当前位置: 仪器信息网 > 行业主题 > >

非线性扫描现象

仪器信息网非线性扫描现象专题为您整合非线性扫描现象相关的最新文章,在非线性扫描现象专题,您不仅可以免费浏览非线性扫描现象的资讯, 同时您还可以浏览非线性扫描现象的相关资料、解决方案,参与社区非线性扫描现象话题讨论。

非线性扫描现象相关的资讯

  • 中科大发现全新的非线性电子散射现象
    中国科学技术大学合肥微尺度物质科学国家实验室陈向军教授研究组与罗毅教授合作,利用自主研制的扫描探针电子能谱仪发现了全新的非线性电子散射现象,该现象的发现有可能发展出一种革命性的固体表面单分子探测技术。研究成果发表在最新一期的《自然&bull 物理》上,中国科大徐春凯副教授是论文的第一作者。Phys.org网站和《亚洲科学家杂志》对研究成果做了专题报道。   电子能量损失谱学是分析材料化学组成的一种重要手段,它通过测量电子的非弹性散射获得原子分子的信息。然而在常规的电子散射中,非弹性电子只占极少的比例,大多数电子是没有能量损失的弹性散射电子。陈向军教授研究组将电子能谱学技术与扫描探针技术结合自主研制了扫描探针电子能谱仪,并利用针尖场发射电子束与石墨表面的银纳米结构相互作用,测量散射电子的能谱。实验表明,银纳米结构激发出的局域等离激元场可以导致非线性的电子散射现象,使得非弹性电子的强度显著增强。罗毅教授提出一种单电子两步过程的理论模型解释了这种非线性电子散射。   非线性电子散射不仅是一种全新的物理现象,它同时还会带来一种新的、具有潜力的谱学技术即&ldquo 非线性电子散射谱学&rdquo ,未来可以用于研究吸附在金属纳米结构上的原子、分子。非线性电子散射过程会大大提高信噪比,从而实现固体表面纳米空间分辨的原子分子谱学测量。   上述研究得到了科技部、国家自然科学基金委、教育部和中组部&ldquo 千人计划&rdquo 的支持。
  • 中国教授利用电子能谱仪首次发现非线性电子散射现象
    记者日前从中国科学技术大学获悉,该校合肥微尺度物质科学国家实验室陈向军教授研究组与罗毅教授合作,利用自主研制的扫描探针电子能谱仪首次发现了非线性电子散射现象,该现象的发现有可能催生出一种革命性的表面单分子探测技术。研究成果发表在最新一期的《自然· 物理》上。   电子能量损失谱学是分析材料化学组成的一种重要手段,电子打到样品上会损失能量而发生非弹性散射,电子损失的能量取决于样品原子及其所处的状态,通过收集测量非弹性散射电子,可以获得样品中元素分布和原子相互作用等信息。然而在常规的电子散射中,非弹性电子只占极小的比例,大多数电子是没有能量损失的弹性散射电子。   合肥微尺度物质科学国家实验室徐春凯副教授、陈向军教授及其同事将电子能谱学技术与扫描探针技术相结合,自主研制了扫描探针电子能谱仪。实验中,离样品表面只有几个微米距离的钨针尖加上电压后发射出携带能量的电子,电子与石墨表面的银纳米结构相互作用后,散射的电子被分析器收集并按照能量分类,从而获得它们的能量损失值。实验表明,电子在银纳米结构上激发出的局域的等离激元场(样品中电子集体运动形成的场)可以导致非线性电子散射现象,更多的电子损失能量,使非弹性电子的强度显著增强。罗毅教授提出了一种单电子两步过程的理论模型,解释了这种非线性电子散射。   非线性电子散射不仅是一种全新的物理现象,它同时还会带来一种新的、具有潜力的谱学技术&mdash &mdash &ldquo 非线性电子散射谱学&rdquo ,未来可以用于研究吸附在金属纳米颗粒上的单个原子或分子。
  • 蓝光近场太赫兹非线性光学技术
    近日,美国布朗大学物理系的Angela Pizzuto等人完成了第一个使用蓝光的扫描近场显微镜的实验演示。通过410纳米的飞秒脉冲,研究人员直接从体硅中产生太赫兹脉冲,以纳米级的分辨率进行空间分辨,这些信号提供了使用近红外激发无法获得的光谱信息。他们开发了一个新的理论框架来解释这种非线性相互作用,使得材料参数的精确提取成为可能。这项工作为使用扫描近场显微镜方法研究技术上相关的宽带隙材料建立了一个可能的新领域。上世纪90年代中期,散射型扫描近场光学显微镜(s-SNOM)的出现,改变了亚波长光学领域。这种技术涉及到将电磁辐射耦合到一个尖锐的亚波长金属尖端,并随后在远场测量从该尖端-样品交界处散射的辐射。在过去的十年里,这种近场测量的方法在光谱的红外和太赫兹区域产生了显著的影响。基于孔径的亚波长光谱学方法是具有挑战性的,随着波长的增加,入射波与金属尖端的耦合变得更容易,而空间分辨率仍然受到尖端尺寸的限制。关于短波长辐射与纳米级尖端的耦合是一项艰巨的任务,阻碍了对重要的宽带隙材料的纳米级研究,如硅和氮化镓等。这些材料已经用低于带隙的激发方式在近场进行了线性光学研究。将纳米级的非线性光学方法应用于其他材料已比较成熟,但由于将该方法应用于这些高度相关的材料系统一般需要更高的能量光激发,至今还没有实现。布朗大学的Angela Pizzuto等人描述了一个入射光子能量超过3eV的扫描近场光学显微镜测量。使用410纳米的飞秒脉冲,研究人员照亮了一个锋利的金属原子力显微镜(AFM)尖端,并通过二阶非线性光学过程诱导来自几种不同材料的太赫兹发射,以实现具有纳米级空间分辨率的激光太赫兹发射显微镜(LTEM)。由于宽直接带隙以上的双光子激发,泵浦光子的高能量使大块晶体硅的强太赫兹发射成为可能。激光太赫兹发射显微镜的特性导致了对光学对准的要求大大放宽;传统的线性扫描近场光学显微镜使用纳米尖来限制入射波,这种聚焦短波长辐射在纳米尖下的精确对准实际上是有挑战性的。在实验中,通过对一小部分的宏观光生太赫兹偶极子的外耦合,可以获得纳米级的分辨率,研究人员首次实现了在扫描近场光学显微镜中使用紧密聚焦的蓝光。他们得到了第一个硅的近场激光太赫兹发射显微镜图像,并将结果与太赫兹扫描近场光学显微镜通过尖端的太赫兹脉冲的弹性散射获得的结果相比较。图1是激光路径和扫描近场光学显微镜实验装置示意图。近红外、蓝光和太赫兹光束分别产生,其中太赫兹脉冲使用传统的光电导天线产生,所有的三束光重叠并耦合到原子力显微镜中。散射或发射的太赫兹脉冲在另一侧通过自由空间电光采样进行相干检测。图1 实验装置示意图为了说明在宽带隙材料中使用激光太赫兹发射显微镜的价值,研究人员使用硅片作为样品,它在近红外激发下不会发出明显的太赫兹辐射。该硅片有一个小的区域,受到了离子注入,随后的退火激活了这个区域注入的掺杂物。这样硅片包含两个掺杂密度非常不同的区域,它们之间有一个清晰的边界。研究人员对这个边界区域进行了线性和非线性测量,并对结果进行比较。图2 硅样品的太赫兹辐射。(a)太赫兹脉冲 (b)太赫兹脉冲峰峰值与泵浦光束的平均功率之间的关系首先,当用超快蓝光泵浦时,未注入的基底和注入的区域都会发出太赫兹脉冲。图2a显示了由蓝光激发的THz脉冲,在探针敲击频率的二次谐波处解调得到的结果。可以观察到,轻度掺杂的基底比重度掺杂的植入区域产生明显更多的太赫兹发射。为了更好地理解太赫兹的产生机制,研究人员测量了发射的太赫兹峰峰值与蓝色泵浦光束的平均功率之间的关系,如图2b所示。当功率在大约2 mW以上,太赫兹发射强度受蓝光功率增加的影响较小;事实上,一旦泵浦通量足够高,很大一部分可用的电荷载流子将被光激发,任何多余的泵浦光子将被高的局部导电性屏蔽。由图2b中的插图可以看出,发射的太赫兹场的振幅和泵浦光功率之间有一个明显的二次方关系。这表明THz产生的主要机制是双光子吸收;价带中的载流子吸收了超过6 eV的泵浦能量,并被激发到远高于块状Si的宽4.2 eV的直接带隙之上。该实验结果为扫描近场光学显微镜方法在宽带隙材料上的应用提供了新的可能性。
  • 中国科大首次实现多体非线性量子干涉
    中国科学技术大学郭光灿院士团队在多体非线性量子干涉研究中取得重要进展。该团队任希锋研究组与德国马克斯普朗克光科学研究所MarioKrenn教授合作,基于光量子集成芯片,国际首次展示了四光子非线性产生过程的干涉,相关成果于1月13日发表在光学权威学术期刊Optica上。量子干涉是众多量子应用的基础,特别是近年来基于路径不可区分性产生的非线性干涉过程越来越引起人们的关注。尽管双光子非线性干涉过程已经实现了二十多年,并且在许多新兴量子技术中得到了应用,直到2017年人们才在理论上将该现象扩展到多光子过程,但实验上由于需要极高的相位稳定性和路径重合性需求,一直未获得新的进展。光量子集成芯片,以其极高的相位稳定性和可重构性逐渐发展成为展示新型量子应用、开发新型量子器件的理想平台,也为多光子非线性干涉研究提供了实现的可能性。任希锋研究组长期致力于硅基光量子集成芯片开发及相关应用研究并取得系列重要进展:(1)国际上首次基于硅基光子集成芯片实现了四光子源的制备(Light Sci Appl 8, 41, 2019);(2)首次实现频率兼并四光子纠缠源制备(npj Quantum Inf 5, 90, 2019);(3)首次实现波导模式编码的量子逻辑门操作(Phys. Rev. Lett. 128, 060501,2022)和超紧凑量子逻辑门操作(Phys. Rev. Lett., 126, 130501,2021)等。在这些工作基础上,研究组同MarioKrenn教授合作,通过进一步将多光子量子光源模块、滤波模块和延时模块等结构进一步片上级联,在国际上首次展示了四光子非线性产生过程的相干相长、相消过程。实验结果如图1(a)所示,四光子干涉可见度为0.78。而双光子符合并未观测到随相位的明显变化,这同理论预期一致。整个实验在一个尺寸仅为3.8×0.8mm2的硅基集成光子芯片上完成,如图1(b)所示。(a)(b)   图1. (a)量子干涉测量结果;(b)用于实现四光子非线性量子干涉的集成光量子芯片。该成果成功地将两光子非线性干涉过程扩展到多光子过程,为新型量子态制备、远程量子计量以及新的非局域多光子干涉效应观测等众多新应用奠定了基础。审稿人一致认为这是一个重要的研究工作,并给出了高度评价:“The chip is well-designed and contains various integrated optical components such as entangled photon source, an interferometer, frequency filter/combiner (该芯片设计精良,包含多种集成光学元件,如纠缠光子源、干涉仪、频率滤波器/组合器)”、“This work pushes forward the research field of integrated photonic quantum information science and technology(这项工作推动了集成光子量子信息科学与技术研究领域的发展)”。中科院量子信息重点实验室任希锋教授、德国马克斯普朗克光科学研究所MarioKrenn教授为论文共同通讯作者,中科院量子信息重点实验室特任副研究员冯兰天为论文第一作者。此外,浙江大学戴道锌教授和张明助理研究员为该工作提供了技术支持。该工作得到了科技部、国家基金委、中国科学院、安徽省以及中国科学技术大学的资助。
  • 科学家在集成光子芯片上实现人工合成非线性效应
    中国科学技术大学郭光灿院士团队在集成光子芯片量子器件的研究中取得新进展。该团队邹长铃、李明研究组提出人工合成光学非线性过程的通用方法,在集成芯片微腔中实验观测到高效率的合成高阶非线性过程,并展示了其在跨波段量子纠缠光源中的应用潜力。相关成果10月20日在线发表于《自然—通讯》。  自激光问世以来,非线性光学效应已经被广泛应用于光学成像、光学传感、频率转换和精密光谱等领域中。对于新兴的量子信息处理来说,它也是实现量子纠缠光源以及量子逻辑门操作的核心元素。然而受限于材料非线性极化率随阶数呈指数衰减这一本征属性,人们对光学非线性的应用主要局限于二阶和三阶过程,多个光子同时参与的高阶过程很少被研究。一方面,低阶过程限制了传统非线性与光量子器件的性能,比如量子光源的可扩展性;另一方面,人们也好奇高阶非线性过程所蕴含的新颖非线性与量子物理现象。  利用集成光子芯片上的微纳光学结构可以增强光子间的非线性相互作用,这已经成为目前国际上集成光学与非线性光学方向的研究热点。邹长铃研究组李明等人长期致力于集成光子芯片量子器件的研究,开拓微腔增强的非线性光子学,提出并证实了微腔内多种非线性过程的协同效应,开辟了室温下少光子、甚至单光子级的量子器件的新途径。现阶段,该研究组已经能够将非线性相互作用强度随阶次的衰减速率从10-10提升到10-5。即使如此,在集成光子芯片上实验观测到阶次大于三的高效率非线性效应依然极具挑战。  针对该难题,李明等人另辟蹊径,提出一种新颖的非线性过程人工合成理论,即利用材料固有的较强的二阶、三阶等低阶效应,通过人工调控多个低阶过程级联形成的非线性光学网络来实现任意形式、任意阶次的光子非线性相互作用。这种方法避免了在原子尺度去修饰材料的非线性响应,而仅需要控制微纳器件的几何结构就可实现高效率、可重构的高阶非线性过程。  利用集成的氮化铝光学微腔,该团队在实验上同时操控二阶的和频过程和三阶的四波混频过程,合成了更高阶的四阶非线性过程。实验证明,该人工合成的过程比材料固有的四阶非线性效应强500倍以上。如果进一步提升微腔的品质因子,该增强倍数可达1000万以上。  该团队将人工合成的四阶非线性应用于产生跨可见-通信波段的量子纠缠光源。通过测量跨波段光子间的时间-能量纠缠验证了人工合成过程的相干性。相比于传统跨波段量子纠缠光源的产生方法,该工作极大降低了相位匹配的困难,并且仅需要通信波段单一泵浦激光,展现了人工合成非线性过程的优势和应用潜力。审稿人高度肯定了该工作的创新性。  中科院量子信息重点实验室博士研究生王家齐、杨元昊为论文共同第一作者,李明副研究员、邹长铃教授为论文通讯作者。
  • 半导体情报,科学家首次在量子霍尔绝缘体中发现奇异的非线性霍尔效应!
    【科学背景】近年来,尽管量子霍尔效应的线性响应特性得到了广泛研究,但高阶非线性响应仍然是一个未被充分探索的领域。特别是在二维材料如石墨烯中,量子霍尔态的非线性响应尚未被深入研究。量子霍尔态不仅具有绝缘体体和导电手性边缘态的特征,而且在不同的量子霍尔态下,可能会表现出复杂的非线性行为,这些行为对于理解边缘态的电子-电子相互作用具有重要意义。为了解决这一问题,为了解决这一问题,复旦大学何攀, 沈健,日本九州大学Hiroki Isobe,新加坡国立大学Gavin Kok Wai Koon,Junxiong Hu,日本理化研究所新兴物质科学中心Naoto Nagaosa等教授合作发现,在石墨烯的显著量子霍尔态下,存在明确的第三阶霍尔平台。这一平台在广泛的温度、磁场和电流范围内保持稳定,并且在不同几何形状和堆叠配置的石墨烯中均可观察到。第三阶霍尔效应的高度对环境条件不敏感,但与器件特性相关。此外,第三阶非线性响应的极性受磁场方向和载流子类型的影响。作者的研究揭示了量子霍尔态的非线性响应是如何依赖于器件特性的,并提出了一个新的视角来理解边缘态的性质。【科学亮点】(1)实验首次观察到石墨烯中量子霍尔态的第三阶霍尔效应,获得了第三阶霍尔效应的清晰平台。该平台在显著的量子霍尔态(\( \nu = \pm 2 \))中展现出,且在广泛的温度、磁场和电流范围内保持稳定。(2)实验通过测量不同几何形状和堆叠配置的石墨烯器件,发现第三阶霍尔效应的平坦值与环境条件无关,但与器件特性相关。具体结果包括:&bull 第三阶霍尔效应的电压平台高度与探针电流的立方成正比,而第三阶纵向电压保持为零。&bull 该效应在磁场变化(至约5T)和温度变化(至约60K)下保持稳健。&bull 第三阶非线性响应的极性依赖于磁场方向及载流子类型(电子或空穴),并且其值在反转磁场方向时会改变符号。&bull 非线性霍尔平台的稳健性提供了关于边缘态的新见解,并可能违背量子霍尔电阻的精确量化。【科学图文】图1:在经典和量子域中,线性霍尔效应和非线性霍尔效应示意图。图2:在量子霍尔态quantum Hall states,QHSs内,三阶非线性霍尔平台的观测结果。图3:在量子霍尔态QHSs内,三阶霍尔效应的立方电流依赖性。图4:磁场和温度,对量子霍尔态QHS三阶非线性响应的影。【科学启迪】本文的研究为量子霍尔效应(QHE)中的非线性响应提供了新的视角,揭示了量子霍尔态(QHSs)中第三阶霍尔效应的显著平台。这一发现不仅扩展了作者对量子霍尔现象的理解,也对探索二维材料中的非线性电输运提供了新的途径。首先,实验首次在单层石墨烯中观察到稳定的第三阶霍尔效应平台,表明在量子霍尔态下,电子之间的相互作用可能导致非线性现象的出现。这种非线性响应在不同环境条件(如磁场和温度)下保持稳定,且在多种几何形状和堆叠配置的石墨烯器件中均能观察到。这表明该效应具有较强的普适性和稳健性。其次,研究发现第三阶霍尔效应的电压平台与探针电流立方成正比,而其幅度对环境条件变化表现出较强的稳健性。这一特性挑战了量子霍尔电阻的精确量化,提示作者在量子霍尔态的研究中需要考虑更高阶的非线性效应。这种非线性响应的发现不仅提供了关于边缘态性质的新见解,还可能揭示出与传统线性量子霍尔效应不同的物理机制。此外,本文的研究结果对未来探索量子霍尔系统的高阶响应具有重要启示。其他填充因子的量子霍尔态中的非线性响应,以及在其他量子霍尔系统中的应用,仍需进一步研究。这一发现为理解电子-电子相互作用、边缘态带曲率等物理现象提供了新的方法,也可能为研究分数量子霍尔效应的非线性响应开辟新的方向。原文详情:He, P., Isobe, H., Koon, G.K.W. et al. Third-order nonlinear Hall effect in a quantum Hall system. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01730-1
  • 二维磁性材料非线性光学研究取得重要进展
    p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 据悉,近年来,二维磁性材料在国际上成为备受关注的研究热点。它们能将自发磁化保持到单原胞层厚度,为人们理解和调控低维磁性提供了新的研究平台,也为二维磁性与自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面有着重要应用价值。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 尽管二维磁性材料的铁磁性质已有研究,但反铁磁态由于不具有宏观磁化,材料体系整体对外不表现出磁性,加之样品既薄又小,其实验研究是领域内的一大难题。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 针对这一问题,近日,复旦大学物理系吴施伟课题组与华盛顿大学许晓栋课题组合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。北京时间8月1日凌晨,相关研究成果以《反铁磁双层三碘化铬中巨大的非互易二次谐波产生》(“Giant nonreciprocal second harmonic generation from antiferromagnetic bilayer CrI3”)为题发表于《自然》(Nature)杂志。 /span /p p style=" text-align: center text-indent: 2em " span style=" font-family: & quot times new roman& quot " img style=" max-width: 100% max-height: 100% width: 400px height: 273px " src=" https://img1.17img.cn/17img/images/201908/uepic/4ab2a45d-ae2c-44ff-a0d7-2d4959a3a9a0.jpg" title=" caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" alt=" caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" width=" 400" height=" 273" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: & quot times new roman& quot font-size: 14px " 双层三碘化铬 图片来自复旦大学物理系网站 /span /p p style=" text-align: justify " strong span style=" font-family: & quot times new roman& quot " 将经典方法引入新领域 开辟广阔研究空间 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 研究工作中观测到的由层间反铁磁诱导的二次谐波响应让团队成员们非常兴奋,因为他们知道,这在二维材料的研究和非线性光学领域都具有重要的意义。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " “意义首先在于其独特性。”吴施伟介绍,迄今为止二维材料领域所研究的二次谐波大多由晶格结构的对称破缺引起。“对称破缺也就是破坏对称性,例如人的左右手原本是镜面对称的,如果一只手指受伤,那么镜面对称就破缺了。”而这种由磁结构产生的非互易二次谐波和前者有本质区别,从原理上就十分新颖。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 反铁磁材料由于没有宏观的磁矩,对外部的物理激励一般难以产生宏观的可测量的响应,对仅有几个原子层厚的二维反铁磁材料往往无能为力。“过去这个问题就像是灯光照不到的地方,一片黑暗无从下手。然而就是这样的一种‘暗’状态,现在能通过二次谐波的方式变‘亮’。这也是将一种经典的方法引入一个新领域的美妙所在。”吴施伟对此颇有感触。这种二次谐波过程对材料磁结构的对称性高度敏感,为二维磁性材料的研究开辟了广阔的研究空间。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 研究团队同时发现,双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量级的提升,比常规铁磁界面产生的二次谐波更是高出十个数量级。利用这一强烈的二次谐波信号,团队得以揭示双层三碘化铬的原胞层堆叠结构的对称性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 吴施伟介绍,体材三碘化铬在高温下属于单斜(monoclinic)晶系,在低温下发生结构相变而变为菱形(rhombohedral)晶系,两者的差别在于范德瓦尔斯作用(一种原子或分子之间的相互作用力,相比于化学键的相互作用,范德瓦尔斯相互作用弱得多)的层间平移。但在寡层极限下,低温下的晶格堆叠结构还存在着争议。团队在实验中使用一束偏振光测量了材料在空间不同方向的极化,通过测量偏振极化的二次谐波信号,发现它与单斜晶格的堆叠结构都具备镜面对称性,这与国际上新近发表的理论计算结果一致,为研究二维材料层间堆叠结构与层间铁磁、反铁磁耦合的关联提供了新的实验证据和研究手段。 /span /p p style=" text-align: justify " strong span style=" font-family: & quot times new roman& quot " 创新研发实验系统 实现基础研究突破 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 研究团队在实验中探测的反铁磁材料仅有两个原胞层厚度(厚度在2nm以下),而在此条件下,中子散射等测量手段很难奏效。针对这一问题,团队基于过去多年在二维材料非线性光学研究领域的积累,运用了光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 光学二次谐波过程对体系的对称性高度敏感,光学二次谐波的探测方法从体系的对称性入手,能够灵敏地探测体系的反铁磁性。与通常探测磁性的实验手段不同,它不依赖于材料的宏观磁性,而取决于微观磁结构造成的对称破缺。双层三碘化铬在反铁磁态下,其磁结构不但打破了时间反演对称性,也同时打破了空间反演对称性,由此产生强烈的非互易二次谐波响应。当体系升至转变温度以上、或施加面外磁场拉为铁磁态后,磁结构的对称性却发生了改变,这一二次谐波信号也随之消失。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 自2017年至今,两年的协力共进浇灌出如今的成果。团队首先利用实验室已有的无液氦可变温显微光学扫描成像系统进行了初步测量,但由于该系统没有磁场,很多关键的实验测量受到了限制。为解决这一问题,课题组成员攻坚克难,利用一套无液氦室温孔超导磁体,自主研发搭建了一套无液氦可变温强磁场显微光学扫描成像系统,并借助新系统实现强磁场下的光学测量,完成了关键数据的探测。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 据了解,该研究工作的合作团队还包括香港大学教授姚望、卡耐基梅隆大学教授肖笛、华盛顿大学教授曹霆、美国橡树岭国家实验室研究员Michael McGuire,以及我系教授刘韡韬、陈张海、高春雷等。吴施伟和许晓栋为文章的通讯作者,我系博士研究生孙泽元和易扬帆为共同第一作者。研究工作得到自然科学基金委、科技部重大研究计划和重点研发专项计划等项目经费的支持。 /span /p p br/ /p
  • 物理所透射电镜非线性效应可应用性研究取得进展
    p   高分辨透射电子显微镜是研究微观结构的有力工具。获得可解释的高分辨像,样品厚度要满足苛刻的要求-弱相位物体近似。可以选择在Scherzer欠焦下观察,但有时不得不在大欠焦下拍摄图像提高图像衬度,比如在冷冻电镜中通常拍摄的离焦量为1-2μm,通过扣除成像过程中的衬度传递函数来获得样品的投影结构。实际中,很难获得如此薄的样品(冷冻电镜中样品厚度通常在100nm左右),此时高分辨成像过程中电子束之间会发生强烈的相互作用。高分辨电子显微像包含线性成像信息、非线性成像信息,而已有的像衬理论通常以线性信息为研究对象,难以满足定量化的要求,因此有必要对非线性信息进行更加深入的研究。 /p p   在以往研究中,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)软物质物理实验室常云杰等结合透射交叉系数理论和赝弱相位物体近似理论,获得了衍射图中线性信息和非线性信息的解析表达式,并提出线性、非线性分离的方法。对分离后结果的研究发现,晶体厚度增大后,即使在Scherzer欠焦下线性成像也会偏离晶体结构,而非线性信息则更复杂。特殊条件下,非线性信息能够在某种程度下反映轻原子位置,比如负球差成像(这一现象已在实验上观察到)。这表明,可尝试利用非线性成像所包含的信息用于晶体结构的确定而不是简单地抛弃。 /p p   此外,透射交叉系数理论(TCC)以及杨氏干涉条纹实验表明,非线性信息的信息极限远高于线性信息的信息极限,在高频信息中起到主要作用。在球差为零的条件下,S.Van Aert等提出非线性信息的信息极限约是线性信息的1.41倍。研究结果显示,在通常理论可解释的线性信息极限之外,仍存在高频率的结构信息,有可能被用作结构信息的测定,但目前关于利用非线性信息进行结构研究的报道甚少。 /p p   近日,物理所/北京凝聚态物理国家实验室(筹)软物质物理实验室的科研人员,以AlN为模型使用数值模拟方法,研究了不同厚度不同成像条件下衍射束的相位。研究发现对于普通电镜成像,当样品比较薄的时候,信息极限以内的012衍射斑的相位随着离焦量的变化而变化,但当样品厚度较厚时相位近似为一个常数,且与物体的结构因子的相位基本一致。通过分离线性和非线性部分发现,当样品较薄时非线性部分的影响可以忽略,线性部分的相位随着离焦量的变化而变化 当样品较厚时,非线性成像的影响占主导地位,且非线性部分的相位近似为一个常数,接近结构因子。对超出线性信息极限的更高频的013衍射的研究可以得到类似的结论,且由于频率更高,013衍射的相位在样品更薄的时候就趋于常数,即对于高频的衍射束,其非线性效应在同等样品厚度下比低频衍射束更显著。利用超出线性信息极限的衍射点013的信息进行结构解析,可分开AlN& lt 110& gt 方向投影的Al-N的哑铃对。也就是说,得益于非线性信息的存在,即使普通的透射电子显微镜也可以得到更高分辨率的结构信息。虽然部分机理尚不清楚,但提供了新思路,即“变废为宝”,充分利用不可避免的厚样品的非线性效应。相关研究结果发表在Microscopy上。 /p p   研究工作受到国家自然科学基金项目和中科院的支持。 /p p & nbsp & nbsp & nbsp & nbsp 论文标题:Applicability of non-linear imaging in high-resolution transmission electron microscopy /p p & nbsp /p
  • 深紫外非线性光学晶体材料研究获进展
    深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两者之间达到一个微妙的平衡。目前,已知的深紫外非线性光学晶体几乎都是硼酸盐,基于磷酸盐的深紫外材料极为少见且非线性光学效应较弱。   在国家基金委优秀青年基金及科技部&ldquo 973&rdquo 重大研究计划等项目的支持下,中国科学院福建物质结构研究所中科院光电材料化学与物理重点实验室罗军华课题组引入较大尺寸的碱土金属和碱金属阳离子到磷酸盐中,成功构建了两个不含对称中心的新型磷酸盐化合物RbBa2(PO3)5和Rb2Ba3(P2O7)2。其中,RbBa2(PO3)5兼具深紫外磷酸盐中最短的紫外吸收边(163 nm)和最大的粉末倍频效应(1.4倍KDP),从而在这两者之间实现了很好的平衡。同时,RbBa2(PO3)5在1064 nm处相位匹配,同成分熔融,易于晶体生长,这使得RbBa2(PO3)5作为深紫外非线性光学材料具有潜在应用前景。此外,该课题组与中科院理化技术研究所林哲帅研究员合作对相关磷酸盐的光学性质作了理论计算,发现随着磷氧结构基元中[PO4]3-单元聚合程度的提高,相应磷氧结构基元的微观非线性光学系数增大 在RbBa2(PO3)5晶体结构中,[PO4]3-单元共顶点连接形成无限的一维[PO3]&infin 链,从而使RbBa2(PO3)5显示出较大的非线性光学活性,这一工作为设计具有高非线性光学活性的深紫外磷酸盐材料提供了新思路。相关研究成果发表在了《美国化学会志》(J. Am. Chem. Soc.,2014, DOI: 10.1021/ja504319x)上。   最近,该课题组在非线性光学材料探索及其倍频机制研究方面取得了一系列进展,相关成果见Nat. Comm., 2014, 5:4019DOI: 10.1038/ncomms5019 Inorg. Chem., 2014, 53, 2521 J. Mater. Chem. C, 2013, 1, 2906 RSC Adv., 2013, 3, 14000等。此前,该课题组在相关极性分子光电功能晶体材料研究方面取得了重要进展,相关成果见Adv. Mater.,2013, 25, 4159 Angew. Chem. Int. Ed., 2012, 51, 3871 Adv. Funct.Mater.,2012, 22, 4855等。   福建物构所深紫外非线性光学晶体材料研究获进展
  • 创新非线性分子光谱成像技术,助力生命科学前沿探索——访北京航空航天大学生物与医学工程学院特聘教授、振电(苏州)医疗科技有限公司CEO王璞
    1931年,恩斯特鲁斯卡研制的电子显微镜使生物学发生了一场革命,也为人类打开了通往微观世界的大门。现如今成像技术不断迭代更新,新型显微技术层出不穷。在第十六届科学仪器发展年会上,创新型企业——振电(苏州)医疗科技有限公司(以下简称“振电医疗”)为大家带来相干拉曼散射技术和中红外光热成像技术,那么这两种技术相较于其他同类方案的优势是什么?未来又将应用到哪里?带着这些问题仪器信息网采访到了北京航空航天大学生物与医学工程学院特聘教授、振电医疗CEO——王璞,王博士不仅详细回答了上述问题,同时还对国产科学仪器行业的发展提出了自己的见解。王璞:博士,现任北京航空航天大学生物与医学工程学院特聘教授、生物医学高精尖中心研究员,博士生导师,入选第十四批国家海外青年人才项目。本科毕业于复旦大学物理系,2009-2014年博士就读于普渡大学生物医学工程学院,师从于非线性成像专家程继新教授。博士期间主要工作是生物光子学医疗器械的开发以及非线性显微镜的开发与应用。已发表SCI论文20余篇,专利5项。以第一或通讯作者在Nature Photonics,Science Advances,Light:Science & Applications, Nano letters等领域内一流期刊均有发表。曾主持开展多项美国小企业创新奖励基金(SBIR/STTR award),并代领团队完成多项科研转化工作。其中包括相干拉曼显微镜的产业化,光声成像在乳腺以及心血管的器械转化等等。目前王璞教授主要研究工作为非线性拉曼显微镜的开发以及在先进材料、单细胞代谢的表征方案,以及光致超声器件在生物医学中的应用。同时担任振电(苏州)医疗科技有限公司CEO,致力于开发推广最先进的分子光谱成像技术。放大拉曼信号,专注生命科学领域虽然自发拉曼散射显微成像是拉曼光谱在显微成像领域的应用形式,但由于自发拉曼显微成像数据的采集时间长达几十分钟甚至是几个小时,因此在某种程度上限制了其进一步的应用推广。而相干拉曼散射(CRS)技术利用共振放大了需要检测的拉曼信号,从而将传统拉曼信号提高了104到106倍,大大提高了拉曼光谱的采集速度,使其更适合从事生命科学研究。相干拉曼散射技术理论上需要同时输入两束光,除了泵浦光外,还需要与斯托克斯光同频率的入射光来产生共振,此时泵浦光能量往往会因为受激拉曼散射效应而减弱,而斯托克斯光能量则会被放大,这两种现象又分别被称为受激拉曼损耗(stimulated Raman loss, SRL)和受激拉曼增益(stimulated Raman gain, SRG),二者都属于受激拉曼散射(stimulated Raman scattering, SRS)范畴,此外还会产生一个新频率信号称为相干反斯托克斯拉曼散射(coherent anti-stokes Raman scattering, CARS)。因此,相干拉曼具有两种形式,SRS和CARS。通过上述方法将拉曼信号放大,在极大提升了图像信噪比和成像分辨率的同时,突破了传统荧光成像需要对样品进行染色处理或荧光蛋白标记的局限,做到了无标记成像。相干拉曼散射技术发展到今天经历了20年的更迭。据王璞介绍:“目前我们的相干拉曼散射技术在生命科学领域主要的应用方向是单细胞空间代谢组学以及单细胞空间蛋白组学这两个重要方向。”而之所以将生命科学领域作为相干拉曼显微镜的主要应用领域,原因是生命科学领域对于无标记高速度的成像需求更强烈。“在生命科学领域里,需求主要来自空间代谢组学和空间蛋白组学这2个细分。在空间代谢组学中的应用主要是用在肿瘤代谢、干细胞代谢、发育生物学等领域,同时我们最近主推的方向还有合成生物学,这都是用来满足测量细胞代谢的需求。在空间蛋白组学领域中,将相干拉曼散射技术与我们新开发的一种拉曼染料进行配合使用,从而实现对蛋白质超多重的免疫测量,所以这也吸引了很多免疫方向的客户来咨询我们的设备并开始试用。”王璞说。除此之外,振电医疗为更好的发展临床市场,研发了三种产品,预计明年拿到注册证后将会正式用于临床。UltraView多模态科研成像平台(包括相干拉曼散射成像模式)中红外光热成像——探索微观世界分子分布新工具中红外光热成像是振电医疗除相干拉曼散射技术外主推的另一种技术。由于样品的异质性,红外显微光谱很难准确测量生物样品中的吸收,其中光散射的波长依赖性也可能导致显著的基线伪影;其次,由于激发波长缺乏高数值孔径(NA)物镜,红外成像提供低空间分辨率,指纹区域为4~7μm,该分辨率远远不足以进行细胞内成像;此外,在透射模式下进行的红外成像没有深度分辨能力;最后,红外区域的强水吸收阻碍了其在水环境中生命系统的功能分析中的应用。以上这些劣势阻碍了红外显微光谱在体内成像和诊断中的应用。而中红外光热成像技术却可以很好地通过中红外光的振动激发和(利用热透镜效应)可见光探测吸收克服这些限制。虽然中红外光热成像技术相对较新,自程继新先生于2015年研发开始,只经过了四到五年的技术更迭,但该技术已经逐步趋于成熟。王璞表示:“这个技术比传统中红外显微成像设备的灵敏度提高了两个量级,分辨率提高了一个量级。这帮助我们在生命科学中首次实现单细胞红外显微成像。对于化学材料、农业、林业等其他相关领域,我们的技术优势在于可以形成高分辨、高速度激光扫描式显微成像。对从事精细化学、高分子、农业育种的应用者来说,这是一个特别好的探测微观世界分子分布的新工具。”中红外光热显微镜的应用场景主要是化、环、材、农、林这几个方面,王璞认为:“在这些细分领域中,我们做得最好的是微颗粒分析,包括高分子里的分析、军工里的火药分析和微塑料分析等。未来将主推工业应用方面,包括代谢工程和半导体应用场景。我们认为这些领域很有发展前景,并且这种高端的设备还是能够在应用市场中找到一席之地的。”王璞解释道。解决国产科学仪器行业痛点,供应链、人才、融资环境必不可少虽然国产科学仪器在近五年开始备受重视,但由于科学仪器行业是一个需要打磨的行业,面对已经有100年做科学仪器经验的海外市场,王璞认为当前国产仪器自主创新还存在着三个痛点:供应链、人才和融资环境。“首先,第一个问题,这些所谓国产创新的科学仪器核心零部件很多时候还需要海外供应链,如何打造自己的供应链是一个需要解决的核心问题;第二,是人才问题,科研仪器的开发及应用人才十分缺乏,况且仪器行业又是一个非常交叉的行当,所以不可能从一个系里找到一个非常合适的人才,培养人才耗时耗力,如何把人才留住又是一个问题,所以科学仪器产业发展需要国家在教育政策、人才政策等方面予以支持;第三个是资金量问题,科学仪器行业不是金融和投资的热点,投资科学仪器的投资机构数量不多,能够看懂科学仪器,尤其是创新型科研仪器的投资人也不多,因此打造一个良好的融资环境十分重要。”振电医疗立足于苏州,从事非线性分子振动光谱以及分子光谱的高端科研仪器研究。王璞介绍:“振电医疗的主要专利来自于我的博士生导师程继新先生,我们把程老师实验室里的相干拉曼显微镜、中红外光热成像显微镜,以及后续开发的瞬态吸收显微镜这三个非线性分子光谱成像系统产业化,后续也将在工业、医疗等方面进行应用。”
  • 新疆理化所在红外非线性光学材料研究方面取得进展
    红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有广泛的应用。当前商用的中远红外非线性光学晶体主要包括类金刚石结构的AgGaS2(AGS), AgGaSe2和ZnGeP2等化合物。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前红外激光技术发展的需求。因此,亟需开发性能优异的新型红外非线性光学材料。为了获得大的倍频效应,有利于朝向一致排列的四面体是最常用的结构基元。相比于上述经典材料中规则排列的四面体基团,八面体是另一类有利于规则排列的基团,有望用于硫属化合物光学性能的调控。但由于MQ6(M = 主族金属元素,Q = S/Se)八面体基团较低的形成几率,相关的研究是十分匮乏的。中科院新疆理化所晶体材料研究中心科研团队通过利用碱土金属八面体调控非线性活性四面体基团的排列,首次在AIBII3CIII3QVI8家族合成出9例新的硫属化合物。这些化合物均结晶于P-6空间群,表明结构中碱土金属八面体及非线性活性四面体构成的风车状框架具有高的结构稳定性,有利于原子的替代。NaMg3Ga3Se8展示出平衡的光学性能,如大的倍频效应(~ 1 ×AGS),较大的带隙(2.77 eV),适中的双折射率(0.079@546 nm),高的激光损伤阈值(~ 2.3 ×AGS)。实验及计算的结果表明,相较于AgGaQ2,碱土金属八面体的引入降低了非线性活性四面体基团([MQ4])所构成结构的维度,但不影响四面体基团的朝向排列。同时,碱土金属的引入增大了材料的带隙。这些结果为后续设计带隙与倍频性能平衡的红外非线性光学材料提供了新的思路,将激励科研人员探索更多性能优异的八面体与四面体复合的红外非线性光学材料。该研究成果发表在《美国化学会志》上(J. Am. Chem. Soc., 2022, 144, 21916-21925.)。论文第一作者为硕士研究生罗琳、博士研究生王霖安及硕士研究生陈建邦,李俊杰研究员与潘世烈研究员为该论文的共同通讯作者。该研究工作得到了国家青年人才计划、中国科学院人才计划、国家自然科学基金及新疆自然科学基金等项目的支持。图1(a)AgMg3Ga3S8中Ag, Mg, Ga的配位环境;(b)四面体基团连接形成的Ga-S链结构;(c,e)[MgS6]与[GaS4]构成的[Mg3Ga3S24]基团;(d)AgMg3Ga3S8的三维结构 (f) AGS中形成的 [Ga6S18]基团 (g) AGS的三维结构图2(a)NaMg3Ga3Se8和AGS在2.09 μm激光下不同颗粒度的倍频效应;(b)实验的带隙值;(c)计算和实验的双折射值;(d)与典型硒化物光学性能的对比
  • 詹求强教授课题组《自然通讯》新成果:非线性荧光损耗机理及超分辨成像技术获进展
    作者:朱汉斌 来源:中国科学报华南师范大学华南先进光电子研究院教授詹求强课题组在非线性荧光损耗机理及超分辨荧光显微成像领域取得重要进展。相关研究5月23日在线发表于《自然通讯》(Nature Communications)。该研究在荧光损耗物理机理上,提出了受激辐射诱导激发损耗新机理,“拔本塞源”式对敏化能级进行损耗,从源头阻断荧光的激发能量,新机理带来的“荧光损耗放大效应”大幅降低了超分辨所需要的激光光强,在低光强条件下实现了9种不同光谱探针的荧光损耗。在超分辨成像技术上,由此发展了一种通用性强的基于单对低光强、近红外、连续波激光的多色超分辨显微成像技术,克服了传统多色STED超分辨系统所依赖的多对超快脉冲光束协同工作的复杂系统、高成本、低稳定性等问题。受激发射损耗(Stimulated emission depletion, STED)超分辨显微镜的概念由德国科学家Stefan W. Hell于1994年提出,该技术于2014年获得了诺贝尔奖。然而,传统STED显微镜存在原理性局限和问题:受激辐射作用如果要在与自发辐射(寿命有机染料通常为纳秒级)竞争中占主导,通常需要高功率的超短脉冲(飞秒/皮秒)激光作为损耗激光,这往往会导致严重的光漂白、光毒性和重激发背景等问题。此外,多色STED超分辨技术和系统复杂度高、成本高、维护难。詹求强自2017年起带领研究生探索新机理,最终以STED原理性缺陷为突破口,提出全新机理解决了关键问题。上转换荧光纳米颗粒是一种纳米荧光探针,具有近红外激发、反斯托克斯位移大、无背景荧光、发光极其稳定等独特优势。上转换纳米探针通常是一个敏化-发光二元系统,敏化离子负责吸收激发光能量,然后传递给发光离子辐射波长更短的荧光。为解决STED面临的上述难题,詹求强课题组基于上转换荧光技术提出了全新的思路:抑制敏化离子和发光离子间的能量传递过程就可以切断对发光离子的能量补给,使得发光离子被“釜底抽薪”,即受激辐射诱导激发损耗(Stimulated-emission induced excitation depletion, STExD)机理。结合上转换发光的多光子非线性泵浦依赖特性(非线性效应随泵浦的光子数增多而不断增强),实现了光子数越高的荧光能级电子损耗越强烈,STExD机理具有传统STED所不具有的对荧光损耗进行非线性放大的独特效应,与之伴随的技术意义就是可以逐级降低高能级荧光损耗所需要的饱和光强,这突破了传统STED中的饱和光强理论的限制(实验测得值显著低于传统理论值)。基于此,课题组使用740 nm的激发光和1064 nm的损耗光,在钕掺杂的上转换荧光探针中实现了高达99.3%的超高损耗效率,损耗饱和光强降低至23.8 kW/cm2,比传统STED探针降低了3个数量级。结合上转换发光一对多的敏化-发光特性,STExD可以实现一对激光实现对多种UCNPs探针的光开关控制。钕离子是上转换发光常用的敏化离子,可以单独或与镱离子联合敏化多种发光离子,课题组利用镱离子的能量传递桥梁作用,仅使用一组固定波长的激光器就成功实现了铒离子,钬离子的高效荧光损耗,损耗效率分别超过90%和80%。进一步地,也分别在镨、铕、铥、铽掺杂的体系中实现了高效的荧光损耗效应,总计实现9种不同光谱探针的同时荧光损耗。以此新机理STExD为基础,课题组发展了一种基于单对低光强、近红外、连续波激光的多色超分辨显微成像技术,分别对钕(黄色),铒(红色),钬(绿色)掺杂的上转换荧光探针实现了不同颜色的超分辨成像,原始图像分辨率达34 nm,并进一步实现了钕、钬掺杂的上转换荧光双色超分辨成像。通过荧光探针的表面改性和特异性修饰,课题组成功将上转换荧光探针免疫标记到HeLa癌细胞的肌动蛋白纤维,实现了亚细胞结构的超分辨生物成像。该工作提出的STExD通用发光损耗策略巧妙地利用了上转换荧光的传能发光特性,为解决传统STED技术的问题、开发新型探针提供了新的方案,为开发低光毒性、深层组织(近红外II区损耗激光)的多色超分辨成像技术奠定了基础,在突破衍射极限的光传感、光遗传学、光刻等前沿领域也具有广泛的应用前景。华南师范大学博士研究生郭鑫、蒲锐为该论文共同第一作者,来自瑞典皇家理工学院(KTH)的刘海春博士、Jerker Widengren教授等人以及詹求强课题组2016级黄冰如、2015级吴秋生等硕士生对该课题的完成做出了重要贡献,詹求强教授为论文通讯作者,华南师范大学为论文第一完成单位。该研究得到了国家自然科学基金、广东省自然科学基金等项目经费的支持。相关论文信息:https://www.nature.com/articles/s41467-022-30114-z
  • 新疆理化所在新型紫外非线性光学晶体研究中取得进展
    固体紫外激光器广泛应用于商业和科学领域。非线性光学材料能够对激光器输出的特定波长的激光进行激光频率的转换和拓展,颇具应用价值。例如,利用非线性光学材料进行的Nd:YAG激光辐射的四次谐波产生是输出266 nm紫外激光的有效方式。合成紫外非线性光学材料需要满足苛刻的性能要求,因而在材料设计中存在挑战。 既往研究提出了氟导向材料设计策略,以在硼酸盐体系中探索具有优异性能的双折射和非线性光学材料。向硼酸盐中引入氟可以有效地丰富结构化学和调控光学性能。LiB3O5(LBO)晶体是重要的非线性光学材料,并得到广泛应用,但遗憾的是其小的双折射导致LBO晶体无法实现1064 nm激光的直接四倍频输出。是否可以通过调整晶体结构来增大LBO的双折射,从而达到更短的相位匹配波长?   近期,中国科学院新疆理化技术研究所晶体材料研究中心通过化学合成制备得到氟硼酸盐晶体LiNaB6O9F2。LiNaB6O9F2具有由[B6O11F2]基本构建模块组成的二互穿3[B6O9F2]∞三维网络,这是首次在氟硼酸盐体系中观察到。LiNaB6O9F2在深紫外截止边,大的倍频响应(1.1 × KDP),合适的双折射(0.067@1064 nm)之间实现了更好的平衡。随着氟的引入,LiNaB6O9F2展示出氟导向性能优化,包括比LBO更大的双折射(0.067@1064 nm之于LBO的0.040@1064 nm),比LBO更短的相位匹配波长(210 nm之于LBO的277 nm)。该工作丰富了氟硼酸盐的结构化学,证明了氟导向策略是探索具有优良光学性能的非线性光学晶体的可行方法。   相关研究成果以全文Research Article形式,发表在Advanced Optical Materials上。研究工作得到国家自然科学基金和中科院等的支持。
  • 当WITec共聚焦系统遇见非线性二次谐波(SHG)成像
    WITec共聚焦拉曼系统采用模块化设计,拥有强大的性能扩展空间,有利于多种显微光学技术的联合分析测试。近来,华中科技大学翟天佑教授课题组将超快fs激光引入到alpha 300R共聚焦拉曼显微镜,如下图a。利用拉曼系统的高共聚焦性,实现二维层状材料MoS2的衍射极限SHG非线性光学成像,如下图c。对比光学图像b,SHG图像提供了非常丰富的样品生长取向与晶界等信息,如光学图像不可见的晶界1,晶畴i与ii区域。二维层状材料MoS2的衍射极限SHG非线性光学成像 a) SHG显微成像系统光路示意图:800 nm fs脉冲激光为SHG激发源;拉曼光谱系统探测400 nm二次谐波强度. b) CVD生长的单层MoS2. c)MoS2的SHG图像,提供了非常丰富的样品生长取向与晶界等信息,如光学图像不可见的晶界1,晶畴i与ii区域。d) SHG与光学图像叠加图,可明显观测到样品晶界与晶畴的空间分布。结合了SHG非线性成像, alpha300R共聚焦拉曼系统进一步扩展了自身的功能与应用领域,在同区域的拉曼、荧光及非线性光学(SHG, THG, TPPL等)多种成像联用方面表现出极大的技术优势,非常有利于全面理解与掌握样品的晶格振动、晶格取向、晶界及发光等重要性质。另附:2014年宾夕法尼亚州立大学Prof. Venkatraman Gopalan在alpha300R系统上自行搭建SHG成像系统,并应用于传统铁电材料的热致相变与边界分析,该工作发表在Nature Com.( DOI: 10.1038/ncomms4172)。铁电材料BaTiO3单晶SHG成像分析二次谐波(也被称为倍频或简称SHG)是一种非常重要的二阶非线性光学效应。两个相同频率光子(w0)与物质相互作用后淬灭,产生一个两倍频率的新光子(2w0),属于和频非线性效应中的一种。SHG二阶效应产生机制要求物质及晶体结构不具备中心对称性。目前,通过与共聚焦光学显微镜联用,二维/三维二次谐波成像(SHG imaging)是非常热门的成像技术,并已广泛应用于众多领域。在材料方面,SHG成像可以用于探索材料晶体取向、对称性与界面效应等,如传统非对称性的铁电材料(BaTiO3等)的热致相变问题;新型磁性拓扑绝缘体(Bi2Se3等)的晶格对称性与表面电荷;多相催化与晶体外延生长(MoS2)等。SHG成像技术在生物医学领域的潜在应用也受到广泛关注,如高度极化的胶原蛋白,微管,肌球蛋白、活体细胞与组织的病理分析。由表面等离子体(plasmonics)金属微纳米结构或电磁场的不对称性引起的SHG非线性效应也是该领域的研究热点。
  • 中国科大合作研究首次实现基于新型二维材料非线性的量子光源
    中国科学技术大学郭光灿院士团队教授任希锋等人与新加坡国立大学教授仇成伟、博士郭强兵等合作,在二维材料非线性量子光源研究中取得重要突破。研究成果1月4日发表在《自然》杂志上。   小型化、集成化是解决空间光学量子系统稳定性差、不可扩展等问题的理想方案,也是光学量子计算、量子通讯等走向大规模和实用化的必经之路。量子光源作为量子光学系统必不可缺的部分,其小型化一直是人们研究的重点。任希锋前期与南京大学等单位合作,将超构表面引入到量子信息领域,集成超构透镜阵列与非线性光学晶体,实现了100路径参量下转换,制备了超高维量子纠缠态和多光子源。   为了进一步提高量子光源的集成化程度,任希锋与新加坡国立大学等单位的合作者一起,首次利用新型二维材料NbOCl2的非线性过程实现了超薄的量子光源,厚度可低至46nm。   二维材料的层内晶体结构稳定,而原子层间的相互作用力要弱很多。基于这种特性,单层二维材料可以在保持原子尺度厚度的同时也保持物理性质的稳定,使得二维材料可以稳定且灵活地与各种微纳尺度光学器件直接耦合,因此被广泛应用在集成光子芯片的各个重要组成部分之中。常见的二维材料(WS2、WSe2等)虽然具有很大的二阶非线性系数,但是单层厚度太薄(图一:NbOCl2晶体的结构测试,单层厚度约0.65nm图二:NbOCl2二维材料的倍频二阶非线性过程测试图三:基于NbOCl2二维材料的量子光源
  • 扫描电镜样品荷电现象成因新解——安徽大学林中清33载经验谈(12)
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 扫描电镜测试过程中,样品的荷电现象被公认为是最大且棘手的问题。对于样品荷电现象的成因,目前的解释大都语焉不详,存在许多的疑问。其中最经典的解释似乎是基于如下这张电子产额与加速电压的关系图所展开。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/7b4e9c9a-cc0b-4387-9dbc-319ec0829c11.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 零电位:无荷电;负电位:异常亮;正电位:异常暗 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 但这个解释存在以下几个步进式的问题: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " A)无论是样品的表面形貌像,还是表面的荷电表象都基于溢出样品表面的电子信号。样品中产生再多的二次电子和背散射电子,没有溢出样品表面,没有被探头接收到,对形成表面形貌像是毫无影响的,更遑论荷电表象。故样品荷电现象,对应的应该是电子信息溢出量出现的异常。这张图对产额是啥?交代不清,故是否适合做为参照? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " B)二次电子和背散射电子产额多是否就一定溢出的多?二次电子和背散射电子产额的多少和样品中形成怎样的荷电场是否能画上等号? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 一个电中性的样品。当注入样品的电荷总量与溢出样品的电荷总量存在差异,才可能在样品中形成电场。如果溢出样品表面的电荷总量低于注入样品的电荷总量,且多余的电荷聚集在样品中,就会在样品的局部或全体部位形成负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中二次电子和背散射电子产额多不代表其溢出量大。溢出样品表面的二次电子和背散射电子占其产额的总量往往都很低。产生所谓正电场必须是溢出样品的电子比注入样品的电子还要多,使样品局部或全部有大量的正电荷聚集。这种情况在扫描电镜的测试过程中几乎是不可能发生的。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " C)样品如果真的存在正电位,将会出现怎样结果? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 经典观点认为,当样品电子的产额大于入射电子总量,且这些电子都溢出样品表面,才在样品中形成正电位。如果这种情况确实发生了,那形貌像应该如何变化呢? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 首先图像将由于有大量二次电子和背散射电子的溢出而变得异常明亮;随后出现正电场使得这些电子溢出急遽减少,图像变暗;随着电子束将大量电子注入样品,这些正电荷将被中和,正电位减弱,样品的电子信息又将逐渐显现,图像也渐渐变亮,直至下一次信息爆发。故样品中出现正电位现象,图像将产生亮暗相间的闪烁,而不是稳定的异常变暗。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 现实中这种图像亮暗相间的闪烁几乎看不到,也就是正电位应该不存在。那么是否图像异常暗的现象也不存在? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 实际情况是样品的荷电现象,存在三种表现形式 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/83c7e731-b1a0-4ca5-b85c-8177b17e0cfa.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中只可能存在负电位,那么以上三种现象的形成机理是什么?形成样品荷电的真正原因是什么? /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-family: 宋体, SimSun " strong span style=" color: rgb(0, 176, 240) font-family: 宋体, SimSun font-size: 18px " 一、荷电现象的形成 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 扫描电镜所面对的样品相对于信号激发源“高能电子束”来说,可看成无穷厚。因此在电子束轰击样品时,电子束中的高能电子因无法穿透样品而驻留在样品中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束轰击样品时,会在样品中形成散射电子并激发出样品的二次电子等信息。其中一小部分的二次电子及背散射电子(与入射电子方向相反的散射电子)将溢出样品表面,被探头接收,形成样品表面形貌像的信号源。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当注入样品的电子数与从样品表面溢出的电子数不相等时,就有可能在样品中形成静电场。从而影响电场部位的二次电子和背散射电子的正常溢出,样品表面形貌像将出现异常亮、异常暗及磨平这三种现象。这就是样品的荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 对样品荷电现象的探讨,将牵扯到一个电子迁移的问题,因此将引入一个漏电能力的概念。“漏电能力”是指样品的漏电子能力,即样品上自由电子的迁移能力。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 物体的体积、密度以及结构都会影响样品中自由电子的迁移能力。体积越小、密度越大、晶体结构越紧密,自由电子在这些物体上的迁移能力即漏电能力就强。体积较大且密度低、晶态较差的物体以及颗粒物的松散堆积体。自由电子的迁移能力一般较差,漏电能力也较差,容易形成电荷堆积。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 1.1 荷电现象的形成过程 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束轰击样品时,大量的电子被注入样品,由于扫描电镜所应对的样品足够厚,故在样品中会驻留大量电子。虽然有不少二次电子和背散射电子溢出样品表面,但和驻留电子的数量相比,将形成一个不对等的关系。其结果是大量多余的自由电子存在于样品中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品的漏电能力很强,且接地良好。这些多余的自由电子就会通过样品迁移掉,样品中不存在电荷堆积的现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品的漏电能力较弱,那么自由电子就会在样品的全部或局部形成堆积,并在堆积处形成强弱不等的静电场(负电场),影响该部位二次电子甚至背散射电子的正常溢出。样品表面形貌像的局部或全部将叠加出现异常亮、异常暗、磨平这三种异常现象,对表面形貌像造成程度不等的干扰,形成所谓的样品“荷电现象”。该静电场也称“荷电场”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品中各部位的漏电能力强、弱不均匀,自由电子将会从漏电能力强的部位集中迁移到漏电能力弱的部位,并在漏电能力较弱部位堆积形成荷电场。此时样品的荷电现象就只在表面形貌像的某些部位出现。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f8e09c03-be02-4633-a468-2ef64aede90f.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 1.1 样品的漏电能力和导电性 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 传统理论将样品是否会产生荷电现象归因于样品的导电性。认为只有导电性好的样品不容易产生荷电现象。而样品导电性的判断又以材料名称来决定,金属材料归类于导电性好,非金属材料归类于导电性差。以此观点来解释样品荷电现象常常会产生许多疑惑。充分的实例表明,大量所谓导电性差的非金属样品并不存在荷电现象,如:许多晶体材料、纳米粉体虽然是非金属材质,都不必然会形成所谓的荷电现象。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/1eb2676b-6d05-43df-a1d4-4f314f487d0f.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 许多被公认为导电性好的金属材料,若密度较小、形态松散或形成堆积体也会产生极强的荷电现象。如下图实例所示: /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/ee1ad80d-a703-435a-883d-78acc0f1eaba.jpg" title=" AA.png" alt=" AA.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为什么会出现以上这种与传统观念完全不一致的现象?以样品导电性来解释荷电现象存在怎样的问题? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电现象是静电现象,是由大量自由电子在样品的全部或局部区域形成堆积,产生荷电场,所引发的信息异常溢出。自由电子只要失去通道就会形成堆积,与材料本身导不导电的关系并不那么紧密。也就是说样品导电,仅仅是一个有利于减少荷电影响的因素,但并不充分也不能说是必要。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 形成电子通道的因素众多,除前面所说与物质性质有关的因素如:体积、密度、结构等等,还包括外界因素如:加速电压、样品的堆积程度等。以样品是否导电来做为形成荷电场的唯一成因,那是以偏概全、以孔窥天。存在这种理念对正确应对样品荷电的影响,充分获取样品信息极为不利。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px font-family: 宋体, SimSun " strong 二、拆解样品荷电现象的三种形态 /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 前面介绍了样品的荷电现象表现为三种形态:异常亮、异常暗、表面磨平。并分析了扫描电镜荷电现象的成因是:样品中存在大量自由电子堆积形成的荷电场,造成表面电子信息溢出异常,而这个荷电场只可能是负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 那是什么原因酿成了荷电现象出现这三种表现形式呢?& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 背散射电子能量较高,溢出量仅在荷电场极强时才受影响。故以易受荷电影响的二次电子信息为例来加以探讨。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中自由电子的聚集点就是形成荷电场的位置。荷电场的强度及深度与加速电压和束流的大小、样品结构和体积以及颗粒物的堆积状态等因素有关联。测试时虽很难直接给出荷电场强度及位置的具体数值,但它存在一定的变化趋势。同等条件下,增大加速电压将使荷电场在样品中所处的位置下沉,达一定量,会引起荷电现象的形态发生改变。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 以荷电场在样品中的位置分布对二次电子溢出量的影响为线索,就比较容易去拆解荷电现象的三种形态: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (A)异常亮:如果入射电子在二次电子溢出区(浅表层)产生较多的二次电子,同时形成的荷电场位于浅表层下方。荷电场会将位于其上方原本无法溢出的二次电子推出样品表面,使得溢出样品表面的二次电子异常增多,图像异常变亮。荷电场足够强大会将周边的二次电子信息都大量推出,图像的形态也就受到影响。现实中,荷电现象出现“异常亮”的几率相对较高,较高的加速电压出现该现象的几率也较大。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/737aaa0a-926b-4f28-9975-19c055e45e95.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (B)异常暗:较低的加速电压在一定条件下,会使得荷电场形成于样品二次电子溢出区域的上部。此时荷电场将抑制二次电子的正常溢出,出现异常暗的现象。加速电压越低在样品中累积的自由电子越靠近浅表层上部,荷电场的形成位置将越高,也越容易形成异常暗的现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 极低的加速电压(100V),在样品表面产生的二次电子少,形成荷电场的位置靠近最表层,易形成强烈的异常暗现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 在凹坑上边缘有电荷累积,也易酿成异常暗这种荷电现象。因形成条件较为苛刻,故产生该现象的几率相对较低。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f760bb93-896d-4854-a6d9-638a23a465d6.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp br/ /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 随着加速电压的提升,表面二次电子产额增加,最关键的是荷电场位置下沉,有些异常暗的现象也会转移成异常亮。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/7d4f23ef-e0a1-45d2-adec-38f881638503.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (C)表面磨平:当样品中形成的荷电场位置较高,与二次电子的溢出区混杂。荷电场会对溢出样品表面的二次电子产生部分的遏制作用,表面细节由于溢出信息的不足而被抑制,出现磨平现象。松软的样品容易出现该现象。出现这一现象时,往往会在样品颗粒的边缘或较大斜面处,由于极表层的二次电子增多,而伴随出现异常亮的现象。& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品出现细节磨平这种荷电现象的几率较异常暗高。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/aba027e0-4f45-48b2-ab47-e4359f611a15.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当荷电现象出现后,提升加速电压,荷电场位置将下沉,荷电现象的形态会发生变化。趋势:异常暗& gt 磨平& gt 异常亮& gt 正常。这个变化趋势会有跳跃式的变动,但不会逆转。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/59912e7c-5595-4a6a-b844-c7f0ee6140a7.jpg" title=" 9.png" alt=" 9.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px font-family: 宋体, SimSun " strong 三、小 & nbsp 结 /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当自由电子累积在样品中的某一个部位就会形成静电场,从而影响电场及周边电子信息的正常溢出,使得样品表面形貌像上形成异常亮、异常暗或细节磨平的现象,这个异常现象称为:样品的荷电现象。该静电场也称为“荷电场”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 二次电子能量较弱,极容易受到荷电场的影响。在探头接收到的样品电子信息中,其含量的占比越多,表面形貌像中出现荷电现象的几率也就越大。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束入射样品,形成的电子信息中,只有很少的一部分溢出样品表面,溢出量和入射电子量相差甚远。注入和溢出样品电子数量的不平衡就容易形成荷电场。荷电场是由样品中自由电子的堆积所形成,因此它只可能是负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 自由电子在样品中存在一定迁移能力,迁移能力随样品性质以及样品堆积状态的不同而不同。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 表面连续、结构紧密的晶体材料或体积较小(纳米级别)的样品,电子在这类样品中的迁移能力都很强。电子迁移能力强,样品的漏电能力就好,也就不容易产生荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 表面断续、结构松散、体积较大的非晶态样品,电子在这类样品中迁移能力差,容易积累在某个部位形成荷电场,影响样品表面电子信息的正常溢出,产生所谓的荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中如果各部位的漏电能力强、弱不均,则漏电能力强的部位不会有电荷堆积。自由电子只会堆积在漏电能力弱的部位,形成所谓的局部荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 异常亮、异常暗和磨平是样品荷电现象的三种表现形式。样品表面的二次电子溢出区和荷电场之间的相对位置是造成这三种荷电表像的关键因素。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场在样品中的位置与样品的性质以及加速电压等因素有关。同等情况下,改变加速电压,荷电场的位置也会跟着发生变化,样品荷电的表现形式也会跟着改变。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场如果位于样品表面二次电子溢出区下方,则荷电场将把超量的二次电子推出样品表面,形成异常亮的现象。较高加速电压下,观察表面略紧实的样品容易出现该现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场存在于溢出区的上部且溢出样品表面的二次电子产额少,则荷电场会抑制样品信息的溢出形成异常暗的现象。当用较低的加速电压来观察低密度样品时,或者样品表面有凹坑,在一定条件下就会出现这一现象。采用极低的加速电压(如100V)观察凹坑部位时,最容易出现该现象。由于该现象的形成条件较为苛刻,因此形成的几率也较低。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场所处位置较高,位于二次电子溢出区内。那么荷电场会对样品二次电子的溢出量产生一定抑制,使得样品的表面形貌细节受到一定程度的掩盖,出现磨平现象。较低加速电压,在观察松散的样品时,容易出现这种现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 同等条件下,随着加速电压的提升,荷电场在样品中的位置逐渐下沉,荷电形态也将发生改变。荷电形态的变化趋势是: /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/59e152fb-6c63-420b-a71b-cc449ac98d1c.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 经常会看到这种变化趋势有跳跃的情况,但逆向变化则基本看不到。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 关于加速电压和束流的改变会对样品的荷电现象产生那些影响?这些影响都会带来怎样的结果?我们又该如何正确应对样品的荷电影响?都将在下一篇中通过充分的事例来与大家进行详细探讨。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 参考书籍: /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 人民出版社 & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《显微传》 & nbsp 章效峰 2015年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 日立S-4800冷场发射扫描电镜操作基础和应用介绍 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 北京天美高新科学仪器有限公司 & nbsp 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 作者简介: /strong /span /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left width: 80px height: 124px " src=" https://img1.17img.cn/17img/images/202009/uepic/f18ee0a2-3ea9-48dc-86e2-dd06d5c3e6a9.jpg" title=" 林中清.jpg" alt=" 林中清.jpg" width=" 80" height=" 124" border=" 0" vspace=" 0" / span style=" font-family: 宋体, SimSun " 林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /span /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong br/ /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200817/556801.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜不适合测磁性材料吗?——安徽大学林中清33载经验谈(11) /span /strong /a /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200714/553843.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(10) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200616/551389.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200515/538555.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200218/522167.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200114/520618.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /strong /a /p
  • 理化所在氮掺杂非交替纳米带非线性光学材料方面获进展
    随着激光技术的发展,非线性光学材料在光限幅、全光开关、光通信等领域展现出广阔的应用前景。其中,有机π-共轭材料因具有高的非线性光学系数、低的非线性响应阈值、易于结构调控的非线性光学性能等优势而备受关注。线性并苯类稠环是一类经典的有机π-共轭材料,被广泛应用于有机光电器件中。而该类材料随着共轭长度的增加,化学稳定性变差,极易被氧化或发生Diels-Alder反应。同时,随着共轭体系的增大,分子间聚集程度增强,溶解性及其合成难度提高,因而限制了这类材料的开发及应用。   近日,中国科学院理化技术研究所特种影像材料与技术研究中心副研究员孙继斌、湘潭大学教授陈华杰课题组、英国剑桥大学博士曾维轩等合作,采用酮胺缩合策略,构建了一类化学性能稳定、溶解性好的氮掺杂非交替纳米带分子(图1),并将该类材料应用于非线性光学领域,揭示了氮掺杂非交替纳米带分子优异的反饱和吸收性能(图2)。其中,研究引入末端三蝶烯和侧基三异丙基硅乙炔,有效抑制了分子间的聚集,显著提升了材料的溶解性,是目前已报道的分子长度最长的可溶解氮杂非交替纳米带——含13元稠环分子。此外,多重五元环的植入有效阻断了线性并苯类稠环的全局芳香性,实现了基态与激发态兼具的局域芳香性,因而提高了π-共轭系统的稳定性,使得材料(NNNR-2)的三阶非线性吸收系数达到374cmGW–1,且在同等测试条件下,显著高于经典非线性光学材料C60(153cmGW–1)。   相关研究成果以N-Doped Nonalternant Nanoribbons with Excellent Nonlinear Optical Performance为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。研究工作得到国家自然科学基金委员会、湖南省教育基金会和玛丽居里研究计划的支持。图1. 氮杂非交替纳米带分子NNNR-1和NNNR-2的(a)化学结构和(b)理论结构模拟图2. 氮杂非交替纳米带分子NNNR-1和NNNR-2的非线性光学性能
  • 中国科大在界面物理化学的非线性光谱研究上取得新进展
    中国科学技术大学教授罗毅研究团队的副教授叶树集小组在界面蛋白质分子结构表征方面获新进展。该小组在国际上首次成功测出界面蛋白质的酰胺III谱带信号,解决了如何区分界面蛋白质a-螺旋结构和无规卷曲结构这一界面表征难题,研究成果发表于国际期刊J. Am. Chem. Soc. 2014, 136(4), 1206-1209上。   如何精确表征蛋白质,特别是界面蛋白质的分子结构是理解蛋白质结构演变的关键,是国内外学者共同面临的一个非常重要的难题。针对该难题,该小组发展了界面光谱多谱带协同表征方法,首次利用和频光谱技术成功测出了常规手段无法测量的界面蛋白质酰胺III信号。虽然a-螺旋与无规卷曲结构的酰胺I谱带振动峰都位于1650 cm-1左右,但在酰胺III谱带区域,它们的振动峰分别位于1260 cm-1以上和1260 cm-1以下,研究发现两种结构所对应的酰胺III谱带特征峰面积比与蛋白质中无规卷曲结构含量成线性关系。将酰胺I和酰胺III信号结合起来,解决了如何区分界面蛋白质a-螺旋与无规卷曲结构这一界面蛋白质多年的难题。审稿人给予了该工作极高的评价,其中一审稿人认为该工作解决了一个蛋白质表征上的缺口,提供了新的光谱窗口 另一审稿人说该工作是一个重要突破。   此外,在手性分子理论以及非线性光谱理论的启发下,该研究组成功发展了免标记的手性与非手性界面光谱表征技术,原位、实时地表征了胆固醇分子在生物膜上的组装与运输行为:胆固醇分子以10° 左右的倾斜取向角度插入中性生物膜中,并停留在生物膜磷脂双层膜的外层,在纯水环境下没有发生翻转行为(flip-flop),胆固醇浓度较低和较高时分别以不同方式组装。该成果发表于J. Phys. Chem. Lett.。该技术将为胆固醇在真实细胞环境下的组装与动力学行为研究提供分子水平上的表征技术与研究思想指导。   叶树集研究小组作为国际上利用非线性和频光谱技术研究界面蛋白质分子结构与动力学仅有的几个小组之一,发展了具有特色的表面与界面生物分子结构表征手段,并围绕生物界面相关物理化学问题及其新表征方法的发展开展系统研究,在JACS、Langmuir、J.Phys.Chem.C、Analyst等国际期刊上发表多篇系统性文章,研究成果被JACS、PNAS、Ann.Rev.Anal.Chem.和Chem.Rev.等介绍与引用,获得国内外同行的高度认可。由于该小组系统而有特色的研究工作,2013年Elsevier出版社邀请该小组为丛书Advances in Protein Chemistry and Structural Biology撰写综述论文,成为该丛书1944年创刊以来,第五篇以国内为第一作者单位署名发表的文章。   上述研究工作得到了科技部、国家自然科学基金委、中央高校创新团队等资金资助。
  • 中科院科研装备研制项目 “非线性结构光照明超分辨显微成像系统”顺利验收
    p   6月1日,中国科学院条件保障与财务局组织专家在中国科学院生物物理研究所对中科院科研装备研制项目“非线性结构光照明超分辨显微成像系统”进行了验收。 /p p   该项目由中科院苏州生物医学工程技术研究所与生物物理所在2014年联合申报,其中苏州医工所作为研制单位,生物物理所作为用户单位。研制工作由苏州医工所研究员李辉课题组具体组织实施,2016年9月李辉课题组将研制的非线性SIM超分辨显微镜送至生物物理所进行测试试用。在本套系统中,课题组提出了基于结构光激活+结构光激发的弱光非线性结构光照明超分辨成像方法,并采用铁电液晶空间光调制器替代机械光栅,结合FPGA并行同步控制系统,实现了更灵活的成像方式和更快的成像速度。同时课题组开发了能够适用于弱信号样品的SIM/NL-SIM超分辨图像重建算法和软件。利用该设备对荧光微球、细胞内质网、线粒体、细胞核以及细胞骨架等生物样品进行观测,实现了线性SIM模式下100nm横向分辨率,非线性SIM模式下62nm横向分辨率。 /p p   专家组听取了项目工作报告、财务报告、用户使用报告,并进行了现场测试验收。经过现场测试并充分讨论后,专家组认为,项目各项技术指标均达到或优于实施方案要求,满足生物医学成像超分辨观测应用需求,一致同意“非线性结构光照明超分辨显微成像系统”通过验收。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/20efc081-6105-4bed-8fdd-1ed50217c97b.jpg" title=" W020170606426930859631.png" /    /p p style=" text-align: center " 中科院科研装备研制项目“非线性结构光照明超分辨显微成像系统”通过验收 br/ /p p br/ /p
  • 全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快光学实验必备!
    全共线多功能超快光谱仪BIGFOOTMONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:高精度激光扫描显微镜NESSIEMONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。图2. 高精度激光扫描显微镜NESSIE 高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷 BIGFOOT+NESSIE应用案例:1. 高精度激光扫描显微镜用于材料表征美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4. (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022). 2.二维材料中激子相互作用和耦合的成像研究过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022) 3. 掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制: (i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。黄迪教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学对于理解导致其形成的成对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)
  • 网络研讨会‖3月25日,线性扫描伏安法(LSV)介绍,立即报名!
    时间:2024年3月25日 (周一) 14:00腾讯会议号:139 923 674主讲人:赵健伟 教授 北京大学学士(1996),中科院长春应化所硕士(1999),北海道大学博士(2003),获日本文部科学省奖学金 牛津大学博士后研究员(2003~2004),期间聘为哈尔滨工业大学海外合约专家。南京大学教授(2003~2016),博士生导师。2016起任嘉兴学院教授,“南湖学者”(2019续聘),嘉兴大学“尖峰计划”团队带头人。研究工作集中在金属纳米材料的分子动力学模拟、分子电子传递、电化学、电化学工程等。发表学术论文230余篇,授权发明专利10余件。会议内容线性扫描伏安法(LSV)基本原理线性扫描伏安法(LSV)应用背景线性扫描伏安法(LSV)应用技巧
  • 河工大胡宁教授获批重大仪器项目“多模态相控阵非线性超声检测仪”
    据河北工业大学网站消息,近日,由胡宁教授主持申报的国家重大科研仪器研制项目“多模态相控阵非线性超声检测原理及仪器研制”获得国家自然科学基金委员会批准立项(批准号:12227801),项目直接经费845万元。这是河北工业大学今年获批的又一项重大科研项目,也是河北工业大学近年来第二次获批重大仪器项目。“多模态相控阵非线性超声检测原理及仪器研制”项目面向增材制造航空发动机关键零部件中微裂纹和残余应力的可视化与智能化检测的重大需求,拟开发出高分辨力、高灵敏度、高效的多模态相控阵非线性超声检测仪器。仪器的特色体现在原创的多模态非线性超声相控阵探头上,涵盖多模态相控阵工作模式设计和机理研究、多模态超声探头设计与复合增材制造、多模态相控阵超声大数据获取及验证、基于大数据和深度学习算法的微裂纹与残余应力智能评价软件系统、多模态相控阵非线性超声仪器系统集成等五方面的研究内容与重点突破。包括复杂相控阵声场下微裂纹与残余应力特征评估、复杂微裂纹和残余应力的信号解耦、探头面投影微立体光刻-微滴喷射-电射流复合增材制造等三个关键技术难题。该项目将最终实现仪器在现场和远程两种工作模式下对早期微裂纹和残余应力的高精度检测与评价,确保增材制造航空发动机关键零部件的成形质量,为零部件的疲劳寿命和服役性能评估提供指导,助推我国超声无损检测仪器在基础原理、技术创新方面取得突破性进展,填补世界范围内非线性超声检测仪器空白。仪器系统简图
  • 振电(苏州)医疗科技有限公司成功交付多模态非线性光学成像系统UltraView给厦门大学
    大家好!我们非常高兴地宣布,振电(苏州)医疗科技有限公司的多模态非线性光学成像系统UltraView成功交付给了厦门大学。此次交付包括讲座和上机培训,反馈非常良好。讲座由公司CEO、北京航空航天大学特聘教授王璞亲自主讲,他向厦门大学的科研团队介绍了UltraView的技术特点和优势,现场进行了热烈的提问和交流。在场的学者们纷纷表示,通过此次讲座,他们对多模态非线性光学成像技术有了更深刻的认识,对UltraView的应用前景充满信心。 随后,我们安排资深工程师进行了上机培训,帮助他们熟悉UltraView的使用方法和操作流程。工程师耐心地为学者们解答各种问题,培训现场气氛轻松、活泼,学者们积极参与。通过此次交付,我们对UltraView的应用前景充满信心。我们相信,它将为厦门大学的科研工作带来很大的助力,并帮助他们在医疗诊断、药物研发等方面取得更好的成果。感谢厦门大学的信任和支持,我们将继续为客户提供最优质的产品和服务,助力科学研究事业的发展。 振电(苏州)医疗科技有限公司开发的“多模态非线性光学显微成像系统UltraView”利用相干拉曼成像技术,帮助您实现活体细胞、组织等样本,从核酸、氨基酸、脂质、糖类等组分的无标记、化学特异性显微成像,最大程度上保持了生物原有的生理状态;能实现二维到三维,从静态到动态变化过程的快速高分辨率成像。
  • 【网络研讨会】10月25日,二级教授在线讲解线性扫描伏安法,立即报名!
    主题:线性扫描伏安法时间:2022年10月25日(周日)14:00-15:30腾讯会议号:601-880-807主讲人:赵健伟教授 北京大学学士(1996),期间发表研究论文士余篇,获北京大学“挑战杯"一等奖 中科院长春应化所硕士(1999),获中国科学院伟华科技奖学金 北海道大学博士(2003),获日本文部科学省奖学金 牛津大学博士后研究员(2003~2004),期间聘为哈尔滨工业大学海外合约专家。在获得博士学位的同年 参加南京大学第一次全球招聘,获聘教授(2003~2016),为其最年轻教授之一,次年评为博士生导师。2016起任嘉兴学院教授,“南湖学者"(2019续聘),“浙江省纱线材料成形与复合加工技术重点实验室"主任,嘉兴学院“尖峰计划"团队带头人,浙江省二级教授。 发表学术论文 230 余篇,被引总数超过 4500余次,单篇最高引用270 余次(2014年英国皇.家化学会杂志 1%高引用作者),H-index为35。主办国际学术会议4次。内容简介 本次交流会议包含如下内容:线性扫描伏安法(LSV)基本原理线性扫描伏安法(LSV)应用场景线性扫描伏安法(LSV)应用技巧
  • 国内首套可溯源计量型扫描电子显微镜研制成功
    日前,电工研究所联合中国计量科学院、国家纳米科学技术中心共同研制成功国内首套可溯源计量型扫描电子显微镜。  电工所在高分辨力场发射扫描电子显微镜的基础上,加装激光干涉仪测距的纳米级高精度位移台, 并提出了采用步进扫描代替传统电子束扫描的图像获取的创新方法。该方法可直接关联图像扫描与激光干涉仪的位置测量,实现对样品纳米结构扫描成像的量值溯源,有效减少电子束扫描成像过程中放大倍率波动和扫描线圈非线性特征在纳米尺度测量中产生的误差,从而实现对样品纳米结构的溯源测量。  该设备的研制成功对我国纳米尺度计量标准的制定、扫描电子显微镜及其它纳米尺寸测量仪器的校准、纳米标样和标物的校准、参与国际长度比对等方面将起到重要作用。  可溯源计量型扫描电子显微镜  1um二氧化硅微球成像图
  • 扫描探针显微镜宽动态范围电流测量系统的研制
    成果名称 扫描探针显微镜宽动态范围电流测量系统的研制 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 &radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产 成果简介: 扫描探针显微镜(SPM)是研究材料表面结构和特性的重要分析设备,具有高精度和高空间分辨的优点,可以在多种模式下工作。其中,扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。SPM中用于探测针尖与样品间电流的关键部件是电流-电压转换器(I-V Converter),其作用是把探测到的微弱电流信号转换为电压信号以便后续处理。目前商用SPM设备中采用的是虚地型固定增益线性电流-电压转换器,典型灵敏度为108 V/A,其主要缺点是电流测量的动态范围较小,只能达到3~4个数量级,这使得目前SPM的电流测量能力被限定在10pA~100nA之间,阻碍了SPM在微纳电子学领域的应用。 2012年,信息学院申自勇副教授申请的&ldquo 扫描探针显微镜宽动态范围电流测量系统的研制&rdquo 获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持,在项目资金的支持下,申自勇课题组开展了富有成效的工作,包括:(1)宽动态电流测量系统总体设计;(2)测量系统与SPM控制系统的接口设计;(3)测量系统加工制作和联机调试;(4)测量系统性能指标的测试评估与优化。此外,课题组还克服了皮安级微弱电流的高精度低噪声测量、反馈回路中用于非线性转换的双极结型晶体管的温度补偿等技术难题,所研制的测量系统取得了良好的效果。目前,该项目已经顺利结题,其成果装置已经在该课题组相关仪器上正常使用,并在向校内外相关用户推广。 应用前景: 扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。
  • 中科院成功研制激光扫描实时立体显微镜
    据中国科学院网站消息,日前,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室(简称:瞬态室)超分辨成像团队研制成功双光子激发激光扫描实时立体显微镜,首次把基于双目视觉的立体显微方法和高分辨率双光子激发激光扫描荧光显微技术结合在一起,实现了对三维荧光样品的高速立体成像,相关研究成果发表在2016年12月刊的PLOS ONE 杂志上,并被授权国家发明专利(专利号ZL201210384895.4)。  当代生命科学研究对光学显微技术提出了越来越高的要求——更高的空间分辨率、更大的成像深度、更快的成像速度。特别是对于生物活体显微成像来说,生物组织对光的散射使得噪声大大增强,严重影响了空间分辨率和成像深度。为了提高成像深度,双光子激发激光扫描荧光显微技术自20世纪90年代提出后被广泛应用于神经成像等领域,但是其逐点扫描的成像方式严重制约了成像速度。因为高分辨率光学显微镜的景深很小,要对样品完成三维成像,通常需要数十层乃至上百层的二维图像进行叠加重建得到,图像采集和处理一般需要数分钟甚至数十分钟,要快速实时地获取和显示三维图像非常困难。  瞬态室超分辨成像团队在研究员姚保利和叶彤的带领下,以双目视觉原理和贝塞尔光束产生扩展焦场为基础,提出了由四个振镜组成的激光束立体扫描装置,实现了对贝塞尔光束的横向位置和倾角共三个维度的控制,突破了只有两个自由度的传统激光扫描不能实时切换视角的限制。通过对四振镜立体扫描装置的优化设计和控制,实现了对贝塞尔光束的三自由度快速扫描,可在毫秒量级进行双视角切换,从而解决了激光扫描立体显微成像系统中双光路同时成像的技术难题,首次实现了基于双视角实时激光扫描的立体显微成像和显示系统。该系统可对样品进行立体动态成像和实时双目立体观测,其三维成像速度比传统的逐点扫描方式提高了一到两个数量级。该双光子立体显微系统为活体生物的三维实时成像和显示提供了一种新的观测工具。  “它可以让我们像观看立体电影一样实时地观测动态的三维微观世界,无需光切片,无需耗时的三维图像重构。”杨延龙如此总结这套系统的特点,他负责设计和完成了其中的立体扫描和成像显示的关键部分。“双目视觉成像是非常高效的三维信息获取方式,但是现有的体视显微镜,空间分辨率和景深互相制约,我们利用三自由度扫描的贝塞尔光束进行非线性荧光激发突破了这种限制。”  这项研究先后在中科院“百人计划”和国家自然科学基金的支持下,从基本原理验证、关键技术突破,到原理样机完成,经历了从基础研究到应用集成的各个环节。目前,课题组正在与国内外相关科研机构开展生物医学应用的合作研究,期望尽快将该项技术应用于生物活体三维快速成像和显示领域。花粉和荧光小球样品的红蓝立体图像(可佩戴红蓝眼镜观看)
  • 牛津仪器携扫描电容显微镜(SCM)亮相SEMICON CHINA 2021
    仪器信息网讯 自1988年首次在上海举办以来,SEMICON CHINA 已成为中国首要的半导体行业盛事之一,它囊括当今世界上半导体制造领域主要的设备和材料厂商,也见证了中国半导体制造业的快速成长。 2021 年3月17日,SEMICON CHINA 2021在上海新国际博览中心隆重召开。牛津仪器也携其半导体解决方案亮相SEMICON CHINA 2021。牛津仪器展台牛津仪器1959年创建于英国牛津,是英国伦敦证交所的上市公司,生产分析仪器、半导体设备、超导磁体、超低温设备等高技术产品。在五十多年的发展过程中,牛津仪器公司凭借自身的科研优势,凭借出色的技术管理和产品服务为全球的科技发展做出了贡献。牛津仪器现已成为科学仪器领域的跨国集团公司,生产基地、销售和服务网络,客户遍及一百多个国家和地区。在此次牛津仪器参展的产品中,牛津仪器展示了全新推出的高频扫描电容显微镜(SCM)和大样品台原子力显微镜Jupiter XR,该款仪器是专门为半导体行业和分析测试平台设计的最新一代快速扫描原子力显微镜。对已知掺杂浓度阶梯状样品,全新一代高频扫描电容显微镜(SCM)分辨掺杂类型和提供线性的电容信号响应据了解,在扫描电容显微镜(SCM)诞生之前,研究人员、半导体芯片制造商和失效分析工程师对掺杂水平、掩模和注入物对齐以及由于这些误差导致的器件失效等细微变化和误差视而不见。SCM的发明让工程师能够在亚微米尺度上探测器件,相比于上一代设计,牛津仪器全新的高频SCM设计可以在器件制造和故障分析中发现问题所在。SCM的核心是一种纳米级的电学AFM成像技术。它利用微波射频信号探测样品的局部电学性能,测量自由载流子浓度和类型。SCM可以直接检测电容变化,分辨率可达1 aF。由于采用了测反射信号(S11)的振幅和相位变化的方法,其相比于传统的SCM只能测定相对值来说,牛津仪器全新推出的高频SCM可以直接测量电容真实值。其更高的灵敏度也允许探测金属和绝缘体,以及传统半导体器件以外的非线性材料——包括那些不形成自然氧化物层的材料。Jupiter XR原子力显微镜全新一代的高频SCM可以在牛津仪器的原子力显微镜Jupiter XR AFM 平台上实现自动化智能扫描,一键成像。Jupiter XR原子力显微镜与大多数原子力显微镜相比,同等成像质量下扫描速度快数十倍,同时其高度自动化的操作让检测效率大大提高,高精度分辨率可达分子级别,并且在粗糙度测量方面实现了皮米级的分辨率和超过1000次连续扫描粗糙度差别小于1%的高重复性,可以用于半导体工厂生产中的宽禁带半导体材料测试、外延生产、半导体失效分析、平台质检QC、QA、FA等领域。Ultim Extreme EDS此外,牛津仪器还展示了一款EDS能谱仪。Ultim® Extreme 是Ultim Max系列中的一款无窗能谱,晶体面积100mm2,经优化设计来尽可能提高灵敏度和空间分辨率。它采用跑道型结构设计,优化高分辨率场发射扫描电镜在低加速电压和短工作距离下工作时的成像和EDS性能,使用Ultim Extreme,EDS的空间分辨率接近扫描电镜的分辨率。
  • 国家重大科研仪器研制项目 “高温合金损伤演化非线性超声表征与分析仪器研制”启动暨实施方案论证会召开
    1月5日,由华东理工大学牵头,联合复旦大学协同攻关的国家重大科研仪器研制项目“高温合金损伤演化非线性超声表征与分析仪器研制”启动暨实施方案论证会在上海举行。国家自然科学基金委数学物理学部物理科学一处处长刘强,复旦大学、南京大学等多所高校、科研院所的专家学者,项目组骨干等40余人参加会议。我校校长轩福贞出席会议并致辞,科研院院长赵黎明主持会议。轩福贞代表项目牵头单位致辞。他简要介绍了学校在学科建设、科技创新平台、重大科研仪器研制项目等方面的新进展。他指出,近年来,学校坚持“顶天立地”科技发展战略,面向科学前沿和国家需求,以科学目标为导向,坚持前瞻性思考、全局性谋划、整体性推进,提升高校科研原始创新能力。本次仪器项目面向声学科技前沿,立足于高端装备服役安全保障等国家重大需求,是学校聚焦“四个面向”不断提升高校科技创新能力的具体体现。下一步,学校将加强项目过程管理,为项目提供切实保障,确保项目顺利推进。刘强对仪器项目启动会的召开表示祝贺。他肯定了项目研究的科学和工程价值,对项目组提出了具体工作要求,希望项目组成员坚持严谨求实的科研态度,积极攻坚克难,高标准严要求完成项目。项目负责人项延训教授汇报了项目总体情况,详细阐述了项目的研发目标、研究方案、拟解决的关键问题、项目实施管理等方面的工作安排。参研单位课题负责人也对所负责的项目内容进行了详细汇报。与会专家对仪器研制实施方案等进行了热烈、深入的讨论,对项目实施中涉及的关键技术、解决方案等提出了宝贵的意见和建议。据悉,本项目围绕高端装备设计、制造、服役全寿命过程的跨尺度损伤检测和性能状态演化分析预测等仪器需求,重点突破高温材料和部件损伤表征从宏观缺陷检测向早期微观结构演化的智能检测仪器创制,为高端装备的高质量制造和高可靠服役提供支撑。
  • CISILE 2013 新品扫描
    仪器信息网讯 2013年5月15日,“第十一届中国国际科学仪器及实验室装备展览会(CISILE 2013)”在中国国际展览中心召开。本届展会由中国仪器仪表行业协会主办、北京朗普展览有限公司承办。   新产品新技术一直是各大展会上观众最关注项目,此次展会也展出了部分让观众“眼前一亮”的产品。上海矽感率先将离子迁移谱用于农、兽药残留和非法添加物快检,湖南尚泰“非线性化学指纹图谱智能分析仪”进行真假食品药品鉴别,据介绍离子迁移谱在“地沟油”检测方面已经做了部分研究工作,取得了一些进展。TSI推出的LIBS激光诱导击穿光谱仪采用聚焦脉动激光束使固体材料蒸发产生等离子,进行OES分析,还可以检测有机元素(C、H、O、N)的含量。三种频率KQ-V3200超声波清洗器、针对饮用水、食品研发的CIC-260型离子色谱仪、KM系列万分之一天平、Series 4000系列液相、直线电机BGS08直线导轨系统也受到了广泛关注。 KQ-V3200超声波清洗器   昆山超声仪器推出的KQ-V3200超声波清洗器采用了加热与制冷二种设备自动转换,从而达到了超声液温的精确度及超声连续工作不升温。同时通过45KHZ、80KHZ、和100KHZ的三种频率设定转换和设定自动转换。让被清洗的工件得到了粗洗、清洗、精洗 使清洗槽内产生三种频率的波峰功率,使工件上的不同性质的细微污垢,顽固污垢得到全方位的彻底清洗。 IMS-100离子迁移谱   上海矽感信息科技有限公司推出的IMS-100离子迁移谱快速检测仪,采用脉冲辉光放电离子源,探测灵敏度达ppb级(克伦特罗达到1ppb,久效磷达到0.5ppb)。该产品可实现农产品和食品中农药残留、兽药残留、有害毒素、非法添加物的快速检测。 非线性化学指纹图谱智能分析仪   湖南尚泰测控科技有限公司推出的“非线性化学指纹图谱智能分析仪”吸引了很多观众的关注。据介绍,该产品的原理基于非线性化学反应理论,利用不同化学成分对非线性化学反应的不同影响、通过测定化学反应体系的非平衡信号来获取复杂样品图谱,以实现定性鉴别和定量分析。其应用主要针对食品药品加工、流通及卫生监督、技术监督、工商管理等部门对食品药品原材料、半成品和成品进行真伪鉴别与质量评价。 台式LIBS激光诱导击穿光谱仪ChemReveal   TSI推出的LIBS激光诱导击穿光谱仪ChemReveal是一种原子发射光谱仪,无需样品制备,直接分析固体样品。该产品采用聚焦脉动激光束使固体材料蒸发,从而产生等离子,以进行OES分析,光的密度与元素的密度有关。当被用作超痕量ICP的预检测手段时,LIBS的快速鉴定结果可知道该用何种溶解液和溶解时间,以及决定是否该采用超痕量元素分析。LIBS使用惰性气体扣除背景干扰可检测有机元素(C、H、O、N)的含量。 CIC-260型离子色谱仪   青岛盛翰推出的CIC-260型离子色谱仪是盛瀚针对目前国内亟须解决的饮用水安全和食品安全问题而研发的全塑化通用型、双抑制模式离子色谱仪,为用户提供饮用水中常规无机阴阳离子和消毒副产物及食品中添加剂、溴酸盐、有机酸、胺的全套解决方案。柱恒温系统与仪器一体化设计,由嵌入式自动恒温系统软件系统控制,具有两套加热系统,通过设定大功率工作模式可实现温度骤升,缩短仪器稳定时间 设定小功率工作模式,可提高柱温箱系统控温精度。全塑化流路系统,双抑制模式。   Series 4000系列液相色谱仪   天津兰博主要展示新品Series 4000系列液相色谱仪。据天津兰博总经理张振海介绍,“该系列液相由美国LabAlliance专为天津兰博贴牌生产,品牌名为LanBo,今年2月正式推出。”Series 4000主要有三新:新外观、新功能、新配置。外观一改原LabAlliance的风格,功能上一套系统可兼容微量、常规和制备分析,流速范围从1ul/min-20ml/min,系统耐压达10000psi。此外,该系列还提供四元高压泵,集成4泵高压梯度输液系统,提供了搞得梯度精度和分析精度。检测器也有紫外、示差、荧光、二极管阵列等多种选择。 直线电机BGS08直线导轨系统   海顿公司新推出了带滚珠导轨的BGS直线导轨系统,BGS08是为大负载传动专门设计,在大载荷的情况下,它可以保证整个运动的定位精度和重复定位精度。BGS08系统头部的驱动电机是海顿的57000系列电机,传动丝杆由303不锈钢做成,表面涂有TFE涂层,TFE涂层是干性润滑油脂,免维护,与螺杆配套使用的是具有科克专利的消间隙螺母,螺母精密固定在滑块内部,滑块由铝合金材料制成,坚固耐用,另外根据客户需求,可以选配57000系列单叠厚或者双叠厚电机。 KM系列万分之一天平   上海良平推出的KM系列万分之一天平,新一代高精度电磁平衡传感器保障高可靠和高灵敏度。全自动内部校准,可根据时间及温度变化触发校准程序。该产品还有计件、百分比、单位转换、净重配方等有趣而实用的功能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制