当前位置: 仪器信息网 > 行业主题 > >

肺气道模型

仪器信息网肺气道模型专题为您整合肺气道模型相关的最新文章,在肺气道模型专题,您不仅可以免费浏览肺气道模型的资讯, 同时您还可以浏览肺气道模型的相关资料、解决方案,参与社区肺气道模型话题讨论。

肺气道模型相关的资讯

  • 建模成功!Nature子刊:成功建立新冠肺炎重症模型,揭示新冠病毒感染的分子机制
    自2019年年底开始,新型冠状病毒(SARS-CoV-2)引起的新冠肺炎(COVID-19)疫情一直在全球范围内流行,全球死亡率居高不下,已经导致全球的公共卫生危机。COVID-19的临床症状多样,从发烧、乏力、干咳到呼吸困难,从轻度肺炎到急性肺损伤(ALI)和严重病例的急性呼吸窘迫综合征均可出现。  与SARS-CoV类似,SARS-CoV-2属于冠状病毒科β冠状病毒属,是一种包膜单链阳性RNA病毒。人血管紧张素转换酶2 (hACE2)已被证实是SARS-CoV-2的功能性受体。目前在各个国家都已开展对SARS-CoV-2的相关研究,一些hACE2表达小鼠模型,如hACE2转基因小鼠,AAV-hACE2转导小鼠和Ad5-hACE2转导小鼠已经被开发出来。然而,大多数模型只会对小鼠造成轻度至中度的肺损伤。一种能够重现COVID-19最严重呼吸道症状和高病死率的小动物模型仍然是当务之急。  近日,中国军事科学院军事医学研究院秦成峰/王慧团队联合中科院生物物理所王祥喜团队在国际期刊《Nature Communications》上在线发表了题为“Characterization and structuralbasis of a lethal mouse-adapted SARS-CoV-2”的研究论文,公开表示团队成功建立新冠肺炎重症模型并揭示新冠病毒跨种感染分子机制。  首先,研究团队在之前的研究中已经生成了一株SARS-CoV-2 (MASCp6)小鼠适应株,能对小鼠造成中度肺损伤。在此基础上,研究人员进一步连续传代30次,以产生更强毒力的小鼠适应株,最终在第36代产生了SARS-CoV-2(命名为MASCp36)。  实验表明,对不同月龄、性别的BALB/c小鼠进行不同剂量的鼻内注射后,9月龄小鼠对MASCp36毒性高度敏感,且对MASCp36毒性呈剂量依赖性。所有9个月大的小鼠受到高剂量MASCp36的攻击后,均出现典型的呼吸道症状,并表现出皮毛皱褶、驼背和活动减少等特征。此外,雄性小鼠比雌性小鼠对MASCp36更敏感。  (图注:MASCp36对不同性别、年龄的小鼠的毒性不同)  为了进一步确定MASCp36感染小鼠的病理结果,研究团队收集了肺组织进行组织病理学和免疫染色分析。裸眼观察发现,与未感染的对照动物相比,MASCp36感染小鼠的肺损伤严重,双侧呈红色,肺内有黏液。镜下观察可见细支气管管内大量脱皮上皮细胞(黄色箭头),肺泡上皮细胞大面积坏死,肺泡壁融合炎性细胞浸润,以中性粒细胞为主。血管周围严重水肿(青色箭头),散在出血(蓝色箭头),这都表明MASCp36感染诱发了坏死性肺炎和广泛弥漫性肺泡损伤。  (图注:MASCp36感染引起的小鼠急性肺损伤)  最后,研究团队就此模型进行了一系列深入的研究,深度测序发现MASCp36在连续传代中共检测到12个氨基酸突变位点,其中3个(N501Y、Q493H和K417N)位于S蛋白受体结合区(RBD),进一步实验证实,这一结构使得MASCp36病毒和鼠源ACE2亲和力显著增加,通过电镜发现,致死株MASCp36的RBD与鼠源ACE2可形成稳定结合的致密结构,这与野生型病毒RBD与人源ACE2的结构高度类似。  (图注:不同小鼠模型的RBD突变以及与hACE2的亲和力)  综上所述,这一研究产生了一种新的小鼠适应的SARS-CoV-2毒株MASCp36,该毒株会导致严重的呼吸道症状和死亡率。模型也显示了与严重COVID-19类似的年龄和性别相关死亡率。在体内传代过程中,通过对MASCp36受体结合区域(RBD)的深度测序,发现了N501Y、Q493H和K417N三个氨基酸替换。本研究为明确SARS-CoV-2发病机制提供了平台,并揭示了其快速适应和进化的分子机制。
  • 我国首个渔业大模型“范蠡大模型1.0”发布
    6月15日,我国首个渔业大模型“范蠡大模型1.0”在中国农业大学发布,据悉,该模型可以实现渔业多模态数据采集、清洗、萃取和整合等,将为渔业养殖工人、管理经营者和政府决策部门提供全面、精准的智能化支持。“范蠡大模型1.0”发布现场(中国农业大学供图)渔业大国,面临转型的需求我国是水产养殖大国,数据显示,2023年,我国水产养殖产量达5812万吨,约占世界水产养殖总产量的60%以上,为城乡居民提供了1/3优质动物蛋白。但同时,我国不是养殖强国,水产养殖资源利用率、劳动生产率低,水产养殖产业发展面临多种转型需求。范蠡大模型设计者、发起者、国家数字渔业创新中心主任、中国农业大学信息与电气工程学院教授李道亮介绍,“我国水产养殖品种繁多,包括鱼、虾、蟹、贝、参、藻等,养殖模式多样,建立完整养殖品种的生产模型是极其困难的;同时,劳动力出现了普遍老龄化现象,有调查数据显示,我国水产养殖中,劳动力成本占70%左右,劳动者平均年龄达到55岁。新一代缺乏养殖经验,也不愿意从事传统的养殖生产,需要人工智能技术的支持。”范蠡大模型设计者、发起者、国家数字渔业创新中心主任、中国农业大学信息与电气工程学院教授李道亮(中国农业大学供图)随着现代技术的发展,水产养殖已经从1.0时代发展到4.0时代。李道亮介绍,“渔业1.0时代主要以小农生产为主,特征是依靠人力、手工工具、经验等养殖。2.0时代,水产养殖逐渐实现机械化、装备化,主要依靠机械动力和电力进行生产。3.0时代,自动化和计算机技术成为核心,生产装备出现数字化、网络化、自动化特征。到4.0时代,物联网、大数据、人工智能、机器人等技术普遍应用在生产中,无人化生产逐渐实现。”随着人工智能、机器人学习等技术的逐渐出现和成熟,越来越多的农业场景开始应用这些技术,但作为水产养殖大国,我国当前的水产养殖中,相关技术的应用还较为缺乏。渔业模型,从小到大的升级如何在水产养殖中应用现代技术,甚至打造未来的无人渔场?李道亮介绍,我国水产养殖品种繁多,养殖环境差异较大,而机理模型的构建,需考虑鱼类品种、饵料、病害、环境变化等一系列因素,面对众多的品种和养殖模式以及地区气候差异,逐个养殖品种建立像发达国家的养殖机理模型是不现实的。所谓大模型,是指具有大规模参数和复杂计算结构的机器学习模型,参数数量动辄数十亿甚至数千亿。在渔业中,大模型可以利用深度学习和数据驱动的方法,能够分析海量的养殖数据,揭示其中的规律和关联性。“它们不仅能够模拟和预测水质、饵料、疾病等因素对养殖效果的影响,还能够优化养殖方案,提高生产效率和经济效益。”李道亮说。智能池塘养鱼场景(中国农业大学供图)随着社会发展和水产养殖业转型,渔业大模型越来越成为产业发展的重要助力,为此,李道亮带领团队联合中国联通、中国电信、中国移动三家运营商、全国主要水产院校和科研机构,以鱼、虾、蟹、贝等27种我国主养品种水产文本语料为主,辅以文本、图像、视频、音频等多模态数据,形成大规模渔业专业知识语料库,通过深度学习架构,通过预训练和微调、参数共享与注意力机制、提示工程等技术,实现渔业多模态数据采集、清洗、萃取和整合等。“这一模型,不仅实现了丰富的渔业养殖知识生成,还包括水、饵、病、管等多方面多元化的预测、分析和决策。”李道亮说。范蠡为名,改变未来的渔业大模型构建成功后,命名为“范蠡大模型1.0”。李道亮介绍,范蠡是春秋末期越国大夫,众所周知的是,他是著名的政治家、军事家,也是商家鼻祖,但他同时也是我国最早的水产养殖专家,早在2500年前的春秋时期,他就写了一部《养鱼经》,并流传至今,“所以我们以范蠡为名,希望它能够在新时代中,为我国水产养殖带来的新的气象。”据介绍,范蠡大模型1.0分为请问我、请听我、请看我、请决策四个模块,分别代表文本、语音、视频、物联网决策四大场景,用户可以查询渔业的不同应用。而针对准确监测和评估鱼类的健康状况和体重异常耗时费力,且可能对鱼类造成伤害的问题,国家数字渔业创新中心开发了基于计算机视觉技术的鱼类体重估计模型,基于机器视觉实时捕捉水下鱼类图像和优化构建的深度神经网络算法,自动完成图像中鱼类目标的检测和定位,通过提取形状、颜色、纹理等多维度特征,以非接触方式实现对鱼类体重的实时、准确估算,同步完成生长及健康状态监测和计算,为投饵决策、水环境、能耗优化控制提供数据支撑。范蠡大模型利用了多种现代技术,以此实现水产养殖的数字化、无人化。图为鱼的种类识别模型(中国农业大学供图)“当前,范蠡大模型还是1.0,未来还会不断进化,人工智能在智慧渔业中的应用,是多元化且深远的、长期的,不可能一蹴而就。未来,范蠡大模型还有很长的路要走,必须充分发挥通信、科研、水产养殖企业、养殖户等各种不同领域的优势力量,以产学研用协同推进大模型的开发与应用,人工智能才能真正落地。”李道亮说。
  • 清华大学梁琼麟团队: 类器官/器官芯片-肠道病理生理学模型前沿进展
    研究简介类器官/器官芯片为肠道病理生理学研究提供了新的前沿模型。类器官基于干细胞的自组织过程,能一定程度重现体内的功能特性;器官芯片利用微流控技术,引入生物材料,模拟肠道关键特征,构建仿生模型。而将二者结合,肠道类器官芯片比肠类器官具有更长的培养寿命,能更好重现肠道的结构和功能。近年来,随着基因编辑、3D 打印和类器官生物库等的迅速发展和交叉结合,类器官/器官芯片能更好地模拟肠道的稳态和疾病。在这里,我们总结了当前这些模型面临的挑战以及未来的发展趋势。该成果以 “Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models” (《类器官/器官芯片:肠道病理生理学模型的前沿进展》) 发表于 Lab on a Chip 上,并被选为合作封面文章。论文信息Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological modelsL. Wu, Y. Ai, R. Xie, J. Xiong, Y. Wang* and Q. Liang*Lab Chip, 2023, 23,1192-1212https://doi.org/10.1039/D2LC00804A作者简介吴磊 博士生清华大学化学系本文第一作者,本科毕业于武汉大学,目前于清华大学化学系梁琼麟教授课题组攻读博士学位。他的研究方向为:肠道类器官/器官芯片模型的开发及在溃疡性结肠炎中的应用研究。王玉 助理研究员清华大学本文通讯作者,清华大学化学系助理研究员,从事器官芯片/类器官芯片的研究。目前,主持国家自然科学基金青年科学基金项目,作为骨干参与国家重点研发计划、国家自然科学基金面上项目等。主要研究方向为基于微流控芯片平台的器官仿生模型的构建与机制研究,并应用于药物分析、新药开发等领域,以器官结构和微环境的模拟、形态建成和生物功能的体外重现为目标,进行体外仿生技术的开发。梁琼麟 教授清华大学本文通讯作者,清华大学化学系长聘教授,教育部长江学者特聘教授,研究方向以微流控芯片及其与质谱、光谱联用分析技术为基础,发展生命分析与药物分析新方法,开发生物医用新材料新器件,发明器官类器官芯片新模型,致力于服务国家药品质量与安全、新药创制以及中药现代化研究与开发。近年来重点聚焦于器官类器官芯片、单细胞亚细胞分析及基于质谱的多组学分析等。曾主持完成国家重大科技专项第一个微流控芯片药物研发关键技术项目,在器官芯片核心关键技术及血管、肝、肾、肠等器官芯片模型研究方面取得重要进展。以通讯作者在 Nat. Protoc., Adv. Mater., Anal. Chem., Lab Chip 等重要学术期刊上发表 SCI 论文 200 多篇,发明专利 30 余项。部分研究成果已在制药企业、临床医院得到广泛应用,曾合作获得国家科技进步二等奖 3 项。相关期刊
  • PD新模型:破坏线粒体复合物I功能足以诱导进行性帕金森症
    帕金森疾病(Parkinson’s disease, PD)是第二常见的神经退行性疾病,患者所表现出的运动功能障碍主要由黑质(substantia nigra, SN)中多巴胺能神经元丧失引起。尽管PD致病因素多样,但多项证据表明线粒体功能缺陷在其中的重要性,例如编码维持线粒体质量控制蛋白的PARK7、PARK6和PARK2基因突变能引起早发型PD【1】。多巴胺能神经元对线粒体功能障碍的易感性可部分归因于其高代谢需求,从而引起线粒体氧化磷酸化(OXPHOS)的持续刺激,然而这种巨大能量的提供是以线粒体氧化损伤增加为代价的。尸检研究表明,PD患者SN中mtDNA完整性的丧失与功能性线粒体复合物I(MCI)的丧失存在相关性。然而,这种MCI获得性损伤究竟是PD疾病进程中的一种副产品还是疾病的驱动因素还不得而知。2021年11月3日,来自美国西北大学Feinberg医学院的D. James Surmeier团队在Nature杂志上发表了一篇题为 Disruption of mitochondrial complex I induces progressive parkinsonism 的文章,这项研究通过选择性破坏小鼠多巴胺能神经元中MCI功能,发现MCI功能障碍足以导致进行性的帕金森病相关运动缺陷,且不同类型的运动功能损伤(精细动作和粗大运动)与不同部位(纹状体和黑质)多巴胺释放的相关性,挑战了长期以来存在的关于该疾病运动症状的观点。为了证明MCI功能障碍是否作为PD的驱动因素,该团队从小鼠多巴胺能神经元中特异性地敲除编码MCI催化核心亚基的Ndufs2基因。cNdufs2-/-小鼠在出生后20天(P20)仍表现出正常的粗大运动行为。但在随后10天中,SN多巴胺能神经元中的线粒体成为ATP的净消费者而非生产者,且线粒体嵴结构发生了明显改变。利用RiboTag方法分离多巴胺能神经元中的mRNA并进行测序发现,cNdufs2-/-小鼠中存在一种类似Warburg效应的代谢重编程,即编码促进糖酵解蛋白的基因上调,而与OXPHOS以及编码糖酵解抑制剂的基因下调。除了触发代谢重编程外,该团队还发现Ndufs2的缺失会导致与轴突生长和运输、突触传导、多巴胺(DA)合成和储存等相关的基因表达发生显着变化。对纹状体组织的液相色谱和质谱分析进一步验证cNdufs2-/-小鼠纹状体DA合成明显下降,此外,有助于驱动起搏的环核苷酸门控阳离子通道电流也明显减少。到P60,与多巴胺能信号相关的轴突蛋白的丢失由背侧纹状体扩大到腹侧纹状体,且cNdufs2-/-小鼠SN多巴胺能神经元胞体树突区域中的酪氨酸羟化酶表达降低至对照组一半左右,且DA释放量下降约75%。与在整个基底神经节中DA迅速耗尽的传统PD模型相比,cNdufs2-/-小鼠的病理分期能够评估DA释放的区域缺陷如何与行为相关联。随着背侧纹状体DA释放在P30左右下降到接近检测阈值,cNdufs2-/-小鼠失去了执行联想学习任务的能力,有趣的是,该任务可以通过P30时的左旋多巴治疗恢复,而P60的治疗则不能恢复。在通过小鼠从前爪去除粘合剂所花费的时间来评估精细运动技能的实验中,cNdufs2-/-小鼠完成任务时间明显延长,同时也表现出较差的旷场探索行为表现。此外,P60的cNdufs2-/-小鼠仅表现出轻微的步态障碍,到了P100才会表现出后肢张开、爪子位置异常和步幅改变等特征。而在P120-150期间,大约有40%的SN多巴胺能神经元丢失。需要注意的是,cNdufs2-/-小鼠在后期才出现粗大运动行为缺陷,这与SN DA而非背侧纹状体 DA释放变化平行。尽管有明确的临床证据表明纹状体DA耗竭对于PD患者的运动迟缓和僵硬是必要的【2】,但其充分性从未得到充分测试,因为传统的PD模型往往会导致整个基底神经节DA的快速耗竭。在此处通过对cNdufs2-/-小鼠的观察表明,背侧纹状体DA释放的丧失足以产生运动学习和精细运动缺陷,但并未达到类似于临床PD的运动症状水平。该团队通过分别向小鼠背侧纹状体或SN中立体定位注射携带AADC(可将左旋多巴转化为DA)的AAV,以及随后对小鼠旷场步态的分析,证明黑质多巴胺释放丧失对于粗大运动缺陷而言是必要因素。总的来说,这项研究不仅证明多巴胺能神经元中MCI功能丧失足以引发进行性的、轴突先行的功能丧失和左旋多巴反应性帕金森病,还证明背侧纹状体的DA耗竭对于联想运动学习和精细动作而言是必要的,但黑质的DA释放缺陷才会引起类似于临床PD患者表现出的粗大运动损伤特征。针对这项研究,来自美国格莱斯顿研究所的Zak Doric和Ken Nakamura在同期杂志上发表观点文章 Principles of Parkinson’s disease disputed by model 。他们指出González-Rodríguez等构建的基于线粒体功能障碍的帕金森疾病小鼠模型代表了目前可用的散发性PD最佳模型之一,它不仅可以研究复合物 I 缺陷在疾病中的作用,还可以提供一个模型来评估治疗策略的潜力。此外,该模型一个显著特征是多巴胺神经元在几个月中进行性退化,且轴突和胞体退化存在延迟,这种延迟便于详细研究两个不同部位多巴胺损伤所带来的影响。另一个相当大的进步是该模型证实纹状体多巴胺释放减少对于运动缺陷来说是必要而不充分的,也就是说,黑质多巴胺在维持粗大运动方面起着至关重要的作用。原文链接:https://doi.org/10.1038/s41586-021-04059-0https://doi.org/10.1038/d41586-021-02955-z
  • 岛津应用:模型毛发样本中的药物成像
    -面向药物摄取履历的观察- 成像质谱分析法越来越广泛地应用于各领域中。由于毛发增长时会极微量地吸收当时所摄取的药物,因此,毛发作为记录药物使用履历的“磁带”式的样本备受关注。实际应用中经常使用 LCMS 等对从毛发中提取的药物进行分析。但是因提取操作的原因导致毛发中药物分布信息损失。如果能进行毛发纵轴方向截面的成像质谱分析,则可实现观察伴随毛发生长药物分布的变化情况、即实现药物使用履历的可视化。这项技术有望在法医学、临床医学、用药管理以及科学搜查等领域进行应用。 本次使用甲氧那明添加的毛发样品,进行了高空间分辨率的成像质谱分析,获得详细显示毛发中药物分布的成像结果。毛发在生长过程中,一边在根部吸收血液中的药物等,一边以每个月约 1cm 的速度生长。因此,毛发也被比喻为记录药物使用履历的磁带,在法医学和科学搜查中得到了应用,今后有望在用药管理、兴奋剂检查等更广泛的领域中应用。本应用报告中记载的添加毛发样本的制作过程与洗发香波、头发营养产品、头发定型产品和染发剂等头发护理用品的使用情况有很多共通点,因此,上述分析技术可以用于这些产品的开发和评价工作、进一步为头发的美容、健康作出贡献。iMScope TRIO (左)和 iMLayer(右) 了解详情,敬请点击《模型毛发样本中的药物成像-面向药物摄取履历的观察-》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 苏州医工所等构建非小细胞肺癌化疗/靶向治疗疗效精准预测模型
    化疗/靶向治疗是中晚期非小细胞肺癌患者首选的治疗方案,然而化疗/靶向治疗并非适用于所有患者。部分患者对化疗/靶向治疗没有响应,而该情况对治疗没有益处,甚至造成无法逆转的身体损伤。目前,尚无临床指南指导医生在治疗前评估化疗/靶向治疗效果,导致中晚期非小细胞肺癌患者总体治疗效果不理想。因此,基于治疗前预测手段缺失的情况,开展非小细胞肺癌化疗/靶向治疗疗效预测对个性化医疗具有临床意义。  中国科学院苏州生物医学工程技术研究所研究员高欣团队与山东省肿瘤医院合作,探究治疗前医学影像信息对非小细胞肺癌化疗/靶向治疗疗效的预测价值。该研究入组了322例接受一线化疗、靶向治疗或二者联合的非小细胞肺癌患者,其中,肿瘤响应组152人,肿瘤无响应组170人,收集了患者的肺部CT影像数据及临床资料(年龄,血清标记物等)。科研人员利用肿瘤原发灶CT影像,借助影像组学方法及机器学习算法构建预测模型。研究表明,非小细胞肺癌肿瘤区域的影像学特征具有独立预测化疗/靶向治疗效果的能力,并且融合上述特征构建的模型预测精度达到0.746(如图所示),实现了目前已报道的精度最高的非小细胞肺癌化疗/靶向治疗疗效预测。  该研究探索并验证了肿瘤区域影像信息(CT)对非小细胞肺癌化疗/靶向治疗效果的预测能力,构建了非小细胞肺癌化疗/靶向治疗疗效预测模型,为临床制定个性化治疗方案提供了新的理论依据和方法。  相关研究成果发表在European Radiology上。  论文链接
  • Nature :Stewart获得PDX模型
    p   Stewart等人报道了许多类型的儿科癌症的小鼠模型的建立方法和分析结果。研究者们将患者肿瘤活检得到的细胞移植到免疫缺陷小鼠中,从而获得PDX模型。他们使用几种技术来表征这些模型,这些技术包括显微镜和DNA序列分析,同时他们还在一些PDX模型小鼠上进行药物测试。研究人员将PDX肿瘤细胞冻存起来,之后将这些细胞解冻,并移植到其它小鼠中,以用于将来的分析。其他团队还创建了不同类型人类肿瘤的PDX模型。该领域关键的下一步是建立集中的开放存取库,以管理和共享来自不同团队的PDX研究数据。通过这种方法,我们可以促进识别临床试验中可测试的治疗方法的进展。 /p p style=" text-align: center " span style=" color: rgb(153, 153, 153) " img width=" 600" height=" 178" title=" " style=" width: 600px height: 178px " alt=" " src=" http://img1.17img.cn/17img/images/201709/uepic/071cf1e3-494a-444b-b094-4dbd24d0c9ed.jpg" border=" 0" vspace=" 0" hspace=" 0" / /span /p p   现在科学家们将患者的肿瘤细胞接种到小鼠体内,进而建立肿瘤模型,以用于分析和开展药物测试。目前研究人员已鉴定了一系列小儿实体肿瘤模型,同时相关数据的允许免费获取。 /p p   罕见癌症的研究面临着两方面的挑战:可用的肿瘤样本少 缺乏相应的小鼠模型。最近科学家们非常成功地开发了将人类肿瘤细胞高效移植到免疫缺陷小鼠中的癌症建模技术。在《自然》(Nature)杂志上,Stewart等人对成功接种和生长的小鼠实体瘤进行了全面的分析,并展示了这些模型如何用于筛选罕见癌症患者的潜在靶向治疗。 /p p   得益于高效的化疗药物组合,美国仅有不到20%的癌症儿童死于癌症。这些组合方案是通过高度实证和渐进的临床试验而建立起来的。然而,我们和其他癌症生物学家坚信,只有基本的科学发现才能产生变革性的进步。我们承认,儿童癌症的治疗比成年人的要有效得多,但仍然需要更好的治疗来减轻化疗药物造成的长期副作用。据美国国家癌症研究所(US National Cancer Institute)统计,每年年龄在20岁以下的癌症患者的死亡率比65岁以上癌症患者的死亡率低300-500倍。 /p p   另一个被广泛接受的信念是癌症研究需要更多的模型系统,这些模型要便宜、易于操作,并且真实反映人类肿瘤的特征,以改善癌症靶向。在这方面,缺乏T、B和自然杀伤细胞,因而对人类肿瘤细胞排斥能力较弱的免疫缺陷小鼠(裸鼠)成为了接受患者来源肿瘤异种移植物(patient-derived tumour xenograft, PDX)的理想动物模型。利用裸鼠制造PDX模型非常简便,并且可以将裸鼠的肿瘤细胞冻存,解冻后还可以移植到其它小鼠身上。肿瘤细胞也可以用于原位生长,这意味着细胞生长在与人类肿瘤来源的器官对应的小鼠组织中(即肺癌细胞接种到裸鼠肺里)。这些肿瘤细胞可以进行遗传工程,携带便于体内追踪的标记分子(如GFP),并且可以模拟人类肿瘤微环境的特征。 /p p   大多数原始PDX都会死亡。随着时间的推移,科学家们逐渐了解到,虽然PDX比体外生长的细胞系和常规小鼠肿瘤模型更贴近人类肿瘤特征,但它们也具有一些实质性限制。例如,当不同的小鼠被注射同一肿瘤标本的等分试样时,得到的PDX可以具有非常不同的突变、细胞表面标记和转录谱。用于异种移植的小鼠品系也对PDX生物学有很大的影响。因此,不同试验条件下得到的PDX小鼠模型都是不一样的。PDX专家们经常被问到这个问题:“这些模型是否与原始肿瘤相同?”其实两者之间差异很大。 /p p   至少到目前为止,PDX的最大优点是其造模非常简单。我们现在可以使用PDX研究几种没有对应的转基因小鼠或细胞株的罕见癌症模型。由于PDX源于人类肿瘤,因而对特定药物存在抵抗。这可能有助于模拟早期临床试验中难治性癌症的药物筛选。现已有20多种PDX被用于2期临床试验。这些研究可以表征多个模型的药物响应的异质性、用于开发预测药物响应的检测方法,或可用于筛选肿瘤中存在的少数耐药细胞。 /p p   现在有几个PDX存储库,含有数百个甚至数千个来源于接受过化疗或靶向治疗患者的肿瘤。这些库中的一些是开源的(可免费提供模型),包含400多个成人实质肿瘤PDX和300个儿科和成人血液肿瘤PDX,以及其他研究团队创造的大量数据。在儿童实质瘤网络计划(Childhood Solid Tumour Network)中,Stewart等人建立了60多种儿科实质肿瘤的PDX模型。 /p p   Stewart等人贡献了非常多的数据。他们通过原位生长获得了15种肿瘤的148个标本,并报告了1173个细胞涂片的免疫组织化学分析结果,102个PDX的全基因组序列结果和转录谱。他们还报告了目标基因组区域的广泛靶向DNA测序 分析了结合DNA的组蛋白的9种不同的修饰情况 对PDX进行了电子显微镜扫描 并生成了5种PDX的肿瘤细胞系。他们的药物筛选测试产生了50万个以上的数据点。他们进行的体内研究包括:多个PDX细胞系的基因工程标记细胞,进行成像 一项小鼠研究药物治疗剂量 以及两个小鼠研究调查多个药物联用的剂量及疗效。这样一个内容丰富的数据集为该领域的研究人员进一步调查Stewar等人发现的突变、转录特征和药物敏感性奠立了基础。 /p p   最大程度地发挥PDX在科学发现上的潜力需要非凡的透明度、标准化和开放获取模式。作为研究经费的使用者、癌症患者的保护者,我们责无旁贷。儿童实质瘤网络已经对多种儿童实质肿瘤建模,其中包括Stewart等人建立的模型,并免费提供,并已经将它们分发给了11个国家的120多名研究者。其他研究中心也可以学习Stewart等人的研究方法。儿童实质瘤领域的下一步将是建立一个更大的PDX库联盟、统一战线、合作表征PDX模型,建立数据库基础设施(图1)。 /p p   Stewart等人对一般肿瘤,特别是儿童实质瘤模型的建立做出了突出贡献。迄今为止,他们提供了最全面的PDX存储库之一。 他们贡献的大量数据集将为世界各地的调查人员提供参考,并推动学界的分享文化,使所有人受益。 /p
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 青岛将建城市三维地质模型 构建陆海一体地质环境监测网
    p   青岛市自然资源和规划局消息,《青岛市城市地质调查工作方案》于近日印发实施。根据该方案要求,青岛市将建立城市三维地质基础模型,构建陆海一体地质环境监测网,为政府管理决策提供重要基础信息和资料支撑。 /p p   青岛市自然资源和规划局副局长刘龙江介绍说,青岛市城市地质调查旨在通过开展“地下空间、资源、环境、灾害”等多要素地质综合调查,建立“一模一网一平台”(即:城市三维地质模型、地质环境监测预警网络和综合地质信息服务与决策支持平台)的城市地质管理与服务体系,综合评价城市地壳稳定性、资源保障承载能力和城市安全性,全面服务于国土空间规划、新旧动能转换、乡村振兴、军民融合、“一带一路”“上合示范区”、海洋强省、“十五个攻势”和新型城镇化建设等重大战略实施,有力保障经济社会高质量发展。 /p p   据了解,根据《青岛市城市地质调查工作方案》,青岛市计划利用3年时间,采取“中央和地方共同出资”方式,联合开展城市地质调查工作。聚焦城市规划、建设、管理和生产、生活、生态等方面,统筹部署地上与地下、陆域与海域、资源与环境、地质灾害调查工作,为国土空间规划、重大工程建设、自然资源管理、生态环境保护、防灾减灾提供基础资料支撑和服务。 /p p   据介绍,根据方案共有5项任务。一是开展城市地下空间资源地质调查。在市南区、市北区、李沧区、崂山区、黄岛区、青岛高新区等区域,开展环境地质、工程地质调查,摸清地下空间地质资源家底,科学评价地下空间开发利用地质适宜性和资源潜力,补齐城市发展的地质工作短板,拓展城市地下发展空间。在胶州湾东岸及湾内开展断裂构造地质调查,为重大工程规划提供参考 在大沽河、墨水河下游周边区域开展海水入侵状态调查,提出海水入侵机理与防治对策,为海岸带保护与修复提供依据。 /p p   二是开展多门类自然资源综合地质调查。推进环境地质调查,在胶州湾、灵山湾、鳌山湾等区域开展陆海统筹海岸带综合地质调查、生态地质调查,重点查明海岸带环境地质条件,为海岸带重大工程规划建设提供基础数据 实施地质资源调查,在黄岛区、即墨区等重点农田、生态区,开展土壤、水体地球化学调查,重点查明富硒等特色土地资源分布、生态地球化学特征与问题成因,分析国土空间开发利用与周边水土环境关系,进一步预测发展趋势,提出对策建议,为发展现代化特色农业提供地质服务 开展地下水应急水源地调查,在白马-吉利河水源地、大沽河水源地等重点区域,完成可采资源量分析评价,提出应急水源地建议方案,为地下水资源保护利用和饮水安全提供保障 开展地热资源潜力和浅层地热能调查,分析评价重点区域地热资源成矿条件,提出开发利用建议 完成全域资源、环境、灾害地质补充调查,查明水文地质、工程地质、环境地质等基础地质条件,实现与资源环境承载能力评价、国土空间开发适宜性评价工作的有机衔接。 /p p   三是建立城市三维地质基础模型。以精准支撑城市地下空间资源科学、综合开发利用为目标,构建全市域、重点区、示范区、精品区等四个尺度三维地质模型,实现城市地下空间透明化,有效支撑地下空间资源协同开发利用。 /p p   四是构建陆海一体地质环境监测网。对重要的地质灾害隐患点、地下水超采区、海水入侵区、大型化工产业区、大型垃圾填埋场、地热和矿泉水资源、地质遗迹资源、岸滩剖面等,进行自动化监测或定期监测,实现信息数据集成共享,初步构建陆海一体监测预警网。 /p p   五是建设城市地质信息服务与决策支持平台。建设“一个中心、两大系统”(即:青岛市地质大数据中心和地质信息辅助决策系统、地质信息公共服务子系统)的城市地质信息服务与决策支持平台,满足不同用户群体需求,为政府管理决策提供重要基础信息和资料支撑,为智慧城市建设、地下空间拓展、新型城镇化发展和推进重大项目建设提供基础地质保障。 /p p   刘龙江表示,青岛城市地质调查工作预期形成基础性、理论性、应用性3大类成果,将为国土空间规划和地下空间开发利用提供服务支撑 为海岸带资源开发与保护提供服务支撑 为水土资源开发与保护提供服务支撑 构建城市地质环境监测预警网,为城市地质安全保障提供服务支撑 为重大工程选址建设规划提供服务支撑 为政府部门提供城市地质信息服务与决策支持,为社会公众提供地质科普资料,满足不同群体的城市地质信息需求。 /p
  • 生物3D打印应用 | 构建体外肝毒性模型
    受伦理和费用影响,使用动物来进行毒理实验变得越来越困难。同时,动物所得到的结果很有可能与实际临床试验有差别,因而给临床试验带来了潜在的风险。于是,科研工作者开始尝试在体外构建三维细胞培养物——类器官。类器官通常具有相应器官的关键特征,以此科研工作者就可以使用它们来进行相应器官的药物毒理学试验,常见的如使用肝脏类器官检测药源性肝损伤(Drug Induced Liver Injury,DILI)。一些较为简单的模型构建事实上已经使用了较长时间,但这些模型缺乏长效性(Longevity)和组织复杂度(Tissue-level Complexity),得出的结论往往不具有充分的可靠性。 在此背景下,Deborah G. Nguyen等人使用病人来源的肝脏细胞和非薄壁细胞以3D打印的形式构建了无支架类器官。相较于传统的偏二维模型或简单三维模型,该类器官在4周后仍然能够维持一定程度的ATP、白蛋白甚至是药物介导的活性细胞色素P450s酶。为评估该类器官的功能性,作者选用曲伐沙星——一种因肝毒性较强而无法用标准临床前模型评估肝毒性的药物——与无明显肝毒性药物左氧氟沙星进行对比。发现曲伐沙星在临床浓度下(≤4 μM)的肝脏毒性与浓度呈显著性正比关系。图1 置于24孔板中的肝脏类器官此外,尽管有很多相关的文献,但对于准备进入这一领域的科学工作者而言,面对各种各样的细胞模型、种类繁多的模型构建方法,可能会耗费许多时间理清头绪。面对这种情况,Xihui等人在综述Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation一文中,详细阐述了构建体外三维肝脏模型的相关内容。分为模型建立方法、细胞种类、在药源性肝损伤(DILI)中的重要性及相关商业化情况,主要内容如下: l 模型构建:根据辅助材料的使用与否分为有支架(主要为水凝胶、琼脂糖等遇水形成一定支撑力的材料,其中便提到在regenHU技术和产品的推动下,利用细胞外基质(extracellular matrix,ECM)作为支架材料进行肝脏3D打印成为了非常重要的模型构建方法)和无支架模型两种,分别介绍了建立方法和优缺点。 l 细胞种类:原代人类肝脏细胞(Primary Human hepatocytes)、干细胞分化的类肝脏细胞(stem cell derived hepatocyte like cells)、永生化肝细胞系(immortalized hepatic cell lines)等三种不同类型的肝脏细胞。 l 肝毒性研究应用:肝毒性主要有两个来源——药物本身或经由药物代谢产生的产物。因而在本章节对直接毒性和慢性毒性均进行了介绍。同时,作者也总结了纳米药物的肝脏毒性。 l 商业化情况:因生物3D打印的速率尚不足以满足批量生产,因而作者认为该项应用仍以定制为主。通过使用病人来源的细胞,科研工作者可构建类器官进行个性化药物筛选和个体化药效评价,随着商业医疗的逐步完善,这一市场将极具发展前景。 该综述全面的内容为正要和即将进行类似实验的科研工作者提供了便利。但正如作者所言,类器官仍在多个国家遭受不同程度的文化、法规障碍,在努力争取科研许可的同时,也应牢记科学底线,为社会带来正能量。 参考文献:[1] Zhang X, Jiang T, Chen D, et al. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation[J]. Critical Reviews in Toxicology, 2020(11):1-31.[2] Nguyen D G, Funk J, Robbins J B, et al. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro[J]. Plos One, 2016, 11(7):e0158674.目前,regenHU产品可经由我司购买。regenHU生物3D打印机具有高精度、高稳定性、打印方式广泛、应用面广等特点,欢迎大家咨询!联系电话021-37827858 或 13818273779(微信同号)。点击以下链接,查看往期回顾生物3D器官打印——人工角膜生物3D器官打印——肠道体外模型生物3D器官打印——喉部软骨
  • 生物打印肝脏模型评价药物的肝脏毒性研究
    背景介绍 药物性肝损伤(DILI)会影响肝脏代谢和解毒能力,但其根本机制仍有很多未知。为了准确和可再现地预测人的DILI,非常需要体外肝脏模型来替代昂贵和低通量的2D细胞培养系统、动物研究和芯片实验室模型。我们提出了一种新的“droplet in droplet”(DID)生物打印方法,该方法可以产生用于肝毒性研究的生理相关肝脏模型。这些模型,或称微型肝脏,是用BIO X微滴打印包裹在ⅰ型胶原中的肝(HepG2和LX2 肝星状细胞)和非肝(HUVEC 人脐静脉血管内皮细胞)细胞制成的。培养7天后,将微型肝脏暴露于急性和高剂量的对乙酰氨基酚或氟他胺,然后评估细胞活力、白蛋白分泌、丙氨酸氨基转移酶(ALT)活性和脂质积累的变化。微型肝脏ALT活性增加,白蛋白和脂质生成减少,表面这两种药物均有细胞毒性反应。这项研究的结果进一步验证了3D生物打印是一种可行的、可用于模拟肝组织和筛选特异性药物反应的中到高通量的解决方案。 材料和方法 细胞准备根据建议的方案培养两种肝细胞(HepG2和LX2)和一种非肝细胞(HUVEC)细胞系,并每3-4天传代一次。HepG2在含有谷氨酰胺的MEMα中生长,并补充1%丙酮酸钠(Gibco,Cat#11360070)和1%MEM非必需氨基酸溶液(Gibco,Cat-#11140050)。LX2细胞在IMDM(Gibco,Cat#12440053)中生长,HUVEC在EGM-2生长培养基(Lonza,Cat#CC-3156)中培养,并添加单体补充剂(Lonza,Cat#CC-4176)。所有培养基均添加10%的FBS(Gibco,16000044类)和1%的青霉素链霉素(Gibco,参考文献1509-70-063)。.生物墨水的制备和DID生物打印中和并制备3mg/mL浓度的Coll I bioink(CELLINK,SKU#IK4000002001)用于生物打印。以1:1:2(LX2:HUVEC:HepG2)的比例将5x106个细胞/毫升装入冷冻墨盒。在未经处理的96孔板(Thermo Fisher Scientific)中,使用BIO X(CELLINK,SKU#0000000 2222)上的液滴打印功能对微型肝脏进行生物打印。使用设置为8°C的温控打印头(TCPH,SKU#0000000 20346)将胶原液滴分配到设置为8°C–10°C的冷却打印床上。在第一轮液滴打印后,样品在37°C下培养3分钟,然后返回BIO X,使用相同参数进行第二轮液滴打印。在37°C条件下,将得到的封装液滴热交联20分钟,并为每个孔提供200微升混合培养基(25%IMDM+25%DMEM+50%MEM)。培养液每2-3天更新一次。药物处理和分析培养7天后,用不同浓度的APAP[0.1,0.5,1,5,10,25,50 mM](Abcam)或FLU[10,25,50,75,100,150,200µM](Selleckchem)处理微型肝脏72小时。采用比色溴甲酚绿(BCG)测定法(Sigma-Aldrich)、ALT活性测定法(BioVision)和活/死染色试剂盒(Invitrogen)分别检测白蛋白产生、肝损伤和细胞活力。所有分析均按照制造商的说明进行。 结论 胶原I中的细胞生长和球体形成胶原I中的细胞生长和球体形成在这项研究中,我们评估了Coll I bioink中的细胞生长、球体形成和迁移模式。到第2天,HepG2和LX2已紧密组装成小簇,HUVEC已拉长,形成同心网络(图1)。使用胶原蛋白作为支架可以在整个培养过程中进行细胞重组、球体极化和细胞增殖(数据未显示)。此外,根据图1,很明显,细胞在整个培养过程中渗透DILI模型,并可能在内部和外部液滴层之间迁移。生物打印微型肝脏的药物治疗和细胞毒性第10天的毒性评估结果表明,生物打印微型肝脏对APAP(图2A)和FLU(图2B)具有细胞毒性和剂量依赖性反应。这种肝功能下降表现为白蛋白分泌和脂质生成减少,ALT活性上调。同样明显的是,基于ALT活性的增加,两种药物的毒性剂量都会对细胞活力产生破坏性影响。后者在图3中尤为明显,其中活/死图像表明,在较高浓度的APAP或流感病毒下,细胞活力显著降低。药物治疗的动态细胞内反应研究了APAP和FLU如何调节细胞内脂肪含量。肝组织的ORO染色通常用于识别脂肪酸或药物引起的不同阶段纤维化或脂肪变性(Pingitore,2019)。在我们的研究中,经处理的微型肝脏的ORO染色显示,在高剂量药物处理的样本中,脂肪积累最小,而在未经处理或低剂量药物治疗的样本中,脂肪积累显著(图4A)。一种解释是APAP和FLU与脂质过氧化有关,其中毒性药物水平引起的氧化应激可能引发脂质降解和膜损伤(Behrends,2019)。图4B中未处理样品的详细观察提供了液滴模型中液滴的横截面图。这张图片显示了大量细胞向液滴外壳迁移并产生脂肪,可能表明存在营养和氧气梯度,并验证了细胞重组模式和胶原内的球体极化。▶ 作为2D细胞培养系统、动物研究和芯片实验室原型的可靠替代品,BIO X可作为中高通量工具,用于制作功能性3D生物打印肝脏模型,实现药物筛选和分析,并减轻药物消耗的成本。▶ CELLINK Coll I作为DID模型的支架,为模型提供了一个稳定、可调和高度相容的环境,且具有丰富的肝细胞重排和球体形成的结合位点。▶ 基于脂质过氧化、白蛋白分泌减少和ALT活性上调的证据,我们的研究结果表明,DID微型肝脏具有功能性,并且对APAP和FLU具有剂量依赖性和细胞毒性反应。▶ DID模型允许组织层之间的细胞间相互作用,并为研究不同硬度层之间的迁移模式提供了独特的机会。未来的毒性研究可以采用该模型复制纤维化的各个阶段,或研究药物治疗后肝脏组织的再生能力。参考文献:1.Behrends, V., Giskeødegård, G. F., Bravo-Santano, N., Letek, M., & Keun, H. C. Acetaminophen cytotoxicity in HepG2 cells isassociated with a decoupling of glycolysis from the TCA cycle, loss of NADPH production, and suppression of anabolism. Archivesof Toxicology. 2019 93(2): 341–353. DOI: 10.1007/s00204-018-2371-0.2.Chen, M., Suzuki, A., Borlak, J., Andrade, R. J., & Lucena, M. I. Drug-induced liver injury: Interactions between drug properties andhost factors. Journal of Hepatology. 2015 63: 503–514. DOI: 10.1016/j.jhep.2015.04.016.3.Pingitore, P., Sasidharan, K., Ekstrand, M., Prill, S., Lindén, D., & Romeo, S. Human multilineage 3D spheroids as a model of liversteatosis and fibrosis. International Journal of Molecular Sciences. 2019 20(7): 1629.
  • 预算3904万,医科院新冠肺炎动物模型平台项目仪器采购招标
    p style=" text-align: justify text-indent: 2em " 12月9日公告,中国医学科学院医学实验动物研究所新冠肺炎动物模型平台能力升级项目公开招标。预算3904万元,采购包括气溶胶发生器、高压锅、生物安全柜、显微镜、离心机、PCR仪、流式细胞仪、透射电镜等共122台/套仪器。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 具体公告内容如下: /strong /span /p p style=" text-align: justify text-indent: 2em " strong 一、项目名称: /strong 中国医学科学院医学实验动物研究所新冠肺炎动物模型平台能力升级项目 /p p style=" text-align: justify text-indent: 2em " strong 二、招标编号: /strong 20CNIC01-5135 /p p style=" text-align: justify text-indent: 2em " strong 三、资金来源: /strong 财政性资金 /p p style=" text-align: justify text-indent: 2em " strong 四、采购预算: /strong /p p style=" text-align: justify text-indent: 2em " 包01:人民币1190万元; /p p style=" text-align: justify text-indent: 2em " 包02:人民币903万元; /p p style=" text-align: justify text-indent: 2em " 包03:人民币984万元; /p p style=" text-align: justify text-indent: 2em " 包04:人民币827万元。 /p p style=" text-align: justify text-indent: 2em " strong 五、项目用途: /strong 实验室检测 /p p style=" text-align: justify text-indent: 2em " strong 六、项目基本概况介绍:& nbsp /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 包01: /strong /span strong /strong /p table border=" 1" cellspacing=" 0" style=" border: none " tbody tr style=" height:40px" class=" firstRow" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 品目号 /strong /p /td td width=" 229" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 货物名称 /strong /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 数量(台/套) /strong /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p strong 是否允许进口 /strong /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 气溶胶发生器 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 2 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 动物生物安全三级实验室冷水机组 /p /td td width=" 94" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 3 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 否 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 3 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 数字化小动物独立回风饲养系统 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 4 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 液氮罐 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 13 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 5 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 生物安全型高压锅 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 2 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 否 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 6 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 高压锅 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 否 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 7 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 隔离器 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 57 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 否 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 8 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 传递仓 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 3 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 否 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 9 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 生物安全实验室UPS电源 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 否 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 10 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 生物安全实验室摄像系统 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 否 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 11 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 除臭系统 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 3 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 否 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 12 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 生物安全垫料处理机 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 13 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 垫料处理机 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 否 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 14 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 换笼柜 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 15 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 生物安全柜 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 4 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 否 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 16 /p /td td width=" 238" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 生物安全独立回风饲养系统 /p /td td width=" 103" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 2 /p /td td width=" 105" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr /tbody /table p style=" line-height:150%" br/ /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 包02: /strong /span strong /strong /p table border=" 1" cellspacing=" 0" style=" border: none " tbody tr style=" height:40px" class=" firstRow" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 品目号 /strong /p /td td width=" 224" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 货物名称 /strong /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 数量(台/套) /strong /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 是否允许进口 /strong /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 233" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 倒置荧光显微镜 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 2 /p /td td width=" 233" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 大动物生理信号遥测系统 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 2 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 3 /p /td td width=" 233" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 小动物生理信号遥测系统 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 4 /p /td td width=" 233" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 561nm激光器升级套件 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 5 /p /td td width=" 233" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 405nm激光器升级套件 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 6 /p /td td width=" 233" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 高效基因转染系统 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 7 /p /td td width=" 233" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 便携式数字扫描成像系统 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 8 /p /td td width=" 233" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 手术镜 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 9 /p /td td width=" 233" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 离心机 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 10 /p /td td width=" 233" valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" left" p 冷冻离心机 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 11 /p /td td width=" 233" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p PCR仪 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 2 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 12 /p /td td width=" 233" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 正置荧光显微镜 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 13 /p /td td width=" 233" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p 分选式流式细胞仪 /p /td td width=" 92" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 116" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr /tbody /table p style=" line-height:150%" br/ /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 包03: /strong /span strong /strong /p table border=" 1" cellspacing=" 0" style=" margin-left: 15px border: none " tbody tr style=" height:40px" class=" firstRow" td width=" 77" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 品目号 /strong /p /td td width=" 151" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 货物名称 /strong /p /td td width=" 76" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 数量(台/套) /strong /p /td td width=" 125" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 是否允许进口 /strong /p /td /tr tr style=" height:46px" td width=" 77" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 151" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 大动物CT /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 125" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 77" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 2 /p /td td width=" 151" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 小动物CT /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 125" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 77" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 3 /p /td td width=" 151" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 大动物超声 /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 125" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 77" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 4 /p /td td width=" 151" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 笼架具 /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 125" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr /tbody /table p style=" line-height:29px" br/ /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 包04: /span /strong strong /strong /p table border=" 1" cellspacing=" 0" style=" border: none " tbody tr style=" height:40px" class=" firstRow" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 品目号 /strong /p /td td width=" 180" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 货物名称 /strong /p /td td width=" 95" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 数量(台/套) /strong /p /td td width=" 137" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong 是否允许进口 /strong /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 180" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 高分辨三维荧光组织成像分析系统 /p /td td width=" 104" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 137" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 2 /p /td td width=" 180" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 全自动多标记组织处理仪 /p /td td width=" 104" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 137" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 3 /p /td td width=" 180" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 酶标仪 /p /td td width=" 104" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 137" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 4 /p /td td width=" 180" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 细胞计数仪 /p /td td width=" 104" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 137" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 5 /p /td td width=" 180" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 智能型超声波破碎仪 /p /td td width=" 104" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 137" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 6 /p /td td width=" 180" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 倒置显微镜荧光组件 /p /td td width=" 104" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 137" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 7 /p /td td width=" 180" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 透射电子显微镜 /p /td td width=" 104" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 137" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr tr style=" height:46px" td width=" 58" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 8 /p /td td width=" 180" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 电镜超薄切片制作系统 /p /td td width=" 104" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 1 /p /td td width=" 137" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 是 /p /td /tr /tbody /table p style=" line-height: 150% " br/ /p p style=" text-align: justify text-indent: 2em " strong 七、获取招标文件的时间期限、方式及招标文件售价: /strong /p p style=" text-align: justify text-indent: 2em " (1)时间期限:从2020年12月10日至2020年12月16日每天& nbsp (节假日除外) 上午9:00-11:30,下午13:00-16:00 (北京时间)。 /p p style=" text-align: justify text-indent: 2em " (2)获取方式及售价:招标文件每包人民币1000元,只接受银行电汇方式购买。请将购买招标文件的银行电汇底单凭证扫描件连同投标人的营业执照扫描件,填写并扫描的《标书购买登记表》发至招标代理机构邮箱: a href=" mailto:sunwei2@cnic.gt.cn" sunwei2@cnic.gt.cn /a 招标文件售后不退。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 投标截止时间、开标时间及地点: /p p style=" text-align: justify text-indent: 2em " (1)投标截止时间及开标时间:2020年12月22日09:30(北京时间),届时请投标人派代表出席开标仪式。(请出席开标仪式的代表携带身份证原件) /p p style=" text-align: justify text-indent: 2em " (2)投标文件递交及开标地点:北京市西城区西直门外大街6号中仪大厦302会议室。 /p p style=" text-align: justify text-indent: 2em " strong 八、采购人: /strong /p p style=" text-align: justify text-indent: 2em " 名称:中国医学科学院医学实验动物研究所 /p p style=" text-align: justify text-indent: 2em " & nbsp 采购人地址:北京市潘家园南里5号& nbsp /p p style=" text-align: justify text-indent: 2em " & nbsp 采购人联系方式:& nbsp 010-67776051 /p p style=" text-align: justify text-indent: 2em " strong 九、采购代理机构: /strong /p p style=" text-align: justify text-indent: 2em " 名称:中国仪器进出口集团有限公司 /p p style=" text-align: justify text-indent: 2em " 地址:北京市西城区西直门外大街6号中仪大厦915室 /p p style=" text-align: justify text-indent: 2em " 电话:010-88316785 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 传真: /span span style=" text-indent: 2em " 010- /span span style=" text-indent: 2em " 88316601 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 联系人:孙伟 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 邮编: /span span style=" text-indent: 2em " 100 /span span style=" text-indent: 2em " 044 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 联系 /span span style=" text-indent: 2em " 方式: /span span style=" text-indent: 2em " /span a href=" mailto:hanyidi@cnic.genertec.com.cn" style=" text-indent: 2em " sunwei2@cnic.gt.cn /a span style=" text-indent: 2em " (电子邮件) /span span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong 十、账户信息: /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 开户名称:中国仪器进出口集团有限公司 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 开户银行:中国银行总行营业部 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 帐号: /span span style=" text-indent: 2em " 7783 5000 8791 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 附件: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202012/attachment/070518f2-f8b0-4970-a634-2642e09c20bc.pdf" title=" 标书购买登记表--新版.pdf" 标书购买登记表--新版.pdf /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202012/attachment/17b47635-f974-44c4-8eed-fb32595574b2.docx" title=" 新冠肺炎动物模型平台能力升级项目招标公告--5135.docx" 新冠肺炎动物模型平台能力升级项目招标公告--5135.docx /a /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span br/ /p
  • 转化医学系列网络讲座 | 类器官时代的疾病模型
    本期webinar邀请到的是香港大学微生物系研究助理教授周婕博士,周婕博士是西安医科大学医学学士,香港大学PhD,前 UCSF博士后研究员。她的研究方向是病毒感染的致病机理及病毒和宿主的相互作用。近年来,她将全新的类器官技术用于病毒学的研究,她的创新性的研究发表在Science Advances和 PNAS 上。与荷兰 Hubrecht 研究所Hans Clevers 教授合作,周婕博士和她的团队建立了首个成体干细胞来源的人气道类器官,气道类器官在形态和功能上忠实地模拟人的气道上皮,为呼吸道生理和病理的提供了一个功能强大的用途广泛的模型。讲座题目:类器官时代的疾病模型讲座时间:2019年6月20日14:00-15:00主讲人:周婕 博士(香港大学)讲座形式:网络讲座,手机或PC即可参与(会议链接和如下报名链接相同)内容简介:Brief introduction of organoids, esp. adult stem cell derived organoids.类器官简介,尤其是成体干细胞来源的类器官Virus infections in human intestinal organoids.人类小肠类器官中的病毒感染Establishment and characterization of human lung organoids and influenza virus infection.人类肺类器官的建立和分析,以及流感病毒的感染Cancer organoids and applications.肿瘤类器官及应用即刻报名扫描下方二维码,或点击“阅读原文”,即刻报名吧!更多转化医学系列网络讲座安排,具体时间以珀金埃尔默微信推送时间为准。敬请关注!关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 美国研发高精度气候模型精确预测气候状况
    GEOS-5气候模型所形成的模拟图片,模型精确地预测了主体云层系统的位置与形状     地球同步轨道环境卫星所拍摄的卫星图片   北京时间6月16日消息,据美国宇航局官网报道,美国宇航局地球系统科学家近期研制了迄今精度最高的地球气候模型GEOS-5气候模型,并通过该模型绘制了全球气候模拟图片。模拟图片与卫星图片对比显示,GEOS-5气候模型可以精确地预测气候状况。   科学是一个过程。科学家首先需要实地观测,然后提出假设用于解释观测数据,最后再通过系统验证和推理,找到支持或辩驳其假设的证据,从而得出一个科学的结论。许多人或许认为,科学家们在进行假设和验证的过程,所有工作都是在实验室中进行的。但是,对于研究地球如何运行的地球系统科学家来说,他们的实验室就是整个星球。面对庞大的星球,科学家们很难将全球各地不同的气温或云雨真正地集中到狭小的实验室中系统地研究。相反,他们只有将实地观测数据结合起来,形成复杂的电脑模型进行模拟研究。通过这类模型,科学家们可以对不同的假设进行测试和验证,并利用真实的观测数据进行检测,从而科学家们可以真正地理解地球大气、陆地和海洋等各个方面是如何协同工作的。   本文中的两幅图片分别为地球气候模型模拟图片(上图)和地球同步轨道环境卫星图片,上图显示的是分别通过两种方式所获得的同一时刻地球气候状况。该地球气候模型被称为“戈达德地球观测系统模型-第五版”(GEOS-5),也是迄今精度最高的地球气候模型。下图则是由美国宇航局和美国国家海洋和大气局的地球同步轨道环境卫星所拍摄的卫星图片。通过图片对比发现,GEOS-5模型精确地预测了2010年2月6日时的云层特点。当天,一股强烈的寒流为华盛顿特区带来了一场数英尺厚的暴雪。   2010年2月6日,GEOS-5模型和地球同步轨道环境卫星传感器分别对地球上空的云层进行了红外测量。两幅图片显示,陆地上空覆盖着厚厚的云层,模拟图片与卫星图片所描绘的情况极其吻合。模型精确地预测了主体云层系统的位置与形状,如北大西洋东部上空的卷曲云带以及美国海岸附近的强烈冬季风暴。高精度的GEOS-5气候模型甚至还可以详细预测云层形状的细节。在2月6日的模拟图片中,气候模型预测了一些小型云层的边线、云街现象以及冬季风暴的东部细节。在一幅全球模拟图片中,气候模型还精确地预测了热带地区的大量雷暴现象。   GEOS-5气候模型的精度通常为每像素5公里,尽管它的精度最高可达每像素3.5公里,因此它也是目前世界上最精确的全球气候模型。普通气候模型在模拟云层情况时,精度大约为每像素28公里。这就意味着,由普通气候模型所产生的全球平面地图包含了77.7万个网格单元(像素),而5公里精度的GEOS-5气候模型所产生的地图(上图)则包含了2400万个网格单元。因此,科学家可以根据GEOS-5气候模型获得关于地球的更详细的信息。   和所有的气候模型一样,GEOS-5气候模型也是利用数学方程式来计算气候变化情况。地球气候的一些物理属性,如温度和能量等,则需要实地测量。实时数据被输入模型,从而保证模型与真实世界尽可能一致。当然,在建造模型过程中,数百万次的计算则需要数千台计算机处理器。GEOS-5气候模型运行于美国宇航局戈达德太空飞行中心新成立的气候模拟中心的“发现”超级计算机之上。“发现”超级计算机拥有近1.5万个处理器。   气候科学家将利用GEOS-5气候模型预测未来数十年的气候变化情况。2010年6月2日,美国宇航局气候模拟中心以新名称开始运作。
  • 成像质谱:非酒精性脂肪肝病模型小鼠中脂类成分的可视化分析
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 摘 要: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 质谱法不仅经常被用于血液和尿液样本中脂质的研究,同时也可用于以实验动物器官为样本的脂质研究。近年来,将匀浆样本的多变量分析结果与待测样本组织切片空间分布研究结果相结合的方式,有望加速有关疾病机理阐释或新药研发方面的研究工作。 因此,本应用实例对2,2’-偶氮(2-氨基丙烷)双盐酸盐(AAPH)给药后,非酒精性脂肪肝(NAFLD)模型小鼠脂质成 span style=" text-indent: 2em " 分的变化进行研究。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1 研究背景 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 肝细胞癌通常由肝炎病毒引起,但也可能由酒精性肝炎引起。然而,由于代谢综合征病例的增加,与酒精无关的非酒精性脂肪性肝炎(NASH)的发病率也有增加。因此,目前正在进行各种各样的相关研究。以往的研究表明,非酒精性脂肪肝病(NAFLD)的出现或其发展为非酒精性脂肪性肝炎(NASH)的进程与氧化应激之间存在很强的相关性。然而,这一机制的细节和诱发、影响因素尚不清楚。近年来, 动物实验结果表明2,2’-偶氮(2-氨基丙烷)双盐酸盐(AAPH)给药可以抑制脂肪在肝脏的过度积累1)。为了阐明其作用机制,可使用多种类型的质谱仪对同一样本进行分析,充分利用不同类型质谱提供的数据信息。本文描述了对AAPH 给药后NAFLD 模型小鼠研究的实例。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5915422f-fd59-4161-8be6-0d165758d8f2.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " 图1 实验动物准备 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2. 实验材料及方法 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 以NAFLD 模型小鼠为实验动物, AAPH 单剂量(90mg/kg)给药24 小时后取肝脏进行实验。肝脏匀浆样本用于LCMS 分析,制备10μm 厚肝脏冰冻组织切片用于成像质谱分析。将给予磷酸盐缓冲液(PBS)的模型小鼠肝脏作为对照样本(图1)。成像质谱分析的流程图如图2 所示。使用冷冻切片机制备10μm 厚的老鼠肝脏组织切片(I),将切片放置于ITO 导电载玻片表面(II),在组织切片表面涂敷基质辅助电离(III),获取成像质谱分析数据(IV)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e65e6c2a-746e-4a29-9027-5c007baf8713.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图2 成像质谱分析流程 /p p style=" text-indent: 2em line-height: 1.75em " 3. 使用LCMS 数据进行验证 /p p style=" text-indent: 2em line-height: 1.75em " 取模型小鼠肝脏,匀浆后由LCMS进行分析,对脂质成分进行检测。实验条件如表1所示。 /p p style=" text-indent: 2em line-height: 1.75em text-align: center " 表1 LCMS实验条件 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/452b470c-8f24-4e51-a583-8212f9502448.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " 图3 LCMS-IT-TOF /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 图3 显示实验数据进行统计学分析的结果。对AAPH给药组与对照组进行比较,多种脂质成分存在差异。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 表2 总结了出现特征变化的不同脂质成分。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 表2 AAPH 给药后发生变化的脂质组分 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8039b671-0c06-454f-90ef-c37c83bf5af0.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 根据分析结果,通过对比给药组与对照组肝脏匀浆检测数据的统计学分析结果,可以鉴别给药后发生变化的组分。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 294px " src=" https://img1.17img.cn/17img/images/202006/uepic/2817dda4-851e-4ea4-bd22-9c96d9047c8d.jpg" title=" 5.png" alt=" 5.png" width=" 600" height=" 294" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图3 统计学分析结果 /p p style=" text-align: center " (A) PCA score plot, (B) PCA loading plot, (C) OPLD-DA score plot, (D) OPLS-DA S-plot /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4. 使用成像质谱进行脂类成分的可视化分析 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 表3显示了iMScope成像质量显微镜的分析条件。成像质谱分析的实验结果如图5所示。相邻切片的HE染色结果如图4所示。使用正离子模式分析组织切片,成功获得表2中在LCMS分析结果中出现变化脂质成分的质谱图像,如图5中虚线框选的质谱图像。此外,还获得了在采集范围内其他具有类似特征分布的脂质成分的质谱图像。成像质谱技术的主要优点之一是通过一次分析在同样的分析条件下,可以同时提供多个不同质荷比化合物的空间分布信息。这一特点使无标记成像质谱分析成为可能。本应用实例中,部分脂质成分可以根据iMScope的检测数据并参考相关文献得到鉴别2),3)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/173cb788-d8f8-4c66-96e4-e859095877ee.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 图4 连续切片的HE染色结果 /p p style=" text-align: center " 表3 iMScope成像质谱实验条件 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/1067befb-7acb-4e1d-881c-9c868b4db0b5.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center" img style=" width: 600px height: 350px " src=" https://img1.17img.cn/17img/images/202006/uepic/34ee0d51-4b7a-4519-832b-051e09819ef2.jpg" title=" 8.png" width=" 600" height=" 350" border=" 0" vspace=" 0" alt=" 8.png" / /p p style=" text-align: center" img style=" width: 600px height: 186px " src=" https://img1.17img.cn/17img/images/202006/uepic/ee38d58c-510f-4865-9a5d-d1c0a79298d1.jpg" title=" 9.png" width=" 600" height=" 186" border=" 0" vspace=" 0" alt=" 9.png" / /p p style=" text-align: center " 图5 iMScope 质谱成像分析结果 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5. 小 结 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 本文展示了AAPH 给药后发生变化的脂质成分在模型小鼠肝脏切片上的空间分布结果。在新药研发或临床应用相关的基础医学研究领域中,必须建立可以针对给定研究目标及样本特点进行优化的实验体系。因此,多种类型的质谱仪被广泛使用。此外,如本文所述,利用新型质谱仪进行多层面分析也有望发现新的信息,并提高研究效率。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 6. 参考文献 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1) Free. Radic. Res, 38: 375–84 (2004) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2) Anal. Chem. 80(23): 9105–14 (2008) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3) Anal. Chem. 84(4): 2048–54 (2012) /p p br/ /p
  • “奇趣蛋”模型和“鱼塘养鱼”论到底在说什么?
    4月21日晚7点,由康宁反应器技术和惠和化德生物科技联合主办的“助力农药产业升级、安全高质发展—农药行业连续自动化生产技术应用分享会” 顺利结束了。 两位嘉宾老师的分享可谓干货与诚意齐飞,经验共观点一色!有前沿的理论和概念、客观的实例分析与总结以及真诚的忠告与建议。他们形象生动的分享,再一次刷新了人们对于微通道反应器、危化工艺研究思路和工业化实施方式的认知。您想知道连续流工艺设计时的“五维”评估是什么;连续流工艺开发的“三步”法包括哪些方面;项目实施的“奇趣蛋”模型怎么解释;还有连续流工艺的“鱼塘养鱼”论到底在说什么吗?欢迎您关注”康宁反应器技术“公众号点击文末阅读原文,观看限时直播回放!让我们一起来回顾两位老师的精彩内容。嘉宾分享来自惠和化德的马兵博士,首先基于自身多年微通道连续流技术推广经验和深刻理解,分享了如何“精准”理解微通道反应器及其应用的。马博士又通过多个案例分享了农药行业如何应用微通道反应器,在工艺开发、工艺放大过程中解决反应的问题、通量的问题并促进项目顺利落地的。“五维”评估工艺开发“三步”走项目实施“奇趣蛋”模型马博士有关项目实施的“奇趣蛋”模型受到了广泛的关注,相关视频请关注“康宁反应器技术”公众号查看。康宁分享来自康宁反应器技术的周太炎老师,分享了客户连续流技术“鱼塘养鱼”论。他从农药产品涉及的反应出发,分享了在内卷时代,企业如何在自身产品系列的基础上,选择合适的产品线或者反应阶段进行连续工艺开发储备,在恰当的时机获得发展先机的。周老师还从硝化工艺的连续流应用起,分享了康宁AFR在加氢、重氮化、氧化、酰化、酯化以及多步连续反应的工艺开发和工业化实例,通过这些案例的分享不仅向参会者展示了应用微通道反应器不仅可以提高反应的安全性、选择性和收率,而且在资产投入、产出经济性方面依然具有优势。可以达到马博士说的“工艺做的好,客户用得起”!衷心感谢各方支持本次直播得到了中国国际贸易促进委员会化工行业分会,CAC农药展组委会、化工园区管委会、客户、高校科研机构以及合作伙伴的大力支持和参与。在此向所有支持和参与的朋友们表示最诚挚的感谢直播回放,请关注“康宁反应器技术”公众号查看
  • Digital WB在基因治疗眼科疾病动物模型中应用
    眼部疾病基因治疗仍面临很多挑战,评估疗法的安全性风险,验证有效性,更好地支持临床试验研究开展,需要开展系统性地非临床研究。在药理学、药代动力学和毒理学等非临床研究中,选择合适的动物模型来检测目的基因表达和相关的生物学活性非常重要。本文介绍了转基因目的蛋白表达检测技术,详细说明了新技术Digital WB在不同临床前动物模型上应用进展。 近几年,眼科领域的基因治疗临床试验项目数量激增,包括基因替换、基因编辑和基因沉默多个技术方面。眼睛作为免疫豁免器官,视网膜感光细胞和视网膜色素上皮细胞是几种遗传性视网膜疾病基因疗法的重要靶细胞。遗传性视网膜营养不良(Inherited retinal dystrophies, IRDs)是可导致进行性视网膜退化的遗传缺陷性罕见疾病,常见的IRD相关基因缺陷超过200种。作为基因治疗的理想候选者,2017年美国FDA首次批准了视网膜Voretigene Neparvovec基因疗法(Luxturna, Spark Therapeutics),用于治疗RPE65.1双等位基因突变引起的罕见眼科疾病,称为Leber先天性黑蒙。这个里程碑意义的决定为眼科疾病基因疗法打开了大门。目前大部分临床研究疗法目标是通过导入正常功能基因,从而恢复缺陷基因编码蛋白质的正常表达。如治疗色盲的CNGA/CNGB,治疗无脉络膜症的CHM/REP1,治疗Leber 先天性黑蒙的RPE65,治疗X连锁视网膜色素变性(x-linked retinitis pigmentosa)的RPGR。 尽管眼睛对其他器官有相对优势,但眼部疾病基因治疗仍然具有挑战性如基因疗法生产、临床试验设计和长期安全性方面。需系统地开展非临床研究来评估安全性风险,验证有效性机制,以支持临床试验研究。在体内和体外模型中研究产品与治疗靶点的相关作用机制和效应,选择生物相关性模型来检测目的基因表达和生物学活性非常重要。对于眼部疾病可探索选择临床前研究模型如细胞系模型、人诱导多能干细胞(hiPSC)衍生的视网膜类器官疾病模型、啮齿动物和非人灵长类动物等,根据生物学相关性和测定时间可在不同阶段综合选择特异性评估模型。小鼠动物模型案例1:Digital WB检测小鼠眼角膜内转基因蛋白和相关蛋白表达水平 先天性遗传性角膜内皮营养不良 (congenital hereditary endothelial dystrophy, CHED)是一种罕见的原发于角膜内皮的常染色体隐性遗传病,临床特征为出生时或生命早期出现双侧弥漫性角膜水肿和混浊。由于膜转运蛋白 SLC4A11功能丧失而导致内皮细胞凋亡。本研究采用124只小鼠,53只Slc4a11+/+作为对照,71只眼前房注射AAV9- Slc4a11和空AAV载体。 为了测定病毒转导效率,即AAV9-HA-Slc4a11 转导至 Slc4a11-/- (KO) 动物的角膜内皮细胞效率,AAV9-Slc4a11具有血凝素(Hemagglutinin,HA)标签,通过Digital WB检测HA标签表达水平来反应转导水平。结果显示年轻和年老动物组都实现了AAV载体转导的蛋白质表达,而且水平相当。 Slc4a11-/- (KO)小鼠眼角膜乳酸流出减少,导致乳酸在基质中累积,随着年龄增长而进展。乳酸转运蛋白MCT1、2和4在角膜内皮细胞中具有活性。采用Digital WB(WES Immunoassay)检测小鼠眼角膜内皮层细胞蛋白质表达,在年轻动物中,观察到MCT1和2蛋白质表达水平轻微上调,而MCT4表达显著增加。在年长动物中,乳酸转运蛋白表达升高,但水平改变不显著。 综合多角度研究,揭示了在年轻动物组,AAV9- Slc4a11将CHED表型如角膜水肿、内皮细胞丢失、线粒体氧化应激、乳酸转运蛋白表达和角膜乳酸浓度逆转恢复到正常野生型动物水平。年长动物没有逆转表型,但是仍能阻止疾病进展。这些都表明了采用基因治疗可能对CHED表型进行功能性挽救,更重要的进行早期干预治疗。 本研究充分证明了,在AAV基因治疗小鼠眼角膜样本中,Digital WB可利用微量眼角膜样本准确定量角膜内皮细胞中蛋白质表达水平变化。案例2:Digital WB用于AMD小鼠模型RPE和视网膜中小分子量蛋白质表达分析 自噬(Autophagy)在年龄相关性黄斑变性(AMD)疾病进展中起着重要作用。靶向自噬在具有早期AMD特征的小鼠模型中可减缓功能障碍。研究表明,针对增强自噬途径具有治疗早期 AMD 潜力。采用野生型小鼠(WT)和缺乏APEO(载脂蛋白E)小鼠进行对比研究,APOE对照小鼠的视网膜功能降低,与早期AMD表型一致,可作为AMD研究模型。实验设计是5个月时,在饮用水中加入二甲双胍(0.4 g/kg/天)或海藻糖(3 g/kg/天)给WT 和 APOE小鼠,而对照组只接受饮用水。13 个月时,对 (A-B) RPE 和 (C-D) 视网膜样本,采用Digital WB分析LC3B 表达水平,GAPDH作为上样对照。作为溶酶体自噬过程中标志物,LC3-II:LC3-I 比率动态变化可反应自噬过程中生成和降解的动态过程。结果揭示了APOE 小鼠的 LC3-II:LC3-I 比率较高,表明自噬减慢。但用海藻糖或二甲双胍治疗的 APOE 动物中,LC3-II:LC3-I 比例恢复到 WT 水平,增强了自噬作用。参考下图: 免疫组织化学实验结果也显示光感受器和视网膜色素上皮 (RPE) 中 MAP1LC3B/LC3(微管相关蛋白1轻链-3β)和 LAMP1(溶酶体相关膜蛋白 1)标记减少,这与增加的LC3-II:LC3-I 比率和多个自噬途径中蛋白质表达改变相关,表明自噬减慢。用二甲双胍或海藻糖处理 APOE 小鼠可改善视网膜功能丧失,增强眼组织中 LC3 和 LAMP1 表达,并将 LC3-II:LC3-I 比率恢复到 WT 水平。 通过Digital WB检测小鼠RPE和视网膜中LC3-II和LC3-I蛋白表达水平变化。LC3-II和LC3-I是小分子蛋白质,由于带电基团修饰,分子量大的LC3-II在电泳分离时,会留在更小分子量处。由于两个蛋白分子量差异仅有2kD,传统WB分析有技术难点,采用Digital WB可分析微量样本和小分子量蛋白质的优势,满足视网膜样本中小分子量膜蛋白质分析需求。非人灵长类动物模型案例1:美国AGTC公司利用Digital WB检测NHP体内转基因目的蛋白表达水平 干性年龄相关性黄斑变性(Dry age-related macular degeneration, dAMD)约占AMD病例的80%~90%,主要有玻璃体疣和视网膜色素上皮异常改变,疾病进展相对缓慢。dAMD致病机制尚未明确,可能与炎症、细胞退化与萎缩、氧化应激、脂质代谢障碍等多种因素相关,其治疗方案极其有限。目前临床阶段研发药物主要以靶向补体系统、氧化应激和炎症反应相关机制为主。近年研究发现,编码关键补体调节因子CFH(The Complement factor H)和CFI (The Complement factor I)的基因遗传突变与干性AMD的发生和发展密切相关,这些蛋白质天然调节补体系统以维持平衡。CFH编码蛋白质H因子是补体旁路激活途径中起重要作用的负调控因子,可调控降低炎症反应减缓dAMD发展。 美国AGTC公司采用新颖设计,将编码CFH的20个短重复序列缩减为18个,这个新型CFH变异体称为tCFH,已在小鼠模型上完成概念验证,并在体外实验中证明了其具有与野生型CFH相同生物活性。在非人类灵长类动物(NHP)上进一步研究体内活性,采用Digital WB检测NHP模型上RPE和视网膜的CFH和tCFH表达水平,采用AAV载体携带变异体基因可在体内实验中实现缩短补体因子表达,本项目已在准备IND申报中。 美国Spark therapeutics公司发表了AAV载体基因治疗庞贝病(PD)临床前小鼠和非人灵长类动物(NHP)最新研究成果(Nature Communication, 2021),采用Digital WB检测血浆中hGAA转基因蛋白表达。Digital WB技术可用于非人灵长类动物模型中样本检测,评估眼科疾病基因治疗项目中转基因目的蛋白质表达水平,评估疗效。“全自动Digital WB技术是眼部疾病蛋白质表达定量的重要工具 Jess全自动数字化蛋白质表达定量分析系统 (Digital WB) 是Bio-Techne集团旗下蛋白质分析品牌ProteinSimple所有。系统利用毛细管电泳免疫学分析技术,可从微量样品中自动吸取、分离、捕获蛋白质,并通过化学发光或荧光检测目的蛋白含量。针对眼部疾病基因治疗应用技术优势Digital WB技术适合眼科基因治疗体外和体内各种模型中转基因目的蛋白表达定量分析,用于视网膜细胞系、iPSC衍生视网膜色素上皮细胞(RPE)和类器官、小鼠动物模型和非人灵长类动物模型的关键蛋白质分析。适合于基因治疗研发的不同阶段对转基因目的蛋白及相关信号通路蛋白检测需求。满足类器官和视网膜微量样本蛋白质分析需求,Digital WB技术样本量需求是传统Western Blot几十分之一,只需要3 μL样本量就可实现多重蛋白质表达检测,特别适合眼部疾病微量珍贵样本蛋白质分析。Digital WB精准定量检测,传统Western Blot只能满足样本半定量需求,重复性比较差。基因治疗某些目的蛋白表达与临床治疗效果相关联,可作为替代生物标志物,建立量效关系。要求目的蛋白分析检测标准需要提高,要求技术需要经过严格验证,Digital WB可满足这些需求。符合基因治疗产业对自动化标准化和效率的需求,面对行业激烈竞争,需要提升研发效率。Digital WB实现了全自动化和标准化,软件符合FDA 21 CFR Part 11合规性需求。系统3个小时完成一批次蛋白质分析,比传统Western Blot快4倍,大大提高了实验效率,同时减少人力成本。 Digital WB自动化程度高、重复性好、灵敏度高和具有较宽动态检测范围,这些特点满足眼部疾病基因治疗项目不同阶段的目的蛋白定量需求。Digital WB已被国内外知名基因治疗机构采用如Biogen, Sarepta Therapeutics, MeiraGTx,ATGC, Spark Therapeutics,Regenxbio,CRISPR Therapeutics, Editas Medicine, Bluebird bio,杭州嘉因生物、中国食品药品检定研究院等,必将在基因治疗研发阶段、非临床研究和临床研究阶段发挥更大的作用。扫描下方二维码,获取更多关于Digital WB资料
  • 钟南山团队再发新冠论文 建立并公布危重症预测模型
    p   5月12日,国际权威杂志JAMA发表了名为“Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19”的论文,该论文通讯作者为广医一院呼研院钟南山院士与何建行教授,第一作者为梁文华副教授。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/ed3e165b-f570-4bdf-952b-44bfdc545663.jpg" title=" news0514 pic1_600.jpg" alt=" news0514 pic1_600.jpg" / /p p style=" text-align: center " strong 论文截取页面 /strong /p p   论文团队对31个省级行政区的575家医院的1590例新冠肺炎患者建立了回顾性队列研究分析。运用LASSO和COVID-GRAM模型从流行病学、临床、实验室和影像学变量角度对这些患者的72个临床变量进行筛选,对缺失值小于20%的变量进行归类,并运用预测均值匹配、贝叶斯多元回归等算法最终从中发现了10个关键的独立风险因子。该团队根据每个风险因子的权重,构建出新冠肺炎危重症预测模型。 /p p   统计显示,6%-8%的确诊新冠肺炎患者可能发展为危重症,进入ICU治疗。钟南山院士团队基于全国1590例新冠肺炎患者,通过对72个临床因素进行筛选,发现了10个关键的独立风险因子,分别为:胸部X光异常 、年龄、咯血、气促、意识丧失、基础疾病数量、既往肿瘤病史、中性粒细胞与淋巴细胞比值、乳酸脱氢酶和直接胆红素。研究人员根据每个风险因子的权重,构建了多因素预测模型。经过内部验证,模型的准确度达到88%。此外,研究团队还在2020年2月20日至2020年3月17日分别对在来自武汉、大冶、佛山多家医院共710例患者中做了外部验证,结果准确性在88%-98%之间。 /p p   据介绍,该预测模型能够为每一位患者提供个体化的预测概率。根据该团队的研究数据,低危组后续发展为危重症的风险为0.7%,而高危组则高达59.3%,为了方便全球广大医生及患者,该研究团队还构建了免费访问的中英文版网页预测工具(http://118.126.104.170/),可供广大医务工作者查询参考。预计该模型可服务于就诊时的分流处理,提高医疗资源分配的效率。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/4f55d13a-b31c-4710-90a0-8bbecbbed346.jpg" title=" news0514 pic2_600.jpg" alt=" news0514 pic2_600.jpg" / /p p style=" text-align: center " strong 中英文版网页预测工具页面 /strong /p
  • 贝叶斯模型分析“鸟枪法”鉴定蛋白质组数据
    北京蛋白质组研究中心/蛋白质组学国家重点实验室朱云平研究员课题组张纪阳博士等通过建立贝叶斯模型分析“鸟枪法”鉴定蛋白质组数据,大幅提升蛋白质组质谱数据的利用率。相关论文发表在最新一期国际蛋白质组学权威杂志:《分子与细胞蛋白质组学》(Molecular & Cellular Proteomics, MCP)上面,同期杂志还发表了该所姜颖副研究员课题组、钱小红研究员课题组的两篇研究论文,创该刊单期同一单位发文数之最。   大规模、高通量的蛋白质组研究产生了海量的数据,其中包含了大量的噪声,而高可靠的数据是进一步生物学分析的基础,故目前的分析方法均采用了过严的标准,但在降低假阳性的同时也人为地造成了数据较高的假阴性及较低的利用率。因此,"在保证高可信度的前提下,最大限度地利用实验数据"一直是蛋白质组学界的追求。"鸟枪法"是目前蛋白质组鉴定中地位最重要、应用最广泛的技术策略。他们基于随机数据库策略、非参概率密度模型和贝叶斯公式,建立了串联质谱数据过滤的多元贝叶斯非参模型。通过标准蛋白和复杂样品的严格考核,表明该模型具有良好的灵敏性和普适性,可将质谱数据的利用率提高10~40%,创本领域最好水平。   原始出处:   Molecular & Cellular Proteomics 8:547-557, 2009.doi:10.1074/mcp.M700558-MCP200
  • ASD | 应用PROSPECT模型提取叶片生化性状的适用性研究
    PROSDM:PROSPECT模型与光谱导数和相似性度量相结合从双向反射率中提取叶片生化性状的适用性叶片生化性状为理解植物光合功能、动态生长、养分循环和初级生产提供了有价值的信息。叶片叶绿素含量(Cab)、类胡萝卜素含量(Cxc)、含水量(Cw)和干物质含量(Cm)是四个重要的叶片生化性状,与植物光合作用、氮素、胁迫和衰老等健康和生长状态密切相关。能够对这些叶片生化性状进行高通量测量的方法对于表征植物生理状态和关键功能过程至关重要。PROSPECT模型是目前更常用的叶片辐射传输模型之一,可从叶片定向半球反射因子(DHRF)光谱来提取叶片生化性状,然而,在应用于叶片双向反射因子(BRF)光谱提取叶片生化性状方面尚待探索。叶片表面反射率和各向异性性状的存在可能是限制PROSPECT从叶片BRF光谱评估叶片生化性状的主要问题。基于此,在本研究中,研究者们提出了一个方法,整合了PROSPECT模型、光谱导数和相似性度量(SDM),称为PROSDM,去除了叶片BRF和DHRF光谱的差异,并从叶片BRF光谱提取了叶片生化性状。具体目标是:(1)通过PROSPECT反演调查叶片BRF和DHRF光谱差异随波长的变化以及对Cab、Cxc、Cw和Cm提取的影响,(2)开发PROSDM消除BRF和DHRF光谱差异,从叶片BRF光谱与PROSPECT和PROCOSINE以及PROCWT的比较来提取Cab、Cxc、Cw和Cm以及(3)评估PROSPECT、光谱子域、光谱噪音和模型参数范围对PROSDM性能的影响。为了获得各种叶片生化性状和反射率,作者收集了具有不同生长阶段、营养状况和种植区域的植物物种的10个数据集,包括1个测量数据集和9个公开获取数据集。从油菜(Brassica napus L.)、水稻(Oryza sativa L.)和柑橘(Citrus aurantium L.)随机采集2279个植物叶片,利用ASD FieldSpec 4测量叶片反射率,获得数据集#1。从EcoSIS光谱库中获得具有各种叶片光谱和生化性状的9个公开的数据集。其中,7个数据集的BRF光谱由ASD地物光谱仪(Analytical Spectral Devices, Inc., Boulder, CO, USA)搭配ASD叶片夹测量。 表1 数据集描述。Dataset#1是本研究中测得的,Dataset#2-#10是在线https://ecosis.org获取的。BRF和DHRF光谱的光谱区域是400-2500 nm。【结果】 平均BRF和DHRF光谱差异(a)以及这些差异对平均BRF光谱的贡献(b)。油菜(红线)在Dataset#1中获得,其他植物物种在Dataset#5中获得。 通过考虑非波长依赖性f(a,d)和波长依赖性f(b,c,e,f)两种情况,利用一阶(a-c)和二阶(d-f)导数的叶片BRF(绿线)和DHRF(橙线)光谱之间的差异。 利用PROSPECT反演(a–d),PROCOSINE反演(e–h),PROCWT-S4( i–l)和基于全光谱域PROSPECT-PRO 的PROSDM(m–p)的所有数据集(Dataset#1-#10)中Cab (a,e,i,m) ,Cxc (b,f,j,n), Cw (c,g,k,o) 和Cm (d,h,l,p)测量值和估算值比较。 【结论】 本研究中,作者提出了PROSDM这种新方法用来从叶片BRF光谱来提取叶片生化性状。结果发现光谱导数可以消除BRF和DHRF光谱的非波长依赖性差异。当BRF和DHRF光谱的差异随波长变化时,光谱导数仅能去除部分差异,而曼哈顿距离(MD)补偿了光谱导数的限制,进一步减少了差异。结果,PROSDM从叶片BRF光谱准确提取了不同植物物种的Cab、Cxc、Cw和Cm。与标准的PROSPECT反演需要利用带有积分球的光谱仪测量叶片DHRF光谱不同,PROSDM扩展了PROSPECT到叶片BRF光谱的应用,以提取叶片生化性状。它可利用不同手持式光谱仪和叶片夹原位提取叶片生化性状。 在全光谱域,PROSDM-SED实现了Cab和Cxc的更优提取,RMSE分别为7.64 μg/cm2 and 2.77 μg/cm2,PROSDM-FMD产生了Cw(RMSE = 0.0041 g/cm2)和Cm(RMSE = 0.0024 g/cm2)的更好估计。与PROSPECT相比,PROSDM提取的Cab、Cxc、Cw和Cm RMSE分别降低了20.33%,29.34%,25.45%和44.19%。结果表明,PROSPECT和PROCOSINE以及PROCWT的Cab、Cxc、Cw和Cm提取精度受到光谱饱和度、PROSPECT反演、光谱子域以及模型参数范围的影响很大。适当的光谱子域和模型参数范围可以改善不同反演方法的提取结果。这需要从实地测量和报告的研究中了解叶片生化和结构性状的先验信息。与这些反演方法相比,所提出的PROSDM在减轻Cab、Cxc、Cw和Cm提取的负面影响上具有很大潜力。对于不同的PROSPECT版本,建议利用PROSPECT-PRO从叶片BRF光谱提取叶片生化性状。 未来研究需要基于叶片BRDF模型测量叶片BRF光谱的光谱和方向变化,将BRDF模型与所提出的PROSDM耦合可以改善对BRF和DHRF光谱变化的表征。此外,由于植物物种BRF和DHRF光谱的差异变化,在不同的数据集中PROSDM不能获得一致性提取结果。预计更多的工作将集中在理解不同视角和照明角度下植物叶片光学特性的变化。期望PROSDM可以应用在不同的尺度上,提高其在遥感、生态和环境研究中的适用性。点击如下链接,下载原文:PROSDM:PROSPECT模型与光谱导数和相似性度量相结合从双向反射率中提取叶片生化性状的适用性
  • 比较 2D 培养和 3D 生物打印肿瘤模型中的药物反应
    导读在癌症生物学中,肿瘤微环境(TME)是肿瘤细胞和免疫系统之间的一个关键。TME是细胞外基质(ECM)、免疫细胞、信号分子、血管和成纤维细胞,它们包裹肿瘤并影响癌症进展。TME的成分通过分泌小信号分子相互作用,影响肿瘤行为的各个方面,包括细胞增殖、侵袭、转移和抗肿瘤治疗的耐药性(Bremnes,2011)。因此,重建TME对抗癌研究至关重要,但一个主要的痛点是无法开发出可预测的3D肿瘤模型用于高通量药物评估。3D肿瘤模型应再现肿瘤间质内细胞间的相互作用,并克服2D细胞培养系统的局限性。在这里,3D生物打印为预测体内结果、建模TME和评估药物反应提供了一个有前景的解决方案。肿瘤转移和化疗耐药性威胁着肿瘤患者的生存。在癌症治疗领域,化疗是一种很有效的治疗方式,它利用小的抗癌分子攻击特定的生长途径并杀死癌细胞。在这些分子中,顺铂(CIS)和吉非替尼(GEF)是FDA批准的靶向DNA和EGFR通路的抗癌药物。简而言之,CIS通过抑制细胞分裂和 mRNA的产生导致细胞凋亡,而GEF干扰癌细胞中EGFR信号的上调。有趣的是,虽然CIS和GEF都被用于治疗致命的胰腺癌和乳腺癌,但它们也与体外假阴性或假阳性预测有关,这表明它们在2D和3D中对细胞的影响不同(Reynolds, 2017)。为了进一步解决这一差异,我们使用两种乳腺癌(MCF7, MDA MB 231)和两种胰腺癌(BxPC3, Panc-1)细胞系,比较了CIS和GEF对2D单层细胞和3D生物打印类肿瘤模型的作用。材料和方法生物墨水制备和生物打印根据CELLINK方案制备3 mg/mL Coll 1 (CELLINK, Ref #IK4000002001)和5% GelMA (CELLINK, Ref #IK3051020303)用于生物打印。共3ml Coll 1或GelMA与5 x 106 cells/100µL培养基(10:1)混合,分别装入透明和琥珀色墨盒(CELLINK, Ref #CSO010311502),以~ 3kpa进行液滴打印。使用温度控制的打印头(TCPH, SKU #000000020346)设置为8℃,气动打印头分别在8℃的打印床上对Coll 1和GelMA液滴进行生物打印。使用BIO X (CELLINK, SKU #000000022222)上的液滴打印功能,将每种生物墨水打印在未经处理的96孔板(Thermo Fisher Scientific, Cat #267427)上。打印完成后,Coll 1液滴在37℃下热交联20分钟,GelMA液滴在365 nm下紫外交联6秒。每孔加100µL培养基,每2 ~ 3天更换一次。2D单层培养为了进行2D比较,将每个细胞株接种在处理过的96孔板上(Thermo Fisher Scientific, Cat #167425)。优化各细胞培养48小时后的细胞密度,达到90%的一致性。Panc-1细胞接种1.2 × 104个细胞/孔,BxPC3细胞接种1.7 × 104个细胞/孔,MCF7细胞接种2.0 × 104个细胞/孔,MDA MB 231细胞接种2.0 × 104个细胞/孔。药物治疗与分析生物打印类肿瘤细胞和2D细胞分别用不同浓度的吉非替尼(LC Laboratories,#G-4408)或顺铂(Cayman Chemical Company)处理96小时和48小时。MTS Assay(Sigma-Aldrich)和LIVE/DEAD染色试剂盒(Invitrogen)用于评估2D和3D条件下的细胞活力。所有的检测都是按照制造商的说明进行的。图1:该测定的优点显示了抗肿瘤药物对所有4种细胞系的强大作用,并描述了每种细胞类型和ECM的细胞形态变化。比例尺:1000m或650m。绿色:LIVE,红色:DEAD肿瘤根据细胞类型和培养条件适应不同的形态(Nath, 2016)。在GelMA和Coll 1中培养7天后,癌细胞聚集形成各种形态的球体。如图1所示,MDA MB 231细胞形成同心星形网络,MCF7细胞形成圆形椭球,BxPC3细胞形成葡萄状椭球,Panc-1细胞形成团块状椭球。使用GelMA和Coll 1作为肿瘤支架,由于孔隙度、刚度和成分的不同,也影响了球状体的形成。有趣的是,2D培养的癌细胞缺乏所描述的形态,可能是因为它们缺乏支持细胞间相互作用、紧密连接、营养和氧梯度的ECM(数据未显示)。3D模型的缺氧效应缺氧是药物反应的另一个变量,这是3D模型和体内组织所特有的。Warburg效应将缺氧描述为癌细胞的一种生存模式,它们从生产氧气和ATP转换为上调EGFR和AKT信号以促进增殖。这种转换增加了毒性、酸度和3D模型中的废物堆积,从而产生了一个三环低氧梯度。图1显示了低氧梯度,其中靠近球体中心的细胞呈死亡状态(红色),边缘的细胞呈存活状态(绿色)。最外面的环是一层增殖细胞,中间的环是一层活细胞,最里面的环是坏死细胞的核心,这是由于废物堆积和缺氧造成的(Nath, 2016)。顺铂在2D和3D模型的疗效分别在第2天和第7天,将低到高剂量的CIS添加到2D单层细胞和3D生物打印类肿瘤细胞中。2D细胞处理治疗48小时,3D生物打印类肿瘤治疗96小时。MTS试验显示,2D单层对所有细胞株的细胞毒性均呈剂量依赖性,3D乳腺癌类肿瘤细胞也是如此(图2A)。有趣的是,BxPC3和Panc-1细胞株在3D中比在2D中显示更高的IC50。换句话说,这两种胰腺癌细胞株在3D生物打印类肿瘤中基本上不受CIS的影响。这里,一种解释是胰腺癌细胞对CIS浓度的增加表现出了耐药性(Wang, 2016 凯兰,2007 Sangster-Guity, 2011)。针对药物治疗,胰腺癌细胞可能已经诱导了他们的生存途径,上调衰老、DNA损伤反应信号转导和跨损伤DNA合成(Gomes, 2019年)。吉非替尼在2D和3D模型的疗效EGFR癌蛋白常在乳腺癌和胰腺癌细胞系中表达。因此,药物抑制EGFR通路可导致细胞周期阻滞、衰老或凋亡(Jacobi, 2017)。如图2B所示,在3D和2D中,吉非替尼显著降低了细胞活力。对于所有细胞类型,3D Coll 1和GelMA的IC50均低于2D培养的IC50,这表明GEF在3D生物打印类肿瘤细胞中比在2D培养中造成更多的死亡。2D细胞培养的局限性2D细胞培养系统不能模拟体内肿瘤的内在特性,包括自然屏障、低氧梯度和紧密的细胞-细胞连接,这些都减缓了药物扩散。此外,它们缺乏支持3D生长和癌蛋白上调的组织特异性环境和ECM (Reynolds, 2017)。图2A的另一项研究显示,3D胰腺癌细胞比2D单层细胞对CIS的抗性更强。很明显,2D研究对于胰腺癌的体内治疗是一种误导和不准确的预测。结论使用CELLINK GelMA和Coll 1作为类肿瘤支架,为球状形成和药物扩散提供了稳定的肿瘤微环境(TME)。用GelMA和Coll 1构建的不同杀伤曲线模型表明,细胞外基质(ECM)在药物反应中起关键作用。未来的研究需要确定哪种支架适合特定的肿瘤模型。我们的研究结果显示,在2D和3D肿瘤模型中,顺铂(CIS)和吉非替尼(GEF)治疗具有剂量依赖性和细胞特异性反应。乳腺癌和胰腺癌细胞株在3D条件下比2D条件下对GEF更敏感。同样,乳腺癌细胞株3D对CIS治疗的敏感性高于2D,而胰腺细胞株对CIS治疗的敏感性则相反,提示3D模型的耐药水平升高。3D生物打印类肿瘤模型用于药物筛选,可用于减少假阴性和假阳性预测。未来的研究可以使用BIO X来扩大类肿瘤的生产,用于高通量药物测试。
  • 干细胞模型再现人类胚胎早期发育
    据英国《自然》杂志2日发表的一项研究,科学家用人多能干细胞建立了一个模型,可用来研究人类胚胎植入子宫的过程。人胚状体(blastoid)是模拟早期人类胚胎的结构,在研究中能准确再现人类胚胎早期发育的关键阶段,包括黏附在体外子宫细胞上。该模型或有助于推进我们对人类发育早期阶段的认识,以及开发不孕不育的治疗方法或避孕药。  在受精后的一周内,人类胚胎会形成名为胚泡的细胞团,胚泡会植入子宫壁。准确模拟这一发育阶段的模型能支持对胚胎植入和早期发育的研究。利用干细胞构建胚泡的类似物是一种很有前景的方法,但此前的尝试遇到了瓶颈,比如会形成与胚泡不匹配的细胞。  此次,奥地利科学院分子生物技术研究所研究人员尼古拉斯利弗隆及其同事,利用人多能干细胞构建了人胚泡样结构(胚状体)。研究团队鉴定出3个信号通路,抑制它们就能得到有效模拟正常胚泡发育(成功率70%)和能形成正确细胞(成功率97%)的胚状体。  研究报告称,这种人胚状体能在体外特异性地黏附受激素刺激的子宫内膜细胞,让团队能重现直到第13天的围植入期发育过程。  由于该模型效率高、可扩展潜力大。研究人员认为,这种方法能为人类胚胎植入和发育研究提供重要帮助。  干细胞可揭示器官的形成机理,但此前这方面的研究,一直难以帮助我们更深入理解发育胚胎。通常来说,科学家试图培养本身没有干细胞的类器官时,都会用到多能干细胞这种更基本的干细胞类型。科学家既可以从人体胚胎中获得多能干细胞,也可将皮肤细胞或血细胞进行重编程进而培养出干细胞,然后诱导它们模仿特定器官的形成。  不过,这些结构或者说微型器官,通常只复制了真实器官的某些结构和功能而非全部。
  • 我公司为上海国际汽车模型竞技场提供的无线气象站安装验收完毕
    上海拜能仪器仪表有限公司受上海国际汽车模型竞技场组织方委托,在赛车场内安装一台无线自动气象站,气象站能够测量风速、风向、温度、湿度、气压、降雨量和地面温度。数据通过无线方式传输到监控室电脑上,并能够投屏到场地的LED显示屏上。上海国际汽车模型竞技场座落于上海市虹口区新同心路318号南门,上海市军事体育俱乐部内,是国内迄今为止设施最完备的标准遥控车辆模型赛车场,并已连续成功举办过多场遥控车辆模型赛事。根据市体育局、体育总会要求各运动项目抓住迎世博的契机,大力打造开展群众体育运动场地的要求,上海市航空车辆模型协会本着增强车模竞技场地的功能,使其具备承办国际赛事的能力,在收集以往爱好者玩车体验的基础上,对原场地加以改造装修。不仅重新铺设了柏油跑道,又从提高场地的实用性角度出发,将路面中的安全岛面积减少、数量增加,降低路基角度、加大弧度,经过改造后的新赛道更宽、路面更平、变化更多。
  • Digital WB在基因治疗眼部疾病细胞和类器官模型中应用
    遗传性视网膜营养不良(Inherited retinal dystrophies, IRDs)是可导致进行性视网膜退化的遗传缺陷性罕见疾病,常见的IRD相关基因缺陷超过200种。近几年,眼科领域的基因治疗临床试验项目数量激增,包括基因替换、基因编辑和基因沉默多个技术方面。2017年美国FDA首次批准了视网膜Voretigene Neparvovec基因疗法(Luxturna, Spark Therapeutics),用于治疗RPE65.1双等位基因突变引起的罕见眼科疾病,称为Leber先天性黑蒙。这个里程碑意义的决定为眼科疾病基因疗法打开了大门。目前大部分临床研究疗法目标是通过导入正常功能基因,从而恢复缺陷基因编码蛋白质的正常表达。在非临床研究和临床研究中,检测转基因目的蛋白表达是基因疗法开发的一个关键方面。 目前,有多种技术可实现目的蛋白表达定量检测包括配体结合法(Ligand binding assay,LBA)如酶联免疫吸附方法(ELISA)、液相色谱-质谱(LC-MS)、流式细胞术、蛋白质免疫印迹(Western Blot)和组织染色技术。每种技术都有各自优势和局限,如目的蛋白为分泌性表达,可采用ELISA方法检测细胞培养上清液或体液系统中目标蛋白含量;如目的蛋白不能分泌表达,可采用Western Blot或质谱方法;如需要检测细胞膜蛋白,可采用流式细胞术;如要确定蛋白质在细胞和组织内分布,可采用免疫荧光检测。 在体内和体外模型中研究基因治疗产物与治疗靶点的相关作用机制和效应,选择生物相关性模型来检测目的基因表达和生物学活性非常重要。对于眼部疾病可探索选择临床前研究模型如细胞系模型、人诱导多能干细胞(hiPSC)衍生的视网膜类器官疾病模型、啮齿动物和非人灵长类动物等,根据生物学相关性和测定时间可在不同阶段综合选择特异性评估模型。眼部疾病细胞模型案例1:iPSC衍生视网膜色素上皮细胞(RPE)中低丰度大分子量蛋白质表达检测 从三名Stargardt病人皮肤活检样本产生多个iPS细胞系,这些患者都携带一个致病性ABCA4基因变异。采用RNA-Sep和Digital WB分析正常对照和患者细胞衍生的RPE。这个细胞模型与活检组织相比,可用于评估难以检测的非表达变异体,患者来源的细胞可能更密切地反映患者体内发生的剪接和编辑事件,可用于病人药物敏感性研究,指导临床试验。采用全自动Digital WB技术分析pABCA4蛋白质表达,制备了20 μg 总蛋白 dRPE 细胞匀浆,阳性和阴性对照分别是20 μg野生型和 ABCA4 敲除小鼠视网膜匀浆。参考下图,小鼠视网膜(Mouse ret)在野生型(WT)中pABCA4表达丰度很高,敲除(KO)小鼠没有表达。人类对照(NHDF)具有比WT小鼠视网膜更高表观分子量,同时有更高的表达丰度。与对照相比,所有患者细胞系(H、J和S)中均可检测到pABCA4 ,但这些低丰度pABCA4蛋白可能被降解,作为截短蛋白或降解产品形式存在(除S2外)。与mRNA表达谱结果一致,S2细胞系具有相对正常的pABCA4表达水平和修饰后成熟膜蛋白的分子量。本研究利用了Digital WB对低丰度和大分子量蛋白质分析检测能力。案例2:眼角膜内皮细胞信号通路中多重蛋白质表达检测 本研究采用人源和鼠源细胞,分别是敲低了SLC4A11表达水平的原代人角膜内皮细胞(primary human corneal endothelial cells, pHCEnC),即SLC4A11 (SLC4A11 KD pHCEnC);还有Slc4a11+/+和Slc4a11-/-鼠角膜内皮细胞系(murine corneal endothelial cells, MCEnC),即 Slc4a11-/- MCEnC和Slc4a11+/+ MCEnC。比较转录组学分析揭示了SLC4A11 KD pHCEnC和Slc4a11-/- MCEnC中细胞代谢和离子转运功能抑制以及线粒体功能障碍,导致ATP生产减少。AMPK-p53/ULK1通路激活也表明线粒体功能障碍和线粒体自噬。稳态 ATP 水平降低和随后 AMPK-p53 通路激活提供了代谢功能缺陷和转录组改变之间的联系,以及 ATP 不足以维持 Na+/K+-ATPase角膜内皮泵的证据,这是 SLC4A11 相关角膜内皮营养不良特征性水肿的原因。所以SLC4A11缺陷角膜内皮中分子作用导致内皮功能障碍,是先天性遗传性角膜内皮营养不良 (congenital hereditary endothelial dystrophy, CHED) 和Fuchs 角膜内皮营养不良的主要特征。 下图结果表明SLC4A11缺陷角膜内皮中AMPK-p53 通路激活,采用Digital WB检测信号通路中各蛋白质表达水平。图B说明与 scRNA pHCEnC 对照相比,SLC4A11 KD pHCEnC 中 p53 Ser15 磷酸化水平增加,表明p53转录翻译后激活。图C在Slc4a11-/- MCEnC晚期传代中观察到相似结果(p53 Ser18磷酸化增加,对应于人p53 Ser15)。图C和D结果表明在Slc4a11-/- MCEnC 早期和晚期传代中总 p53 水平增加,代表p53转录激活。进一步研究磷酸化和p53转录激活的激酶,根据报道AMPK介导 Ser15(小鼠中Ser18)磷酸化和p53转录激活,图B和C实验结果也说明AMPKα的Thr172磷酸化增加,AMPKβ1的Ser182磷酸化没有变化。图E和F,与 scRNA pHCEnC 相比,AMPK 另一种下游底物 Unc-51 样自噬激活激酶 1 (ULK1) 在SLC4A11 KD pHCEnC中磷酸化水平(Ser555)增加。综合这些结果表明,ATP水平下降导致AMPK及其下游底物p53 和 ULK1 激活,分别导致转录组改变和线粒体自噬增加。同样,鉴于 SLC4A11 在预防氧化损伤中的作用,SLC4A11 缺失导致线粒体 ROS 产生增加,随后线粒体功能障碍和线粒体自噬增加。此发病机制支持使用Slc4a11-/-小鼠作为SLC4A11相关角膜内皮营养不良的模型,评估各种治疗方法的转化潜力。 基于Digital WB技术的全自动蛋白质表达分析系统Jess可实现化学发光和荧光两种检测模式,是多重蛋白质表达分析有力工具。2022年,ProteinSimple发布了Stellar全自动双色荧光蛋白质表达检测方案,特别适合同步分析细胞信号通路磷酸化蛋白和总蛋白表达,将细胞信号通路研究工具带到一个新高度。iPSC衍生视网膜类器官模型案例1:Digital WB检测iPSC衍生的视网膜类器官中视紫红质表达含量 美国NIH研究人员利用成纤维细胞重编程获得诱导多能干细胞(iPSC),再分化产生视网膜类器官。通过转录组学分析,确定了视网膜类器官发育过程中调节信号,在体外生成了更成熟视网膜,可促进疾病建模和基因治疗研究。本研究采用Digital WB技术揭示了不同培养条件下类器官培养物种视紫红质(Rhodopsin)表达差异。下图结果表明,DHA处理的类器官在32天时视紫红质表达增加了30%,而亚油酸(LA)处理类器官视紫红质表达降低,这表明DHA处理的类器官中视紫红质表达增加不是脂肪酸添加带来的。案例2:AAV基因治疗的RetGC-GUCY2D视网膜类器官疾病模型 Leber先天性黑蒙可由多种不同突变基因导致包括RPE65、CEP29、GUCY2D和CRX等。其中Leber先天性黑蒙1型由GUCY2D基因突变导致,可导致严重视力损害或失明。GUCY2D基因正常拷贝编码了一种鸟苷酸环化酶(RetGC),其是感光器生理学中关键酶之一,视网膜中光敏杆状细胞和视锥细胞使用该酶将光转换为电化学信号。 英国MeiraGTx公司研究人员利用CRISPR/CAS9 技术生成 RetGC 敲除 (RetGC KO) 视网膜类器官,iPSC衍生视网膜类器官分化后,将RetGC KO 视网膜类器官与同一细胞系的野生型类器官进行对比研究。总共设计了四种 AAV 载体来测试RetGC 蛋白在光感受器中的恢复情况,所有载体采用AAV7递送。CMV 和视紫红质激酶 (RK) 两个启动子,并评估了WoodChuck肝炎病毒翻译后调控元件 (WPRE) 影响。采用Digital WB检测6组类器官中RetGC蛋白表达水平。实验结果揭示,与非转导样本组比,所有载体设计均以不同效率产生RetGC蛋白。加入WPRE似乎显示出效力降低趋势,通过其他量化指标验证了这个趋势。 Digital WB相比传统Western blot,只需要几十分之一样本量就可实现类器官等珍贵样本中蛋白质定量检测,而且重复性更高和速度更快,非常适合眼部疾病类器官模型的转基因目的蛋白及相关通路蛋白表达分析。“全自动Digital WB技术是眼部疾病蛋白质表达定量的重要工具 Jess全自动数字化蛋白质表达定量分析系统 (Digital WB) 是Bio-Techne集团旗下蛋白质分析品牌ProteinSimple所有。系统利用毛细管电泳免疫学分析技术,可从微量样品中自动吸取、分离、捕获蛋白质,并通过化学发光或荧光检测目的蛋白含量。针对眼部疾病基因治疗应用技术优势Digital WB技术适合眼科基因治疗体外和体内各种模型中转基因目的蛋白表达定量分析,用于视网膜细胞系、iPSC衍生视网膜色素上皮细胞(RPE)和类器官、小鼠动物模型和非人灵长类动物模型的关键蛋白质分析。适合于基因治疗研发的不同阶段对转基因目的蛋白及相关信号通路蛋白检测需求。满足类器官和视网膜微量样本蛋白质分析需求,Digital WB技术样本量需求是传统Western Blot几十分之一,只需要3 μL样本量就可实现多重蛋白质表达检测,特别适合眼部疾病微量珍贵样本蛋白质分析。Digital WB精准定量检测,传统Western Blot只能满足样本半定量需求,重复性比较差。基因治疗某些目的蛋白表达与临床治疗效果相关联,可作为替代生物标志物,建立量效关系。要求目的蛋白分析检测标准需要提高,要求技术需要经过严格验证,Digital WB可满足这些需求。符合基因治疗产业对自动化标准化和效率的需求,面对行业激烈竞争,需要提升研发效率。Digital WB实现了全自动化和标准化,软件符合FDA 21 CFR Part 11合规性需求。系统3个小时完成一批次蛋白质分析,比传统Western Blot快4倍,大大提高了实验效率,同时减少人力成本。 Digital WB自动化程度高、重复性好、灵敏度高和具有较宽动态检测范围,这些特点满足眼部疾病基因治疗项目不同阶段的目的蛋白定量需求。Digital WB已被国内外知名基因治疗机构采用如Biogen, Sarepta Therapeutics, MeiraGTx,ATGC, Spark Therapeutics,Regenxbio,CRISPR Therapeutics, Editas Medicine, Bluebird bio,杭州嘉因生物、中国食品药品检定研究院等,必将在基因治疗研发阶段、非临床研究和临床研究阶段发挥更大的作用。扫描下方二维码,获取更多关于Digital WB资料参考文献:
  • 新型 3D 模型助力科学家揭开癌细胞真面目
    p style=" text-indent: 2em " 科学家开发了一个面向患者的模型,使用这个模型可以更好地理解并最终终止癌细胞的迁移。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201802/insimg/10c81cf2-c4cb-4530-b9f8-6feaeccd63bf.jpg" / /p p style=" text-indent: 2em " 以前,传统的癌细胞研究只能在皮氏培养皿和显微镜载玻片中进行。而现在,研究人员开发了一个新的三维模型,这个模型可模拟更为接近于人体的环境,从而分析癌细胞的复杂性。每天,人体内会产生约1000亿个新细胞。这些新细胞与数以万亿计之前产生的细胞一起形成了我们赖以生存的组织和器官。有时,在细胞产生的过程中,其DNA发生突变,使得细胞存在缺陷并可能会对人体内部环境产生潜在危险。通常情况下,细胞会识别自身的缺陷并很快自行终止。 /p p   但有时候,突变的细胞非但没有自行消除,反而不断复制,从而形成可以分裂、转移(即迁移)并侵入身体其他部分的肿瘤,这种侵入通常是通过血流完成。幸运的是,卡内基梅隆大学机械工程菲利普· 勒迪克(Philip LeDuc)教授和博士生詹姆斯· 李· 万(James Li Wan)及匹兹堡大学乳腺癌研究员卡罗拉· 诺伊曼博士(Dr. Carola Neumann)合作,开发了一个面向患者的模型。科学家可以使用这个模型更好地理解并最终终止癌细胞的迁移。该研究组的研究论文发表在《Scientific Reports》,题为“通过微铣技术在芯片方法中模拟三维癌症的嵌入式脉管系统结构(Mimicking Embedded Vasculature Structure for 3-D Cancer on a Chip Approaches through Micromilling)”。据勒迪克介绍,这个项目的起因是研究人员对物理科学与癌症之间的关系越来越感兴趣。肿瘤实际上就是体内肿块,生化和物理手段都可以对其和癌细胞产生影响。而考虑到这两种手段之间的关系,勒迪克、诺伊曼和万开始关注癌细胞的转移和分析。通过合作,他们能够开发出一种更精确、更相关的研究癌细胞的方法。 /p p   不同于传统上在塑料培养皿中进行的癌细胞分析,研究小组建立了一个能更精确地反映生物体生理条件的三维模型。借助这个模型,科学家们可以在与人体更加相似的环境中发现并分析癌细胞的复杂性。“几十年来,生物学研究都在皮氏培养皿中进行,”勒迪克说,“但问题是,能制造出更有生理学意义的系统吗?我们使用微流体和微制造方法来创建三维系统,这是因为细胞存在于三维组织中,在自然条件下,它们是不会驻留在二维培养皿中的。” /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201802/insimg/06269c72-ca19-4797-bad9-ea2bc94888c7.jpg" /    /p p   一般来说,所谓微流体系统就是在微观水平上传输液体的系统,通常由塑料制成。但是勒迪克、诺伊曼和万想要建立一个更具生理学意义的系统,他们使用了人体内最主要的蛋白质——胶原蛋白来构建他们的微流体系统。“正如菲利普所说,过去我们用塑料培养细胞,用皮氏培养皿研究。”匹兹堡大学药理学和化学生物学副教授诺伊曼说。“但是,人体内是没有任何塑料的。拥有一个模仿生理条件的三维系统更好,能获得更快、更相关的结果。”每个该团队构建的微流体装置包含两个关键组件:模拟传统血管的平行通道和嵌入胶原中的癌细胞浓度集合。 /p p   一旦装置设立成功,通道就会被注入能扩散到周围胶原蛋白的化学刺激剂。随着兴奋剂分子远离通道,产生生物分子梯度。这种梯度能促使嵌入的癌细胞移动,而这种移动往往是向着模拟血管通道的。就病人来说,如果癌细胞进入血液,它们就会转移,并可能形成继发性癌肿瘤。据勒迪克和诺伊曼称,大多数实体瘤患者通常死于肿瘤转移,而非原发性肿瘤本身。这就是为什么科学家首先要弄清楚如何阻止癌细胞发生转移。癌细胞的转移具有从原发肿瘤转移到血液或淋巴系统的能力—— 这一过程需要癌细胞迁移并重塑肿瘤组织以侵入身体的其他部位。所以,为了阻止其转移,科学家需要了解哪些因素能够支持癌细胞的移动和组织重塑。这也就解释了为何勒迪克、诺伊曼和万开发的这个三维系统如此重要。 /p p   “癌症是一种极其异质性的疾病。这就意味着不仅每个患者的癌细胞各不相同,甚至在一个肿瘤内,癌细胞也有所不同。”诺伊曼说。“转移也是如此。根据它们在身体中的位置,每个继发性肿瘤也不相同。”勒迪克、诺伊曼和万相信,研究人员最终会使用他们的系统来检查每个患者的肿瘤以确定每位患者的最佳治疗方法。这个过程最终将有助于使癌症治疗更加个性化和有效。“我们的模型可以作为某个特定患者的模型,”万说。他组织完成了实验室实验并分析了研究结果。“这非常重要,正是由于每个病人的癌症各不相同,才使得它很难治愈。”理想的话,这个由勒迪克,诺伊曼和万开发的三维系统将为研究人员和科学家提供所需工具,以阻止患者癌细胞的转移。 /p p   “如果至始至终,肿瘤只能呆在原位,什么都不能做。这样对病人来说还好。”勒迪克说,“但是一旦它发生转移,一切失控了。我们希望我们的系统能对终止癌细胞转移有所帮助,并且从长远来看,希望它能改善病人的治疗效果。 /p
  • 使用原代细胞3D生物打印皮肤组织模型
    导读皮肤是我们与外部环境的第一个主要接口,是一个非常有吸引力的再生器官,在过去40年里,科学家们对它进行了大量的探索(Loai, 2019 Tarassoli, 2017)。皮肤组织模型的广泛应用领域,从药物筛选到化妆品测试和伤口愈合研究,部分原因是因为皮肤组织的组成相对简单,可以描述为两个主要层,每层都具有一种主要细胞类型。在过去已经建立了2D模型和培养系统。然而,这些模型并不能完全重述原生皮肤,也缺乏3D模型提供的空间组织(Loai,2019 Singh,2020 Vijayavenkataraman,2016)。为了增加物理相关性,提高体外结果与体内条件的可译性,迫切需要3D皮肤组织模型。仪器:CELLINK BIOX墨水:GelXA Skin生物墨水和Col MA生物墨水细胞:人真皮成纤维细胞、表皮角质形成细胞过程:❶设计皮肤模型❷打印真皮层和表皮层❸3D生物打印皮肤组织模型转移到transwell板中,皮肤组织模型从液体培养到气液界面培养。结果:该皮肤组织模型的构建方法创建了一个完整且坚固的结构,可保持它在整个实验过程中的形状。样品横切面的H&E染色初步表明,6天时真皮和表皮这两个隔室之间的连接很弱。但在第14天,两层已经合并(图4)。在第14天,可以看到表皮平滑地跟随真皮的轮廓,真皮和角质形成细胞开始重组。进一步观察表皮发育,免疫荧光图像显示角蛋白14的表达在整个培养过程中保持不变,而角蛋白10和聚丝蛋白的表达在第14天增加。角蛋白10作为分化角质细胞的标记物,位于表皮的中间部分,而角化层的标记物聚丝蛋白应位于表皮的最外层。角蛋白10和聚丝蛋白表达的明显增加表明角质细胞已经开始分化。在第14天,聚丝蛋白的表达向结构的顶部,朝向气-液界面,显示了细胞在生物打印模型内的重组能力。总结:这项研究举例说明了如何使用原代细胞培养系统和CELLINK的3D生物打印平台进行全厚度皮肤组织模型的3D生物打印。★ GelXA SKIN生物墨水为皮肤发育提供了良好的环境,ColMA表皮生物墨水支持皮肤组织模型内表皮的形成。★ 该皮肤模型设计为表皮和真皮的发育形成了一个稳定的平台,在14天的培养期间保持稳定,但它可以培养更长时间,以允许其他真皮和表皮标记物进一步成熟。
  • 2024两会提案:以大模型落地应用促进北京智能仪器仪表产业发展
    北京市人大代表、民建海淀区委主委、中国科学院自动化研究多模态人工智能系统全国重点实验室研究员赵晓光。1月23日,北京市十六届人大二次会议期间,新京报贝壳财经记者现场采访了北京市人大代表、民建海淀区委主委、中国科学院自动化研究多模态人工智能系统全国重点实验室研究员赵晓光。北京市政府工作报告明确提出2024年着力做好十一个方面工作,第三方面就是“做强做优做大数字经济,更好赋能首都高质量发展”,其中要求统筹推进数字产业化和大力支持产业数字化。提升人工智能底层技术和基础底座自主可控能力,推动人工智能模型对标国际先进水平,加快在政务、医疗、工业、生活服务等领域应用,保持人工智能研发应用领先水平。对于发展人工智能,赵晓光告诉贝壳财经记者,“我们需要加强的一个是算力,另一个是对发展方向的理念,即产业方向应该在哪里?目前,对于在先进制造领域应用人工智能和大模型,全世界都没有很好的破题的方法,相信在北京扎实的基础下,我们能率先破题,抢占科技制高点。”本次上会,赵晓光带来了《关于“以大模型落地应用促进北京智能仪器仪表产业创新发展”的建议》和《关于“增强青少年健康素质,引导体育健康消费”的建议》两份建议。我国高端智能仪器仪表仍依赖进口据了解,改革开放以来,我国仪器仪表行业在国家工业强基工程、高质量发展专项、重大科研仪器设备开发重点专项、重大科学仪器设备研制等专项支持下,行业科技创新和产业发展取得明显进步,已经形成产品门类品种比较齐全,具有一定技术基础和生产规模的工业体系,国产产品已能够满足大部分工业制造和社会生产生活需求,少数中高档产品接近国际技术水平,且有一定规模出口。不过,赵晓光告诉记者,我国在尖端科研、超精密测试分析、战略新兴产业等领域所需的高端智能仪器仪表仍依赖进口,是全球第二大仪器仪表进口国,“长期以来,全球TOP20仪器企业排行榜由美国、日本、瑞士、德国及英国企业包揽,并通过不断兼并收购仍在加速扩张。当前,以美国为首的发达国家对我国高技术产品出口和技术输出持续收紧,高端仪器自主可控成为我国仪器仪表产业面临的最直接挑战。”“创新技术和产品缺少试错机会。一个仪器产品从推出到受到市场认可大约需要5-10年时间,只有通过不断应用,仪器功能性能才能不断得到迭代优化。但国产高端仪器长期不被市场认可,得不到试错和迭代的机会。”赵晓光说。人工智能大模型为智能仪器仪表行业跨越发展带来新机遇在赵晓光看来,人工智能技术飞速发展和大模型的应用落地,可以为北京市智能仪器仪表行业跨越发展带来新的机遇。她建议,支持培育一批行业龙头企业创新发展,“依托于北京市的网络协同制造平台,大力支持、培育集研发制造、系统集成、创新应用于一体、具有生态主导力和核心竞争力的高端仪器领军企业,带动产业链上、下游配套企业走智能化、尖端化发展道路,在智能制造、工业互联网等专项中支持重点培育企业提升智能制造水平和数字化转型能力。”赵晓光还建议,打造智能仪器制造产业集群,支持大模型落地应用,“围绕国家大科学装置、先进制造业基地,支持产业特色鲜明、发展基础较好的区,以高端仪器整机制造龙头企业、应用领域典型用户为牵引,汇集创新力量和上游配套产业,聚集解决方案设计、系统集成、运营维护、维修服务等企业,形成创新功能集聚、产业优势互补的高端仪器产业集群。”“在大模型落地应用中,注重提升产品、工艺、服务标准,推动基础通用技术标准升级。同时,建议北京市优化智能仪器仪表支持政策,尤其是制定扩大用户领域的国产替代政策,在支柱性产业大力推广国产仪器的应用。鼓励企业开展国际合作,引进、消化、吸收国际先进技术,促进产业创新发展。鼓励京、津、冀地区仪器仪表企业深度参与大模型开发与落地应用工作,形成以北京为产业龙头,带动华北地区智能仪器仪表产业创新发展、抢占世界技术与产业高地的新发展格局。”赵晓光说。
  • 器官芯片模型在神经免疫系统研究中的新进展
    帕金森病(PD)和阿尔茨海默病(AD)是由基因、环境和家族因素相互作用引起的神经退行性疾病。值得注意的是免疫系统对疾病发展的影响,脑部驻留的小胶质细胞的功能障碍,会导致神经元的丧失和症状加剧。研究人员通过神经免疫系统模型来更深入地了解这些神经退行性疾病的生理和生物学方面以及它们的发展过程。不列颠哥伦比亚大学的Stephanie M. Willerth教授团队和英国诺丁汉特伦特大学的Yvonne Reinwald教授团队于2024 年 1 月 23 日在《Journal of Neuroinflammation》(影响因子:9.3)杂志上发表了题为“Modeling the neuroimmune system in Alzheimer’s and Parkinson’s diseases”的综述,介绍了神经免疫系统在三维模型和器官芯片系统方面取得的进展,以及模型在准确模拟复杂的体内环境方面的巨大潜力。 研究背景阿尔茨海默病(AD)是老年人中最常见的痴呆类型,与淀粉样斑块和磷酸化Tau蛋白的异常积累有关,虽具体原因尚不完全清楚,但与遗传和环境因素相关,诊断及早干预至关重要。帕金森病(PD)是一种神经系统疾病,主要表现为运动障碍,与聚集的α-突触核蛋白(α-syn)沉积物Lewy小体有关,相关基因变体也与其发病风险增加有关。尽管PD的确切原因尚不清楚,但其发病机制可能涉及多巴胺能神经元功能障碍以及氧化应激、线粒体功能受损、蛋白质代谢异常和神经炎症等多种因素。图1:阿尔茨海默病和帕金森病的病理生理学。 中枢神经系统(CNS)过度炎症的特征包括多种因素共同促进疾病进展,其中包括各种抗炎与促炎细胞因子的失调、CNS内小胶质细胞等免疫细胞的表型转化,以及外周细胞的巨噬细胞和淋巴细胞的招募,这些因素均导致突触丧失,成为随后认知功能障碍的最常见病理相关因素。图2:健康与病理神经免疫系统的比较:在健康的神经免疫系统中(1)小胶质细胞处于稳态和监视状态,(2)外周免疫细胞向中枢神经系统的浸润有限。在病理性神经免疫系统中:(3)小胶质细胞反应性增强,形态改变,(4)吞噬作用增加,(5)炎症标志物增加,(6)外周免疫细胞浸润增加。 研究进展1、目前阿尔茨海默病和帕金森病的治疗和临床试验针对AD,乙酰胆碱酯酶是一个常见的药物靶点,近期研究专注于开发单克隆抗体等药物以减少Aβ负荷,如lecanemab和aducanumab。此外,针对AD的临床试验正在进行中,旨在测试药物、设备和行为以改善患者认知和减缓疾病进展,而对于PD,则主要以药物和深部脑刺激为主要治疗手段,同时也在研究新的免疫调节治疗方法。 2、阿尔茨海默病、帕金森病和免疫系统的体外免疫系统模型癌症免疫系统的研究已经取得了许多成果,其中包括对3D模型的发展,这对于疾病建模和药物筛选至关重要,尤其是针对新的化疗药物和人工组织的开发。一种体外建模方案是使用细胞系,最常用的是SH-SY5Y人类神经母细胞瘤细胞系,模拟未成熟的儿茶酚胺能神经元,并可通过暴露于神经毒素或基因修饰来模拟AD或PD。然而,SH-SY5Y存在缺乏确立的培养维持程序、实验结果不一致和细胞生长的可变性等缺点,且不表现出成熟神经元的电生理和电化学特征。利用诱导多能干细胞(iPSC)创建基因准确的AD和PD模型,成为一个快速发展的研究领域,这些模型可以通过体细胞来源的iPSC诱导后,生成神经元与免疫细胞,用来构建AD和PD模型。图3:神经免疫系统的体内和体外模型的优缺点。 3、器官芯片模型在神经免疫系统研究中的新进展器官芯片平台的出现为建立体外模型提供了增强的设计和控制能力,能够模拟生物、生化、生理和机械现象,在活体器官系统中的发生。从血液-脑脊液屏障微流控模型到脑芯片模型,研究者们不断探索着复杂的生理学建模,为深入分析神经免疫相互作用提供了新的可能。这些模型不仅揭示了神经炎症在神经退行性疾病中的重要性,还为治疗干预提供了潜在途径,为了解AD和PD的潜在机制提供了宝贵的见解。同时,脑芯片模型被广泛应用于研究神经血管相互作用和神经退行性的不同方面。通过模拟神经-胶质-血管相互作用,研究人员发现了柴油排放颗粒等外源因素对AD类疾病病理特征的影响。这些研究不仅强调了神经免疫特异性行为的重要性,还突显了人类细胞模型在理解神经退行性疾病方面的关键作用。然而,尽管研究对细胞间相互作用和人类细胞模型的依赖日益增加,但对于AD和PD潜在机制的理解仍然相对有限。图4:芯片上器官的发展:示意图显示了开发和制造微流控芯片所需的步骤 先进的免疫细胞相互作用在AD和PD病理中至关重要,调节其功能可能为更有效的治疗提供希望;器官芯片模型具有模拟复杂细胞相互作用的优势,有助于深入了解AD和PD疾病机制并发现新的治疗策略。 文献索引:Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ , El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation. 2024 Jan 23 21(1):32. doi: 10.1186/s12974-024-03024-8. PMID: 38263227 PMCID: PMC10807115. 关于艾玮得生物作为一家专注于人体器官芯片及生命科学设备研发与生产的创新科技公司,艾玮得器官芯片应用全场景解决方案已能够全面覆盖新药研发评价、临床药敏检测、基础科学研究等应用领域,为科研、临床、药企等客户提供一站式解决方案。
  • 多个类器官串联共培养在疾病模型研究中的意义
    多个类器官串联共培养在疾病模型研究中的意义翻译整理:北京佰司特贸易有限责任公司,2023-07-04人类系统性疾病的发生过程都是通过破坏两个或多个器官的自我平衡和相互交流。研究疾病和药物治疗就需要复杂的多器官平台作为体外生理模型的工具,以确定新的药物靶点和治疗方法。2型糖尿病(T2DM)的发病率正在不断上升,并与多器官并发症相关联。由于胰岛素抵抗,胰岛通过增加分泌和增大胰岛体积来满足胰岛素不断增加的需求量。当胰岛无法适应机体要求时,血糖水平就会升高,并出现明显的2型糖尿病。由于胰岛素是肝脏代谢的关键调节因子,可以将生产葡萄糖的平衡转变为有利于葡萄糖的储存,因此胰岛素抵抗会导致糖稳态受损,从而导致2型糖尿病。过去已经报道了多种表征T2DM特征的动物模型,但是,从动物实验进行的研究往临床上转化的效果不佳。更重要的是,目前使用的药物,虽然能缓解糖尿病症状,但对疾病进一步发展的治疗效果有限。在此,我们以胰腺和肝脏在芯片上的串联共培养为例(参考文献:Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model,2017, Nature Scientific Reports)来说明一下。胰腺和肝脏是参与维持葡萄糖稳态的两个关键器官,为了模拟T2DM,阿斯利康(AstraZeneca)的科学家利用TissUse GmbH公司的微流控多器官芯片(MOC)平台,通过微流控通道相互连接,建立一个双器官串联芯片(2-OC)模型,实现芯片上胰腺和肝脏类器官的串联共培养,在体外模拟了胰腺和肝脏之间的交流通讯。建立串联共培养类器官(胰岛+肝脏)和单独培养类器官(仅胰岛或肝脏),在培养基中连续培养15天,串联共培养显示出稳定、重复、循环的胰岛素水平。而胰岛单独培养的胰岛素水平不稳定,从第3天到第15天,降低了49%。胰岛与肝球体串联共培养中,胰岛可长期维持葡萄糖水平,刺激胰岛素分泌,而单独培养的胰岛,胰岛素分泌显著减少。胰岛分泌的胰岛素促进了肝球体对葡萄糖的利用,显示了串联共培养中类器官之间的功能性交流。在单独培养中的肝球体中,15天内循环葡萄糖浓度稳定维持在~11 mM。而与胰岛共培养时,肝球体的循环葡萄糖在48小时内降低到相当于人正常餐后的水平度,表明胰岛类器官分泌的胰岛素刺激了肝球体摄取葡萄糖。T2DM是一种多器官疾病,疾病表型和对药物的反应依赖于具有完全代谢功能的器官和它们之间的相互作用。这篇文章提出了一个胰岛和肝球体之间的类器官串联共培养的模型。与单一培养相比,在GTT(葡萄糖耐量测验)第一天内,串联共培养中的血糖水平从高浓度降至正常范围,随后保持平衡。在没有胰岛素刺激时,单独培养类器官(仅胰岛或肝脏)中的葡萄糖水平一直保持在高浓度。通过测量胰岛在葡萄糖负荷下释放到培养基中的胰岛素水平来评估肝脏和胰岛的串联共培养的作用。胰岛素促进了肝球状体对葡萄糖的利用,在共培养中葡萄糖维持在正常水平,而单独培养中葡萄糖水平一直偏高。因为,串联共培养中,分泌到循环中的胰岛素刺激了肝球体对葡萄糖的摄取,随着葡萄糖浓度的降低,胰岛素分泌会随之减少,这就表明肝脏和胰岛之间存在一个功能反馈回路。长期暴露于高糖水平下,缺乏肝球体的胰岛释放胰岛素的能力会降低,提示了长期高血糖损害胰岛功能。另外,与单层HepaRG细胞相比,受刺激和未受刺激的AKT磷酸化比例在肝球体中明显更高,这表明3D培养环境更利于模拟人体内的生理反应。这些结果鼓励我们建立2-OC模型来模拟T2DM的特征,通过胰岛-肝脏串联共培养揭示与T2DM疾病相关的机制,包括β细胞衰竭、胰岛素抵抗、脂肪变性、脂肪性肝炎和肝硬化。多器官芯片(MOC)的发展目标是建立各种不同的器官组合模型,用于药物有效性和安全性评估以及药动学/药效学(PK/PD)测试。
  • IVIS视角 | 活体成像助力隐孢子虫感染可视化模型构建
    随着生活水平和医疗卫生状况的不断提升,寄生虫感染在我们日常生活中似乎已日渐陌生。但在一些欠发达地区,由于贫困和不良的卫生习惯造成的寄生虫感染仍然威胁着无数生命。隐孢子虫作为一种常见的人畜共患寄生虫感染性疾病,是导致腹泻病的主要原因。由于其经由粪便传播,所以常经由水体污染而在卫生条件较差的地区发生群体性感染。感染通常是自限性的,健康的成年人在发生第一阶段的较严重的腹泻之后便可恢复,但粪便仍可能具有传染性。新生儿或免疫力低下的如艾滋病患者或经免疫抑制治疗的病人在感染后病情较严重,是儿童早期死亡、营养不良和生长迟缓的重要原因,也是艾滋病人并发腹泻死亡的主要原因。现今发现的隐孢子虫共有15个亚种,分别感染人、家禽、宠物、牲畜以及一些野生动物。由于不了解其致病机制,目前的治疗方案往往是对症用药而非对因用药。由于不同物种间感染模式差异,在实验动物(主要为牛等家畜)上应对隐孢子虫感染的有效疫苗往往对预防人的感染收效甚微。针对以上问题,来自美国宾大兽医学院的研究人员发现了一种可用在小鼠模型中模拟与人患隐孢子虫病相似病症的隐孢子虫(Cryptosporidium tyzzeri), 同时利用IVIS小动物活体成像系统帮助他们在体研究隐孢子虫的感染以及宿主经寄生虫或疫苗免疫激活后的抗感染现象。该研究于近期发表在Cell子刊Cell Host & Microbe上。要在小鼠体内模拟人患隐孢子虫病的合理模型,首先就需要找到相应的隐孢子虫。作者在农场收集了大量小家鼠粪便,经由测序,鉴定出一株与感染人的两种隐孢子虫(C. parvum和C. hominis)最接近的一种鼠隐孢子虫(C. tyzzeri)。同时为了后续在体观察其感染模式以及宿主抗感染效果,作者通过CRISPR-Cas9技术将Luciferase基因和mCherry荧光蛋白导入到隐孢子虫的基因组中,构建了一株可以进行活体以及显微观察的隐孢子虫。图一C. tyzzeri的鉴定以及基因编辑 (上:隐孢子虫种间基因组相似性比较,AB为常见感染人的两种隐孢子虫,C为常见感染鼠的隐孢子虫)构建好的隐孢子虫就可以进行活体观察了,由于有活力的隐孢子虫可以表达Luciferase,在底物荧光素的作用下便可自发荧光,通过IVIS活体成像系统来实时监测体内隐孢子虫的繁殖情况。作者将这一光学观察方式与传统的粪便qPCR检测结果进行验证,二者具有很好的一致性。作者除了观察到这一新鉴定的隐孢子虫感染和人患隐孢子虫病的感染部位以及病理表征一致之外,还观察到了具有免疫缺陷的鼠(IFN-γ、Rag基因的敲除鼠 )也更易受到隐孢子虫的危害,这一点与临床上免疫缺陷病人的高发病致死率也刚好吻合。图二 C. tyzzeri感染模式观察有了这一能够很好模拟人隐孢子虫感染的实验动物模型之后,便可以利用这一模型进行隐孢子虫的治疗以及疫苗的开发。由于临床上隐孢子虫高发地区人们在感染痊愈后再度感染的概率大大降低,因此作者首先检验了虫体是否可以直接作为疫苗来进行感染的预防。利用未经Luciferase标记的C. tyzzeri进行第一次感染,同时实验组使用灭活的虫体作为疫苗进行第一次免疫,在感染后用广谱抗虫药巴龙霉素杀灭后用Luc标记C. tyzzeri进行二次感染,能够观察到接触活虫的小鼠几乎不会发生二次感染,而使用灭活虫体作为疫苗无法激活体内免疫系统进行后续的抗感染作用。图三 使用灭活的C. tyzzeri无法预防感染因此作者想到可以使用减毒的活虫对宿主进行第一次免疫。通过射线进行寄生虫减毒处理,可以降低其感染力至无害水平。在减毒活虫感染后30天,在使用Luc标记的C. tyzzeri进行感染,能够观察到该方法与野生型活虫二次感染模型有着相同的抗感染作用,说明减毒的疫苗是一种行之有效的预防隐孢子虫感染的方式。但是由于要调动自身免疫系统,这一方法在免疫缺陷的小鼠身上仍不奏效。图四 使用减毒疫苗可以有效对隐孢子虫进行预防虽然这篇文章也并未真正解决隐孢子虫的抗感染问题,但是构建出针对这一寄生虫病的实验小鼠模型已经为后续的科研工作者尝试更多治疗方案和预防措施提供了可操作可监控的实验工具。参考文献1. A Genetically Tractable, Natural Mouse Model of Cryptosporidiosis Offers Insights into Host Protective Immunity. Adam Sateriale et al., 2019, Cell Host & Microbe 26, 1–12https://doi.org/10.1016/j.chom.2019.05.00关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制