当前位置: 仪器信息网 > 行业主题 > >

分布情况

仪器信息网分布情况专题为您整合分布情况相关的最新文章,在分布情况专题,您不仅可以免费浏览分布情况的资讯, 同时您还可以浏览分布情况的相关资料、解决方案,参与社区分布情况话题讨论。

分布情况相关的资讯

  • 最新 | 我国团体标准行业、产业分布情况
    图1 团体标准行业分布情况图2 团体标准产业分布情况 2021年10月份,共有281家社会团体在平台上声明公开了844项团体标准。其中,制造业数量最多,共有104家社会团体声明公开了294项团体标准,占比34.83%;其次为农、林、牧、渔业,共有65家社会团体声明公开了160项团体标准,占比18.96%;第三为信息传输、软件和信息技术服务业,共有21家社会团体,声明公开了54项团体标准,占比6.40%。 截至2021年10月31日,共有5516家社会团体在全国团体标准信息平台注册,声明公开团体标准30376项。图1 声明公开执行标准行业分布情况图2 声明公开执行标准地域分布情况 2021年10月份,企业标准信息公共服务平台新增注册3167家企业,新增声明公开执行标准31635项,涉及产品54585种。 截至2021年10月31日,344144家企业在企业标准信息公共服务平台累计声明公开执行标准信息2065485项,涉及产品共计3504663种。
  • 市场调查之国内食品检测机构分布情况
    仪器信息网讯 截止到2013年7月,根据国家质量监督检验检疫总局发布的统计数据,国内获取食品检验机构资质认定(CMAF)的检测机构总计3500-3900家(质检总局公布的数据是3503家,认监委肖亮在第五届中国第三方检测实验室发展论坛暨实验室展览会公布的数据是3827家),其中国家级获证机构410家。   图1 各省获证食品检测机构分布图   图2 食品检测机构系统系统分布百分比   2013年,全国疾控中心总计3522家,其中具有CMAF资质认证的中心数量为1625家,约占整体数量的46.14%。虽然从数据上看,具有CMAF认证的疾控中心在整个疾控体系中比例较高,但是目前的疾控中心基本是有原来的防疫站更名成立的,尤其是地市级和县级的疾控中心更是如此,并且这类拥有CMAF资质疾控中心大部分从事食源性疾病的检测,食品和农产品的质量安全检测能力薄弱。   由于大部制改革还在逐步整合,目前食品药品及技监系统均有从事食品检测的检测机构。根据国家产品质量技术监督管理总局公布的数据,技监系统和食品药品系统的获证食品检测机构总计1299家,具体省份分布请见下表:   表1 1299家技监、食品药品系统食品检测机构分布情况   民营的食品检测机构数量为116家,主要集中在上海、浙江、广东、山东等沿海城市。 表2 116家民营食品检测机构分布情况 撰稿:孙立桐
  • 最新!全国各省份认证证书数及分布情况
    一、整体概况2021年8月 有效认证证书全国分布图 截至2021年8月,我国有效认证证书数为282万张,获证企业数83万家。其中证书数10万以上的省份六个,分别为广东531848张、江苏380822张、浙江374850张、山东213464张、上海117665张和北京109872张。二、领域分布2021年8月获证证书按领域统计情况认证项目证书数组织数合计2899711845861管理体系认证合计1522152728978质量管理体系认证729818682181环境管理体系认证345696335841职业健康安全管理体系认证294262289092食品农产品管理体系认证3909830293信息安全管理体系认证2387523013信息技术服务管理体系认证1188311632测量管理体系认证41593996森林认证1093310540能源管理体系认证75807344知识产权管理体系认证2737227336其它管理体系认证2747620426产品认证合计1326186162246强制性产品认证43870149138食品农产品7429436396自愿性工业产品81319185767服务认证合计5137339806国家推行的服务认证139135一般服务认证5123439695三、地域分布2021年8月获证证书按地域统计情况
  • 我国260个国家重点实验室分布情况一览
    目前,我国共有国家重点实验室260个,按领域分属数理、生物、医学、地学、工程、信息、化学、材料等八个领域;按所属部门分属教育部、中科院、工信部、卫生部、农业部、总后卫生部等,其中教育部所属国家重点实验室占比达51%。下面是国家重点实验室的详细分布情况: 1、 领域 领域 数理 生物 医学 地学 工程 信息 化学 材料 数量 16 44 30 47 43 32 26 22 百分比% 7 17 12 18 17 12 9 8 2. 部门 部门 教育部 中科院 工信部 卫生部 农业部 总后卫生部 其他 数量 133 81 8 7 6 6 19 百分比% 51 31 3 3 3 2 7 3. 地域 地区 华北 华东华中 东北 西北 西南 华南 数量 93 65 25 24 21 18 14 百分比% 36 25 10 9 8 7 5
  • 草莓中农药残留分布分析
    作者:UDO LAMPE、JUAN HAMDI、ABRAHAM WELDAY、SEBASTIAN BIHL、J.-PETER KRAUSE博士草莓之所以受欢迎,部分原因是它们含有大量的健康物质,如膳食纤维和多酚。然而,草莓是最具挑战性的园艺作物之一。种植者必须管理害虫问题的多样性和复杂性,化学植物保护剂,特别是防虫、防螨和防病剂,一直是维持作物产量和质量标准的关键组成部分。为了保护消费者免受残留物的不利影响,欧盟委员会制定了最大残留水平(MRL)。如果按照良好农业惯例施用农药,则代表预期的最高残留浓度。因此,当局认为符合MRL的产品是安全的,并且可以合法销售。除了公共法规外,主要食品零售集团还制定了私人标准。在某些情况下,这些规格比官方MRLs或其他参数(如急性参考剂量)低得多(在某些情况下为1/3或更低)。因此,在常规对照分析中,实验室必须对水果进行分析,以评估MRL的合法适销性。2014年第752号欧盟法规规定,对于浆果和小水果,去除冠叶和茎(葡萄干除外)后,MRL适用于整个产品。如果是草莓,必须去掉冠层叶子。然而,文献中未发现有关水果和叶子之间残留物分布的数据,因此也未发现加工过的叶子对可食用部分残留物浓度的影响。没有迹象表明必须通过大幅度切割或精确移除冠的程度。最近一项研究的目的是调查叶和果实之间的农药残留分布,以评估冠叶未完全移除的风险。材料和方法草莓(500克盒),从当地超市购买,按照农药残留测定的多残留法进行加工和分析。与常规方法将冠叶与水果的一小部分分开相比,在本研究中,只有冠叶(绿色部分)被完全移除,而水果没有任何部分移除,见图1。图1 冠叶(绿色部分)被完全移除,果实没有任何其他部分水果的可食用部分用搅拌机均质(Mycook 1.8,Taurus Professional)。将绿色部分填充到低温研磨机(Retsch CryoMill)的瓶子中。将瓶子冷却至约-30摄氏度(冷震霜SF 51,Nordcap),然后在没有进一步冷却的情况下将冻结的绿色部分研磨3分钟,见图2。之后,按照QUEchERs的方法,通过溶剂萃取萃取农药。采用气相色谱法结合串联质谱法(德国安捷伦)对农药进行测定。用同样的方法处理果肉。农药残留浓度根据产品的千克鲜重(mg/kg)计算为毫克农药。图2 水果的可食用部分用搅拌机均质结果与讨论共准备了30盒草莓用于调查。仅去除冠叶的方法导致叶和果实之间的平均重量比为0.012,见图3。叶面和果实间的农药残留浓度比在6到277之间,变化很大。这种变化是由于样品的选择不具体,可能在处理、果实生长、贮藏等方面有所不同,并影响比例。此外,52%的样品中,残留量仅在叶子中测量,而在水果中未测量。通常可以检测到草莓的典型残留物,并用于评估分布情况,见图4。农药的发现越多,因子的变化越大。由于未满足统计要求,因此无法计算平均分布系数。但结果清楚地表明-残留在叶片中的农药浓度远高于在果实中的农药浓度。如果将冠叶的一小部分与果实一起分析,会发生什么情况?计算的最高因子为277。如果将整个草莓均质化,残渣浓度将增加4.2倍。只有10%的冠叶会将浓度增加1.3倍,这对于MRL较低的农药来说至关重要,并可能导致假阳性结果。草莓的冠状叶应在冠状叶下方进行清楚的切割,以确保完全去除。消费者也应这样做,以避免不必要的残留物摄入。图3 仅去除冠叶的方法导致叶与果实之间的平均重量比为0.012。图4 通常可以检测到草莓的典型残留物并加以利用用于评估分布。• Cyprodinil 嘧菌环胺• Fludioxonil 氟二氧嘧啶• Fluopyram 氟吡仑• Pyrimethanil 乙胺嘧啶• Trifloxystrobin 三氧斯特罗宾原文:Pesticide Residue Distribution in Strawberries——A methodological approach,FOOD QUALITY & SAFETYBY UDO LAMPE、JUAN HAMDI、ABRAHAM WELDAY、SEBASTIAN BIHL、J.-PETER KRAUSE,PHD供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 60年来中国两院院士籍贯分布
    p   近日,2015年两院院士的增选结果引发了大家很大的讨论,大家也一直都听闻说江浙地区历来高产院士,可是对于江浙地区究竟出了多少院士其实并没有太直观的概念。 /p p   青塔本期统计分析了从1955年中科院学部成立以来和1994年中国工程院成立以来的两院院士籍贯分布,从中我们可以一窥端倪。 /p p   本次统计的区间为1955年到2015年这60年来当选的两院院士籍贯,其中包括了外籍华裔院士(非华裔的不做统计),双院士的情况只统计一次,从结果上看籍贯为江苏的院士人数高达450人,籍贯为浙江的院士人数也高达375人,远远超出其他省份,另外广东籍贯的院士也有145人,山东的有143人,福建的则有139人,另外籍贯为湖南和安徽的院士人数也都超过了百人,而这七个省份也均是传统的院士出产大户。 /p p   另外即使只看2015年新当选的院士,则江苏籍的新院士也高达22人,浙江籍的也有11人,湖南籍的有13人,山东籍的有10人,也远远超出其他省份。江浙的院士比较多,除了目前江浙一带经济发展程度较高以外,和江浙地区历来文化传统有关,据统计从唐朝以来,共计产生了416位状元,而其中江浙地区就占了114位。 /p p   不过本次的统计是按照籍贯进行分析的,如果按照出生地来看的话,则江浙地区的院士人数会有所减少,不过也依然超出其他省份不少。如果仅按照出生地来分析,则出生地为上海和北京的院士则大幅上升,出生地为上海的院士数量超过250人甚至不下于浙江,北京也有一百多人,不过其他省份的分布情况变化不大,来看看60年来两院院士的籍贯分布吧: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/noimg/67f688a9-4175-41bf-9dbd-1dd6172acba3.jpg" title=" 图.jpg" / /p
  • 无人机监测揭秘PM2.5时空分布
    到底是一楼灰霾重还是30楼重?很多专家认为楼层越高,空气会越清洁,但是在相同水平层面分布是比较均匀的。不过,上海交通大学彭仲仁教授的团队利用无人机监测后发现,在逆温条件下PM2.5楼层分布规律和之前专家的预测并不完全一致。他们将飞机从地面一直往上飞,发现从300多米往上一直到500米,PM2.5的浓度反而越来越高,再继续往上污染浓度又急剧下降。  学生自制PM2.5监测大杀器  目前人们研究PM2.5以及空气中其他污染物在垂直空间的分布情况,主要是依赖在高层建筑物上建设监测站点,条件非常受限,所得到的数据非常少。上海交通大学智能交通与无人机应用研究中心主任彭仲仁教授发明了一个“大杀器”。他直接在不同高度测数据,PM2.5在不同地方、不同高度的分布情况一目了然。  彭仲仁的学生根据需要,组装了一部无人机。考虑到飞机要比较长时间在空中飞行监测,他们选择了可以在空中飞好几个小时、烧汽油的固定翼飞机。因为烧汽油会产生废气,他们将排气管放在飞机尾部,飞机头的位置要搭载监测仪器的平台,这样废气和仪器的距离就比较远了。彭仲仁说,只要不是顺风飞,尾气就不会影响到监测结果,如果是在逆风方向飞行,数据就更可靠了。  此外,监测仪器那么大,无人机怎么能拖得动?仪器在飞机上怎么控制?这个问题比较棘手。不过美国的空气监测设备厂家解决了这个问题,专门为他们的飞机量身定做了一批监测仪器。彭仲仁说,经过比对,这些小型设备和大型设备监测出来的数据基本差不多,于是监测PM 2.5的“大杀器”就完成了。  实测数据显示锻炼还是早上好  到了开始使用大杀器的时候。他们首先确定飞行的区域为一个四公里乘以四公里的正方形范围内,飞行时间分别分布在上午和下午的四个不同时段。飞机起飞之后,让飞机每上升100米就围绕这个正方形盘旋一周然后继续爬升,通过控制装载在飞机上的仪器记录下不同时间,不同位置的PM 2.5浓度。  监测数据显示,PM 2.5的浓度在清晨6:00-7:30左右最低。随着太阳的逐渐升起,辐射量增加、空气温度升高,人们开始外出活动,污染物排放开始积累,PM 2.5的浓度也随之升高。所以,锻炼什么时候好?从空气污染的角度来看早晨更合适。在水平方向,此前有专家认为,非常细小的PM 2.5在空中的分布是比较均匀的。但彭仲仁团队监测到的实测数据显示,相比PM 10的空间分布确实要均匀很多,但PM 2.5同一水平位置的分布没有此前推测的那么均匀。彭仲仁说,这表明即使在小范围内,PM 2.5浓度仍因风向、地面排放、外部传输等原因呈现不均匀分布。  而且有一次实测数据发现,PM 2.5也并不完全遵循高度越高PM 2.5浓度越低的规律。有一次他们将飞机从地面一直往上飞,发现从300多米往上一直到500米,PM 2.5的浓度反而越来越高,再继续往上污染浓度又急剧下降。查看温度才发现,气温也是随着地面升高而升高的,而不是每上升100米下降0 .6℃,因此判断300米到500米的这一高度区间恰好有一个逆温层,导致污染物难以扩散。  链接  广州借助“小蛮腰”研究PM2.5垂直分布规律  此前一篇网络帖子中,自称“退役”售楼部小姐称,千万别买9楼到11楼的房子。因为这三层楼的高度是PM 2.5的最爱,是空气最脏的位置。这篇文章的论断很快就被专家和监测人员用理论和数据证明不靠谱。  在PM2.5的垂直分布规律上,研究的城市并不多。广州借助“小蛮腰”,较早研究了广州PM2.5的垂直分布规律。根据广州市环境监测站的研究,在几十米以下的高度,PM2.5的浓度其实差别不大,越往高处PM2.5浓度越低,空气也就越清洁。但这只是小蛮腰所在位置的监测数据,其它地方是这样吗?中山大学的范绍佳教授曾表示,具体到某栋楼某个楼层,差别是非常大的。因为局部地区的扩散条件、小气候都不一样,一栋楼前面有一口池塘和没有一口池塘情况可能都不一样,根本没办法比较。
  • 《中国生物制药实验室仪器品牌及品类分布调查报告(2018版)》正式发布
    p   生物制药产业的高速增长离不开相关科学仪器、技术的创新与发展,从药物研发、药物临床开发再到药物生产和销售,每个环节对于生物制药相关科学仪器的需求是充分必要的。为了对国内生物制药实验室仪器品牌、品类分布等信息进行调研分析,为生物制药领域用户在选购仪器时提供帮助和指南,为生物制药相关仪器厂商在仪器研发、销售和推广活动提供决策参考,仪器信息网特组织了“中国生物制药科研仪器设备市场调研”活动。此次调研,面对的调研对象包括工业企业(如药厂、化工厂、研发机构等)、科研院所、大专院校、政府检测/监测/执法机构(如出入境检验检疫局、药品监督管理局、食品监督管理局等)、第三方机构(如CRO、CMO、检测机构等)与医疗机构等单位的生物制药实验室用户等。 br/ /p p   《中国生物制药实验室仪器品牌及品类分布调查报告(2018版)》内容包含了 span style=" color: rgb(255, 0, 0) " 生物制药产业规模及相关法律政策、生物制药实验室仪器市场调研分析、生物制药背景学位论文仪器市场调研分析、调研报告总结。 /span /p p   《中国生物制药实验室仪器品牌及品类分布调查报告(2018版)》得到了广大生物制药领域用户的大力支持。近200位来自工业企业、科研院所、政府检测/监测/执法机构、第三方检测机构和医疗机构等领域的用户参与在线调研。同时,报告考察具有研究生教育能力的高校和研究院所共计52所,初步对近两年来生物制药相关博士学位论文和优秀硕士学位论文共计235篇进行数据统计。在此,谨对报告所有参与者表示最衷心的感谢! /p p    a href=" https://www.instrument.com.cn/survey/Report_Census.aspx?id=166" target=" _blank" style=" text-decoration: underline " strong 报告链接: span style=" color: rgb(255, 0, 0) " 《中国生物制药实验室仪器品牌及品类分布调查报告(2018版)》 /span /strong strong span style=" color: rgb(255, 0, 0) " /span /strong /a /p p    span style=" color: rgb(255, 0, 0) " strong 欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong 报告节选: /strong /span /p p   一、 生物制药产业规模及相关法规政策 /p p   1. 产业规模 /p p   生物制药产业是应用基因工程、遗传工程、细胞工程及酶工程等现代生物技术的技术密集行业。目前现代生物制药产业... /p p   根据相关数据显示... /p p   二、 生物制药实验室仪器市场调研分析 /p p   1.1调研样本地域分布情况 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/44aa4e0b-6be3-4e9d-95d2-39d431f94afe.jpg" title=" image001.png" alt=" image001.png" / /p p style=" text-align: center " 调研样本地域分布情况 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/5e9aa13d-80f6-4153-bcbc-15d46382e916.jpg" title=" image002.png" alt=" image002.png" / /p p style=" text-align: center " 调研样本单位性质分布 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/ee6f5841-4da7-428f-bf15-09c8a047f61d.jpg" title=" image003.png" alt=" image003.png" / /p p style=" text-align: center " 仪器采购周期分布 /p p   本次调研中,用户的仪器采购周期以...年为主,占比... 其次为...年,占比?采购周期为...年的用户占比... /p p   三、 生物制药背景学位论文仪器市场调研分析 /p p   1.生物制药背景学位论文信息统计 /p p   1.1生物制药科研领域学位论文 /p p   根据生物制药各细分领域,如抗体工程药物、免疫细胞、血液制品、基因工程药物、疫苗、干细胞、小分子等,提炼出该领域25个核心关键词,统计自2000年来这些词汇作为学位论文主题出现频次... /p p   3.1仪器品类出现频率 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/47f56774-1bec-45bf-992b-e0990c542eea.jpg" title=" image004.jpg" alt=" image004.jpg" / /p p style=" text-align: center " 仪器品类出现频率 /p p   图为仪器出现频率较高的前30个品类,分别为?。离心机提及频率为? /p p   3.2 仪器品牌分布分析 /p p   本次调研统计一共有...个国外和国产品牌,...该系列品牌占到本次统计总数的... /p p   3.3 TOP16仪器品类市场分布分析 /p p   本次调研出现频率最高的前16个仪器品类分别为...分别对这16种仪器进行市场分布分析... /p p   四、 小结 /p p   1.调研问卷结果分析 /p p   由在线调研问卷结果可知,涉及仪器生产设备商...家,制药领域相关仪器品牌总曝光量达...余次,仪器曝光量高...次,仪器品类近... /p p   2.论文统计结果分析 /p p   对科研仪器厂商来说,仪器品类在...地区占比最高,可能原因是... /p p   ... /p p    span style=" color: rgb(0, 112, 192) " strong 报告目录 /strong /span /p p   一、生物制药产业规模及相关法规政策 6 /p p   1.产业规模 6 /p p   2.生物制药行业产业链 6 /p p   3.相关政策法规 7 /p p   二、生物制药实验室仪器市场调研分析 9 /p p   1.调研样本总体情况分析 9 /p p   1.1调研样本地域分布情况 9 /p p   1.2调研样本单位性质分布情况 10 /p p   1.3调研样本用户与仪器的关系 10 /p p   1.4调研样本细分领域分布情况 11 /p p   1.5调研样本用户仪器采购周期分布情况 11 /p p   1.6调研样本用户近期仪器采购计划 12 /p p   2.生物制药实验室仪器品牌品类调研分析 13 /p p   2.1调研样本仪器品牌知名度排行 13 /p p   2.2调研样本生物制药实验室仪器品牌地域分布情况 13 /p p   2.3调研样本仪器品类重要程度排行 14 /p p   三、生物制药背景学位论文仪器市场调研分析 16 /p p   1.生物制药背景学位论文信息统计 16 /p p   1.1生物制药科研领域学位论文主题 16 /p p   1.2生物制药领域学位论文年度发表篇数统计(2000-2017) 16 /p p   2.生物制药相关学位论文背景信息 17 /p p   2.1调研文献来源地区 18 /p p   2.2调研文献省份分布 18 /p p   2.3调研文献来源单位 19 /p p   2.4调研文献导师分布 20 /p p   3.学位论文中仪器品牌品类分析 21 /p p   3.1仪器品类出现频率 21 /p p   3.2仪器品牌分布分析 22 /p p   3.3 TOP16仪器品类市场分布分析 24 /p p   四、小结 34 /p p   1.调研问卷结果分析 34 /p p   2.论文统计结果分析 35 /p
  • 负极材料粒度分布对锂离子电池性能的影响
    负极材料作为锂离子电池的核心材料,对锂离子电池的能量密度、充放电性能、循环性能、生产工艺等起着至关重要的作用。负极材料的主要技术指标包括粒度、比表面积、振实密度、真密度、灰分、pH值等。其中,粒度分布作为负极材料的重要技术指标,它还影响比表面积和振实密度,从而影响锂离子电池的生产工艺和综合性能。一、粒度分布对锂离子电池性能的影响负极材料的粒度分布主要从以下几个方面影响锂离子电池的生产工艺和性能:1、粒度分布影响体积能量密度负极材料的颗粒大小应当具有合适的粒度分布,体系中的小颗粒能够填充在大颗粒的空隙中,有助于增加极片的压实密度,从而提高电池的体积能量密度。2、粒度分布影响充放电性能负极材料的颗粒越小,锂离子嵌入时所需要克服的范德华力也就越小,嵌入越容易进行,而且颗粒越小,锂离子嵌入和脱出的通道越短,越有利于快速达到充分嵌锂状态,从而具有更好的充放电性能。3、粒度分布影响循环性能实验表明,颗粒越小的石墨负极有较大的初次容量,但不可逆容量也较大;随着粒径增大,初次充放电容量降低,不可逆容量减少。同时,石墨颗粒越小,与电解液接触的比表面积越大,初次充放电过程中形成的SEI膜所消耗的电荷就越多,不可逆容量损失也就越大。因此,合理的粒度分布不仅能够提升锂离子电池的初次容量和初次效率,而且能够提升锂离子电池的循环性能。4、粒度分布影响生产工艺负极材料的粒度分布会直接影响电池的制浆和涂布工艺。在相同的体积填充份数情况下,材料的粒径越大,粒度分布越宽,浆料的黏度就越小,这有利于提高固含量,减小涂布难度。颗粒的粒径以及分布宽度对浆料黏度的影响二、负极材料对粒度的要求在负极材料相关的标准中,对材料颗粒的粒度分布提出明确的要求,具体如下:三、欧美克高性能激光粒度分析仪如何满足锂离子电池材料粒度检测要求负极材料的研发、生产及来料检验普遍采用激光粒度分析仪进行粒度检测,选择高性能的激光粒度仪是获得准确粒度分布信息的重要保证。对于一款高性能的激光粒度分析仪,往往采用合理的光学结构、高性能的光电元器件以及科学的反演模型,从而体现出良好的重复性、重现性、真实性、分辨率等测试性能。珠海欧美克仪器有限公司从1993年开始从事激光粒度分析仪的研发、生产和应用,积累了丰富的激光粒度分析仪研发、生产和应用经验。从1999年开始,欧美克激光粒度分析仪系列产品在锂离子电池研发、生产领域逐步获得行业认可。下面,从几个小案例管中窥豹,看看欧美克如何匠心智造每一款产品,又是如何站在行业应用的角度为用户提供粒度解决方案的。1、大角散射光的球面接收技术(DAS)的应用确保散射光能信息的准确获取对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光能信息都准确地聚焦获取。以欧美克LS-609型激光粒度分析仪为例,在散射光能探测器的设计时,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式放置在与其散射角相对应的傅立叶透镜焦点位置,保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。大角散射光的球面接收技术(DAS)2、优良的测试性能准确反映出测试样品的细微差别(1)Topsizer对粉体材料的大、小颗粒具有高超的分辨能力欧美克Topsizer激光粒度分析仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。下图是应用欧美克Topsizer激光粒度仪对D50为0.1μm左右的超细隔膜材料氧化铝的粒度测试粒度分布图。(2)LS-609激光粒度仪具有优良的重现性下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。 此外,不同使用环境还可以选配不同的进样器,分析软件还具有用户分级、权限管理、数据完整性及可追溯功能,欧美克激光粒度分析仪真正做到了性能可靠、操作简单、维护量少,是值得信赖的高性能激光粒度分析仪。参考文献【1】沈兴志,珠海欧美克仪器有限公司,高性能激光粒度分析仪在电池材料测试中的应用【2】珠海欧美克仪器有限公司,激光粒度分析仪在锂离子电池行业中的应用【3】苏玉长,刘建永,禹萍,邹启凡,中南大学材料与工程学院,粒度对石墨材料电化学性能的影响【4】旺材料锂电,锂离子电池负极材料标准最全解读【5】中国粉体网,粒度对负极材料有什么影响?
  • 荧光分布成像系统(EEM View)观察荧光体树脂片
    目前,照明灯和液晶显示屏的背光源均采用白色LED灯。因此,为了进一步提升产品性能,Mini LED背光源和Micro LED显示屏的研发正在紧锣密鼓的进行中。荧光分布成像系统(EEM View)是能够同时获取样品图像和光谱信息的新附件。入射光通过照射积分球内壁,获得均匀光源,进而观察样品。利用F-7100标配的荧光检测器可以获得荧光光谱,结合积分球下方的CMOS相机装置拍摄图像,并利用AI光谱处理算法,可以同时得到反射和荧光图像。相信未来EEM View会在LED零配件内的荧光体光学特性评价中得到广泛的应用。1. 荧光体树脂片(50 mm×50 mm)的荧光特性此次实验测定了在面发光LED中使用的荧光体树脂片。对样品照射360~640nm的单色光,得到了样品特有的荧光特性。EEM View模式下,可同时获得不同光源条件的样品图像。通常,白色LED灯发光原理是采用蓝光LED发光二极管在455nm附近激发荧光体,产生580~650nm的黄色荧光,从而与LED发出的蓝光混合形成白光(图1)。由图2、图3可以看出,此次测定的样品荧光体树脂片,在455nm附近被蓝光LED灯激发,发出相当于625nm的黄色荧光。图1 白色LED发光原理 图2 三维荧光光谱图3 激发光谱和发射光谱2. 荧光体树脂片的分布均匀性确认 荧光成分图像 荧光成分图像 (分布不均匀区域) (分布均匀区域) 图4 树脂片的图像和光谱图4为树脂片的荧光成分图像,左边是荧光体分布不均匀区域的荧光图像和光谱,右边是荧光体分布均匀的荧光图像和光谱,从荧光图像中可以看出荧光体的分布情况。此外,通过不同位置计算出的荧光光谱,可以发现树脂片不同位置的荧光强度存在差异。对于荧光体分布不均匀的树脂片(左图),它的中心位置亮度偏高。而且从荧光光谱中可以看到,3个位置的荧光光谱峰值荧光强度最 大偏差15%。荧光分布成像系统是全球首创的新技术,它将有助于获得研发和应用领域的多方面信息表征,密切关注日立高新技术公司官网,更多应用持续更新中。
  • 应用案例 | J200 LIBS元素分析仪在植物组织元素空间分布研究中的应用
    化学元素空间分布制图(Mapping)及深度剖析分析法在生物组织、法证分析、生物医学等领域,有着十分广泛的应用前景,如植物修复(利用绿色植物来转移、容纳或转化环境中的污染物,是当前植物学、生态学、环境科学等领域研究的热点)。基于激光剥蚀技术的激光诱导击穿光谱(LIBS)法成功地应用于生物样品化学元素空间分辨分析,实现多种元素同时检测,且不需或仅需简单样品制备,同时避免了污染物的产生及误差的引入。Kaiser等采用LIBS和LA-ICP-MS技术(J200 Tandem系统)检测处理后的向日葵叶片上元素Pb、Mg、Cu的空间分布情况,来探寻和验证样品元素分布研究手段。 1 实验方法 将向日葵水培,按0、100、250、500 μM的浓度梯度加入Pb-乙二胺四乙酸溶液进行处理,处理后的幼苗定期进行取样。采用LIBS和LA-ICP-MS方法对叶片的Pb、Mg、Cu元素分布进行测量,并采用AAS对三种元素的总量进行检测。 2 实验结果 下图为LIBS光谱图a)及LA-ICP-MS信号图b)。在LIBS光谱中,选择283.31nm及277.98nm分别作为Pb和Mg的特征峰,用以检测两种元素。 下图为Pb和Mg在样品取样区域内的元素分布情况。处理过的叶片,在叶脉周围组织中有更高的目标元素的含量。LIBS和LA-ICP-MS两种方法得到的元素分布有所不同,这是由于他们的剥蚀采样方式不同造成的。 Kaiser对不同时期收获的样品,分别进行了LIBS和LA-ICP-MS累计定量分析,得到元素的平均信号强度。下图显示Mg含量随着Pb含量的变化而变化。 下图为空白处理叶片上1×1cm取样区域内Cu元素分布情况。采用的Cu的特征峰为324.75nm。在取样区域内,进行20×20的单次剥蚀。 Kaiser认为LIBS激光技术非常适合样品的元素空间分析工作,例如用于监测元素在植物样品中的迁移及空间分布等研究。
  • 百特宽域智能激光粒度分布仪通过验收
    2009年9月9日,丹东市百特仪器有限公司承担的科技部2007年创新基金项目——宽域智能激光粒度分布仪(立项代码07c26212100126)顺利通过科技部委派的验收专家组验收。9日上午,专家组一行7人来到了百特公司,他们参观了百特公司仪器生产、检测和研究现场,听取了总经理董青云先生的汇报,对照立项合同对项目投资完成情况、技术指标、财务指标、市场前景等方面进行了认真审查。综合各方面的情况,专家认为百特公司完成了合同规定的各项技术指标和经济指标,一致决定通过验收,同时希望百特公司运用好项目所取得的技术成果,继续开拓市场,争取更大的经济效益和社会效益。总经理董青云感谢省市科技主管部门和服务部门的领导和专家在项目实施过程中给予的指导和帮助,并表示将继续努力,为中国粒度测试技术赶超世界先进水平作出更大的贡献。
  • 日立发布荧光分布成像系统新品
    一、荧光分布成像系统(EEM View)简介 作为荧光分光光度计的配件系统,这是全球首创将相机与荧光分光光度计的完美结合,融合了智能算法的先进技术。能够同时获取样品图像和光谱信息。 新型荧光分布成像系统可安装到日立F-7000/71000荧光分光光度计的样品仓内。入射光经过积分球漫反射后均匀照射到样品,利用荧光光度计标配的荧光检测器可以获得样品荧光光谱,积分球下方的CMOS相机可获得样品图像,并利用独特的AI光谱图像处理算法,可以同时得到反射和荧光成分图像。 二、 荧光分布成像系统特点: 1. 可以全面测定样品的光谱数据(反射光、荧光特性)在不同光源条件下(白光和单色光)拍摄样品图像,(区域:Φ20mm、空间分辨率:0.1 mm左右、波长范围:360-700nm),同时利用先进的光谱算法,分别显示荧光图像和反射图像, 根据图像可获得不同区域的光谱信息(荧光光谱、反射光谱)荧光分布成像系统软件分析(EEM View Analysis)界面(样品:LED电路板)2. 样品安装简单,适用于各种样品测试样品只需摆放到积分球上,安装十分简单!丰富的样品支架支持精确测量的校正工具荧光分布成像系统是一种全新的技术,将它配置到荧光分光光度计中,改变了常规荧光光度计只能获得样品表面区域平均化信息的现状,可以查看样品图像任意区域的光谱信息,十分适合涂料、材料、油墨、LED、化工等领域。创新点:创新点主要有两个方面:硬件方面:全球首创将将荧光分光度计与CMOS相机结合在一起,能够同时观察样品光谱和图像的技术。软件方面:运用了智能光谱算法,可以获取样品任意区域的光谱信息。常规的荧光分光光度计测得的是样品表面信息平均化的信号,得到的是一条荧光光谱,这个新的系统能够对样品表面进行分区,从而获得不同区域的光谱信号,使得光谱信息细致化了。 荧光分布成像系统
  • 日立发布荧光分布成像系统新品
    1. 荧光分布成像系统(EEM View)简介作为荧光分光光度计的配件系统,这是全球首创将相机与荧光分光光度计的完美结合,融合了智能算法的先进技术。能够同时获取样品图像和光谱信息。 新型荧光分布成像系统可安装到F-7100荧光分光光度计的样品仓内。入射 光经过积分球的漫反射后均匀照射到样品,利用F-7100标配的荧光检测器可以获得样品荧光光谱,结合积分球下方的CMOS相机可获得样品图像,并利用独特的AI光谱图像处理算法,可以同时得到反射和荧光图像。 2. 荧光分布成像系统特点:? 测定样品的光谱数据(反射光、荧光特性)? 在不同光源条件下(白光和单色光)拍摄图像 (区域:Φ20mm、空间分辨率:0.1 mm左右、波长范围:360-700nm)? 利用自主研发的分析系统1),分开显示荧光图像和反射图像? 根据图像可获得不同区域的光谱信息(荧光光谱、反射光谱)1) 国立信息学研究所 佐藤IMARI 教授?郑银强副教授共同研究成果荧光分布成像系统软件分析(EEM View Analysis)界面(样品:LED电路板)样品安装简单,适用于各种样品测试样品只需摆放到积分球上,安装十分简单!丰富的样品支架支持精确测量的校正工具总结以上为荧光分布成像系统的特点和功能结束,这是一种全新的技术,将它配置到荧光分光光度计中,改变了常规荧光光度计只能获得样品表面区域平均化信息的现状,可以查看样品图像任意区域的光谱信息,十分适合涂料、材料、油墨、LED、化工等领域。创新点:创新点主要有两个方面:硬件方面:全球首创将将荧光分光度计与CMOS相机结合在一起,能够同时观察样品光谱和图像的技术。软件方面:运用了智能光谱算法,可以获取样品任意区域的光谱信息。常规的荧光分光光度计测得的是样品表面信息平均化的信号,得到的是一条荧光光谱,这个新的系统能够对样品表面进行分区,从而获得不同区域的光谱信号,使得光谱信息细致化了。 荧光分布成像系统
  • 希格斯玻色子质量分布获迄今最精确测量
    大型强子对撞机(LHC)紧凑渺子线圈(CMS)国际合作组在最新一期《自然物理学》杂志上撰文指出,他们对希格斯玻色子的质量分布——“宽度”作了迄今最精确测量:3.2兆电子伏特。这与标准模型预测一致,但比此前测量更精确,此前测量仅指出其宽度必须小于9.2兆电子伏特。  在粒子物理标准模型中,希格斯玻色子赋予所有其他基本粒子质量,2012年LHC首次发现了希格斯玻色子。但希格斯玻色子的性质很难确定,因为它会很快衰变为其他粒子,且并不总是以相同质量出现。  CMS成员之一格雷格兰德斯伯格解释称,后者是海森堡不确定性原理的一个结果。该原理认为,任何在有限时间内存在的粒子都必须拥有可能的能量和质量范围——宽度,而非固定值。在几乎所有实验中,宽度非常小的粒子都拥有相同的质量,而宽度较大粒子的质量则非常不一致,物理学家迄今仅对希格斯玻色子的宽度进行了不精确估算。  在最新研究中,CMS合作组根据2016年至2018年LHC第二轮运行期间收集的数据,确定了希格斯玻色子的宽度。他们的策略是比较希格斯玻色子衰变为其他两个粒子的两个不同过程的数据。在一个过程中,一个质量异常巨大的希格斯玻色子衰变为两个Z玻色子。在另一种情况下,希格斯玻色子的质量为理论模型预测更常见的质量。通过比较,研究人员计算出希格斯玻色子的宽度可能为3.2兆电子伏特。  研究人员表示,准确测量希格斯玻色子的宽度可揭示理论预测中的差异,从而揭示新物理现象,比如与一些奇异暗物质粒子相互作用的希格斯玻色子。CMS团队希望2026年获得对撞机第三轮运行后的数据,改进其计算,更深入地揭示希格斯玻色子的“庐山真面目”。
  • 药物片剂中成分的分布和内部空隙对其溶解的速度影响分析
    导 读药物片剂中成分的分布和内部空隙的状态会影响其溶解的速度,并导致其疗效的差异。在含有不同成分的多层药物的片剂中,药物层厚度的不均匀性可阻止各层获得足够的疗效。因此,片层厚度和压片角度是重要的质量控制标准。 实验方法使用XRAY透视和CT 扫描,对其内部进行扫描和分析。除了不需要任何特殊的预处理,X射线CT检查系统允许在不损坏样品的情况下获得内部信息。因此,它们可用于三维观察和分析药物层的分布状态或厚度。 实验方法使用XRAY透视和CT 扫描,对其内部进行扫描和分析。除了不需要任何特殊的预处理,X射线CT检查系统允许在不损坏样品的情况下获得内部信息。因此,它们可用于三维观察和分析药物层的分布状态或厚度。 具体案例数据本例描述了使用inspeXio SMX-90CT Plus台式微焦点X射线CT系统(图1)分析两种药片。图1 inspeXioSMX-90CT Plus台式微焦点X射线CT图2 样品照片:左边片剂A,右边片剂B 在本例中,观察到两种具有不同结构的片剂(片剂A和B)(图2)。片剂的透视图像如图3所示。片剂A (左) 片剂B(右)图3 片剂透视图图4片剂A的CT效果图(左)图5片剂B的CT效果图(右)图6高密度药物分离的片剂A 分析片剂图像的一个例子除了观察片剂内部外,CT X射线图像还可用于执行各种图像分析。在本例中,利用CT数据结合三维图像处理软件,分析药物的分布状态,分析药物的层厚。 图6所示为片剂A与高密度药物分离的区域。这些区域使用VGStudio MAX 3D图像处理软件(来自Volume Graphics GmbH)以及缺陷和夹杂物分析模块隔离。这种图像处理软件可以对分离的体积进行颜色编码,从而可以确定药物在三维空间的分布和每个体积的大小。 图7测量B片包衣厚度示例 图7示出了分析片剂B中的层厚度的示例。该分析是使用VGStudio MAX 3D图像处理软件与厚度分析模块一起执行的。厚度用从红色到蓝色的颜色进行颜色编码,其中最薄的区域用红色表示,最厚的位置用蓝色表示。这样可以直观地理解厚度变化的分布。 结论应用inspeXio公司的SMX-90CT-Plus结合三维图像处理软件,可以对片剂内部进行观察和特征分析。利用该系统对药物的分布和厚度进行定量和非破坏性分析,并对其他性质进行评价,对药物的开发尤其有用。inspeXio SMX-90CT Plus由于其紧凑的工作台设计和简单的操作,是一个非常有用的工具,可以快速、方便地获得关于药片内部的信息。 撰稿人:宁棉波
  • 区域颗粒物时空立体分布雷达组网监测
    p ■ 系统概述 /p p & nbsp & nbsp 近年来,对于环境质量检测的联网综合监测系统的需求越来越迫切,这一类联网综合测量系统的特点是利用分布在区域内相关的多个单点测量设备的数据,再结合相关气象及环境信息数据,使用一定的算法分析模型计算出区域内各空间位置的环境数据从而对区域内总体的环境质量情况有一个明确的掌握和了解,进而还可以预算出未来一段时间内的区域环境质量情况变化做到对环境质量的提前预警预报。激光雷达设备由于其能向一定程度的高空探测环境数据,所以如果使用相关算法分析模型利用激光雷达测量的高度空间的环境测量数据作为基础数据来进行计算繁衍,就可以在很大程度上进行区域内空间立体环境质量数据的监测和预测,对于整个区域的立体空间环境监测和预报有着很大的现实意义,比如一个城市区域或一个工业园区空间立体监测等。 /p p img title=" 640.webp.jpg" src=" http://img1.17img.cn/17img/images/201601/uepic/53deeae0-078b-4d52-a0a2-cc8b1303ed58.jpg" / /p p ■ 系统功能说明 /p p (1) 雷达组网解决的问题 /p p ※ 空间立体评价区域环境空气质量:区域污染的时空立体演变情况、区域污染的生消过程、典型区域污染过程的解析、区域污染的主要来源等; /p p ※ 区域污染贡献率问题:区域污染输送通量计算,本地污染及外来污染所占的贡献率; /p p ※ 区域环境空气质量预警预测:通过相应的计算模型结合环境气象信息来预测未来一段时间内空间立体区域的环境空气质量变化; /p p (2)雷达组网系统主要有四个部分的功能 /p p ※ 区域内联网的雷达设备信息及状态监视 /p p ※ 区域内联网的各雷达单点设备数据收集与显示 /p p ※ 区域立体空间雷达数据的由点到面的同化繁衍计算 /p p ※ 区域立体空间雷达数据的未来发展预测数据的计算 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p (3) 雷达组网系统中实时雷达测量数据主要有以下类型 /p p ※ 355消光系数 /p p ※ 532消光系数 /p p ※ 退偏振度 /p p ※ 波长指数 /p p ※ 颗粒物浓度空间分布 /p p ※ 边界层 /p p ※ 能见度 /p p ※ 光学厚度 /p p ※ 污染物分布 /p p ※ 污染物输送通量 /p p (4) 雷达组网系统会使用相关计算模型结合相关环境和气象数据来进行区域空间立体雷达检测数据的同化繁衍计算,可以在系统中进行立体空间雷达数据的展示 /p p style=" TEXT-ALIGN: center" img title=" 6401.webp.jpg" src=" http://img1.17img.cn/17img/images/201601/uepic/f30a694d-a87f-4f6b-b39e-6c3efec20b9b.jpg" / /p p ※ 各高度水平层面的雷达数据繁衍计算 /p p ※ 各垂直剖面的的雷达数据数据繁衍计算 /p p (5) 雷达组网系统会使用相关计算模型结合相关环境和气象数据来进行区域空间立体雷达检测数据的未来一段时间的预测计算,可以对未来的空气质量的变化趋势进行提前预警预测 /p p br/ /p p & nbsp 安徽蓝盾LGJ-01激光雷达系统以激光为光源,运用空间遥感技术原理,利用其发射的激光与大气的相互作用,产生包含气体分子和气溶胶粒子有关信息的辐射信号,再结合相关反演算法就可以从中得到关于气体分子和气溶胶粒子的信息。 /p p & nbsp 本激光雷达同时发射出355nm和532nm激光,利用接收望远镜收集气溶胶、沙尘暴粒子等对激光的后向散射信号,通过接收355nm信号以及532nm的2路消偏信号,分析其回波强度和消偏振特性,可解析出大气中粒子的属性,识别沙尘暴粒子(非球形)及气溶胶粒子的垂直廓线信息。 /p p & nbsp 该款雷达可置于室内、室外环境(配置箱体)。 /p p & nbsp 适用于:环境监测、气象探测、相关研究单位。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 1px HEIGHT: 1px" title=" 6402.webp.jpg" src=" http://img1.17img.cn/17img/images/201601/uepic/04c46d7b-7571-4eba-acc3-91b50e2c18ac.jpg" / img style=" WIDTH: 357px HEIGHT: 327px" title=" 6402.webp.jpg" src=" http://img1.17img.cn/17img/images/201601/uepic/22393891-a47c-4092-b5ef-91ac27bb9f77.jpg" / /p p br/ /p p 关注微信公众号“蓝盾环保”请扫描以下二维码,为您提供及时的环保行业动态信息和解决方案! /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 307px HEIGHT: 244px" title=" 6403.webp.jpg" src=" http://img1.17img.cn/17img/images/201601/uepic/3f91991c-3402-4a9a-92a0-fdc9f5958ad4.jpg" / /p
  • 媒体披露中国大米污染分布图
    南京农业大学农业资源与环境研究所的潘根兴教授,早在几年前,就开始对稻米的镉污染进行过系统的研究,这是缘于种植水稻的土壤中发现了重金属超标的状况,而土壤关系着食用大米的品质,水稻自身的独特的“基因”,也影响着水稻米粒吸收土壤中特殊物质的能力,而其中稻米对于镉污染的吸附作用明显强于玉米、大豆等其他的作物品种。   潘根兴教授告诉记者,在2007年的时候,他们曾针对中国六个地区(华东、东北、华中、西南、华南和华北)县级以上市场的170多个大米样品进行了随机的采购和科学调查,结果发现,在抽调的这170多个大米样品中,有10%的市售大米存在着镉超标的问题。   这个研究结果和2002年农业部稻米及制品质量监督检验测试中心对全国市场稻米进行安全性抽检结果镉超标率10.3%的结论基本一致。   南京市场:镉超标大米同样存在   回忆起4年前的这次调查,潘根兴教授印象还很深刻,他说数据分析的结果是:稻米市场上,虽然镉超标的现象都存在,但是南方市场上稻米的镉污染超标情况相对比北方严重一些,比如江西、湖南的一些县市,稻米镉超标的问题相对突出。   而当时抽查的170个大米的样品也包括南京市场上的在售大米,潘根兴说,南京市场上当然也存在着大米镉超标的情况,但是问题并不算严重,而且这些镉污染超标大米的产地并不在南京及其周边地区,而是外地的稻米产品进入南京市场销售的。   超级稻:镉污染超标更严重   即便是在市面上镉超标的大米,超标的程度也是不一样的,潘根兴教授的团队曾在学校里做过一项实验,发现杂交稻、超级稻的镉超标的风险比普通水稻更为严重。   专家们采集了能代表南方种水稻种植中性土壤乌栅土、一种为酸性的红壤性水稻土,还在一部分土壤里特意添加了镉元素,结果专家发现,在未加镉的土壤中,超级稻对镉的亲和力是常规稻的2.4倍,其籽粒中镉的含量是普通杂交稻的1倍多。而在添加了镉的土壤中,两种土壤中籽粒含镉量都明显增加,其中在乌栅土中,分别是未添加镉土壤的5—6倍 在酸性的红壤里,是未添加镉土壤的7—8倍。   潘根兴解释说,超级稻之所以镉污染超标更为严重,是因为它的根系发达,对于土壤中的镉具有明显的吸收趋势。   这样吃饭:就可以规避“骨痛病”   都说,镉污染超标,将会对人体的骨骼、肾脏造成危害,会发生“骨痛病”,造成肾脏无法正常工作,而且对镉的过多摄入,还会产生“颉颃作用”,妨碍吸收人体必不可少的微量元素——锌的吸收。   那么,市面上10%的在售大米镉污染超标,是不是意味着一日三餐吃饭,存在着很大的骨痛病的风险?对此潘根兴教授解释说,即便是在售大米中有10%镉污染超标,也还是微量的,短期的食用并不会给身体带来风险,市面上的在售大米总体来说仍然是安全的。   而食用的风险指的是那些饮食结构非常单一,吃饭多,吃菜、饮食中蛋白质少,而且长期只吃某个产地的单一的稻米品种,而如果这种稻米品种恰恰又是“镉超标”大米品种的话,就会有危害人体健康的风险,而这种风险一般来说又以“自种自食”镉污染土地上种植水稻的农民为更大。   而我们普通的老百姓,虽然无法从肉眼上来识别哪种大米镉污染超标,但是只要在购买大米的时候,多选择不同产地、不同品牌的稻米品种,同时广泛地摄取其他的营养物质,杂地取食,多吃一些海产品、豆业等含锌较高的产品,都可以降低患病的风险,而南方人则应该多搭配吃北方品种。   专家建议:超级稻应种在安全土壤上   由于超级稻经过多次杂交,具有优势基因,对于土壤中的各种”营养”吸收更加充分,这也使得超级稻对于镉污染的吸收更为严重,目前来看,还没有办法克服这一问题,而从目前来看,从保证粮食产量上来看,超级水稻是水稻种植的必然选择。   潘根兴认为,目前迫切需要加强的是:对杂交水稻进行筛选和育种 研制控制酸性土壤中镉的途径 并在生产上根据作物品种,安排合理的土壤布局,特别是镉吸收强的品种尽量不在酸性或红壤性水稻中种植。   重金属镉污染出现在市售的稻米中,存在潜在的食用安全,近期“稻米镉超标”的新闻引起了广泛的关注,并且在市民中引起了一定的恐慌。   在南京,市场上究竟有没有镉超标的大米?老百姓一日三餐吃饭是不是存在着“骨痛病”的风险?南京农业大学农业资源与环境研究所的潘根兴团队在几年前曾对中国多个县市的170多个市售稻米样品进行了随机的抽样调查,结果表明,在中国,抽查中的10%左右的市售大米出现镉超标,而南京的市场上同样也有镉超标的大米在出售。   不过,潘根兴教授指出普通市民也无需过度恐慌,只要科学吃米,我们市面上出售的大米仍然安全,可以合理地规避镉超标带来的吃饭风险。   中国大米污染不完全分布图   四川德阳地区   中国地质大学2008年研究显示,绵竹、什邡等地居民大米、小麦镉摄入量超标2倍至10倍。   贵州铜仁万山特区   中科院地球化学所2010年研究显示,成人通过稻米平均每天摄入汞49微克之多。   广西阳朔兴坪镇   多位村民疑似“骨痛病”初期症状。   广东大宝山矿区   中山大学2010年研究显示,21个水稻品种镉和铅超标率分别达100%和71%。   湘西凤凰铅锌矿区   中科院地理所2008年研究表明,稻米铅、砷污染严重。   湖南株洲马家河镇新马村   稻米镉污染主要来自一公里外的湘江。   辽宁李石开发区   辽宁石油化工大学2008年研究显示,水稻中铅含量超标。   浙江遂昌   浙江丽水卫生防疫站1987年研究显示,遂昌金矿附近污染区稻米镉含量严重超标。   江西大余钨矿区   江西有色地质4队1997年研究显示,水稻镉超标。   新闻背景:调查称中国多地10%大米镉超标
  • 通过高分辨成像质谱分析大鼠视网膜中氯喹的分布
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在药物研发过程中,候选化合物的体内药代动力学分析是非常关键的步骤。该分析不仅可以掌握其药效药理,还可以得到和毒性评价有关的信息。通常,使用放射性自显影技术(Autoradiography: ARG)和荧光色素标记细胞的方法进行分析。但是,使用ARG的方法成本高,而且一方面这些方法无法区别原药和代谢物,另一方面标记物质的行为可能与未标记物存在差异。因此,最近成像质谱分析法,不进行标记即可对候选化合物进行检测的方法备受瞩目。质谱成像法除了能够在无标记的情况下对各种物质的分布进行分析,还能够使用同一切片同时分析原药及其代谢物,有望在今后的药物研发领域得到应用,取得新的突破。本文介绍使用成像质谱显微镜iMScope i TRIO /i 对氯喹给药后大鼠视网膜进行检测的示例。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c4265e4a-c078-4017-93d2-68a9d4eafbd5.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " 图1 氯喹的结构式 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 大鼠视网膜中氯喹的高空间分辨率成像 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在本次分析中,对给予抗疟剂药物氯喹的大鼠视网膜进行分析。图1为氯喹的结构式。使用氯喹标准品进行分析,对基质及测定模式进行优化,表1为组织切片的分析条件。使用成像质谱显微镜iMScope i TRIO /i 进行高空间分辨率成像,发现在约10 μm厚的视网膜色素上皮周围有氯喹的分布(图2和图3)。在测定氯喹时,如果使用成像质谱分析法常用的MS模式,因受到生物体衍生杂质带来的离子抑制、干扰的影响,无法得到清晰的MS图像(此处数据省略)。在本次分析中,通过iMScope i TRIO /i 的MS/MS模式进行测定,提高灵敏度,能够获得10 μm的高空间分辨率下的MS/MS图像。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b1a9ec68-3837-45b5-a422-9f98ed4422b0.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8fad9a5c-304b-4f86-b070-8ec12bb1a38d.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " 图2 组织切片上的MS/MS质谱图 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4ba84009-2ef8-4ef5-92af-f47ac86ebdb9.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " 图3 光学图像和MS/MS质谱图像 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 大鼠眼球中氯喹的高速成像 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在药代动力学研究过程中,为了阐明药物分子在细胞及器官水平的特征分布区域,分别需要在高空间分辨率及中等空间分辨率获得药物分子的分布信息。本实验使用MS/MS span style=" text-indent: 2em " 模式测定在中等分辨率(50 μm)下测定大鼠眼球整体的氯喹分布情况,分析条件如表2 所示。虽然使用了更大的激光直径,有可能带来存在噪音高、离子抑制等问题,iMScope /span i style=" text-indent: 2em " TRIO /i span style=" text-indent: 2em " 依然能够检测得到具有较高信噪比的氯喹特征碎片,并获得清晰的质谱图像。成像质谱实验的采集 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 速度取决于目标检测区域中所包含的点数。iMScope i TRIO /i 能够独立更改激光直径及采集间隔等参数,从而能够轻松控制采集速度及图像尺寸,并且不会影响数据质量。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/12e37b19-cce0-4e12-a91f-8af4b67f0802.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 基质涂敷方式的比较 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在氯喹成像质谱分析中,比较了2 种不同的MALDI 基质涂敷方式。 图5 显示了由升华法获得的成像结果(基质升华方式的示意图如图6 所示)。基质升华由iMLayer 升华仪自动完成,而喷雾方式由手动完成。喷雾方式获得成像结果如图7 所示。对比两种方式的检测结果,升华法获得了更加清晰尖锐的氯喹分布图像,而喷雾的结果则看起来会有一些扩散,如图7 所示。前处理方式的优化依然取决于组织切片的特性以及所使用的基质类型。如示例中的结果,前处理步骤对最终成像结果的图像质量有显著的影响,不仅仅是切片制备的条件,基质涂敷的过程也很重要。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3e80c956-c24a-4b4f-b277-ff7fa0b9a5ad.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 图6 基质升华方式示意图 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 在相同切片上进行MS 和MS/MS 成像分析 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 成像质谱分析中,在同样位置只能采集一次数据。但是,使用iMScope i TRIO /i 可以调整激光直径及采集间隔,因此可以在采集点之间留下未采集区域,从而实现更多次的成像分析。图8显示了使用激光直径为5μm,采集间隔为10μm时,在同一采集区域内进行4次成像分析的方式。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7029ec9e-44bf-483d-a071-a1651cfc8ffb.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center " 图4 组织切片上氯喹的MS/MS产物离子质谱图,激光直径50μm /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/b8099d01-93e1-49aa-9926-907aeab7a6d9.jpg" title=" 8.png" / /p p style=" text-align: center " 图5 升华法获得的氯喹分布质谱图像 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/c8b163cf-961b-4c26-8d20-902c68beed0f.jpg" title=" 9.png" / /p p style=" text-align: center " 图7 喷雾法获得的氯喹分布质谱图像 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/d51c038b-8e0c-4efa-8ecf-87c964a43b83.jpg" title=" 10.png" / /p p style=" text-align: center " 图8 在同一测定区域进行1次MS分析及3次MS/MS分析的数据采集设置方式示例 /p p br/ /p
  • 【重磅】全国科学仪器产业园区分布图
    “十四五”时期,科学仪器产业迎来发展高峰,各地抢抓机遇,大干快上,积极建设各类精密仪器产业园。仅2023年,仪器信息网就已跟进江苏省首批仪器仪表产业园、天津高端精密仪器产业园、上海张江高端装备精密仪器产业园等产业园的落成信息。叠加早前已发展的丹东仪器仪表产业园区、北京怀柔科学城、青岛科学仪器产业园、无锡量子感知产业园等,我国科学仪器产业集群建设已初具规模。  为此,仪器信息网特别绘制全国科学仪器产业园区分布图,为行业发展添一笔注脚。(注:本文仅统计省市级以上的产业园区,不含企业自建产业园,如有遗漏欢迎补充。) 详细视频:“十四五”全国科学仪器产园区分布情况  跟随仪器信息网来看各省市对于科学仪器产业园区的规划:产业集群  河南省  2023年,河南省人民政府发布《关于进一步做好计量工作的实施意见》,明确:加强新型传感器与高端仪器仪表核心材料、核心器件、核心算法和核心溯源技术研究,推动关键计量测试设备国产化,促进量子芯片、物联网、区块链、人工智能等新技术在计量仪器设备中应用。实施仪器设备质量提升工程,建设重点实验室,强化计量在仪器仪表研发、设计、试验、生产和使用中的基础保障作用。建立仪器仪表计量测试评价制度,推动计量器具制造企业转型升级。支持郑州、开封、许昌等地建设仪器仪表产业集群,培育具有核心技术和核心竞争力的仪器仪表品牌。  深圳市  深圳市明确到2025年,精密仪器设备产业增加值达到200亿元。在南山区布局研发设计环节,在光明区、宝安区、龙华区布局研发设计和生产制造环节。以光明科学城为核心,重点发展科学测试分析仪器,打造精密仪器设备产业基础和应用基础研究中心。发挥南山区大型科学仪器共享平台和创新型企业集聚优势,重点打造精密仪器设备研发创新集聚区。依托宝安区高端装备产业基础,重点发展工业自动化测控仪器与系统、信息计测与电测仪器等,打造覆盖精密仪器设备研发设计、生产制造、应用示范的全链条集聚区。发挥龙华区空间优势,培育未来精密仪器设备产业重要承载区。  北京市  怀柔区按照“整合统筹、功能优化、突出特色”的思路,以科学城为核心向外辐射,构建了“一核三区多点”的高端仪器装备和传感器产业空间格局。“一核”引领,即国家高端科学仪器装备产业基地,位于怀柔科学城中心区。  为支持怀柔区发展高端科学仪器和传感器产业,北京市将高端仪器装备和传感器产业列为全市十大高精尖产业体系的29个细分领域之一,出台《关于支持发展高端仪器装备和传感器产业的若干政策措施》及实施细则。2020年至2022年,市区两级在重点专项、空间建设等方面累计投资超100亿元。怀柔区目前已落地仪器和传感器相关企业286家。  广东省  《广东省制造业高质量发展“十四五”规划》指出,精密仪器产业集群纳入广东省“十四五”十大战略性支柱产业布局之一。以广州、深圳为核心,支持东莞、佛山、江门、肇庆、珠海、中山、汕头等市发挥生产制造优势,建设精密仪器设备生产基地,支持其他市做好产业配套发展。支持广州加快建设粤港澳大湾区高端科学仪器创新中心,以质谱仪器开发为主线,重点攻克激光器、离子源、真空系统、数据采集等关键核心技术。在广州、深圳、佛山、东莞、珠海等市布局建设精密仪器设备科技产业园区,支持中山西湾国家重大仪器科学园、东莞松山湖科技产业园区、广州生命科学大型仪器区域中心等各类专业园区(中心)建设。产业园  江苏无锡,江苏省传感器仪器仪表产业园  该产业园依托中国物联网国际创新园创建,为江苏省首家传感器领域省级仪器仪表产业园。进一步强链补链和提升产业集聚度,加快推进传感器新技术自主创新和国产化替代,加快培育具有自主知识产权和国际竞争力的传感器企业,助力提升江苏传感器产业核心竞争力  江苏淮安,金湖仪器仪表产业园  从石油装备配套仪表拓展到温度、压力、流量、液位、显示控制等五大类168种,并逐步向成套智能化系统拓展。  山东,青岛市精密仪器仪表产业园  规划在青岛高新区建设青岛市精密仪器仪表产业园,支持全市仪器仪表领域,特别是工业测控系统与装置、实验分析仪器、传感器及核心元器件三大重点领域上下游产业链项目向园区集聚,将更多的项目、技术、资金和人才等资源要素优先导入园区。连续三年由市财政每年出资1亿元用于园区建设。  上海,张江高端装备精密仪器产业园  该产业园位于浦东南北科创走廊中段,张江科学城中部核心位置,一期现有空间总建筑面积约21.3万平方米,二期规划面积1平方公里,在产业发展上将强化产业链、供应链自主可控,促进高端装备精密仪器产业集群式发展,助力构建高质量、现代化产业链体系。  湖南长沙,湖南省检验检测特色产业园科学仪器产业基地  湖南省检验检测特色产业园,集聚SGS、中大检测等检验检测头部企业近200家,先后获批国家检验检测认证公共服务平台示范区以及国家检验检测高技术服务业集聚区等国家级平台。  天津市津南区,天津高端精密仪器产业园  该项目投资总额5亿元人民币,整体占地面积144亩,主要引进精密仪器、智能装备制造、医疗器械、新材料、物联网、传感器等行业。该项目主动融入大学科技园建设,以海河教育园两所双一流大学,及十余所高职院校优势学科、科研实力、创新能力和人才团队为依托,以成熟技术的产业化发展为目标,重点引进与培育高端精密仪器领军企业,打造高端精密仪器装备全产业链专业化园区。  广东省中山市,西湾国家重大仪器科学园  将以“建成全球仪器科技创新高地”为目标,打造全国首个国家级高端仪器专业园区,建设国家级仪器产业专项孵化器及高端仪器科研成果产业化示范基地,并力争成为粤港澳大湾区产业园运营管理标杆园区。用10年时间使西湾国家重大仪器科学园在仪器研发能力、技术水平、仪器行业产值、高端人才集聚、科研成果转化达到国内及至国际领先地位。  江苏,无锡量子感知产业园  2020年2月28日,江苏省省级重大项目“无锡量子感知产业园”开工奠基,总投资约21亿元。未来将依托无锡量子感知研究所,以量子精密测量技术为核心,致力于打造“园中设计、园内制造”的科学仪器装备产业新模式,构建中国高端科学仪器装备全产业链园区。  广东省广州市,粤港澳科学仪器创新中心  2019年5月,广东省粤港澳大湾区高端科学仪器产业促进会筹备工作宣告正式启动,并将成立粤港澳大湾区高端科学仪器创新中心。中心拟采用“政产学研用金”发展道路,新建6个创新平台:产业研究院、技术研究院、企业孵化器、人才培养基地、应用示范中心、科普教育平台,将汇聚港澳及国内优势资源,实现高端科学仪器产业集聚。  上海市松江区,上海分析技术产业研究院  依托于启迪漕河经科技园、松江区政府创建,致力于科技成果转化与行业创新发展的综合性专业性科技创新机构。研究院位于G60科创走廊的松江新城总部研发功能区,建设科学仪器设备产业化基地和科技成果与转化中心,推动分析技术的创新应用,打造世界一流的分析技术产业集群。  辽宁(丹东)仪器仪表产业基地  2009年建立,省级重点产业基地,总规划面积8平方公里。现已建成40栋50万平方米标准厂房、4万平方米的研发检测中心、2万平方米的综合服务中心和10万平方米的辽宁仪器仪表学院。目前,产业基地已初步形成以自动化控制系统及设备为主,以专用仪器仪表和电子电工监测为辅,医疗与科学检测仪器、传感器及仪器仪表元器件等多种门类共同发展的独具特色的产业体系。
  • 利用UVP原位成像技术和机器学习估算全球浮游动物生物量分布
    法国LOV(Laboratoire d'Océanographie de Villefranche-sur-Mer;索邦大学和法国国家科学研究中心的联合研究单位)实验室的科学家Laetitia等人利用UVP的水下原位观测结果,结合机器学习模型,预测了19个浮游动物类群(ESD范围为1-50mm)的全球生物量分布,并探讨了其与环境因素的关系。研究背景浮游动物存在于全球所有海洋中,它们在海洋食物网和生物地球化学循环中发挥着重要的作用,是生物碳泵的主要驱动力,并为维持鱼类群落的稳定作出了巨大贡献。但浮游动物对环境条件很敏感,因此被认为是海洋变化的哨兵。它们的分布受到海洋中物理、化学、以及生物因素的相互作用及调控。为了更好地理解浮游动物的重要性,需要对浮游动物的生物量和功能群进行全球定量评估。目前只有少数浮游动物群体的全球分布得到了很好的研究,这些群体通常使用浮游生物网采样。但还有很多浮游动物类群非常脆弱,非常容易受到浮游生物网的破坏,或者易在固定液中保存不良,导致它们的生物量和在海洋生态系统中的生态作用被低估。在这种情况下,使用非侵入式的原位成像方法对浮游动物进行研究,显得尤为必要。在众多水下原位成像系统中,只有水下颗粒物和浮游动物原位成像系统(UVP)在全球范围内被广泛应用。研究过程Laetitia等人通过对全球范围内2008年-2019年之间获得的超过3549个UVP剖面(0-500米,图1)上的466872个个体进行了分类,估计了它们的个体生物量,并使用分类特定的转换因子将其转换为生物量。然后将这些生物量与环境变量(温度、盐度、氧气等)的气候学联系起来,使用增强回归树等机器学习算法,建立了生物量与环境因素之间的关系模型,以此预测全球浮游动物的生物量。图1 本研究使用的UVP数据集地图。透明度用来说明地图上点的密度。水下颗粒物和浮游动物图像原位采集系统UVP(图2)主要用于同时研究水下的大型颗粒物(80μm)和浮游动物(700μm),并在已知水体体积下对水中颗粒物和浮游动物进行量化。UVP使用传统的照明设备和经电脑处理的光学技术,来获得浮游动物原位数字图像,图像后续可以通过EcoTaxa浮游动物数据库共享平台(图3)来进行浮游动物种类鉴定及分类。图2 水下颗粒物和浮游动物图像原位采集系统UVP。左图为本实验中使用的UVP5(目前已停产);右图为升级版本UVP6-HF,与UVP5功能相同,且重量更轻图3 EcoTaxa浮游动物数据库共享平台对浮游动物进行种类鉴定及分类研究结果结果表明,浮游动物对环境很敏感,并会对环境的变化作出反应。全球浮游动物的生物量呈现出一定的空间分布模式,生物量最高的区域位于大约60°N和55°S附近(图4),而在海洋环流附近最低。此外,预计赤道的浮游动物生物量也会增加。保守预估,全球综合浮游动物生物量最小值(0-500 m)为0.403PgC。在不同的浮游动物群体中,桡足类为最主要的群体(35.7%,主要分布在极地地区),其次为真软甲类(26.6%)和有孔虫类(16.4%,主要分布在热带辐合带)。图4 利用分类群预测的0 ~ 500m全球生物量分布图图5 在世界范围、高纬度和低纬度模式下,0-200 m(A)和200-500 m(B)深度下预测平均生物量(PgC)的条形图,从高到低排列。研究结论尽管研究取得了一些重要发现,但也存在一些限制和挑战。机器学习模型对浮游动物数据库的大小比较敏感,并且对于稀有类群的预测能力较弱。因此,在未来的研究中,需要进一步改进模型以提高对这些类群的预测能力。总而言之,本研究提供了有关全球浮游动物生物量分布的重要预测结果,并揭示了其与环境因素之间的关系。这对于深入了解浮游动物在海洋食物网和生物地球化学循环中的作用具有重要意义。随着UVP等数字成像方法的不断发展和应用,科学家们将能够更准确地估计全球浮游动物的生物量分布,并为保护海洋生态系统提供更有效的决策依据。参考文献1. Drago L, Panaï otis T, Irisson J O, et al. Global distribution of zooplankton biomass estimated by in situ imaging and machine learning[J]. Frontiers in Marine Science, 2022, 9.
  • 复合荧光材料的量子产率分布测量
    1. 引言量子产率是评价荧光材料发光效率的重要参数,复合荧光材料通常由两种或两种以上的材料组成,依据样品的量子产率分布可以确认每种成分的发光效率,助力于样品的精细化分析。 日立荧光分布成像系统能够同时获取样品图像和光谱信息,从而实现精细化测量,此次实验测定了复合荧光材料的量子产率分布。 2. 应用数据 2.1 附件介绍荧光分布成像系统是荧光分光光度计的新附件,包含软件和硬件两部分。入射光通过附件中的积分球均匀照射到样品,通过荧光分光光度计的检测器获取荧光光谱,利用积分球下方的CMOS相机同时获取样品荧光和反射图像。图1 荧光分布成像系统安装示例利用样品的反射图像计算出吸收量,利用荧光图像计算出荧光量,从而计算得到量子产率分布图像。 图2 量子产率分布图像计算过程 2.2 实验部分 实验材料 样品:复合荧光材料 测量设备:日立F-7100,荧光分布成像系统 结果与分析使用日立F-7100测定样品的三维荧光光谱,通过荧光分布成像系统的分析软件对样品三维荧光光谱进行平行因子分析(PARAFAC),得到如图两种成分。图3 样品的三维荧光光谱 通过荧光分布成像系统中的智能光谱算法,将拍摄的样品图像分离为反射成分图像和荧光成分图像,如图所示。图4 样品的拍摄图像和反射、荧光图像在荧光分布成像系统软件中,可以将不同激发波长下样品的图像信息保存为如下缩略图,直接用于文档中。图5 不同激发波长下的样品图像(缩略图)对获得的样品荧光图像和反射图像进行分区,如下图将样品测量区域分成5x5的格子,选取不同的格子,坐标系中便显示对应的光谱。图中选取的两个位置分别对应平行因子分离出的成分1和成分2。图6 样品的荧光图像和荧光光谱图7 样品的反射图像和反射光谱基于以上样品的荧光图像和反射图像,软件自动计算出对应的量子产率分布图像,如下图,通过点击图像中不同的区域,可以获得对应的量子产率曲线。图8 量子产率分布和不同激发波长的量子产率因此使用荧光分布成像系统将样品在不同激发波长下的拍摄图像分离为反射图像和荧光图像,可以计算出影响荧光材料发光效率的量子产率分布图,样品中黄色区域的量子产率约60%,红色区域的量子产率约35%。 3. 总结 荧光分布成像系统是日立首创的全新技术,与日立超高扫描速度的荧光分光光度计联用,助力客户实现更精细化的荧光分析。拨打电话400 630 5821,获取更多信息!
  • 【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布
    纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准等同采用ISO 19749:2021《Nanotechnologies — Measurements of particle size and shape distributions by scanning electron microscopy》,从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。视具体需求以及仪器性能而定,本标准中涉及到的方法,也适用于更大尺寸的颗粒测量。一、背景纳米颗粒形态多种多样,很多情况下也会存在聚集、团聚的现象,这为SEM的观测与分析带来了较大的挑战。由于不同设备、不同人员的操作习惯以及采用不同分析策略所引起的粒度粒形测量结果的一致性问题也十分值得探讨。现行的相关国家标准大多关注采用SEM手段对特定被测对象的特征进行测量、表征、区分、定义等,具有较强的针对性,但缺乏系统性,特别是对设备性能的计量评定、样品处理及制样过程、图像处理的依据、测量结果的准确性与统计性等技术内容并未给出更为充分的、本质的、系统的说明。二、规范性引用文件本标准在制定过程中,在符合等同采用国际标准的要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括计量学、粒度分析、数理统计、微束分析、颗粒表征、纳米科技等各个专业领域;同时,在一些习惯性表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。三、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。对于标准中的重要技术内容,如SEM性能验证方法、典型样品(宽窄分布颗粒样品)制样方法、比对报告中涉及的颗粒测试及统计方法(算法)等均进行了方法学验证,验证了标准中相关技术操作的可行性。修正了ISO 19749:2021中的一些编辑性错误。四、适用范围本标准适用于各类纳米颗粒及其团聚、聚集体,甚至更大尺寸颗粒的粒度及形状分布测量。前提应将SEM作为一个测量系统进行评定,以确定所用SEM的性能范围,这包括设备自身的扫描分辨力、漂移、洁净度等特性。同时,也取决于观测者所需要的测量准确性。高的测量准确性需要高性能的SEM设备+高精度校准+洁净的样品前处理+匹配的测试参数+足够多的被测颗粒数量+合适的阈值算法,其中每一步都会影响最终的测试结果。因此,根据实际工作中对测试结果准确性、重复性和一致性的需求,可对上述环节进行不同程度的限定。五、主要内容本标准涉及的主要内容覆盖SEM测量颗粒粒度及形状分布的全流程,从一般原理到设备校准,样品制备到测试参数选用,图像采集到数据处理,均给出了较为详细的阐述,并在附录中给出了实用的案例。术语及定义:包括纳米技术的通用术语,图像分析、统计学和计量学专业核心术语、SEM核心术语等。一般原理:概括性地介绍了SEM成像原理及粒度、粒形测量原理。样品制备:较为系统地介绍了典型的粉末及悬浮液从取样、制样到分散的过程,并重点阐述了颗粒在硅基底和TEM栅网上的沉积方法。可根据需求,采用几种不同层次的硅片清洗与处理方法,一方面确保硅片的洁净,另一方面可使其表面带有正电或负电的捕获分子层,以确保颗粒在硅片上的有效分散。必要时采用TEM栅网,可提高颗粒与背底的对比度。考虑样本颗粒数量时,一般而言假设颗粒是对数正态分布的,本标准给出了一个颗粒数与误差和置信区间的计算公式可供参考。SEM设备的评价方法:给出了SEM成像能力的影响因素,包括空间分辨率、漂移、污染、水平垂直范围及线性度、噪声等,具体的验证方法在附件中有较为详细的描述,此外也可依照其他相关的技术规范或标准定期进行校准。图像采集:重点给出了不同粒度测量时放大倍率和像素分辨率的选择策略,取决于实际的测量需求。测量者需要充分考虑要求的误差和放大倍率来计算所需的像素分辨率,当颗粒分布较宽时可能有必要在不同放大倍率下进行拍摄,以兼顾颗粒的测量效率及测量精度。颗粒分析方法:手动分析可能准确率很高,能较好地界定测量区域以及筛选合格的颗粒(例如单分散颗粒体系中去除黏连颗粒),但采用软件自动处理往往更为高效。采用软件处理时,阈值的设定会对颗粒的筛选、粒度的大小产生较为关键的影响,必要的时候可以采用自动处理与手动处理相结合的方式。数据分析:给出了筛选数据可采用的统计学方法(方差分析、成对方差分析、双变量分析等方法)、模型拟合方法的参考,重点讲解了不确定度的来源与计算。结合60 nm颗粒测量结果,阐述了典型的不确定度来源。在上述基础上,给出了测量报告的信息及内容。本文作者: 黄鹭 副研究员; 中国计量科学研究院 前沿计量科学中心 Email:huangl@nim.ac.cn常怀秋 高级工程师; 国家纳米科学中心 技术发展部 Email:changhq@nanoctr.cn
  • 全国土壤重金属分布规律研究获新进展
    北科院资源环境研究所副研究员乔鹏炜等针对不同省区重金属来源、扩散途径和土壤理化性质等开展调查分析,评估了它们对相应省区重金属空间分布的影响及规律,得出一系列结论,相关研究成果以《中国土壤重金属空间分布来源、扩散途径和受体属性的定量分析及其嵌套结构分析》为题,发表在中科院一区期刊Science of the Total Environment。 研究结论表明,采矿和选矿业是湖南、云南和辽宁土壤重金属的主要来源,这些地区有许多矿山,采矿活动频繁;工业生产和汽车尾气排放等是上海和浙江等经济发达的地区土壤重金属的主要来源;农药、化肥等归一化植被指数(NDVI)是农业相对发达的广东和安徽地区土壤重金属的主要来源。这些结果为确定国家范围内土壤污染修复和预防的修复和预防目标提供了依据。 乔鹏炜等以我国六种土壤重金属(As、Cd、Cr、Cu、Pb和Zn)为研究对象,识别了不同重金属的污染源,定量分析了扩散途径及受体性质对六种重金属空间分布的影响程度,确定各省重金属污染的来源、扩散途径和受体属性,并探讨了重金属的多尺度空间分布结构。 研究发现,土壤类型、采矿和选矿业、GDP(汽车尾气排放和工业生产)和归一化植被指数(NDVI)是六种重金属污染的主要来源,分别占Cr、Cd、Zn和As污染的92.93%、97.81%、99.30%和96.24%。其中,As的空间分布主要受扩散途径的影响,尤其是坡度的影响;Cd主要受受体性质和扩散途径的影响,尤其是土壤含水率的影响;Cr和Pb主要受受体性质的影响,尤其是土壤含水率及土壤有机碳的影响;Cu和Zn主要受土壤质地的影响。这些因素共同作用,导致我国的东—西和南—北方向均有两种嵌套尺度的空间分布结构。其中,较大尺度的空间结构对重金属的空间分布有更显著的影响,尤其是在东—西方向。 研究指出,要准确防治土壤重金属污染,不仅需要确定重金属的来源,还需要准确评估扩散途径和土壤理化性质对土壤中重金属空间分布的影响。因此,调查及监测全国范围内土壤重金属污染水平,并分析其分布结构及污染来源,对于全国土壤污染防治具有重要意义。 该项研究得到北京市自然科学基金面上项目资助。 相关论文信息:https://doi.org/10.1016/j.jhazmat.2023.130961
  • 日立新品!荧光分布成像系统---测定万圣节贴纸
    日立新品!荧光分布成像系统---测定万圣节贴纸刚刚过去的BCEIA大会,日立发布了全球独创的荧光分布成像系统(EEM View),今天就用它来测定万圣节必不可少的南瓜贴纸。EEM View是日立全球首创在荧光分光光度计中加入CMOS相机的系统,能够同时获得样品的图像和光谱信息,突出亮点是可以获得样品图像任意区域的光谱性能。南瓜贴纸光谱信息鉴赏各式各样的南瓜贴纸中含有大量荧光粉,众所周知,这种贴纸暴露在黑暗中会发出荧光。图1所示便是这次鉴赏南瓜头贴纸的荧光分布成像系统,从图中可以清晰看到新附件的结构,CMOS相机位于积分球下方,样品安放在积分球上方,入射光经过积分球漫反射获得均匀光源,激发样品产生荧光。更多详细信息请点击:https://www.instrument.com.cn/netshow/sh102446/s913511.htm总结一般的荧光分光光度计测得的是样品区域表面平均化后的信息,只能获得一条荧光光谱,而日立荧光分布成像系统能够同时获取样品不同位置的光谱信息,有利于探究样品表面的光学性能分布。日立高新技术以‘让世界充满活力’为宗旨,致力于新技术的融合与开发,这次推出的新品荧光分布成像系统将对油墨、材料、化工、涂料以及LED等领域带来新的启发,新的探索方法。
  • 孔径分布问题:BJH报告解读
    表征材料孔径的分布对于实验测量来说具有重要的意义,BJH 是目前使用历史最长、普遍被接受的孔径分布计算模型,它基于 Kelvin 毛细管凝聚理论发展而来。BJH 法是通过简单的几何计算应用 Kelvin 方程的经典方法,它假设孔径是圆柱孔。在这种方法使用了 60 年后,随着 MCM-41 模板孔径分子筛的问世,人们突然发现 BJH 法有着极大误差,低估孔径可达 20%。因此,ISO 15901《固体材料孔径分布与孔隙率的压汞法和气体吸附法测定——第 2 部分:气体吸附法分析介孔和宏孔》对 BJH 的使用提出了明确的限定条件,采用 Barret、Joyner 和 Halenda 方法计算介孔孔径分布。由吸附等温线计算孔径分布的代数过程存在多个变化形式,但均假定:(1)孔隙是刚性的,并具有规则的形状(比如,圆柱状);(2)不存在微孔;(3)孔径分布不连续超出此方法所能测定的最大孔隙,即在最高相对压力处,所有测定的孔隙均已被充满。 下面我们来详细了解一下我们的 BJH 报告:上图是一份 BJH 吸附报告表格。表中第一个部分代表的分别是所选择的 BJH 测试方法(采用吸附或脱附支)及适用孔径范围、厚度曲线以及一些设定参数。其中 BJH 校准方法、厚度曲线在软件中提供了多种可选择的项目,可根据分析需求进行选择(如下两图所示)。表格的第一列是孔径范围。出具报告时,可选择根据测试需求,指定孔径范围进行报告,也可选择按照采集的数据点进行报告。如下图所示:表格的第二列是第一列孔径范围内的平均孔径。表格的第三列是孔体积增量。表格的第四列是累积孔体积。孔体积增量相加即得累积孔体积。如上述表格中:0.004472+0.002826≈0.007297(含四舍五入)表格的第五列和第六列分别是孔面积增量和累积孔面积。孔面积增量相加即得累积孔面积。BJH 报告的第二个内容即累积孔体积图,如下图所示。Larger代表的是一种作图方式,还可选择Smaller。在Larger这个图中,含义是:大于等于 1.78nm 的孔的累积孔体积为 0.0525。在Smaller这个图中,含义是:小于等于 238nm 的孔的累积孔体积为0.0525。BJH 报告的第三个内容,即 BJH 吸附 dV/dD 孔体积分布图和 dV/dlogD 孔体积分布图(如下两个图所示)。两个报告的含义是一样的,只是前者更能体现出小孔区域的信息,后者能更清晰的体现出大孔区域的信息。BJH 脱附的报告内容与 BJH 吸附报告内容完全一致,只是使用的计算点为等温线的脱附支而已,而 BJH 的吸附报告采用的计算点是等温线的吸附支。
  • 分布式光纤应变监测仪取得重要进展
    p style=" text-align: justify text-indent: 2em " & nbsp 由中兴通讯股份有限公司牵头的国家重点研发计划“重大科学仪器设备开发”重点专项“分布式光纤应变监测仪”项目经过近两年的努力,突破了高空间分辨率技术、超长距离测量技术和高精度布里渊信号处理等关键技术,开发出分布式光纤应变监测仪样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。 /p p style=" text-align: justify text-indent: 2em " 分布式光纤传感以光纤作为传感器,其测量参数包括应变和温度等,可以实现空间上的连续测量,监测点位可达百万个,测量距离可达百公里,具有传统点式传感器不可比拟的优势,是大尺度基础设施结构健康监测和大范围地质灾害监测最有效的技术手段。目前国内高性能分布式光纤传感监测仪主要依赖国外进口,国内还不能实现厘米级超高空间分辨率和百公里超长距离产品供货。该项目通过采用差分脉冲对技术和双频激光扫描技术,所开发的可工程化应用的分布式光纤应变监测仪,具有厘米级空间分辨率和百公里测量距离,已成功应用于油气管道、高速铁路、高压输电线、大型桥梁和山体滑坡监测等领域,中国公路学会组织的科技成果鉴定认为该项目整体技术达到了国际领先水平。开展分布式光纤应变监测仪的自主化研究,对于提高我国大型基础设施、大型结构装备和地质灾害的安全监测能力,提升公共安全水平,以及减小经济损失和社会影响具有重要意义。 /p p style=" text-align: justify text-indent: 2em " 该项目下一步将加强仪器小型化设计,提高产品的工程使用灵活性;进一步加快工程应用示范及产业化推广等工作。& nbsp /p
  • 国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动
    p   近日,由哈尔滨工业大学董永康教授牵头作为项目负责人的国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动暨实施方案论证会顺利召开。 /p p   作为国家重大科学仪器设备开发专项之一,该项目旨在开发具有自主知识产权、高精度、高可靠性与环境适应度、核心部件国产化的分布式光纤应变监测仪,充分利用云计算与大数据系统架构与技术,实现大型基础设施、地质灾害等远程实时安全监测,实现工程化开发、应用示范并进行产业化推广。项目由我校董永康教授牵头作为项目负责人,中兴通讯股份有限公司作为产业化牵头单位,联合中铁大桥科学研究院有限公司、中交公路规划设计院有限公司、中交第一公路勘察设计研究院有限公司和中国科学院武汉岩土力学研究所共同申报。该项目对于改善我国在大型基础设施、大型结构装备、地质灾害等安全监测水平,提升公共安全水平,减小经济损失和社会影响具有重要意义。 /p p   在启动会上,项目负责人董永康教授作了项目总体情况汇报,6个项目课题负责人分别进行了课题实施方案汇报。项目专家组对项目的研究目标、研究内容及研究方案的可行性给予充分的肯定,并针对项目和各课题后续工作的具体实施、拟解决的关键科学和技术问题等提出了建设性的意见和建议。 /p p   中国工程院院士杜彦良教授主持启动会,项目组专家及委员共30余位参加本次了会议。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/c8ed9c9b-8ffd-4d71-983f-a71c9483e324.jpg" title=" LKsd-fyqtwzv2273554.jpg" style=" width: 500px height: 333px " width=" 500" vspace=" 0" hspace=" 0" height=" 333" border=" 0" / /p p style=" text-align: center " 与会专家合影 /p
  • Nature | 内质网蛋白调控细胞器分布的分子机制
    胞内细胞器实时发生快速的结构和分布变化,这些改变受到细胞内部环境的调控,反过来作为调控手段去影响细胞内环境,进而执行复杂的细胞功能。细胞器分布的调节对细胞健康至关重要。细胞器通过motor和adaptor蛋白沿着微管双向移动,进而建立和维持其适当的分布和功能【1】。微管通过可逆的翻译后修饰(包括乙酰化、去酪氨酸化和谷氨酰化)获得调节特异性,这些修饰共同构成了微管蛋白密码(tubulin code)的关键元素【2】。研究表明,tubulin code参与微管cargo选择以及细胞器定向运动【2】,但细胞如何破译这些tubulin code以选择性地调节细胞器定位尚不清楚。内质网(Endoplasmic reticulum, ER)是一个由不同形态组成的相互连接的网络,在整个细胞质中混杂延伸,与其他细胞器形成丰富的接触。内质网形态失调与神经系统疾病和癌症密切相关。2021年12月15日,来自美国国立卫生研究院的Craig Blackstone团队在Nature杂志上在线发表了题为ER proteins decipher the tubulin code to regulate organelle distribution的研究论文,阐释了内质网蛋白调控细胞器分布的具体机制。研究人员证明了三种膜结合的内质网蛋白优先与不同的微管群体相互作用:CLIMP63结合中心体微管,KTN1结合核周多聚谷氨酰化微管,p180结合单谷氨酰化微管。这些内质网蛋白质的敲除或微管群的操纵和谷氨酰化状态改变均会导致内质网定位的显著变化,进而引起其他细胞器在胞内的重新分布。大多数关于ER shaping和细胞器接触的研究都集中在外周管状ER,而更致密的核周ER是如何形成和不对称分布的目前还不清楚。三种ER膜结合蛋白— CLIMP63,p180和KTN1—主要定位于核周ER,被认为是内质网片状形成(sheet-forming)蛋白【3】。作者首先探究了这三个蛋白在调控内质网形态和分布中的功能。如图1所示,在CLIMP63和KTN1单敲除细胞的外周ER中的致密基质或片状结构数量增加,该现象定义为“分散(dispersed)”表型;而p180敲除细胞中的ER则表现出一种相反的“聚集(clustered)”表型——其外周网络保持管状,但核周 ER 在核的一侧不对称地塌陷成较小的区域;CLIMP63-KTN1双敲导致更明显的“dispersed”ER,而CLIMP63-p180双敲细胞中的ER与野生型中的类似;值得注意的是,p180-KTN1双敲造成比p180单敲更多的ER聚集;在CLIMP63-p180-KTN1三敲的细胞中,高密度的ER基质或片状结构在核周区域富集。为了更好地定量评估ER形态和分布的变化,作者开创了互补算法(complementary algorithms),利用基于概率密度估计的统计方法来分析荧光标记的ER和其他细胞器的空间分布,使用实验得出的空间概率质量函数来量化图像上的荧光变化,以计算细胞器的径向分布和细胞不对称程度。数据显示,CLIMP63 和 KTN1 单敲除或双敲除增加了 ER 平均分布半径 (Mean distribution radius, MDR),说明ER 的外周分布更广;相反,p180敲除或p180-KTN1双敲增加了ER不对称性。其中微管MDR和不对称性仅略有变化。图1. CLIMP63、p180 和 KTN1 差异性调节 ER 形态及分布随后,作者通过co-sedimentation实验评估了多种ER蛋白与微管的结合能力。与预期的结果一致,CLIMP63、p180和KTN1均可以结合大量微管。作者发现,只有能够进行微管结合的野生型蛋白质或突变体才能恢复相应敲除细胞系中的ER形态。例如,CLIMP63错义突变体R7A,K10A和R70A不能结合微管或抑制CLIMP63敲除细胞中的ER分布缺陷,而结合微管的CLIMP63(H69A)可以拯救表型;对于KTN1,只有结合微管的缺失突变体可以抑制异常的ER表型;缺乏kinesin-1结合结构域的p180s仍然可以抑制p180-敲除细胞中的ER聚集表型。这些数据表明CLIMP63-、p180-和KTN1-敲除细胞中ER形态的改变可能都与微管结合改变相关。因此,作者推测这些蛋白质可以结合不同的微管群体,并采用邻近连接测定(proximity ligation assay, PLA)来可视化它们在细胞中的微管结合情况。作者使用centrinone B耗尽中心体微管,并通过敲除AKAP450去除高尔基源性微管。结果显示CLIMP63-microtubule association对中心体耗竭敏感,但高尔基体微管耗竭不敏感;KTN1-microtubule association对两者都敏感;p180-microtubule association对中心体或高尔基微管的消耗都不敏感。进一步分析证明,CLIMP63优先结合中心体微管,KTN1优先结合来自中心体或高尔基体的核周微管,p180优先结合更多的外周微管。为了获得调节特异性,微管经历可逆的翻译后修饰,包括乙酰化、去酪氨酸化和谷氨酰化【2】。虽然 CLIMP63、p180 或 KTN1 敲除不影响这些修饰的总体水平,但微管蛋白多聚谷氨酰化在中心体或高尔基体微管耗尽的细胞中降低。因此,作者纯化了含有微管结合域的p180、KTN1和CLIMP63片段,并在体外探究它们与谷氨酰化微管的结合。与KTN1相比,p180与单谷氨酰化微管表现出更高的体外结合,而p180和KTN1与多聚谷氨酰化微管结合能力相似。同时,KTN1更倾向于结合具有多聚谷氨酸链的微管,而不是具有多位点单谷氨酸链的微管。与p180和KTN1相反,CLIMP63对微管谷氨酰化的反应较差,不同的微管蛋白修饰或相互作用可能介导了CLIMP63与中心体微管的优先结合。总的来说,如图2所示,CLIMP63,p180和KTN1分别优先结合中心体、多聚谷氨酰化和谷氨酰化微管,进而协同调节ER分布。图2. CLIMP63结合中心体微管,KTN1结合多聚谷氨酰化微管,p180结合谷氨酰化微管。接下来,作者对其他细胞器的分布进行了分析。通过同时对六个细胞器的活体成像显示,大多数细胞器的分布与ER相似,提示 ER 可能广泛调节细胞器分布。值得注意的是,在CLIP63-,p180-和KTN1-敲除细胞中,所有细胞器都表现出与ER相似的分布变化:在CLIMP63-或KTN1-敲除细胞中更分散,在p180-敲除细胞中更不对称。此外,分散ER的CCP1过表达也增加了野生型细胞中溶酶体,线粒体和过氧化物酶体的MDR。最后,作者探究了在自噬过程中ER和溶酶体的迁移活动。核周溶酶体聚集是早期自噬的标志性事件,对于适当的自噬通量很重要【4-5】。与溶酶体类似,ER 在早期自噬期间迁移至核周,随后重新分布到外周。CLIMP63蛋白水平在早期自噬期间显着增加,CLIMP63敲除可以阻止ER向核周区域移动,并抑制自噬体-溶酶体融合和自噬降解,但并不影响溶酶体活性。p180和KTN1蛋白水平在早期自噬期间保持不变,KTN1-microtubule association不变,但p180-microtubule association增加,进而重新分布ER和溶酶体。p180-敲除细胞中的ER和溶酶体始终留在核周。作者还阐释了p180与微管结合的生理学意义,如图3所示,p180L的核糖体结合区(主要的异构体)包含41个带正电荷的十肽重复,该区域在正常细胞条件下(Normal)被核糖体占据,但在饥饿条件下(Starved),与核糖体发生解离,暴露出这些带正电的区域,随后结合微管。图3. (e) p180结构域组成;(f) p180在正常和饥饿条件下与微管结合。总的来说,该研究证明了CLIP63,p180和KTN1优先结合微管的不同子集以维持核周ER的特征性分布,从而解释了它们缺失的差异效应。微管在细胞器分布中起着关键作用,它们选择性分配细胞器的能力依赖于“tubulin code”。该研究表明:(1)ER分布是通过特定的膜结合蛋白介导的,与不同水平和类型的微管谷氨酰化有差异结合,广泛影响大多数其他细胞器的分布;(2)细胞不是通过赋予每个细胞器自己的感知和响应机制,而是通过将ER作为一线传感器和响应器来实现组织效率。作者认为可能还有其他ER蛋白也可以破译tubulin code,对ER在健康和疾病中的功能具有重要意义。原文链接:https://doi.org/10.1038/s41586-021-04204-9制版人:十一
  • 青花瓷微区元素分布的扫描分析
    X射线荧光分析(XRF)作为一种重要的元素分析方法已经在环境科学、地球科学、生命科学、文化遗产的科技研究等学科中发挥了重要的作用。由于微分析技术在这些学科中例如分析单颗粒大气污染物、生物单细胞等成分分析方面具有独特的优势,其应用一直都受到科学研究工作者的重视。常见的微分析技术主要是扫描电子微探针(EPMA)、扫描质子微探针(&mu PIXE)和同步辐射X射线荧光分析(SRXRF)等,一般最简单产生微束的方法就是通过微小的狭缝来限制束流以产生微束,但是这种方法会造成用于激发分析样品的元素X射线强度减小,并且能量利用率极低。下图为常规的X射线光源采用狭缝和使用X光透镜两种方式产生直径为50&mu m微束光斑分析直径同样为50&mu m大气单颗粒物的X射线荧光分析谱,从图中很明显看出常规的X射线光源通过采用狭缝的方式产生微束来分析样品的可能性是很小的。但由于同步辐射装置所提供的X射线能量高、亮度大,采用狭缝的方法产生微束可以使用在同步辐射X射线荧光分析上,如北京同步辐射X射线荧光分析系统就是采用狭缝的方式来产生微束来满足环境科学、生命科学等对微分析技术的需求。比较复杂的聚焦方法是利用光学聚焦系统,设备比较复杂,成本比较高,其应用有很大的限制性。   自20世纪80年代以来,随着X光透镜技术的发展,X光透镜具有聚焦性能好、成本低、设备比较简单、能量利用率高,并且可以以成像的方式显示样品中元素分布等优点,于是便和X射线荧光分析系统有机地结合在一起。目前比较常见的有两种结合方式,一种是X光透镜和同步辐射X射线荧光分析系统相结合,另一种是X光透镜和常规的X射线荧光分析谱仪相结合,这两种结合主要都是利用X光透镜的优点,使X射线荧光分析系统具有束斑小(束斑的直径可以达到10~50&mu m)、光强度可以达到~107光子/秒、所需要的样品量少、分析速度快、散射本底小、探测极限低、可以分析厚靶样品中几十个&mu g· g-1的微量元素等优点。下图为使用X光透镜的微束X射线荧光分析美国国家标准局研制的玻璃有证标准参考物质(SRM NIST610)各元素的探测极限。由于微束XRF具有比常规的X射线荧光分析更多的优点,因而使其应用范围越来越广泛。如工业上汽油中含硫量的测量 大气中单颗粒物的成分测量 参与植物新陈代谢过程中某些元素如Mn,Ca,Zn,Rb等在不同年龄的松针中从顶部到根部的分布 古陶瓷和青铜器中焊接物等微区的成分分析等。由于同步辐射X荧光分析需要大型加速器提供同步辐射光源,设备比较昂贵,机时比较有限。而使用X光透镜的微束X射线荧光分析系统与此相比设备比较简单,成本低、使用比较方便,因此研究使用X光透镜的微束X射线荧光分析在环境科学、地球科学、生命科学、文物保护等方面具有重要的意义。   微束X射线荧光分析在文物样品分析中有广泛的应用前景。   古陶瓷是由古代的土壤和岩石经过加工烧制而成,其化学成分主要是由Na2O、MgO、Al2O3、SiO2、K2O、CaO等组成,其中SiO2和Al2O3的含量之和在80%以上,因此古陶瓷样品主要是由Si和Al等氧化物组成的轻基体。在实验中既要准确的测量出Na和Mg,又要测量出Rb、Sr、Y、Zr等重元素氧化物的含量,其实验条件的选择是非常关键的。对于Na、Mg、Al和Si等元素需要在真空中或氦气的气氛下探测器才能探测到其被激发的特征X射线。由于文物样品的特殊性,一般采用在探测器和被测样品之间形成氦气的光路来测量或者直接在大气中测量。本工作是在大气中直接分析被测样品,同时也就意味者Na、Mg、Al、Si等元素的特征X射线没有被探测器探测到。   实验工作是在两种条件下测量:第一种条件是在电压35kV,电流10mA,测量时间为300s,探测器与样品之间的距离为25mm 第二种条件是电压为40kV,电流10mA,测量时间120s,探测器前加1mm的准直器来降低散射造成的本底,探测器与样品之间的距离为42mm。测量国家有证标准参考物质GBW07406(GSS-6)的谱如下图所示。从谱图上看,在探测器加准直器更能降低散射本底,提高探测极限。   青花瓷是中国古陶瓷中具有很高艺术价值的瓷器,但对青花瓷的产地、年代、钴料的来源、制造工艺及其真伪辨别等问题一直缺乏系统的研究。由于微束分析的一系列的优点,用微束X射线荧光分析扫描分析了一块明代青花瓷残片中青花部位的元素分布,样品的照片见下图。   实验装置如下图,采用旋转阳极靶和会聚X光透镜组成激发样品的微束X射线源,SiPINX射线探测器收集样品中激发出的元素特征X射线,采谱活时间为5min,每隔50&mu m测量一个点,扫描面积为1mm× 35mm AXIL程序进行峰的拟合和本底的扣除。   对比青花部位和白釉部位的MXRF谱图可知,青花部位与白釉部位有差异的元素为主要为K、Ca、Fe、Co、Ni 以这五种元素的峰面积为变量,Matlab程序做图得到青花瓷五种元素的分布图。从几种元素的微区分布图对比青花瓷图片,可以看出Mn和Co的分布基本上和青花瓷釉色的深浅相一致的,Fe元素的分布基本上与青花瓷釉色的变化没有明显关系。相关性分析表明,Mn和Co有非常好的相关性,而Ni与Mn和Co没有相关性。   本文摘编自程琳、金莹著《现代核分析技术与中国古陶瓷》一书。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制