当前位置: 仪器信息网 > 行业主题 > >

肺炎多糖疫苗

仪器信息网肺炎多糖疫苗专题为您整合肺炎多糖疫苗相关的最新文章,在肺炎多糖疫苗专题,您不仅可以免费浏览肺炎多糖疫苗的资讯, 同时您还可以浏览肺炎多糖疫苗的相关资料、解决方案,参与社区肺炎多糖疫苗话题讨论。

肺炎多糖疫苗相关的资讯

  • 【新品推荐】ATS高压匀浆机在细菌多糖结合疫苗的作用
    2019年8月13日,由北京民海生物科技有限公司生产的23价肺炎球菌多糖疫苗顺利通过国家药品监督管理局审查,成功获得生物制品批签发证明上市使用。该产品将通过各省疫苗招标采购平台,陆续发往各地预防接种单位使用。目前国内市场上的肺炎球菌疫苗主要有两大类:13价肺炎球菌多糖结合疫苗和23价肺炎球菌多糖疫苗。其中,13价肺炎球菌多糖结合疫苗主要针对2岁以下儿童;23价肺炎球菌多糖疫苗则覆盖2岁以上易感人群,尤其是婴幼儿、老年人、慢性病人等重点人群。肺炎球菌多糖结合疫苗是什么?细菌多糖结合疫苗(以蛋白为载体的细菌多糖类)是指采用化学方法将多糖共价结合在蛋白载体上所制备成的多糖-蛋白结合疫苗,用于提高细菌疫苗多糖抗原的免疫原性。制备结合疫苗的糖成分可以是分子量为500kd的左右的大分子多糖,可以是分子量为10-20kd的寡糖或0-SP,多糖的分子量越均一,免疫的表达效果越好。而我们的ATS高压均质机就是用来把多糖的分子量做均一的功能。是它是它,就是它!ATS高压匀浆机特点1.符合GMP设计,通过欧盟CE认证 2.物料残留量为0,特别适合原辅料昂贵的药剂类客户使用 3.超高压设计,压力可达:1800bar/27000psi 4.特殊的进料阀设计,无需排气,直接进料 5.变频器控制系统,可根据要求调节流量 6.内置冷却器,不消耗物料,控制均质温度 7.可配置高耐磨超细高密度陶瓷-金刚石阀 8.所有接触物料管道均为316L材质 9.可根据不同应用选用不同均质阀组 ,可选配冷却盘管,二级均质模块等 想了解更多关于ATS均质机可以咨询北京德泉兴业商贸有限公司ATS 安拓思纳米技术(苏州)有限公司近20年来一直致力于自主研发及引进国外先进技术;核心产品为超高压均质乳化粉碎机,及脂质体制挤出器系统。产品服务于国内外广大科研单位及制药企业;深受国内外客户的好评,已经成为广大用户的重要选择!
  • 我国自研mRNA新冠肺炎疫苗启动I期临床试验
    3月25日,由斯微(上海)生物科技有限公司、同济大学附属东方医院合作研发的针对预防新型冠状病毒肺炎的mRNA疫苗Ⅰ期临床试验正式启动。启动“mRNA新型冠状病毒肺炎疫苗在18岁及以上健康易感人群中接种的安全性及免疫原性的随机、双盲、安慰剂对照Ⅰ期临床试验”,标志着上海自主研发mRNA新冠肺炎疫苗正式进入了预防新冠疫情的临床试验行列。(图片来源:上海市东方医院官微)  据悉,为应对新冠肺炎疫情,斯微生物、东方医院联合中国疾病预防控制中心,与高福院士谭文杰团队开展密切合作,于2020年1月开始研发mRNA新冠肺炎疫苗。本疫苗研发项目被国家科技部作为新冠疫苗的五条研发路线之一应急立项,并由国家卫健委疫苗专班监督和支持。  利用此前依托上海市科委“上海市信使核糖核酸(mRNA)应急疫苗技术创新中心”和“上海张江国家自主创新示范区干细胞战略库与干细胞技术临床转化平台”课题建设的斯微mRNA合成平台的研究成果和自主专利技术,在40天内快速合成、制备和测试疫苗样品。  mRNA疫苗原理是让mRNA编码病毒的抗原蛋白序列。mRNA 在进入人体细胞内后,会被人体细胞作为模板,来生产病毒的抗原蛋白,同时激活人体的体液免疫和细胞免疫,产生保护性抗体。  经过近一年的研发攻关,在国家科技部新冠应急项目、上海市科委以及同济大学新冠应急专项的支持下,该项目完成了疫苗的临床前评价研究,并相继完成全部药学、药理毒理及申报相关临床材料的滚动提交内容。今年1月4日,该项目获得国家药品监督管理局签发《药物临床试验批件》(批件号2020L00047),应急批准mRNA新型冠状病毒肺炎疫苗(COVID-19-mRNA Vaccine)进行临床试验。  此项目同时纳入“同济大学疫苗实验室”专项项目。在该实验室平台上,同济大学附属东方医院等多家医院曾开展mRNA肿瘤疫苗临床试验,已初步取得良好效果,并对疫苗实验室平台进行了严格的安全性及有效性评价。
  • 新冠肺炎疫苗相关消息不断传来̷̷ 到时,疫苗瓶够用吗?
    近日,有关新冠疫苗的消息不断传来 … … 超过100个新冠肺炎疫苗项目在研。全球已有8款疫苗进入临床试验,其中4款来自中国团队。疫苗研制出来了,产能满足需求吗?中国建成全球最大新冠疫苗生产车间,量产后年产能达1亿剂。疫苗批量生产后,预计全球年产量能可达10亿制剂。产能够了,那… … 盛放疫苗的玻璃瓶呢?英国惠康基金会之人杰里米法拉爵士:随着新冠疫苗的问世和量产,过不多久,疫苗瓶就会不够用。比尔盖茨:我们需要确保有可用的疫苗瓶。美国卫生供应链专家普拉特亚达夫:一旦疫苗量产,疫苗瓶会成为整个供应链中的薄弱环节。难道小小的玻璃疫苗瓶又要重演口罩的剧情?答案似乎是肯定的。从目前全球药用玻璃生产形势来看,产量严重短缺,各国又将目光聚集到了制造业大国 —— 中国的身上!但是,这个小小的疫苗瓶,可不同于一般的玻璃瓶哟!药用玻璃具有光洁透明、易消毒、耐侵蚀、耐高温、密封性能好等特点,是使用最早、应用最广的药用包装材料之一。由于药品与玻璃相容性存在诸多不确定性,尤其是药用玻璃包材中重金属元素的溶出,是引起药品质量问题的高发区。《国家药包材标准》中的相关标准如下。珀金埃尔默推出“药用玻璃重金属检测解决方案”,按照《国家药包材标准》 中对各类硼硅玻璃和钠钙玻璃的要求,使用原子吸收分光光度法测定药用玻璃浸出液中的铅、镉,紫外-可见分光光度法测定药用玻璃浸出液中的砷、锑,为生产企业和监管机构提供准确、灵敏、稳定和高效的解决方案。01样品前处理按照“YBB00372004-2015 砷、锑、铅、镉浸出量测定法”规定,4%乙酸溶液灌装样品,封口后98℃ 蒸煮2小时,冷却后作为供试品溶液。02火焰原子吸收光谱法测定玻璃输液瓶中铅、镉浸出量仪器PerkinElmer® PinAAcle™ 900T AAS纵向塞曼背景校正和石墨管横向加热技术,确保仪器拥有优异的背景扣除能力和检测能力。火焰与石墨炉一体化设计,有效节省空间和提升使用效率。实时双光束原子吸收。抗干扰能力强,特别适合直接进样分析复杂药物。结果采用火焰原子吸收法测定对照品溶液和供试品溶液,对玻璃输液瓶浸出液中Pb、Cd含量进行了测定。校准曲线线性相关系数在0.9999以上,测试信号的标准偏差在0.0010 A以下。03紫外-可见分光光度法测定玻璃输液瓶中砷、锑浸出量仪器PerkinElmer® LAMBDA™ UV-Vis 分光光度计 LAMBDA 265/365/465紫外可见分光光度计直观的操作软件和简化的用户界面,先进的可视化编辑工具。 自我校正功能保障实时高性能工作状态。 采样附件自动识别适配;涵盖众多应用领域的独立应用模块。结果采用紫外-可见分光光度计测定对照品溶液和供试品溶液,对玻璃输液瓶浸出液中As、Sb含量进行了测定,方法精密度、准确度等均符合要求。上述方法适用于药包材标准中所列举的各类玻璃材质测检测。04珀金埃尔默元素检测常用设备
  • 厦大牵头研发的鼻喷流感病毒载体新冠肺炎疫苗获批紧急使用!
    12月2日,经国家卫生健康委提出建议,国家药品监督管理局组织论证同意,由厦门大学、香港大学、万泰生物联合研发的鼻喷流感病毒载体新冠肺炎疫苗(以下简称“鼻喷苗”)获批紧急使用!该疫苗是我国布局新冠疫苗应急攻关的五条技术路线之一,也是全球最早进入临床试验以及迄今唯一在三期临床试验中验证了安全性和广谱有效性的黏膜免疫新冠疫苗。鼻喷苗采用经特别改造以提高安全性和有效性的双重减毒甲型流感病毒作为载体,插入新冠病毒刺突蛋白RBD基因片段研制而成。流感病毒具有与新冠病毒(尤其是奥密克戎变异株)高度重叠的从鼻腔开始的全呼吸道易感细胞解剖分布特点,因此该疫苗通过鼻腔喷雾方式接种可以模拟病毒自然感染方式在呼吸道形成预防新冠病毒入侵的第一线免疫屏障,且与肌肉注射式新冠疫苗诱导全身性保护的机制彼此互补,有利于形成更全面的保护。研究显示鼻喷苗可诱导包括细胞免疫、体液免疫、固有免疫和训练免疫等多维度保护性免疫应答从而发挥广谱保护效果,因此基本不受病毒抗体逃逸突变的影响,对原型株或是包括奥密克戎BF.7、XBB、BQ.1.1变异株在内的迄今各主要变异株的保护性免疫应答强度相当。鼻喷苗三期临床试验是全球第一个黏膜免疫新冠疫苗的随机对照保护效力试验,在菲律宾、南非、越南和哥伦比亚等国入组了31038名18-91岁志愿者。临床试验数据显示,无论作为基础免疫还是序贯加强免疫,鼻喷苗对奥密克戎变异株感染导致的新冠病毒病(COVID-19)具有良好保护效果:(1)对住院及以上严重疾病的保护效力为100%;(2)在既往无其它新冠疫苗免疫史人群中,对症状较明显病例(具有3个及以上新冠相关症状)的保护效力为67%;对包括仅有轻微症状者在内的所有症状性感染的保护效力为55%;(3)在既往有新冠灭活疫苗免疫史的人群中,序贯加强鼻喷苗与用安慰剂加强相比,对症状较明显病例的相对保护效力为63%。此外,鼻喷苗安全性极佳,疫苗组和安慰剂组不良反应发生率相同且症状轻微,未发生疫苗相关严重不良事件。基于老年人和有基础慢病等脆弱人群是疫苗应用的最优先群体的考虑,该研究特别提高了志愿者中的老年人和有基础慢病人群的比例,共包含了4557名60岁以上老年人、4441名慢病患者(高血压、糖尿病、呼吸道疾病等),结果显示鼻喷苗对老年人、慢病人群的保护效力不弱于中青年健康人群,在各个群体中均表现出很好的安全性,疫苗组的不良反应情况与安慰剂对照组相当。鼻喷苗有效性好、广谱抗变异、安全性高、便捷无痛、接受度高,并且在老年人群、慢病人群中同样有极佳安全性和有效性,接种禁忌症少,可为我国高危群体疫苗犹豫难题的破解提供有力武器。鼻喷苗优先用于老年/慢病等高危人群的序贯加强以及疫苗犹豫人群的免疫,可显著降低我国高危人群的重症及死亡风险,避免医疗资源挤兑的大规模发生,为今后我国全面开放提供更全面保障。鼻喷苗的研发工作由夏宁邵教授牵头,获得了国家重点研发计划应急攻关项目、国家自然科学基金专项项目、教育部疫苗与分子诊断集成攻关大平台项目、教育部高校新冠肺炎防治科技攻关重点项目、福建省科技重大专项应急攻关项目、福建省自然科学基金杰青/重点项目、厦门市科技计划专项应急攻关项目、厦门大学“双一流”学科建设项目等支持。
  • 港大传染病专家袁国勇:已研发出新型肺炎病毒疫苗种子
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 香港大学医学院微生物学系讲座教授袁国勇:已经成功分离冠状病毒的病毒株,目前已经研发出相关疫苗的种子,但目前尚无时间表预计何时疫苗可以上市。 br/ /p p br/ /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 香港大学医学院微生物学系讲座教授袁国勇1月29日在电台节目表示, 他的研究团队已经成功分离冠状病毒的病毒株,目前已经研发出相关疫苗的种子。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 袁国勇指出,目前研究团队已在深圳港大医院的确诊新型肺炎个案样本中成功发现冠状病毒的基因排序,并将病毒表面抗原的蛋白即长钉蛋白放入流感疫苗中。研究人员发现,冠状病毒需要依靠长钉蛋白才能进攻人体细胞进行繁殖。他解释,如果研制成功的话,未来将流感疫苗喷入鼻中,即可产生综合抗体抵挡冠状病毒。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 然而,他坦言,目前尚无时间表预计何时疫苗可以上市,”需要先进行动物测试,确认疫苗的有效性和安全性,希望可以与内地的疫苗公司进行合作制作相关疫苗,进行临床试验。” /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 同时,他透露,过往一些麻疹疫苗的研究显示,患者注射灭活性疫苗后,利用化学的方法杀死病毒,虽然病人产生抗体,但病人再遭遇麻疹病毒时,病情却更厉害。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " “因此,我们此次并非将整个病毒的蛋白注入患者体内,仅是将长钉蛋白放入流感疫苗,希望能够防止出现不正常的免疫反应。”他表示。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 他透露,日前研究人员已在香港首个输入确诊个案中分理出病毒株, 成功种出相关冠状病毒,并开始进行攻毒试验,试验病毒在不同动物身上产生的反应,然后将喷鼻式疫苗喷入动物的鼻子,确认是否能够产生保护作用。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 同时,他指出,在临床治疗方面,尚无针对新型肺炎的抗病毒药物,根据2003年非典经验,某些抗艾滋病的药物在非典、中东呼吸综合症病毒有一定效果,“我们希望在几周内告诉大家这个药物是否对新型冠状病毒也同样有效。” /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 袁国勇是国家卫健委高级别专家组成员,被誉为香港传染病权威。他在2003年发现SARS感染病源体,即SARS 冠状病毒的过程中起到了至关重要的作用。 /p
  • 关于儿童疫苗,美国FDA给父母们写了一份指南
    p    a href=" http://www.instrument.com.cn/application/industry-S22.html" target=" _self" title=" " style=" text-decoration: underline " span style=" text-decoration: underline color: rgb(255, 0, 0) " strong 疫苗 /strong /span /a 对于减少白喉、麻疹、流感嗜血杆菌b型(Hib)等婴幼儿传染病做出了很大贡献。由于疫苗的存在,如脊髓灰质炎和天花等某些传染性疾病在美国已经基本消除。现在很少有美国儿童会经历破坏性和致命的疾病影响,而这曾普遍存在于美国和其他国家。 /p p   由于20世纪的免疫工程非常成功,现在的许多父母没见过很多疫苗预防的疾病,并且想象不到它们会重新出现的可能性。如果很多人都选择不接种疫苗来保护自己和他们的孩子,那么一些罕见的疾病就有可能再次浮出水面。虽然这些疾病目前已经被疫苗挡在人体外,但是导致这些疾病的病毒和细菌依然存在,它们依然对没有被疫苗保护的人群有致病作用。 /p p   举一个例子:虽然自2000年后,麻疹在美国已经非常少见,但散发病例一直在发生,主要来自于未接种疫苗的他国游客将疾病从其他国家带来美国,或者一些未接种的美国人去麻疹很常见其他国家旅行,并将疾病带回来。美国2014年12月爆发了大规模的麻疹疫情,从加利福尼亚州开始蔓延至整个美国和墨西哥,而主要患病人群都是没有接种疫苗的人群。作为一种接触性传染病,麻疹可以导致肺炎、脑肿胀等严重的并发症,甚至可致患者死亡。这种会爆发的传染病离你的距离并不遥远,想要不生病的最好方法是接种疫苗。 /p p    strong 疫苗的好处与风险 /strong /p p   疫苗算做一种药物。和所有的药物一样,疫苗也具有益处和风险。即使非常有效,也没有一种疫苗可以提供100%的有效保护,或对所有个体都100%安全。大多数疫苗的副作用通常是非常轻微和短暂的。例如,一个人可能感觉到注射部位有酸痛或者有轻微的发烧。严重的疫苗反应极为罕见,但是还是有发生的可能。 /p p   FDA疫苗研究与审查办公室主任Marion Gruber博士指出:“父母应该懂得疫苗造成的伤害显着小于传染性疾病的风险。接种疫苗是让孩子拥有健康的开始非常重要的一步。” /p p   如果你想了解潜在的不良事件和不良反应的更多信息,可以与你的医疗服务提供者相沟通,并且许多疫苗具有FDA批注的标签,以供患者可以作为了解相关信息的来源。 /p p    strong 儿童常规接种疫苗的类型 /strong /p p   疫苗的工作原理是让身体的免疫系统为对抗未来病毒或细菌攻击做好预先的准备。疫苗类型可以分为减毒的细菌和病毒、或者细菌和病毒的部分组件,以及这些致病因子的类似物(称为抗原)。接种疫苗后,身体的免疫系统认为疫苗的抗原是外源物质,不应该出现在体内,但是这种抗原并不会对接种疫苗的人群致病。经过疫苗接种之后,当真正导致疾病的病毒和细菌进入到体内后,免疫系统就已做好准备,可以快速、强烈地做出响应,攻击致病的抗原以阻止人体感染疾病。 /p p   疫苗经常通过注射方式提供免疫,但是也有一些通过口服,或者通过鼻腔吸入的疫苗。 /p p    strong 这里介绍几种常规的疫苗类型 /strong /p p   减毒(减弱)活病毒——这些疫苗包含活病毒,在制造的过程中其毒性被弱化,所以它们在被免疫的人群上不能够导致真正意义上的疾病发生。尽管如此,因为它们含有少量的弱化活病毒,免疫功能较弱的人群在接种之前需要咨询他们的医疗服务提供者。这种疫苗包括水痘、轮状病毒、麻疹流行性腮腺炎和风疹的疫苗。 /p p   灭活(死)病毒——这些疫苗含有的病毒已经被杀死,所以并不会引起疾病,但是身体仍然认识到它并能够激发免疫系统产生针对这种疾病的抗体。他们可以给免疫系统较弱的人接种。例如预防脊髓灰质炎、甲型肝炎的疫苗。 /p p   亚基——在某些情况下,不需要整个病毒或细菌就可以达到激发免疫反应防止疾病的目的 只使用致病的病毒或细菌的重要部分、某一部分或者称之为“亚基”。例如,预防流感的疫苗就是由一个病毒的亚单位作为疫苗的例子,它只是流感病毒的一部分。 /p p   类毒素——一些细菌通过在人体内分泌一种毒素来导致人体疾病。科学家发现,可以通过弱化毒素,使他们处于“去毒状态”而不会导致疾病的发生。例如破伤风疫苗和白喉疫苗,都是类毒素疫苗。 /p p   重组疫苗——这些疫苗是由基因工程制造。例如预防宫颈癌的人乳头瘤病毒(HPV)疫苗。在这种情况下,来自于HPV每个病毒亚型中负责编码特定蛋白的基因,可以在酵母中通过基因表达产生大量的蛋白质,产生的蛋白质纯化然后用于疫苗的制造。由于这种疫苗只含有一种蛋白质,并不是整个病毒,这种疫苗不会导致人感染乳头瘤病毒。它是通过人体对重组蛋白的免疫反应,来达到保护机体免受自然病毒感染的目的。 /p p   多糖——为了抵御某些特定的致病细菌,主要的疫苗抗原是多糖类物质 它们从细菌内纯化然后用于制造多糖疫苗。然而,纯化多糖疫苗只对大龄儿童和成人有效。用于预防23种不同菌株肺炎球菌导致的疾病的Pneumovax 23,就是多糖疫苗的一个例子。 /p p   结合疫苗——由于免疫系统尚未充分发育,仅用多糖制造的疫苗对于年幼的孩子并不起效。为了保护年幼的孩子免受某些细菌引起疾病的影响,科学家们将多糖与蛋白质相连接以便免疫系统可以识别并产生响应。蛋白质作为疫苗载体,会使体内产生保护性抗体。结合疫苗的例子包括那些预防由流感嗜血杆菌b型(Hib)引发疾病的疫苗。 /p p   您的孩子接种疫苗需要的步骤 /p p   审查疫苗信息表 /p p   这些表格解释了疫苗的益处和风险。医务人员需要依照法律提供它们。 /p p   向你的医疗服务提供者了解疫苗的益处和风险 /p p   了解疫苗的益处和风险的实际情况,以及不接种的潜在风险。也许一些父母和看护人在知道孩子可能死于麻疹、白喉、百日咳等疫苗原本可预防的疾病时会感到惊讶。 /p p   让你的医务人员在接种之前注意到这些条件 /p p   这可能包括是否生病或者有过敏史,或者从前是否有对于其他疫苗或成分的不良反应。例如,疫苗包装会在小瓶或载药注射器里,可能会引入天然乳胶,会造成对于乳胶过敏者的过敏反应。 /p p   另外,与医务人员讨论一下,对于免疫力较弱的儿童,哪些疫苗可以或不可以接种。 /p p   不良反应上报 /p p   不良反应和其他关于疫苗的问题可以向FDA疫苗不良事件报告系统提交。 /p p    strong 常见儿童疫苗有哪些? /strong /p p   白喉破伤风类毒素和百日咳复合疫苗(DTaP) /p p   品牌名称:Daptacel 和 Infanrix /p p   用途:用于预防白喉、破伤风和百日咳细菌感染。这个组合疫苗是给6周至6岁的婴儿和儿童使用的。白喉作用于喉咙,会导致呼吸、瘫痪或心衰等问题。破伤风可能会导致痛苦的肌肉痉挛、癫痫发作、麻痹和死亡。百日咳初期症状是流鼻涕、打喷嚏和轻微的咳嗽,可能看起来像普通的感冒。通常情况下,咳嗽会逐渐转重,患者可能会经历一阵阵快速的咳嗽。当咳嗽发生时,病人可能会呕吐或者由于缺乏空气而脸色发青。病人会在几周或几个月逐渐恢复。 /p p   破伤风类毒素、减毒白喉类毒素和无细胞百日咳疫苗复合疫苗(TdaP) /p p   品牌名称:Adacel 和 Boostrix /p p   用途:用于10-11岁孩子的白喉、破伤风和百日咳的细菌感染。此外,Boostrix被批准用于所有10岁以上个体,包括老年人。Adacel被批准用于10至64岁的人群。 /p p   流感嗜血杆菌B结合疫苗 (Hib) /p p   品牌名称:ActHIB,Hiberix,PedvaxHIB /p p   用途:预防流感嗜血杆菌b(Hib)引发的疾病。乙型流感嗜血杆菌是美国5岁以下儿童细菌性脑膜炎的主要原因。脑膜炎是包括脑和脊髓在内的组织感染,会导致持久的脑损伤和耳聋。 /p p   乙型流感嗜血杆菌也会引起肺炎、喉咙严重肿胀,感染血液、 关节、 骨骼和心脏表面组织,也会导致死亡。ActHIB 和 PedvaxHIB 分别批准用于2个月至18个月和71个月的婴儿和儿童 Hiberix 被批准用于注射免疫年龄15个月至五岁的儿童。 /p p   甲型肝炎疫苗 /p p   品牌名称: Havrix 和 Vaqta /p p   用途:预防甲型肝炎病毒引起的疾病。甲型肝炎感染的人可能没有任何症状 他们可能会觉得他们有一种轻微的& quot 流感样& quot 疾病 或者他们可能有黄疸 (黄皮肤或眼睛)、疲倦、腹痛、恶心和腹泻。年幼的孩子可能没有任何症状,所以人们往往是当孩子的看护人被发现感染了疾病,才会意识到儿童被感染。这两种疫苗被批准用于12个月的婴儿至老年人。 /p p   乙型肝炎疫苗 /p p   品牌名称: Engerix B和Recombivax HB /p p   用途:用于防止乙型肝炎病毒引起的感染。乙肝传播途径为体液感染。乙型肝炎可以导致慢性乙型肝炎,肝癌和死亡。疫苗已被批准适用于所有年龄段人群,包括新生儿个体。 /p p   人乳头瘤病毒疫苗 /p p   品牌名称:Cervarix,Gardasil 和 Gardasil 9 /p p   用途:用于人乳头瘤病毒引起的相关疾病,如宫颈癌,阴道癌等。 /p p   流感疫苗 /p p   品牌名称(儿童):Afluria,Fluarix,FluLaval,Fluvirin,Fluzone,Fluarix Quadrivalent,FluLaval Quadrivalent,和 Fluzone Quadrivalent /p p   用途:不同的疫苗获准用于不同的年龄组,以防止疫苗中包含的流感病毒毒株引起的疾病。流感病毒毒株经常变异,所以需要每年接种以提供保护。 /p p   脑膜炎球菌结合疫苗 /p p   品牌名称: Bexsero、 Menactra、 Menveo、 Trumenba /p p   用途:用于防止某些类型的脑膜炎球菌病。脑膜炎是一种危及生命的疾病,由脑膜炎奈瑟菌感染血液及其周围的脑和脊髓引起的。 /p p   13-价肺炎球菌结合疫苗 /p p   品牌名称: Prevnar 13 /p p   用途:预防13种不同类型的肺炎链球菌,为6周至17岁的婴儿和青少年提供保护。 /p p   脊髓灰质炎病毒疫苗 /p p   品牌名称:Ipol /p p   用途:用于预防6周的婴儿的脊髓灰质炎,俗称小儿麻痹症。脊髓灰质炎是一种很严重的疾病,会导致瘫痪或者死亡。 /p p   轮状病毒疫苗 /p p   品牌名称: Rotarix 和 RotaTeq /p p   用途:防止 6 周的婴儿由轮状病毒感染引起的肠胃炎。轮状病毒是引起婴儿腹泻和脱水的主要原因。在美国,每年轮状病毒导致55,000-70,000起住院病例及20-60例婴儿死亡。 /p p   水痘病毒疫苗 /p p   品牌名称: Varivax /p p   用途:用于防止12个月及以上的小儿水痘 (水痘)。水痘通常导致像水泡一样发痒的皮疹,伴随疲倦、头痛和发烧。它可以导致严重的并发症,如皮肤感染、疤痕、肺炎、脑肿胀和死亡。 /p p   FDA原文:http://www.fda.gov/BiologicsBloodVaccines/ResourcesforYou/Consumers/ucm345587.html /p p br/ /p
  • WHO正式命名新冠肺炎病毒COVID-19 疫苗有望18个月内问世
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 2月11日,在瑞士日内瓦召开的全球研究与创新论坛记者会上宣布上,世界卫生组织(WHO)总干事谭德塞正式宣布,将可感染的肺炎新型冠状病毒命名为“COVID-19”。其中“Co”代表“冠状病毒”,“Vi”为“病毒”,“D”为“疾病”。这已经是本次新新冠状病毒拥有的第三个名字。 /p p style=" text-align: justify text-indent: 2em " 据仪器信息网了解,此前在1月12日,世界卫生组织将COVID-19暂时命名为“2019-nCoV”(2019新型冠状病毒),由于绕口难念,造成媒体和公众的不变,没有得到大范围应用。就在前几日的2月8日,国家卫健委发言人发布了关于新冠病毒感染的肺炎暂命名的通知:新型冠状病毒感染的肺炎统一称谓为“新型冠状病毒肺炎”,简称“新冠肺炎”,英文名为“Novel coronavirus pneumonia”,简称“NCP”。 /p p style=" text-align: justify text-indent: 2em " 据悉,病毒的命名是一个大学问,需要考虑科学性、传播性、持久性、发音、歧义及避讳等诸多因素,国际上专门成立了国际病毒分类委员会这样一个机构,负责给各类病毒做分类和起名字。连番修改名字,也足以看到全世界对COVID-19的重视程度,希望此次命名能够给疫情相关新闻和防控信息传播带来便利。 /p p style=" text-align: justify text-indent: 2em " 本届全球研究与创新论坛是WHO发起召开的,旨在达成一个研究者和捐资者一致同意的研究路线,推进新型冠状病毒疫情的控制工作。会议共云集了全球400余位(线上和线下)科学家乃至公共卫生机构和部门、新冠病毒研究捐资方等各界人士。据国外媒体报道,WHO在会上还宣布针对COVID-19的首款疫苗有望在18个月内准备就绪。 /p
  • 岛津倾情赞助2018CBioPC,披露疫苗评价等新解决方案
    2018中国生物制品年会暨第十八次全国生物制品学术研讨会(CBioPC)目前正在云南省昆明市火热召开,超过2000位行业专家与会。本届年会以认真贯彻落实党中央、国务院关于疫苗和药品质量安全、保障人民健康的一系列重要指示精神为指引,深入研讨和交流生物制药领域新的技术与成果,积极推进我国生物制药技术进步、质量提升、标准提高与安全应用。 大会开幕式后,中国工程院马丁院士率先发表了题为《我国宫颈癌临床特征研究及诊治新策略应用》的大会报告。他在报告中首先介绍了目前宫颈癌流行状况与变化趋势,指出发达国家宫颈癌发病率及病死率近年来呈明显下降趋势,非州等不发达国家宫颈癌保持高发病率。我国宫颈癌发病年轻化,宫颈癌早期诊断率明显提高。马丁院士随后指出造成宫颈癌主要原因的HPV感染途径主要是性接触传播,直接皮肤接触也被认为是可能的传播方式,母亲生殖道HPV感染也传播至婴儿的口腔中。接着,他介绍了宫颈癌预防性疫苗的现状,2018年4月28日,国家药品监督管理局有条件批准九价疫苗在中国大陆上市,涉及该疫苗的一些相关问题引起社会广泛关注。目前,三种HPV疫苗均采用重组DNA技术。而中国HPV感染亚型与西方不尽相同,需要制备中国自己高性价比疫苗。马丁院士在演讲的后半程着重介绍了宫颈癌早期防治三要素:早期预警--预防前移,早期预防--定期筛查,早期治疗--宫颈上皮内病变(癌前病变)。在介绍防止三要素中,马丁院士介绍了其研究团队在各个环节中所开展的工作、研究成果。包括早期筛查宫颈癌预警筛查模型的建立,建立我国新一代宫颈癌较为精准的筛查方法;在宫颈癌前病变早期分子靶向治疗中创新设计分子编辑技术;应用 TALEN分子剪辑特异切割清除HPV逆转病灶等一系列丰硕成果。中国工程院马丁院士率先发表大会报告 国家药典委员会郭中平研究员在大会报告中介绍了《中国药典》2020版增修订工作进展 药品审评中心的高晨燕部长做题为《对细胞医疗产品监管与评价的思考》的大会报告 中国食品药品检定研究院王军志研究员做题为《WHO生物制品国际标准化重点和相关监管科学研究进展》的大会报告 岛津公司为本届大会提供赞助,并在大会上以会议报告、展台展示等方式,披露了岛津近期在该领域推出的新技术、新应用与新解决方案。在新型疫苗研发与评价分会场,岛津公司分析中心的龙珍博士做了题为《LC-MS技术在多糖疫苗和蛋白疫苗质量评价中的应用》的报告。她在报告中首先介绍自2017年以来,岛津分析中心与科兴生物和中国食品药品检定研究院百白破疫苗与毒素室合作,开展了LC-MS、聚集体分析、元素分析和MALDI-TOF、EPMA在内的多机种疫苗质谱评价方法开发。她在本次报告中主要介绍了LC-MS在23价肺炎多糖疫苗质量评价和百白破疫苗质量评价方面的内容。在百白破疫苗质量评价方面,北京分析中心发展的百白破和百日咳疫苗中毒性多肽TCT的含量测定方法已申请专利且文章已被《色谱》杂志接收。该方法已实现从北京分析中心向中检院的转移,弥补了各国药典中只有TCT限量要求而无TCT含量测定方法的缺憾,为百日咳疫苗和百白破疫苗的安全使用提供有一层有力保障。与北京科兴发展的23价肺炎多糖疫苗水解液中糖单元的含量测定方法已申请专利且文章已被Journal of Pharmaceutical and Biomedical Analysis杂质接收。与欧洲药典方法相比,新发展的方法不仅确保检测的准确性,还极大的加快了23价肺炎多糖疫苗检测的速度。欧洲药典方法检测一批23价肺炎多糖疫苗需2周左右,LC-MS方法只需不到4h。龙珍博士的报告引起与会专家的关注。岛津公司分析中心的龙珍博士做题为《LC-MS技术在多糖疫苗和蛋白疫苗质量评价中的应用》的分会报告 岛津展台展示岛津近期推出的多种新技术与新解决方案关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 岛津技术助力新冠疫苗研发与质量评价
    速 报 据不完全统计,全球正在推进92个新型冠状病毒疫苗(以下简称新冠疫苗)项目,其中有40个项目在中国,中国新冠疫苗的研发进度遥遥领先世界其它国家。 在中国进入临床试验的新冠疫苗有病毒载体疫苗和灭活疫苗。病毒载体新冠疫苗是采用重组技术将免疫原性的病毒蛋白与新冠病毒表达的活性蛋白结合而成的疫苗。灭活新冠疫苗是使用一定的处理方法将培养获得的病毒灭活,导致病毒失去毒性但保留病毒衣壳的主要抗原特征,可以激发人体的特异性免疫反应的疫苗。无论是病毒类载体疫苗还是灭活疫苗均需要通过临床试验和质量评价才能成为商品化疫苗。 为了提升疫苗质量评价方法,岛津与国家级重点疫苗研究与监管部门合作,在蛋白类疫苗、多糖类疫苗以及多糖蛋白结合疫苗领域积累了丰富的经验。随着新冠疫情爆发,岛津更加致力于相关研究工作,可提供灭活新冠疫苗和重组新冠疫苗质量评价方法,助力新冠疫苗研发和生产。 灭活疫苗 灭活疫苗的质量评价包括残余试剂的检测、病毒颗粒含量检测、病毒颗粒大小的检测和病毒蛋白N端测序。 01 残留试剂检测 传统的试剂残留检测以衍生-紫外分光光度法为主,如甲醛和ADH的检测。相对于紫外分光光度法,岛津气相色谱法、气相色谱质谱法和岛津液相色谱法、液相色谱质谱法具有灵敏度高、抗干扰能力强和检测通量高等优点。 挥发性残留物质检测。岛津可为疫苗中挥发性物质的定量和定性分析提供Nexis GC-2030、GCMS-QP2020 NX和GCMS-TQ8040 NX三种思路。其中,GCMS-QP2020 NX和GCMS-TQ8040 NX既可实现已知挥发性物质的定量、定性分析,还可对未知的挥发性物质进行筛查,用于探索生产过程中相关试剂的降解、结合等变化。 图1 挥发性有机溶剂残留分析 难挥发性残留物质检测。岛津液相系统和液相色谱质谱系统以超高稳定性和灵敏度著称,可为新冠疫苗中残余试剂的分析保驾护航。其中岛津LC-UV系统可用于强紫外吸收化合物定量分析。弱紫外吸收领域,岛津也能完美应对,岛津LC-RID系统和LC-ELSD系统为弱紫外吸收化合物定量分析支招(图2A)。岛津液相色谱质谱系统可为复杂基质中的μg/L甚至ng/L级别残留试剂检测(图2B)。 图2A 岛津RID用于原辅料的检测 图2B 岛津LC-MS/MS用于疫苗中残留试剂检测 02 表征病毒颗粒大小 岛津可为表征病毒颗粒大小提供LC-20Ai生物惰性系统分析(图3A)、激光粒度仪/Aggregates Sizer生物制药聚集体评价系统(图3B)和电子探针(图3C)。生物惰性系统可用于几纳米到几百纳米的病毒颗粒的表征。激光粒度仪/Aggregates Sizer生物制药聚集体评价系统可用于几十纳米-微米级病毒及佐剂颗粒的表征。电子探针可实现病毒颗粒的大小和形貌分析。这三种技术与传统的电镜模式相比,具有取样代表性强和重复性好的优点。 图3A LC-20Ai生物惰性液相色谱图 图3B 病毒粒度分布图 图3C 电子探针分析病毒颗粒图像 03 病毒颗粒含量分析 岛津生物惰性系统LC-20Ai可实现病毒颗粒的含量测定,岛津LC-MS/MS系统可实现疫苗原液中病毒颗粒的含量及类别鉴定分析。图4A和4B是LC-20Ai为病毒颗粒提供的含量测定图和线性曲线图。LC-20Ai系统与普通液相相比,具有蛋白吸附低、耐受高浓度氯化钠和较宽pH范围的优点。图4C为岛津LC-MS/MS系统在疫苗蛋白鉴定中的应用。 图4A 岛津LC-20Ai用于病毒颗粒测定色谱图 图4B 病毒颗粒线性曲线图 图4C 岛津LC-MS/MS系统用于病毒单体及聚体鉴定 04 病毒蛋白N端测序 几乎所有蛋白质的合成均始于N-末端,其序列组成对于蛋白质整体的生物学功能有着重要的影响力,因此蛋白质的序列分析对于生物药效果非常关键。岛津公司的蛋白质测序仪(Protein Sequencer)PPSQ以Edman降解法为基础,将蛋白质从N-末端顺次切断进行序列分析。此方法具有直接测定、可靠性高的优势。近期,岛津推出新型的蛋白质测序仪,配备高灵敏度检测器、软件满足FDA 21 CFR Part 11数据完整性的要求,可实现梯度和等度两种分析模式,适合微量样品的氨基酸序列分析。 图5 PPSQ-53A分析未经还原烷基化的Lysozyme的第1至4个循环的氨基酸差减色谱图 重组疫苗分析 除常规的检测以外(残留试剂分析、含量分析),重组疫苗往往还涉及翻译后修饰(常规翻译后修饰和糖基化修饰等)、氨基酸覆盖度和目标蛋白定量分析等。 01 翻译后修饰分析岛津LCMS-9030 Q-TOF分析系统可解析重组疫苗蛋白的翻译后修饰种类、翻译后修饰比例(图6)。图6 岛津LCMS-9030用于蛋白翻译后修饰种类和比例分析 02 目标蛋白含量分析 岛津LC-MS/MS系统具有超高的扫描速度和良好的稳定性,可为同时实现多种蛋白的含量测定。图7为岛津LCMS-8050系统用于9种疫苗蛋白的同时定量分析。岛津LC-MS/MS系统与ELISA系统相比具有通量高、选择性好和通用型强的特点。 图7 岛津LC-MS/MS系统用于疫苗蛋白含量测定 03 病毒糖链分析 岛津以LC-FLD-MS为基础,发展了疫苗的糖链衍生-富集-检测方法,该方法具有良好的稳定性和灵敏度,可为疫苗的糖链提供定量、定性分析。如图8所示,与普通方法相比,岛津的疫苗糖链分析方法能更好的去除背景干扰并提高目标糖链的检测灵敏度。传统疫苗检测中无糖链分析技术,岛津糖链分析策略可弥补这一测试技术空缺。 图8 普通方法的对比(A) 与岛津疫苗糖链分析方法(B) 岛津一直致力疫苗质量评价方法开发,方法涵盖百日咳疫苗、白破疫苗、百白破疫苗、DTaP-IPV疫苗、DTaP-IPV-Hib疫苗、23价肺炎多糖疫苗、Hib疫苗、脑膜炎球菌疫苗、13价多糖蛋白结合疫苗、脑膜炎多糖蛋白结合疫苗和HPV疫苗。 撰稿人:龙珍
  • 关于疫苗质量控制,这些解决方案能帮大忙
    p   刚刚过去的周六(7月21日),一篇名为《疫苗之王》的文章引爆朋友圈,将疫苗安全的问题推到风口浪尖。整整一个周末,网络上的议论全是对疫苗事件的滔天愤怒。周一疫苗事件持续发酵,家长们狂翻疫苗本,公众的巨大义愤、焦虑、疑惑、恐慌要求相关部门彻查此事,绝不姑息! /p p style=" text-align: center " img width=" 601" height=" 1067" title=" 1.jpg" style=" width: 401px height: 524px " src=" http://img1.17img.cn/17img/images/201807/insimg/f20de43f-44d1-4648-b107-834fac43f467.jpg" / /p p   此次疫苗事件爆出了长春长生和武汉生物的两个批次的百白破疫苗出事,国家药监局公告显示,该2批次百白破疫苗 span style=" color: rgb(192, 0, 0) " 「效价测定」 /span 指标不合格,可能影响免疫保护效果。虽对人体没有危害,但却触及了广大群众的道德底线, span style=" color: rgb(192, 0, 0) " 如何保护孩子成为我们不得不谈的沉重话题 /span 。 /p p   疫苗关乎全体民众尤其是孩子们的生命安全,关系到每个家庭的幸福健康。最新的政府批示中要求 span style=" color: rgb(192, 0, 0) " 不论涉及到哪些企业、哪些人坚决严惩不贷! /span 然而,疫苗问题,应从源头上抓起,质量控制才是保证疫苗安全性和有效性的重中之重。 /p p   疫苗起始材料是活的生物体,生产过程存在可变性,所用物料也是污染微生物生长的良好培养基,易被污染。疫苗成分多为蛋白质、多肽或多糖类物质的混合物,很难鉴定出每种成分的具体含量。产品检验通常采用生物学分析技术,其检定结果较理化测定方法有更大的可变性。基于疫苗以上特性, span style=" color: rgb(192, 0, 0) " 须对疫苗整个生产过程进行质量控制,以确保产品的质量和安全性。 /span /p p style=" text-align: center " span style=" color: rgb(192, 0, 0) " img width=" 600" height=" 399" title=" 2.jpg" style=" width: 468px height: 275px " src=" http://img1.17img.cn/17img/images/201807/insimg/4b778b9e-9957-42f3-bc0d-44349037049e.jpg" / /span /p p style=" text-align: center "    span style=" font-size: 14px " 疫苗生产纯化过程 /span /p p style=" text-align: center "   strong span style=" font-size: 18px "  疫苗质量控制热点应用 /span /strong /p p   疫苗在生产过程中会引入各类有潜在风险的物质,下面就为大家梳理一下色谱、质谱、微量元素分析在疫苗检测中的热点应用和相应的解决方案。 /p p   strong  1.裂解剂的检测----电雾式检测器CAD1 /strong /p p   疫苗制备的提纯工艺阶段需加入裂解剂(如:去氧胆酸)进行细胞裂解,去除部分病毒成分以有效降低不良反应。各类型疫苗中的去氧胆酸残留含量都有明确限值。2015版中国药典采用的比色法分析,前处理复杂、灵敏度不高、重现性受人为影响大。 /p p   赛默飞独家创新的电雾式检测技术(CAD)是一种新型的、质量型通用检测器,不需要发色团,也不需要离子化, span style=" color: rgb(192, 0, 0) " 新版美国药典已将CAD检测器收录为去氧胆酸残留和有关物质的检测方法, /span 从而获得高分离度、高灵敏度和重现性的结果。 /p p    strong 2.甲醛、戊二醛的检测------高效液相色谱 /strong /p p   甲醛是应用最广泛的灭活剂,戊二醛更是广泛用于消毒灭菌、制药等行业,其所带醛基可以破坏微生物蛋白质和核酸的基本结构,使微生物失去感染力。疫苗中残留甲醛的限度规定一般为不高于50μg/ml,药典规定戊二醛含量不得高于0.01g/L。 /p p   作为Pittcon 2015“科学家选择奖”最佳分离产品的Vanquish超高效液相色谱,从前端的泵、到进样器、再到检测器,整个部件都有创新设计,该系统使用的专利技术多达25个。 span style=" color: rgb(192, 0, 0) " 在高通量多批次检验的情况下,仍可以保证分析物色谱峰拥有尖锐峰形,具有优异的稳定性和重复性。 /span /p p    strong 3.铝佐剂---微量元素分析 /strong /p p   铝佐剂是目前唯一广泛使用的疫苗佐剂。在疫苗成品中需对铝含量进行检测,如13价肺炎球菌结合疫苗中铝含量应为应为 0.15-0. 35mg/ml,吸附白喉疫苗中氢氧化铝不得高于0. 3mg/ml。 /p p   对于佐剂中Al含量进行检测,原子吸收(AA)和ICP-MS方法均具有极高的灵敏度,iCE3000系列AA优异的光学系统结构、高精度控温和背景扣除技术,可将Al元素在石墨炉分析中的发射干扰有效去除 而iCAP Qnova系列ICP-MS专利技术的Q Cell 碰撞池结合低质量数剔除技术,能够将Al元素在质谱分析中的多原子干扰做到完全去除, span style=" color: rgb(192, 0, 0) " 这些技术的使用确保了佐剂中Al检测获得最佳的准确性和稳定性等方法学数据要求。 /span /p p    strong 4.多糖疫苗与多糖结合疫苗---离子色谱 /strong /p p   多糖能客观的反映疫苗的质量,因此需要对其进行研究和检测。但糖类化合物在紫外区一般无吸收或吸收较弱,一般的检测器不能对其进行直接检测。 /p p   离子色谱根据不同糖类化合物的离子交换作用差异及疏水性不同,实现糖类化合物的高效阴离子交换、分离,从而实现糖类、氨基糖类和糖酸的检测。离子色谱可有效的应用于疫苗中游离单糖、游离多糖、蛋白结合多糖、杂质多糖的检测。 /p p   事件已经发生,追究失效疫苗责任的同时,更重要的是防患于未然,严把疫苗质量控制,重铸“疫苗”信心,因为疫苗是人类对抗传染性疾病最有利的武器,足够多的人接种疫苗,才能够形成广泛而有力的防御。 /p p & nbsp /p
  • 疫苗巨头默沙东宣布三项收购合作项目 剑指新冠疫苗与新药研发
    p   美国默沙东、英国的葛兰素史克、法国的赛诺菲和美国的辉瑞是四家拥有大规模疫苗业务部门的药企巨头,分别把持着全球最畅销疫苗市场。2019年默沙东疫苗业务收入84亿美元,主要疫苗品种为4价/9价HPV疫苗、麻腮风水痘系列疫苗、23价肺炎多糖疫苗、5价轮状疫苗、带状疱疹疫苗等。 /p p   近日,默沙东(在美国和加拿大称为Merck & amp Co. Inc., Kenilworth, New Jersey, USA 纽交所代码:MRK)宣布三项关于新冠疫苗和药物研发的收购合作计划,计划包括: /p p strong i    /i ●默沙东收购Themis Bioscience /strong /p p strong   ●默沙东将与IAVI合作开发新冠肺炎疫苗 /strong /p p strong   ●默沙东将与Ridgeback Bio公司合作开发新冠肺炎口服抗病毒药物EIDD-2801 /strong /p p strong i br/ /i /strong /p p    strong 计划详情如下: /strong /p p    strong 1. 默沙东收购Themis Bioscience公司 /strong /p p   默沙东与Themis联合宣布,双方已达成一项最终协议,默沙东将通过一家子公司收购Themis。Themis是一家专注于感染性疾病与癌症疫苗和免疫调节疗法的私营公司。根据协议条款,默沙东将通过一家子公司收购Themis的所有流通股,以换取未披露金额的现金付款。交易完成后,Themis将成为默沙东的全资子公司。 /p p   Themis利用自身创新的麻疹病毒载体平台(Measles Vector Platform)研发了大量的候选疫苗与免疫调节疗法,该平台基于巴斯德研究所的科学家们最初开发的载体,并独家授权给Themis用于特定的病毒感染适应症,巴斯德研究所是世界领先的欧洲疫苗研究机构。今年3月,Themis与巴斯德研究所及匹兹堡大学疫苗研究中心(The Center for Vaccine Research at the University of Pittsburgh)相互联合,在流行病防范创新联盟(CEPI)的资助下,共同开发一款靶向新冠病毒的候选疫苗,用于预防新冠肺炎。这项收购将建立在两家公司目前正在开展的合作基础上,利用麻疹病毒载体平台开发候选疫苗,有望加速Themis对新冠肺炎候选疫苗的开发。候选疫苗正处于临床前研发阶段,临床研究计划于2020年晚些时候启动。 /p p   与此项交易相关的是,巴斯德研究所、CEPI和默沙东已达成一项谅解备忘录,反映了各方为应对新冠肺炎大流行所做出的承诺,各方将在全球范围内开发、生产和分发疫苗,同时确保疫苗上市后拥有适当的定价,从而满足全球各地人们的医疗需求,包括低收入、中等收入与高收入国家。 /p p   strong  2. 默沙东与IAVI合作开发新冠肺炎疫苗 /strong /p p   默沙东与IAVI将共同开发一款抗新冠病毒的研究性疫苗,用于预防新冠肺炎。 /p p   IAVI是一家非营利性科学研究组织,致力于解决紧迫且尚未被满足的全球健康挑战。这款候选疫苗将使用重组水疱性口炎病毒(rVSV)技术,这也是默沙东扎伊尔型埃博拉病毒疫苗的技术基础——该疫苗是首个获批用于人类的rVSV疫苗(未在中国上市)。默沙东还与美国生物医学高级研究和发展管理局(BARDA)签署了一项协议,后者将为这项研发提供起始资金支持。根据双方达成的协议,IAVI与默沙东将共同推进新冠病毒候选疫苗的开发和全球临床评估工作,这款疫苗由IAVI的科学家们设计并制成。该候选疫苗正处于临床前开发阶段,临床研究计划于2020年下半年启动。默沙东将在全球范围内负责监管申报工作。两家机构将共同开发这款疫苗,一旦获得批准,将致力于确保疫苗在全球的可及性与可负担性。 /p p    strong 3. 默沙东将与Ridgeback Bio公司合作开发新冠肺炎口服抗病毒药物EIDD-2801 /strong /p p   默沙东与生物技术公司Ridgeback Biotherapeutics联合宣布,双方已达成一项合作协议,将共同开发EIDD-2801,这是一款用于治疗新冠肺炎患者的口服抗病毒候选药物,目前正处于早期临床开发阶段。根据协议条款,默沙东将通过一家子公司获得EIDD-2801及相关分子的全球独家开发和商业化权利。一旦交易获批,Ridgeback Bio将获得金额未披露的预付款、指定的里程碑付款以及EIDD-2801及相关分子未来的部分净收益。 /p p   默沙东全球执行副总裁、默沙东实验室总裁罗杰· 佩尔穆特博士(Roger M. Perlmutter)表示:“除了开发新冠病毒的潜在疫苗外,我们也在评估使用自身及来自外部的抗病毒药物治疗新冠肺炎的潜力。尽管使用EIDD-2801治疗新冠肺炎患者的临床评估才刚刚开始,但1期研究结果已证明该化合物具有良好的耐受性。由于临床前研究表明,EIDD-2801对新冠病毒等多种冠状病毒毒株具有强大的抗病毒特性,我们希望尽快同时负责任地将其推进到下一阶段的临床研究。” /p p   默沙东全球董事会主席兼首席执行官福维泽(Kenneth C. Frazier)表示:“凭借我们在疫苗与抗感染药物领域的非凡经验与专长,我们认为默沙东有责任与科学界共同寻找新药与疫苗,以终结这场病毒大流行。” /p p    /p
  • 岛津赋能北京疫苗与抗体创新国际论坛
    在全球病毒感染性疾病此起彼伏的形势下,人们把疾病的预防提升到了一个新的高度,尤其是免疫疫苗、抗病毒疫苗、抗肿瘤疫苗已成为开发的热点。为了进一步推动我国疫苗抗体药物研究领域的发展,促进国际研发合作,第三届北京疫苗与抗体创新国际论坛于2021 年7月8-9日在北京亦庄生物医药园成功举办,岛津企业管理(中国)有限公司(以下简称“岛津”)受邀参加了此次大会,发表最新报告并分享疫苗抗体最新技术。此次论坛受到了中国生物器材网、分析测试百科网及仪器信息网等多家业内知名媒体的关注,论坛除主会场外共设置疫苗研发与评价、生物制药研发技术及生物制药研发技术三个专题。论坛首日主会场,岛津分析计测事业部市场部程汉兴发表了题目为《助力创新,岛津赋能中国疫苗与抗体行业发展方案》的报告。 岛津分析计测事业部市场部程汉兴 在报告中程汉兴首先介绍了岛津有关抗体药物以及疫苗相关工作,以抗体药物为例,围绕工艺监测和质量控制推动生物药高质量发展。岛津现有基于LC MS/MS方法的培养基和工艺监测方案可以通过离线和在线模式实现分析培养基以及细胞上清液中有机组分,监控培养基中的氨基酸,核苷酸等125种以上物质浓度变化,研究培养基中营养成分消耗变化,进而优化培养基配方及补料成分,保证抗体产品高质量生产。 从质量分析角度,在抗体以及抗体偶联药物(ADC)的表征分析实验中,可利用岛津生物兼容型液相以及高分辨飞行时间质谱,可以分析抗体的分子量,蛋白序列,二硫键以及糖型分析。如需要对抗体偶联药物关键参数DAR值进行研究,可使用针对ADC专门开发的SHIMSEN Ankylo HIC-Butyl色谱柱,可有效实现不同偶联药物抗体的分离,岛津将提供从色谱到耗材等整体解决方案。 在疫苗研究方面,程汉兴还介绍了岛津多年来与用户合作开发的多种类型疫苗解决方案。利用生物兼容型液相分析病毒疫苗抗原蛋白含量测定,使用LC-MS/MS用于百白破疫苗成品中多种抗原蛋白的定量以及TCT毒素分析。针对肺炎多糖结合疫苗,使用液相质谱快速定量糖醛酸等成分,效率大大提升。围绕mRNA疫苗相关的核酸定性分析,使用高分辨飞行时间质谱可以对核酸分子量及序列进行定性表征。 现场传真 大会期间,岛津设立相应展位与参会的专家学者进行交流,与嘉宾一同交流探讨岛津有关抗体药物以及疫苗相关方案,主要围绕工艺监测和质量控制以推动生物药高质量发展。
  • 做好疫苗 接种疫苗 早日从疫情阴霾下走出来
    4月21日,国务院联防联控机制召开新闻发布会。国家卫生健康委新闻发言人米锋表示,全球新增新冠肺炎确诊病例数已连续8周上升,其中上周新增526万例,为疫情发生以来单周最高,病毒继续出现新的变种。同时,再次强调要加快推进新冠疫苗接种,应接尽接。疫苗是最有望控制疫情的手段之一,截至当天,我国累计报告接种新冠疫苗已经超过2亿剂次,但距离“应接尽接”,以守住“战疫”成果,还差很远。唯有接种安全有效的疫苗,才能换回太平依旧,春暖花开。疫苗的研发需要经历研制、动物实验、多期临床试验,通常好花费数年才能得以成功。而控制当前疫情任务紧迫,新冠疫苗打破了疫苗研发的历史记录,在短短不到一年的时间里,全球就有多种疫苗获批上市。那么目前新冠疫苗有何新的研究动向?广受关注的mRNA疫苗研发进展如何?疫苗研发质控及监控有何好的解决方案?为帮助广大用户了解新冠疫苗的研发进展,同时帮助疫苗研发人员学习交流疫苗质控技术方法,4月28日,仪器信息网将举办“疫苗研发及质量控制”主题网络研讨会,本次会议邀请到多位专注于疫苗研究的专家,欢迎大家报名参会!点击图片免费报名会议日程报告时间报告题目报告嘉宾嘉宾单位13:30--14:00从应对新冠疫情公共危机看疫苗研发方向钱志康中国科学院上海巴斯德研究所14:00--14:30疫苗现代化理化分析平台介绍唐雪岛津企业管理(中国)有限公司14:30--15:00待定徐建青复旦大学生物医学研究院/上海市公共卫生临床中心15:00--15:30助力疫苗质量控制——安东帕精密测量解决方案魏中靖安东帕(上海)商贸有限公司15:30--16:00新冠病毒免疫及疫苗研发新进展李斌上海交通大学医学院上海市免疫学研究所16:00--16:30NuGenesis应对疫苗法要求的电子记录解决方案张立沃特世科技(上海)有限公司16:30--17:00COVID-19 mRNA vaccines黄庆瑞中国科学院微生物研究所专家简介钱志康,男,1972年11月生,复旦大学博士,美国华盛顿大学博士后,二〇一二年获中国科学院“百人计划”资助回国工作。现任中国科学院上海巴斯德研究所疱疹病毒分子生物学课题组组长,研究员,博士生导师。美国微生物学会和美国病毒学会会员,上海市遗传学会理事。长期从事病毒分子生物学研究,在PLoS Pathogens, Journal of Virology等病毒学领域顶尖国际刊物上发表论文二十余篇,其中第一作者和通讯作者论文十五篇。多篇论文受到了国内外同行的好评和关注,多次应邀在国际学术会议上作口头报告。目前受邀担任PLoS Pathogens,Journal of Virology,Journal of Medical Virology 等杂志审稿人。徐建青 教授 博导,中国协和医科大学获医学博士,1997-2004年留学美国,2004年回国参加中国疾控中心艾滋病预防控制中心工作2007年调至复旦大学。主要从事免疫学、免疫治疗学与疫苗学研究。先后主持国家“十五”科技攻关项目,国家“十一五”、“十二五”重大科技专项项目,美国NIH项目,国家自然科学重点基金项目;在Nature、Science、PNAS、Nat Commun、Clin Infect Dis、Neurology、Biomaterials、J Immunol、AIDS、J Virol等杂志发表论文100余篇。研发艾滋病治疗性疫苗DermaVir已在欧洲完成II期临床试验。获得国际专利1项,申请国际专利2项,国内专利4项。李斌,二级研究员、余㵑学者、上海交大特聘教授、国家基金委免疫学杰青、上海市领军人才、上海市优秀学科带头人,上海市免疫学研究所科研副所长&课题组长;普米斯生物联合创始人&科学顾问委员会主席,姑苏领军人才;中国细胞生物学学会科学普及工作委员会主任委员&免疫细胞生物学分会副会长、欧美同学会上海生物医药分会副会长Science Bulletin 副主编 (2018)、European Journal of Immunology 执行委员会成员(2020,ExCo committee member)、Cellular & Molecular Immunology 编委 (2018)、 Scientific Reports 编委 (2018) ,主要研究方向:免疫调节、 FOXP3+Treg、肿瘤免疫、自身免疫、移植免疫、抗感染免疫及免疫代谢与疾病等,承担国家基金委杰出青年基金、重点项目(2项) 、中美及中波国际合作项目等;2009年回国以来,在国际学术刊物如IMMUNITY、PNAS、NAT COMMS、J BIOL CHEM、J IMMUNOL、J VIROL、PLOS Pathogens 、EMBO Rep等发表通讯及共同通讯作者60余篇。黄庆瑞博士2016年毕业于中国科学院过程工程研究所生化工程国家重点实验室,同年进入中国科学院微生物研究所工作。黄庆瑞博士一直从事疫苗开发工作,作为项目技术负责人先后开发了脑膜炎多糖结合疫苗,寨卡病毒灭活疫苗,相关技术均转让企业。自2018年开始重点研究mRNA疫苗,建立了完整的mRNA疫苗技术平台,并先后开发了VZV mRNA疫苗,COVID-19 mRNA疫苗,相关专利受到多家企业青睐。利用mRNA疫苗免疫原性强的优点,建立了mRNA疫苗免疫-10 X Genomics建库测序-抗体合成、表达和筛选-抗体人源化-人源化抗体功能验证的抗体开发技术平台,相关COVID-19抗体正与国内大型抗体药物企业合作进一步开发。唐雪,岛津公司LCMS应用工程师, 10年液相色谱质谱仪器使用经验,负责疫苗等生物药相关应用开发,以及售前售后技术支持。魏中靖,安东帕产品经理,拥有10余年实验室分析仪器领域技术及市场工作经验,在制药行业、食品安全等领域具有丰富应用经验。现负责安东帕实验室密度分析相关产品管理,市场拓展及技术支持。张立,沃特世科技实验室信息化产品经理 国际药物标准组织实验室电子记录系统开发组成员。国家药监局高级研修学院客座老师。超过10年仪器公司工作经验,对实验室管理信息化与合规体系的建设有深刻的认识。具有丰富的数据可靠性实践经验,多次组织完成国内著名医药企业信息化规划与实施验证工作。点击会议报名链接,免费参会:https://www.instrument.com.cn/webinar/meetings/vaccine2021/扫码进入会议交流群
  • 附489种仪器清单!住建部对《生物制品(疫苗)批签发实验室建设标准》征求意见近期完成
    近期,住房和城乡建设部办公厅发布关于工程项目建设标准《生物制品(疫苗)批签发实验室建设标准(征求意见稿)》公开征求意见的通知,本次意见征求于8月12日结束。本《征求意见稿》中,实验室建设标准中列明了489类仪器设备,根据科技发展及检验检测的新需要,由药品监管部门定期修订仪器设备配置标准。详情如下: 根据《住房城乡建设部 国家发展改革委关于下达2022年建设标准编制项目计划的通知》(建标函〔2022〕11号),我部组织中国食品药品检定研究院等单位起草了《生物制品(疫苗)批签发实验室建设标准(征求意见稿)》(见附件)。现向社会公开征求意见。有关单位和公众可通过以下途径和方式提出反馈意见:  1.电子邮箱:swzpjds@nifdc.org.cn。  2.通信地址:北京市大兴区生物医药产业基地华佗路31号,中检院生检所综合办公室收 邮政编码:102629。  意见反馈截止时间为2023年8月12日。  附件:《生物制品(疫苗)批签发实验室建设标准(征求意见稿)》.pdf住房和城乡建设部办公厅2023年7月12日《生物制品(疫苗)批签发实验室建设标准》(征求意见稿)前 言《生物制品(疫苗)批签发实验室建设标准》是根据住房和城乡建设部、国家发展改革委《关于下达 2022 年建设标准编制项目计划的通知》(建标函〔2022〕11 号),由国家药品监督管理局作为主编部门,具体由国家药品监督管理局综合和规划财务司和中国食品药品检定研究院等 12 个单位(部门)组成编制组共同编写。在编制过程中,编制组对已开展生物制品(疫苗)批签发业务实验室现状进行了调研,并对拟开展生物制品(疫苗)批签发业务的实验室的需求进行了收集,通过对调研资料和数据综合分析研究,在此基础上完成了《生物制品(疫苗)批签发实验室建设标准》的编制。本建设标准共分七章:总则、建设规模与项目构成、选址与规划布局、面积指标、建筑与建筑设备、实验仪器设备、主要技术经济指标。请各单位在执行本建设标准的过程中,注意总结经验,积累资料。如发现需要修改和补充之处,请将意见和有关资料寄至国家药品监督管理局综合和规划财务司(通讯地址:北京西城区展览路北露园 1 号,邮政编码:100037),以便今后修订时参考。主编部门:国家药品监督管理局主编单位:中国食品药品检定研究院参编单位:中国建筑标准设计研究院有限公司、住房和城乡建设部标准定额研究所、北京市药品检验研究院、上海市食品药品检验研究院、广东省药品检验所、四川省药品检验研究院、湖北省药品监督检验研究院、浙江省食品药品检验研究院、江苏省食品药品监督检验研究院、湖南省药品检验检测研究院。目 录第一章 总 则.................................................................................................1第二章 建设规模与项目构成........................................................................2第三章 选址与规划布局................................................................................ 4第四章 面积指标.............................................................................................5第五章 建筑与建筑设备................................................................................ 7第六章 实验仪器设备.................................................................................. 10第七章 主要技术经济指标.......................................................................... 11附录 A 生物制品(疫苗)品类权重系数.................................................. 12附录 B 生物制品(疫苗)批签发实验室各项用房组成..........................16附录 C 生物制品(疫苗)批签发实验室主要仪器设备..........................21条文说明...........................................................................................................40第一章 总 则第一条 为加强和规范生物制品(疫苗)批签发实验室的建设,提高工程建设项目决策水平,合理确定建设规模和建设内容,充分发挥投资效益,制定本建设标准。第二条 本建设标准是生物制品(疫苗)批签发实验室项目建设的全国统一标准,是编制、评估、审批生物制品批签发实验室项目建议书、可行性研究报告和初步设计的重要依据,也是有关部门对项目建设全过程监督检查的尺度。第三条 本建设标准适用于生物制品(疫苗)批签发实验室的新建、改建和扩建工程项目。第四条 生物制品(疫苗)批签发实验室的建设,应遵守国家有关法律法规,统筹经济社会发展与生物制品批签发和检验检测发展的需要,按照立足当前、兼顾长远,因地制宜、经济适用,符合所在地城乡建设规划,合理确定建设规模和水平。第五条 生物制品(疫苗)批签发实验室的建设除符合本建设标准外,还应符合国家现行有关标准和规范的规定。第二章 建设规模与项目构成第六条生物制品(疫苗)批签发实验室建设规模,应根据辖区内 5 年后生物制品(疫苗)相对品种数确定。第七条生物制品(疫苗)批签发实验室建设规模应符合表 1 的规定。表 1 生物制品(疫苗)批签发实验室建设规模建设规模一级二级三级相对品种数(个)40~9015~403~15注:1. 5 年后相对品种数计算公式为:N=ΣM ×(1+n)4;其中,N——5 年后辖区内生物制品(疫苗)相对品种数(个),四舍五入至小数点后1位;M——辖区内每个生物制品(疫苗)的相对任务量调整系数(见附录 A); n—— 前 5 年辖区内生物制品(疫苗)品种数平均增长率;2. 表中列出的相对品种数区间值含下限,不含上限;3. 辖区内生物制品(疫苗)相对品种数小于 3 个时按 3 个计,大于 90 个时按 90 个计。第八条生物制品(疫苗)批签发实验室新建项目由房屋建筑、场地和设备构成。改建、扩建工程宜充分利用原有设施。第九条生物制品(疫苗)批签发实验室房屋建筑由实验用房、实验配套用房、管理用房、保障用房构成,生物制品(疫苗)批签发实验室房屋建筑用房组成如下:一、 实验用房主要包括微生物检验实验室、生物安全实验室、生化免疫实验室、细胞实验室、分子生物学实验室、动物实验室、理化实验室等。二、 实验配套用房主要包括业务受理大厅、业务洽谈室、受控文件室、档案查阅室、标准物质暂存间、学术交流培训用房(宣教用房)、试剂库、实验室业务用房(中转间及余样间、普通耗品库、清洗间)、动物实验室辅助用房(洁物储存室、饲料库、垫料库、物品传递间和笼具库等)、生物安全实验室、微生物实验室等功能实验室的配套房间等。三、 管理用房主要包括档案室、研讨与会议室、行政用房、财务室、资料与文印室、值班室等。四、 保障用房主要包括气瓶储存间,不间断电源控制间,废弃物处理间,健康医疗室,强、弱电室,配件耗材储存间,计算机房,垃圾处理站,污水处理站,纯水制备间,网络信息处理用房,监控用房,食堂等。第十条生物制品(疫苗)批签发实验室的用房组成及配置要求宜符合附录 B 的规定。第十一条 实验用房、实验配套用房、管理用房和保障用房规模应遵循满足功能需求、兼顾未来发展的原则,房屋建筑应充分利用现有建筑进行功能改造,实现生物制品(疫苗)批签发检验职能。第十二条 生物制品(疫苗)批签发实验室的室外场地由道路、绿地、停车场等构成。第十三条 生物制品(疫苗)批签发实验室的设备由建筑设备、信息化设备和实验仪器设备构成。第三章 选址与规划布局第十四条 生物制品(疫苗)批签发实验室的建设应符合所在地城乡规划,应与所在地区的药品检验检测中心(院、所)统筹规划建设,避免重复建设。第十五条 生物制品(疫苗)批签发实验室的选址应符合下列要求:一、 应选择工程地质和水文地质条件较好的地段;二、 应选择周边市政基础设施较完备的地段;三、 宜布置在城区或近郊区,且交通便利的地段;四、 应远离水源保护区;五、 应避开化学、生物、噪声、振动、强电磁场、垃圾处理厂等污染源及易燃易爆危险源。第十六条 规划布局应正确处理各功能分区之间相互联系与分隔的关系,科学布置,合理组织人流、物流。第十七条 生物制品(疫苗)批签发实验室独立建设时,应根据建筑要求因地制宜、科学合理确定用地面积。容积率应符合项目所在地城乡建设规划的规定。第十八条 动物实验室应设置在独立建筑区域或独立楼层,在避免品种交叉污染的原则下,可与其他药品、医疗器械、化妆品等检验领域的动物实验用房合建。第十九条 机动车及非机动车停车位数量应按照所在地停车配建标准配置,并结合主要出入口布置。第二十条 建筑密度不宜超过 40%,绿地率应满足项目所在地城乡建设规划的规定并宜为 30%左右。第四章 面积指标第二十一条生物制品(疫苗)批签发实验室的建筑面积应符合表 2 的规定。表 2 生物制品(疫苗)批签发实验室建筑面积建设规模一级二级三级相对品种数(个)40~9015~403~15建筑面积(m2)21000~2800014000~210007000~14000注:1. 相对品种数介于建设规模上下限之间时,对应的建筑面积按线性插入法计算,计算结果四舍五入精确到十位数。2. 当实验室房屋建筑设置技术或设备夹层时,技术或设备夹层的建筑面积另计。第二十二条生物制品(疫苗)批签发实验室建筑使用系数宜为 0.65。第二十三条生物制品(疫苗)批签发实验室各项用房建筑面积占总建筑面积的比例,应按功能定位和业务需求,宜符合表 3 的规定。表 3 生物制品(疫苗)批签发实验室各项用房面积比例用房名称比例实验用房51%实验配套用房18%管理用房8%保障用房23%总计100%注:表中比例可根据实际需求适当调整。第二十四条具有口岸生物制品(疫苗)检验职能的生物制品(疫苗)批签发实验室,可根据进口生物制品(疫苗)检验检测品种数占总品种数的比重增加相应的建筑面积,应符合下列规定:1、 进口生物制品(疫苗)检验检测品种数占总品种数比重小于或等于 10%时,新增实验室建筑面积占总品种数对应的实验室建筑面积宜小于或等于 10%;2、 进口生物制品(疫苗)检验检测品种数占总品种数比重大于 10%且小于或等于 20%时,新增实验室建筑面积占总品种数对应的实验室建筑面积宜小于或等于20%;3、 进口生物制品(疫苗)检验检测品种数占总品种数比重大于 20%时,新增实验室建筑面积占总品种数对应的实验室建筑面积宜小于或等于 30%。第二十五条生物制品(疫苗)批签发实验室与其他实验室合建时,应统筹实验室管理用房和保障用房的建筑面积。第五章 建筑与建筑设备第二十六条除有特殊要求外,生物制品(疫苗)批签发房屋建筑的朝向、间距、室内空间布局应保证室内有良好的自然通风和自然采光,同时应便于采取控制室内气流方向的通风措施。房屋建筑结构形式及地基基础应满足地面、楼面荷载、抗震等要求的规定。第二十七条实验用房布局应遵循生物安全防护和环境保护要求、有利于工程管网设置与维护检修,以及各类功能区相对独立、集中布置的原则。建筑内部实验区宜相对其他区域独立,平面布局应满足检验流程需要,符合人流、物流控制和污染控制要求。第二十八条实验用房布置在同一建筑内时,应按便捷、避免交叉污染的原则,将各类实验用房集中、分层布置。实验用房、实验配套用房、管理用房和保障用房等各类用房布置在同一建筑内的,实验用房应布置在其他用房之上,且宜布置在该栋建筑的上部。第二十九条生物制品(疫苗)批签发实验室房屋建筑宜采用混凝土框架(剪)结构或钢结构。实验用房建筑层高应满足实验设备及管线的安装要求,宜为 4.5~5.5m。第三十条 生物制品(疫苗)批签发实验室房屋建筑的耐火等级不应低于二级,且应符合建筑防火等有关规范的要求。第三十一条实验室用房建筑的女儿墙应适当加高,并宜做隔声措施。屋顶设备宜采取隔声减震措施。第三十二条生物制品(疫苗)批签发实验室房屋建筑电梯设置应符合下列规定:1、 当建筑层数为二层或三层时,宜安装电梯;当建筑层数为四层及以上时,应安装电梯;2、 设置电梯的建筑应至少设有一部货梯或一部客梯兼作货梯,宜设置独立的污物电梯;3、 消防电梯的设置应符合建筑防火规范的相关要求,消防电梯可兼做货梯。4、 动物实验室中电梯的设置应符合现行国家标准《实验动物设施建筑技术规范》GB 50447 的规定。第三十三条实验用房所用建筑材料、构配件应符合下列规定:1、 洁净实验室、清洗消毒室等特殊房间墙体应防火、防潮及表面光滑平整,且不起尘、不积灰、吸附性小、耐腐蚀、易清洗;2、 洁净实验室、清洗消毒室等特殊房间吊顶的材料、构造应满足不起尘、不积灰、吸附性小、耐腐蚀与防水的要求;3、 实验室地面材料应满足耐腐蚀、耐磨损、易冲洗及防滑的要求;4、 洁净实验室、生物安全二级实验室(BSL-2)、实验动物设施等有特殊要求的实验室,其建筑结构与材料应满足相应的专业要求。第三十四条实验用房外窗不应采用有色玻璃。对有避光要求的实验室应另行采取物理屏障措施。第三十五条生产给水系统与生活给水系统宜分开设置,生产、生活用水的水量、水质、水压应满足相关标准的要求。第三十六条实验废水应进行无害化处理,处理后水质应符合污水综合排放标准及当地环保部门的规范要求。实验废水排水系统应与其他排水系统分开设置。实验涉及酸、碱及有机溶剂应专门回收,设置库房暂存,并可交由具备资质的第三方机构处理。第三十七条实验用房的水槽、排水管道应耐酸、碱及有机溶剂腐蚀,且满足实验室质量控制规范等相关要求。第三十八条实验用房产生的具有直接或者间接感染性、毒性以及其他危害性的废弃物应按医疗废弃物管理,进行无害化处理后,专区存放,再交由具备资质的第三方机构处理。第三十九条易受化学物质灼伤和有生物安全要求的实验区域内,应设置洗眼设施和紧急冲淋装置。当受条件限制时应在紧急疏散方向的公共区域,或通行便利、服务半径较小的区域,设置共用洗眼设施和紧急冲淋装置。第四十条 实验用房环境温度、湿度、洁净度、压力梯度应符合实验需要。空调系统不得造成不同生物安全等级或不同洁净度实验室之间空气交换,并应满足使用灵活、节能的要求。具有洁净度、温湿度、压力梯度要求的不同功能类别的实验室,应采用独立的空气调节系统。第四十一条生物制品(疫苗)批签发实验室房屋建筑的通排风设施设置应符合下列规定:1、 对于集中大量释放有害物的实验操作点,应采取局部机械排风措施;2、 对于分散、少量释放有害物的实验用房,宜采取全面机械通风措施,应使室内气流从有害浓度较低的区域流向较高的区域;3、 同时采用局部排风和全面通风措施的,应避免全面通风对局部排风气流产生横向干扰;第四十二条生物制品(疫苗)批签发实验室房屋建筑排放的废气应符合大气污染物综合排放标准及项目的环保要求。第四十三条生物制品(疫苗)批签发实验室房屋建筑的供电应留有足够的负荷余量,设施应安全可靠。宜采用双电源供电,不具备双电源供电条件的,应设置自备电源;有特殊要求的,应配备不间断电源。第四十四条生物制品(疫苗)批签发实验室房屋建筑应设置完善的防雷系统。计算机房、特殊仪器分析室等有特殊要求的场所应设置独立的防雷系统。有特殊要求的仪器设备应设置独立的接地系统。第四十五条生物制品(疫苗)批签发实验室房屋建筑的建设应设置完善的综合布线、计算机网络系统和楼宇自控系统。安全防范应按有关规定设置。第四十六条生物制品(疫苗)批签发实验室房屋建筑的建设应考虑绿色、节能设计,合理采用节能技术,积极应用可再生能源。第四十七条实验用台柜的基材应符合环保要求,面材应具备理化性能好、耐腐蚀、易清洗、防水、防火的特点,结构与配件应满足人类功效学及操作安全的要求。第六章 实验仪器设备第四十八条生物制品(疫苗)批签发实验室实验仪器设备应按辖区内生物制品品种、实验项目等业务需求确定。第四十九条生物制品(疫苗)批签发实验室根据所承担的工作类型、职责和任务应配备的实验仪器设备配置确定,详见附录 C。第七章 主要技术经济指标第五十条 生物制品(疫苗)批签发实验室的投资估算,应按照国家及各地区有关规定编制,并根据工程实际内容及工程所在地区的市场价格波动,按照动态管理的原则进行适当调整。第五十一条生物制品(疫苗)批签发实验室的投资估算指标,可参照表 4 进行控制。表 4 生物制品(疫苗)批签发实验室投资估算指标表建设级别建筑面积(㎡)投资估算指标(元/㎡)一级21000~2800012500~13500二级14000~2100011000~12000三级7000~140009500~10500注:1.表中投资估算指标不包括征用土地费,非实验室家具、实验室仪器设备、专业信息化软件及设备等购置费;2.配套建设高压变配电工程,宜增加投资 100~500 万元;3.采暖地区,若需要独立建设热交换站或锅炉房,宜增加投资 50~70 万元;4.实验用房以外的室内装饰工程按普通标准计算,实验室的装饰工程按实验室对洁净度等特殊要求另计;5.表中投资估算指标是参照国家发展改革委和住房城乡建设部发布的《建设项目经济评价方法与参数》(第三版)的相关规定,结合各地区经济发展水平、各地建设项目管理和建设工程造价相关规定等因素综合估算得出。各地在按照本标准开展具体建设时,应充分考虑各地实际情况以及各地建设项目相关政策和规定的变化进行适当调整。第五十二条生物制品(疫苗)批签发实验室工程建设工期宜符合国家现行《建筑安装工程工期定额》相关规定。附录 A 生物制品(疫苗)相对任务量调整系数序号类别生物制品(疫苗)品种名称调整系数1疫苗人用狂犬病疫苗(Vero 细胞)1.42双价人乳头瘤病毒吸附疫苗1.43四价人乳头瘤病毒疫苗1.44九价人乳头瘤病毒疫苗1.45ACYW135 群脑膜炎球菌多糖疫苗1.46AC 群脑膜炎球菌-b 型流感嗜血杆菌(结合)联合疫苗1.47A 群 C 群脑膜炎球菌结合疫苗1.48A 群 C 群脑膜炎球菌多糖疫苗1.49无细胞百白破 b 型流感嗜血杆菌联合疫苗1.410吸附无细胞百白破联合疫苗1.411吸附无细胞百白破-灭活脊髓灰质炎-b 型流感嗜血杆菌(结合)联合疫苗1.412五价轮状病毒疫苗1.413重组新型冠状病毒疫苗(5 型腺病毒载体)1.414重组新型冠状病毒疫苗(CHO 细胞)1.415Sabin 株脊髓灰质炎灭活疫苗1.216口服Ⅰ型Ⅲ型脊髓灰质炎减毒活疫苗(人二倍体细胞)1.217流感病毒裂解疫苗1.218麻腮风联合减毒活疫苗1.219人用狂犬病疫苗(地鼠肾细胞)1.220人用狂犬病疫苗(鸡胚细胞)1.221人用狂犬病疫苗(人二倍体细胞)1.222森林脑炎灭活疫苗1.223双价肾综合征出血热灭活疫苗(Vero 细胞)1.224双价肾综合征出血热灭活疫苗(地鼠肾细胞)1.225水痘减毒活疫苗1.226乙型脑炎减毒活疫苗1.227乙型脑炎灭活疫苗1.228重组乙型肝炎疫苗(汉逊酵母)1.22913 价肺炎球菌多糖结合疫苗1.23023 价肺炎球菌多糖疫苗1.231A 群脑膜炎球菌多糖疫苗1.232b 型流感嗜血杆菌结合疫苗1.233钩端螺旋体疫苗1.234皮内注射用卡介苗1.235皮上划痕人用布氏菌活疫苗1.236皮上划痕人用炭疽活疫苗1.237皮上划痕用鼠疫活疫苗1.238伤寒 Vi 多糖疫苗1.239吸附白喉破伤风联合疫苗1.240吸附破伤风疫苗1.241新型冠状病毒肺炎灭活疫苗(Vero 细胞)1.242新型冠状病毒 mRNA 疫苗1.243肠道病毒 71 型灭活疫苗(Vero 细胞)1.044肠道病毒 71 型灭活疫苗(人二倍体细胞)1.045风疹减毒活疫苗1.046黄热减毒活疫苗1.047脊髓灰质炎灭活疫苗1.048甲型肝炎减毒活疫苗1.049甲型肝炎灭活疫苗(人二倍体细胞)1.050甲型乙型肝炎联合疫苗1.051口服轮状病毒活疫苗1.052麻疹风疹联合减毒活疫苗1.053麻疹减毒活疫苗1.054麻疹腮腺炎联合减毒活疫苗1.055腮腺炎减毒活疫苗1.056重组戊型肝炎疫苗1.057重组乙型肝炎疫苗(CHO 细胞)1.058重组乙型肝炎疫苗(酿酒酵母)1.059重组 B 亚单位/菌体霍乱疫苗(肠溶胶囊)1.060带状疱疹疫苗1.061鼻喷流感减毒活疫苗1.062鼻喷流感病毒载体新型冠状病毒疫苗1.063血液制品静注人免疫球蛋白(pH4)1.264狂犬病人免疫球蛋白1.265破伤风人免疫球蛋白1.266人凝血酶原复合物1.267人凝血因子Ⅷ1.268人纤维蛋白原1.269人血白蛋白1.270冻干静注人免疫球蛋白(pH4)1.0
  • 新冠发病另一种机制被找到!研发抑制透明质酸合成的特效药有望成为治疗新冠肺炎的新策略
    新冠肺炎仍在全球肆虐,截至2021年9月28日,已在全球感染超2.3亿人,死亡超472万。变异毒株的不断涌现使新冠病毒与人类共存成为大概率事件,寻找应对新冠病毒的防治策略已成为全球科学家和政府面临的重要议题。  目前,国内外已有数款预防新冠的疫苗获批上市,但治疗新冠肺炎依然缺乏特效药。因此,探索不同病毒株共同的致病机制显得尤为重要。  2021年9月28日,深圳市第三人民医院、复旦大学生物医学研究院以及杭州创将医疗科技有限公司共同主办《NamiRNA、透明质酸与新冠肺炎治疗新策略研讨会暨羟甲香豆素在新冠临床治疗中的应用推介会》,会议邀请到国内外多位新冠防治领域的知名专家和学者,研讨会采取线上加线下的形式,介绍了新冠防治新策略的最新进展和研究成果,以期使国内外的新冠防治工作者得到新冠研究最新动态。  会上复旦大学生物医学研究院于文强指出,新冠致病的罪魁祸首或为HIS基因序列。在过去的近10年里,于文强团队发现了一类在细胞核内发挥独特激活作用的NamiRNA(NuclearActivatingmiRNA),打破了传统miRNA抑制理论经典,创造性地提出NamiRNA-增强子-基因激活理论,这也为新冠致病新机制的研究打下基础。  疫情初期,于文强团队就投入到新冠快速检测和致病机制攻关研究,解析新冠肺炎特殊临床和病理改变分子机制,寻找全新有效防治方案。经研究发现,新冠病毒基因组与人类基因组存在5段完全相同的基因序列,长度为24~27 nt,团队将它命名为HIS(Human Identical Sequence)。HIS在159258个新冠病毒基因组广泛存在,且能靶向性地激活人体中肺、血管等非免疫细胞中与炎症相关的基因。因此,人感染新冠病毒后致病的罪魁祸首很可能是HIS基因序列——携带HIS基因序列的新冠病毒进入人体后和人类基因中HIS共同作用,这可能是引起“炎症因子风暴”的重要原因。  由此于文强与合作团队推出抑制透明质酸合成,治疗新冠的新策略。于文强团队发现,新冠患者的血浆中透明质酸的升高,与淋巴细胞降低和肺部毛玻璃病变等临床症状密切相关。而HIS能够激活透明质酸的合成酶,引起透明质酸增加。在新冠肺炎患者的血浆中,透明质酸是升高的。透明质酸又名玻尿酸,是一种酸性粘多糖,分为大分子和小分子,小分子是重要的炎性介质。  在随后的动物实验中,于文强团队发现,单用透明质酸处理就能引起小鼠肺部典型CT影像学的毛玻璃病变,进一步证实透明质酸是新冠致病的共同物质基础和治疗新靶点,以透明质酸为靶点抑制其合成,可以成为新冠治疗的新策略。  4-MU是透明质酸合成抑制剂,对应药物为中国已上市治疗胆囊炎的口服处方药羟甲香豆素。  此后,于文强团队与深圳市第三人民医院卢洪洲团队合作开展临床试验,共入组新冠肺炎患者130例。初步研究结果显示,羟甲香豆素能显著促进患者体内淋巴细胞恢复,同时改善患者肺部病变。“这项研究找到了新冠的发病机制,进而明确了要怎么去治疗新冠。幸运的是,还找到了羟甲香豆素这样有效的药物。”卢洪洲教授表示。  鉴于国内新冠患者数量较少,该团队联合杭州创将医疗科技有限公司进行合作,在玻利维亚、厄瓜多尔等南美国家开展相关临床试验的前期准备工作。  目前,羟甲香豆素在新冠治疗及阻断重症发展中的作用仍待进一步研究。于文强团队与卢洪洲团队、南方科技大学糖生物学王鹏团队正在申请新课题,将从细胞水平、动物模型和临床试验三个层面入手,深入研究羟甲香豆素对不同新冠变异株的作用及分子机制,以期降低新冠高危人群病死率,将新冠变成 “普通感冒”,为全球应对新冠变异和治疗,提供简单易行可推广的中国方案。
  • 名单公布 这12种问题疫苗你不可不知
    p   山东爆发了「问题疫苗」事件让不少家长人心惶惶,上亿元的疫苗未冷藏流入 24 个省份。今日,山东省食品药品监督管理局公布了涉案的疫苗名单,包括疫苗 12 种、免疫球蛋白 2 种、治疗性 a href=" http://www.instrument.com.cn/application/industry-S22.html" target=" _self" title=" " style=" text-decoration: underline " span style=" text-decoration: underline color: rgb(255, 0, 0) " strong 生物制品 /strong /span /a 1 种。 /p p    strong 疫苗还能不能打? /strong /p p   而新闻爆出后,相信大家最大的疑问就是疫苗打还是不打?首先,根据山东省食品药品监督管理局发布的公告,此次涉事疫苗均为第二类疫苗。即由公民自费并且自愿受种的疫苗,而非儿童必须接种的疫苗,所以对于儿童的正常接种该打还是要打。 /p p   其次,应该根据患者个人情况综合评估。譬如对于被动物咬伤的患者若可能危及生命,还是应该给予人用狂犬病疫苗及狂犬病人免疫球蛋白。而一些仅对疾病防患于未然的疫苗,譬如腮腺炎减毒活疫苗、B 型流感嗜血杆菌结合疫苗等等,可暂时先不急于注射。 /p p   最后,疫苗作为病毒灭活、减毒株,由细胞培育而出。此次爆出的问题疫苗有些是针对某种特定细胞培育出的疫苗,如果必须要打,也可以考虑选择其他细胞培育的疫苗作为替代。 /p p   下面就来看看哪些疫苗有问题,又有没有替代品吧! /p p   12 种疫苗 /p p   冻干人用狂犬病疫苗(Vero 细胞) /p p   本疫苗后可刺激机体产生抗狂犬病病毒免疫力,用于预防狂犬病。 /p p   适应证:凡被狂犬或其他疯动物咬伤、抓伤时,不分年龄、性别应在处理局部伤口后,及时按暴露后免疫程序注射本疫苗。凡有接触狂犬病病毒危险的人员按暴露前免疫程序注射本疫苗。 /p p   替代疫苗:人用狂犬病疫苗(地鼠肾细胞) /p p   脊髓灰质炎灭活疫苗 /p p   接种本品可以诱导机体产生主动免疫,预防由脊髓灰质炎 1 型、2 型和 3 型病毒导致的脊髓灰质炎。 /p p   适应证:用于主要用于 2 月龄以上(含 2 月龄)的婴幼儿、儿童和成人。推荐常规免疫接种程序 :2、3、4 月龄进行基础免疫,每次 0.5 mL。18 月龄加强免疫(即第 1 次加强),每次 0.5 mL。 /p p   B 型流感嗜血杆菌结合疫苗 /p p   适应证:适用于 2 个月以上的儿童,预防 B 型流感嗜血杆菌引起的感染性疾病(脑膜炎、肺炎、败血症、蜂窝组织炎、关节炎、会厌炎等)。需要注意的是,本疫苗既不能预防其它类型流感嗜血杆菌引起的感染。 /p p   乙型脑炎减毒活疫苗 /p p   适应证:用于预防流行性乙型脑炎。8 月龄儿童首次注射 0.5 mL 分别于 2 岁和 7 岁再各注射 0.5 mL,以后不再免疫。 /p p   替代疫苗:乙型脑炎灭活疫苗(Vero 细胞) /p p   腮腺炎减毒活疫苗 /p p   接种本疫苗后,可刺激机体产生抗腮腺炎病毒的免疫力。用于预防流行性腮腺炎。 /p p   适应证:8 月龄以上的腮腺炎易感者,于 2~8 ℃ 避光保存和运输。 /p p   冻干乙型脑炎灭活疫苗(Vero 细胞) /p p   接种本疫苗后,可刺激机体产生抗乙型脑炎病毒的免疫力。 /p p   适应证:6 月龄~10 周岁儿童和由非疫区进入疫区的儿童和成人,用于预防乙型脑炎。 /p p   替代疫苗:乙型脑炎纯化疫苗(地鼠肾细胞) /p p   重组乙型肝炎疫苗(CHO 细胞、汉逊酵母) /p p   适应证:适用于乙型肝炎易感者,尤其是下列人员: /p p   1. 新生儿,特别是母亲为 HBsAg、HBeAg 阳性者。 /p p   2. 从事医疗工作的医护人员及接触血液的实验人员。 /p p   基础免疫程序为 3 针,分别在 0、1、6 月接种,新生儿第 1 针在出生 24 小时内注射。 /p p   A 群 C 群脑膜炎球菌结合疫苗 /p p   本疫苗主要使机体产生体液免疫应答。 /p p   适应证:3 月龄 -6 岁儿童。预防 A 群和 C 群脑膜炎球菌引起的感染性疾病,如脑脊髓膜炎等。 /p p   ACYW135 群脑膜炎球菌多糖疫苗 /p p   适应证:用于预防 A、C、Y 及 W135 群奈瑟氏脑膜炎球菌引起的流行性脑脊髓膜炎。 国内仅推荐 2 周岁以上的儿童和成人的高危人群使用:旅游或居住在高危地区 从事相关实验室或疫苗生产工作 根据流行病学调查有 Y 及 W135 群脑膜炎奈瑟氏菌暴发地区的高危人群。 /p p   水痘减毒活疫苗 /p p   本疫苗免疫接种后,可刺激机体产生抗水痘一带状疱疹病毒的免疫力,用于预防水痘。 /p p   适应证:年龄 12 个月龄以上的水痘易感者,全年均宜接种。 /p p   口服轮状病毒活疫苗 /p p   本品免疫接种后,可刺激机体产生对 A 群轮状病毒的免疫力。 /p p   适应证:主要用于 2 个月至 3 岁婴幼儿,预防 A 群轮状病毒引起的腹泻。 /p p   甲型肝炎灭活疫苗 ( 人二倍体细胞) /p p   适应证:接种本疫苗可刺激机体产生抗甲型肝炎病毒的免疫力,适用于 1 岁以上甲型肝炎易感者,用于预防甲型肝炎。 /p p   替代疫苗:甲型肝炎灭活疫苗(Vero 细胞) /p p   2 种免疫球蛋白 /p p   狂犬病人免疫球蛋白 /p p   为高效价的狂犬病抗体,能特异地中和狂犬病病毒,起到被动免疫的作用。 /p p   适应证:主要用于被狂犬或其他疯动物咬伤、抓伤患者的被动免疫。所有怀疑有狂犬病暴露的患者,应联合使用狂犬病疫苗和狂犬病人免疫球蛋白。如果病人接种过狂犬病疫苗,并且具有足够的抗狂犬病抗体滴度,可再次接种疫苗而不使用本品。 /p p   乙型肝炎人免疫球蛋白 /p p   为高效价的乙型肝炎表面抗体,能与相应抗原专一结合起到被动免疫的作用。 /p p   主要用于乙型肝炎预防。适用于: /p p   1. 乙型肝炎表面抗原(HbsAg)阳性的母亲及所生的婴儿。 /p p   2. 意外感染的人群。 /p p   3. 与乙型肝炎患者和乙型肝炎病毒携带者密切接触者。 /p p   1 种治疗用药 /p p   细菌溶解物 /p p   本药物为细菌抗原悬浮液含抗原提取物:肺炎链球菌、金黄色葡萄球菌、流感嗜血杆菌、肺炎克雷伯氏菌等多种细菌的抗原单位。 /p p   适应证:主要用于上呼吸道细菌感染:鼻炎、鼻咽炎、鼻窦炎、扁桃体炎、支气管炎等的预防和治疗。舌下滴服,并使药液在口中保持一段时间以便和唾液充分混合,使粘膜充分吸收药物。 /p p br/ /p
  • CDC首席专家: 应全面了解疫苗相关知识
    p   疫苗是预防和控制传染病最经济、最有效的手段。近期,有关疫苗的话题再次引起公众关注,甚至有很多误解,可能影响疫苗免疫接种。 /p p   为此,11月5日,记者采访了中国疾病预防控制中心流行病学首席专家曾光教授,给读者提供权威观点。 /p p    span style=" color: rgb(0, 112, 192) " strong 谣言止于智者 /strong /span /p p   每次疫苗风波都会给公众带来很大恐慌,甚至导致有些人对疫苗失去信心,这很有可能导致传染病暴发。曾光教授表示,目前我国公众对疫苗的理解不如普通药品,原因有很多,包括:疫苗大多数是健康人预防接种,不像普通药品是治病救急所需,所以对接种疫苗缺乏紧迫感 疫苗接种对象一般是脆弱的婴幼儿,家长十分关心,难以容忍些许闪失 虽然目前疫苗种类很多,但只是针对特定的病原微生物,不能覆盖所有病原微生物 接种疫苗后,接种者自身难以判断疫苗效果是否产生 疫苗只是降低了接种者患某种疾病的概率,并不意味完全杜绝该疾病的发生。曾光教授表示,平时对疫苗的理解不到位,是疫苗风波产生的根源。 /p p   疫苗安全问题高度敏感,容易引起广泛的社会关注,曾光教授认为,这完全可以理解,但这种情绪不能成为盲目抵制疫苗的理由,不接受疫苗接种只会影响新生儿健康,产生更多的传染病传播风险。他希望公众能够全面了解疫苗的相关知识,不要人云亦云,产生不必要的恐慌,“谣言止于智者”。 /p p    span style=" color: rgb(0, 112, 192) " strong 疫苗价值无可替代 /strong /span /p p   据曾光教授介绍,有文字记载,我国在公元10世纪就采用接种人痘预防天花。进入20世纪后,全球疫苗研发进入快车道,取得了很多辉煌成果。如1909年卡介苗问世,1923年白喉类毒素疫苗问世,1926年破伤风类毒素疫苗问世,1932年首次使用黄热病疫苗,1936年在鸡胚中研制灭活流感疫苗成功,上世纪50年代灭活脊髓灰质炎疫苗和减毒脊髓灰质炎疫苗问世,1950~1970年研制出了减毒麻疹疫苗、风疹疫苗、腮腺炎疫苗和水痘疫苗,1986年基因重组乙肝疫苗问世,1990年多糖结合疫苗(B型流感嗜血杆菌)问世,1991年无细胞百日咳疫苗问世。 /p p   我国是目前世界上最大的疫苗生产国,共有40多家疫苗生产企业,可生产60多种疫苗,预防30多种传染病,国产疫苗约占全国实际接种量的95%。疫苗产品的使用,有效控制了传染病的发生,对保障公众健康发挥了重要作用。 /p p   传染病曾经严重威胁人类健康。曾光教授介绍,全球曾在公元6世纪、14世纪和19世纪末,暴发过3次鼠疫大流行,死亡1.4亿人,大大超过一、二次世界大战的死亡人数。在18世纪,欧洲天花蔓延,死亡人数高达1.5亿人以上。正是由于疫苗的出现,发挥了预防作用,全球每年有数百万可能发生的病例得到预防。1980年天花被消灭之前,全世界有60%的人口遭受天花的威胁 在天花患者中,超过1/4的人因病死亡。1988年以后,全球脊髓灰质炎感染下降99%,据估计,约500万人免于瘫痪。2000~2007年,全世界麻疹死亡率下降了74%。 /p p   世界卫生组织(WHO)提出,没有一种预防性卫生干预措施比免疫更具成本效益。国际社会一次又一次认可疫苗和免疫接种的价值,疫苗不仅可以预防和控制大量传染病,而且越来越多地用于防控由传染性因子引起的若干慢性病。疫苗接种不仅可以预防与腹泻、麻疹、肺炎、脊髓灰质炎和百日咳等传染病有关的痛苦和死亡,还有助于巩固国家教育和经济发展等优先事项。 /p p   除挽救了无数生命外,疫苗还节约了医疗开支,因为免疫接种是最具成本效益的医疗卫生投资之一。在美国,根据一项成本效益分析,在疫苗上每投入1美元将节约2美元~27美元的医疗支出。在11个西欧国家展开的一项调查显示,每个麻疹病例的治疗成本为209欧元~480欧元,而麻疹疫苗接种的成本则仅为每人0.17欧元~0.97欧元。 /p p    strong span style=" color: rgb(0, 112, 192) " 效价降低不增加安全风险 /span /strong /p p   百白破疫苗是百日咳、白喉、破伤风三联疫苗的简称,指由百日咳疫苗、白喉类毒素疫苗和破伤风类毒素疫苗3种疫苗混合而成的多联疫苗制剂,用于预防百日咳、白喉和破伤风3种疾病。我国百白破疫苗已纳入计划免疫近40年,在疾病预防控制工作中起到重要作用。 /p p   曾光教授表示,和其他药品一样,有效性和安全性也是疫苗的两大基础。据了解,疫苗效价指标代表疫苗的有效性,无菌等指标代表疫苗的安全性。效价指标不合格是指疫苗中有效抗原成分的含量低于标准范围,表明疫苗的保护效果不够,与安全性是不同的两个方面。效价指标不合格不会增加安全性风险。 /p p   专家表示,疫苗效价降低,不意味着就失去保护作用。每个人对疫苗抗原的反应并不一致,有些人即使对少量的疫苗效价也能产生足够的免疫应答。此外,由于百白破联合疫苗每人需在不同时间连续接种4剂,1次疫苗效价不足并不代表保护作用丧失。 /p p   据了解,我国的百白破疫苗质量标准是在WHO相关指导原则的基础上制定的,并不断完善更新。自2010年版《中国药典》颁布实施,与发达国家同类疫苗对比,我国吸附无细胞百白破疫苗的质量标准有了大幅度提高。专家指出,相关企业应该严格按照质量标准进行生产,对质量安全常抓不懈,承担质量安全主体责任。 /p p br/ /p
  • 疫苗管理法出台在即 将严抓疫苗生产、检验和质量控制
    p style=" text-indent: 2em " 长春长生疫苗事件过去近一年,疫苗问题却仍频频出现,疫苗的安全性始终未得到有力保障,人们对于加强疫苗监管的呼声不断高涨。近日,有媒体发布《中华人民共和国疫苗管理法(草案)》(以下简称“草案”),法规的实施将给饱受疫苗之“伤”的广大人民群众带来一份安全感。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 5px margin-bottom: 10px " 本法所称疫苗,是指为预防、控制疾病的发生、流行,用于人体免疫接种的预防性生物制品,包括免疫规划疫苗和非免疫规划疫苗。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 草案总则第二十四条规定,疫苗应当按照经核准的生产工艺和质量控制标准进行生产和检验,生产全过程应当符合药品生产质量管理规范的要求。疫苗上市许可持有人应当按照规定对疫苗生产全过程和疫苗质量进行审核、检验。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 目前使用的绝大部分疫苗是用于预防病毒或细菌的感染,主要分为三类:减毒活疫苗,灭活的全菌体或全病毒疫苗,组分疫苗——亚单位疫苗、多糖疫苗或结核性疫苗、类毒素等。不同疫苗的生产工艺、生产设备、检验项目及方法也各有不同,小编整理了几种疫苗生产及检验过程中常用到的仪器设备。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " span style=" color: rgb(255, 0, 0) " strong 1、疫苗制备生产 /strong /span /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 减毒疫苗制造主要包括禽胚培养、细胞培养和动物组织培养三种形式。菌性灭活疫苗生产工艺可概括为:菌种选择——菌液培养——浓缩——培苗与冻干。用到的仪器包括微生物发酵罐、细胞培养箱、折光仪、冷冻柜、离心机、浓缩及纯化设备、疫苗存储设备等。 /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " /p p style=" text-align: center " img width=" 380" height=" 452" title=" 赛默飞冷藏箱.jpg" style=" width: 366px height: 427px max-height: 100% max-width: 100% " alt=" 赛默飞冷藏箱.jpg" src=" https://img1.17img.cn/17img/images/201906/uepic/6de2047d-dc0e-4491-b1ad-1f5ddd5addbe.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " 赛默飞tsx 系列高性能桌下型冷藏箱 /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " br/ /p p style=" text-align: center " img width=" 380" height=" 380" title=" 艾本德细胞培养箱.jpg" style=" width: 380px height: 380px max-height: 100% max-width: 100% " alt=" 艾本德细胞培养箱.jpg" src=" https://img1.17img.cn/17img/images/201906/uepic/011117a3-2911-412e-8dfe-7e6de29e2cfa.jpg" border=" 0" vspace=" 0" / /p p style=" margin: 0px 0px 10px 48px text-align: center line-height: 1.5em text-indent: 0em " 艾本德培养箱Eppendorf CellXpert C170i CO2 /p p style=" margin: 0px 0px 10px 48px text-align: center line-height: 1.5em text-indent: 0em " /p p style=" text-align: center " img width=" 304" height=" 303" title=" 安东帕折光仪Abbemat650.jpg" style=" width: 344px height: 336px max-height: 100% max-width: 100% " alt=" 安东帕折光仪Abbemat650.jpg" src=" https://img1.17img.cn/17img/images/201906/uepic/6b7a80b8-b38e-4267-a954-bce1d18cbd7f.jpg" / /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " 安东帕折光仪Abbemat650 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " span style=" color: rgb(255, 0, 0) " strong 2、疫苗检验 /strong /span /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 疫苗安全性、有效性检验是疫苗上市前的最后也是最重要的一关。疫苗检测包括理化性质的检测、微生物检测、效价检测、防腐剂残留量检测及免疫学检测等等,涉及的仪器非常之多。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " strong 理化性质的检测 /strong /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 在基本理化性质检测过程中,需要用到的仪器如下:高效液相色谱、红外光谱,多种分析仪器可用于进行多糖等大分子物质的含量检测及结构分析;核酸电泳仪、核酸定量仪——用于核酸分子量、含量浓度检测;酶标仪——用于测定多种物质浓度。蛋白电泳仪、凝胶成像系统——蛋白分子量、浓度、蛋白印迹(聚丙烯酰胺凝胶电泳);同位素检测仪——用于生物学标记技术。& nbsp /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " /p p style=" text-align: center " img width=" 380" height=" 273" title=" 酶标仪.jpg" style=" width: 380px height: 273px max-height: 100% max-width: 100% " alt=" 酶标仪.jpg" src=" https://img1.17img.cn/17img/images/201906/uepic/29d1e8af-03f0-4d2e-aaf8-eae3140e9d66.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " 瑞士Tecan M200 PRO多功能酶标仪 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " strong 微生物学检测& nbsp & nbsp & nbsp & nbsp /strong /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 培养检测方法是检测疫苗否有细菌、支原体等微生物的污染,以组织培养、电镜技术检测是否有病毒污染,以纯菌实验检测诸如减毒活菌苗自身菌体的活菌量、总菌量以及是否有其他杂菌的存在。以CHO细胞毒试验、HeLa细胞毒性试验检测细菌毒素的活力,以组织培养法、细胞感染作用、蚀斑形成单位试验检测病毒活性。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 疫苗微生物检测过程中用到的实验仪器主要有摇床、微生物培养箱进行微生物培养;显微镜、电镜——观察检测细胞、细菌、支原体、病毒数量及形状结构;细胞培养箱、流式细胞仪、酶标仪——用于毒性试验中的细胞培养、细胞抗原及抗体、细胞核酸物质浓度检测。 /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " /p p style=" text-align: center " img width=" 380" height=" 302" title=" 伯乐流式细胞仪.jpg" style=" width: 376px height: 297px max-height: 100% max-width: 100% " alt=" 伯乐流式细胞仪.jpg" src=" https://img1.17img.cn/17img/images/201906/uepic/f09dbb03-15ed-405e-a497-7a4155ed3044.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " 伯乐流式细胞仪ZE5 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " strong 免疫学检测& nbsp & nbsp & nbsp /strong /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 主要对疫苗原免疫学特性进行鉴定。包括体外鉴定技术,如凝集试验、免疫沉淀试验、蛋白质印迹等检测疫苗重要组分的免疫原性、免疫反应性;体内鉴定,主要指动物实验。在对动物接种后检测各种免疫学指标,以判定疫苗之效果,同时也可观察疫苗的不良反应和毒性作用。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 除了上述的常规疫苗检测过程外,现代高通量技术,比如芯片、二代测序等为评价疫苗效果提供了新思路,如在三价流感疫苗中,12个由2-4个基因组成的集合,在预测疫苗流感抗体水平时具有较高的准确率。 /p p style=" line-height: 1.5em margin-bottom: 10px text-indent: 0em text-align: center " span style=" color: rgb(0, 112, 192) " strong 扫码关注 span style=" color: rgb(192, 0, 0) " 【3i生仪社】 /span /strong /span strong style=" color: rgb(0, 112, 192) text-indent: 0em " ,解锁生命科学新鲜资讯! /strong /p p style=" line-height: 1.5em margin-bottom: 10px text-indent: 0em " strong style=" color: rgb(0, 112, 192) text-indent: 0em " /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 198px height: 198px " src=" https://img1.17img.cn/17img/images/201906/uepic/6571b3cd-c764-453c-a9a2-d4316c1bd8d1.jpg" title=" 0qrcode_for_gh_91d290758d40_258.jpg" alt=" 0qrcode_for_gh_91d290758d40_258.jpg" width=" 198" height=" 198" / /p
  • 科学防治,精准施策——谈新冠肺炎疫情防治中的分析仪器
    2月19日,国家卫健委网站发布了《新型冠状病毒肺炎诊疗方案(试行第六版)》,通过多次的修订和更新让疫情的防治手段更为精确和可靠,新版中关于医护暴露风险、检查诊断指标、抗病毒药物使用和中医药治疗主导作用等方面的论述成为热点话题。科学精准是有效防控疫情的必然要求,也是具体方法,结合疫情发展的各环节和科学分析仪器的特点及应用案例,岛津分析中心整理和编辑了《COVID-19疫情相关应用解决方案》供参考。一、医用防护用品生产及检测 庚子年初的这场新型冠状病毒肺炎(COVID-19)疫情,医务人员是冲锋在前的“逆行者”,是战胜疫情的中坚力量,践行着希波克拉底“健康所系,性命相托”的神圣誓言。近日,国家CDC的报告中提到在为新冠肺炎患者提供诊治服务中,共有3019名医务人员感染了新型冠状病毒(SARS-CoV-2)。除病毒感染力强和诊治工作量巨大外,防护物资短时供应困难导致的防护不到位也是该群体感染率高的原因。随着各地疫情形式好转,各行业都在开展有序复工,有更多的企业加入口罩、防护服等防护用品生产中,相信供应紧张的情况会很快获得缓解。病毒肆虐,医护挡前,给高风险环境中工作的医护人员可靠的防护装备,是保证其最职业安全的基本需要。?二、病毒的核酸检测 目前根据诊疗方案要求,对新冠肺炎疑似病例的确诊,具备以下病原学证据之一者即可,荧光实时PCR检测新冠病毒核酸阳性,或者通过病毒测序与已知的新冠病毒高度同源。本次疫情发展迅速、病毒传播力强,波及范围广,检测速度一度跟不上检测需求,导致出现重点区域疑似病患不能及时确诊救治。为此,在2月8日科技部面向社会广泛征集新冠病毒现场快速检测技术,希望有更多实用的方案进行病毒的检测和疾病的确认工作中。其中微芯片电泳技术是一种利用生物芯片技术替代传统电泳技术进行DNA、RNA分析的手段,具有全自动、高通量等特点。除此之外,使用普通PCR和基于MALDI-TOF的单核苷酸多态性SNP分型技术,也可以实现病毒的高通量检测:病毒的RNA经逆转录生成CDNA,PCR扩增,再进行单碱基延伸,点样到芯片靶板,最后到MALDI-TOF仪器检测分析。相信更多的技术和方法的加入,会让新冠肺炎的确诊和排查效率更高,效果更好。三、安全有效的药物治疗 疫情发生以来,医务人员和社会大众都希望有一种快速有效的药物能够用于新冠状病毒肺炎的治疗,试行第六版新冠肺炎诊疗方案删除了“目前没有确认有效的抗新型冠状病毒治疗方法”的表述,但这并非代表有了“特效药”。磷酸氯喹、阿比多尔,抗艾滋病药物洛匹那韦/利托那韦,还有被称之为“人民的希望”并正在进行临床试验的瑞德西韦,以及小范围实验证明有效的羟氯喹和法匹拉韦,这些原本只有专业人士才能熟悉的药物名称,在今年正月里为更多的老百姓所知晓。药品是个特殊的商品,老百姓不能如口罩和酒精一般自备自用,使用的安全性和有效性是药物研究者和相关监管部门关注的基本方面。 从安全性角度考虑,引起药物不良反应的因素,除了药物本身毒副作用外,最大的来源是此类药物生产、储运过程中混入或降解产生的杂质,通过杂质限量检查,杂质的含量能控制在安全合理的界限以下是合格药品的条件之一。 在大多数人的眼中,中医被认为是“慢郎中”,“保健还行,治病嘛,就算了”,类似的言语和表达经常听到看到,但在这次新冠肺炎的防治中,中医药却是应对急症的好手,发挥着积极作用。科技部副部长徐南平介绍,在治疗新冠肺炎过程中,全国使用中医治疗的确诊病例有6万例,占比80%以上。 国务院联防联控机制2月17日召开的新闻发布会上,国家中医药管理局科技司司长李昱介绍了清肺排毒汤的临床应用情况:目前已经有10个省57个定点医疗机构的701例使用清肺排毒汤的确诊病例纳入观察,其中有130例治愈出院,51例症状消失,268例症状改善,212例症状平稳没有加重。清肺排毒汤对治疗新冠肺炎具有良好的临床疗效和救治前景。——国家中医药管理局网站 在中医药治疗中发挥重大作用中药和方剂是祖国医学的瑰宝,我国中药资源丰富,药物基源超过8000种,由于药材基源的不同,导致其所含的化学成分、生物活性和毒性也会有所差异,这也是直接影响中药安全性和有效性的原因。在2019年10月20日中共中央国务院《关于促进中医药传承创新发展的意见》提出了“大力推动中药质量提升和产业高质量发展”的要求,其中对中药材和中药饮片涉及质量的农药残留、重金属限量标准等提出工作要求,以促进质量提升。四、新药研发中的分析仪器 新冠肺炎是一种新型传染性疾病,疫情防控急需特效药物。1月24日,科技部成立了以钟南山院士为组长、14位专家组成的科研攻关专家组,启动了3批共计16个应急攻关项目,包括药物研发、疫苗研发、检测试剂等。 化学药物的研发一般遵循靶标及模型建立-先导化合物合成及优化-药理评估-制剂研发-临床前研究-临床研究-申请及批准上市等流程。而贯穿于全流程中的分析仪器对于新药研发作用重大。 统计数据表明,新药的诞生需要10年时间和超10亿美元的投入,这对于急需药品使用的特殊情况下是非常不利的,对药品的仿制研究是扩大药品使用范围、造福人类的大好事。2月16日,国内首个法匹拉韦仿制药获批上市,适应症为用于成人新型或复发流感的治疗,对于本次疫情的治疗而言,又多了一种可以使用的药物的选择。而对于仿制药品,要和原研药达到相同的治疗效果,需要通过仿制药一致性评价,如片剂和胶囊等固体口服制剂就需要经过体外溶出实验和生物等效性实验进行全面测试,确保达标的今后才能获准上市。 人类发展历史上,疫苗的出现是具有里程碑意义的事件,一些恶性疾病如天花、脊髓灰质炎、鼠疫、乙肝等或被彻底消灭或被有效抑制都与疫苗的功效密不可分,所以疫苗被誉为“人类医学最伟大的发明”。在本次疫情发生以来,人们翘首以盼有一款疫苗能快速全面防护病毒感染和治疗病毒引发的肺炎。1月22日,科技部“新型冠状病毒感染的肺炎疫情科技应对”第一批应急攻关项目启动,快速疫苗研发是重要研发任务之一。专家认为,疫苗解决的是保护易感人群、群体防护的问题,从长远来看,应该以疫苗为主,这对疫情控制或发生意义重大。 从2月21日国务院联防联控机制新闻发布会获悉,现在疫苗的研发是5条技术路线在同步开展,分别是灭活疫苗、重组基因工程疫苗、腺病毒载体疫苗、核酸疫苗、减毒流感病毒疫苗。预计最快的疫苗将于4月下旬左右申报临床试验。现代疫苗的研发早已不是爱德华琴纳时代进行的取脓接种,也不需要像路易巴斯德那样望犬取涎,更远离了刀光剑影和战火纷飞,有现代微生物技术和分析仪器及其应用方案加持,相信不久将来就可获得满意的效果。五、医疗废弃物及生活用水检测 从1月中下旬新冠肺炎疫情的暴发以来,口罩、防护服短缺的新闻前段时间几乎日日可见,随着大量救援物资抵达武汉和防护用品厂家的产能恢复,严峻的问题得以解决。与此同时,“医疗废弃物处理”这个话题渐渐为大众所关注。疫情面前,我国医疗废弃物处置能力经受着巨大考验。如果处理不当,这些沾染病毒的口罩、防护服可能带来疾病二次传播的极高风险。依照生态环境部于1月28日印发的《新型冠状病毒感染的肺炎疫情医疗废物应急处置管理与技术指南(试行)》各地多采用高温焚烧法进行处置,涉及疫情的医疗废物基本实现 “日产日清”,武汉市医疗废物处理能力达到100.5吨/天,较此前提升一倍。焚烧工艺的成熟度、流程控制完整性和危险废物自身成份的不稳定性及复杂性,综合原因导致了焚烧产生污染物种类繁多且成份复杂。生态环境部已经发布实施了相应的检测标准,涉及的分析技术主要有:在线连续监测法、高分辨气相色谱质谱法、紫外可见分光光度法、冷原子吸收分光光度法、离子色谱法、火焰(石墨炉)原子吸收分光光度法、电感耦合等离子体质谱法等等。 同时,疫情发生以来,全国各地定点医疗机构、重点地区社区在统一部署下积极开展关键场所和环境的消杀工作。据工信部统计,我国共有消杀用品厂家563家,其中84消毒液生产能力达到日4500吨以上,目前库存充足,产能也已恢复近80%。2月1日至19日,全国各省级生态环境部门均组织对重点地区定点医疗机构、城镇污水处理设施的出水水质开展了监督性监测,累计对6900余个饮用水水源地开展的监测结果表明,未发现疫情影响饮用水水源地水质的情况。其中,994个饮用水水源地开展了余氯监测,7个饮用水水源地余氯有检出,浓度低于自来水厂出水标准,其他饮用水水源地余氯均未检出。2月19日,国家卫健委发布《关于印发消毒剂使用指南的通知》,对正确选择和合理使用消毒剂给予确切说明,遵循“五加强七不宜”,真正做到切断传播途径,控制传染病流行,合理、适当使用消毒剂,防止过度消杀,危害环境。结语 2月23日,国务院联防联控机制新闻发布会通报,湖北以外省份新增确诊病例从890例将至2月22日的18例,16省份连续2日无新增确诊病例。湖北省及武汉市的新增确诊和重症病例数量也在明显放缓。国家采取及时果断的措施使疫情防控工作已经取得显著成果,遏制了疫情蔓延,各地有序开展复工复产。 2020年春天对所有中国人来说都是如此的不平凡,是对社会每个单元的一次考验。“苟利国家生死以,岂因祸福避趋之?”在大灾大难面前,人们过的紧张,也过出了一种凝聚力和行动力。从“逆行”赴汉,到捐助支援;从担当值守,到加班加点;从摸排检测,到宅居充电;这里既有同袍手足的守望相助,也含友好邻邦的“山川异域,风月同天”。为了人类和地球的健康,企业和人都在以科技为社会做出贡献。  冬日已经过去,春光依旧明媚!(信息来源:国家卫生健康委员会网站,国家中医药管理局网站,新华社,人民日报,人民网,国家工业和信息化部网站,国家生态环境部网站)
  • 亮相新闻联播的电镜,如何在新冠肺炎战疫中发挥效能?
    李克强总理视察中国医科院时通过透射电镜观察新冠病毒及华盛顿大学实验室同型号电镜Thermo Scientific Tecnai G2 Spirit● 疫情快讯2019新型冠状病毒(2019-nCoV),因2019年武汉病毒性肺炎(2020年2月11日命名为COVID-19)病例而被发现,目前感染形势依然很严峻,疫苗与抗病毒药物研发迫在眉睫。数日前,李克强总理赴中国医学科学院病原生物学研究所,考察疫情防控科研攻关,电镜实验室负责人介绍了研发药物动物模型、病毒传播途径研究等情况。总理为何会去视察电镜实验室接下来,我们就和大家详细地介绍一下电镜在新冠肺炎战役中发挥着怎样的作用。助力病毒形态、扩增过程及病毒传播途径的研究2019年12月,武汉市部分医疗机构陆续出现不明原因肺炎病人。来自多个小组的科学家从住院患者那里获得了病毒样本。截至2020年1月初,实验室检出这种新型病毒电镜下呈现典型的冠状病毒形态。专家组认为,本次不明原因的病毒性肺炎病例的病原体初步判定为新型冠状病毒。下图为中国疾病预防控制中心病毒病预防控制所于1月6日分离的新型冠状病毒毒株的电镜照片。疾病预防控制中心 (CDC)和中国卫生部门后来确定并宣布,一种名为武汉冠状病毒的新型冠状病毒(2019-nCoV)引起了武汉市的肺炎爆发。武汉新型冠状肺炎病毒电镜图片:单个新冠病毒颗粒直径约100nm(照片来源:国家病原微生物资源库)新型冠状病毒(2019-nCoV)2019-nCoV属于套式病毒目,冠状病毒科,β冠状病毒属。2003年的SARS-CoV与2012年的MERS-CoV,及模式病毒小鼠肝炎病毒MHV均属于β冠状病毒。“新病毒与其它β冠状病毒的序列基本相似, 其中不同冠状病毒与宿主细胞作用的关键spike基因(编码S-蛋白),有更大的差异性。虽然武汉新型冠状病毒S-蛋白中与人体ACE2蛋白结合的5个关键氨基酸有4个发生了变化,但变化后的氨基酸,却在整体性上完美地维持了SARS-CoV的S-蛋白与ACE2蛋白互作的原结构构象。”冠状病毒结构图病毒是一种非细胞生命形态,它的复制、转录、和转译的能力都是在宿主细胞中进行,按照它自己的核酸所包含的遗传信息产生和它一样的新一代病毒。紧接着,新一代病毒粒子从受感染细胞的表面释放出来。香港大学研究人员于1月31日公布首批新型冠状病毒在细胞内复制过程的图像,他们通过培养受感染细胞,观察新型冠状病毒的生长过程。每个受感染的细胞会衍生出数以千计的病毒粒子,从而继续感染新细胞。利用透射电镜研究新冠病毒在细胞内复制扩增过程(图片来源:香港大学)(电镜型号:Thermo Scientific Tecnai G2 20)助力抗病毒药物研发目前针对新冠肺炎(COVID-19)的治疗,并没有疫苗与抗病毒特效药,疫情防控刻不容缓,这一形势急需科学家加快研发步伐。揭示2019-nCoV三维结构及其入侵过程是发现药物靶点的关键所在,有助于进一步设计药物阻断病毒入侵。然而,病毒分子量大,且不易结晶,使其难以通过x-ray和NMR等传统手段,开展新冠病毒结构生物学研究。目前科学家们主要通过x-ray技术解析了病毒水解酶的结构,但是病毒的完整结构依然未知,后续科研工作面临着极大的挑战。在药物与疫苗研发的关键阶段,冷冻电镜正是解析完整病毒结构及关键蛋白分子结构的利器。基于电镜技术展开的病毒结构生物学研究,科学家可以进一步确定病毒侵入细胞的关键蛋白结构与作用位点,从而针对药物靶点来设计药物,或者根据病毒的抗原表位信息来指导疫苗的设计与研发。这些研究都将为后续的疫情防治工作提供重要的科技基础。使用冷冻电镜解析SARS完整病毒颗粒及S蛋白分子结构的研究案例SARS病毒冷冻电镜图片(SARS电镜图片的引文:Architecture of the SARS coronavirus prefusion spike. Beniac DR, et al. Nat Struct Mol Biol 2006. PMID 16845391)借助于冷冻电镜单颗粒技术,科学家们使用Vitrobot等对病毒或者病毒的结构蛋白进行冷冻制样后,借助于Krios电镜及直接电子探测器,科学家可以迅速获得样品的大量高分辨率冷冻电镜图片。从这些图片中,科学家们能清晰看见病毒表面的刺突糖蛋白(S蛋白)的结构与分布等重要信息。在获取足够二维照片之后,科学家能进一步借助Relion等三维重构软件包,迅速解析并获得病毒高分辨率水平的三维结构。基于电镜技术展开的病毒结构生物学研究,研究人员可以解析得到完整病毒颗粒及S蛋白等关键蛋白的分子结构,并可能捕获病毒入侵细胞的动态结构变化过程。我们可以通过科学家对同属的SARS病毒S蛋白的分析研究,对未来新冠病毒研究提供简单科研线索。S蛋白模拟图(左)利用Amira重构的S蛋白电镜图像的三维结构(右)在这场没有硝烟的战疫中,赛默飞将与科学家并肩而行,提供疫情防控及药物研发所需的解决方案。从药物研发到大规模生产,我们关注生物制药的每一步,为打赢疫战提供坚实的科技基础。
  • 三种治疗新冠肺炎中药颗粒获批上市,为新冠肺炎治疗提供更多选择
    继新冠病毒疫苗上市后,我国3种治疗新冠肺炎的中药也获批上市。据国家药监局网站消息,3月2日,国家药监局通过特别审批程序应急批准中国中医科学院中医临床基础医学研究所的清肺排毒颗粒、广东一方制药有限公司的化湿败毒颗粒、山东步长制药股份有限公司的宣肺败毒颗粒上市。据了解,清肺排毒颗粒、化湿败毒颗粒、宣肺败毒颗粒是新冠肺炎疫情爆发以来,在武汉抗疫临床一线众多院士专家筛选出有效方药清肺排毒汤、化湿败毒方、宣肺败毒方的成果转化,也是中药注册分类改革后首次按照《中药注册分类及申报资料要求》(2020年第68号)“3.2类 其他来源于古代经典名方的中药复方制剂”审评审批的品种。清肺排毒颗粒、化湿败毒颗粒、宣肺败毒颗粒均来源于古代经典名方。清肺排毒颗粒用于感受寒湿疫毒所致的疫病,化湿败毒颗粒用于湿毒侵肺所致的疫病,宣肺败毒颗粒用于湿毒郁肺所致的疫病。清肺排毒颗粒、化湿败毒颗粒、宣肺败毒颗粒的上市为新冠肺炎治疗提供了更多选择。
  • 新冠疫苗可网购?破除谣言需要权威信息“持续在场”
    p style=" text-indent: 2em " 近日,北京海淀区人民检察院办理了一起通过在网上散布售卖新冠疫苗虚假消息从而骗取钱财的案件。犯罪嫌疑人与其同伙通过某网络平台散布虚假消息,虚构其有渠道可以售卖新冠肺炎疫苗现货,先后有多名受害者信以为真并支付了疫苗款项。 /p p style=" text-indent: 2em " 事实上,自新冠疫苗进入临床实验以来,相关的谣言和诈骗信息从未间断。有人在朋友圈销售新冠疫苗,标出代理价1100元起,表示可大量预定;还有人在微信群里声称疫苗上市了,498元一支,总共打3支;更有甚者将谣言冠上官方的名号,传播“北海西塘社区卫生服务中心有新冠肺炎疫苗可以打!”等不实信息& #8230 & #8230 /p p style=" text-indent: 2em " 谣言此起彼伏的背后,体现了人们在疫情长期存在的阴影下对新冠疫苗的期待和渴望、对疫苗研发进展情况的高度关心。而一些造谣者正是利用了人们对新冠疫苗早日普及的这种迫切心态捏造事实,骗取公众钱财。网络上假消息频出,使公众眼花缭乱,无法分清信息真假,对疫苗的研发动态更是愈加迷惑。 /p p style=" text-indent: 2em " 疫情之下,谣言当止。面对网上层出不穷的“假疫苗”,一方面,公众应该保持理性,不信谣、不传谣,从政府部门、官方媒体等权威来源获取信息。另一方面,有关部门也应对出现的谣言早处理、早澄清。 /p p style=" text-indent: 2em " 更重要的是,官方应及时、定期发布更多权威信息,让公众能够了解疫苗进度:疫苗何时上市?公众通过何种渠道预约、价格多少?哪些群体应该优先注射?和疫情动态一样,这些“解渴”信息的发布应采取日报、周报等形式连续发布,不给谣言趁虚而入的机会。疫情以来,许多事例充分证明,只有“持续在场”的权威信息发布才是根除谣言、让公众安心的最佳手段。 /p p style=" text-indent: 2em " 在日前举行的国务院联防联控新闻发布会上,有关负责人在介绍新冠疫苗的相关情况时表示,我国已有4个疫苗进入临床三期,今年年底新冠疫苗年产能可达6.1亿剂,目前已经做好大规模生产准备工作。权威信息的发布不仅让网络上的各种谣言不攻自破,更提振了国民对新冠疫苗能够早日上市普及的信心。 /p p style=" text-indent: 2em " 我们期待有更多新冠疫苗的权威信息动态持续跟进,更期待新冠疫苗的真正上市普及。 /p p br/ /p
  • 疫苗前沿|冷冻干燥技术助力新型mRNA疫苗研发与生产
    第四轮新冠疫情在全球的爆发,就在近几日,上海疫情感染总数也突破10万人次大关,感染人数不断上升,但这不仅仅是因为上海防控措施的原因,更因为病毒没有一刻停止过进化。目前国外甚至又进化出两种新的“毒王”。随着大家对疫情的关注度迎来又一波热潮,对疫苗的关心和问题也冲上热搜。目前不同厂家的疫苗有什么区别?为什么有的疫苗只需接种一剂,有的则需要接种两剂或三剂?应该选择什么类型的疫苗?不同疫苗的有效性是否有差异?疫苗加强针是否应该接种,该怎么选择?有没有有效性更高、且稳定性好的疫苗?关于疫苗研发的5条技术路线图1:全球并行开发了5条技术路线的疫苗我们先来了解一下什么是疫苗?疫苗是预防和控制传染病最经济、有效的手段,疫苗接种是通过诱导机体产生保护性免疫应答来预防和控制人类和动物疾病的常规方法。自新冠疫情初期开始,我国与全球主要国家就投入了新冠疫苗的研发工作,并行开发了5条技术路线的疫苗,这也是目前疫苗的主要分类。疫苗的不同技术路线:※灭活疫苗※减毒活疫苗※基因工程亚单位疫苗※腺病毒载体疫苗※核酸疫苗(含DNA和RNA疫苗)灭活疫苗是最传统的平台,而亚单位蛋白疫苗在过去几十年中蓬勃发展,核酸和病毒载体疫苗是该领域重要的新生事物。核酸疫苗使用先进的基因工程RNA或DNA产生一种自身可以安全诱发免疫应答的蛋白质。相较于DNA而言,RNA更容易被人体识别并产生相应的抗原信息,但不会参与细胞内DNA的改造,因而更加高效且安全性更高。不同疫苗的有效性如何呢?此次新冠疫苗在产量方面处于领先地位的是美国辉瑞-BioNTech和Moderna(mRNA疫苗)、阿斯利康和强生(病毒载体)以及中国国药集团和科兴(灭活)。各疫苗的有效性如何呢?世界卫生组织公布的数据如下:从数据来看,辉瑞-BioNTech和Moderna(mRNA疫苗)有效性较高,分别为95%和94.1%。为了应对新冠病毒的持续变异,建议尽早接种新冠疫苗加强针。为确保同等或更有利的免疫原性或疫苗有效性,在第一剂和第二剂接种灭活疫苗后,视产品供应情况,第三剂既可继续接种同品牌的灭活疫苗,也可接种世卫组织紧急使用列表中的任一种COVID-19mRNA疫苗(辉瑞或莫德纳)或COVID-19病毒载体疫苗(阿斯利康Vaxzevria/COVISHIELD或杨森)。mRNA疫苗的优势在哪里?代表着未来新技术的mRNA疫苗是将外源靶抗原的基因序列通过转录、合成等工艺制备的mRNA通过特定的递送系统导入机体细胞,通过在体内表达目的蛋白,刺激机体产生特异性免疫学反应,从而使机体获得免疫保护的一种核酸制剂,能实现体液与细胞的双重免疫,有效性高。mRNA疫苗作为一种平台型技术,在设计和构建上具有快速性、应变性以及简单的全合成制备等优势,新型冠状病毒肺炎在全球范围爆发和蔓延后,随着Moderna和BioNtech公司的mRNA疫苗在临床上的安全性和保护效力得到进一步验证,使得mRNA疫苗技术得到广泛关注并推动了其快速发展。冷冻干燥技术在mRNA疫苗研发和生产中的应用mRNA疫苗虽然有效性高,但在生产和使用过程中依然存在一些挑战——①结构不稳定;②容易被环境中普遍存在的RNA酶降解破坏;③需要在零下-20℃~-70℃之间保存。这就意味着全程需要冷冻储存和冷链运输,配送和使用会变得非常困难,尤其是对于医疗条件和运输条件相对较差的非洲、南美洲和部分亚洲国家等,因此会造成由于无法按时接种最终导致仍有数百万人死于这些疾病。图2:冻干疫苗可以解决储存运输难题而这些难题可以通过冻干生产相对较为干燥的产品来解决。目前,冷冻干燥技术由于其独特的优势,已被广泛应用于抗体、疫苗等生物制药中。1、冻干疫苗的优势●疫苗制剂在预冻前完成分装,从而保证了剂量的精确性;●由于冻干是在真空和低温状态下完成的,因此不易发生氧化和热变性,可以最大限度地保持疫苗的理化性质和生物特性;●固态的冰晶升华成为水蒸气后形成的疏松多孔(海绵状)结构,使冻干疫苗具有极好的速溶性和复水性,可迅速吸水溶解,恢复其原有特性;●冻干疫苗易进行无菌化操作,污染相对减少,临床应用效果好,过敏等副作用少;●冻干疫苗脱水彻底,含水量低,重量轻,适合长途运输及长期保存;●冻干疫苗可以在室温下保存,减少冷链运输的成本,延长货架期。2、冻干疫苗所面临的挑战冻干疫苗具有显著的优势,但必须克服一些挑战。复杂的制剂,尤其是由多种菌株或多种抗原组成的疫苗,可能导致具有挑战性的关键配方温度和复杂的冷冻干燥过程。冷冻和干燥会对疫苗造成一定的影响,疫苗冻干过程的敏感性程度因疫苗而异。内部结冰和对疫苗成分(例如脂质膜、核酸或蛋白质)的直接损害可能是应力因素。在冷冻过程中会形成病毒内冰晶,这会增加产品的体积并可能损坏脂质双层(如图3所示)。冰还会在冰和液体之间产生新的界面,并增加表面诱导聚集的风险。图3:冷冻干燥过程中的应力因素在关键配方温度以上干燥会导致无定形相在冻干循环的初级干燥步骤中的流动性提高。这使得蛋白质相互作用并可以提高膜通透性。在去除结合水的二次干燥阶段,可能会发生蛋白质聚集和失活。在磷脂存在的情况下,热致相变的改变也可以提高膜渗透性。二次干燥直接影响残留水分含量,从而影响长期稳定性。3、冻干疫苗配方所需特性最理想的情况是,疫苗须在干燥状态下长期储存和液体状态下至少保持24小时稳定。为了实现这一目标,必须以适当的配方和工艺开发疫苗。稳定剂(冷冻或冷冻保护剂)在开发稳定的疫苗配方中起着关键作用。无定形冷冻保护剂,如糖类和糖醇,在冷冻过程中通过优先排除冷冻保护剂和蛋白质的水合作用在热力学上保持稳定(如下图4所示)。图4:优先排除理论它们还通过玻璃化作用提供动力学稳定性,从而减缓蛋白质和脂质膜的聚集。一些冷冻保护剂,如葡聚糖,不能渗透化合物,但通过增加渗透梯度,也能够阻止内部结冰。一些冻干保护剂,如右旋糖酐,不能渗透该化合物,但可以通过增加渗透梯度来抑制内部结冰。冻干保护剂通过替换水和磷脂或蛋白质之间的氢键,在冷冻干燥循环的干燥阶段发挥作用(如图5所示)。与冻干保护剂一样,通过玻璃化来实现动力学稳定,使蛋白质和脂质膜的流动性得以实现,从而达到结构和构象的稳定。图5:水替代理论为了提高疫苗的稳定性,可以在制剂中加入其他赋形剂,例如缓冲剂、使表面引起的不稳定最小化的表面活性剂和不太常用的赋形剂,例如填充剂、有机共溶剂和张力调节剂。案例研究——开发一种具有三种灭活血清型的耐热冻干脊髓灰质炎疫苗通过使用实验设计(DoE)方法,用多种赋形剂评估了脊髓灰质炎疫苗的不同配方,并检查了血清型的稳定性。用有限量的赋形剂进行基本筛选没有显示出稳定的产品,因此进行了广泛的筛选,成功鉴定了稳定剂。与液体制剂和其他市售脊髓灰质炎疫苗制剂相比,对最佳候选物进行优化产生了具有高热稳定性的最终制剂。4、冻干疫苗工艺开发冷冻对产品特性有重要影响,进而影响产品稳定性(如图6所示)。缓慢冷冻会导致形成少量的大晶体,这可能对膜有害。快速冷冻减少了渗透水释放的时间,但是会产生更大的内部结冰风险。快速或慢速冷冻之间的选择是困难的,但会很容易受疫苗配方和敏感性的影响。因此,在冻干循环开发过程中研究冷冻速率对稳定性的影响至关重要。图6:冻结速率的影响产品温度在整个初级干燥步骤中至关重要,它会影响干燥时间、升华速率和稳定性。在优化疫苗的主要干燥参数时,值得考虑减少干燥时间与产品稳定性的成本效率。在二次干燥期间去除水合壳会降低产品稳定性。残留水分增加还会导致坍塌、聚集和降解。因此,最佳残留水分含量和二次干燥条件也应该是开发阶段的一部分。案例研究——初级干燥过程中产品温度对长期稳定性的重要性在所检查的细菌疫苗的示例中,基于产品温度(Tp)测试了三个不同的循环,并在稳定性方面分析了产品特性。通过比较冻干后活细菌疫苗的活细胞计数来量化稳定性。冷冻干燥后立即保守[Tp远低于崩溃温度(Tc)但高于玻璃化转变温度(Tg' )]和激进循环(Tp高于Tc)之间没有区别。激进周期在几天和一个月后表现不佳,中间(Tp在Tc)和激进周期不如保守周期好(如图7所示)。建议使用保守条件开始干燥周期,但对于某些疫苗制剂,高于Tc的初级干燥可能不会导致稳定性损失。图7:临界配方温度(CFT)与冷冻干燥条件对疫苗稳定性的影响的相关性那么问题来了Q1:如何准确实现冻干疫苗中关键配方温度测量?图8:冻干显微镜Lyostat5及搭配使用的DSC模块英国BiopharmaGroup公司提供的冻干显微镜Lyostat5及可与显微镜搭配使用的DSC模块,可以轻松实现配方关键温度(Tc,Teu,Tg’)的测量。Q2:如何快速实现疫苗冻干工艺开发和优化?SPScientific提供的Lyostar冻干机仅需运行一个遁环即可自动摸索和开发冻干工艺。结合全球领先的冻干PAT技术(Smart全自动工艺开发技术,Controlyo晶核控制技术,TDLAS实时水蒸汽测量技术),使漫长复杂的工艺摸索变得简单快捷有效。图9:Lyostar全智能冻干工艺开发与优化Q3:是否有冻干疫苗的案例?辉瑞、莫德纳,阿斯利康、强生均已在使用SPScientificLyostar智能工艺开发冻干机进行新冠冻干疫苗的研发。ThePfizer/BioNTechComirnatyvaccine,31December2020.TheModernaCOVID-19vaccine(mRNA1273),30April2021.TheSII/COVISHIELDandAstraZeneca/AZD1222vaccines,16February2021.TheJanssen/Ad26.COV2.SvaccinedevelopedbyJohnson&Johnson,12March2021.灭活疫苗是传统成熟的技术路线。RNA疫苗有效性较高,代表着未来疫苗新技术和新趋势。冷冻干燥是提高疫苗热稳定性的理想技术。冻干疫苗制剂开发应探索冻干保护剂和冷冻保护剂、其他稳定赋形剂的选择以及冻干过程中的冷冻干燥工艺的影响,以防止对疫苗造成任何损害。在开发项目中,应根据配方和工艺问题考虑对工艺条件的影响,以及它如何影响产品质量属性。通过了解这些潜在机制,结合先进的PAT工具和QbD理论,实现快速合理开发,最终获得有效性高、长期稳定性好的预防疫苗和治疗疫苗,快速预防和消除人类疾病!
  • 减肥新思路!便携式原子力显微镜nGauge助力破解枸杞叶多糖抑制脂肪消化机制
    期刊:Food Hydrocolloids IF 11.504文章DOI:https://doi.org/10.1016/j.foodhyd.2022.108303 【引言】 目前,全球肥胖和高血脂症形势严峻,摄入脂质的消化和吸收一直备受关注。现在常用的抑制脂肪消化吸收的药物副作用明显,亟需寻找绿色、安全的治疗肥胖和高血脂的策略。众所周知,摄入的脂质首先需要由脂肪酶水解成游离脂肪酸,才能进一步被吸收,胆酸盐稳定的脂质乳液是脂肪酶发挥水解作用的关键平台和前提条件。对于生物活性物质对脂肪消化吸收的抑制,目前大多数研究只从生化角度关注活性物质对脂肪酶的直接抑制作用,而忽略了脂肪酶赖以发挥作用的胆酸盐稳定的脂质乳液平台这个关键前提。 【成果简介】 近日,北京林业大学生物科学与技术学院食品学科范俊峰教授团队在国际食品高水平期刊《Food Hydrocolloids》发表了题为“The interfacial destabilization of bile salt-emulsified oil droplets, essential for lipase function, is mediated by Lycium barbarum L. leaf polysaccharides”的研究论文,以胆酸盐稳定的脂质乳液平台为研究对象,创新性地从界面化学的视角揭示了多糖与肠道分泌的脂质消化剂之间的相互作用,为生物活性物质抑制脂肪消化的研究奠定了新的理论基础。 值得注意的是,本文使用便携式原子力显微镜nGauge对枸杞叶中提取的多糖进行了形貌表征。便携式芯片原子力显微镜nGauge具有小巧灵活、方便携带,操作简单,扫描速度快,可扫描大尺寸样品,一个针尖可以进行上千次扫描,无需维护、无需减震、超级稳定等优点,适合各类纳米表征应用场景,拓宽了传统AFM的应用范围!图1. nGauge便携式芯片原子力显微镜(AFM)实物图。左图为使用状态,右图为收纳状态。 【图文导读】 图2. 使用nGauge便携式原子力显微镜对从枸杞叶中提取的多糖进行形貌表征。(LP:多糖,LD:脱钙多糖,SP:多糖分解产物,SD:脱钙多糖分解产物)图3. 对获得多糖颗粒进行(A)粒径统计,(B)Zeta电位,(C)XRD,(D)FTIR 光谱表征。图4. 胆盐,多糖,胆盐-多糖的(A)三相接触角,(B)表面张力,(C)FTIR光谱。图5. 胆酸盐和多糖(A)以及胆酸盐和除矿物质多糖(B)之间的相互作用。 【结论】这些发现从界面化学的角度为植物源多糖对脂肪消化的影响提供了新的见解,也进一步加深了我们对多糖与肠道分泌的脂质消化物相互作用的理解。便携式芯片原子力显微镜nGauge也将继续助力食品科学、半导体工业、材料工业、纳米技术、生命科技、涂料,聚合物和复合材料等行业的发展。
  • 【倒计时2周】| 第六届VacCon2024终版议程隆重发布,70+大咖讲演带您直击疫苗前沿产业夏季饕餮盛宴!
    距离大会开幕还有15天仲夏时节迎盛会,巴蜀人间聚群贤!作为最早致力于搭建疫苗行业的国际化产学研的深度平台,VacCon 2024 第六届新型疫苗及核酸疗法研发与产业化论坛 将于2024年6月5-6日在成都环球中心天堂洲际大饭店盛大开幕。今年,VacCon2024特邀70+位人用、兽用疫苗、核酸疫苗及疗法领域重量级嘉宾,深入细分3大专场以及12大专题,深度探讨国内外免疫规划与市场趋势、创新重大品种疫苗管线立项及研发进展、mRNA等新型技术路线下的人用与兽用疫苗技术开发、国产化原研新型佐剂开发、国产疫苗出海、mRNA赋能CGT、替代疗法及更多等最新热点议题,吸引1500余位科学家、疫苗及药物研发、工业管理人员等业内专业听众齐聚,共赴前沿创新盛会与产业化赛场!1、 精华终版议程 | 火热出炉01-【人用疫苗专场】Day1 6月5日国内外免疫规划与市场趋势主持人:赵勤俭,重庆医科大学,特聘教授9:00 — 9:30主旨演讲 KEYNOTE!魏于全,肿瘤学教授/中国科学院院士,四川大学华西医院临床肿瘤中心主任与生物治疗全国重点实验室主任9:45 — 10:15疫苗免疫评价新策略——ReadVacTM单细胞&空间转录组分析平台√在疫苗免疫全过程中,真正被激活并且分泌抗体的细胞数量很少,缺少单个细胞级别分辨率的技术手段对目标细胞进行富集及分析;√ReadVacTM分析平台能够提供单细胞转录组分子水平的分析,精准分析免疫过程中各种细胞群体及其差异,为疫苗评价提供新策略;√结合传统疫苗评价方法,可提供更宏观、更精准的免疫评价数据。梁重阳,吉林大学药学院,教授,博士生导师;上海普迈福,科学顾问10:45 — 11:15蓄势待发:安全高效的疫苗接种√Vaccinia virus was developed and tested as a safe monkeypox and papilloma virus vaccine. Vaccinia virus was also found to be avirulent for normal or immunosuppressed individuals. Even more, it does not produce adverse side effects in all humans tested up to now. This virus has been certified by the FDA and WHO organizations. The highly attenuated Modified Vaccinia Ankara (MVA) virus vaccine against smallpox and monkeypox, has shown to be an excellent vector to treat infection diseases.√The papilloma virus vaccine, which is highly attenuated promote complete regression of benign and malignant proliferation of skin lesions that can progress to cancer, by stimulating the immune system due to the generation of antibodies and specific cytotoxic responses against the lesions. This novel therapy also induces the eradication of HPV virus from infected patients. Attenuated Vaccinia virus vaccines are powerful tools to solve possible outbreaks of unknown diseases. Prophylactic and therapeutic vaccinations with vaccinia viruses is the most promising approach to solve health problems worldwide. Virolab is offering both vaccines for marketing and sales in China.Prof. Dr. Dr. Rolf. G. Werner,Virolab 科学顾问委员会委员(墨西哥);德国图宾根大学名誉参议员兼教授11:15 — 11:45从人用到兽用:新型疫苗应对200+ 病原防控策略的探讨 HOT!李守军,天津瑞普生物技术股份有限公司,董事长11:45 — 12:30圆桌讨论:国产疫苗出海的机遇与挑战 HOT!√创新性品种立项策略√国际化出海接轨挑战 √投资整合及国际合作机遇 √商业化策略√产能供给保证√海外授权交易主持人:吴克,博沃生物创始人Prof. Dr. Dr. Rolf. G. Werner,Virolab 科学顾问委员会委员(墨西哥);德国图宾根大学名誉参议员兼教授赵勤俭,重庆医科大学,特聘教授冯幸福,长春卓谊生物,董事长陈德祥,成都迈科康生物科技有限公司、杭州依思康医药科技有限公司、成都依思康生物科技有限公司,创始人兼首席执行官邱婧君,复星医药,全球研发中心副总裁;生物统计与数据科学部,总经理周永东,康华生物研发负责人疫苗产业化与国际化主持人:陈德祥,成都迈科康生物科技有限公司、杭州依思康医药科技有限公司、成都依思康生物科技有限公司,创始人兼首席执行官13:30 — 14:00新形势下疫苗企业如何发展的思考√中国疫苗行业形势如何?√中国疫苗行业的挑战如何?√中国疫苗行业环境如何改善?√中国疫苗企业如何破局发展。吴克,博沃生物,CEO14:00 — 14:30新型佐剂的生产和质控研究 HOT!陈德祥,成都迈科康生物科技有限公司、杭州依思康医药科技有限公司、成都依思康生物科技有限公司,创始人兼首席执行官14:30 — 15:00分离纯化工艺设备的创新助力大规模生产效率的提高陈湘东,楚天源创生物技术(长沙)有限公司/原液技术总监15:30 — 16:00多糖及多糖蛋白结合疫苗关键质量属性研究√多糖及多糖蛋白结合物分子量的大小研究√多糖蛋白结合物氰化物残留量研究√多糖蛋白结合物中游离多糖含量研究李炎,四川省药品检验研究院,生物制品检验所所长重大品种疫苗-临床研究与评价16:00 — 16:30RSV 疫苗临床开发进展与挑战 HOT!√基于迈科康公司在开发新型佐剂疫苗的临床申报和临床试验,报告人将分享新型佐剂在创新疫苗的应用现状和前景;√介绍在疫苗开发各个阶段对佐剂原材料和佐剂制剂的生产和质控的要求以及需要展开的质量研究和评价工作。陈朝华,辉瑞(中国)研究开发有限公司,总经理16:30 — 17:00疫苗临床试验设计与统计分析考量 HOT!√疫苗临床试验的重要性与特点,相关指导原则与发展趋势;√疫苗临床试验设计的关键考量与Estimand框架,如主要终点指标、伴发事件、安全性评价、有效性评价等;√ 疫苗试验统计分析方法与敏感性分析;√执行过程中的风险与可能的解决方案;√疫苗临床试验的挑战与展望。邱婧君,复星医药,全球研发中心副总裁;生物统计与数据科学部,总经理17:00 — 17:30HPV疫苗临床试验研发进展√HPV病毒与所致疾病√HPV疫苗研发现况√HPV疫苗研发展望杨北方,湖北省疾控中心疫苗临床评价中心,主任Day2 6月6日重大品种疫苗-开发9:00 — 9:30创新细菌疫苗研究进展√加强基础研究,发现更多的有效靶点,创建“一苗多靶,多维阻断”复合疫苗技术体系,克服单靶点的缺陷;√创新佐剂及免疫程序,实现快速起效,贴近临床需求;√创建广谱疫苗研究新理论与新技术;√创建疫苗有效性评价新指标和新方法。邹全明,陆军军医大学国家免疫生物制品工程技术研究中心,主任、教授9:30 — 10:00新型重组带状疱疹疫苗 HOT!√状疱疹的流行病学√新型重组带状疱疹疫苗的分子设计特色及其免疫原性√I期临床研究的体液免疫、细胞免疫测定结果孔健,北京绿竹生物技术股份有限公司, 总经理10:00 — 10:30新型脊灰疫苗研发进展√脊灰疫苗发展历史√消灭脊灰后世界面联的挑战√新型脊灰疫苗研发进展莘春林,康希诺生物股份公司,对外研发合作副总裁11:00 — 11:30重组十五价人乳头瘤病毒疫苗研究进展 HOT!√HPV感染和预防现状√高价型HPV疫苗开发必要性√十五价HPV疫苗工艺设计和质量特性研究√高价次HPV疫苗临床应用前景江山,辽宁成大生物股份有限公司,研发总监11:30 — 12:00基于三聚体标签的呼吸道疫苗√Trimer-Tag是三叶草的专利技术。在此基础上开发的疫苗/生物大分子开发技术平台是全球唯一一个利用人源三聚体化标签构建共价连接的重组三聚体融合蛋白的平台,并且已经通过我们第一款自研的商业化疫苗产品全面验证。√呼吸道合胞病毒(RSV)就是其中一种,它是引起老人、婴幼儿下呼吸道感染的主要病毒,通过飞沫和密切接触传播,传染性强。23年辉瑞和GSK的两款疫苗上市后,几个月就实现了超20亿美元的销售。目前,国内还没有同类的融合前构象的RSVF三聚体重组蛋白疫苗获得临床数据。√三叶草生物RSV候选疫苗研发的最新进展:基于Trimer-Tag技术平台和其独特的稳定突变,三叶草开发的二价重组蛋白疫苗SCB-1019包含两个稳定融合前构象的F抗原(A和B亚型RSV F蛋白)。SCB-1019在临床前和临床试验中获得了令人满意的结果。谭巍,三叶草生物制药高级副总裁、中国区研究和外部合作负责人12:00 — 12:30训练免疫研发进展及其在新型疫苗研发中的应用√先天性免疫可以增强对抗原二次刺激的反应性,这种现象被称为训练有素的先天免疫。√部分病原体抗原成分具有诱导机体快速产生针对该病原体的感染预防和攻毒保护作用。√近年来在研的一些细菌类疫苗自觉或不自觉地应用了基于训练免疫的理论和技术方法。陈守春,成都欧林生物科技股份有限公司,项目负责人佐剂及递送技术创新与开发13:30 — 14:00创新佐剂在疫苗中的应用√介绍了佐剂的发展情况和作用机理;√介绍目前获批上市的新型佐剂及其作用机制和应用;√介绍艾棣维欣生物在佐剂研发取得的进展。王宾,艾棣维欣(苏州)生物制药有限公司,联合创始人;复旦大学特聘教授14:00 — 14:30CoPoP脂质体:针对重组蛋白/多肽抗原的高效递送系统√只需在水中孵育,无需化学纯化,CoPoP脂质体可以快速实现重组蛋白/多肽抗原的粒子化。√使抗原高效地,稳定地与安全的免疫性载体结合,极大的提高抗原的免疫原性。√同时连接多种抗原,是多价疫苗的理想平台。√超过5家合作伙伴在多种疾病上独立验证有效性,通过临床三期测试。邵帅,郑州大学第一附属医院, 研究员PI;SpacePoP InnoVax生物公司, CSO;美国PoPBio生物公司,中国地区负责人 14:30 — 15:00新型纳米乳在疫苗和免疫调控中的应用 HOT!√我们研发了一种可高效负载抗原和免疫刺激物的新型纳米乳,能有效实现抗原和佐剂的淋巴结靶向共递送√该纳米乳采用注射用药用辅料,通过简便易放大的工艺制备,制剂学稳定性好√该纳米乳在肿瘤、感染性疾病及自身免疫性疾病等多种动物模型中均展示出显著的疗效孙逊,四川大学华西药学院,药剂学系主任15:30 — 16:00新型水包油佐剂规模化生产及临床应用 HOT!√创新型佐剂的发展√三叶草生物(Clover)和蛋白三聚体技术√新型水包油佐剂规模化生产√新型佐剂动物试验和临床试验王群,四川三叶草生物制药有限公司,研发高级总监青年学者疫苗研发前沿16:00 — 16:30新型干粉吸入式长效疫苗平台开发√该研究创制了干粉吸入疫苗,实现了在肺泡的有效沉积和抗原的持续释放。√单次吸入后,诱导产生了快速、高效和长期的“黏膜-体液-细胞”三重免疫应答。√针对未来新发呼吸道传染病,有望实现疫苗的快速构建、高效防治。李鑫,山东第一医科大学(山东省医学科学院),教授16:30 — 17:00EB病毒疫苗研究进展√EB病毒的病毒学及感染机制研究进展√EB病毒疫苗研究多种策略同步进行√我们最新的EB病毒纳米颗粒疫苗的研究进展张晓,重庆医科大学药学院,副教授更多精彩议题更新中...02 -【兽用疫苗专场】Day1 6月5日9:00 — 9:10开幕致词才学鹏,国家兽药产业技术创新联盟理事长兽用疫苗监管与mRNA等技术前瞻9:10 — 9:40兽用生物制品监管工作情况介绍 KEYNOTE!四川省兽药监察所专家9:40 — 10:10申基生物助力中国兽用疫苗弯道超车√mRNA技术助力中国兽用疫苗弯道超车√申基兽用mRNA疫苗一站式解决方案√出海东南亚助力中国兽用疫苗弯道超车肖潇,江苏申基生物科技有限公司,联合创始人10:40 — 11:10基于黏膜免疫机制下PEDV疫苗设计及应用 HOT!王贵平,广东海大集团研究院副院长11:10 — 11:40口蹄疫病毒样颗粒疫苗的研究 HOT!√口蹄疫病毒样颗粒疫苗是世界上首个由三个蛋白在无细胞体系内自组装且大规模化应用的VLPs疫苗;√口蹄疫病毒样颗粒的结构和诱发免疫反应的特点均和灭活病毒相似;√口蹄疫病毒样颗粒疫苗效力高、安全性好,是一款专为口蹄疫净化而生的疫苗;杜平,华派生物技术(集团)股份有限公司,华派集团研究院副院长、华宇生物科技(腾冲)有限公司研发总监11:40 — 12:25圆桌讨论:兽用疫苗研发创新及产品应用创新探索√新技术疫苗创新策略√降本增效研发与服务策略√与大型集成化养殖企业共赢探索主持人:杜平,华派生物技术(集团)股份有限公司,华派集团研究院副院长、华宇生物科技(腾冲)有限公司研发总监杨松沛,四川省动物保健品协会会长郭慧琛,中国农业科学院兰州兽医研究所, 口蹄疫防控技术团队首席王贵平,广东海大集团研究院副院长许伟成,默沙东动物保健中国研发部负责人费才溢,南京澄实生物医药科技有限公司,联合创始人,VP13:30 — 14:00皮内接种在动物疫苗中的应用 HOT!√皮内免疫接种原理:皮内含有大量的抗原提呈细胞,被认为是疫苗接种的有效部位之一。√皮内接种在猪疫苗中的应用:已应用的动物疫苗及法规依从性√皮内接种的优势:提高接种速度、改善动物福利、减少生物安全风险等许伟成,默沙东动物保健中国研发部负责人;邹勇,默沙东(宁波)动物保健科技有限公司研发中心,首席研究员14:00 — 14:30环状RNA技术平台在兽用生物制品中的应用 HOT!√简要介绍疫苗技术的进展分类情况及各类疫苗的特点及优势。√介绍环状RNA疫苗的特点,并阐述申锐联环状RNA的特别之处及在兽用生物制品里面的独特优势。√介绍申锐联环状RNA技术平台的进展情况,包括目前技术平台的搭建及管线的推进情况。殷波,申联生物医药(上海)股份有限公司,技术总监,上海申锐联生物医药有限公司,总经理14:30 — 15:00层析填料助力动物疫苗工艺整体解决方案√层析工艺——生物制药的纯化核心√填料性能——纯化工艺的关键参数√硬胶填料——高效纯化工艺的保障√定制填料——稳健的工艺控制策略高飞,苏州博进生物技术有限公司,首席技术官15:30 — 16:00PEDV(猪流行性腹泻病毒) mRNA 疫苗研究进展 HOT!√mRNA 医学前景可期√慧疗生物 mRNA 2.0 技术平台介绍√慧疗生物PEDV mRNA 疫苗研究进展陈重,苏州慧疗生物医药科技有限公司,副总裁16:00 — 16:30AI驱动的高效兽用mRNA疫苗开发√mRNA药物开发即将迎来其真正的技术爆发期,为人类带来创新的治疗方法和更多的防疫选择。同样的,兽用疫苗市场也呈现出强烈的需求,随着畜牧业的扩张,动物健康和疾病预防变得至关重要。兽用疫苗的mRNA技术提供了一个有前景的解决方案。√mrna疫苗开发过程中,靶点设计是核心环节,涉及对抗原的深入了解和精确建模。准确的靶点可以大大提高疫苗的效果,减少副作用,并加速研发流程。澄实生物在这方面已经表现出了卓越的能力,兽用mRNA疫苗研发管线聚焦于多种经济动物疾病,并针对这些疾病进行精准的靶点设计和相应的低成本生产工艺的开发。随着更多的研究和开发,我们期待mRNA技术将为兽用疫苗市场带来创新和变革,确保畜牧业的持续繁荣和安全。费才溢,南京澄实生物医药科技有限公司,联合创始人,VP16:30 — 17:00创新佐剂在动物疫苗中的开发应用√佐剂概述和作用机理√佐剂应用√研究进展舒建洪,浙江理工大学教授、博士生导师17:00 — 17:30动物疫苗在四川的应用四川省动物疫病预防控制中心专家Day2 6月6日宠物疫苗研发与产业化主持人:刘玉秀,惠中动物保健有限公司,总经理9:00 — 9:30猫传染性腹膜炎疫苗研究难点及研究进展 HOT!√猫传染性腹膜炎的发生机制√猫传染性腹膜炎的免疫特征√猫传染性腹膜炎疫苗研发难点与研究进展刘光清,中国农业科学院上海兽医研究所 伴侣动物生物安全风险预警及防控技术团队,首席科学家9:30 — 10:00猫三联疫苗研发中的QBD设计 HOT!√现有猫三联疫苗预防现状及困境√猫三联疫苗研发核心QBD√怎么确保上市前最后一公里产品质量?刘玉秀,惠中动物保健有限公司,总经理10:00 — 10:30一种宠物疫苗免疫增强剂的应用效果√蒽倍贝研究背景和拟解决的问题 √芮蒽倍贝同时激发体液免疫和细胞免疫√芮蒽倍贝的安全性√芮蒽倍贝应用前景李润,唐山怡安生物工程有限公司,总经理11:00 — 11:30动物疫苗工艺优化策略与实践 HOT!√农场动物、伴侣动物,同一个健康的不同标准√工艺革新、技术迭代,经典疫苗的坚守与新生√国产替代、弯道超越,宠物疫苗的机遇与挑战周勇岐,浙江海正动物保健品有限公司,疫苗研发总监11:30 — 12:00话题待定胡勇,深圳瑞吉生物科技有限公司,创始人、董事长、CEO10:00 — 10:30圆桌讨论:我国宠物疫苗赛道前景与挑战√行业前景√市场挑战√商业化布局√细分赛道or全赛道布局主持人:屈梦珂,四川吉星动物药业有限公司,总经理;成都导飞科技有限公司,总经理刘光清,中国农业科学院上海兽医研究所 伴侣动物生物安全风险预警及防控技术团队,首席科学家李润,唐山怡安生物工程有限公司,总经理孟春春,中国农业科学院上海兽医研究所,研究员;伴侣动物生物安全风险预警与防控技术团队,执行首席周勇岐,浙江海正动物保健品有限公司,疫苗研发总监肖进,中牧实业股份有限公司研究院副院长(确认中)兽用疫苗创新领先进展及降本增效主持人:张飞,山东滨州沃华生物工程有限公司,首席技术专家;山东省泰山产业领军人才13:30 — 14:00基于伪狂犬病毒表达载体的疫苗研究进展 HOT!徐志文,四川农业大学,动物医学院教授、博士生导师;四川省兽用生物制品工程技术中心主任14:00 — 14:30蓝耳病净化免疫的完全解决方案及生产领先实践汪云,江西博美莱生物科技有限公司,副总经理14:30 — 15:00布鲁氏菌病基因缺失活疫苗“澳布净”(BA0711株)的应用研发 HOT!√牛源羊种布鲁氏菌3型,敲除cspA基因,获得良好遗传稳定性的弱毒疫苗株BA0711,可以鉴别诊断。√对牛羊80%以上的保护,凝集抗体整齐,且6个月后完全消失。√安全性优于人用疫苗104M株,正常剂量接种孕畜不致流产。冉智光,重庆澳龙生物制品有限公司副总经理15:30 — 16:00鸡马立克病病毒载体活疫苗研究与开发 HOT!√兆丰华研究院介绍√禽疫苗市场洞察√鸡马立克氏病流行现状√鸡马立克氏病病毒载体活疫苗研究进展王丹娜,兆丰华集团研究院副院长,禽项目中心总监16:00 — 16:30鸡传染性鼻炎的流行特点及防控措施√鸡传染性鼻炎概述√鸡传染性鼻炎的流行特点√鸡传染性鼻炎的防控措施张飞,山东滨州沃华生物工程有限公司,首席技术专家;山东省泰山产业领军人才更多精彩议题更新中...03 -【核酸疫苗与疗法专场】Day1 6月5日mRNA治疗性与预防性疫苗9:00 — 9:30新型预防或治疗型mRNA疫苗研发 KEYNOTE!杨勇,中国药科大学,党委常委、副校长,二级教授,博导9:30 — 10:00mRNA和新生抗原肿瘤疫苗 HOT!√新冠疫情催生了mRNA疫苗,疫情之后mRNA的出路。
  • 布鲁克与ANPC合作以应对新冠肺炎带来的挑战
    布鲁克很荣幸能与默多克大学的澳大利亚国家表型组学中心(ANPC)建立合作,以支持该中心的研究人员应对本次新冠肺炎大流行带来的巨大挑战。  由世界著名的表型组学先驱和学者Jeremy Nicholson 教授领导的ANPC 研究小组,正与南都卫生局新冠肺炎应对小组以及更广泛的西澳大利亚(WA)医疗保健社区合作,成立了一个重大的研究和诊断项目,以更好地理解和预测新冠肺炎严重程度的变化,并确定影响其致病性的复杂遗传、环境和生活方式的相互作用。之后他们将参与到新型抗病毒药物的临床试验当中,并将在疫苗可用后预测人群对疫苗的响应结果。  加速诊断时间  我们的目标是在加速的时间内提供诊断和预后解决方案。最重要的是,感染患者的重症风险需要快速得到评估,从而帮助指导和优化临床救治路径。ANPC 的研究人员将会使用一系列最先进的布鲁克仪器,包括Avance IVDr 核磁共振(NMR)和timsTOF Pro离子淌度质谱、impact II QTOF质谱和solariX MRMS质谱,结合数据建模方法,对血浆和尿液样本的分子、物理和生化特性进行广泛而深入的代谢分析,从而建立信息化的转化模型。这些模型将预测疾病严重程度的变化,并有助于理解对治疗干预的不同反应。  Nicholson 教授表示:“在ANPC,我们会在至少一年的时间里将100%的资源都投入到新冠肺炎的抗击当中。这是地球上最大的紧急医疗挑战,而我们在澳大利亚甚至全球范围内都是装备最完善的代谢实验室,同时我们还有优越的临床和医院架构,因而我们有责任承担此类研究工作。”  “我们联合由Simon Mallal 教授和Mark Watson 副教授领导的基因组学团队,正着手确定该疾病特定的生物标志物,从而找出感染患者,通过严重性风险对患者进行分层,以及评估患者对于治疗的实时反应。”  推动临床研究的科学合作关系  布鲁克集团总裁兼CEO,Frank H. Laukien 博士评论道:“我们坚定地致力于在科学和技术上为Nicholson 教授的团队提供支持。默多克大学关于新冠肺炎的临床研究计划非常出色,将针对疾病、预后和治疗反馈的代谢生物标志物模型进行综合研究。”  “我特别地希望该团队能够尽快找到有证可循的临床方案,以降低新冠肺炎第二阶段时威胁生命的下呼吸道感染的死亡率。医学界迫切地需要确定广谱抗生素和(或)免疫抑制剂是否能够提升第二阶段的存活率,此时病毒性肺炎、潜在的细菌性肺炎或呼吸机相关肺炎(VAP)以及由我们自身免疫系统的细胞因子风暴引起的肺部炎症,似乎造成了一系列非常危险的并发症。”独特的生物样本采集能力  ANPC将在本项目中与多位学者携手合作,包括来自默多克大学和圣母大学的Merrilee Needham 教授以及来自西澳大利亚大学的Toby Richards教授。他们将通过由Gary Geelhood领导的西澳大利亚健康传输网络(WAHTN),为新冠肺炎应对小组汇集WA的顶级医生和研究学者。  我们预计,所有新的新冠肺炎患者在入院和随后接受临床试验时都会被征求同意,ANPC 将研究从试验和检测当中得到的样本,包括纵向尿液和血浆代谢监测等。  Richards 教授在评论WA研究团队的独特地位时表示:“我们正处于新冠肺炎传播的第二波,所以我们有机会为应对它做好准备。我们在WA建立了一个独特的平台,用于收集患者的数据和生物样本,从而全面地理解这个疾病以及患者对治疗的反应。”  减轻当前和未来的威胁  理解感染途径和生物后果将有助于开发有效的治疗方案和疫苗,从而减轻当前对全球成千上万人的威胁。这项开创性的工作还将使我们为应对今后的病毒性大流行做好准备。*布鲁克Avance IVDr 核磁共振(NMR)、timsTOF Pro 离子淌度质谱、impact II QTOF质谱 和solariX MRMS 质谱分析工具仅供研究使用。关于澳大利亚国家表型组学中心  由默多克大学领导的澳大利亚国家表型组学中心(ANPC)将不仅在澳大利亚,而且在全球改变人们的寿命和生活质量。ANPC的工作几乎支持所有的生物科学领域。它跨越了传统的研究领域并培养了一种新的、更具协作性的科学研究方法。长远来看,ANPC希望搭建人类疾病研究的“全球地图集”,从而洞察将惠及全球每一个人的未来健康风险。作为南半球唯一的此类研究机构,ANPC汇集了5所西澳大利亚高校和前沿的健康医学研究机构。它还与国际表型组学中心网络相连接,在农业和环境科学也有着广泛应用。ANPC将珀斯和西澳大利亚定位为精密医学领域的国际领导者,并在疾病预测、诊断和治疗上实现重大飞跃。它也是默多克大学健康未来研究所的一部分。  尖端科技与合作伙伴  ANPC配备有多种最先进的核磁共振(NMR)波谱和质谱(MS)仪器,均来自ANPC 战略合作伙伴布鲁克拜厄斯宾和布鲁克道尔顿。布鲁克是一家生产分子和材料研究以及工业和应用分析科学仪器的制造商。  表型组学  人的表型组是独特的生物学特性的动态指纹,是由环境和遗传因素之间复杂的相互作用产生的结果。表型组学研究环境和人的生活方式如何与他们的基因相互作用,从而影响他们的健康和患病风险。代谢表型分析是在分子层面上对生物组织和体液进行分析,以揭示基因、环境和生活方式等因素之间特定的相互作用。  研究团队  Jeremy Nicholson 教授  领导澳大利亚国家表型组学中心(ANPC)的Nicholson 教授是代谢表型组学和系统医学领域国际闻名的行业先驱。他目前担任默多克大学健康未来研究院副院长。Nicholson 教授发表了超过800篇经同行评定的关于人体系统医学的分子机理方面的论文。作为英国医学科学院院士,Nicholson教授来到WA之前曾担任MRC-NIHR国家表型组学中心的创办负责人。此外,他也曾担任该中心外科和癌症研究部门的负责人。Nicholson教授目前是伦敦帝国理工学院生物化学名誉教授。  Elaine Holmes 教授  作为另一位系统医学先驱,Holmes 教授是英国医学科学院的高被引学者和研究员。Holmes 教授从伦敦帝国理工学院来到WA之前,曾任该校计算与系统部门负责人。在默多克大学的澳大利亚国家表型组学中心,Holmes 教授担任计算医学教授和总理奖研究员。她同时也担任伦敦帝国理工学院的化学生物学教授。  Ruey-Leng Loo 博士  默多克大学ANPC高级讲师,总理奖中级研究员  Toby Richards 教授  西澳大学Michael Lawrence Brown 外科主席,伦敦大学学院临床试验方法学荣誉教授,新冠肺炎研究响应主任。  Merrilee Needham 教授  默多克大学、澳大利亚圣母大学以及Fiona Stanley医院,高级顾问,研究主任。关于布鲁克  布鲁克致力于支持科学家取得突破性的科学发现并开发新的应用以提升人类的生活质量。布鲁克的高性能科技仪器以及高价值分析和诊断解决方案,让科学家能够在分子、细胞和微观层面上探索生命和材料的奥秘。通过和用户的紧密合作,布鲁克致力于科技创新、提升生产力并实现用户的成功。我们的业务领域包括生命科学分子研究、应用和药物应用、显微镜和纳米分析、工业应用、细胞生物学、临床前成像、临床表型组学、蛋白质组学研究以及临床微生物学等。
  • 新冠肺炎中的T细胞免疫
    新型冠状病毒(SARS-CoV-2)导致的新冠肺炎(COVID-19)自2019年至今仍然在全球蔓延,其变异株Omicron由于高传播率目前已取代其它毒株成为全球新冠的主要流行毒株。各国已采取大规模疫苗接种,通过其产生的中和抗体和抗病毒T细胞来缓解和对抗新冠肺炎。有研究报道,病毒特异性T细胞在病毒清除(即SARS-CoV-1感染后17年)和在抗体滴度减弱的COVID-19患者中检测到SARS-CoV-2特异性T细胞会持续很长时间。因此需要充分了解新冠肺炎中T细胞免疫过程,对疫苗开发和免疫治疗具有重要意义。COVID-19患者中的T细胞免疫反应T细胞免疫反应是高度特异性的,在引发有效的抗病毒反应方面具有不可或缺的作用。在SARS-CoV-2感染的早期阶段,树突状细胞(DC)和巨噬细胞可以吞噬病毒感染的细胞,通过抗原呈递启动T细胞反应。随后,CD4+T细胞刺激B细胞产生病毒特异性抗体,细胞毒性CD8+T细胞靶向病毒感染的细胞。有研究报道,SARS-CoV-2特异性CD4+和CD8+T细胞在COVID-19症状发作后的前2周内的外周血中很明显。大多数SARS-CoV-2特异性CD4+T细胞表现出中枢记忆表型,主要产生Th1细胞因子,而CD8+T细胞具有更高水平的穿孔素表达的效应表型。另外有研究报道COVID-19患者T细胞活化的异质性,并提供证据表明CD4+和CD8+T细胞都能够产生有效的免疫反应,并出现受损或过度的T细胞反应。轻度COVID-19患者的T细胞升高,产生强大的抗病毒免疫反应。特别是CD8+T细胞表达更高水平的细胞毒性分子,例如颗粒酶A和FAS配体,它们有利于消除病毒感染的细胞。然而,在严重疾病病例中,CTL(Cytotoxic T cells,细胞毒性T细胞)比例减少,同时幼稚和中枢记忆CD8+T细胞的百分比也均较低。此外,与健康对照组相比,COVID-19患者的终末分化效应CD4+和CD8+T细胞的百分比更高。且重症COVID-19患者的调节性T细胞(Tregs)水平低于轻症患者。总之,T细胞亚群(包括Treg、Th1、幼稚和记忆T细胞)平衡中的这些失调可能导致严重的炎症状况,并可能导致COVID-19复发。尽管由CD4+和CD8+T细胞介导的早期抗病毒反应最有可能具有保护作用,但SARS-CoV-2有效的先天免疫逃避能力使T细胞难以通过限制I型和III型干扰素反应来产生有效的抗病毒反应。COVID-19恢复期患者和健康人中的T细胞免疫反应恢复康复患者的T细胞计数可以为T细胞在抗病毒反应中的作用提供重要参考。有研究报道,超过70%的COVID-19恢复期患者存在SARS-CoV-2特异性T细胞。100% CD4+T细胞和70% CD8+T细胞在康复患者中具有SARS-CoV-2 Spike特异性反应。功能测定证实CD4+T细胞表现为Th1表型并产生大量IFN-γ,和针对S蛋白较低水平的IL-4、IL-13、IL-5或IL-17A。同样,大多数SARS-CoV-2刺突特异性CD8+T细胞产生IFN-γ,绝大多数IFN-γ+CD8+T细胞也共表达颗粒酶B和肿瘤坏死因子α (TNFα)。这些数据表明,康复患者中的大多数CD4+和CD8+T细胞产生了针对S蛋白的大量抗病毒免疫反应,说明功能性T细胞在病毒清除和恢复中的重要性。此外,这些数据也说明利用SARS-CoV-2的S蛋白作为疫苗生产关键候选者的重要性。T细胞反应在无症状和未接触过的个体中观察到的T细胞反应最低。但是即使没有并发的体液反应,无症状/轻度恢复期的COVID-19患者也可以产生强大而持久的记忆T细胞反应来预防复发性感染。有研究报道,与有症状的个体相比,无症状患者的免疫反应较弱,并且相当一部分有症状的患者在恢复期早期表现出中和抗体量减少。COVID-19恢复期患者在出院后2周内也显示出与针对人ACE2的中和抗体滴度和病毒特异性T细胞计数的强相关性。细胞因子风暴细胞因子风暴是指在各种病理条件下检测到的大量促炎细胞因子和趋化因子,是在SARS-CoV-2感染患者中观察到的关键病理特征之一。在重症COVID-19患者中记录到高细胞因子水平。各种免疫细胞类型,包括巨噬细胞、中性粒细胞、DC,以及NK、B和T细胞,可导致COVID-19患者的细胞因子风暴和炎症反应的过度激活状态。由先天免疫细胞释放的TNFα、IL-6和IL-1β可能是SARS-CoV-2感染晚期患者发生细胞因子释放综合征和严重全身炎症反应的主要驱动力之一,其中一些可能是导致这些患者淋巴细胞减少或Th1反应不足的潜在机制之一。另据报道,在COVID-19重症病例中,血清TNFα和IL-6水平升高与总T细胞计数呈负相关,表明这些细胞因子可能参与淋巴细胞减少和T细胞丢失。相反,处于恢复期的患者上述细胞因子的血清水平显著降低,并显示T细胞计数恢复。鉴于这些发现,有人提出IL-6阻滞剂,如sarilumab、siltuximab和tocilizumab,以及IL-1β受体阻滞剂用于治疗重症COVID-19患者以解决过度炎症和控制炎症的传播。趋化因子和细胞因子水平升高,例如CCL2/3/5、CXCL8/9/10和IFN-γ、TNFα、IL-1β、IL-1RA、IL-6、IL-7、IL-8、IL-12 、IL-33、粒细胞/粒细胞-巨噬细胞集落刺激因子(G-CSF和GM-CSF)、血管内皮生长因子A(VEGFA)和血小板衍生生长因子亚基B(PDGFB),促进其它白细胞向组织的募集,导致组织损伤。基于T细胞反应的疫苗研究SARS-CoV-2完整基因组的快速可用性可用于开发多种疫苗,使其在刺激幼稚T细胞后产生效应和记忆T细胞,发挥免疫保护。成功的SARS-CoV-2疫苗应该产生对有效免疫反应具有高度特异性的SARS-CoV-2反应性T细胞,而不会产生炎症或疾病开始的不良影响。SARS-CoV-2的蛋白被确定为最适合疫苗开发的靶标,以触发病毒特异性T细胞反应和体液免疫反应。表达S蛋白的腺病毒病毒载体疫苗,即5型腺病毒(Ad5-nCoV),在健康个体(NCT04313127)中检测其疫苗的安全性和耐受性,观察到2周后成功产生特异性抗病毒T细胞和体液免疫反应。Moderna开发了基于mRNA的疫苗,编码SARS-CoV-2抗原(S蛋白),通过脂质体递送系统给药。因mRNA疫苗可以模拟天然病毒感染,并仅编码抗原蛋白并且不能整合到宿主染色体中。因此,基于mRNA的疫苗更能发挥细胞免疫和体液免疫。T细胞免疫检测---细胞因子释放检测(CRA)疫苗中的抗体测试是常规进行的,但因为特异性病原体的T细胞在血液中存在的总T细胞(通常小于1-3%)中只占很小的一部分,需要在从全血中纯化的细胞中进行。而这些检测都需要复杂的设备和高度专业化的人员,这可能不是每个常规实验室都可以使用的。杜克-新加坡国立大学Antonio Bertoletti教授团队采用了一种快速和简单的替代方法,即基于Ella微流控ELISA技术的全血细胞因子释放测定(Cytokine release assay, CRA)实验:直接将刺激性抗原或肽添加到全血中,导致血浆中细胞因子(通常是IFN-γ)的分泌,然后进行定量。该检测方法通过简单地将Spike肽库添加到全血中,可以轻松快速地检测和相对定量接种疫苗个体中的Spike特异性T细胞反应。此方法检测时间比常规方法缩减了7个小时,总时间缩短了12个小时。总结因T细胞免疫反应在疾病的早期阶段表现出保护作用,也可能导致致命症的发生,因此COVID-19的治疗和预防中需要深入地了解疾病过程中的免疫反应。特别是在症状轻微的患者中阻断促炎细胞因子的早期治疗干预可能会产生有害影响,并导致免疫反应不足和病毒清除受损。在危重COVID-19患者中恢复T细胞耗竭和改善过度炎症反应的晚期治疗干预可能具有更好的临床结果。在疫苗开发中,也要充分考虑其是否可以增强抗病毒免疫和特定T细胞反应从而加强疫苗保护的持久性。参考文献Robust T Cell Immunity in ConvalescentIndividuals with Asymptomatic or Mild COVID‐19.Highly functional virus‐specific cellular immune response in asymptomatic SARS-CoV‐2 infection.T‐cell responses and therapies against SARS‐CoV‐2 infection.Rapid determination of the wide dynamicrange of SARS‐CoV‐2 Spike T cell responses in whole blood of vaccinated andnaturally infected.T cell immunity to SARS-CoV-2 followingnatural infection and vaccination.关于我们ProteinSimple是美国纳斯达克上市公司Bio-Techne集团(NASDAQ:TECH)旗下行业领先的蛋白质分析品牌。我们致力于研发和生产更精准、更快速、更灵敏的创新性蛋白质分析工具,包括蛋白质电荷表征、蛋白质纯度分析、蛋白质翻译后修饰定量检测、蛋白质免疫实验如Western和ELISA定量检测蛋白质表达等技术,帮助疫苗研发、生物制药、细胞治疗、基因治疗、生物医学和生命科学等领域科学家解决蛋白质分析问题,深度解析蛋白质和疾病相互关系。联系我们地址:上海市长宁路1193号来福士广场3幢1901室 电话:021-60276091热线:4000-863-973邮箱:PS-Marketing.CN@bio-techne.com网址:www.bio-techne.com
  • 最新!卫健委发布《国家免疫规划疫苗儿童免疫程序及说明(2021年版)》
    近日,为贯彻落实《疫苗管理法》精神,国家卫生健康委组织对《国家免疫规划疫苗儿童免疫程序及说明(2016年版)》进行修订,在此基础上形成了《国家免疫规划疫苗儿童免疫程序及说明(2021年版)》。据悉,2021版主要有三个变化。第一,补种年龄由之前的14周岁延长至18周岁。第二,补充常见特殊健康状态儿童的接种细则。例如“人类免疫缺陷病毒(HIV)感染母亲所生儿童的儿童怎么接种?正在接受全身免疫抑制治疗者怎么接种?等特殊儿童接种问题。在2021版中,专门增加了一部分进行说明,接种医生也有了接种依据。第三,对一些疫苗有了更详细的要求。比如,乙肝接种中,对HBsAg阳性或不详产妇所生新生儿建议在出生后12小时内尽早接种第1剂,而之前的时间是24小时。具体说明如下国家免疫规划疫苗儿童免疫程序说明(2021年版)第一部分 一般原则一、接种年龄(一)接种起始年龄:免疫程序表所列各疫苗剂次的接种时间,是指可以接种该剂次疫苗的最小年龄。(二)儿童年龄达到相应剂次疫苗的接种年龄时,应尽早接种,建议在下述推荐的年龄之前完成国家免疫规划疫苗相应剂次的接种:1.乙肝疫苗第1剂:出生后24小时内完成。2.卡介苗:小于3月龄完成。3.乙肝疫苗第3剂、脊灰疫苗第3剂、百白破疫苗第3剂、麻腮风疫苗第1剂、乙脑减毒活疫苗第1剂或乙脑灭活疫苗第2剂:小于12月龄完成。4.A群流脑多糖疫苗第2剂:小于18月龄完成。5.麻腮风疫苗第2剂、甲肝减毒活疫苗或甲肝灭活疫苗第1剂、百白破疫苗第4剂:小于24月龄完成。6.乙脑减毒活疫苗第2剂或乙脑灭活疫苗第3剂、甲肝灭活疫苗第2剂:小于3周岁完成。7.A群C群流脑多糖疫苗第1剂:小于4周岁完成。8.脊灰疫苗第4剂:小于5周岁完成。9.白破疫苗、A群C群流脑多糖疫苗第2剂、乙脑灭活疫苗第4剂:小于7周岁完成。如果儿童未按照上述推荐的年龄及时完成接种,应根据补种通用原则和每种疫苗的具体补种要求尽早进行补种。二、接种部位疫苗接种途径通常为口服、肌内注射、皮下汪射和皮内注射,具体见第二部分“每种疫苗的使用说明”。注射部位通常为上臂外侧三角肌处和大腿前外侧中部。当多种疫苗同时注射接种(包括肌内、皮下和皮内注射)时,可在左右上臂、左右大腿分别接种,卡介苗选择上臂。三、同时接种原则(一)不同疫苗同时接种:两种及以上注射类疫苗应在不同部位接种。严禁将两种或多种疫苗混合吸入同一支注射器内接种。(二)现阶段的国家免疫规划疫苗均可按照免疫程序或补种原则同时接种。(三)不同疫苗接种间隔:两种及以上注射类减毒活疫苗如果未同时接种,应间隔不小于28天进行接种。国家免疫规划使用的灭活疫苗和口服类减毒活疫苗,如果与其他灭活疫苗、汪射或口服类减毒活疫苗未同时接种,对接种间隔不做限制。四、补种通用原则未按照推荐年龄完成国家免疫规划规定剂次接种的小于18周岁人群,在补种时掌握以下原则:(一)应尽早进行补种,尽快完成全程接种,优先保证国家免疫规划疫苗的全程接种。(二)只需补种未完成的剂次,无需重新开始全程接种。(三)当遇到无法使用同一厂家同种疫苗完成接种程序时,可使用不同厂家的同种疫苗完成后续接种。(四)具体补种建议详见第二部分“每种疫苗的使用说明”中各疫苗的补种原则部分。五、流行季节疫苗接种国家免疫规划使用的疫苗都可以按照免疫程序和预防接种方案的要求,全年(包括流行季节)开展常规接种,或根据需要开展补充免疫和应急接种。第二部分 每种疫苗的使用说明一、重组乙型肝炎疫苗(乙肝疫苗,HepB )(一)免疫程序与接种方法1.接种对象及剂次:按"0-1-6个月”程序共接种3剂次,其中第1剂在新生儿出生后24小时内接种,第2剂在1月龄时接种,第3剂在6月龄时接种。2.接种途径:肌内注射。3.接种剂量:①重组(酵母)HepB:每剂次10g,无论产妇乙肝病毒表面抗原(HBsAg)阳性或阴性,新生儿均接种10g的HepB。②重组[中国仓鼠卵巢(CHO)细胞]HepB:每剂次10g或20g,HBsAg阴性产妇所生新生儿接种10g的HepB,HBsAg阳性产妇所生新生儿接种20g的HepB。(二)其他事项1.在医院分挽的新生儿由出生的医院接种第1剂HepB,由辖区接种单位完成后续剂次接种。未在医院分挽的新生儿由辖区接种单位全程接种HepB。2.HBsAg阳性产妇所生新生儿,可按医嘱肌内注射100国际单位乙肝免疫球蛋白(HBIG),同时在不同(肢体)部位接种第1剂HepB。HepB、HBIG和卡介苗(BCG)可在不同部位同时接种。3.HBsAg阳性或不详产妇所生新生儿建议在出生后12小时内尽早接种第1剂HepB HBsAg阳性或不详产妇所生新生儿体重小于2000g者,也应在出生后尽早接种第1剂HepB,并在婴儿满1月龄、2月龄、7月龄时按程序再完成3剂次HepB接种。4.危重症新生儿,如极低出生体重儿(出生体重小于1500g者)、严重出生缺陷、重度窒息、呼吸窘迫综合征等,应在生命体征平稳后尽早接种第1剂HepB。5.母亲为HBsAg阳性的儿童接种最后一剂HepB后1-2个月进行HBsAg和乙肝病毒表面抗体(抗-HBs)检测,若发现HBsAg阴性、抗-HBs阴性或小于lOmIU/ml,可再按程序免费接种3剂次HepB。(三)补种原则1.若出生24小时内未及时接种,应尽早接种。2.对于未完成全程免疫程序者,需尽早补种,补齐未接种剂次。3.第2剂与第1剂间隔应不小于28天,第3剂与第2剂间隔应不小于60天,第3剂与第1剂间隔不小于4个月。二、皮内注射用卡介苗(卡介苗,BCG)(一)免疫程序与接种方法1.接种对象及剂次:出生时接种1剂。2.接种途径:皮内注射。3.接种剂量:0.1ml。(二)其他事项1.严禁皮下或肌内注射。2.早产儿胎龄大于31孕周且医学评估稳定后,可以接种BCG。胎龄小于或等于31孕周的早产儿,医学评估稳定后可在出院前接种。3.与免疫球蛋白接种间隔不做特别限制。(三)补种原则1.未接种BCG的小于3月龄儿童可直接补种。2.3月龄-3岁儿童对结核菌素纯蛋白衍生物(TB-PPD)或卡介菌蛋白衍生物 (BCG-PPD)试验阴性者,应予补种。3.大于或等于4岁儿童不予补种。4.已接种BCG的儿童,即使卡痕未形成也不再予以补种。三、脊髓灰质炎(脊灰)灭活疫苗(IPV)、二价脊灰减毒活疫苗(脊灰减毒活疫苗,bOPV)(一)免疫程序与接种方法1.接种对象及剂次:共接种4剂,其中2月龄、3月龄各接种1剂IPV,4月龄、4周岁各接种1剂bOPV。2.接种途径:IPV:肌内注射。bOPV:口服。3.接种剂量:IPV:0.5ml。bOPV:糖丸剂型每次l粒;液体剂型每次2滴(约0.1ml)。(二)其他事项1.如果儿童已按疫苗说明书接种过IPV或含IPV成分的联合疫苗,可视为完成相应剂次的脊灰疫苗接种。如儿童已按免疫程序完成4剂次含IPV成分疫苗接种,则4岁无需再接种bOPV。2.以下人群建议按照说明书全程使用IPV:原发性免疫缺陷、胸腺疾病、HIV感染、正在接受化疗的恶性肿瘤、近期接受造血干细胞移植、正在使用具有免疫抑制或免疫调节作用的药物(例如大剂量全身皮质类固醇激素、烷化剂、抗代谢药物、TNF-α抑制剂、IL-1阻滞剂或其他免疫细胞靶向单克隆抗体治疗)、目前或近期曾接受免疫细胞靶向放射治疗。(三)补种原则1.小于4岁儿童未达到3剂(含补充免疫等),应补种完成3剂;大于或等于4岁儿童未达到4剂(含补充免疫等),应补种完成4剂。补种时遵循先IPV后bOPV的原则。两剂次间隔不小于28天。对于补种后满4剂次脊灰疫苗接种的儿童,可视为完成脊灰疫苗全程免疫。2.既往已有三价脊灰减毒活疫苗(tOPV)免疫史(无论剂次数)的迟种、漏种儿童,用bOPV补种即可,不再补种IPV。既往无tOPV免疫史的儿童,2019年10月1日(早于该时间已实施2剂IPV免疫程序的省份,可根据具体实施日期确定)之前出生的补齐1剂IPV,2019年10月1日之后出生的补齐2剂IPV。四、吸附无细胞百白破联合疫苗(百白破疫苗,DTaP)、吸附白喉破伤风联合疫苗(白破疫苗,DT)(一)免疫程序与接种方法1.接种对象及剂次:共接种5剂次,其中3月龄、4月龄、5月龄、18月龄各接种1剂DTaP,6周岁接种1剂DT。2.接种途径:肌内注射。3.接种剂量:0.5ml。(二)其他事项1.如儿童已按疫苗说明书接种含百白破疫苗成分的其他联合疫苗,可视为完成相应剂次的DTaP接种。2.根据接种时的年龄选择疫苗种类,3月龄-5周岁使用DTaP,6-11周岁使用儿童型DT。(三)补种原则1.3月龄-5周岁未完成DTaP规定剂次的儿童,需补种未完成的剂次,前3剂每剂间隔不小于28天,第4剂与第3剂间隔不小于6个月。2.大于或等于6周岁儿童补种参考以下原则:(1)接种DTaP和DT累计小于3剂的,用DT补齐3剂,第2剂与第1剂间隔1-2月,第3剂与第2剂间隔6-12个月。(2)DTaP和DT累计大于或等于3剂的,若已接种至少1剂DT,则无需补种;若仅接种了3剂DTaP,则接种l剂DT,DT与第3剂DTaP间隔不小于6个月;若接种了4剂DTaP,但满7周岁时未接种DT,则补种l剂DT,DT与第4剂DTaP间隔不小于12个月。五、麻疹腮腺炎风疹联合减毒活疫苗(麻腮风疫苗,MMR)(一)免疫程序与接种方法1.接种对象及剂次:共接种2剂次,8月龄、18月龄各接种1剂。2.接种途径:皮下注射。3.接种剂量:0.5ml。(二)其他事项1.如需接种包括MMR在内多种疫苗,但无法同时完成接种时,应优先接种MMR疫苗。2.注射免疫球蛋白者应间隔不小于3个月接种MMR,接种MMR后2周内避免使用免疫球蛋白。3.当针对麻疹疫情开展应急接种时,可根据疫情流行病学特征考虑对疫情波及范围内的6-7月龄儿童接种1剂含麻疹成分疫苗,但不计入常规免疫剂次。(三)补种原则1.自2020年6月1日起,2019年10月1日及以后出生儿童未按程序完成2剂MMR接种的,使用MMR补齐。2.2007年扩免后至2019年9月30日出生的儿童,应至少接种2剂含麻疹成分疫苗、1剂含风疹成分疫苗和1剂含腮腺炎成分疫苗,对不足上述剂次者,使用MMR补齐。3.2007年扩免前出生的小于18周岁人群,如未完成2剂含麻疹成分的疫苗接种,使用MMR补齐。4.如果需补种两剂MMR,接种间隔应不小于28天。六、乙型脑炎减毒活疫苗(乙脑减毒活疫苗,JE-L)(一)免疫程序与接种方法1.接种对象及剂次:共接种2剂次。8月龄、2周岁各接种1剂。2.接种途径:皮下注射。3.接种剂量:0.5ml。(二)其他事项1.青海、新疆和西藏地区无乙脑疫苗免疫史的居民迁居其他省份或在乙脑流行季节前往其他省份旅行时,建议接种1剂JE-L。2.注射免疫球蛋白者应间隔不小于3个月接种JE-L。(三)补种原则乙脑疫苗纳入免疫规划后出生且未接种乙脑疫苗的适龄儿童,如果使用JE-L进行补种,应补齐2剂,接种间隔不小于12个月。七、乙型脑炎灭活疫苗(乙脑灭活疫苗,JE-I)(一)免疫程序与接种方法1.接种对象及剂次:共接种4剂次。8月龄接种2剂,间隔7-10天;2周岁和6周岁各接种1剂。2.接种途径:肌内汪射。3.接种剂量:0.5ml。(二)其他事项汪射免疫球蛋白者应间隔不小于1个月接种JE-I。(三)补种原则乙脑疫苗纳入免疫规划后出生且未接种乙脑疫苗的适龄儿童,如果使用JE-I进行补种,应补齐4剂,第1剂与第剂接种间隔为7-10天,第2剂与第3剂接种间隔为1-12个月,第3剂与第4剂接种间隔不小于3年。八、A群脑膜炎球菌多糖疫苗(A群流脑多糖疫苗,MPSV-A)、A群C群脑膜炎球菌多糖疫苗(A群C群流脑多糖疫苗,MPSV-AC)(一)免疫程序与接种方法1.接种对象及剂次:MPSV-A接种2剂次,6月龄、9月龄各接种1剂。MPSV-AC接种2剂次,3周岁、6周岁各接种1剂。2.接种途径:皮下注射。3.接种剂量:0.5ml。(二)其他事项1.两剂次MPSV-A间隔不小于3个月。2.第1剂MPSV-AC与第2剂MPSV-A,间隔不小于12个月。3.两剂次MPSV-AC间隔不小于3年,3年内避免重复接种。4.当针对流脑疫情开展应急接种时,应根据引起疫情的菌群和流行病学特征,选择相应种类流脑疫苗。5.对于小于24月龄儿童,如已按流脑结合疫苗说明书接种了规定的剂次,可视为完成MPSV-A接种剂次。6.如儿童3周岁和6周岁时已接种含A群和C群流脑疫苗成分的疫苗,可视为完成相应剂次的MPSV-AC接种。(三)补种原则流脑疫苗纳入免疫规划后出生的适龄儿童,如未接种流脑疫苗或未完成规定剂次,根据补种时的年龄选择流脑疫苗的种类:1.小于24月龄儿童补齐MPSV-A剂次。大于或等于24月龄儿童不再补种或接种MPSV-A,仍需完成两剂次MPSV-AC。2.大于或等于24月龄儿童如未接种过MPSV-A,可在3周岁前尽早接种MPSV-AC;如已接种过1剂次MPSV-A,间隔不小于3个月尽早接种MPSV-AC。3.补种剂次间隔参照本疫苗其他事项要求执行。九、甲型肝炎减毒活疫苗(甲肝减毒活疫苗,HepA-L)(一)免疫程序与接种方法1.接种对象及剂次:18月龄接种1剂。2.接种途径:皮下注射。3.接种剂量:0.5ml或1.0ml,按照相应疫苗说明书使用。(二)其他事项1.如果接种2剂次及以上含甲型肝炎灭活疫苗成分的疫苗,可视为完成甲肝疫苗免疫程序。2.注射免疫球蛋白后应间隔不小于3个月接种HepA-L。(三)补种原则甲肝疫苗纳入免疫规划后出生且未接种甲肝疫苗的适龄儿童,如果使用HepA-L进行补种,补种1剂HepA-L。十、甲型肝炎灭活疫苗(甲肝灭活疫苗,HepA-I)(一)免疫程序与接种方法1.接种对象及剂次:共接种2剂次,18月龄和24月龄各接种1剂。2.接种途径:肌内注射。3.接种剂量:0.5ml。(二)其他事项如果接种2剂次及以上含HepA-I成分的联合疫苗,可视为完成HepA-I免疫程序。(三)补种原则1.甲肝疫苗纳入免疫规划后出生且未接种甲肝疫苗的适龄儿童,如果使用HepA-I进行补种,应补齐2剂HepA-I,接种间隔不小于6个月。2.如已接种过1剂次HepA-I,但无条件接种第2剂HepA-I时,可接种1剂HepA-L完成补种,间隔不小于6个月。第三部分 常见特殊健康状态儿童接种一、早产儿与低出生体重儿早产儿(胎龄小于37周)和/或低出生体重儿(出生体重小于2500g)如医学评估稳定并且处千持续恢复状态(无需持续治疗的严重感染、代谢性疾病、急性肾脏疾病、肝脏疾病、心血管疾病、神经和呼吸道疾病),按照出生后实际月龄接种疫苗。卡介苗接种详见第二部分“每种疫苗的使用说明”。二、过敏所谓“过敏性体质”不是疫苗接种禁忌。对已知疫苗成分严重过敏或既往因接种疫苗发生喉头水肿、过敏性休克及其他全身性严重过敏反应的,禁忌继续接种同种疫苗。三、人类免疫缺陷病毒(HIV) 感染母亲所生儿童对于HIV感染母亲所生儿童的HIV感染状况分3种:(1)HIV感染儿童;(2)HIV感染状况不详儿童;(3)HIV未感染儿童。由医疗机构出具儿童是否为HIV感染、是否出现症状、或是否有免疫抑制的诊断。HIV感染母亲所生小于18月龄婴儿在接种前不必进行HIV抗体筛查,按HIV感染状况不详儿童进行接种。(一)HIV感染母亲所生儿童在出生后暂缓接种卡介苗,当确认儿童未感染HIV后再予以补种;当确认儿童HIV感染,不予接种卡介苗。(二)HIV感染母亲所生儿童如经医疗机构诊断出现艾滋病相关症状或免疫抑制症状,不予接种含麻疹成分疫苗;如无艾滋病相关症状,可接种含麻疹成分疫苗。(三)HIV感染母亲所生儿童可按照免疫程序接种乙肝疫苗、百白破疫苗、A群流脑多糖疫苗、A群C群流脑多糖疫苗和白破疫苗等。(四)HIV感染母亲所生儿童除非已明确未感染HIV,否则不予接种乙脑减毒活疫苗、甲肝减毒店疫苗、脊灰减毒活疫苗,可按照免疫程序接种乙脑灭活疫苗、甲肝灭活疫苗、脊灰灭活疫苗。(五)非HIV感染母亲所生儿童,接种疫苗前无需常规开展HIV筛查。如果有其他暴露风险,确诊为HIV感染的,后续疫苗接种按照附表中HIV感染儿童的接种建议。对不同HIV感染状况儿童接种国家免疫规划疫苗的建议见附表。四、免疫功能异常除HIV感染者外的其他免疫缺陷或正在接受全身免疫抑制治疗者,可以接种灭活疫苗,原则上不予接种减毒活疫苗(补体缺陷患者除外)。五、其他特殊健康状况下述常见疾病不作为疫苗接种禁忌:生理性和母乳性黄疸,单纯性热性惊厥史,癫痫控制处于稳定期,病情稳定的脑疾病、肝脏疾病、常见先天性疾病(先天性甲状腺功能减低、苯丙酮尿症、唐氏综合征、先天性心脏病)和先天性感染(梅毒、巨细胞病毒和风疹病毒)。对于其他特殊健康状况儿童,如无明确证据表明接种疫苗存在安全风险,原则上可按照免疫程序进行疫苗接种。(图片来源:国家卫生健康委)
  • 新冠肺炎更名为新冠感染,将实施“乙类乙管”
    国家卫生健康委员会公告2022年第7号一、将新型冠状病毒肺炎更名为新型冠状病毒感染。二、经国务院批准,自2023年1月8日起,解除对新型冠状病毒感染采取的《中华人民共和国传染病防治法》规定的甲类传染病预防、控制措施;新型冠状病毒感染不再纳入《中华人民共和国国境卫生检疫法》规定的检疫传染病管理。特此公告。国家卫生健康委2022年12月26日关于对新型冠状病毒感染实施“乙类乙管”的总体方案为贯彻落实党中央、国务院决策部署,高效统筹新型冠状病毒感染疫情防控和经济社会发展,稳妥有序将新型冠状病毒感染从“乙类甲管”调整为“乙类乙管”,有力有序有效应对调整后可能出现的风险,依据《中华人民共和国传染病防治法》,制定本方案。一、制定背景新型冠状病毒感染疫情发生以来,以习近平同志为核心的党中央高度重视疫情防控,全面加强对防控工作的集中统一领导,明确了疫情防控的体制机制、策略原则、目标任务、工作要求,为打赢疫情防控的人民战争、总体战、阻击战和做好常态化疫情防控工作提供了根本遵循和科学指引。我国的疫情防控始终坚持人民至上、生命至上,各地区各部门密切协作、履职尽责,因时因势动态优化调整防控措施,不断提高科学精准防控水平。14亿人民同心抗疫、坚韧奉献,有效应对全球先后五波疫情流行冲击,成功避免了致病力相对较强的原始株、德尔塔变异株的广泛流行,极大减少了重症和死亡,也为疫苗、药物的研发应用以及医疗等资源的准备赢得了宝贵的时间。我国疫情流行和病亡数保持在全球最低水平,人民健康水平稳步提升,统筹经济发展和疫情防控取得世界上最好的成果,有力彰显负责任大国担当,创造了人类同疾病斗争史上的防控奇迹。当前,随着病毒变异、疫情变化、疫苗接种普及和防控经验积累,我国新型冠状病毒感染疫情防控面临新形势新任务,防控工作进入新阶段。从病毒变异情况看,国内外专家普遍认为病毒变异大方向是更低致病性、更趋向于上呼吸道感染和更短潜伏期,新冠病毒将在自然界长期存在,其致病力较早期明显下降,所致疾病将逐步演化为一种常见的呼吸道传染病。从疫情形势看,奥密克戎变异株已成为全球流行优势毒株,虽然感染人数多,但无症状感染者和轻型病例占比超过90%,重症率和病亡率极低。从我国防控基础看,我国目前累计接种新冠病毒疫苗超过34亿剂次,3岁以上人群全程接种率超过90%;国内外特异性抗病毒药物研发取得进展,我国筛选出“三药三方”等临床有效方药;广大医疗卫生人员积累了丰富的疫情防控和处置经验,防治能力显著提升。综合评估病毒变异、疫情形势和我国防控基础等因素,我国已具备将新型冠状病毒感染由“乙类甲管”调整为“乙类乙管”的基本条件。二、总体要求(一)指导原则。以习近平新时代中国特色社会主义思想为指导,充分发挥制度优势,坚持人民至上、生命至上,坚持科学防治、精准施策,完善应对准备,调整防控措施,统一规则、分类指导、防范风险,平稳有序实施“乙类乙管”。(二)工作目标。围绕“保健康、防重症”,采取相应措施,最大程度保护人民生命安全和身体健康,最大限度减少疫情对经济社会发展的影响。(三)进度安排。2023年1月8日起,对新型冠状病毒感染实施“乙类乙管”。依据传染病防治法,对新冠病毒感染者不再实行隔离措施,不再判定密切接触者 不再划定高低风险区;对新冠病毒感染者实施分级分类收治并适时调整医疗保障政策;检测策略调整为“愿检尽检”;调整疫情信息发布频次和内容。依据国境卫生检疫法,不再对入境人员和货物等采取检疫传染病管理措施。三、主要措施(一)进一步提高老年人新冠病毒疫苗接种率。我国大规模的疫苗接种实践证明,我国的新冠病毒疫苗是安全、有效的。要进一步加强组织动员力度,科学评估接种禁忌,加快提高疫苗加强免疫接种覆盖率,特别是老年人群覆盖率,优先采取序贯加强免疫,努力做到“应接尽接”。在第一剂次加强免疫接种基础上,在感染高风险人群、60岁及以上老年人群、具有较严重基础疾病人群和免疫力低下人群中推动开展第二剂次加强免疫接种。(二)完善新型冠状病毒感染治疗相关药品和检测试剂准备。做好治疗新型冠状病毒感染相关中药、对症治疗药物、抗新冠病毒小分子药物、抗原检测试剂的准备。县级以上医疗机构按照三个月的日常使用量动态准备新型冠状病毒感染相关中药、抗新冠病毒小分子药物、解热和止咳等对症治疗药物;基层医疗卫生机构按照服务人口数的15%-20%动态准备新型冠状病毒感染相关中药、对症治疗药物和抗原检测试剂,人口稠密地区酌情增加;药品零售企业不再开展解热、止咳、抗生素和抗病毒4类药物销售监测。各地联防联控机制(领导小组、指挥部)切实担负起药品试剂准备的领导责任。(三)加大医疗资源建设投入。重点做好住院床位和重症床位准备,配足配齐高流量呼吸治疗仪、呼吸机、ECMO等重症救治设备,改善氧气供应条件。各地按照“应设尽设、应开尽开”的原则,二级以上医院均设置发热门诊,配备充足的医疗力量;有条件的基层医疗卫生机构应设置发热门诊或者诊室。定点医院重症床位和可转换重症床位达到总床位数的20%。二级综合医院应当独立设置重症医学科,二级传染病、儿童专科医院应当设置重症监护病房。三级医院要强化重症医疗资源准备,合理配备重症医护力量,确保综合ICU监护单元可随时使用,通过建设可转换重症监护单元,确保需要时24小时内重症监护资源增加一倍。根据人口规模,将符合条件的方舱医院提标改造为亚(准)定点医院,其他方舱医院仍然保留。加强对基层医疗卫生机构的设备配备和升级改造,尽快实现发热诊室(门诊)“应设尽设、应开尽开”。各地要加大投入,按照填平补齐原则,确保完成建设改造。(四)调整人群检测策略。社区居民根据需要“愿检尽检”,不再开展全员核酸筛查。对医疗机构收治的有发热和呼吸道感染症状的门急诊患者、具有重症高风险的住院患者、有症状的医务人员开展抗原或核酸检测。疫情流行期间,对养老机构、社会福利机构等脆弱人群集中场所的工作人员和被照护人员定期开展抗原或核酸检测。对社区65岁及以上老年人、长期血液透析患者、严重糖尿病患者等重症高风险的社区居民、3岁及以下婴幼儿,出现发热等症状后及时指导开展抗原检测,或前往社区设置的便民核酸检测点进行核酸检测。外来人员进入脆弱人群聚集场所等,查验48小时内核酸检测阴性证明并现场开展抗原检测。在社区保留足够的便民核酸检测点,保证居民“愿检尽检”需求。保障零售药店、药品网络销售电商等抗原检测试剂充足供应。(五)分级分类救治患者。未合并严重基础疾病的无症状感染者、轻型病例,采取居家自我照护;普通型病例、高龄合并严重基础疾病但病情稳定的无症状感染者和轻型病例,在亚定点医院治疗;以肺炎为主要表现的重型、危重型以及需要血液透析的病例,在定点医院集中治疗;以基础疾病为主的重型、危重型病例,以及基础疾病超出基层医疗卫生机构、亚定点医院医疗救治能力的,在三级医院治疗。全面实行发热等患者基层首诊负责制,依托医联体做好新型冠状病毒感染分级诊疗,加强老年人等特殊群体健康监测,对于出现新冠病毒感染相关症状的高龄合并基础疾病等特殊人群,基层医疗卫生机构密切监测其健康状况,指导协助有重症风险的感染者转诊或直接到相应医院接受诊治。确保重症高风险人员及时发现、及时救治。统筹应急状态医疗机构动员响应、区域联动和人员调集,进一步完善医疗救治资源区域协同机制。动态监测定点医院、二级以上医院、亚定点医院、基层医疗卫生机构的医疗资源使用情况,以地市为单位,当定点医院、亚定点医院、综合医院可收治新型冠状病毒感染患者的救治床位使用率达到80%时,医疗机构发出预警信息。对于医疗力量出现较大缺口、医疗服务体系受到较大冲击的地市,省级卫生健康行政部门视情通过省内协同方式调集医疗力量增援,必要时向国家申请采取跨地区统筹方式调派医疗力量增援,确保医疗服务平稳有序。(六)做好重点人群健康调查和分类分级健康服务。摸清辖区65岁及以上老年人合并基础疾病(包括冠心病、脑卒中、高血压、慢性阻塞性肺疾病、糖尿病、慢性肾病、肿瘤、免疫功能缺陷等)及其新冠病毒疫苗接种情况,根据患者基础疾病情况、新冠病毒疫苗接种情况、感染后风险程度等进行分级,发挥基层医疗卫生机构“网底”和家庭医生健康“守门人”作用,提供疫苗接种、健康教育、健康咨询、用药指导、协助转诊等分类分级健康服务。社区(村)协助做好重点人群健康服务工作,居(村)民委员会配合基层医疗卫生机构围绕老年人及其他高风险人群,提供药品、抗原检测、联系上级医院等工作。(七)强化重点机构防控。养老机构、社会福利机构等人群集中场所结合设施条件采取内部分区管理措施。疫情严重时,由当地党委政府或联防联控机制(领导小组、指挥部)经科学评估适时采取封闭管理,并报上级主管部门,防范疫情引入和扩散风险,及时发现、救治和管理感染者,建立完善感染者转运机制、与医疗机构救治绿色通道机制,对机构内感染人员第一时间转运和优先救治,控制场所内聚集性疫情。医疗机构应加强医务人员和就诊患者个人防护指导,强化场所内日常消毒和通风,降低场所内病毒传播风险。学校、学前教育机构、大型企业等人员聚集的重点机构,应做好人员健康监测,发生疫情后及时采取减少人际接触措施,延缓疫情发展速度。疫情严重时,重点党政机关和重点行业应原则上要求工作人员“两点一线”,建立人员轮转机制。(八)加强农村地区疫情防控。做好农村居民宣教引导。充分发挥县、乡、村三级医疗卫生网作用,做好重点人群健康调查,加强医疗资源配置,配足呼吸道疾病治疗药物和制氧机等辅助治疗设备。依托县域医共体提升农村地区新型冠状病毒感染医疗保障能力,形成县、乡、村三级联动的医疗服务体系,建立村-乡-县重症患者就医转介便捷渠道,统筹城乡医疗资源,按照分区包片的原则,建立健全城市二级及以上综合医院与县级医院对口帮扶机制。畅通市县两级转诊机制,提升农村地区重症救治能力,为农村老年人、慢性基础疾病患者等高风险人群提供就医保障。根据区域疫情形势和居民意愿,适当控制农村集市、庙会、文艺演出等聚集性活动规模和频次。(九)强化疫情监测与应对。动态追踪国内外病毒变异情况,评估病毒传播力、致病力、免疫逃逸能力等特点变化,及时跟踪研判并采取针对性措施。监测社区人群感染水平,监控重点机构暴发疫情情况,动态掌握疫情流行强度,研判疫情发展态势。综合评估疫情流行强度、医疗资源负荷和社会运行情况等,依法动态采取适当的限制聚集性活动和人员流动等措施压制疫情高峰。(十)倡导坚持个人防护措施。广泛宣传倡导“每个人都是自己健康第一责任人”的理念,坚持戴口罩、勤洗手等良好卫生习惯,在公共场所保持人际距离,及时完成疫苗和加强免疫接种。疫情严重时,患有基础疾病的老年人及孕妇、儿童等尽量减少前往人员密集场所。无症状感染者和轻型病例落实居家自我照护,减少与同住人接触,按照相关指南合理使用对症治疗药物,做好健康监测,如病情加重及时前往医疗机构就诊。(十一)做好信息发布和宣传教育。制定疫情信息报告和公布方案,逐步调整疫情发布频次和内容。全面客观宣传解读将“乙类甲管”调整为“乙类乙管”的目的和科学依据,充分宣传个人防护、疫苗接种、分级分类诊疗等措施对于应对疫情的关键作用,筑牢群防群控的基础。(十二)优化中外人员往来管理。来华人员在行前48小时进行核酸检测,结果阴性者可来华,无需向我驻外使领馆申请健康码,将结果填入海关健康申明卡。如呈阳性,相关人员应在转阴后再来华。取消入境后全员核酸检测和集中隔离。健康申报正常且海关口岸常规检疫无异常者,可放行进入社会面。取消“五个一”及客座率限制等国际客运航班数量管控措施。各航司继续做好机上防疫,乘客乘机时须佩戴口罩。进一步优化复工复产、商务、留学、探亲、团聚等外籍人士来华安排,提供相应签证便利。逐步恢复水路、陆路口岸客运出入境。根据国际疫情形势和各方面服务保障能力,有序恢复中国公民出境旅游。四、组织保障(一)强化组织领导。国务院联防联控机制落实党中央、国务院决策部署,统筹领导各有关部门分工负责、协调配合,优化调整各工作组职责,建立健全有关工作专班,积极稳妥推进实施新型冠状病毒感染“乙类乙管”各项措施。(二)强化责任落实。地方各级党委和政府要守土有责、守土尽责,压实主体责任,切实增强紧迫性和责任感,主要负责同志亲自抓,结合实际细化本地实施方案,明确责任分工,加强力量统筹,周密组织实施,按照国家要求抓紧抓实抓细各项工作。国务院联防联控机制综合组向地方派出督查组,督促指导各地做好应对准备和措施调整工作。(三)强化培训指导。国务院联防联控机制综合组协调相关工作组或专班,通过全国疫情防控视频会商会、调度会等方式,对疫苗接种、药物储备、医疗资源准备、分级分类诊疗、疫情监测、宣传引导等工作开展部署培训和政策解读,明确工作目标,细化工作要求,推动工作落实。各行业主管部门及时调整相关政策,加强督促指导,确保相关要求落实到位。
  • 癌症疫苗有望2030年前问世|外媒最新报道
    据今日俄罗斯电视台网站报道,受新冠疫苗研究的推动,十年内人类或许可以打赢癌症攻坚战。辉瑞公司与百欧恩泰公司联合开发了抗击新冠肺炎的疫苗。负责开发该疫苗的德国夫妇声称,在新冠肺炎疫苗研究的推动下,2030年前癌症疫苗或可用于大众。乌乌尔萨欣教授和厄兹莱姆蒂雷吉教授在英国广播公司的《星期日与劳拉库恩斯伯格》节目中称“有把握获得癌症的治疗方法或改变癌症患者的生活”。这对夫妇于2008年在德国美因茨共同创立了百欧恩泰公司。在谈到可能的时间表时,萨欣说,癌症疫苗“在2030年之前”或可在全球范围内上市。不过,他们也试图采取更加谨慎的态度。蒂雷吉说:“作为科学家,我们总是犹豫不决,不愿说我们将能治愈癌症。”不过她也暗示,他们的公司已经取得了“一些突破”。科学家们称,这场大流行可能促成的结果之一就是加速癌症疫苗的发明。蒂雷吉指出,虽然百欧恩泰公司是搭上了“研发新冠疫苗的顺风车”,但如今也反过来在癌症疫苗研发领域受益。她说:“现在,新冠肺炎疫苗以及我们研发这种疫苗所获得的经验,反过来推动了我们在癌症治疗领域的研究。”这位医生接着说,科学家已经“学会了如何更好、更快地批量制造疫苗”,并对免疫系统对信使核糖核酸(mRNA)的反应有了更深入的了解。与通过较弱版本病毒制造出的传统疫苗不同,mRNA技术只使用病毒的遗传密码。mRNA进入人体的同时也会进入细胞,令其制造相关抗原。蒂雷吉解释说,基本而言,“mRNA就是敌人‘通缉’海报的蓝图”,这种战术有助于训练身体找到癌细胞并攻击它们。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制