化学清洗、制备多孔材料、杀菌洗手液等。因此,本文着重对FC-7160在乙醇-水溶液和水溶液中的泡沫行为,尤其是泡沫形成后的排液行为、结构变化、表面弹性等,为其以后的实际应用提供理论指导。实验仪器DFA100动态泡沫分析仪、DSA100液滴形状分析仪,德国KRÜSS公司。DFA100动态泡沫分析仪DSA100液滴形状分析仪实验结果与讨论2.1 泡沫高度衰减曲线起泡性和稳定性是表面活性剂溶液泡沫行为中最重要的特征。为了与碳氢表面活性剂对比,本实验选择了阴离子表面活性剂AES-3、非离子表面活性剂AEO-9、两性离子表面活性剂CAB。由图1a可以看出,在水溶液体系中, 实验中所用的碳氢表面活性剂的起泡性和泡沫的稳定性都优于FC-7160,FC-7160的泡沫甚至没有经历tend这个时间段,起泡后立即伴随着泡沫的崩塌。而在50%乙醇-水溶液体系中,如图1b所示,只有FC-7160可以形成泡沫,碳氢表面活性剂的“泡沫”在停止通气后很短的时间内完全消失,不能形成有效的泡沫。 图1 1 g/L不同表面活性剂的泡沫高度随时间的变化:水溶液(a);50%乙醇-水溶液(b)2.2 泡沫的结构与尺寸分布通过动态泡沫仪的结构分析模块,对泡沫中气泡的大小分布和其随时间的变化进行了精细的测量。在图2a中,在50%乙醇-水溶液中,泡沫中的气泡大小均一且近乎圆形,而在水溶液中气泡大小不一,呈现出多边形的结构。在图2b中,在前10 min内,50%乙醇- 水溶液中的气泡面积主要集中在0~0.5 mm2,没有超过1 mm2的气泡,气泡从产生到消失面积都较小;而在水溶液中气泡面积分布较宽,在1 min时,水溶液中的气泡面积就可以达到1~2 mm2。在乙醇的存在下,FC-7160泡沫中的气体扩散过程受到了限制,聚并过程和熟化过程都较慢,气泡较小且均一。图 2 1,5和10 min时(从上到下)1 g/L的FC-7160在50%乙醇-水溶液(左)和水溶液(右)中的泡沫结构图(a);与a相对应的气泡尺寸分布直方图(b)2.3 泡沫的排液过程泡沫的稳定性主要取决于排液快慢和液膜的强度, 排液速度越慢,液壁可以保持一定厚度,泡沫也越稳定。在50%乙醇-水混合体系中,泡沫携带有乙醇和水两种组分,所以排液行为显得更为重要。在水溶液中, FC-7160的泡沫排液过程较短且非常混乱(图3a),所以在水溶液中的泡沫稳定性也较差。在50%乙醇-水溶液中(图3b),FC-7160的排液时间有所延长,泡沫中的液体含量明显高于水溶液中。在乙醇的存在下,由于FC-7160与乙醇分子之间的作用使得液体更容易携带,不易流失,所以泡沫液体含量较大且排液时间延长。图 3 1 g/L的FC-7160在水溶液中(a)和在50%乙醇-水溶液中(b)泡沫液体含量随时间变化2.4 液膜的界面黏弹性表面活性剂在气-液界面的吸附不仅可以降低体系的表面张力,而且也可以使得界面具有黏弹性。当泡沫受到扰动表面积增加时,液膜局面会变薄,变薄处的表面活性剂分子浓度降低,表面活性剂浓度差异导致液膜中产生了表面张力梯度。没有变薄处的表面活性剂分子会迁移到局部变薄处。在这个迁移过程中,液体也会随着表面活性剂分子迁移,液膜厚度和膜的强度也得以恢复,这就是膜的弹性。液膜弹性越大,抵抗外界干扰的能力越强,泡沫也越稳定。界面扩张流变可以反映液膜弹性,界面扩张模量的大小在数学上分为弹性和黏性分量,如E*=E'+iE''所示,其中E*为复合模量,E'为弹性模量,E''为黏性模量。根据文献[19,20]中报道,E*和泡沫稳定性有密切的关系,E*值越大,泡沫越稳定;而弹性模量E'和泡沫的排液行为相关,其大小依赖于tdev的值。从图4中可以看出,这些表面活性剂的E*大小关系为:FC-7160AES-3AEO-9,这和它们在50%乙醇-水溶液中的泡沫稳定性是一致的。对于AES-3和AEO-9, 它们的界面扩张模量几乎为0 mN/m,说明它们在50% 乙醇-水溶液中形成的液膜几乎没有弹性,所以气泡在产生之后立即消失不能形成泡沫。图 4 1 g/L不同表面活性剂在50%乙醇-水溶液中的界面扩张模量E*、弹性模量E'、黏性模量E''结论对有机硅表面活性剂FC-7160和几种典型的碳氢表面活性剂在50%乙醇-水溶液中的泡沫结构、含液量和液膜的表面弹性进行了研究。泡沫稳定性和泡沫液膜之间的界面粘弹性有很大的关系,界面粘弹性可以帮助分析泡沫稳定性的机理。参考文献:牛奇奇,白艳云,台秀梅,王万绪,王国永.有机硅表面活性剂在乙醇-水体系中的起泡机制研究【J】。日用化学工业,2021.
  • 网络研讨会 | 固-液胶体分散系的稳定性及其光学分析
    引言由于构成胶体的单糖或者氨基酸种类、各单元之间的排列方式、胶体聚合度、单糖或氨基酸的取代基团等各不相同,且不同胶体的溶解性、黏度、各种理化条件下的耐热性、形成胶冻的能力、对不同物质的兼容性等都存在着不同程度的差异。通过深入研究胶体结构和性质之间的关系,从而获得种类丰富、味道香美的各色食品。本次网络研讨会将介绍Formulaction Turbiscan系列对于固-液胶体分散系的稳定性及其光学分析的应用案例,帮助用户更好地了解在不同工艺和配方的条件下样品稳定及失稳机理。同时,也将为大家详细分享如何使用Turbiscan稳定性分析仪来提高在食品行业的研究,同时简化质量控制流程。讲座主题固-液胶体分散系的稳定性及其光学分析 胶体分散系的定义 固-液胶体分散系稳定及失稳机理 多重光散射的原理及应用案例主讲人王 鹏教授,博士生导师南京农业大学国家肉品质量安全控制工程技术研究中心团队成员,美国田纳西大学访问学者。长期从事食品分子组装及活性物质递送、食品物性形成与感知研究。在《Food Hydrocolloids》、《Food Chemistry》、《Langmuir》 等杂志发表SCI及EI文章65篇,授权专利12项,共同主编十三五规划教材《食品胶体学》。近5年主持胶体与界面相关的国家自然科学基金面上项目3项,“十四五”农村领域国家科技计划子课题1项。目前任中文核心期刊《肉类研究》编委,中国肉类协会禽(蛋)业分会专家委员会专家委员及科技标准化技术委员会委员、全国畜禽屠宰质量标准创新中心专家委员、中国老年学和老年医学学会营养食品分会委员、《Food Hydrocolloids》等10余本SCI期刊客座编辑或审稿人。扫码参加本次网络研讨会注:本次研讨会将通过腾讯课堂演讲,届时可通过微信小程序或移动/PC客户端在线观看。报名成功后请保存课堂链接,会议前10分钟可提前通过链接进入课堂!欢迎感兴趣的各位踊跃报名!联系热线:400-821-0778邮箱:ins.cn@dksh.comTURBISCAN系列稳定性分析仪(多重光散射仪)通过多重光散射的原理,具有同步双检测器,可以在无损的条件下快速分析样品的稳定性程度及其不稳定的机理。- 从工艺和配方角度分析样品的不稳定原因;- 辅助工艺确认以及配方的确定;- 分析运输环境以及存储条件对样品的稳定性的影响以及一致性评价和过程控制分析。
  • 美国DTI公司推出DT-330电声法zeta电位和孔表面电位分析仪
    近日,美国分散技术公司(DTI )推出了新一代DT-330型电声电振法电位分析仪,既可在原浓液环境下测量固体颗粒zeta电位,也可测量块状或粉状固体孔表面电位。同时,公布了最新一代超声法在线粒度分析仪—— DT-500型。 目前,流行的粒度测定方法是激光粒度法(小角激光散射法),但是,这种方法致命的缺点就是必须对样品进行稀释,并且样品最好不带颜色,对光的吸收不能太强。同样,测量zeta电位的动态光散射技术也要求在极稀的分散体系中进行,并且样品粒径不能大于几个微米(一旦颗粒产生定向运动——沉淀,就偏离了该方法的测量原理)。其实,基于同样的瑞利散射原理,如果用声波代替光波,就能够成功地克服上述缺陷。 19世纪七八十年代,亨利、廷德尔和雷诺首次研究了与胶体相关的声学现象--声音在雾中的传播。散射理论的创始人洛德瑞利也将他的散射理论中的书命名为“声音理论”。 他把计算方式主要运用到了声音,而不是用在由光学的研究中。由于理论计算的复杂性, 声学更多的依赖于数学计算而不是其他传统的仪器分析技术。随着计算机快速时代的到来和新理论研究方法的发展,今天很多问题已经在美国DTI公司有了清晰的答案。 享誉世界的DT-1200系列粒度和Zeta电位分析仪, 利用超声波在含有颗粒的连续相中传播时,声与颗粒的相互作用产生的声吸收、耗散和散射所引起的损失效应来测量颗粒粒度及浓度,采用专利电声学测量技术测量胶体体系的Zeta电位。对于高达50%(体积)浓度的样品,无需进行样品稀释或前处理即可直接测量。甚至对于浆糊、凝胶、水泥及用其它仪器很难测量的材料都可用DT-300直接进行测量,粒度适用范围从5nm到1mm。 DT-300超声探头(Zeta Probe)能直接在样品的原始条件下测量zeta电位,允许样品浓度高达50%(体积)。DT-300 结构设计紧凑,外置Zeta电位滴定装置(DT-310).自动滴定装置可自动、快速地判断等电点,可快速得到最佳分散剂和絮凝剂。对粒度和双电层失真进行自动校正。该仪器的软件易于使用,通用性强,非常适用于科研及工厂的优化控制。 在此基础上,DTI公司董事长Andrei Dukhin博士与美国康塔公司首席科学家Matthias Thommes博士通力合作,开创了电声电振效应测量固体孔道内表面zeta电位的专利方法,并用于WAVE系列和DT-300型, 成就了实现两种电位测定的DT-330型。电声电振法理论上没有分析限制,只要固体样品能被某种液体浸润即可进行分析,操作简单。 随着对高浓度在线粒度灵活监测的需求扩大,DTI公司开发了新一代DT-500型在线粒度分析仪,其功能和参数等同于DT-100型超声粒度分析仪,但其样品池采用了一次性的柔性模块(照片上的绿色部分)。它易于安装或取下(几分钟),消除了清洗过程,大大简化维护程序, 降低了应用成本。在样品池顶部和底部的模块组件用于连接到各种不同的管道,可以很容易地根据现场需求进行修改。这种管路修改不会影响仪器的性能。超声发生器和接收器之间的间隙仍然是可自动可调的,其电子控制箱和软件与DT-100是一样的。 该仪器已经应用于美国某制药公司研磨在线监测,并通过了初步的灭菌工序与125℃的蒸汽考验。 美国分散科技公司(DTI)成立于1996年,专注于非均相体系表征的科学仪器业务。 DTI开发的基于超声法原理的仪器主要应用于在原浓的分散体系中表征粒径分布、 zeta电位、流变学、固体含量、孔隙率,包括CMP浆料,纳米分散体,陶瓷浆料,电池浆料,水泥家族,药物乳剂等,并可应用于多孔固体。DTI享有7项美国专利,并在ISO参与领导组织超声法粒度分布国际标准和电声法测量Zeta电位国际标准的制定。 DTI从成立之初就与美国康塔仪器公司有着广泛的合作,目前康塔仪器公司负责DTI在欧洲大陆,英国及中国大陆的全部业务,WAVE系列由康塔公司负责销售。 利用DT系列仪器,我们能够分析:l 浓浆中粒度分布l 浓浆Zeta电位l 多孔材料的表面Zeta电位l 等电点l 孔隙率l 高频流变学l 表面活性剂优化l 表面活性剂配伍优化l 非水相和水相电导率l 微流变l 固体含量l 德拜长度 在科研领域, 利用DT系列仪器发表的文献主要集中于如下应用:l 方法验证:利用声学与电声学测定粒度分布和Zeta电位。l 纳米技术:颗粒大小和Zeta电位l 生命科学与制药l 陶瓷l CMP研磨浆液:大颗粒含量l 水泥: zeta电位滴定l 矿浆l 颜料l 在极高离子强度下的Zeta电位(海水环境)l 多孔固体的表面Zeta电位l 涂料l 乳制品:液滴大小和脂肪含量l 乳液和微乳液l 化妆品:纳米粒子含量 (1)仪器可以测量的超声衰减谱远远超过50%(体积),但用于从该数据计算PSD的理论将浓度限制在50%(体积);同样,计算ζ电位的理论限定浓度为40%(体积)。在全范围内,等电点的pH值是准确的,但是,ζ电位的绝对值的降低会使体积分数限定在一定范围内。 (2)为滴定实验,可能有必要使用外部循环泵,以提供试剂与相当粘稠的样品之间充分混合。(3)在计算粒度时,因为声波响应与颗粒移动相关,颗粒黏度实际是非常重要。例如,在凝胶或其他结构化系统中,该“微黏度”应该是显著小于用传统流变仪测得的介质黏度,其所测量的黏度比颗粒黏度大得多的。 (4)为zeta电位测量时的粒度范围可能依赖于颗粒与介质的密度对比度。 欲了解更多信息,请联系jeffrey.yang @ quantachrome.com ,或致电800-810-0515 美国康塔仪器北京代表处http://www.quantachrome.com.cn
  • 颁奖典礼 | 第三届克吕士杯中国胶体与界面化学终身成就奖颁奖典礼
    颁奖现场2023年4月8日上午,第三届中国化学会胶体与界面化学终身成就奖在西安曲江国际会议中心的大礼堂将此荣誉授予了马季铭教授,表彰马季铭先生在胶体与界面化学的学科发展、平台建设与人才培养,在胶体稳定性、纳米材料等方向的应用研究。中国科学院院士,陕西师范大学教授房喻和克吕士科学仪器(上海)有限公司的总经理王磊共同颁发了克吕士杯终身成就奖的奖杯、证书和奖金。现场,北京大学齐利民老师替马季铭教授代领了奖项。获奖人介绍 马季铭,男,1938年1月出生,河北昌黎人,汉族。北京大学化学与分子工程学院教授,物理化学专业博士生导师。1962年北京大学化学系本科毕业,之后师从傅鹰教授读研究生,1966年研究生毕业后留校任教。1979-1981年曾作为访问学者在美国lehigh 大学工作二年。1996-2004年任中国化学会物理化学学科委员会胶体与界面化学学科组组长。马季铭教授一直从事胶体与界面化学的教学与科研工作,曾讲授“胶体化学”、“分散体系物理化学”、“胶体稳定性理论”等本科生与研究生课程,合作编写了《胶体化学基础》、《表面化学》,翻译了《胶体与表面化学原理》等教材与专著。他在教学中注意深入浅出和讲授的系统性,深受到学生的欢迎。在科学研究中,他系统地研究过高分子与表面活性剂在固液界面上的相互作用,特别是水溶性高分子与表面活性剂在固液界面上的混合吸附及其对胶体稳定性的影响,这在医药、食品、化工、采油等领域有重要的应用价值,研究成果被国内外同行广泛引用。对胶体稳定性的研究是胶体化学的核心问题之一,马季铭教授在这一领域的研究成果是发现溶液中的表面活性剂胶束对胶体稳定性起着与溶液中自由高分子相似的作用,在一定条件下能使胶体变得稳定或不稳定。这是文献中首次明确指出自由胶束对胶体稳定性的影响,受到国内外同行的广泛重视。严谨、务实和创新是马季铭教授治学的座右铭。他认为:成功来自于勤奋。要将大胆创新的思想和锲而不舍的精神结合起来,才有可能获得高水平的研究成果。往期回顾 2019年7月29日上午在无锡正式举行的第十七界中国化学会胶体与界面化学学术会议上,首届克吕士杯中国胶体与界面化学终身成就奖由江龙院士获得,李灿院士亲自颁发终身成就奖的奖杯、证书和奖金,并由黄建滨主任和王磊总经理陪同。该奖用于表彰江龙院士在胶体与界面化学的学科建设、人才培养;在水煤浆、强化采油和高浓度胶体分散体系流动与稳定性方面的应用研究,以及在仿生酶膜、仿视觉薄膜、DNA生物传感器和纳米颗粒制备、组装和纳米颗粒生物效应等领域的创造性工作。2022年1月17日上午,第二届克吕士杯中国化学会胶体与界面化学终身成就奖以线上形式将此荣誉授予了杨孔章教授,表彰杨孔章先生在胶体与界面化学的学科发展、平台建设与人才培养,在活性白土、石化工业催化剂研制等方面的应用研究,以及在Langmuir-Blodgett膜、功能有序分子膜构筑与效能等领域的创造性工作。郝京诚教授作为中国化学会胶体与界面化学专业委员会的代表向杨孔章先生颁发了奖杯和证书。
  • 药材质量问题症结“分散” 危害甚于食品
    在前不久闭幕的全国两会上,中药材的流通、质量问题再次成为医药届代表提及的重点。中药材的质量问题再一次引起了人们的深刻反思。   就在海南省宣布“建设海南国际旅游岛”战略(其中生态文明建设和现代农业基地建设是战略重要组成部分)之际,海南的“毒豇豆”事件爆发了。这次事件令食品安全问题再次成为了“风暴眼”。   再联系到去年10月到今年1月份韩国和日本(两个我国中药材出口主要市场)陆续出台新的中药重金属农药残留标准,以这两个检测标准为依据对我国的中药材出口设置壁垒 2008年发生的800多吨含铅中药材在韩国口岸被销毁事件等,我们不得不反思,同样作为农业经济作物的原药材问题——“毒豇豆”事件离我们中药材行业还有多远?   生产流通环节的质量问题是否普遍存在?   从目前中药材生产流通的实际情况和国内多项调查及科学研究反映的情况来看,现状不容乐观。   经济利益驱使,产区重产量轻质量   长期以来,药农(或种植基地)均有单纯追求亩产量的倾向。为此,很多种植户在药材生产中使用激素农药(如壮根灵等)来实现亩产量的增加。例如,麦冬单产本身只有300公斤左右,而使用壮根灵后,单产量可超过1000公斤 党参使用激素农药后,单产量也可增加一倍,且使用激素后生产出来的党参条大色亮,生长周期也大大缩短。类似情况还广泛存在于当归、黄芪等多个根茎类中药材生产过程中。因此,在评价体系误导的大环境下,道地、优质药材前景堪忧,生存空间屡屡被“劣币”所挤占。   农药污染现象严重   除了整体环境污染的外在因素外,人为的中药材农药污染现象也十分突出:(1)农药品种使用不当,如大量施用有机氯、有机磷等高毒、高残留的农药。该类农药在人体内会形成浓缩、累积及胚胎转移现象,其在土壤中的残留期也较长 (2)滥用、误用农药问题突出,大多数中药材产于老、少、边、穷地区,生产零星分散,农民自行管理,自主经营,由于生产者缺乏有关的技术知识,滥用、误用农药问题严重。(3)采收时期不当,为了加快生产周期、赶行情,一些药材产区在施用农药后不久(农药的降解期未过,如一些内吸性农药)就开始采收。   分散式加工,药材质量稳定受影响   目前,我国中药材源头的采集加工仍以千家万户的分散式加工为主,采集时间、方法随意性很大。这种一家一户的小农经济模式在造成效率低下的同时,也造成了药材质量源头失控。如部分药材使用硫磺熏蒸或高温烘干,大大降低了药材的有效成分 落后的分拣、洁净过程以及不适的包装材料,也严重地影响药材质量的稳定性等。   对农村生活稍有了解的人都知道,农户可以将生活必需品的粮食放在囤子里防鼠防霉严加保管,而作为副产品的药材则找个角落随便一放,鸡拉狗刨司空见惯。等到有人收购时找个化肥袋子装一下就卖掉。如果行情不好,丢在院子里风刮日晒放两三年也是常事。而对于在具体生产过程中造成的变质、污染,谁又有能力去监管?   运输及仓储质量隐忧大   原药材进入运输及仓储环节后的二次污染问题同样严重。比较突出的有药货混装、仓储条件恶劣和多种药材混储等 其次是过期储存现象较为普遍,例如存放十年以上的白芍、白芷仍可以在市场流通等。   流通环节过多,质量控制难上加难   药材行业经营门槛底、投入小,经营队伍较之上世纪末急剧扩大。但由于快捷信息流通形成的透明行情,以及企业与产地联系的不断加强,原来存在于多个流通环节中的药材利润被逐步压缩。为维持基本生存和微薄利润,原药材进入药材市场等流通环节后,各种不规范行为层出不穷,假冒伪劣愈演愈烈。部分药材经营户的利润基本就靠打水、掺杂使假、以次充优甚至坑蒙拐骗来实现。   这种现状并非政府部门不作为或者打击不力,而其根源在于中药材资源分布及参与者的广泛性。管理者在明处,被管理者在暗处且分散于各个角落和各个环节,行业难以统一管理和规范流通,从而给作奸犯科者以可乘之机。目前,市场上比较突出的问题是熏磺、染色、打矾、非药用品代用等。特别是去年多种药材价格高涨时,这种违法现象更为猖獗,市场上几乎难以找到没被打过磺的当归、党参、金银花纯净货,甚至提取过的连翘、红花也再次进入市场销售。   中药材质量失控造成的危害有多大?   质量失控牵连产业链   “先天不足,后天难补”,如同多米诺骨牌的坍塌,源头出了问题,后端花再大力气也只能事倍功半甚至于事无补。如果内在品质出了问题则饮片切得再匀称、炮制再规范、包装再精细都无济于事 而采用提取物、中药材颗粒等手段期望达到终端质量控制是否符合中医药特点还有待商榷。毕竟中医药属于一个系统整体工程,外在表现为一种文化传统,内在是以实际疗效作为评判标准。因此,中药行业应用科技手段时必须考虑到临床实际效果和民众的接受程度。原药材是整个中药产业链的最前端,目前也是问题最多的环节。因此科学研究中是否也应该投入一定资金和精力到广阔农田里关注一下源头问题?   药材质量失控危害甚于食品   首先是影响治疗,除了日常保健的补益药之外,更多中药是要用来治病救人,人命关天 二是被动接受,食品的变质变味,民众至少可以通过外观和经验来决定买不买或吃不吃,而药材的使用多数要靠医生的处方 三是辨别困难,外观看起来越漂亮的药材,可能内在质量越差,普通民众单凭肉眼难以判断 四是危害隐蔽,问题中药对人体的危害是潜在和逐步累积的,造成的损害也是长期和不可逆的,一旦爆发,其恶劣影响将有可能超过“毒奶粉”、“毒豇豆”。   源头失控致恶性循环   前面已提到源头失控对下游产业的影响,同时在这种危害影响下,整个产业链又将形成新一轮的恶性循环。即:中药材质量失控→饮片及成药质量下降→中医基础破坏→中药消费市场萎缩→无法投入资金进行产业提升→质量失控加重,这种恶性循环的结果最终将导致一个多方共输的局面。   所以,虽然中药产业是个充满希望的黄金产业,但如果在发展思路和流通体系上不彻底改变,这个黄金产业就有可能在我们这一代人手中堕落。甚至有极端观点认为,中医最终将毁在中药身上。   问题根源在何处?   “毒豇豆”事件发生后,行业内外群情激愤,社会和新闻媒体纷纷本着亡羊补牢、规范行业的出发点来探究事件背后的原因和提出应对措施。这些观点包括检测手段、农技推广、行业诚信甚至打破潜规则和利益链条等。与之不同的是,笔者认为农产品和中药材源头质量失控问题的根源主要出在以下两方面:   管理体系与经济发展的不协调   经济的快速发展必然带来物质文化生活的极大提高,而相应的社会管理体系特别是与基础产业相配套的现代服务业必须与时俱进。现阶段大政府小社会、政府包办一切的管理架构已无法适应民众日益增长的物质文化需求。对于中药材行业,一方面“九龙治水”,各管一段的管理架构明显有悖于中医药文化“整体观”的精髓 另一方面即使有对应管理部门,但在行业日益细化和专业化的今天,单靠政府部门的力量也明显力不从心。往往是几个人要管几万甚至几十万行业参与者,而中药材生产流通源头涉及的参与者何止千万?就连作为国内中药材生产第一大省的四川,其拥有的药材病虫害防治科技人员尚不足3O人,何况其他省?所以在“毒豇豆”事件中一味指责地方政府和监管部门是有失偏颇的。   小农经济与现代产业的巨大落差   小农户与大市场的尖锐矛盾几乎成了农业产业化过程中的一个共性难题。分散的农户在信息、资金和市场把握能力方面往往是弱势群体。“王小二种庄稼,别人种啥咱种啥”,在缺乏有效组织和引导前提下,药农只能按照经验、小商小贩的需要和收购价格来决定种什么、如何种。至于说规范化种植、规范化加工、仓储和绿色无毒等大课题远不如壮根灵增加的那一倍产量更有吸引力。对中医药产业来说,中医药大厦上层建造得再辉煌,如果基础仍是靠着“6199”部队(指留守在农村的儿童和老人,也是目前多种原药材采集加工的主体)来支撑的话,无疑于“沙上建塔”。   其实所有问题的靶点最终可归结为两个字:“分散”!管理上的分散、生产加工中的分散、经营中的分散一直到仓储物流中的分散最终必然导致一盘散沙难以疏理。而要解决“分散”问题,单靠增加管理部门、管理人员或加大监管力度显然无法从根本上解决问题。必须建立上中下相结合的管理框架和产业体系 上层应针对中药材产业特点进行统筹管理,变环节控制为系统控制 基层应加快中药材生产和加工的集约化,提高农户的组织化程度 中间再辅以社会力量为主的第三方服务平台,通过信息、技术、检测、仓储物流和产销对接,引导农户与大市场对接。   资料链接   *据掌握的数据,中药材中约有30%重金属含量超过韩方的标准。另外,对韩国出口的中药材中80%为家种,一般都有农药残留。由于贸易商在贸易的过程中难于对中药材的上述残留实施有效的检测和监控,因而贸易风险加大。   *日本有关中药材重金属与农残等行业新标准早先由日本汉方生药制剂协会于去年5月发布并于该年6月起在日本正式施行,并将原先人参等3个中药材的有关标准推广到14个品种。1月15日,日本厚生省通过日本驻华使馆向国家商务部就我方提出的中药农药残留标准制订质疑之事转交了一份正式回函。回函称,日本决定继续执行有关人参等5种中药材农残标准,同时计划对甘草、黄芪等15种中药材农药残留标准进行重新设定,并于今年4月1日起正式实施此项标准。
  • 应用速递 | 通过流动诱导分散分析(FIDA)技术表征构象变化
    评估蛋白质和结合物的整体结构变化 蛋白质 - 小分子相互作表征 天然条件和微量样品检测 同时评估结合亲和力,构象变化和绝对大小 介绍许多生物学过程通过蛋白与小分子或其他蛋白的相互作用进行调节。在许多情况下,这些相互作用会引起构象变化,该变化直接调节活性或提供新的结合位点,以促进建立高阶复合物。作为模型系统,本次实验我们使用了细菌性结合蛋白超家族的麦芽糖结合蛋白(MBP)。 MBP是麦芽糖糊精转运系统的可溶组分,驻留在革兰氏阴性细菌的周质中,在该细菌的周质中,它可以将其配体(Maltose,Maltotriose和Maltoheptaose)运送到膜结合的转运蛋白复合物。MBP的配体结合位点位于两个球状结构域之间。图1.(a)MBP(42.5 kDa)Apo状态(左,开放)以及与Maltose(360 Dalton)结合形成的麦芽糖结合态MBP(右,关闭);(b)MBP的开放式(浅蓝色)和封闭式(浅粉红色)结构的对比。 材料和方法该实验采用FIDA Neo仪器,480 nm LED荧光检测模块(FIDABIO ApS)。 耗材:FIDA标准毛细管(i.d.:75 µ m,LT:100cm,Leff:84 cm)。缓冲液:Tris缓冲液pH 7.4(20mm Tris,150mmNaCl,0.05%Tween)。指示剂:MBP(4.3ug/mL,100nM), MBP用Atto 488 NHS (Sigma Aldrich)标记。分析物:麦芽糖(O-α-D-Glucopyranosyl-D-glucose),0-1000 µ M。通过用分析物填充毛细管,然后注射指示剂与分析物共孵育混合物,在400 mbar下流经探测器进行样品分析。 结果麦芽糖会引起麦芽糖结合蛋白的构象变化。FIDA技术提供了对流体动力半径(Rh)的绝对测量,并用于测量与麦芽糖(0.3 kDa)结合后ATTO488标记的MBP(42.5 kDa)的尺寸变化。如图2A所示,在25°C下绘制了MBP表观Rh随麦芽糖浓度(0-1000 µ M)变化的函数曲线。MBP的Rh从2.88nm降低至2.62nm,对应于0.26nm的ΔRh,清楚地表明结合后的结构变化(图2A)。结合数学模型,通过流体动力半径(Rh)变化的数据解析,该相互作用亲和力KD≈10 µ M,与文献[1,2]报道一致。在图2中,显示了单独MBP和MBP-麦芽糖的叠加FIDA信号。在图2B中,指示剂峰在麦芽糖存在下变窄。利用FIDA 泰勒分散分布图的峰面积,可同时探测MBP的荧光强度在增加麦芽糖浓度时因MBP与麦芽糖结合发生的变化,即结合相关荧光强度变化(BRIC,Binding Realted Intensity Change)。它表明,MBP的荧光信号受麦芽糖结合的影响(图2B),利用BRIC信号可从第二个维度解析二者亲和力常数KD≈10 µ M,从而实现结合测量的正交估计。图2.(A)由FIDA在25°C分析的MBP和麦芽糖之间的相关结合曲线。即MBP的Rh随麦芽糖浓度(0-1000 µ M)变化的函数曲线。(B)与单独的MBP(实线)相比,当存在麦芽糖(虚线)时,指示剂峰的原始数据曲线变得更窄。 结论本文的数据显示了如何使用FIDA技术对蛋白质的构象变化进行测量。FIDA通过测量蛋白质的流动性半径(5 µ L样品消耗)来深入评估活性以及局部和全局蛋白质结构变化。在一个平台,同时采用2种方法解析分子互作亲和力常数,正交测量,相互验证。 分子互作与稳定性分析系统 FIDA技术无论在传统的生物大分子、小分子互作分析,还是三元复合物,血清、血浆、粗提物中互作分析都有很好的适用性,而且在一些传统互作技术具有挑战性的领域,例如免纯化样本、脂质体、外泌体、GPCR互作分析领域具有独特的优势,FIDA技术扩展了互作方法的应用领域,非常有利于实验平台进行分子互作仪器技术升级。 FIDA技术在分子质量表征方面同样优秀,一次运行只需4微升样品4分钟的时间即可获取多达8个质量参数,其中流体力学半径(Rh)和粘度(Viscosity)为绝对数值,黏性(Stickiness)是FIDA的独家指标,聚集和多分散系数(PDI)为量化参数。FIDA可以用在任何蛋白相关的实验,包括蛋白质控,蛋白稳定性筛选、制剂筛选等常规方向,还可在液-液相分离(LLPS),冷冻电镜样本制备质控、蛋白表达体系筛选等领域有很好的解决方案。产品特点1. 无固定相:溶液中直接检测分子相互作用2. 无标记或荧光标记3. 灵敏度:Rh范围0.5-500nm4. 分辨率:检测到<5%Rh变化5. 亲和力范围:pM-mM6. 分析物上样体积:≤4μL7. 每个数据点8个质控参数8. 适用于各种样本类型,包括免纯化蛋白、无缓冲液限制应用领域
  • 西格玛奥德里奇提供农药多残留分析的QuEchERS方法专用分散SPE产品
    在全球,每年大约有超过2,000种食品样品要进行农药残留分析。并且分析的质量必须符合特定的要求,而且力求快速、简便、易操作、低成本、溶剂使用少、低污染、对环境友好、少的实验器具及空间的需要等。近40年来,大量的分析方法不断涌现及更新。然而。这些方法很难同时对绝大多数农药达到较高质量的分析方法。2003年,QuEchERS(Quick, Easy, Cheap, Effective, Rugged and Safe)方法在美国诞生,以一种快速、简便、价格低廉的分析方法实现高质量的农药多残留分析。随后的研究进一步证实有超过200中农药残留可用于该法,其中包括含脂肪的介质体系。 不同于传统的SPE小柱净化方法,在此方法中,使用分散SPE,,净化是非常方便的。通过将水溶性提取液(如:乙腈)与分散的SPE填料(如:Supelclean PSA, Envi-carb 和Discovery DSC-18)、高含量的盐(如:氯化钠和硫酸镁)和缓冲试剂(如:柠檬酸盐)相混合,然后经振动和离心,得到的上清液就可直接用于色谱分析,或仅需较小的进一步处理就可直接上样。 Sigma-Aldrich/Supelco公司,现在可以提供一系列含有预先精确称量的盐和SPE填料的离心管,来支持目前最常使用的QuEchERS分散SPE方法。55227-U 分散SPE (dSPE) 柠檬酸提取管, pk of 50 55234-U 分散SPE (dSPE) MgSO4 提取管, pk of 50 55228-U 分散SPE (dSPE) PSA SPE 净化管, pk of 50 55229-U 分散SPE (dSPE) PSA/C18 SPE净化管, pk of 50 55230-U 分散SPE (dSPE) PSA/ENVI-Carb SPE 净化管, pk of 50 55233-U 分散SPE (dSPE) PSA/ENVI-Carb SPE 净化管, pk of 50 关于Sigma-Aldrich: 美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌 Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。 Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的得奖网站:http://www.sigma-aldrich.com, 或直接联系我们: 地址:上海市淮海中路398号世纪巴士大厦22楼A-B座 邮编:200020 电话:+86-21-61415566 传真:+86-21-61415568 热线电话:800-819-3336 email:ordercn@sial.com
  • 光散射法在难溶性药物粒度检测中的应用
    p style=" text-indent: 2em " 编者按:药品安全需要一致性的保障!在药物研究行业,仿制药的一致性评价试点工作早在2012年就已开展。现如今,该项工作早就由业界“雷声大雨点小”的评价,转入了如火如荼的燎原之势。根据国家《关于改革药品医疗器械审评审批制度的意见》 ,《国家基本药物目录》中自2007年10月1日前批准上市的化学药品仿制药口服固体制剂的质量一致性评价工作,将在2018年底迎来截止日期。 /p p style=" text-indent: 2em " 作为仿制药一致性评价中必须考察的一部分,原料药的粒度控制与检测也随着这股东风,越来越受到业内的重视。而对于药物检测,特别是难溶性药物的粒度检测来说,光散射法无疑是重要手段,江苏省苏州工业园区食品药品监督管理局专家关玉晶等的条分缕析,将带我们走入光散射法在难溶性药物粒度检测中的应用天地…… /p p style=" text-indent: 2em " strong 专家观点: /strong /p p style=" text-indent: 2em " 药物粒度的测定方法有显微镜法、筛分法、光散射法等。对于原料药的粒度测定首选光散射法,是中国药典规定方法之一。采用的仪器为激光粒度仪,通常由激光光源、透镜、颗粒分散装置、检测器、控制系统构成,具有测量速度快、测试精度高、可测粒径范围宽等优点。其测定的理论依据是米氏散射理论和弗朗霍夫近似理论,将样品分散到分散介质中,用单色光束照射颗粒样品,即发生散射现象,散射光的能量分布与颗粒的大小有关,通过测量散射光的能量分布,即可计算出颗粒的粒度分布。 /p p style=" text-indent: 2em " 光散射测定法光散射测定法有两种,即湿法测定和干法测定,根据样品的性状和溶解性能不同进行选择。湿法测定用于测定不溶于分散介质的混悬样品,测定时使用较少的样品就能取得较好的分散效果,测定结果准确、重现性好。干法测定用于测定水溶性或无合适分散介质的固态样品,方便快捷,但测定时使用样品量大,重现性稍差,尤其是粘性物料测定结果误差较大。难溶性药物的粒度测定常选择湿法测定。 /p p style=" text-indent: 2em " 在用激光粒度仪进行粒度测定时需设定的主要仪器参数有分散介质折射率、样品折射率、样品吸收率。对于较大颗粒,使用弗朗霍夫近似理论,可不考虑样品折射率,对于较小颗粒,选择米氏散射理论,需提供分散介质与样品的折射率。分散介质的折射率可通过文献查得,水的折射率为 1. 33,乙醇的折射率为 1. 36。待测样品的折射率需要根据具体情况决定,如表面粗糙度、颜色、透明度、成分等进行选择输入,并结合粒度分布图形、数据拟合、残差值综合判断,选择与实际折射率一致或者接近的输入折射率,待测样品输入折射率与实际折射率偏差直接影响测量结果的准确性与可靠性。样品的吸收率体现了其吸收光量的特性,可通过在显微镜下,对处于悬浮介质中的物质进行观察而近似估算,样品的吸收率在 0 到 1 之间,晶体粉末为 0. 01、浅色粉末为 0. 1、深色粉末或金属粉末为 1。 /p p style=" text-indent: 2em " 对于湿法测定,选择适宜的分散介质,制备具有稳定的分散体系的样品是获得准确结果的关键,需保证颗粒之间的分散性并且在测定过程中颗粒不进一步破裂或溶解。将药物加入分散介质中,通过超声、搅拌等物理分散的方法使药物形成稳定的分散体系,如需要可加入少量的化学分散剂或表面活性剂,如六偏磷酸钠、吐温、十二烷基硫酸钠等,以消除样品的聚集及电荷效应。需确定的因素有分散介质的种类、药物分散浓度、外力因素等。选择分散介质需要满足以下条件:①液体与颗粒无反应,②颗粒在液体中无溶解和膨胀,③液体在激光波长下应是可透过(不吸收)的,④液体与颗粒的折射率不同。 /p p style=" text-indent: 2em " 常用的分散介质有水、乙醇、丙三醇水溶液、乙醇和丙三醇混合液等。考虑到实验成本、环境危害、操作方便等因素,分散介质首选水。为减少分散介质中杂质颗粒对样品测定的影响,分散介质应选择高纯度的溶剂且在使用前应过滤处理。药物分散浓度需满足仪器灵敏度要求并使粒子保持单个原始态。浓度过高可能产生多重散射,浓度过低可能信噪比太低难以代表真实物质的颗粒分布。一般情况下,待测样品粒径越小光散射性越强,分散浓度略低。激光功率越强则仪器的散射光信号越强,分散浓度越低。药物分散的浓度常根据检测器遮光度来确定,湿法测定所需的供试品量通常应达到检测器遮光度范围的 8 ~ 20%。在合适浓度范围内,测量结果基本保持稳定。分散体系在分散后易发生再凝结,其体系的稳定性一方面取决于样品颗粒及分散液体的特性,另一方面取决于外力因素,如超声搅拌等机械处理方法、表面活性剂、添加离子化合物、分散体系的 pH 值等。超声波是打开凝结的最佳方式。样品分散的好坏可以通过改变分散能量是否引起粒度分布变化来确定,当样品分散较好时,测定过程中粒度分布不会发生明显改变。 /p p style=" text-indent: 2em " 样品的粒度需要满足以下几个方面的因素: /p p style=" text-indent: 2em " (1)精密度:精密度要求根据样品的用途、物料特点及粒度分布不同而确定。一般情况下,取一批原料药样品,重复测定 6 次,统计 6 次测定结果的 RSD,D 50 的 RSD 不大于 10%,D 10 、D 90 的 RSD 不大于 15%,对于粒径小于 10μm 的样品,RSD 可增加至 2 倍。 /p p style=" text-indent: 2em " (2)重现性:不同时间、不同分析人员取同一批原料药样品,用同样的方法重复测定 6 次,统计 6 次测定结果的 RSD,要求与精密度相同。 /p p style=" text-indent: 2em " (3)溶液稳定性考察:将样品液放置一定时间,取不同时间点的样品进行测定,统计测定结果的 RSD,要求与精密度相同。 /p p style=" text-indent: 2em " (4) 准确度:将测定结果与显微镜法所得到的结果进行比较,验证结果准确性。 /p p style=" text-indent: 2em " (5)耐用性:在分析方法开发时就应考虑,考察测定条件有小的变动时,测定结果不受影响的程度,以满足样品日常检验需要。湿法测定常需考虑的测定条件有超声(或搅拌)强度及时间、测量时间、平衡时间等。超声强度和时间应保证样品稳定分散又不得发生溶解和破裂。搅拌速度应适中,转速过快易产生气泡被当作颗粒测量使结果出现第二峰值,转速过慢大颗粒容易沉底结果不具有代表性,搅拌时间过长易导致颗粒溶胀或溶解。在保证测量结果准确性的基础上尽量缩短测量时间和平衡时间。 /p p style=" text-indent: 2em " 对于原料药粒度标准的制定是测量原料药粒度的重要一环,制定原料药的粒度标准限度需综合考虑制剂的生产工艺、体外溶出、体内吸收等因素。原料药粒度越小,流动性越差,物料粘着性增加,混料时原料药不易混匀,从而影响制剂外观及含量均匀度。在研究中,应以休止角、外观、混合均匀性、含量均匀度等为考察指标,研究粒度分布对其造成的影响,确定符合产品要求的粒度范围。另外,需结合药物自身特性,如刺激性的药物,粒径愈小,刺激性愈大 稳定性差的药物,粒子越小,分解速度越快。原料药粒径减小,粒子比表面积增大,溶解性增强,药物能较好地分散溶解在胃肠道内,易于吸收,生物利用度高,但并不是原料的粒径越小越好,过度微粉化可能会导致过细的粉末形成静电堆积,在颗粒周围形成一层气泡囊,阻碍水分进入颗粒,从而阻碍药物的溶出。 /p p style=" text-indent: 2em " 在仿制药体外研究中,需测定不同粒径的原料药的溶解度,找出具有区分能力的溶出条件,考察粒径大小对溶出度的影响,通过比较自制品与原研品的溶出曲线确定原料药粒度范围。进一步根据生物等效性研究结果判断粒度范围的合理性,必要时进行调整。在确定粒度测定方法及限度后,制定质量标准时方法描述要详尽,需规定参数设置、样品制备方法、分散条件等,以保证在标准的执行过程中的方法重现性和测定结果准确性。粒度分布的限度以 D 50 、D 90 或(和)D 10 来表示。 /p p style=" text-indent: 2em " 讨论粒度研究是保证药品安全有效的基础,在研究中应确保测定结果的准确性。光散射法是原料药粒度测定的理想方法,在测定过程中要全面考虑测定因素对结果的影响,还需注意仪器校正、粒子形状、取样代表性、环境等因素。研究者在药物开发过程中,应进行详细的研究,准确的测定原料药的粒度并考察其对制剂的影响,确定符合产品特性的粒度分布范围,制得符合临床需求的药品。 /p
  • 新冠病毒检测,警惕气溶胶感染风险
    新型冠状病毒肺炎疫情防控自2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,诊断为病毒性肺炎/肺部感染,此新型病毒命名为“2019-nCoV”,该病毒传播性极强,与已知可引起中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病,同属一个大型病毒家族。近日,来自于三联生活周刊微信平台发布的专访中提到:武汉一家医院检验科的检验师在没接触病人的情况下,感染了此新型冠状病毒,这其中是否有科学根据呢?信息来源:三联生活周刊微信平台新型冠状病毒国家卫生健康委办公厅、国家中医药管理局办公室在1月27日发布了《关于印发新型冠状病毒感染的肺炎诊疗方案(试行第四版)》文件。文件指出,实验室检测病人的咽拭子,痰,下呼吸道分泌物,血液等样本中均可检测出新型冠状病毒。2月1日,中国科学家又发现了新型冠状病毒存在粪口传播的科学证据。所以,实验人员在实验室进行样品处理的过程中,若不慎接触病人样本中的冠状病毒,即有感染的风险。另外,样品处理过程中产生的气溶胶(aerosol)也需要引起大家的高度重视。什么是气溶胶?气溶胶(aerosol)由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系,又称气体分散体系。其分散相为固体或液体小质点,其大小为0.001~100μm,分散介质为气体。液体气溶胶通常称为雾,固体气溶胶通常称为雾烟。气溶胶的产生?气溶胶的产生是因为某些外力的作用下样品中的分散体系向空气中扩散,从而形成分散体系。而在实验室检验的实验过程中,有许多操作是会形成气溶胶的。首先是离心机。离心机在高速运行的时候,周围的空气流动可能很高:通风型离心机气溶胶的危害?气溶胶会直接对人体的呼吸系统、消化系统、神经系统等产生很大的损害。有些检验人员没有接触到病人也感染到了冠状病毒。为了避免这种情况发生,想在离心过程中减少气溶胶的危害,需要离心机与生物安全柜的共同配合。首先,要进行完善的个人防护,正确穿戴防护服,口罩,眼罩等;其次,离心机应使用带生物安全性认证的转头达到有效防止气溶胶泄露的目的。对于极危险样品,建议把样品转移到生物安全柜内进行操作。必要时,连着转头一并转移到安全柜内后再进行开盖操作,能极大减少危害暴露的风险。因此,让赛默飞三大核心技术助力缔造更健康,更清洁,更安全的实验室。01ClickSeal™ 防生物污染密封盖● 提供 HPA(Porton Down, UK,原CAMR)第三方生物安全认证;创新的锁定设计确保病原微生物样品以及离心机内的灰尘或污物在高速运转过程中产生的气溶胶能够被安全隔离,有效防止气溶胶泄漏。● 透明的聚醚酰亚胺( PEI)密封盖具有优异的化学防腐性及热稳定性,方便在打开前检查离心管是否破裂或泄漏,并且便于手套操作及习惯单手操作的用户设计。● 对于具有最高风险的样品(比如结核病痰液或传染病样本),我们还可以在试管周围再增加一层密闭性(比如分立式密封套筒),有助于防止试管之间发生交叉污染。同样,在整个实验室中运输样品时,这种密封等级还可以更轻松,更安全地进行处理。02Auto-Lock™ Ⅲ转头自锁系统● 只需一个按键,可在数秒内完成转头的装卸,而且确保转头锁牢;● 根据不同的应用场景,可迅速更换转头;● 对于极其危险的样本方便把转头和样品整体卸下,搬运至生物安全柜中进行操作,减少风险。SmartFlow Plus 双风机系统
  • 样品均质、乳化、分散的完美搭档 —WIGGENS分散杯
    均质乳化是机械作用所产生的剪切力,将分散相撕碎成微粒而分散在连续相中,形成乳(膏)状均相物。WIGGENS均质乳化机,乳化力强,分散性能好,粒度直径小于2μm,乳化强度随不同产品进行调节,效率高能耗低。 手持式均质机 高剪切均质机 数显台式均质机 样品的良好处理效果,除了需要使用高性能的均质乳化机之外,还要选择合适的分散杯。对于普通圆柱形的容器如烧杯,三角烧瓶等,分散时会形成旋涡,旋涡将导致分散杯周边的物料无法接触到分散头,这种物理现象大大降低了样品处理效果。为了达到理想的分散效果,只能选择消耗更多能量来延长分散时间,然而另外一个问题就又出现了,分散时间的加长让大量的空气随旋涡进入到了样品中。WIGGNES分散杯中对冲涡流解决办法 为解决以上问题,WIGGENS研发了GS 分散杯,在分散杯中的样品,均质过程中形成对冲涡流,样品取得良好的混合效果,避免了常规分散杯那样让样品形成定向流动,极大提高了分散效率,节省了时间和能源消耗。 GS分散杯和均质机的良好搭配,是样品处理更好,更快好帮手。物美价廉的分散杯的使用,会成倍的提高样品的处理效率并且得到更好的结果。 GS 分散杯材质有硼硅玻璃、不锈钢可选;规格可从几毫升到几升大小;可选择带盖或者不带盖、可选择是否带密封接头等。欢迎咨询WIGGENS和 WIGGENS区域经销商获取更多关于分散杯信息。
  • 中科院上海有机所田佳构筑新型人工光合体系 拓宽对自然光合作用体系的理解
    2023 年 5 月下旬,对于田佳来说是忙碌且有意义的一个初夏。在短短一周之内,他相继在 Nature Catalysis 和 Nature Materials 上发表两篇论文。目前,他在中科院上海有机所担任研究员。图 | 田佳(来源:田佳)利用超分子手段,拓宽对自然光合作用体系的理解5 月 18 日,第一篇论文发表在 Nature Catalysis 上。研究中,他和合作者利用超分子手段模拟自然光合作用,探索构筑新型的人工光合体系。光合作用被认为是地球上最重要的化学反应过程,为生命体提供着最基本的物质与能量来源。然而,由于天然光合系统通常需要兼顾诸多生命过程,且催化中心数量有限并距离光敏系统较远,导致"光能-化学能"转化的整体量子效率偏低。通过化学手段模拟光合作用中的关键基元,构筑光能转化效率更高的人工光合系统,有可能为缓解能源环境危机、降低碳排放提供新的理论和技术支撑。在复旦大学攻读博士学位期间,田佳师从该校的黎占亭教授。那时,前者主要从事超分子有机框架材料的研究。更早之前,黎占亭在芳酰胺大环、以及折叠体和分子识别等领域的工作,给田佳带来了重要启发。于是,后者萌生了将高强材料凯夫拉结构中的寡聚芳酰胺片段嫁接到天然卟啉两亲分子上,进而构筑人工光合组装体的想法。后来,田佳根据天然光合紫色细菌的球形色素体结构,设计了两亲性的三嵌段卟啉基分子单体。(来源:Nature Catalysis)令人惊喜的是,利用这一方法不仅在水中得到了尺寸分布均一的球形组装体,而且组装体表面具有环形的卟啉阵列亚结构。对于通过超分子组装体来模拟生物特定功能和结构来说,这是一次极其重要的突破。在性能上,这种球形组装体不仅展现出光收割"球形天线"效应,同时具有良好的抗光漂白性质和优异的结构稳定性,为超分子光催化体系的光敏剂选择提供了新的解决方案。(来源:Nature Catalysis)受天然光合紫色细菌球形色素体结构的启发,课题组设计了三嵌段卟啉基的两亲分子,并引入寡聚芳酰胺片段以便增强组装体结构的稳定性。合成关键分子之后,他开始进行超分子组装体的构筑和表征。通过亲疏水作用、氢键作用和π-π堆积作用,这种单体分子可以在水中自发组装形成球形纳米胶束组装体。通过增加芳酰胺片段的长度、提高分子间的氢键数量,可以构筑粒径更大、性质更稳定的组装体。在化学、材料等科学研究中,纳米结构表征占据十分重要的位置。在 Nature Catalysis 发表的这篇论文中,透射电子显微镜、扫描透射电子显微镜以及同步辐射小角 X 射线散射的观测结果显示:组装体呈现出尺度均一的球形结构。但是,更精细的组装亚结构表征,需要通过高分辨扫描透射电镜、原子力显微镜、冷冻电镜等手段实现。借助冷冻电镜单颗粒分析技术,田佳等人观察到球形组装体表面存在直径 4.2nm 左右的环形卟啉阵列,这为进一步研究催化性能及其构效关系奠定了基础。完成超分子组装体的构建之后,则要进行光催化实验和机理研究。这时,课题组根据球形胶束表面的环形卟啉阵列呈正电性,有目的地选择了合适的 Co 基卟啉催化剂。在水溶液中,催化剂具有阴离子形式,因此可以通过静电相互作用拉近其与正离子型卟啉环形阵列的空间距离,从而提高电子传输效率;且催化剂的尺寸约为 3-4 nm,略小于环形卟啉阵列的直径(4.2 nm),这也促进了催化剂与环形阵列的对接。另外,在催化过程中,好的催化剂不仅能降低反应活化能,也与反应底物二氧化碳具有一定的结合能力。同时,当生产最终目标产物 CH4 的时候,好的催化体系还能具有良好的脱附能力。基于此,该团队选用四(对磺酸苯基)卟啉-Co 配合物(TSPP-Co)为催化剂构筑人工光合体系,该体系在优化条件下表现出光促 CO2 至 CH4 转化的高催化效率与高产物选择性。同时,在描述反应机理时,他们提出"纳米围栏"以及"球形天线"效应,上述效应使光生电子高效地注入催化位点,进而带来高效的二氧化碳催化转化。当人工光合作用遇见超分子自组装生命过程离不开超分子自组装,光合生命以脂质和蛋白为骨架,可以对捕光复合物和反应中心进行精确定位,并能有序排列形成精妙的多级自组装结构,比如紫菌的色素体、高等植物的类囊体等。这些优雅的超分子组装体表现出高效的光捕获、精确的电子转移和选择性催化功能。而在人工光合领域,超分子自组装的好处在于可以让人们"自下而上"地构筑光合材料,比如将单体分子组装为纳米复合结构。另外,通过优化结构设计,还能提高能量转移和电子传递的效率。同时,超分子自组装能将不同的功能模块组装在一起,借此形成复合材料,从而打造多功能的人工光合系统。另外,超分子自组装还具有可逆性和修复性的特点,能对人工光合材料的长期稳定性和可持续性起到重要作用。如前所述,光合作用为生命提供了物质和能量。针对人工光合作用的研究一般主要关注:如何使用人工方法来模拟自然光合作用过程,将太阳能转化为化学能并进行储存。具体来说,该领域的研究主要集中在以下几个方面:其一,光吸收和能量转化。即设计和合成可以高效捕获太阳能的材料,让这些材料高效地吸收光能,并将不同波长的太阳光转化为可利用的能量。其二,电子传递。即研究光激发态中电子的传输过程,包括电子在光吸收材料内部和不同受体之间的传递,以便设计高效的电子传输路径,从而最大限度地提高能量转换效率。其三,光化学反应。即研究光激发态中的化学反应,例如使用光能来分解水或还原二氧化碳,寻找能够有效催化这些反应的催化剂,以便实现可控的太阳能转化。由此可见,针对人工光合作用的研究,主要目标是通过模仿自然光合作用的原理和过程,开发高效可持续的太阳能转化技术。而超分子自组装,是指分子通过非共价相互作用比如氢键、疏水作用等,自发地形成复合结构的过程。对构建结构精确可控的光合材料,超分子自组装也能提供有益的启示。基于这些原因,课题组将超分子自组装和人工光合作用加以结合,最终完成了 Nature Catalysis 这篇论文。5 月 18 日,相关论文以《人工球形色素体纳米胶束用于水相选择性CO2还原》(Artificial spherical chromatophore nanomicelles for selective CO2 reduction in water)为题发在 Nature Catalysis 上 [1]。于军来和 Huang Libei 是论文的共同第一作者;田佳研究员、香港城市大学叶汝全教授、香港大学大卫李菲利普斯(David Lee Phillips)教授、以及江苏大学杜莉莉教授担任共同通讯作者;中科院上海有机所是论文的第一完成单位。图 | 相关论文(来源:Nature Catalysis)在这篇论文发表四天之后,由田佳担任第一作者的另一篇论文发表在 Nature Materials 上。总体来看,这两篇论文都和超分子自组装有关。而在 Nature Materials 这篇论文里,则更进一步地探索了高分辨冷冻电镜技术在溶液相自组装领域的应用。提出基于溶剂化纳米纤维的分子模型具体来说,在 Nature Materials 这篇论文中,研究人员提出了溶剂化纳米纤维的详细分子模型。研究中,该团队使用高分辨的冷冻电镜作为主要研究手段。在冷冻电镜中,样品被冷冻在液氮温度下(约-196 摄氏度),这时可以形成一种名为玻璃态的固体状态,从而让分子保持在自然状态下的结构和构象。在传统电子显微镜技术的样品处理过程中,通常需要在干态下制样,由此可能会引起结构破坏和伪影。而采用高分辨冷冻电镜可以避免上述不足。通过收集不同角度和焦平面的电子图像,就能用计算算法对图像进行处理和重建,从而获得高分辨率的三维结构信息。研究中,针对嵌段共聚物所形成的线性纳米胶束,课题组将高分辨冷冻电镜用于溶液相表征中,借此获得关于结晶的高分子精确结构信息、以及晶格堆积方式。对于溶剂化的高分子链段,也可以通过冷冻电镜获得它在溶液相中的原位结构信息。凭借这些关键的结构信息,研究人员得以通过分子模拟的方式,针对嵌段高分子在溶液相形成的一维线性组装结构,进行分子尺度上的解析。期间,利用冷冻电镜观测到的晶格参数等关键信息,该团队对结晶核区之内的高分子链折叠方式和堆积方式进行了解析。此外,通过测量高分子链段的组装长度和排列方式,他们发现溶剂化区域的高分子链段在溶液相组装时,会采用螺旋形的发散排列形式。在 Nature Materials 这篇论文中,课题组还制备了溶液相分散的纳米纤维组装体。通过活性结晶驱动自组装,让线性纳米纤维的构筑和长度得到控制,而这一过程主要依赖以下几个因素:其一,分子设计。所设计的分子必须拥有合适的结构和功能单元。以嵌段高分子为例,这类高分子单体通常拥有两类高分子链段,即疏溶剂的结晶"核区(Core)"和亲溶剂的分散"晕区(Corona)",这可以促进分子在溶液中的结晶和有序组装。同时,所设计的分子必须具有弱相互作用,以便在晶体生长过程中实现动态调控。其二,晶体生长条件。通过调节晶体的生长条件,例如溶液浓度、温度、溶剂选择等,可以控制纳米纤维的生长速率。同时,通过调节这些条件,还能对分子聚集行为和晶体生长动力学产生影响,从而实现纤维的构筑、以及长度的控制。其三,动态调控。活性结晶驱动自组装的一大优势在于,它可以在晶体生长过程之中,对分子进行动态调控和重排。通过控制分子结构或者引入其他功能分子,可以在纳米纤维中引入特定结构或功能单元。这样一来,纳米纤维的构筑和长度控制,也会更加灵活和可控。研究"利器":GW4 高分辨电子冷冻显微镜另据悉,在具备一定选择性的溶剂条件之下,嵌段高分子单体的"核区(Core)"可以自发地形成晶核,并通过"种子生长(Seeded-growth)"的方式实现线性组装。而在同样的条件之下,亲溶剂的"晕区(Corona)"结构具有高度的溶剂化效应。对于纳米组装结构来说,这让它可以在溶剂介质中高度地分散,并能形成胶体稳定的溶液,且不会出现沉淀和析出。在电子束的照射之下,具有结晶能力的"核区(Core)"通常拥有较高的衬度,很容易就能和溶剂分子以及其他结构区别出来。但是,由于对电子束的不耐受性,通常很难直接观测到嵌段高分子单体的高分辨晶格结构。为此,在低温下通过使用冷冻电镜,该团队利用低剂量电子成像模式,对上述结构进行观测并取得了很好的效果。而亲溶剂的"晕区(Corona)"由于电子云密度比较低,使用普通的透射电镜手段难以观测到。因此在 Nature Materials 这篇论文中,课题组使用了一台 Talos Arctica 冷冻透射电子显微镜,让其工作在 200 kV 电压之下,并配上 K2 直接电子探测器和 BioQuantum 能量过滤器,借此获取了关于"核区(Core)"和"晕区(Corona)"的高分辨率冷冻电镜图像。由此可见,在超分子自组装材料领域,预计冷冻电镜这一表征手段,将对组装机制、结构和功能关系的理解发挥重大作用。而活性结晶自组装(Living CDSA,Living Crystallization-Driven Self-Assembly),则是 Nature Materials 这篇论文的另一个关键词。活性结晶驱动自组装,是国际高分子领域的热点研究方向,也是一种新颖的自组装方法。它能帮助人们深入理解晶体生长和自组装的机制,为材料合成和设计提供新的思路。在材料科学、纳米技术和生物医学等领域,该方法具有广泛的应用前景,可被用于制备功能性纳米材料、晶体纳米颗粒、有序纳米结构等。在这一研究大方向上,课题组主要聚焦在如何利用晶体的自发形成,来控制和引导功能性材料的组装。一些嵌段共聚物分子具有两亲性,这些分子在在晶体生长过程之中,会出现溶液相组装的行为。而通过"种子生长"的方法,可以对这种行为进行控制。具体来说,纳米结构的形貌、大小、结构、以及超分子组装的性质,都可以通过该方法得到精确的调控。在 Nature Materials 这篇论文中,田佳 的合作者是来自英国 GW4 高分辨电子冷冻显微镜中心的研究人员。GW4 高分辨电子冷冻显微镜,是一个用于高分辨度冷冻电子显微镜研究的设备设施,由英国布里斯托大学、加的夫大学、卡迪夫大学和巴斯大学这四所大学合作建立,旨在提供先进的电子显微镜技术支持,以用于研究生物大分子结构和功能。该设施配有最先进的仪器设备,包括冷冻透射电子显微镜、电子能量过滤器和直接电子探测器,可以提供高分辨度的图像和结构分析能力。正是在这些设备的帮助之下,他们顺利地完成了本次研究。5 月 22 日,相关论文以《具有结晶核的嵌段共聚物纳米纤维的高分辨冷冻电子显微镜结构》(High-resolution cryo-electron microscopy structure of block copolymer nanofibres with a crystalline core )为题发在 Nature Materials 上,并被选为当期期刊封面[2]。上海有机所田佳是论文第一作者,加拿大维多利亚大学伊恩曼纳斯(Ian Manners)担任通讯作者。图 | 相关论文(来源:Nature Materials)审稿人评价称:"作者在组装过程中所展现的细节,以及最终对于纳米结构的表征令人印象深刻,突显了之前人们没有意识到的纳米结构独特性。"长远目标:全面地模拟自然光合作用在人工光合作用领域,目前自然体系的平均"光能-化学能"转化效率不足 1%。如能更深入地理解自然光合过程并对其加以改进,则有希望将光能至化学能转化的总量子效率提高至 10% 以上并向实用领域拓展,从而对光能高效利用以及"双碳"目标的实现起到技术支撑作用。在溶液相自组装结构表征领域,假如可以建立冷冻电镜的表征方法并加以推广,对于深刻理解自组装过程、构筑更多的具有特定功能的自组装超分子结构有着重要意义。在人工光合组装体构筑领域,超分子球形色素体结构已被证明具有光收割"球形天线"效应以及优异的稳定性。基于上述结构,田佳 团队将筛选合适的无机催化剂比如杂多酸、无机纳米颗粒,构建有机超分子组装体与无机粒子的高阶组装体系,并探讨其在光催化产氢以及二氧化碳还原方面的应用。同时,他希望通过筛选合适的催化剂,开展光催化产氧的研究,以便构筑不含牺牲试剂的全反应型光催化体系,借此在同一系统中让光催化氧化反应与还原反应同时进行,进而全面地模拟自然光合作用。在组装结构的冷冻电镜表征上,田佳将和其他冷冻电镜平台开展合作,重点研究溶液相构筑的自组装结构,对大分子、小分子在溶液相中的自组装行为进行深入探究,并将根据已有理论知识与研究基础深入理解超分子组装体"结构与功能"之间的内在联系。田佳目前所在的中科院上海有机化学研究所,起步于抗生素和高分子化学的研究,所里的老一辈科学家在"两弹一星"研制、"人工合成牛胰岛素、人工合成酵母丙氨酸转移核糖核酸"和物理有机化学中的两个基本问题等一系列紧密结合国家战略的重要研究中作出了卓越贡献。目前,上海有机所的整体主攻方向是分子合成科学,致力于解决化学键的选择性断裂和重组等重大科学问题。通过结合人工智能技术,旨在探索基础研究驱动变革性技术的创新模式,通过分子合成科学领域的原始创新,推动生物医药和战略有机材料等核心技术的发展。
  • 动态光散射技术入门及仪器采购指南
    作者:马尔文仪器公司纳米颗粒及分子鉴定产品营销经理 Stephen Ball   动态光散射(DLS)是一项用于蛋白质、胶体和分散体的极具价值的粒度测量技术,其应用范围可轻松扩展到1 nm以下。本文中,马尔文仪器公司产品营销经理Stephen Ball将向您介绍DLS的工作原理,并就购买光散射系统时的关注事项为您并提供一些专业建议。   通过观察散射光,可以测定粒子分散体系或分子溶液的特性,如粒度、分子量和zeta电位。光散射系统充分挖掘利用这些特性之间关联,并在近几十年间经过不断完善,目前已经能为常规实验室应用提供高度自动化的检测。利用光散射仪器的检测快速而高效,可用来表征分散体系、胶体和蛋白质。   理论上,光散射仪器中使用的各种技术看起来可能很相似,但它们的功能和检测结果却在实际应用中千差万别,从而对仪器的寿命期价值产生显著影响。光散射系统中的组件和设计的差异也会导致数据质量及仪器适用范围产生很大的差异。例如,某些光散射系统可通过测量蛋白质电泳迁移率对蛋白质电荷以及粒度进行测定,从而成为生物制药应用中高效的选择方案。   撰写本文的目的在于为考虑采用动态光散射DLS技术的读者提供一个入门指南。本文将考察DLS的主要用途、应用领域,尤其会侧重系统设计中对于特定性能的重要性,从而为那些正为自身需求而关注DLS技术的用户提供背景信息和理论支持。   了解基本知识   当我们要开始对一种新的分析技术进行评估时,第一个重要步骤就是要了解它的基本工作原理。DLS的优势之一是它操作非常简单,而这直接源于它的测量原理。   由于热能,溶剂分子不断运动,和悬浮的颗粒物产生碰撞,使得分散体或溶液中的小颗粒做无规则的布朗运动。可以通过观测散射光随时间的波动性得到颗粒布朗运动的速度,这种技术被称为光子相关光谱法(PCS)或准弹性光散射法(QELS),但现在通常称作动态光散射法(DLS)。   斯托克斯 - 爱因斯坦方程定义了颗粒布朗运动速度与颗粒大小之间的关系:      其中,D = 扩散速度, k = 波尔兹曼常数,T = 绝对温度,h = 粘度,DH = 流体力学直径   上述关系式清楚地表示了在样品温度和连续相粘度已知的情况下,如何根据扩散速度测定粒径。尽管必须是控制检测温度,但很多商用仪器还是会对温度进行测量 而对于许多分散剂,尤其是水而言,粘度是已知的。在很多情况下,DLS实验所需的补充信息也仅仅是粘度测量。   DLS的优势   DLS固有的操作简便性意味着操作者无需具备很强的专业知识就能得到详尽而有用的数据,这个优点在最新的高度自动化系统中表现得尤为明显&mdash &mdash 一般分析只需要几秒钟的时间,并且分散剂的选择余地比较大,不管是水性还是非水性的,只要它们呈透明状并且不太粘稠,就都可以使用。这种测试方法所需的样品量也很小,最少时只需要几微升即可,这一点对于涉及宝贵的样品的早期研究而言是极具吸引力的。   实际上,DLS法在测量0.1 nm ~ 10 µ m范围的粒径时十分出色。它在测量小颗粒方面的能力尤为突出,对于绝大多数待测体系提供2nm及以上的准确、可重复的数据。从理论上讲,检测低密度分子的粒径仅仅受到仪器灵敏度的限制,但对致密颗粒而言,沉降是可能导致分析不准确的一个潜在问题。例如,对于密度为10g/ml的颗粒,最大检测粒径通常会限制在大约100nm以内。   无论是稀释样品还是混浊样品都可以用DLS法来进行测量,可分析的浓度范围最低可至0.1ppm,最高可达40%w/v。不过,由于样品浓度会大大影响其外观尺寸,因此当粒子含量较高时对样品的制备需要加倍小心。   上述适用的粒径和浓度范围以及该测量技术的高重现性(粒径20nm时可达到+/- 0.1nm),使得DLS这种测量方法具有广泛的适用性。比如,它特别适合检测平均粒径的细微变化,这种变化可能会反映出胶体样品的稳定性 它也可以测得少量聚集体的出现。上述这些现象很有可能是某种样本解体的前兆,当用于药物的蛋白质研究时,这类情况的出现有可能对药物性能产生不利甚至有害的影响。   DLS法的局限性   DLS方法的大多数局限性可以或已经通过对实验操作过程进行改进,或对DLS技术进行改进来加以克服 但在区分仪器类型,尤其是对于那些要求异常苛刻的应用而言,它的局限性仍然值得我们加以关注。一般来说,DLS使用过程中遇到的大多数问题是出于以下原因:   &diams 存在较大的颗粒   超出仪器最高量程范围的颗粒应该事先被过滤掉。或者,如果大颗粒的存在量极少也可以通过软件进行处理。   &diams 沉淀   这种现象在较为致密的颗粒中尤其比较容易出现。提高分散液密度是比较有效的抑制方法(比如在系统中加入蔗糖),但这种方法仅适用于密度不高于1.05 g/ml的样品体系。   &diams 分辨率较低   DLS不属于高分辨率的技术。当样品的粒度分布排列十分密集,且存在三种以上的粒度分布差异时,DLS 将无法对多重分散样品进行精确表征。在这种情况下,建议最好在测量之前对样品进行分离 而在测量方法上,则需要将DLS与制备技术如凝胶渗透法或尺寸排除色谱法(GPC / SEC)和(或)流场分离技术(FFF)联合使用。   &diams 多重光散射   多重散射是指从一个颗粒发出的散射光在到达探测器之前又会被其它粒子再次散射,在较致密的样品中,这种现象会使粒径计算的精确度受到影响。背散射检测器以大于90° 的角度进行测量,大大抑制了这一现象,从而扩大了该技术的测量范围。   &diams 分散剂的选择   虽然大多数分散剂都适用于DLS,但如果分散剂粘度大于100mPa.s,往往会影响测量的可靠性,另外分散剂对光的吸收也会对检测产生干扰。比如有色样品的散射光强度可能会有所降低。一种可行的解决方案是根据系统的灵敏度,采用不同的激光波长进行分析或对样品进行稀释。样品中的荧光也会对信噪比造成影响,但可以通过使用窄带滤波器来解决,以排除荧光杂散光的影响。   界定DLS检测仪的特性   上述的讨论是在对DLS仪器的界定特征进行检验的背景下展开的。对于任何分析技术,灵敏度都是最基本的要素,对于DLS系统,这方面的性能是由光学硬件和相应的设置来确定的。稀释度较高时,具有优越光学设置的系统能对较小的颗粒进行可靠测量,但对于在这些功能方面要求不高的应用而言,替代方案可能会更为经济。光学设置的主要元件包括:   &diams 激光源   具有低噪特性的稳定激光源最为合适,如某些氦氖气体激光器。也可以使用某些特定的固态激光器,但价格要贵得多 低成本的固态激光器使测量结果的精度和可重现性受到极大影响。   &diams 光学设置   光学设置的核心是进行测量的散射角。测量角固定于90o 时,可使系统简便而经济高效,为许多应用(见图1)提供合适的灵敏度级别。这类系统已得到广泛使用。   当实验需要灵敏度更高,或样品浓度更高时,最好选择较大的测量角度。例如马尔文仪器公司Zetasizer Nano系列激光粒度仪,采用非侵入式背散射检测器 (NIBS),将测量角度调到175o(参见图1),扩大了颗粒粒度与浓度的测量范围。由于入射光无需通过整个样品,因此显著减少了多重散射引起的测量不准确性,同样也排除了大灰尘颗粒的影响。   在上述两种类型的设置中采用了光纤光学收集组件,其提供的信噪比优于传统的相应部件,从而大大提高了数据质量。   &diams 检测器   检测器有两种类型:一种是便宜、灵敏度较低的光电倍增管PMT,另一种是较昂贵的、性能更好的雪崩光电二极管检测器(APD)。后者宣称效率高达65%,远远优于替代产品PMT4-20%的效率,从而使数据收集最大化,测量速度更快、质量更高。   要获得精确的DLS测量,另一项基本要求是必须对温度进行很好的控制。如同分散剂粘度一样,颗粒的布朗运动也直接和温度相关,因此温度控制较差造成的影响非常严重。例如,在环境温度下对水性体系进行测量,1oC的温度误差将导致2.4%的检测结果偏差,超过ISO13321 [1] 标准规定的+/-2% 或更新的 ISO 22412[2] 标准规定的范围。对于使用的各类比色皿,DLS仪器温度控制的合理目标是 +/-0.2oC。   比起在检测仪外部连接水浴装置,内置温度控制器在使用上更加方便,在测量精度、稳定性和重现性方面也更加可取。此外,具有高性能控制系统的仪器,既能进行快速的系统预热,又能迅速调整温度,从而对温度变化所产生的影响(如蛋白质热不稳定性)进行研究。   日常使用   当选择仪器时,评估整体性能特点尤为重要。然而,如果每天使用一个不太符合操作要求的系统所造成的不便会令人非常烦恼,甚至不想再去用它。因此,当需要在最终几个备选仪器之间进行选择时,以下几个问题是值得考虑一番的:   &diams 我最重要的需求是什么:速度还是准确性?   &diams 我的样品粒径的范围?   &diams 我要测量的样品属于什么类型,比如是否有毒?或者具有特别强的腐蚀性?   &diams 今后仪器的操作者是专家还是新手?他们具备多少关于光散射的专业知识?   速度与准确性   DLS测量通常成批进行,样品通常不同、且体积较小。测量时间一般按照能达到要求的重复性水平设置,但一般不大会超过几分钟。不过,分析效率可能因样品制备和系统清洗要求而有所不同,不同系统的使用方便性也会有较大的差异。如果DLS系统被用作 GPC/SEC 检测器,系统将设置为流体工作模式。由于样品流经仪器,为达到必要的精度,测量必须在短短几秒钟之内完成。   具有良好测试速度和准确性的仪器通常都价格较高,但考虑使用寿命期的成本更为重要。考虑到因不能满足重复性标准而进行反复实验所花费的时间和成本,以及因仪器装备不能满足常规实验室使用要求而造成的分析效率下降等因素,更昂贵一些的系统也许更能体现物有所值。   适用于各种样品类型的比色皿   大多数光散射系统在批量样品分析期间使用各种比色皿池或比色皿来盛放样品。它们通常是塑料(通常是聚苯乙烯)、玻璃或石英材质的,但大小各不相同。样品的最小用量取决于光学设置,通常为2-3 ml。不过,如果不考虑任何样品回收要求,也有一些系统测量只需要2µ l的样品用量。   一次性塑料比色皿无需清洗,消除了交叉污染的风险,特别适用于盛放有毒材料 有些比色皿只有50 &mu L大小。采用比色皿可以避免产生&lsquo 非比色皿&rsquo 系统(即把样品直接放在玻璃片上进行测量)因清洗不彻底而导致测量不准确的问题。石英比色皿具有更佳的测量质量,尤其是用于低浓度或小粒径样品时,这是因为石英材料具有优异的光学特性和抗划伤性。   减轻分析负担   光散射通常只是许多研究人员在实验室中常规使用的多种技术之一。仪器操作者可能不是光散射方面的专家,因而仪器操作的简便性是很有帮助的。   一些DLS系统在数据收集过程中即对数据进行评估,剔除因大颗粒存在而被污染的结果。这类些系统有助于提高样品制备的速度和容许范围。粒径大于10微米的颗粒主要发生向前散射,因此含背散射检测器的仪器对这些颗粒的存在不太敏感。测量浓度范围宽的系统尽可能降低了样品稀释的需求,进一步提高了测量效率。   大多数现代化测量系统在数据采集过程中都无需操作员干预,从而减少了分析师的工作量,并提高测量的可重复性。但是有些比较复杂的样本可能需要采用特殊方法进行测量,因此应在标准操作程序(SOPs) 中包含这些特殊方法,从而确保应用的标准化。   虽然自动测量现在已很普遍,但在内置数据分析支持程度方面,不同仪器之间的差异很大。如果是给非专业人员使用的光散射测量系统,那么含有内置数据分析和专家意见的先进软件将极富价值,就好像在电话另一端有一位可靠的、活生生的专家一样。   总结   DLS是一项比较成熟的技术,可为各种类型的样品进行粒径和分子尺寸测量。因此,在选择仪器时,必须将系统能力与用户要求紧密联系起来,使两者相匹配。光散射系统在测量粒径的同时,还可以测量分子量、蛋白质电荷和Zeta电位,甚至还能具有微流变学测量功能。   不同系统之间的灵敏度有很大差别,如同在高浓度下也能进行测量一样,也可对各种大小的颗粒或分子进行有效的测量。与那些90o 度探测器相比,背散射仪器具有很实际的优势。   除了性能以外,还有其它因素也会影响仪器使用寿命期内的价值,包括易于清洁 能获得的支持以及友好的用户软件界面。无论是什么规格的仪器,最好的建议是在购买前进行测试,看看你能否轻松得到有用的数据。DLS问世已经多年,因此不论你的用途是什么,你都可以期望拥有一套有使用针对性的、富有成效并且易于操作的测量系统。   结束   参考文献:   [1] ISO 13321 (1996) 粒度分析 - 光子相关光谱。   [2] ISO 22412 (2008) 粒度分析 - 动态光散射   [3] GPC / SEC静态光散射技术说明,(马尔文仪器公司白皮书)。下载网址:www.malvern.com/slsforgpc   [4] www.malvern.com/aurora   图片   图1:DLS系统的关键组件包括(1)激光器,(2)测量单元,(3)检测器,(4)衰减器,(5)相关器和(6)数据处理PC。探测器可置于90° 或更大的角度,例如这里所显示的NIBS检测器设置在175° 。   图2:在悬浮液稳定性研究中采用Zeta电位对粒子之间斥力进行量化   laser:激光器   attenuator:衰减器   detector:检测器   digital signal processor 数字信号处理器   correlator:相关器   Electrical double layer:双电层   Stern layer:严密电位层   Diffuse layer:扩散层   Negatively charged particle:带负电荷的颗粒   Slipping plane:滑动面   Surface potential:表面电位  Zeta potential:Zeta电位   Distance from particle surface:到颗粒表面的距离
  • 水质总有机碳的测定燃烧氧化 非分散红外吸收法TOC分析仪
    XY-2201E总有机碳TOC分析仪  水质总有机碳的测定燃烧氧化 非分散红外吸收法TOC分析仪  水质总有机碳的测定燃烧氧化-非分散红外吸收法(TOC分析仪)是一种常用的水质检测方法,用于测量水中的总有机碳。这种方法通过燃烧样品,将有机碳转化为二氧化碳,然后使用红外光谱仪测量其浓度。  具体步骤包括:  1. 样品处理:将水样进行适当的前处理,如去除悬浮物和金属氧化物等,以避免干扰。  2. 燃烧氧化:将处理过的水样在高温下进行燃烧,使有机物氧化为二氧化碳,以便测量其浓度。  3. 非分散红外吸收法:使用红外光谱仪测量生成二氧化碳的浓度,从而推算出总有机碳(TOC)的含量。  这种方法的优点是测量范围广、灵敏度高、选择性好,可以用于测量不同类型和浓度的水样。同时,TOC分析仪是一种连续测量的仪器,可以实时监测水样的TOC浓度,有助于及时了解水质状况。  一、产品介绍:  XY-2201E总有机碳TOC分析仪采用了高温催化燃烧氧化法,将试样连同净化气体(高纯氧)分别导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为二氧化碳,经低温反应管的试样被酸化后,其中的无机碳分解成二氧化碳,两种反应管中生产的二氧化碳经载气输送依次被导入非分散红外气体检测器NDIR中, CO?被检测。从而分别测得水中的总碳(TC)和无机碳(IC)。总碳与无机碳之差值,即为总有机碳(TOC)。即:TOC=TC-IC  二、产品特点:  1.高温催化氧化,对于难消解的有机碳,也能高效率的氧化,使得产品易于分析高浓度的TOC样品;  2.快速分析(1~4min);  3.更高的安全性,燃烧炉加热采用多重保护,独立于温度控制系统的过热保护电路,过热能自动切断加热,确保产品安全;  4.实时流量监视,保持流路稳定,保证数据的可靠性;  5.管路多方位清洗和吹扫,可以根据需求,按操作要求清洗内部回路,大大减少了故障发生率及仪器维护时间;  6.仪器自动排废,自动排酸和进酸,进酸量控制稳定;  7.较少的样品和试剂消耗,每次测量需消耗高纯水0.5μL,酸试剂2ml(IC测试时),高纯氧气约2000ml(标况下,流速100ml/min,通气时间20min.);  8.NDIR检测器的CO?检测有良好的线性和高准确性。CO?信号转化成为一个峰曲线,然后再由内置的数据处理器计算出TOC数值(TC与IC之差);  9.催化燃烧氧化法氧化能力强,几乎可以氧化所有的有机物且性能稳定。680℃燃烧法几乎是在所有盐份的融点以下,这样可以延长催化剂和燃烧管的寿命,这一点尤其是在测定对象是含盐份的水样时很重要;  10.仪器使用高分辨率7寸触摸宽屏,采用智能系统,全中文界面,使得界面友好,操作简便。  三、技术参数:  1.测定范围:0~1000mg/L(非稀释状态),稀释状态可达到0~30000mg/L  2.重 复 性:≤ 3%  3.示值误差:TC:±0.1%F.S或±5%(取较大者)  IC:±0.1%F.S或±4%(取较大者)  4.线 性:R2≥99.9%  5.检出下限:0.5mg/L  6.分析时间:2~4min  7.注 射 量:10μL~500μL  8.外部存储:U盘  四、使用范围:  地表水、地下水、生活污水、工业废水中总有机碳(TOC)的测定,应用于环境监测、城市给排水、疾病控制、化工电力等行业。
  • 上海沪析发布沪析HR-500 高剪切分散乳化机新品
    产品应用:● 实验室高剪切分散乳化机集灵巧、方便于一身。可手持操作。选用德国原装马达,运行更稳定,噪音更小。可长时间运转,20余种工作头可供选择,可实现真空操作,轻松满足多种高要求分散、乳化、均质的实验要求。主要特征:● 选用德国原装马达、运行稳定,噪音更小,可长时间运转,设计安全可靠。● 工作头接触物料部位全部采用优质不锈钢制作,耐腐蚀性好。● 工作头采用联轴器与驱动电机连接,拆装简便灵活。● 调速机座采用无极调速器,调速方便,运转稳定。产品参数:型号HR-500转速范围8000-28000r/min处理量0.2-7000ml (H2O)标准工作头HR-500A输入功率500W输出功率320W转速显示刻度显示调速方式无极调速接触物料材质316L不锈钢进入物料部分轴套材质PTEE适用温度≤120C°允许环境温度5-40C°允许相对湿度80%工序类型分批处理成套重量9KG电源220V 50HZ定子转子配置:定子转子功能描述:型 号转子定子功能描述工作容积转子直径定子直径线速度浸没深度分散粒径灭菌乳适应领域组合方式mlmmmmm/smm悬浮液状液HR-500AS20CSR20固液混合介质10-5000152023.540/17010-501-10制药.陶瓷,石化HR-500BS20CCR20纤维类材质10-5000152023.540/17010-501-10污水,药品.食品.造纸,烟草HR-500CS20CMR20固液混合介质10-5000152023.540/17010-501-10陶瓷,涂料HR-500DS20FER20乳状液10-5000152023.540/17010-501-10污水,涂料,造纸,制药HR-500ES20FCR20纤维类材质10-5000152023.540/17010-501-10污水,生物,药品.食品.造纸,烟草HR-500FS20FMR20固液混合介质10-5000152023.540/17010-501-10陶瓷,化妆品涂料,食品.造纸,石化HR-500GS30CMR20搅拌桨功能250-20000153036.140/170高速混合陶瓷,食品.污水HR-500HS30CSR30固液混合介质100-8000233036.140/1705-251-5污水,药品.食品.造纸,制药HR-500IS30CCR30纤维类材质100-8000233036.140/1705-251-5污水,药品.食品.造纸,制药HR-500JS30CMR30固液混合介质100-8000233036.140/1705-251-5陶瓷,涂料HR-500KS30FSR30固液混合介质100-8000233036.140/1705-251-5污水,涂料,造纸,制药HR-500LS30FER30乳状液100-8000233036.140/1705-251-5污水,涂料,造纸,制药HR-500MS30FMR30固液混合介质100-8000233036.140/1705-251-5陶瓷,化妆品.制药.食品.烟草HR-500NS30CMR30搅拌桨功能1000-40000234036.140/170高速混合陶瓷,食品.污水HRZ5小样品分散0.2-50456.340/6010-501-10生物药品.HRZ10小样品分散1-2509106.310/6010-501-10生物药品.HRZ14小样品分散100-100013146.310/6010-501-10生物药品.创新点:1)采用进口电机,运行稳定,噪音低,可长时间运作 2)工作头部分采用不锈钢材质,耐腐蚀 30无极调速 沪析HR-500 高剪切分散乳化机
  • DI 25分散机(相当于T 25分散机,限量7台,售完即止!)
    简介:应用于广泛领域的高效的分散机 搅拌容量范围宽广 使用寿命长 工作体积(H20):1-2000ml 速度范围:8,000-2,4000rpm 转速控制:无极调速 转速显示:刻度显示 详细说明: 应用于广泛领域的高效的分散机 搅拌容量范围宽广 使用寿命长 工作体积(H20):1-2000ml 速度范围:8,000-2,4000rpm 转速控制:无极调速 转速显示:刻度显示 促销价(主机):9000.00RMB
  • 【卫家动态】南北联动,先河一体化分散式污水处理系统同时亮相两大国际化舞台!
    2017年12月8日,先河环保作为环保领域创新发展的领军企业,携旗下大气监测设备、一体化分散式污水处理系统、空气净化器等产品,惊艳亮相“2017国际创新创业博览会”和“2017中国(成都)国际绿色产业博览会”两大国际性展会,与诸多创投大咖、业内专家一起站在创新驱动风口,共同分享绿色产业创新盛会。国际创新创业博览会 先河展位作为备受瞩目的国际性展会,此次创博会和绿博会的举办,都得到了政府主管部门的大力支持,共吸引了来自中国、德国、法国、瑞典、挪威等10多个国家和地区的近千家机构参展。展会的召开,不仅充分切合了加快创新驱动发展战略部署和推进节能环保产业发展的要求,更为国内外产学研机构、创客、企业及投资机构搭建了国际性展示、交易、交流、招商、合作的平台。中国(成都)国际绿色产业博览会 先河展位 会中,作为节能环保领域创新发展的优秀代表,先河环保的表现尤为出色。北京创博会共设置了8大展区,位于省市展区1A12号展位的先河环保凭借一体化分散式污水处理系统等创新产品令参观的专业观众称赞不已,在使得不少意向客户驻足的同时,还吸引了中国青年报等媒体的聚焦。在四川绿博会中,先河风头更是一时无两,成都市副市长刘宏葆参观展位时详细了解了分散式污水处理模式及产品,并对先河在大气及水质监测治理方面做出的持续创新探索表示了高度赞赏。 创博会中中国青年报媒体专访绿博会中成都市副市长刘宏葆参观先河展位 会中展出的一体化分散式污水处理系统,是依托集团20余年水质监测及治理技术积累,在公司拥有自主知识产权的多级同步A2/O、MBBR等生物处理工艺基础上,以经济高效设计理念通过技术创新开发的新型地埋式污水处理装置。该系统拥有安装成本低、运行稳定、治理效果好、不用专人值守等优点,广泛适用于污水排放分散的城中村、偏远山区、自然村落等领域,目前已为北京、河北、贵州、四川、山东等地区诸多村镇居民解决了生活污水处理问题。系统农户安装实例 一体化分散式污水处理系统在展会中的优异表现,不仅向与会观众展示了公司的创新技术、新型产品以及专业素养,更向社会各界展示了公司的实力与发展潜力。我们愿借助参与国际化会展交流平台的契机,与更多环保人士及企业携手合作,共同推动节能环保产业创新发展。
  • 中国制造亟待重构创新体系
    &ldquo 我们要造多少飞机模型才能换外国的一架飞机?&rdquo 李克强总理在今年两院院士大会上的这句话,让院士们陷入了深深的思考。   正如一位美国学者所言:中国制造业在未来20年可能出现美国在过去20年所经历的困境,很快就轮到中国去担忧了。在发达国家蓄势占优、新兴经济体追赶比拼的两头挤压下,大而不强的&ldquo 中国制造&rdquo 该何去何从?   自主创新不足是最大短板   世界银行数据显示,2012年,中国制造业增加值为2.08万亿美元,超过美国成为全球制造业大国。   &ldquo 中国是制造大国,但还不是制造强国。&rdquo 中国工程院院士柳百成近日接受《中国科学报》记者采访时直言,我国制造业的整体素质和竞争力与工业发达国家相比仍然差距很大,大多数产业尚处于价值链的中低端。   自主创新能力不足,是我国制造业的一大&ldquo 短板&rdquo 。从全球创新能力指标(GII)看,中国排在世界第20位左右。   &ldquo 创新不足的关键问题在于对基础问题的研究积累不够。&rdquo 中国工程院院士李培根近日也对《中国科学报》记者表示,创新是基于长期研究基础之上的,这恰恰是我国非常欠缺的。   柳百成表示,创新不足与投入不足也有关系。2013年,我国研发投入占GDP的2% 而工业发达国家均大于2.5%,瑞典、芬兰等甚至超过3%。我国企业研发投入只占销售额的1%~1.5%,而国外创新能力强的企业达3%~5%。   虽然高铁、输电、发电等都显示出我国制造业巨大的创新能力,但一些关键装备的核心技术至今没有掌握在自己手里。柳百成坦言,我国制造业关键核心技术和共性技术与国外有较大差距。   &ldquo 此外,长期依靠拼人力、拼资源,使得我国制造业的资源过度消耗、污染十分严重。&rdquo 柳百成补充道。   面临两头挤压和双重挑战   各国制造业的竞争不是&ldquo 龟兔赛跑&rdquo ,我们在追赶,人家并没有在睡觉。   金融危机以来,实体经济的战略意义再次凸显,美国、德国等世界主要发达国家纷纷实施以重振制造业为核心的&ldquo 再工业化&rdquo 战略,培养发展高端制造业,以抢占新一轮科技制高点。   &ldquo 美国为此出台了一系列举措,集合联邦政府、学术界和企业界的资源,以&lsquo 确保下一轮制造业革命发生在美国&rsquo 。&rdquo 美国密歇根大学副校长胡仕新介绍,美国正在构建的制造创新研究体系,正是这一举措的集中体现。   美国于2013年1月发布《国家制造创新网络:初步设计》,提出构建国家制造创新网络(NNMI),计划在制造工艺、先进材料及其加工工艺、高效能技术及其平台以及具体应用等优先领域建设15个制造创新研究所(IMI)。截至目前,美国已建立4个制造创新研究所。比如,由85家企业、13个研究型大学、9个社区学院和18个非营利性机构等共同构建的&ldquo 增材制造&rdquo 创新研究所。   &ldquo 美国希望通过国家制造创新网络及15个制造创新研究所的构建,振兴美国的制造业,并引发制造技术的变革。这对我们是很大的挑战。&rdquo 柳百成说。   同时,印度等发展中国家因更低的人力、资源成本成为制造业产业转移的新阵地,使得我国制造业发展面临发达国家蓄势占优和新兴经济体追赶比拼的两头挤压和双重挑战。   建立合理创新体系是关键   那么,我国该如何应对严峻的挑战呢?   &ldquo 首先要建立一个合理的创新体系。&rdquo 柳百成指出,我们现在的科学研究是&ldquo 撒芝麻&rdquo ,研究很分散,多为低水平重复。   对此,他认为,可以借鉴美国在国家层面构建制造创新网络的做法,协调统一主管部门和资助机构,避免部门间的分割和壁垒以及资助的分散和重复,充分积聚整合高校、科研院所以及企业的优势力量和科技资源,针对明确的研发目标协同攻关。   &ldquo 加强产业共性技术研究,才能为核心技术和产品研发提供取之不尽的技术支撑。&rdquo 柳百成说。   产品做出来,不等于就做好了。据统计,我国制造业每年直接质量损失超过2000亿元,产品质量问题突出。&ldquo 基础材料、基础零部件、基础制造工艺和技术基础,这&lsquo 四基&rsquo 在很大程度上决定了产品质量的优劣,是提高质量的基础,应高度重视。&rdquo 李培根表示,建设制造强国,必须强化制造基础。   认识到这一点,工信部日前委托中国工程院启动&ldquo 工业强化基础战略研究&rdquo 咨询项目。   去年1月,中国工程院启动&ldquo 制造强国战略研究&rdquo 咨询项目,由中国工程院院长周济亲自挂帅,组织50多位院士和100多位专家开展调研,于今年初提出在2025年进入制造强国行列的指导方针和优先行动。同时,工信部、发展改革委、科技部和国资委正在联合编制《中国制造2025》规划,有望明年年中出台,为把我国打造成现代化的工业强国描绘出清晰的路线图。   &ldquo 到2025年,中国制造业将迈入制造强国行列 到2035年,中国制造业将成为名副其实的制造强国。&rdquo 柳百成表示对此充满信心。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制