当前位置: 仪器信息网 > 行业主题 > >

分离代谢稳定性

仪器信息网分离代谢稳定性专题为您整合分离代谢稳定性相关的最新文章,在分离代谢稳定性专题,您不仅可以免费浏览分离代谢稳定性的资讯, 同时您还可以浏览分离代谢稳定性的相关资料、解决方案,参与社区分离代谢稳定性话题讨论。

分离代谢稳定性相关的资讯

  • 热管理相变浆料PCM的稳定性表征
    PCM 浆料由于其高效的传热和热能存储特性,是高效热能管理的替代解决方案,受到越来越多关注。PCM 浆料有多种类型,例如冰浆、笼状物浆料和盐水合物 PCM 浆料 (SHPCMS)、微胶囊化 PCM 浆料 (MPCMS)、形状稳定 PCM 浆料 (SSPCMS) 和相变乳液 (PCE)。PCE 中的 PCM 液滴/颗粒可以在表面活性剂的帮助下分布到不混溶的载体流体中,这简化了材料的制备,使其成为一种有前途的 PCM 浆料。由于晶体生长的固有特性和与温度相关的固体分数,原始盐水合物 PCM 浆料无法呈现出良好的流动性和稳定性特征,有研究发现,表面活性剂和稳定剂的共同作用可以抑制晶体颗粒的生长,从而有助于浆体稳定性。本文基于为最佳开发盐水合物 PCM 浆料而提出的一种方法,介绍了 CaCl2&sdot 6H2O 浆料的制备、特性和性能改进。通过重力和离心稳定性测试研究了浆料的稳定性,以验证稳定剂的有效性。材料: 六水氯化钙 (CaCl2&sdot 6H2O)——基料;六水氯化锶 (SrCl2&sdot 6H2O) ——成核剂;十六烷基二甲基甜菜碱 (C16H33N+(CH3)2CH2COO-)——两性离子表面活性剂;聚乙烯醇 PVA——稳定剂;水杨酸钠——添加剂。浆料稳定性表征进行两组稳定性试验,其中设置了冷水浴系统以方便进行重力稳定性试验。在重力稳定性试验中,将装在单独试管中的不同CaCl2&sdot 6H2O浆料样品浸入浴中,观察颗粒沉降过程。晶体颗粒的沉降导致相分离界面,其变化由数码相机记录。本研究进行了大约一周的重力稳定性试验。另一项稳定性测试是在基于LUMiFuge的加速力场下进行的。它被用来深入了解不同添加剂对稳定性增强的影响。与重力稳定性试验相比,它依靠透射率百分比对时间的积分来分析浆料样品的“不稳定指数”,避免了在没有明显相分离的情况下引入的不确定性,并允许加速沉降过程。在本研究中,使用 LUMiFuge进行稳定性测试的转速在 30 分钟的测试期内设定为 1000 r/min。图1 重力稳定性试验中晶体颗粒的沉降过程(浆体样品从左到右分别为:原始CaCl2&sdot 6H2O浆体;添加成核剂;添加成核剂和表面活性剂;添加成核剂、表面活性剂和稳定剂)a) 刚生成时;b) 5分钟后;c) 15分钟后;d) 1小时后;e) 18小时后;f) 2天后;g) 4天后;h) 7天后。 图 2. 加速稳定性试验中不同 CaCl2&sdot 6H2O 浆料样品的不稳定性。 图1比较了不同浆料样品的重力稳定性,图2进一步展示了部分浆料样品在离心场下的稳定性测试,以深入了解不同添加剂提高稳定性的机理。稳定性测试在 15℃的水浴或环境空气中进行(分别用于重力和离心稳定性测试),浆料的质量固体分数约为 17w.t.%。从图1 可以清楚地看到,原料 CaCl2&sdot 6H2O 浆料迅速分层,在整个过程中呈现出沉积层高度最低和上方清澈透明溶液。原料 CaCl2&sdot 6H2O 浆料的相对较大的粒径是阻碍布朗运动的关键因素,导致沉降过程更快。重力稳定性试验中,添加成核剂和同时添加成核剂和表面活性剂的样品的沉降层高度在前18小时内相似(见图1)。有趣的是,沉降高度出现了交叉,添加成核剂和表面活性剂的样品在第一个小时内呈现出较快的分离过程,而之后速度减慢。这种交叉现象在加速稳定性试验中得到了证实,如图2所示。在重力稳定性试验中,添加成核剂的样品的沉降高度在18小时后继续略有降低,而同时添加成核剂和表面活性剂的浆料样品没有明显变化(见图1)。一开始的相似是因为晶体颗粒经历了一个长大过程,布朗运动对这些尺寸较小的颗粒影响较大。交叉现象可能是由于表面活性剂在晶粒表面积累起缓冲作用,阻碍了晶粒与溶液中分子的碰撞,从而抵消了部分布朗运动的影响。 但随着晶体的生长,由于仅含成核剂的 CaCl2&sdot 6H2O 浆料的粒径较大,布朗运动的相对影响减弱(图3b和c)。此外,在含成核剂和表面活性剂的浆料中,针状晶粒的尺寸相对较小,长宽比较大,在两性离子表面活性剂电位引入的排斥力的帮助下,可以形成更高的沉积层。图2证实了在加速稳定性测试中,含成核剂和表面活性剂的浆料样品的不稳定性低于仅含成核剂的浆料样品。相比之下,在重力和离心稳定性试验中,含有所有添加剂的浆料样品仅观察到轻微的分层。除了小粒径的影响外,PVA 在水杨酸钠的帮助下引入的综合效应也起到了一定作用,水杨酸钠作为支撑基质来容纳和隔离晶体颗粒。为了区分水杨酸钠的影响,在离心稳定性试验中测试了含有成核剂、表面活性剂和水杨酸钠的额外浆料样品。如图2所示,额外浆料样品的分层似乎经历了较慢的沉降过程,但最终的不稳定性与同时含有成核剂和表面活性剂的浆料样品相同。这是由于水杨酸钠的存在通过重构胶束增加了粘度,但粘度的增加与PVA和水杨酸钠共同的基质支持作用不同。图3. 不同浆料样品的晶体颗粒形态特征:a) 原始 CaCl2&sdot 6H2O 浆料;b) 添加成核剂;c) 添加成核剂和表面活性剂;d) 添加成核剂、表面活性剂和稳定剂。
  • 网络小课堂 I 分散体的稳定性分析
    德国LUM是全球分散体系分析及颗粒表征的领先者,拥有多项专利技术,其下LUMi系列产品为分析颗粒表征提供了技术平台。广泛应用于食品、化妆品、家庭及个人护理、石油、化工、制药、复合材料等不同行业。可以帮助您以一种简单的方式了解析复杂产品,简化和加速您的配方研发和质量控制过程。l 液滴和颗粒的粒度分布l 密度分布和磁化l 颗粒分离速度分布l 直接加速和实时的稳定性动力学l 比较和预测货架期l 纳米和微米颗粒的计数/浓度l 拉伸和剪切强度l 产品特性 本次线上研讨会将给大家带来分散体基础性的理论知识以及ISO对分散体稳定性的表征原则角度探讨STEP技术在分散体行业的实际应用。后续我们会邀请LUM的技术专家给大家分享不同领域的实际应用解决方案,请大家定期关注我们的网络小课堂。 课题 – 分散体的稳定性分析主讲嘉宾:时间安排:2021年6月24日(周四)下午14:00-15:00 会议内容:课题 – 分散体的稳定性分析 ü 分散体状态变化机理ü 分散体稳定性的表征ü 分散体货架期预测ü STEP技术在分散体行业的应用 报名方法:扫描下方”二维码”或点击”阅读全文”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。会议平台:Cisco Webex 邮箱:info@lumchina.cn
  • 网络小课堂 I 分散体的稳定性分析
    德国LUM是全球分散体系分析及颗粒表征的领先者,拥有多项专利技术,其下LUMi系列产品为分析颗粒表征提供了技术平台。广泛应用于食品、化妆品、家庭及个人护理、石油、化工、制药、复合材料等不同行业。可以帮助您以一种简单的方式了解析复杂产品,简化和加速您的配方研发和质量控制过程。l 液滴和颗粒的粒度分布l 密度分布和磁化l 颗粒分离速度分布l 直接加速和实时的稳定性动力学l 比较和预测货架期l 纳米和微米颗粒的计数/浓度l 拉伸和剪切强度l 产品特性 本次线上研讨会将给大家带来分散体基础性的理论知识以及ISO对分散体稳定性的表征原则角度探讨STEP技术在分散体行业的实际应用。后续我们会邀请LUM的技术专家给大家分享不同领域的实际应用解决方案,请大家定期关注我们的网络小课堂。 课题 – 分散体的稳定性分析主讲嘉宾:时间安排:2021年6月24日(周四)下午14:00-15:00 会议内容:课题 – 分散体的稳定性分析 ü 分散体状态变化机理ü 分散体稳定性的表征ü 分散体货架期预测ü STEP技术在分散体行业的应用 报名方法:扫描下方”二维码”或点击”阅读全文”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。会议平台:Cisco Webex邮箱:info@lumchina.cn
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周一、周四上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月20日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月23日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料7月27日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉7月30日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月3日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月6日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周二上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月21日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月28日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料8月4日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉8月11日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月18日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月25日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!
  • 肉类氧化稳定性分析好方法
    肉是人类饮食中最古老的食物之一,如今肉类生产已达到工业规模。肉类蛋白质含量很高,碳水化合物含量很低,但脂肪含量会因动物的种类、品种、身体的解剖部位和烹饪方式而有很大差异。由于细菌发现了营养丰富的基质,肉类是一种极易腐烂的产品。其中,脂质氧化导致异味。为了保存肉类,为了储存和食用,肉质、多汁、风味或颜色都要使用添加剂来保护。 食品最重要的质量变化之一是由不饱和脂肪酸吸收氧气,自由或酯化。脂肪的自动氧化是一种由氧气、光、高温、金属痕迹,有时还有酶推动的化学反应。 OXITEST油脂氧化分析仪可以测定各种类型样品的氧化稳定性,而不需要进行初步的脂肪分离。根据最常见的应用,OXITEST加速氧化过程是因为温度和氧气压力这两个加速因素。该仪器测量两个腔室内的绝对压力变化,监测样品中反应组分的吸氧,并自动生成IP值。IP定义:IP代表诱导期,它是到达氧化起始点所需的时间,对应于可检测的酸败程度或氧化速率的突然变化。诱导期越长,抗氧化稳定性越高。OXITEST为质量控制和研发实验室提供了以下检测:◆原材料和配料的质量控制◆运输和对货物的影响◆储存期研究◆产品开发与行为◆配方优化◆成分和替代成分测试◆流程优化◆包装研究和替代包装比较
  • 如何有效测试各类油品的氧化稳定性和抗氧化效果
    各种类型的食用油可用于烹饪和在厨房使用。油的范围包括植物油,如葵花籽油、大豆、花生、棕榈、椰子、橄榄油、混合油到动物脂肪,如鲑鱼油。抗氧化剂通常用于提高保质期和保存食用油和脂肪的质量。它们通过各种机制参与或干扰脂质自氧化反应级联来抑制氧化反应。不同的油有不同的氧化率,抗氧化剂在提高其保质期和保持其质量方面有不同的效果。利用VELPOXITEST油脂氧化分析仪进行了分析,检测每一种测试油的不同特点。油的氧化稳定性和抗氧化剂的添加食品最重要的质量改变之一是由于游离或酯化的不饱和脂肪酸对氧的吸收。脂肪的自动氧化是一种由光、高温、金属痕迹和有时影响产品保质期的酶促进的化学反应。防腐剂和其他物质被添加,以抵消和减缓这一食用产品的质量改变过程。抗氧化剂通常用于提高保质期和保护食用油和脂肪的质量。它们通过参与或干扰脂质自氧化反应级联来抑制氧化反应。意大利VELP油脂氧化分析仪OXITEST方法和对各种类型的油品进行的分析OXITEST氧化稳定性反应器被用来测定各种样品的氧化稳定性,不需要进行初步的脂肪分离。OXITEST方法是一项公认的分析技术,用于测定食品、脂肪和油的氧化稳定性。对各种类型的油进行了测试,以分析氧化稳定率,并比较所有含有和不含有抗氧化剂的油的配方。
  • 建议收藏!参考这些稳定性因素可大大降低ADCs开发过程的风险
    01 / 热点解析什么是ADCs ?抗体-药物偶联物(Antibody-drug conjugates,ADCs)是一种GE MING性的治疗方法,在生物制剂市场中所占的比例越来越大。ADC结合了单克隆抗体的靶向能力(对给定抗原具有高度特异性)和小分子的药物性,这对癌症治疗可产生最大的影响。许多用于治疗癌症的小分子药物通过中止细胞转录或代谢的某些方面来发挥作用,从而杀死癌细胞。然而,细胞毒性小分子的作用遵循一个共同的原则——它们必须在杀死健康细胞之前杀死癌细胞,化疗的副作用通常是对健康细胞也有负面影响。然而,ADCs为高毒性化疗提供了另一种选择。单克隆抗体具有高特异性,仅靶向其预期抗原。由于许多癌症类型都表达癌细胞特有的受体,因此有可能将化疗小分子与癌症靶向抗体连接在一起,这种抗体直接作用于癌细胞,而且只作用于癌细胞,为下一代癌症治疗提供了真正惊人的潜力。与任何生物制剂一样,ADCs的稳定性、有效性和毒性有许多考虑因素。接下来我们来了解ADCs是如何构建的,哪些因素对其研发至关重要,以及它们如何影响其稳定性特性。02 / 组成部分ADCs是高度复杂的治疗分子 ADCs由三个部分组成。当涉及到可开发性时,需要对三部分组成进行单独考虑分析:单克隆抗体: 可能是已经存在的抗体,其相互作用的抗原已知且特征明确。或者,您可能正在开发针对新靶标抗原的抗体,或者与原始抗体具有不同的特性的抗体。小分子药物: 与单抗一样,这种小分子药物可能已经被用作独立的治疗药物,或者可能是从合成药物库中提取出来的。它也可以从片段库构建。可能需要对药物进行额外的修饰,以防止与抗体的干扰,或为Linker提供空间。Linker: Linker必须将小分子连接到抗体上,使小分子的活性部分能够接触到目标蛋白质。在构建最终ADCs时,Linker的长度、与抗体的连接方法以及释放小分子的能力是关键考虑因素。03 / 开发方法ADCs 稳定性的影响因素ADCs 开发的许多方面最终会影响其稳定性特性。可开发性分析包括评估许多关键质量属性(CQAs),以找到具有最优属性的候选药物。这次将讨论的重点是ADCs的可开发性特征,特别是构象和胶体稳定性,但值得注意的是,ADCs还有许多其他特征需要考虑。偶联过程有许多偶联的方法,这取决于linker连接的位置。偶联反应通常需要孵育30分钟到几个小时,偶联缓冲液可能对作为蛋白质的单抗来说是“苛刻”。但是,长时间的孵育会增加小分子的连接。药物引起的化学环境变化偶联程度的影响。这里有一个具体的例子可以让你更容易理解为什么这是一个重要的考虑因素:对于通过赖氨酸末端氨基连接的药物,偶联反应将发生在任何暴露在溶液中的赖氨酸和linker的活性端之间。单克隆抗体每个分子含有多达80个赖氨酸,其中许多是溶液暴露的。这意味着每个ADC分子可能是多个药物偶联一个抗体。存在药物与抗原结合区域的赖氨酸结合的风险,从而使抗体的靶向功能降低或丧失。小分子靠近抗体会改变其化学环境,从而影响其稳定性。如果小分子对抗体结构的影响太大,ADC就会展开或聚集。确保充分去除偶联后的游离药物分子。自由移动的小分子会影响ADC的构象稳定性。Linkers降低药物对抗体结构影响的一种方法是改变linker长度。Linker必须对单克隆抗体没有任何结构上的影响;此外,将其与单克隆抗体和小分子连接所需的化学物质不得破坏两者的结构或构象完整性。Linker有许多化学方面的考虑,包括确保它最终将药物释放到靶细胞中。制剂处方一旦确定了偶联方法、linker和与抗体偶联的药物,您还需要优化其缓冲制剂配方,能够稳定单克隆抗体的缓冲液用于ADC时,可能不会使单克隆抗体保持相同的稳定性。总的来说,ADCs的前景是使用两种已知的、众所周知的治疗方法——单克隆抗体和小分子药物——并将它们结合起来形成更好的治疗方法。然而,这意味着在构建治疗方法和优化其稳定性特性时,会有更多的复杂性,以便最终制造出更好的治疗方法。04/ 总结构建ADCs时要考虑什么? 在开始构建ADCs时,请考虑:偶联方法:确定您将使用的偶联方法是否具有灵活性,并对替代方法进行实验单抗的稳定性:在与所需偶联反应兼容的缓冲液中配制或测试其稳定性,以确保其在偶联过程中保持活性单抗暴露于偶联条件下:如果无法优化偶联缓冲液,并且您知道缓冲液不稳定,则需要减少单抗暴露于偶联条件下Liner长度:测试linker长度 药物会改变单抗的化学环境,这将影响其稳定性05 / 相关推荐ADCs研究必备利器PR Panta蛋白稳定性分析仪(点击图片查看更多)精准检测,数据质量非常高无标记检测检测浓度范围广低样品消耗量
  • 集赞有奖 | 稳定性分析第二期系列讲座 - 产品稳定性的特点分类及影响因素
    大昌华嘉科学仪器部重磅发布第二期稳定性分析系列讲座,本系列课程主要介绍了稳定性分析仪在化妆品领域的应用,并阐述了不同的类型及外界因素对产品稳定性的影响效果。同时,DKSH线下课程注重理论基础和实际操作培训,让用户可以体验高效,精确的稳定性测试技术,欢迎大家报名参加!线上课程:讲师介绍主讲专家介绍——何老师何老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 化妆品企业负责产品研发、质量控制相关负责人◆ 化妆品相关的研究人员、应用工程师识别二维码报名“稳定性分析第二期系列讲座”
  • 药品研发与生产的稳定之锚:稳定性实验箱的应用
    在现代医药领域,药品的研发、生产和质量控制是一个高度复杂且精密的过程,常常受到诸多外界因素的挑战与考验。药品存放的时间长短、存放环境的空气质量、温度波动、湿度变化以及光照强度等因素,都可能对药品质量产生影响,使得药品中的有效成分逐渐降解,药品的疗效大打折扣,甚至完全失效,产生有害物质。 因此,深入研究药品的稳定性,全面了解影响药品质量的各种因素,显得尤为重要。通过科学的稳定性研究,我们可以为药品的生产、包装、贮存、运输等环节提供有力的科学依据,为患者提供安全、有效的用药保障。 为了全面而精准地评估药品在不同环境条件下的稳定性表现,科研人员常常借助稳定性试验箱这一关键设备来进行测试。这种试验箱具备模拟多种环境条件的强大功能,能够精确控制温度、湿度、光照等重要参数,从而为试验药品提供一个稳定且标准化的测试环境。通过将测试样品置于试验箱中,并暴露于特定环境条件下一段时间后,科研人员可以评估样品是否发生变化,确认其在不同环境下的稳定性表现。Aralab是欧洲标准环境控制设备、药物稳定测试设备和特殊测试设备的主要供应商之一,凭借逾30年的专业研发与生产经验,其各类箱体设备和步入式房间品质卓越,一直深受客户赞誉。「Aralab葡萄牙总部」Aralab FitoClima 600 & 1200系列箱体,为药品稳定性试验提供了卓越而全面的解决方案:这一系列箱体分为600L和1200L两种规格,内部配置灵活多变,可分别搭载4层和8层不锈钢搁板,更可按需升级至10层和20层。每层搁板均可轻松拆卸,清洗维护极为方便。为了满足科研人员在稳定性测试中的多样化需求,FitoClima 600&1200系列还提供了多种型号选择:&bull FitoClima 600/1200 P:专为精准温度控制而设计。&bull FitoClima 600/1200 PH:在温度控制的基础上增加了湿度控制功能,可模拟更加复杂的环境条件。&bull FitoClima 600 PLH:集温度、湿度、紫外线和可见光控制于一体,满足更加全面的需求。&bull FitoClima 600 PLH-R:在PLH的基础上,通过集成辐射计和光传感器,实现了辐照暴露程度的自动控制。&bull FitoClima 1200 PN/PNH:可控制零下温度(-20℃),湿度控制功能可选配。此外,箱体还配备了7英寸的彩色触摸屏,使得科研人员能够直观、便捷地设置所有环境变量。无论是温度、湿度还是光照,都能轻松调节,满足各种实验需求。利用这一系统,科研人员能够设计复杂而全面的环境模拟程序。例如,在生物医药领域,由于疫苗、血清、抗体、细胞因子和酶等制品对温度变化异常敏感,冻融过程可能引发蛋白质变性、聚集或活性丧失等风险,因此冻融测试成为必不可少的环节。借助FitoClima 1200 PN/PNH试验箱,科研人员可通过程序预先设置好从-20℃至60℃的不同温度区间,分别模拟冷冻和融化阶段的环境条件,然后一键启动,即可直接进行冻融循环测试,无需频繁更换试验箱,大大提高了实验效率和准确性。FitoClima 600&1200系列试验箱 技术参数&bull 温度范围:-5℃ 至 60℃1200 PN/PHN型号可以扩展至-20℃至60℃&bull 温度波动 (随时间变化):±0.1°C 至 ±0.2°C&bull 空间温度均匀性:± 0.15°C 至 ± 1.0°C&bull 湿度范围:20% 至 95% rH&bull 湿度波动 (随时间变化):± 1%rH&bull 空间湿度均匀性:± 2%rH作为Aralab的中国区授权经销商,上海昊扩提供Aralab旗下各类高精度的环境控制设备,包括: &bull 低温培养箱/恒温恒湿箱/光照培养箱 &bull 步入式恒温恒湿房间 &bull 环境试验箱 &bull 步入式环境测试室 &bull 高低温冲击箱 &bull 人工气候箱/室想要了解更多相关产品信息,欢迎来电咨询!
  • 会议通知丨2019年稳定性同位素技术理论和应用研讨会
    稳定同位素技术已经被广泛应用于生态、水文、地质、工业、农业、生命科学、食品安全、环境监测、石油化工、法医鉴定等多个领域,同位素的理论研究和应用也取得了众多令人瞩目的成就,在推动国民经济的发展中发挥了重要作用。为更好地促进同位素技术的发展和在各行业中的应用,本着“创新交流、分享共赢”的理念,计划于2019年4月21~23日在中国科学院南京土壤研究所举办“2019年稳定性同位素技术理论和应用研讨会”,旨在通过一个开放的窗口吸引来自不同行业的专家、学者开展稳定同位素技术理论和应用研讨,把握国内外稳定同位素研究领域的新理念、新进展、新应用,进行跨学科的分享和交流,促进我国稳定同位素技术的进步和科研水准的进一步提升,拓展该技术在不同行业的应用,推动整个行业的创新和可持续发展。本次会议由中国科学院南京土壤研究所主办,北京普瑞亿科科技有限公司、北京埃克斯科技有限公司、钡科瑞(北京)检测技术有限公司联合承办。我们有幸邀请了多名国内外同位素领域的知名专家和学者,就稳定同位素技术理论和应用的前沿研究做高端学术报告和交流。热烈欢迎并诚挚期待从事同位素及相关领域的科研、教学和生产应用的学者和研究生们参加本次研讨会。会议主题携手开拓稳定同位素技术应用新进展会议安排1会议举办单位1)主办单位:中国科学院南京土壤研究所2)承办单位:北京普瑞亿科科技有限公司北京埃克斯科技有限公司钡科瑞(北京)检测技术有限公司2会议时间、地点1)会议时间:2019年4月21~23日2)会议地点:中国科学院南京土壤研究所惠联楼4楼报告厅3)会议日程:4月21日 全天报到注册(南京九华饭店)4月22日7:00-8:30 报到注册(中科院南京土壤研究所惠联楼4楼报告厅)4月22-23日 学术报告(中科院南京土壤研究所惠联楼4楼报告厅)3会议注册1)注册回执:参会人员请填写回执(点击此处下载),发送至training@pri-eco.com。2)会议注册费:含会议资料、会议用餐(4月22日中、晚及4月23日中餐费)等费用,食宿及交通等费用自理。4会议注册费支付会议费采用银行汇款和现场支付两种方式:1)银行汇款:2019年01月10日-04月18日期间接受银行汇款。收款账户信息如下:账户名称:北京普瑞亿科科技有限公司税务证号:911101086662858745开户行:北京农村商业银行海淀支行定慧寺分理处账号:0405030103000007097开户行行号:402100002499汇款请标注【研讨会2019-代表姓名及单位】,并请将银行汇款凭证扫描件发送至会议邮箱:training@pri-eco.com,以便及时核账并回复确认。2)现场付费:接受现金和各类xinyong卡、借记卡等。3)会议发piao:会议发piao在现场注册时领取。5会议住宿酒店订房须知:请各位参会嘉宾自行预订住宿酒店,预订酒店【南京九华饭店、世纪缘大酒店(南京北京东路店)】时报中国科学院南京土壤研究所“2019年稳定性同位素技术理论和应用研讨会”可享受协议优惠价格。会议推荐酒店优惠订房数量有限,请参会嘉宾尽快预订。住su费用自理,由参会代表与宾馆直接结算并领取发piao。1)南京九华饭店:(标间、大床房协议价459元/晚)南京玄武区北京东路77号 ,订房联系电话:025-83652226。2)世纪缘大酒店(南京北京东路店):(标间协议价248元/晚,大床房协议价268元/晚),南京玄武区北京东路77-1号,订房联系电话:025-58876999。6会议联系信息1)邮箱:training@pri-eco.com2)学术组联系人:刘德燕 (025-86881073/13505149916)3)会务组联系人:寻梅梅 13691103168李 娜 13681040129刘洪涛 13260087617陆翟亚 132600827537注册地点、会议地点及主要交通路线1)2019年4月21日会议注册地点:南京九华饭店2)2019年4月22日注册及会议地点:中国科学院南京土壤研究所惠联楼4楼报告厅南京禄口国际机场到中国科学院南京土壤研究所主要路线:乘坐出租车约40分钟,42.2公里,费用100-110元;乘坐地铁S1号线(在南京南站)换乘地铁3号线(在鸡鸣寺站)换乘地铁4号线,九华山2口下车,步行64米到达(用时约1时42分钟,费用7元)。南京火车南站到中国科学院南京土壤研究所主要路线:乘坐出租车约15分钟,11.4公里,费用30-40元;乘坐地铁3号线,在南站2口上车,浮桥1口下车,步行1500米到达(用时约50分钟,费用2元);或地铁3号线(在鸡鸣寺站)换乘地铁4号线,九华山2口下车,步行64米到达(用时约36分钟,费用3元)。南京火车站到中国科学院南京土壤研究所主要路线:乘坐出租车约10分钟,6公里,费用16-20元;乘坐地铁1号线,在南京站3口上车(在鼓楼站)换乘地铁4号线,九华山2口下车,步行64米到达(用时约30分钟,费用2元);或乘坐地铁3号线,在南京站10口上车,(在鸡鸣寺站)换乘地铁4号线,九华山2口下车,步行64米到达(用时约30分钟,费用2元)。8会议赞助欢迎所有有兴趣支持同位素研究和开发的公司、企业、团体及个人以不同形式对会议进行赞助。联系人:寻梅梅(13691103168)Email:training@pri-eco.com更多有关会议的详细内容请点击附件:附件:2019年稳定性同位素技术理论和应用研讨会中国科学院南京土壤研究所北京普瑞亿科科技有限公司北京埃克斯科技有限公司 钡科瑞(北京)检测技术有限公司2019年1月10日
  • 干货满满!看 Panta 轻松预测 ADC 稳定性
    话题介绍如何预测稳定性实验?对于ADC研发人员来讲,通过进行一系列蛋白质评估将有助于降低早期开发过程中最终产物不稳定的风险,特别是在优化偶联过程中,这些评估策略显得尤为重要。在本期文章中,我们来重点讲讲如何进行预测稳定性实验。借助PR Panta蛋白稳定性分析仪来推断低浓度样本在提高剂量, 并在更高浓度下用于临床给药后的表现。因为,这对于降低筛选过程的风险和确保筛选过程中获得最稳定的候选分子至关重要。一起看看PR Panta提供的真实数据示例,它们比较了裸抗--Trastuzumab(或称Herceptin),与ADC药物分子Kadcyla,和另一种来源于同类裸抗的ADC药物分子 RC48之间的多个维度预测信息。实验热稳定性实验背景 首先,很重要的第一步,我们要先了解标准的热稳定性实验。在PR Panta上进行这些实验很简单,使用相同的样本收集信息,根据候选分子的热稳定性(如Tm和Ton)以及通过PDI、Tsize和Tagg 的胶体稳定性参数对其进行排名。简单地说,首先比较每种的热变性曲线。Herceptin,裸抗,具有最高的热稳定性,与ADC药物分子Kadcyla相比具有更高的Tm1和更清晰的变性展开转变Kadcyla和RC48都表现出Tm1的峰增宽,表明大多数药物与该展开转变相关的结构域缀合--这是个好现象,因为Tm1对应CH2结构域,而Tm2和Tm3分别是Fab结构域和CH3--尽管它们通常很接近,仅显示单个Tm2RC48是一种由另一个母版裸抗构建的ADC药物,与Kadcyla相比,Tm1略有进一步降低。此外,可以判断它是一种与Herceptin不同的裸抗,因为变性展开的曲线轮廓有很大的变化,包括分别展现出的Tm2和Tm3PR Panta高分辨率的热变性展开数据,对每个ADC或mAb的变性结构展开提供了高度精细的分辨率,使其能够在结构域水平上体现出低至0.2°C的差异。这三种药物都经过了优化,可用于临床,因此稳定性的变化是最佳的,不像在开发过程的早期,需要比较候选药物分子--比如,需要筛选不同的偶联策略。因此,这些数据是了解偶联过程如何影响ADC稳定性的好方法。实验预测数据:3个实验了解ADC当我们已经了解了热变性曲线的数据,接下来是时候看看PR Panta可以解锁的预测参数了。1自缔合自缔合参数kD和第二维里系数B22都是告知生物在高浓度下可能如何表现的参数。其中任何正值都表明药物分子不太可能自我缔合--这是一个理想的结果。自缔合会导致聚集和高粘度,由于许多治疗方法在临床上是以高浓度给药,因此,最好在开发过程的早期就了解ADC是否容易发生自缔合。 自缔合参数kD自缔合参数kD是利用PR Panta的DLS检测模块导出的关于扩散常数的信息,来评估分子与自身相互作用的可能性。正kD表示排斥力(这是好的);负kD是有吸引力的(要避免)。数据显示:裸抗(mAb)具有高度自排斥性,表现出具有强趋势线的正kD。这意味着它不太可能在高浓度下的发生自缔合。在PR Panta中表征的数据结果与其他已发表的数据结果一致Kadcyla也有正kD,尽管它没有那么强的自我排斥。然而,它仍然被认为是一个“好”的结果,kD为正RC48表现出自缔合的倾向,kD为负第二维里系数B22第二维里系数B22是利用PR Panta的SLS检测模块得出的,是着眼于整体情况下自身相互作用的强度。尽管B22和kD之间存在关系,但它们是相互独立的进行判断,因此并不总是完美地一致。SLS的散射数据在用于低浓度样本下更容易出错。然而,一些研究人员更喜欢B22而不是kD,因为B22的数据被认为是对样本内相互作用的更“全局”的测量。如下图所示, B22的趋势看起来与kD的趋势非常相似。PR Panta数据计算出的Herceptin自缔合数值较好地反映了文献值,所提供的自缔合数值为您的分子,在放大工艺生产之前,提供了更宝贵的预测信息。2动力学稳定性动力学稳定性实验,着眼于表征以不同的升温速率设置热变性展开实验时,候选分子的热稳定性行为。通过测量蛋白质随着热升温速率的变化而展开的速度,可以计算出展开的活化能。只需以不同的速率设置一系列热变性曲线,然后比较熔化展开温度如何随速率变化即可。之后,使用Arrhenius方程,将这些信息用于预测构建的分子在不同储存温度下的半衰期。 这三位候选分子的比较情况:&bull 显示动力学稳定性Herceptin Kadcyla RC48,这与自缔合行为趋势相呼应&bull 与Herceptin相比,Kadcyla的半衰期显著缩短,但仍在两个月左右&bull RC48的半衰期非常低,表明偶联方法极不稳定362°C下的等温稳定性等温稳定性是进行加速稳定性研究的另一种方法。与动力学稳定性实验类似,可以使用高温下较短时间的稳定性来推断-20°C、4°C或RT(室温)下的长期稳定性。我们可以看到候选分子的变化趋势:&bull 根据累积半径(Cumulant radius,即纵坐标),可以明显检测到轻微的去折叠展开的变化&bull 在62°C下800分钟(13小时以上)后,Herceptin没有明显的大小变化&bull 两个ADC有着显著尺寸变化,RC48有着更明显的大小变化,再次表明它是所有候选分子中最不稳定的实验总结以上结果展示了除热变性试验参数外,PR Panta提供的其他多维度参数,对于预测长期稳定性是极有价值的。在早期开发和风险评估期间, PR Panta提供了关于如何选择的最佳候选药物的额外预测信息,可以用于进一步推进药物开发。并且与许多其他下游分析技术相比,PR Panta所需的样本更少,因此,从预测分析进而深入了解偶联过程对ADC的影响,PR Panta将会是研究者优先考量的选择。PR Panta蛋白稳定性分析仪(仪器价格咨询)欢迎联系我们,进一步了解PR Panta如何为您的ADC和其他生物制品提供高分辨率、高质量的数据。
  • 宁波材料所在提升钙钛矿/硅叠层太阳能电池稳定性方面取得重要进展
    尽管目前钙钛矿/硅叠层太阳电池效率可达到33.2%,但钙钛矿活性层的长期稳定性是阻碍钙钛矿/硅叠层太阳电池商业化的最紧迫问题之一。目前提高钙钛矿器件稳定性通常基于封装工艺、晶体调控工程、缺陷钝化方法和能带调节方式。   然而,类似于许多金属、玻璃和聚合物材料中的“应力腐蚀”,由器件制造和运行中不可避免的拉伸应力引起的时间依赖的亚临界钙钛矿降解仍然会发生。微观层面,该应力可以削弱铅卤化物轨道耦合,从而改变与结构相关的材料特性(如带隙和载流子动力学),降低相变、缺陷形成和离子迁移的势垒;宏观层面,该应力会促使裂纹和分层情况的产生,从而加速钙钛矿的降解,导致器件的效率降低甚至失效。   近期,中国科学院宁波材料技术与工程研究所所属新能源所硅基太阳能及宽禁带半导体团队在叶继春研究员的带领下在前期晶体硅和钙钛矿太阳电池研究的基础上,在高效稳定钙钛矿/硅叠层电池领域又取得了新的进展。该团队采用一种长碳链阴离子表面活性剂添加剂,研究发现该添加剂能通过表面自分离和胶束化以改善钙钛矿晶体生长动力学,并在钙钛矿晶界构建类胶状的支架以消除残余应力;因此,钙钛矿活性层中缺陷减少、离子迁移受抑制以及能级结构改善。最终实现了未封装的钙钛矿单结和钙钛矿/硅叠层太阳电池在最大功率点跟踪下连续光照下3000小时和450小时的运行稳定性测试中,分别保持了85.7%和93.6%的初始性能,代表了迄今为止在类似条件下报道的稳定性最佳的器件之一。   相关成果以“Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion”为题发表于Nature Communications(https://doi.org/10.1038/s41467-023-37877-z),博士生汪新龙为第一作者,应智琴博士后、杨熹副研究员和叶继春研究员为共同通讯作者。该研究得到了国家重点研发计划(2018YFB1500103)、澳门特别行政区科学技术发展基金(FDCT-0044/2020/A1、0082/2021/A2)和澳门大学研究基金(MYRG2020-00151-IAPME)等项目的支持。长链阴离子表面活性剂抑制应力腐蚀作用机理(上);钙钛矿单结(中)以及钙钛矿/硅叠层(下)太阳电池最大功率点工作稳定性测试
  • ​研究蛋白质热稳定性的几种方法
    研究蛋白质热稳定性的几种方法蛋白跟核酸不一样,核酸都是由四个碱基组成,只是组成的顺序不一样,但是整体的结构都是类似的双螺旋结构。而蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。所以每个不同功能的蛋白长得样子其实都是不同的。蛋白的高级结构决定其功能,行使功能需要正确折叠。蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。蛋白质在一定的物理和化学条件(加热、加压、脱水、振荡、紫外线照射、超声波、强酸、强碱、尿素、重金属盐、十二烷基硫酸钠)下,其空间构象容易发生改变而失活,因此研究蛋白的构象和构型变化对其应用有重要的价值。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。热变性是蛋白质变性中最常见的一类现象。蛋白质的热稳定性是指蛋白质多肽链在温度影响下的形变能力,主要体现在温度改变时多肽链独特的化学特性和空间构象的变化,变化越小热稳定性越高。蛋白质的热稳定性受到不同温度、pH值、离子强度等外界因素的影响,在生物技术、药物研发以及食品工业等领域,具有重要意义。蛋白质变性温度是生物学家们研究蛋白质的热稳定性的一个重要的概念,是指蛋白质在特定温度条件下受到热力作用时,其结构发生变化的温度点,一般温度较高时,蛋白质从稳定的三维结构变化成松散的无序结构。蛋白质的热稳定性一般使用热变性中点温度(meltingtemperature,Tm)来表示,即蛋白质解折叠50%时的温度。蛋白质的热变性过程与其空间构象的改变密切相关,Tm值能反映变温过程中蛋白质构象改变的趋势,是衡量蛋白质热稳定性的一个重要指标。蛋白质Tm值的测定在生物医药行业具有广泛的应用,如嗜热蛋白、工业酶等的改造与筛选,蛋白质药物与配体、制剂或辅料的相互作用,蛋白质药物的缓冲液稳定条件筛选等。目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 01 圆二色谱法(CD)圆二色光谱(简称CD),或红外(傅里叶变换红外(FourierTransformInfrared,FTIR)光谱),是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单的方法。圆二色谱法诞生于20世纪60年代,其原理是利用左、右两束偏振光透过具有手性结构的生物大分子等活性介质,获得的圆二色谱来分析其结构特点,是蛋白质、核酸、糖类等生物大分子二级结构分析的常规手段之一。蛋白由α螺旋和β折叠构成,α螺旋和β折叠在红外和紫外光段有特异的光吸收。蛋白质对左旋和右旋圆偏振光的吸收存在差异,利用远紫外区(190~260nm)的光谱特征能够快速分析出溶液中蛋白质的二级结构,进而分析和辨别出蛋白质的三级结构类型,变温过程中测量蛋白等物质的圆二色谱,能反映其随温度升高结构变化的趋势。此外,通过测定蛋白质在不同温度下的平均残基摩尔椭圆度[θ]可以获得蛋白质的Tm值。特点:圆二色光谱(CD)适用于测定稀释溶液的热稳定性,操作相对简单,成本较低。但是相关仪器很昂贵,对缓冲液要求也高,要求溶液不能有任何的紫外吸收,也很难做到高通量检测。 02差示扫描量热法(DSC) 蛋白变性时会有温度变化,检测温度变化就能知道蛋白变性程度。差示扫描量热法的应用始于20世纪60年代,是在程序控温下,通过测量输给待测物和参比物的功率差与温度的关系,以获得吸放热量的技术。差示扫描量热法能定量测量热力学参数,可提供与蛋白质热变性过程中构象变化有关的热效应信息。差示扫描量热法(DSC)是一个很经典的一个技术,基于的蛋白变性过程中对热量的吸收。蛋白是有三维结构的,比如氢键,疏水键,范德华力。一旦通过加热然后把结构破坏掉,需要吸收热量。所以可以测量热量变化,就是加热结构变化过程中的热量吸收。通过对参照物和样品同时进行升温或冷却处理,测定两者为保持相同温度所产生的热量差,从而计算蛋白质的Tm值。特点:差示扫描量热法(DSC)能够提供直接的热量变化数据,定量准确、操作简便。但检测通量低、耗时较长,需要的样品体积和浓度比较大。相关仪器中最核心的部件是样品池,对周围环境要求极高。 03 动态光散射法(DLS)动态光散射是基于光学的方法,检测的是蛋白变性之后会发生聚集,导致颗粒的大小发生改变,对散射信号的影响。蛋白在变性过程中,从一个规则高级折叠结构打开,变成一个线性的松散结构。本来外部是亲水的氨基酸,内部是疏水的氨基酸。一旦打开之后,这些疏水的氨基酸会相互就是结合到一起。就是因为疏水的一个相互作用,然后变成一个球状聚集体。此过程会引起这个光的散射的变化。基于动态光散射的信号随着加热的过程的变化就代表粒径的变化,可以计算出蛋白质的Tm值。动态光散射用于表征蛋白质、高分子、胶束、糖和纳米颗粒的尺寸。如果系统是单分散的,颗粒的平均有效直径可以求出来,这一测量取决于颗粒的心,表面结构,颗粒的浓度和介质中的离子种类。DLS也可以用于稳定性研究,通过测量不同时间的粒径分布,可以展现颗粒随时间聚沉的趋势。随着微粒的聚沉,具有较大粒径的颗粒变多。同样,DLS也可以用来分析温度对稳定性的影响。特点:动态光散射可以做到孔板式的检测,具有比较高的通量。但是对于某些样品的检测有限制,因为并不是所有的蛋白在变异之后都会形成这种聚集体,而有一些可能需要很高的浓度才会提升,浓度较低条件下,就观察不到粒径的变化。 04 外源差示扫描荧光法(DSF)差示扫描荧光(DSF)也被称为热荧光法(ThermoFluor),是一种经济高效且易于使用的生物物理技术,通过检测当温度升高或变性剂存在时荧光发射光谱的相应变化来确定蛋白质的变性温度(热变性温度Tm值或化学变性Cm值)。Pantoliano等最先应用此技术测定了上百种蛋白质的热稳定性。差示扫描荧光法分为添加外源荧光染料与不添加荧光染料两种方式,都是利用加热使蛋白内部疏水基团暴露这一特点进行检测Tm值。传统DSF经常使用350/330比值法来进行数据分析根据荧光源不同分为内源荧光DSF和外源荧光染料DSF。基于外源染料荧光的DSF其原理是利用能与蛋白内部疏水基团相互作用的染料为荧光源。蛋白质加热变性后疏水基团暴露,疏水基团与亲和性染料结合产生荧光信号,检测荧光强度变化测定蛋白质的Tm值。特点:借助荧光定量PCR适用于高通量筛选,信号强度可控,灵敏度和准确性都较高。但添加的外源染料可能会对蛋白质结构和功能产生影响,且操作较复杂,不适用于所有蛋白研究。比如做膜蛋白研究时,溶液环境中需要添加双亲性的分子,一端疏水一端亲水。这种情况荧光分子会直接结合到疏水端,导致直接产生荧光信号。并且染料种类的选择、浓度的选择也很繁琐。外源荧光染料DSF也可能会产生背景荧光以及非特异吸附等假阳性结果。 05 内源差示扫描荧光法(inDSF)内源差式扫描荧光inDSF,基于蛋白质中特定氨基酸的荧光特性。这些氨基酸的荧光强度与其所处的微环境密切相关,因此,当蛋白质的结构发生变化时,这些氨基酸的荧光信号也会随之改变。不需要额外的荧光染料加入到检测体系中,利用蛋白内部芳香族氨基酸的自发光原理。不需要任何额外的标记或固定步骤,避免引入结果的不确定性。研究发现,蛋白质分子中芳香环氨基酸在处于不同极性的微环境时(如疏水或亲水环境中),其被激发的内源荧光的最大发射光谱会发生位移。蛋白质中内源荧光主要来自含芳香环氨基酸如色氨酸(Trp),苯丙氨酸(Phe)和酪氨酸(Tyr),其中以色氨酸内源荧光最强。当它在蛋白内部时,发射光主要在330波段,当蛋白一旦去折叠,暴露在溶剂中,发出的光就会从330波长红移到350。所以通过280激发,检测330/350的比值变化,就能测量蛋白质的Tm值。以色氨酸为例,在蛋白质疏水的内核微环境中,其内源荧光最大发射波长在330nm左右,而在亲水的极性微环境中,色氨酸的内源荧光最大发射波长则出现在350nm左右。蛋白质热变性或者化学变性通常会导致色氨酸残基周围微环境的极性发生变化,使通常被包埋于蛋白质疏水内核的色氨酸逐渐暴露于亲水的环境中,从而导致发射内源荧光最大发射波长发生红移(RedShift),即向更大的波长区域移动。特点:内源差式扫描荧光DSF无需复杂的样品处理或标记步骤,实验过程简单方便。但不是所有蛋白质都含有足够的荧光基团,所以对于部分样品检测灵敏度不够,且检测可能会受其他基团影响。 06 技术对比总结总得来说,DSF和DLS法在样品用量及测定效率上更有优势,比较适合进行高通量筛选。但DSF法需要样品含有色氨酸、酪氨酸或额外添加荧光染料,这可能会对样品测量范围带来一定限制,DLS对样品浓度有要求。DLS还可以获取聚集体粒径大小的信息。DSC法虽然在样品用量与检测效率上不及DSF,但作为量热的经典方法仍是不可缺少的Tm值测量手段,在进行批量样品的热稳定性筛选时,可以使用DSF法初筛,DSC法复筛。此外,DSC能测定蛋白质变性过程中的热容变化ΔCp、焓变ΔH、解折叠自由能ΔG、玻璃态转变温度、分子流动临界温度等其他重要热力学参数。CD作为检测蛋白二级结构的经典方法,在Tm值测定方面具有其独特优势和一定的局限性,也是研究加热过程中蛋白结构改变的重要方法。蛋白质Tm值测定具有重要的实际应用价值,例如辅助生物药物开发、生产和质量控制,评估生物相似性、优化蛋白药物配方等,还可以作为探索蛋白质高级结构的手段之一指导蛋白质工程,如比较不同突变对蛋白质稳定性的影响,研究结构域改变与功能活性改变关联性等。比较不同Tm值测定方法,全面了解技术特点及测量效果对于Tm值测定的实际应用具有一定的指导意义,在科研或生产工作中可以灵活选用或联用多种技术来阐明不同条件下的结构变化特点。 07 国产蛋白稳定性分析仪PSA-16 北京佰司特科技有限责任公司于2023-10-01日推出了自主研发的第一款国产蛋白稳定性分析仪,该设备性能和参数达到进口设备的水平,价格却远低于进口产品,弥补了目前国产自主设备在蛋白稳定性专业研究分析领域的空白。多功能蛋白稳定性分析仪PSA-16是一款无需荧光染料、高通量、低样品消耗量的检测蛋白质稳定性的设备。该设备基于内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变性剂浓度变化过程中蛋白内源紫外荧光的改变,获得蛋白质的热稳定性(Tm值)、化学稳定性(Cm值)等参数。可应用于蛋白缓冲液条件筛选及优化、小分子与蛋白结合情况的定性测定、蛋白质修饰及改造后的稳定性测定、蛋白变/复性研究、不同批次间蛋白稳定性对比等多个方面。 多功能蛋白稳定性分析仪PSA-16应用涵盖植物、生物学、动物科学、动物医学、微生物学、工业发酵、环境科学、农业基础、蛋白质工程等多学科领域。蛋白质是最终决定功能的生物分子,其参与和影响着整个生命活动过程。现代分子生物学、环境科学、动医动科、农业基础等多种学科研究的很多方向都涉及蛋白质功能研究,以及其下游的各种生物物理、生物化学方法分析,提供稳定的蛋白质样品是所有蛋白质研究的先决条件。因此多功能蛋白稳定性分析仪PSA-16在各学科的研究中都有重要的意义。1. 抗体或疫苗制剂、酶制剂的高通量筛选2. 抗体或疫苗、酶制剂的化学稳定性、长期稳定性评估、等温稳定性研究等3. 生物仿制药相似性研究(Biosimilar Evaluation)4. 抗体偶联药物(ADC)研究5. 多结构域去折叠特性研究6. 物理和化学条件强制降解研究7. 蛋白质变复性研究(复性能力、复性动力学等)8. 膜蛋白去垢剂筛选,膜蛋白结合配体筛选(Thermal Shift Assay)9. 基于靶标的高通量小分子药物筛选(Thermal Shift Assay)10. 蛋白纯化条件快速优化等
  • 【热点应用】揭秘蛋白质的热稳定性!
    #本文由马尔文帕纳科医药业务发展经理 韩佩韦博士供稿# 蛋白质的热稳定性研究对于加深对蛋白质的结构和功能的了解有着非常重要的意义。差示扫描量热技术(DSC)是直接测量热转变过程焓变(ΔH)唯一的分析方法,例如蛋白质,核酸或其他生物多聚物的热变性过程,为表征蛋白质及其他生物分子的热稳定性建立“金标准”技术。 一、焓变对于蛋白质的稳定性意味着什么? 1,什么是焓(hán)变(ΔH)? ΔH(焓变)是在恒压状态下将系统升高至温度T过程中摄取的总能量。对于蛋白质而言,这意味着用于使蛋白质发生去折叠所花费的能量(热量),此过程中 ΔH 是为正值,代表这是一个吸热过程。这种能量与蛋白质中所有原子和分子运动相关,以及维系蛋白质保持折叠构象中的键能。 通过将吸热谱图下方的面积进行积分(见图 1)可以计算得到焓变(ΔH)。焓变用每摩尔蛋白质的吸收的卡路里(或焦耳)来表示。由于蛋白质在 DSC 实验中暴露于升高的温度,因此蛋白质开始发生热变性,并伴随着非共价键的断裂。焓变(ΔH)与维系蛋白质天然(折叠)构象中所需的价键数量有关。焓变(ΔH)也取决于我们测量总蛋白质浓度的准确程度。如果蛋白质浓度不是很准确, 则会影响到计算出的ΔH值。 2,焓变(ΔH)值可以在实践中告诉我们什么? 当您比较不同蛋白质的DSC结果时,具有较大ΔH值的蛋白质不一定比具有较小ΔH的蛋白质更稳定。由于ΔH值会对蛋白质摩尔浓度归一化,因此该值通常与蛋白质的尺寸成比例。大多数蛋白质具有相同的键密度(单位体积内的价键数量),因此,期待具有较大分子量的蛋白质也具有较大的焓变(ΔH)值也是合理的。 3,焓变(ΔH)的决定因素是什么? 焓变(ΔH)取决于溶液中天然蛋白质的百分比。 一个非常重要的考虑是DSC仅测量初始处于折叠(天然)构象中的蛋白质的ΔH值。ΔH值取决于具有折叠(活性)构象的浓度。如果初始折叠蛋白质组分小于总蛋白质浓度(即活性浓度小于100%),则计算出的ΔH值将相应地变小。 下图显示了在储存期间的不同时间测量的相同蛋白质的DSC图谱。蓝色曲线图谱表示新鲜制备的蛋白质,是100%天然(折叠)蛋白质。当蛋白质样品在储存期间发生部分变性时,溶液中的天然蛋白质的比例开始下降,导致DSC图谱的焓变降低。当我们拥有100%天然蛋白质的参考DSC图谱时,我们可以根据不同状态样品的相对ΔH值来估计每个样品中的折叠蛋白质比例。 4,如何判断蛋白质是否失活? 到目前为止,我们已提及的焓变是指通过DSC仪器直接测量到的“热”焓,也就是热力学焓变,通常表示为ΔHcal,这是其他任何非量热技术,例如圆二色谱(CD),表面等离子共振(SPR)等技术不能获取的焓变量。 还有另一种其他技术可以获取的焓变类型,即范霍夫焓变 - ΔHVH,我们同样可以通过DSC数据计算得出。范霍夫焓变(ΔHVH)可从通过DSC非两状态模型(non-2-state model)拟合得到。 两种不同的焓变对蛋白质热稳定性的测定又有什么实际意义呢? 在DSC技术中,ΔHcal仅由DSC热转变峰曲线积分的面积来确定,而ΔHVH仅通过热转变峰曲线的形状来确定。转变峰形越尖锐,ΔHVH越大,反之亦然。ΔHcal是具有浓度依赖性的,但ΔHVH不是。 若ΔHcal/ΔHVH比例为1,通常意味着所研究的热转变状态符合两状态去折叠(Two-state unfolding model)模型。如果ΔHcal/ΔHVH比例大于1,则意味着存在显著密集的中间体存在 而ΔHcal/ΔHVH比小于1,则意味着存在分子间相互作用。 使用ΔHcal/ΔHVH可以帮我们估测是否有很大部分蛋白质是失活的。如果我们有一个简单的单结构域蛋白质,并且假定没有中间体,则我们可以预测,其去折叠过程的ΔHcal/ΔHVH的比值不会远离1。因此,如果ΔHcal显著低于ΔHVH,可以表明很大部分蛋白质已经失活。 综上所述,对DSC中ΔH数据的分析可以让我们了解蛋白质的去折叠机制,以及多少蛋白质处于其活性的天然构象。 二、TM值如何与和蛋白质稳定性相关? 中点转变温度TM我们可以从DSC数据中提取多个热力学参数,例如ΔH,ΔHVH(范霍夫焓变),ΔCP和ΔG,但最广泛使用的参数是TM。顺便提一下,这也是最容易和最准确的值 - TM是最大峰值所对应的温度。 “蛋白质稳定性”有多种定义。最常见的是,对于工业上有重要意义的蛋白质,该术语是指在生理温度下的功能(或操作)稳定性 即,他们可以在37°C下发挥多长时间的生物功能?这可以通过需要花几天或数周时间的等温研究来评估,或者,如果使用差示扫描量热法(DSC),则可以在几分钟内变性蛋白质。 通过DSC获得的哪个热力学参数与功能稳定性相关度最佳?事实证明,是TM值。 热力学稳定性(ΔG)是功能稳定性的较差的预测因子 技术上,ΔG仅适用于可逆去折叠过程,此外,它由TM,ΔH和ΔCP计算得到,后者可能很难获取。 一个例子是TM和ΔG与人肉杆菌蛋白抗原血清型C的半数聚集时间(half time)(作为功能稳定性的量度)的相关性,用作模型蛋白。ΔG与T1 / 2 agg. 相关系数(R)仅为0.4,而TM 与 T1 / 2 agg.的相关系数是0.92。(来自J Pharm Sci的数据,2011 Mar 100(3):836-48) 思考TM的一种方式: 如下图所示,假设我们用 DSC 扫描两种不同配方中的蛋白质或两种不同的蛋白质构建体,则 TM 值向低温方向 5℃ 的负偏移(稳定性下降)实际上反映了在 37℃ 条件下的 Fu (蛋白去折叠比例)由2%增加到 3%。温度 T 下的 Fu 蛋白可以通过图像化的方式估算,即温度 T 以下的曲线下阴影区域面积和整个曲线下方面积的百分比。 由于聚集体的生成可能是浓度依赖的过程,因此较高浓度的去折叠蛋白质(红色扫描曲线)将导致较快的聚合(更大组分的去折叠状态(U)才能转换为不可逆变性状态(I)。参见下面的原理图。 这种解析的一个推论是,曲线的整体形状应该是相似的。我们假定这种情况是对于在不同配方中的相同蛋白质或由一个母分子衍生出来的具有相似构建体的蛋白质。但是,对于完全不同的蛋白质,使用TM值作为用于稳定性比较的预测指标则应该谨慎使用。 扩展阅读(www.malvernpanalytical.com)Differential Scanning Calorimetry (DSC): Theory andpracticeDifferential Scanning Calorimetry (DSC) forBiopharmaceutical Development: Versatility and PowerThe Power of Heat: Digging Deeper with DifferentialScanning Calorimetry to Study Key Protein Characteristics PEAQ-DSC 微量热差示扫描量热仪:DSC差式扫描量热法(DSC)是一种直接分析天然蛋白质或其他生物分子热稳定性的技术,无需外在荧光素或者内源荧光,它通过测定在恒定的升温速率下使生物分子发生热变性过程中的热容变化来实现。 马尔文帕纳科 MICROCLA PEAQ-DSC 微量热差示扫描量热仪能够帮助用户快速确认维持高级结构稳定性的最佳条件,提供简介、无缝的工作流程和自动化批量数据分析,其所提供的热稳定性信息被业内视为“金标准”技术,是一种非标记、全局性的数据。 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 生物制药稳定性论坛邀请函
    生物制药稳定性论坛邀请函2020 生物制药稳定性论坛将于2020 年 09 月 10 日-12 日,中国杭州上城区长生路 18 号梅地亚宾馆举行以重组蛋白、单抗药物、疫苗、基因治疗、细胞治疗等为代表的生物制药是 当前世界医药研发的热点和发展方向,但这些生物制药普遍面临不稳定的问题, 不仅影响药物的有效性,更会产生包括免疫原性在内的毒副作用。生物药物的稳 定性问题直接决定生物药能否成功应用于临床。生物药物稳定性问题的解决需要 多学科的紧密协作,包括基础机理研究、工艺开发、制剂开发和质量分析。大昌华嘉仪器部专业提供分析仪器及设备,代理众多欧美先进仪器,其中就包括与生物制药稳定性有关具备光阻法功能的流式颗粒成像分析系统,全自动旋光仪,纳米颗粒跟踪/NTA,稳定性分析仪。即将亮相本次展会的仪器具备光阻法功能的流式颗粒成像分析系统,全自动旋光仪,纳米颗粒跟踪/NTA,稳定性分析仪等会议内容:1、生物药降解机理研究2、生物 药稳定性表征方法的开发与应用3、新型生物药(如疫苗、细胞疗法等)制剂 开发策略4、生物药在生产过程中的稳定性展品介绍Fluid Imaging Technologies(FlowCam)公司成立于1999年美国缅因州斯卡伯勒市,其研发并生产的FlowCam系列仪器是将流式细胞法组合到数字成像显微镜中,基于图像分析法的流式动态成像颗粒分析仪,它使颗粒分析变得更快,更简单美国鲁道夫公司(Rudolph Research Analytical)是一家著名的旋光仪专业制造产家,早在1940年起就致力于旋光仪的研发和制造。多年来鲁道夫公司不断创新改进,相继推出了Autopol II、III、IV、V型自动旋光仪,在化工、制药、制糖及香精香料等行业拥有众多的用户,在中国已成功应用在国家药检所,上海药检所,浙江药检所等众多药检部门及各大制药厂,科研机构。德国Particle Metrix(简称PMX)是一家专业研发和制造表征胶体特征和生命科学研究的仪器公司。PMX公司拥有两条专业的产品线,针对不同的应用提供不同的专业仪器。在生命科学研究领域,PMX公司的ZetaView产品采用了激光光源照射纳米颗粒悬浮液,利用全黑背景可以观察到单个纳米颗粒的布朗运动和电泳现象,能够实现单个纳米颗粒的跟踪,粒度测量,Zeta电位测量,浓度测量等。专为大批量研发部门和质检部门设计。TurbiScan Lab 与全自动机械手的完美结合。全自动机械手包括3个独立的恒温槽和一个样品输送的机械臂。每个恒温槽中有18个样品槽,一共可以存储54个样品依次测量。恒温槽温度控制从室温+5℃到60℃,样品输送的机械臂每小时运行60次,可连续7天不间断工作。展位图展位号:6号
  • 环保行业标准气体的稳定性研究
    标准气体的重要性环保一直是全社会热议的话题,国家也针对环境保护出台了诸多政策,例如HJ75-2017是关于监测二氧化硫、氮氧化物和颗粒物,HJ-604是关于总烃、甲烷和非甲烷总烃的监测方法,HJ759是关于环境空气挥发性有机物的测定,HJ1078则是关于固定污染源废气——甲硫醇等8种有机硫的监测。任何一种监测方法,都需要用到标准气体。标准气体就是监测的一把“标尺”,用它来校准仪器,才能确保检测出的数据的准确性,保证数据在可接受的误差范围内。但是许多人并不太了解这把影响监测数据准确性的”标尺“,因此,液化空气从标准气体的参数、国家标准物质证书、标准气体稳定性研究这几个方面,在1688直播间与大家进行了标准气体的知识分享,现在就让我们一起来回顾一下吧!1混配精度、分析精度与不确定度不确定度:表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。表明结果的可信赖程度。混配精度(BT):配置混合物与要求值的误差范围。分析精度(AA):使用仪器分析给出的值与真实值见的误差范围。也就是说,如果需要配制一瓶10ppm二氧化硫标准气体,氮气作为平衡气,你可能会得到如下结果。若混配精度为5%,则该标准气体的配制值范围为9.5~10.5ppm;若分析精度为1%,标称值为9.8ppm,则该标准气体的真实值范围为9.702~9.898ppm;不确定度为1%2国家标准物质证书购买环保标准气体的客户经常会要求标准气体带有国家标准物质证书,该证书分为一级证书和二级证书。一级证书一般由中国计量院出具,作为中国最权威的标准,而二级证书则是具有一定生产、分析能力的企业向计量院提出申请,由中国计量院进行考核,测试后颁发给企业定级认可证书。针对不同组分、不同浓度的标准物质,计量院都会出具一个对应的GBW(E)证书编号。而且,如果只是标准物质的不确定度变化,也需要重新审核证书。目前,液空中国一共有113个标物证书,覆盖了汽车、环保、石化、食品、检测等各行各业会使用的标准品。液空工厂生产的标准气体都带有以下的标准物质证书,证书上会表明对应的二级标物证书编号,可在国家标准物质资源平台中输入编号查询到相关的证书记录。3影响标准气体稳定性的因素FACTOR-1 原材料标准气体的平衡气主要为氮气、空气等,平衡气的水分、氧杂质含量越低,标准气体的组分浓度稳定性越好。FACTOR-2 管线材质主要指主要指瓶阀、减压阀、管路的材质。环保标准气体常含有强活性和强腐蚀性的组分,若使用铜阀、铜制减压阀,会对标气产生吸附和反应。因此,需要使用不锈钢的瓶阀和减压阀,保证浓度稳定。FACTOR-3 气瓶处理气瓶材质:标准气体气瓶常用铝合金制成,但铝合金有许多材质,合金含量不同,与瓶内物质的反应程度也不同。液空对多种铝合金进行了试验后,发现6061材质能够最有效地保证标准气体的稳定性,所以液空目前采用该种材质的气瓶充装标气。气瓶制造技术:液空采用的是拉拔瓶。该种气瓶是让金属在高温情况下,用模具一体成型,使得气瓶内壁的细纹相对较少。为什么要采用这种方式呢?这是因为,如果气瓶内壁有细小的裂缝,在清洗气瓶时,气瓶内壁便会吸附水分。而标准气体的使用时间往往长达半年至一年,瓶内干燥的气体一定会与裂缝中的水分发生动态平衡,导致裂缝中的水分析出来后与气体发生反应。这也解释了有些标准气体在一开始使用时的浓度是准确的,但后来变得不准确的问题。钢瓶内壁清洁度:也许你听说过涂层瓶,这种气瓶可有效隔绝气体与瓶壁的接触,保证标准气体的稳定性。液空经过多种技术的试验,目前主要选择通过对气瓶内壁进行钝化来保证标气的稳定性。钝化是指用高浓度的标气充满气瓶,例如使用高浓度的SO2,随后静置,让瓶壁吸附饱和SO2,再将气瓶进行清洗、抽真空、烘干后,充装客户需求的浓度。此时,因为瓶壁已经达到了吸附饱和状态,就不会再与气体发生反应。FACTOR-4 标气状态气瓶内的余压对标气浓度稳定性也有影响。每瓶标准气体至少含有两个组分,根据道尔顿分压定律,气瓶内不同组分承担的分压是不同的。在气体使用过程中,随着压力逐渐下降,不同组分的分压就会产生变化。而一些物质的反应是与压力相关的,当承担在各组分的压力不同时,便会发生化学平衡反应的移动,导致组分浓度变化。因此,建议每瓶标气留3-5bar余压。(关于液空标准气体稳定性研究的数据报告,可以联系客服4000529166)4疑问解答Q1 为什么很多标气的保质期能到一年,而有些只有半年或三个月呢?根据标气组分性质的不同,对于有活性或者腐蚀性的组分,其保质期就会受到影响,例如硫化氢、氯气等。Q2 为什么经常发过来的标气浓度和订气时所需求的不一致?因为标气是根据特定需求而特殊定制的产品,其生产方法是根据国际通用的重量法,一瓶一瓶地称出来的,然后再逐瓶通过相应的分析仪器得出数值,其分析报告上给的数值就是根据分析仪器上的读数而来的。由于人工控制和充装设备的不稳定性,一般很难刚好把读数落在需求的数值上,一般情况浓度越低,控制的难度就会越大。所以会产生本文中提到的混配精度、分析精度和不确定的概念。液空会利用先进的充装设备和技术,以及充装工的经验,将误差范围控制在我们提供的技术参数之内。如有特殊需求,液空可根据客户要求的误差范围进行配制。但在此情况下,液空可能需要配制多瓶标气,才能有一瓶的标气浓度落在要求的范围内,导致成本较高。Q3 NO2和NO可以互相转换,这个因素对NO2和NO标气有什么影响?根据反应方程2NO+O2=2NO2,在氧气存在的情况下,NO会反应成为NO2。因此,当配制NO标气时,要尽可能减少氧气,所以需要使用N2做平衡气。而且氮气的纯度越高,才可保证氧杂质的含量越少。当配制NO2标气,则需要大量氧气,所以建议用空气做平衡气。只有氧气充足时,NO2就不会向NO反应。需要注意的是,由于该反应方程为可逆反应,NO中必会存在NO2。但液空配制的标准气体,均使用99.9999%氮气作为平衡气,可保证NO2的含量控制在NO含量的5%以内。如果客户的应用要求更高,液空也可使用纯度更高的平衡气,使NO2的含量降到更低。Q4 对于Cl2和HCl标气,为什么当浓度在10ppm左右时经常测不出读数?因为这类物质易溶于水,比如HCL和水的溶解比例是1:700。当其浓度很低时,尽管气瓶已进行处理,但是减压阀、管路未经过吹扫、钝化,这类组分仍会被吸附。所以这类物质都需要用不锈钢材质的减压阀,并且要吹扫足够长的时间,用标气把管路保压钝化2-3个小时后再去使用和测定,这样才能得到比较准确的数据。
  • 稳定性肥料行业标准即将正式颁布
    2010年1月8日,“稳定性肥料行业标准”信息通报会在沈阳召开,记者从会上了解到“稳定性肥料行业标准”近期将由工业和信息化部正式颁布。   “稳定性肥料行业标准”信息通报会由中科院沈阳应用生态研究所和沈阳中科新型肥料有限公司共同举办,山东施可丰化工、阳煤丰喜集团、河南财鑫化工、中农集团、大化集团大连、吉林隆源、石家庄中嘉等数十家来自全国各地的缓控释肥生产企业的40多位专家和代表到会。中国化肥信息网、《中国化肥信息》周刊、农资导报和中华合作时报应邀参加了本次会议。   近年来,随着科学技术的进步和发展,我国在新型肥料研究和应用领域取得了巨大的进步。科研方面,以中科院沈阳应用生态研究所、郑州大学、北京市农林科学院、华南农大等为代表的科研机构取得了丰硕的研究成果,其中由中科院沈阳应用生态研究所研发的缓释肥技术获得了科技部颁发的中国肥料行业第一个“中国科技进步二等奖” 在科技成果产业化方面,涌现了山东施可丰、金正大、上海汉枫、黑龙江倍丰、山东农大肥业、天津芦阳、住商肥料等一大批优秀骨干企业,为我国新型肥料科技成果的转化、新产品的推广和农业的节支增收做出了巨大的贡献。据卢宗云研究员介绍,目前我国缓控释肥产量已经占到磷复合肥产量的1.9%,施用量每年增长超过20%,达到全球的施用总量50%,中国成为了世界最大的缓控释肥生产和消费国。   会上,中科院沈阳应用生态研究所韩兴国所长介绍了我国农业发展现状和中科院沈阳生态研究所在缓控释肥研究领域取得的辉煌成就,石元亮博士详细介绍了“稳定性肥料行业标准”和标准的制定过程。   与会代表认为,标准的制定和颁布将进一步规范我国缓控释肥的生产和流通,对保护农民利益和缓控释肥在我国的推广施用起到积极的推动作用。据悉,“稳定性肥料行业标准”由国家化肥质检中心上海、中科院沈阳、沈阳中科、施可丰和黑龙江倍丰集团共同参与制定,并将两年后将提升为国家标准。
  • 高性能润滑油的稳定性和颗粒特征
    LUM邀请您参加2021年9月14日至17日润滑油和冷却液系列的在线研讨会。本次活动的课题将帮助您更好的了解润滑油以及冷却液的特性,从而帮助您优化并改进您产品的配方。本次课题的在线研讨会都是独立的,您需要单独注册每一个课题。润滑油和冷却液之课题二: 高性能润滑油的稳定性和颗粒特征课题二的讨论重点是如何通过SEPView® 软件的三种分析模块来评价高性能的润滑油的稳定性和颗粒特征。主讲人:Stefan Küchler会议持续时间:60分钟会议语言:英语会议时间:2021年9月16日15:00 (北京时间)报名方法:扫描下方”二维码”填写报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。如有问题,请联系 event@lum-gmbh.de
  • 超级电容又添新材料,稳定性大幅度提高
    p   多年来,能装在芯片上的微小超级电容一直广受科学家追捧,决定电容器性能的关键是其电极材料,有潜力的“选手”包括石墨烯、碳化钛和多孔碳等。据德国《光谱》杂志网站近日报道,芬兰国家技术研究中心(VTT)研究团队最近把目光转向了一种“不可能”的弱电材料——多孔硅,为了把它变成强大的电容器,团队创新性地在其表面涂了一层几纳米厚的氮化钛涂层,使其性质得以改变。 /p p   该团队负责人麦卡· 普伦尼拉解释说,因化学反应导致的不稳定性和高电阻导致的低功率,不带涂层的多孔硅本是一种极差的电容器电极材料。涂上氮化钛的能提供化学惰性和高导电性,带来了高度稳定性和高功率,且多孔硅有很大的表面积矩阵。 /p p   根据荷兰爱思唯尔出版集团《纳米能源》杂志在线发表的论文,新电极装置经13000次充放电循环而没有明显的电容减弱。普伦尼拉说,报告数据受检测时间的限制,而并非电极真实性能。他们继续对其进行充放电循环,至今已达到5万次,甚至在循环中让电极干燥,也没有出现物理损坏或电学性能衰减问题。“超级电容要求稳定地达到10万次循环。目前用多孔硅—氮化钛(Si-TiN)做电极的电容装置能完全稳定地通过5万次测试。” /p p   在功率密度和能量密度方面,新电极装置比得上目前最先进的超级电容器。目前由氧化石墨烯/还原氧化石墨烯制造的芯片微电容器功率密度为200瓦/立方厘米,能量密度为2毫瓦时/立方厘米,而新电极装置功率密度达到214瓦/立方厘米,能量密度为1.3毫瓦时/立方厘米。普伦尼拉说,这些数字标志着硅基材料首次达到了碳基和石墨烯基电极方案的标准。 /p p   从电子产品的功率稳定器到局部能量采集存储器,芯片超级电容器有着广泛的应用。普伦尼拉说,他们在整体设计中还存在一些难题,每单位面积电容仍需提高,要达到技术许可的最高水平,他们还需进一步研究。 /p p   总编辑圈点 /p p   日本厨师发现将牛油果加上芥末竟然有了三文鱼的味道。如今,芬兰科学家也玩起了这样混搭的“戏法”——他们给多孔硅穿上一层氮化钛的外衣,尽管这层薄薄的外衣只有几纳米那么厚,却足以改变多孔硅电极的性能。这样的想象力让超级电容器的电极材料又多了一位优质成员,且它给人们的生活带来的改变也许远比一道日本料理大得多!随着芯片技术的广泛应用,希望科学家尽快解决多孔硅电极材料在超小型超级电容器上的设计问题,让这样巧思的发明早日造福人类。 /p p br/ /p
  • 青岛能源所发明高通量高稳定性的拉曼流式细胞术pDEP-DLD-RFC
    单细胞拉曼光谱(SCRS)能非标记、非侵入性、无损、全景式地揭示细胞代谢状态,因此基于SCRS的活体单细胞流式检测(Raman Flow Cytometry,RFC),有着广阔应用前景。近日,青岛能源所单细胞中心和青岛星赛生物合作发明了基于介电诱导确定性侧向位移完成单细胞聚焦、捕获/释放的拉曼流式检测技术pDEP-DLD-RFC,并证明其针对人体细胞(肿瘤)、植物(微藻)、酵母和细菌等多种细胞类型的广谱适用性。基于此推出的FlowRACS 3.0仪器,为活体单细胞代谢表型组的高通量检测提供了全新工具。该工作近日发表于《先进科学》(Advanced Science)。活体单细胞代谢表型组的流式检测,在微生物资源挖掘、细胞工厂筛选、酶元件表征、生物过程监控、临床诊疗等方面,具有共性的支撑作用。与荧光流式和质谱流式等现有流式细胞检测手段相比,拉曼流式具有无需标记细胞、活体检测、信息量丰富等优势,因此是一种具有广阔应用前景的细胞分析手段。但是,高通量拉曼流式技术的应用受限:首先,如何提高样品的普适性,以适用于不同细胞类型与不同表型的检测;其次,如何提高检测的通量,以实现高度异质性细胞群体的深度检测;最后,如何提高运行的稳定性,以支撑高度可靠的仪器使用流程。针对上述问题,青岛能源所单细胞中心王喜先、任立辉、刁志钿、何曰辉等带领的研究小组发明了“介电诱导确定性侧向位移实现单细胞聚焦、捕获/释放的拉曼流式检测技术”(Positive Dielectrophoresis Induced Deterministic Lateral Displacement-based Raman Flow Cytometry,pDEP-DLD-RFC)。首先,通过宽流场高流量的进样策略,有效防止细胞沉降,从而实现了长时间稳定运行(>5小时);其次,通过介电诱导细胞确定性侧向位移,实现宽场中细胞高效聚焦地流经检测位点,从而保证了拉曼检测效率;最后,通过施加检测时间依赖的周期性介电场,实现了单细胞的快速捕获/释放,以满足各种不同代谢表型的普适性、高通量检测。基于上述关键技术突破,研究小组研制成功兼具广谱通用性、高通量、运行稳定性等性能的高通量拉曼流式检测系统,并开发了一系列应用:肿瘤细胞分类、微藻合成过程监控、产油酵母多表型监控、细菌药敏性检测。第一,植物生物制造过程的代谢监控。基于共振拉曼信号,实现了雨生红球藻中虾青素含量的实时监测,从而示范了单细胞精度的虾青素累积过程细胞工厂代谢状态的监控,并考察了“高光”和“缺氮”等条件对细胞虾青素累积速度及其同步性的影响。其虾青素含量检测速度达~2700 events/min,为目前最高的自发拉曼检测/分选通量。第二,酵母生物制造过程的代谢监控。基于非共振拉曼信号,示范了油脂酵母中细胞代谢活力、甘油三脂含量、油脂不饱和度等多个关键代谢表型的同步动态监控,进而通过拉曼组机器学习、拉曼组内关联分析(Intra-Ramanome Correlation Analysis,IRCA)等算法,实现了单细胞代谢状态(准确率>96%)的实时鉴定,以及细胞内代谢物相互转化网络的实时重建。第三,细菌药敏性的流式快检。基于单细胞中心前期提出的重水饲喂单细胞拉曼药敏原理,以大肠杆菌和多种常见抗生素为例,开发了流式药敏快检技术,并通过与拉曼药物应激条形码(Raman Barcode for Cellular Stress-response,RBCS)、IRCA、拉曼组机器学习等算法,证明该流式药敏快检技术还能实时地判断单菌体精度的药物应激状态、构建细胞内代谢物相互转化网络等,从而揭示细菌-药物互作机制。此外,流式检测大大提高了药敏检测中SCRS取样深度,对于识别群体中通常占比很低的耐药细胞,具有重要的意义。第四,肿瘤细胞类型的快速区分。基于SCRS中信息丰富的指纹区,以膀胱癌、肺癌、肾细胞癌、乳腺癌等细胞株为例,证明流式拉曼技术耦合拉曼组机器学习算法,能以平均95%的准确率,完成肿瘤细胞类型的快速判别。该方法对于肿瘤细胞质量检测等应用具有潜在的应用价值。与转录组、蛋白组和代谢物组相比,拉曼组能表征单细胞精度的底物代谢、产物合成、环境应激性、化合物相互转化等关键代谢表型,而具广谱适用、活体、无损、非标记、全景式表型、可分辨复杂功能、快速、低成本、能耦合下游测序、质谱或培养等优势,因此拉曼组是一种更接近于“功能”、更适合于临床、工业等场景的单细胞表型组。为了支撑人体、动植物和微生物拉曼组数据的自动化采集与分析,单细胞中心与星赛生物基于pDEP-DLD-RFC技术,推出了高通量流式拉曼分析/分选仪FlowRACS 3.0,将大大加速拉曼组平台的推广应用。该工作由单细胞中心马波研究员和徐健研究员主持,与青岛星赛生物合作完成,得到了国家重点研发计划、国家自然科学基金委和山东省自然科学基金委的支持。
  • 《保健食品稳定性试验指导原则》征求意见
    关于征求《保健食品稳定性试验指导原则》意见的函   各省、自治区、直辖市食品药品监督管理局(药品管理局):   为加强保健食品注册管理,进一步规范保健食品稳定性试验,我司组织起草了《保健食品稳定性试验指导原则》(征求意见稿)。现公开征求意见,请于2013年8月19日前将意见和建议反馈我司。   联系人:李莉   电 话:(010)88330505   邮 箱:wangtz@sfda.gov.cn   传 真:(010)88374394   附件:《保健食品稳定性试验指导原则》(征求意见稿)   国家食品药品监督管理总局食品安全监管三司   2013年7月29日   (公开属性:主动公开)   附件: 保健食品稳定性试验指导原则(征求意见稿)   稳定性试验研究是保健食品质量控制研究的重要内容之一,也是保健食品注册、监管工作的重要依据之一。保健食品注册申请人应按照法律、法规、规章及国家相关标准等的有关要求,应根据产品具体情况,合理地进行稳定性试验设计和研究。   一、基本原则   (一)保健食品稳定性试验是指保健食品通过一定程序和方法的试验,考察产品的感官、化学、物理及生物学的变化情况。   (二)保健食品稳定性试验目的是通过稳定性试验,考察产品在不同环境条件下(如温度、相对湿度等)的感官、化学、物理及生物学随时间增加其变化程度和规律,从而判断申报产品包装、贮存条件和保质期内的稳定性。   (三)根据产品特性不同,稳定性试验可分为加速试验、长期试验和短期试验。   1.加速试验:该类产品一般保质期为2年,为了缩短考察时间,可在加速条件下进行稳定性试验,在加速条件下考察产品的感官、化学、物理及生物学方面的变化。   2. 长期试验:该类产品一般保质期为1至2年,在常温或说明书规定的条件下考察其稳定性。   3.短期试验:该类产品保质期一般在3至6个月内,在常温或说明书规定的贮存条件下考察其稳定性。   二、稳定性试验要求   (一)产品类别:不同的产品,其剂型、原辅料、成分等不同,对稳定性试验的要求、方法、判定标准也不同。   1.一般产品:对贮存条件没有特殊要求的一般产品,可在常温条件下贮存,如固体类产品(片剂、胶囊剂、颗粒剂、粉剂等) 液体类产品(口服液、饮料、酒剂等)。   2.特殊产品:对贮存条件有特殊要求的产品,如:益生菌类、鲜蜂王浆类等。   (二)样品批次、取样和用量:应符合现行法规的要求,满足稳定性试验的要求。   (三)样品包装及试验放置条件   稳定性试验的产品所用包装材料、规格和封装条件应与产品质量标准、说明书中的包装要求完全一致。   1.普通样品   加速试验应置于温度37±2℃、相对湿度RH75±5%、避免光线直射的条件下贮存三个月。   长期试验、短期试验应在说明书规定的储存条件下贮存,贮存时间根据产品质量标准及说明书声称的保质期而定。   2.特殊样品   在说明书规定的贮存条件下贮存。   (四)试验时间   稳定性试验中应设置多个考察时间点,其考察时间点应根据对产品的性质(感官、理化、生物学)了解及其变化的趋势而设定。   1.普通产品   加速试验一般考察时间为三个月,即对放置0月、1月、2月、3月样品进行考察。0月数据可以用同批次产品卫生学试验结果代替。   长期试验一般考察时间应与产品保质期一致,如保质期定为二年的产品,则应对0、3、6、9、12、18、24个月产品进行检验。0月数据可以用同批次产品卫生学试验结果代替。   2.特殊产品   在说明书规定的贮存条件下进行考察。保质期在三个月之内的,应在贮存0、终月(天)进行检测 保质期大于三个月的,应按每3个月检测一次(包括贮存0、终月)的原则进行考察。   (五)考察指标   应按照国家有关部门颁布的或者企业提供的检验方法,对申请人送检样品的卫生学及其与产品质量有关的指标在保质期内的变化情况进行的检测。   (六)所用方法   应按产品质量标准规定的检验方法进行稳定性试验考察指标的检测。   三、稳定性试验结果评价   保健食品稳定性试验结果评价是对试验结果进行系统分析和判断,稳定性试验检测结果应符合产品质量标准规定。   (一)贮存条件的确定   应参照稳定性试验研究结果,并结合产品在生产、流通过程中可能遇到的情况,同时参考同类已上市产品的贮存条件,进行综合分析,确定适宜的产品贮存条件。   (二)直接接触产品的包装材料、容器等的确定   一般应根据产品具体情况,结合稳定性研究结果,确定适宜的包装材料。   (三)有效期的确定   保健食品有效期应根据产品具体情况和稳定性考察结果综合确定。采用加速试验考察产品质量稳定性的产品,根据加速试验结果,产品保质期一般可定为2年 采用长期试验或短期试验考察产品质量稳定性的产品,总体考察时间应涵盖所预期的保质期,应以与0月数据相比无明显改变的最长时间点为参考,根据试验结果及产品具体情况,综合确定产品保质期 同时进行了加速试验和长期试验的产品,其保质期一般主要参考长期试验结果确定。
  • 仪器稳定性,你是跑去过节了吗?
    仪器稳定性,你是跑去过节了吗? ——仪器社区用户:郭玲玲我是高校制药工程实验室的实验技术人员,从业13年。目前,实验室有各种设备200余台(套),主要涉及的是压片机、制粒机、包衣机、均质机、纳米粒度仪、水分测定仪、崩解仪、溶出仪、透皮测定仪、紫外分光光度计、液相、气相、气质、旋蒸、搅拌器、离心机、培养箱、超净台等各种制剂制造、质量检测、合成等方面的仪器设备。制药工程专业人才培养需要的相关设备基本齐备。(图源于网络)这些设备是经过数次集中采购陆续进入实验室的。现有设备总价值约六百余万元,其中国产设备占台套数的九成,但是价值只占到六成。国产设备主要是合成设备、制剂设备等,比如搅拌器、压片机等;进口设备主要是分析仪器,比如紫外、液相、气相、粒度仪等精密高值设备。国产和进口设备的差别说到国产和进口设备的差别,印象最深刻的是紫外分光光度计。实验室现有紫外12台,其中5台日本产、1台德国产、4台上海产(来自两个厂家)、2台北京产,单价从1万到8万不等。德国产最贵,资历也最老,2007年开始使用,至今正常。紫外分光光度计是较成熟的设备,国内生产厂家很多。在仪器信息网上搜索紫外分光光度计,厂商有数百个。我们有一个实验“双波长法测定磺胺甲恶唑片含量”,见图。这个实验要求设备稳定,具体对应的仪器参数是重复性和基线稳定性,背景物质在两个波长下的吸光度应相同。国产的6台设备中,两台价值较高的是可以满足实验要求的,但这个稍微好点的设备却没有办法长时间保持基线稳定,比如开机8小时,基线直接飘到3上了,需要重复开关机操作,性能没有办法与进口商品抗衡。国产精密的科学仪器发展,道阻且长作为科学仪器的消费主力之一,高校是希望买到好用又便宜的国产设备的。毕竟,相对于进口设备,国产设备采购手续更简单。今年,我们壮着胆子买了几台国产液相,接触了5-6家厂商,比较震惊的一个事情是,国产液相只有紫外检测器,没有二极管阵列检测器,接触的几个厂家中只有一家可以提供一个进口的PDA可选件。在精密的科学仪器领域,我们国家仍处于远古时代,非常的弱,前方道阻且长。国产设备跟进口设备之间不仅仅是技术的断崖式差距,更是包括销售、售后、技术、品控、生产等一系列的巨大差距,希望从业者们乘着政策的东风,扶摇直上青云,如家电行业一样,做大做强,让我们这些使用者可以发自内心的愿意购买和使用国产科学设备。
  • 提高国产分析仪器质量 稳定性先行——访金义忠教授
    仪器信息网讯 早在2011年出台的《仪器仪表行业&ldquo 十二五&rdquo 发展规划》中就指出,我国仪器仪表行业还存在国产产品稳定性和可靠性与国外产品有明显差距。国家科技部组织召开系列&ldquo 国家重大科学仪器设备开发专项可靠性培训&rdquo ,以协助重大专项承担单位更好地完成仪器设备开发过程中的可靠性工程应用。&ldquo 国产科学仪器腾飞行动&rdquo 对此也予以高度关注,并于2013年11月举办&ldquo 分析仪器可靠性高层研讨会&rdquo ,以探讨提升国产分析仪器稳定性、可靠性的思路和方法。2014年11月, 第七届中国在线分析仪器应用及发展国际论坛也举办了&ldquo 在线分析仪器稳定性、可靠性专题报告。目前,国产科学仪器生产企业也比较重视仪器的&ldquo 稳定性和可靠性&rdquo ,据了解,北京华科仪电力仪表研究所已经和北京航空航天大学可靠性研究所建立战略合作,禾信分析仪器有限公司与工信部电子五所签订了战略合作协议及相关技术服务协议。为此,仪器信息网近日采访了重庆科技学院电气与信息工程学院兼职教授金义忠。   MTBF即平均无故障时间是衡量分析仪器可靠性的重要指标。金义忠谈到,分析仪器具有&ldquo 小批量生产&rdquo 的特点,对很多企业而言,MTBF的验证试验和测定试验的耗时太长(90天以上),样机数量大(10套以上),现实确有客观困难,做不起这个实验。同时,用户很难相信、也无从判断MTPF是否可信。   对于《仪器仪表行业&ldquo 十二五&rdquo 发展规划》把稳定性置于可靠性之前,金义忠也谈了自己的看法:&ldquo 我自认为这种提法非常高明。&rdquo 用户对MTPF不信任源于指标不直观,而对&ldquo 稳定性&rdquo 就容易理解了,仪器开机,用户就知道这台仪器的稳定性如何了。仪器开机后,预热时间是多长,是否很快进入工作状态?是否只需很少次数的校准,甚至勿需校准?用户很容易得出这台仪器稳定性好或者坏的结论。   金义忠以在线分析系统(OAS)为例,介绍了如何以高稳定性为突破口,实现OAS的高可靠性。OAS的可靠性是OAS在工程应用条件下,在规定的运行期限内,完成和保持OAS在设计时所规定功能的能力,也就是OAS长期工程运行的能力。在线分析工程应用包括4个很核心的内容个方面:稳定性、协调性、可靠性、安全性 稳定性是OAS最重要的技术指标,主要决定于所采用的OA。   金义忠提出OAS可靠性研究的创新思维:(1)弱化&ldquo MTBF&rdquo 评价方式,(2)OAS是开放的复杂技术系统,(3)智能化技术不能全部解决可靠性难题,(4)将OAS可靠性解决在专业化规范设计阶段,(5)OAS的整体化优化设计和协调进化,(6)OAS工程应用技术一次性完整地向工程用户转移。   对于解决OAS可靠性的技术突破方向,金义忠谈到,首先要明确OAS的两大技术基础(两大次级子系统)是OA和样品处理系统,OA是OAS的核心技术,样品处理系统是OAS的关键技术。其次。OA必须坚持&ldquo 稳定性第一&rdquo ,稳定性是其代表性核心技术指标,也可理解为&ldquo 少校准第一&rdquo ,稳定性是OA和OAS高准确度工程应用最重要、必须的前提条件。LKA100R热导分析仪近乎零漂移的热导传感器,是这一思想的实践成果!   促进思想交流,更好地促进中国科学仪器在稳定性、可靠性方面取得更大进步,仪器信息网特邀金义忠入住&ldquo 专家专栏&rdquo ,以连载的形式,就五个方面(约80篇)展开深入的探讨和交流:   (1)在线分析系统基础理论的初创   (2)在线分析仪的创新研制   (3)样气处理系统的优化设计   (4)在线分析系统的工程应用   (5)科技创新的技术观和方法论   附录:个人简历   从事在线分析仪及传感器、样气处理系统及核心部件、在线分析系统的研发、生产及工程应用已43年,并首倡在线分析系统基础理论的初创,获国务院颁发政府特殊津贴等荣誉。现任重庆科技学院兼职教授,重庆凌卡分析仪器有限公司技术总监,分析仪器分会在线分析仪器专业委员会委员。
  • 生态环境部发布《区域生态系统稳定性评价技术指南》
    2021年,中共中央、国务院印发了《国家标准化发展纲要》,提出要完善绿色发展标准化保障,持续优化生态系统建设和保护标准。2022年,为贯彻实施《国家标准化发展纲要》, 更好发挥标准化在推进国家治理体系和治理能力现代化中的基础性、引领性作用,市场监管总局等16个部门联合印发《贯彻实施〈国家标准化发展纲要〉行动计划》(国市监标技发〔2022〕64号),在生态领域提出要完善生态系统保护与修复标准体系,明确指出要开展生态系统稳定性评价标准制定。同年5月,生态环境部印发《关于开展2022年度第二批国家生态环境标准项目实施工作的通知》(环办法规函〔2022〕205号),将《生态系统稳定性评价技术指南》列入2022年第二批国家生态环境标准项目。项目由中国环境科学研究院牵头起草完成, 协作单位为生态环境部南京环境科学研究所。生态环境部组织发布国家生态环境标准《区域生态系统稳定性评价技术指南》,现公开征求意见。征求意见截止时间为2024年7月21日。本标准规定了生态系统稳定性评价的技术方法和评价标准。本标准为首次发布。本标准规定了区域生态系统稳定性评价的技术流程、评价指标、评价方法、稳定性分级等主要内容。 本标准适用于以县级及以上行政区域作为基本单元的区域陆域生态系统稳定性评价,其他一定地理 空间单元范围内的陆域生态系统稳定性评价可参照本标准执行。附:征求意见单位名单.pdf区域生态系统稳定性评价技术指南(征求意见稿).pdf《区域生态系统稳定性评价技术指南(征求意见稿)》编制说明.pdf
  • 水质分析仪运转速度快,稳定性强
    随着科技的不断进步以及人们对生活饮用水的水质要求不断提高,饮用水水质标准也相应地不断发展和完善,水质检测成为了一项重要的工作。而随之而来的需求,便催生了各种不同类型的水质分析仪器。水质分析仪作为一种灵活性高、功能的设备,正逐渐成为水质测定领域中的重要工具。  水质分析仪报价参考→https://www.instrument.com.cn/show/C551505.html  一、水质分析仪作用分析:  1、水质分析仪可以快速、准确地测量和分析水中各种重要参数,如pH值、溶解氧、浊度、电导率、温度、氨氮、总磷等。通过对水质参数的监测和评估,可以判断水体的健康状况,确定是否符合相关的水质标准和要求。  2、多参数水质分析仪可以用于监测不同水体环境的水质情况,包括河流、湖泊、水库、海洋、地下水等。通过实时监测水质,可以及时发现和解决潜在的污染问题,保护水源和环境资源。  3、水质分析仪可以帮助进行水处理和调整。通过对水质指标的测量,如pH值、溶解氧、电导率等,可以检测水体的特征和问题,从而采取相应的水处理措施,使水质得以改善或调整。这对于工业、农业和民用领域的水处理过程非常重要。  4、多参数水质分析仪在紧急情况下具有快速响应的能力。例如,在自然灾害(如洪水、地震)或突发污染事件中,可以立即使用该设备进行水质检测,评估受灾地区的水质情况,及时采取措施保护人民的饮用水安全。  5、水质分析仪在实验室和研究领域中也有重要作用。它可以用于教学实验、学术研究或专业调研,帮助学生和研究人员进行实时的水质监测和数据收集,培养科学研究能力,并为科研成果提供准确的数据支持。  二、水质分析仪功能特点:  1、采用全新安卓7.1.1智能系统,人性化中文操作界面,运转速度更快速,稳定性更强。  2、8英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。  3、采用精密比色池设计,使用光源一致,可以解决由于光源误差带来的检测结果误差问题,检测结果更加精准。  4、光源采用进口超高亮发光二极管,光源亮度可以自动调节与校准。  5、支持10mm、30mm、50mm皿比色和φ16mm管比色等比色方式,多元选择,确保测量的准确性;  6、具有无线通讯功能,支持WIFI、RJ45、手机热点联网传输,检测数据亦可通过U盘导出;  7、多功能样品管理,可对样品进行中英文命名,方便样品记录和数据存储;  8、仪器可永久存储800万组数据,为方便大量数据查找,可通过时间检索,并随意选择分析;  9、支持HDMI输出,方便用户培训、讲解、及大屏展示。  10、仪器带有监管云平台,数据可通过局域网和互联网上传,亦可对接上传至环境监管部门平台。  11、内置热敏行式打印机,打印纸上的内容可自由选择(包括二维码打印);  12、交流220V,可选配6ah大容量充电锂电池,方便户外流动测试;  13、后期产品固件可升级。  三、多参数水质分析仪技术参数:  波长配置:420nm、470nm、520nm、560nm、620nm、700nm;  示值误差:≤±5%;  仪器稳定性:<0.5%;  仪器重复性:<0.5%;  光化学稳定性:20min内数值漂移≤0.002A(10万小时寿命);  四、水质分析仪物理参数:  比色方式:比色管(16mm消解比色一体管)、比色皿(10mm、30mm、50mm);  操作系统:Android7.1.1智能操作系统  操作界面:中文或英文操作界面;  显示屏:8英寸(1024*768分辨率)高清晰度彩色液晶触摸屏;  曲线数量:820条标准曲线、420条拟合曲线  网络接口:USB2.0、HDMI、WiFi、蓝牙、热点、RJ45;  云平台:仪器带有监管平台,连接有线/无线网络,检测结果直接传输至环境安全监管平台。  打印机:热敏行式打印机;  数据储存:800万组,可自由调用查看;  数据导出格式:Excel表格;  仪器尺寸:(367*243*125)mm;  仪器重量:2.1kg;  五、多参数水质分析仪环境及工作参数:  环境温度:(5-40)℃;  环境湿度:相对湿度<85%(无冷凝);  额定功率:10W  工作电源:AC220V±10%/50Hz;  可配置:大容量锂电池。  水质分析仪在水质监测、环境保护、水处理调整、紧急响应和研究应用等方面发挥着重要的作用。它的简便性、快速性和精确性使其成为水质领域中一种实用的工具,通过使用这种仪器,可以方便地进行水质测试工作,提供准确的测试结果,帮助用户了解和解决水质问题。
  • 东北地理所等在土壤有机碳热稳定性研究方面取得进展
    土壤有机碳的稳定性影响土壤固碳潜力。如何提取土壤活性与稳定性碳组分用以定量表征土壤有机碳稳定性,是土壤固碳研究领域的关键科学问题。当前,提取土壤有机碳活性及稳定性组分的方法多样,包括物理、化学及生物手段,导致结果难以比较,同时存在耗时长、成本高及操作步骤繁琐等缺点,亟需一种高效、可信度高且应用广泛的测定方法。对比分析不同热分解技术的优缺点, 包括热裂解气相-质谱联用测定技术、热重分析技术、差示扫描量热分析技术及Rock-Eval(RE)热分解方法,人们普遍认为RE方法操作简单、耗时短、成本低、结果易于分析,可信度较高,可以很好地表征土壤有机碳稳定性,有利于土壤有机碳研究的横向对比。   中国科学院东北地理与农业生态研究所研究人员依托保护性耕作长期定位实验(建于2001年)在国内首次开展了相关研究,包含免耕玉米-大豆轮作(NTCS)、秋翻玉米-大豆轮作(MPCS)、免耕玉米连作(NTCC)、秋翻玉米连作(MPCC)、常规耕作玉米连作且秸秆不还田(CTCC)5个处理。该研究采集了不同深度的土壤样品,测定其土壤热稳定性(图1),计算RE相关指标,同时与土壤异养呼吸及微生物残体进行相关分析。RE方法分为热解和氧化两个阶段,包括S1-S5五个阶段,具有多个相关指标,TMAX(℃)代表在S2热解阶段释放的富氢化合物达到峰值时对应的温度,可作为指示土壤有机碳成熟度的指标。HI表示在土壤有机碳中富氢化合物的相对含量,OIRE6表示在土壤有机碳在S3阶段释放的O2相对含量,代表土壤有机碳的相对氧化状态。T50代表在氧化阶段(S4)释放的CO2达到该部分总释放值50%时的温度,用来表征稳定性碳库。研究结果表明,耕作方式对RE指标影响很大(TMAX、HI、T50),但是作物轮作对其无显著影响,其中免耕显著提高了土壤表层的有机碳热稳定性(TMAX)。RE指标(HI)在短期室内培养实验中(100天)可以很好地表征土壤异养呼吸情况,也在国际上首次发现TMAX指标与真菌残体(GluN)有很高的相关性(R2=0.93)(图2)。该研究为未来RE方法在国际上的推广应用提供了有效的数据支撑。   相关研究成果以Linking Rock-Eval parameters to soil heterotrophic respiration and microbial residues in a black soil为题发表在Soil Biology and Biochemistry上。研究工作得到中科院战略性先导科技专项、国家自然科学基金等项目的资助。图1 RE方法测定图谱(以免耕玉米大豆轮作及秋翻玉米大豆轮作0-5 cm土层为例)图2 真菌残体GluN与TMAX线性回归关系
  • 科学岛团队在含能材料常压稳定性研究方面取得新进展
    近期,中国科学院合肥物质院固体所在含能材料的常压表面稳定性研究方面取得新进展,研究人员利用第一性原理和分子动力学方法,首次系统研究了高能密度材料立方聚合氮( cg-N)的低指数表面在不同表面饱和状态和不同压力及温度下的稳定性,发现了 cg-N低压下的失稳机制,提出了一种能够使其在常压下稳定的方法。 相关结果以 Express Letter 的形式发表在 Chinese Physics Letters 上。   具有氮氮单键或氮氮双键的聚合氮和含氮化合物作为高能密度材料具有广阔的应用前景,其中高压合成是获得该类材料的有效方法。理论预测的多种可以在常压下稳定的纯氮聚合氮,部分已被成功地在高压下合成。cg-N是纯氮聚合氮中最典型的一种,具有最小的合成压力,且0 GPa下的声子谱中没有虚率。然而,高压下合成的cg-N会随着压力的降低逐渐分解,同样的现象也出现在其它纯氮聚合氮材料中。目前高压下合成的纯氮聚合材料均不能被截获至常压环境,这阻碍了它们作为高能密度材料的应用。因此,研究低压下cg-N的分解机理并寻找其常压环境下稳定的方法具有重要意义。   鉴于此,研究人员首先探究了cg-N失稳的原因,发现常压下cg-N低指数表面在300 K温度时发生了结构坍塌,说明表面失稳将导致其在低压下分解。进一步研究表明,常压下氢吸附能够将cg-N的表面稳定到750 K以上(图1),但羟基吸附不能增加表面的稳定性。这是由于氢不但饱和了悬挂键,而且向氮表面转移了电子,但羟基却从氮表面获得电子(图2)。该工作为截获高压合成的聚合氮提供了一种新思路,表明酸性环境和电负性弱的材料有利于提高cg-N和其它含氮聚合物的稳定性,对推动聚合氮的常压合成和实际应用具有重要意义,同时也为截获其它功能材料的高压相提供了有效指导。   固体所博士生陈果和牛草萍为论文的共同第一作者,王贤龙研究员为通讯作者,研究得到了合肥物质院院长基金等项目的资助。图1. (a) 氢饱和表面在结构坍塌前(蓝线)后(红线)温度下的分子动力学均方位移;(b) 纯净表面和氢饱和表面在结构弛豫和有限温度下(最高达1000 K)的分子动力学模拟中的稳定性,雷达图不同的环表示不同的不稳定性,更外侧的环是更稳定的,r-(110c) 表示具有表面重构的110c表面。图 2.(a) 和 (b) 分别展示了氢吸附的 111a 表面和羟基吸附的 111a 表面的电荷密度差。图中的曲线沿晶体结构(如插图所示)的 z 方向绘制,红线所示的局部积分曲线表示获得(正值)和失去(负值)电子,蓝线所示的积分曲线是红线的积分。
  • 药品稳定性试验箱的故障如何判断?
    药品稳定性试验箱的故障判断需要从外到内药品稳定性试验箱是一种针对性很强的环境试验设备,主要适用于制药企业对药品及新药的加速试验、高温试验和强光照射试验,是制药企业进行药品稳定性试验选择方案。药品稳定性试验箱在试验运行过程中突然出现故时,控制仪表上出现对应的故障显示提示并有声讯报警提示,操作人员可以对照设备的操作使用中的故排除一章中快速检查出属于哪一类故,即可请专业人员快速排除故,以确保试验的正常进行 其它环境试验设备在使用中还会有其它的现象,那就要具体现象 具体分析和排除.环境试验设备还要定期进行维护保养,制冷系统的冷凝器定期清理,对于活动部件应按说明书加油润滑,电器控制系统定期维护检查等等,这些工作是不可少的.药品稳定性试验镇低温达不到试验的指标,那你就要观察温度的变化,是温度峰的很慢,还是温度到一定值后温有回升的超势,前者就要检查一下,做低温试验前是否将工作室烘干,使工作室保持干燥后再将试验样品放入工作室内再做试验,工作室内的试验样品是否放置的过多,使工作室内的风不能充分循环,在排除上述原因后,就要考虑是否是制冷系统中的故煌了,这样就要请厂家的专业人员进行检修。后者的现象是设备的使用环境不好所致,设备放置的环境温度,放置的位置(箱体后与墙的距离)要满足要求(在设备操作使用说明中都有规定)。一般来说分析判断的过程可以先”外”后”里”,即首先排除外部因素后,根据故障现象对设备进行先系统分解,后对系统综合的分析与判断,或可以采用倒推的方法查找障原因:首先按照电气接线图查找是否电气系统有问题,最后查找是否制冷系统的问题,在没弄清故障原因前,切不可盲目拆卸或更换零部件,以免造成不必要的麻烦。药品稳定性试验箱是以科学的方法创造一个对药品失效评测所需长时间稳定的温度、湿度环境,适用于制药企业对药品及新药的加速试验、长期试验、高湿试验,是制药企业进行药品稳定性试验最佳选择方案。 仪器特点◆ 配备进口带刹万向脚轮,外形精巧,承重性好,双轮设计转动顺畅,移动安全便捷。◆ 门与箱体之间采用耐高温之高张性密封条以确保测试区的密闭,保证测试数据的精度和稳定性。◆ 以高质量抗菌不锈钢材质和经圆边处理而制成的光滑表面.易于清洁和保持完美的清洁度。◆ 独特的风道结构,进口风扇马达搭配耐高低温的多翼式结构循环搅拌风叶,以达到空气的强制对流垂直扩散循环效果。◆ 大容量外部水箱对整个水路进行自动补水,省却频繁人工手动加水的繁琐作业。同时水位控制采用机械式浮球水阀感应水位,杜绝了电子式误操作。◆ 采用模糊PID智能控制方式,具有可编程的程序运行模式,温湿度控制输出功率均由微电脑演算,以达高精度及高效率之用电效益。◆ 配备外部RS485通讯接口及USB输出存储端口,方便用户连接外部PC机对试验数据进行监控显示和数据导出存储。加强了人机对话功能,有效确保了试验的直观性。◆ 具备超大可视观察窗,能在外门不被开启的情况下,全方位、立体式观察设备内部各个区域的实验情况。◆ 标配有漏电保护、独立的可调温度安全装置、水路缺水及防溢流保护、压缩机过压保护、冷却风机过热保护、开门报警、停电报警、传感器报警等功能确保用户使用的绝对安全性。◆ 配置进口品牌压缩机和德国EBM散热风机,选用瑞士ROTRONIC原装进口湿度传感器,霍尼韦尔PT1000三芯高精度温度传感器。◆ 控制系统具有自动除霜和手动除霜两项除霜功能供用户选择(做长期试验时建议选择自动除霜功能),可有效避免设备运行中因蒸发器结霜严重而造成设备箱体内温湿度产生漂移等现象。◆ 可拆卸温.湿度传感器防护罩能有效避免意外碰触而导致温.湿度传感器故障的可能。
  • 网络研讨会 | 家居和个人护理产品的光稳定性测试!
    光照,潮湿和温度会对很多快速消费品(FMCG)造成外观的变化及内容物本身的破坏,包括化妆品,药品,个人护理品和食品饮料等等。这些产品使用于诸多不同的场合,经受不同的环境应力影响,选择合适的加速光稳定性测试是个具有挑战性的问题。本次研讨会中涉及日化产品光老化的测试机理,以及如何使用实验室加速光老化设备,如使用紫外老化箱和氙灯老化箱模拟不同的产品应用环境,加速材料老化,判断产品的光稳定性,得出产品货架期等。通过借鉴药品行业的光稳定性测试规范(ICH Q1B),来指导我们日化产品的光稳定性测试。家居和个人护理产品的光稳定性测试网络研讨会介绍●研讨会时间:2021年12月22日(周三)上午10:00-11:00● 研讨会主题:家居和个人护理产品的光稳定性测试●参与方式:网络参与,咨询我们报名主办单位美国Q-LAB公司:一家全球性的材料耐久性测试产品供应商。其生产的紫外老化试验机、氙灯试验机、盐雾试验机是目前国际最高端的老化实验仪器,特别是其QUV更是全球使用最广泛的老化试验机。翁开尔公司是Q-LAB在中国及东南亚行业总代理商。翁开尔公司是Q-LAB在中国及东南亚行业指定代理商。40年代理美国Q-LAB系列产品,全力支持本次研讨会。主讲人瞿华盛(Kobe Qu)---技术兼市场经理,在耐候老化腐蚀测试领域有多年的工作经验。主要从事材料的耐候老化和腐蚀研究工作,包括测试标准的制修订,发表相关的技术文章等。帮助许多行业正确认识耐候老化和腐蚀测试的意义,建立正确的耐候老化测试方案。参与方式咨询我们报名
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制