当前位置: 仪器信息网 > 行业主题 > >

非酶分子

仪器信息网非酶分子专题为您整合非酶分子相关的最新文章,在非酶分子专题,您不仅可以免费浏览非酶分子的资讯, 同时您还可以浏览非酶分子的相关资料、解决方案,参与社区非酶分子话题讨论。

非酶分子相关的资讯

  • Nat Metab|上交大童雪梅团队揭示非氧化磷酸戊糖途径调控Treg细胞功能及其分子机制
    点评 | 朱锦芳(NIH)2022年5月23日,上海交通大学基础医学院生化与分子细胞生物学系童雪梅教授课题组及其合作团队,上海市免疫学研究所李斌研究员课题组和复旦大学附属华山医院/脑科学转化研究院杨辉研究员,在Nature Metabolism杂志在线发表题为 Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics 的研究论文,揭示非氧化磷酸戊糖途径(非氧化PPP)对调节性T(Treg)细胞代谢模式及细胞功能的调控机制。Nature Metabolism同期发表伦敦帝国理工学院Margarita Dominguez-Villar博士为该研究撰写的News & Views特评,认为该文章发现非氧化PPP在Treg细胞活化和功能调控中的中心地位(a central regulator)。表达特征转录因子Foxp3的Treg细胞是一类具有免疫抑制功能的CD4+ T细胞亚群,维持机体免疫系统稳态,防止免疫过激诱发自身免疫病。已知葡萄糖酵解、脂肪酸氧化和氨基酸分解代谢等都参与 Treg 细胞功能调控。PPP是一条不产生ATP的葡萄糖分解代谢途径,由生成NADPH的氧化PPP和产生5-磷酸核糖的非氧化PPP组成。非氧化PPP包括4个代谢酶催化的5步可逆反应,可以通过改变代谢物流向来满足细胞的功能需求。非氧化PPP是否参与免疫细胞如Treg细胞的代谢与功能调控尚不清楚。转酮醇酶TKT是非氧化PPP中催化两步可逆反应的代谢酶。童雪梅团队已发现TKT在肝脏、脂肪和肠道中调控糖脂代谢平衡的重要作用(Li M et al, Cancer Research, 2019 Tian N et al, Diabetes, 2020 Tian N et al, Cell Death & Disease, 2021)。在本研究中,研究人员通过构建Treg细胞特异性敲除TKT的小鼠模型,深入探究非氧化PPP是否和如何调控Treg细胞代谢及功能。他们研究发现,Treg细胞特异性敲除TKT的小鼠出生3周后发生严重自身免疫性疾病,并且在断奶之后相继死亡,其表型与缺失Foxp3基因的小鼠相似。进一步研究发现,敲除TKT在不影响Treg数目和转录因子Foxp3 水平的情况下,阻断Treg细胞的免疫抑制功能。为了排除炎症反应的影响,研究者根据Foxp3基因位于X染色体和雌鼠X染色体选择性失活的特点,构建了在同一只鼠中既有TKT缺失又有TKT正常表达的Treg细胞嵌合小鼠模型。该小鼠Treg细胞的转录组和表观遗传组分析表明,TKT缺失导致Treg细胞中87.9%的差异表达基因被下调,染色质可及性降低。这些被下调的基因几乎全部为效应性Treg特征性基因,表明非氧化PPP对调控Treg细胞免疫抑制功能是必需的。研究者进一步发现,TKT缺失导致Treg 细胞NADPH 减少和氧化应激增加,葡萄糖进入线粒体氧化减少,脂肪酸氧化增加,氨基酸分解代谢显著增强,分解代谢重构使线粒体功能受损。同时,被氧化应激和线粒体损伤诱发的还原性TCA循环使α-酮戊二酸/琥珀酸及α-酮戊二酸/富马酸比率降低,DNA甲基化增加,抑制Treg细胞特征性功能基因表达,导致其免疫抑制性功能丧失。文章也发现非氧化PPP中的另外一个代谢酶——转醛醇酶(TAL),对维持效应性Treg特征性功能基因表达也不可或缺。此外,在自身免疫性病人外周血 Treg细胞中,TKT水平显著降低。综上所述,此研究首次揭示非氧化PPP对于调控Treg细胞中糖、脂和蛋白质分解代谢稳态、维持代谢物依赖的表观遗传修饰和功能基因表达有关键作用,即非氧化PPP可以通过整合三大营养物质代谢和表观遗传修饰控制Treg细胞功能。这项研究将为通过调控Treg功能防治自身免疫性疾病和其它免疫相关疾病提供新策略新手段。非氧化 PPP 通过整合代谢组和表观遗传组调控Treg细胞功能上海交通大学医学院博士生刘琪、阿拉巴马大学伯明翰分校博士生朱方明和上海市免疫学研究所博士生刘鑫男是该研究论文的共同第一作者。此项研究得到复旦大学生物医学研究院叶丹研究员、海军军医大学附属长征医院风湿免疫科徐沪济主任、上海交通大学附属仁济医院沈南主任、上海交通大学基础医学院徐天乐教授、清华大学药学院胡泽平研究员、阿拉巴马大学伯明翰分校胡晖教授等合作实验室的大力协助。通讯作者为童雪梅教授、李斌研究员和杨辉研究员。专家点评朱锦芳Jeff Zhu (Chief, Molecular and Cellular Immunoregulation Section, NIH)调节性T细胞(Tregs)在维持免疫耐受和免疫稳态中发挥关键作用,并且参与调节感染和癌症中的各种免疫反应。一方面,Treg功能的丧失通常与自身免疫和过度炎症有关;另一方面,肿瘤微环境中激活的Treg往往会抑制肿瘤免疫。因此,了解Treg的产生、激活及其获得抑制性功能的机制不仅将拓展基础免疫学认知,而且将为各种免疫相关疾病提供新颖有效的临床疗法。不同的代谢途径在控制Treg和效应性辅助型CD4+ T(Th)细胞的发育和分化中作用不同。经典观点认为,Tregs更倾向于脂肪酸氧化,而效应Th细胞主要利用葡萄糖作为能量来源。在本项工作中,童雪梅团队及其合作实验室共同发现,非氧化磷酸戊糖途径(非氧化PPP)在控制Treg细胞激活和抑制功能中起着关键作用。非氧化PPP是葡萄糖分解代谢的一个分支,它在Treg和效应性Th细胞中的功能尚不清楚。令人惊奇的是,在Treg中敲除非氧化性PPP中的重要酶—转酮醇酶(TKT),小鼠会产生致死性自身免疫病。Treg细胞特异性 TKT 缺失导致其失去免疫抑制功能,却不影响其发育和Foxp3蛋白表达。机制上,童雪梅及其合作团队发现TKT缺失诱导线粒体氧化应激和还原性TCA循环,导致α-酮戊二酸(α-KG)水平降低。α-KG作为重要的表观遗传辅助因子,能调控组蛋白和DNA去甲基化酶的功能。TKT缺失时,Treg中众多基因的DNA甲基化增加,染色质可及性下降。并且,α-KG补充能够改善由Treg特异性TKT 缺失引起的自身免疫反应。此外,在临床自身免疫性疾病患者外周血Treg中,TKT水平被下调。Treg获得抑制功能需要被激活,TKT缺失诱发的自身免疫反应是由活化Treg特征性基因表达减少所导致的。由于Treg细胞群体的异质性,单细胞分析可以为TKT如何调节Treg激活和表观修饰提供一个更清晰的解释。然而,该研究发现在大约1000个激活态Treg特征基因中,只有124个受到TKT缺失的影响,却诱发了显著的小鼠自身免疫病表型,表明这个小的基因群体包含对Treg功能至关重要的效应分子,例如IL-10和TIGIT等。因此,本项研究发现令人印象非常深刻。本项工作不仅促进我们全面认识Treg细胞激活和功能的机理,而且在未来治疗人类疾病方面具有潜在重要转化价值。原文和特评链接:https://www.nature.com/articles/s42255-022-00575-z,https://www.nature.com/articles/s42255-022-00574-0
  • DNA聚合酶分子马达精确动态工作机理研究获进展
    从细胞最基本的各种功能原件开始,进而精确认识其动态工作机理,是认识生命、有效干预生命过程的第一步。随着冷冻电镜技术的发展,蛋白质静态晶体结构可高效获取,为突破生命科学认知局限提供便利。解析蛋白质分子内部复杂部件的动态反应机理,是生命科学未来亟须解决的难题。明晰DNA/RNA聚合酶等马达分子精确动态工作机理,将为高效研发控制病毒复制的有效药物提供可行性前提。当前,模糊状态的工作机理,使控制病毒的有效药物研发耗时长、投入大、效率低下。  中国科学院物理研究所/北京凝聚态物理国家研究中心软物质物理实验室SM1组研究员谢平运用广义第一性原理进行理论计算和模拟,探索生命活动的核心部件——各种分子马达的工作机理。鉴于生物科学研究手段限制(传统生化实验笼统平均化、晶体结构的数据静态化和新生代单分子实验数据的分散差异性及可观测数据局限性),聚合酶分子马达等功能蛋白分子的精确动态工作机制研究面临困难,至今不甚明了,只能给出卡通画式简单模型加以定性描述。2013年,谢平提出了DNA聚合酶Klenow片段(被广泛研究的高保真聚合酶模型分子)连续动态工作机理的理论模型。该模型解释了当时所有传统生化和单分子技术关于这一马达分子的实验数据,并对国际同行单分子实验结果实现了高度拟合。基于此模型,谢平提出Klenow聚合酶马达分子在受到外力时催化速率精确变化的理论预言。  近日,软物质物理实验室SM1组副研究员刘玉如和李伟,采用单分子操控技术检测该理论预言,实验结果与理论预言完全吻合。科研团队自主设计组装的高通量、高时空分辨率、高计算处理能力单分子磁镊仪器操纵系统,使纳米尺度实时高效测定Klenow聚合酶这一低持续性、多停顿的单分子催化反应速率成为可能。研究运用物理逻辑推理、理论计算与高质量实验结果的高通量分析,解析验证了DNA聚合酶Klenow在外力诱导下的催化活性变化,在实验中精确检测分子马达实时动态合成反应的速率变化。实验发现,在小外力(3.8pN)阻滞下,Klenow聚合酶的合成速率达到峰值,这一反直觉现象反映了高保真DNA聚合酶Klenow分子内部各部件之间的作用机制。  该研究首次诠释了DNA聚合酶Klenow的连续动态自动化工作机理。从DNA聚合酶分子内部原子与DNA之间相互作用隧道和关键位点的理论计算和逻辑推理,得出酶分子在催化位点处(nth position)保持最大相对结合能,从而使得酶分子在反应过程中实现于动态微扰中始终落入起始位点的化学机械偶联机理。今后,该工作在新实验数据基础上继续深化和细化,将为未来高效研发控制病毒、细菌和癌症等重大疾病的有效药物奠定前驱基础。  相关研究结果发表在Chinese Journal of Physics上, 并被选为推荐论文(Editor’s Suggestion)。研究工作得到国家自然科学基金委, 科技部和中科院的支持。  图1.DNA聚合酶(Klenow聚合酶)的自动移位机理图(a),与底物DNA不同结合位点的相对结合能(b),理论预言聚合反应在不同外力下的催化速率(c)。对DNA聚合酶分子内部原子与DNA之间相互作用隧道和关键位点的理论计算和逻辑推理,得出酶分子在催化位点处(nth position)保持最大相对结合能,从而使得酶分子在反应过程中实现于动态微扰中始终落入起始位点的化学机械偶联机理。根据酶分子内部fingers结构域不断开合和与DNA模板相互作用,提出理论预言——外力对Klenow聚合酶的催化速率具有显著影响,如图(c)所示,正向外力对催化速率没有影响;反向外力在小的力值(3.8pN)左右,使催化速率显著升高,更大的反向外力使催化速率降低。  图2.单分子磁镊技术对DNA聚合酶的催化反应进行实时动态监测。(a)和(c)分别为监测反向和正向外力的实验装置示意图;(b)和(d)分别为反向和正向外力作用下酶催化反应的动态曲线;(e)为不同外力作用下的酶催化速率分布统计。  图3.理论预言结果与实验测量结果吻合。实验测量结果为红色圆点表示;运用本研究实验体系微调后的参数拟合理论结果显示为黑色实线;运用历史文献参数拟合的理论结果显示为蓝色虚线。
  • 新发现!靶向单个分子的DNA酶让基因“沉默”
    美国加州大学欧文分校(UCI)研究人员开发出一种DNA酶,可区分一个细胞内的两条RNA链,并切割与疾病相关的链,同时保持健康链的完整性。这项突破性的“基因沉默”技术可能会彻底改变用于治疗癌症、传染病和神经疾病的DNA酶的发展。相关研究论文刊登于最新一期《自然通讯》杂志。一个信使核糖核酸(mRNA)的发夹环,绿色为核碱基,蓝色为磷酸核糖骨架。(图片来源:物理学家组织网)DNA酶是切割其他分子的核酸酶。利用酶让“基因沉默”技术已经存在20多年,美国食品药品监督管理局批准了一些药物,但没有一种药物能够区分RNA链中的单点突变,而UCI团队研制出的Dz 46酶可识别和切割特定的基因突变。Dz 46酶外表看起来像希腊字母Ω,通过加速化学反应起到催化剂的作用,其左右两侧的“臂”与RNA的靶区结合,组成的环与镁结合,并在一个非常特定的位置折叠和切割RNA,但其发挥作用非常依赖镁。为此,研究团队使用化学方法重新设计了这种DNA酶,降低了其对镁的依赖性。得到的Dz 46酶专门靶向KRAS基因内的等位基因特异性RNA突变,KRAS基因是细胞生长和分裂的主要调节因子,出现于25%的人类癌症中。研究人员表示,他们的研究结果表明,化学进化可以为开发多种疾病的新疗法铺平道路。他们计划进一步调整Dz 46酶,然后开展临床前试验。
  • 专家呼吁新一代分子探针迫在眉睫
    近日,香山科学会议第554次学术讨论会在北京召开。此次会议以“医学分子探针关键技术”为主题。与会专家认为,目前,我国对进口医学分子探针尚存依赖,为打破这一局面,应加速研制高特异性、高靶向性、智能化、高灵敏度的新一代分子探针。  为了更全面、更完整地获取生物体解剖结构水平、功能代谢水平和细胞分子水平的生理病理信息,临床上需要依赖于高精度的生物医学检测技术,这种检测技术常常离不开分子探针。而随着集成像(诊断)与治疗于一体的分子探针逐步进入临床应用,许多疾病有望在分子水平得到治疗,做到真正的“有的放矢”,为精准诊疗提供强有力的支撑。  本次会议执行主席、北京大学工学院教授戴志飞表示,研制具备高亲和性、高特异性、高灵敏度和安全高效等特征的新一代分子探针正成为当前生物医药领域的制高点之一,一些发达国家纷纷投入巨额资金从事分子探针的研发。然而,在我国,已有多种分子探针投放市场,但大多由国外大公司研制。与会专家呼吁,开发具有我国自主知识产权的分子探针迫在眉睫。  与会专家建议,当前,应整合我国在分子探针方面的优势力量,建立一批具有专业特点的国家级诊疗用分子探针研发中心,组建理工医结合、产学研一体化研发团队,形成完善的分子探针的研发体系,实现自主知识产权分子探针开发的新突破,逐渐改变我国对进口医学分子探针依赖的局面。
  • “菲莱”已“闻”到了有机分子的气息
    人类第一次探测出&ldquo 67P/丘留莫夫&mdash 格拉西缅科&rdquo 彗星存在有机分子的痕迹,其表面也比预想的坚硬许多。从&ldquo 菲莱&rdquo 着陆器获得的首批数据中,科学家给出上述分析结果。   位于德国科隆、由德国宇航中心负责运行的着陆器控制中心称,除了在指定地点不甚完美的硬着陆外,&ldquo 菲莱&rdquo 已经解密了&ldquo 67P/丘留莫夫&mdash 格拉西缅科&rdquo 彗星的大部分信息。项目科学主管艾克哈特· 库尔特在一份报告中指出:&ldquo 我们正在努力获得更多彗星的信息,现在看来,彗星表面属性似乎与此前预料大相径庭。&rdquo   科学家最希望&ldquo 菲莱&rdquo 所得的化学分析数据,能成为解释46亿年前太阳系形成以及地球生命的有关证据。一些天体物理学理论认为,彗星给我们羽翼未丰的地球&ldquo 播种&rdquo 了最原始的生命所需的水和有机物,所以希望对67P彗星的探测能证明这一假设。   据物理学家组织网11月19日(北京时间)报道,&ldquo 菲莱&rdquo 携带的10种科学探测仪器中,一种名为&ldquo MUPUS&rdquo 的地表及属性探测器通过&ldquo 敲击&rdquo 67P彗星表面,发现这颗彗星的确是一个&ldquo 难啃的硬骨头&rdquo ,彗星表面下一层的&ldquo 灰尘&rdquo 并非像预想的&ldquo 蓬松&rdquo ,不太可能从地表深入太深。&ldquo 菲莱&rdquo 仍然在努力进行钻探,但尚不清楚是否将土壤样本取到着陆器上。   尽管如此,研究组说&ldquo 菲莱&rdquo 的元素和分子气体分析仪(COSAC)努力&ldquo 闻&rdquo 着周围的空气,在着陆的第一时间就检测到了第一批有机分子,但报告同时指出:&ldquo 质谱分析和分子物的明确分析还在进行中。&rdquo   &ldquo 罗塞塔&rdquo 彗星探测器历经64亿公里的十年深空旅行,今年8月终于跟67P成功&ldquo 会师&rdquo 。上周三,&ldquo 菲莱&rdquo 经过长达7个小时,从&ldquo 罗塞塔&rdquo 母船下降了20公里,终于着陆在67P上。   从上周六,&ldquo 菲莱&rdquo 着陆器因电力不足而进入休眠状态。项目主管斯提芬· 安拉麦克说,他对与&ldquo 菲莱&rdquo 取得联系仍有信心,随着距离彗星越来越近,&ldquo 我们就可以让这些仪器继续工作了&rdquo 。   大约等到2015年春季的时候,&ldquo 菲莱&rdquo 会与母船&ldquo 罗塞塔&rdquo 取得联系 到明年夏季,&ldquo 彗星上的温度将可以满足&lsquo 菲莱&rsquo 太阳能电池的充电需求&rdquo 。到时候,一直保持在轨飞行的母船&ldquo 罗塞塔&rdquo 会接收从休眠状态苏醒的&ldquo 菲莱&rdquo 发出的所有信号。
  • 网络讲座 | 转化医学系列-小分子激酶抑制剂研究最新进展
    转化医学系列网络讲座又来啦!讲座时间:2019年9月19日下午14:00-15:00讲座题目:小分子激酶抑制剂研究最新进展主讲人:吕晓冰博士(桑迪亚)讲座形式:网络讲座,手机或PC即可参与(会议链接和如下报名链接相同)内容简介1. 概括介绍目前小分子激酶抑制剂的研究进展2. 从几家新药研发公司看目前比较热门的小分子激酶抑制剂的研究方向3. 小分子激酶抑制剂研发存在的挑战4. 激酶靶点在癌症疾病领域外的应用即刻报名扫描下方二维码,即刻报名吧!主讲人简介吕晓冰 博士华东理工大学生物化学学士;华东理工大学生物化学与分子生物学硕士;lowa State University爱荷华州立大学生物化学与生物物理博士;睿智化学生物体外部副总监;桑迪亚生物体外部高级总监。更多转化医学系列网络讲座安排,具体时间以珀金埃尔默微信推送时间为准。敬请关注!主题预计时间使用Alpha技术研究RNA甲基化“橡皮擦” (ALKBH5)10/24/2019研究蛋白相互作用就是这么简单11/7/2019细胞成像分析前沿应用案例心得分享11/28/2019原来药物研发还可以这样做——基于表型筛选的药物研发11月小动物活体成像技术助力脑靶向载体的研究12/19/2019关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 我国科学家揭示线粒体外膜转位酶复合体组装的分子机制
    线粒体是真核细胞能量代谢的主要场所,与动植物的生长发育密切相关,99%的线粒体蛋白由细胞核基因编码,在细胞质中合成。线粒体外膜TOM转位酶复合体负责绝大部分前体蛋白运输进入线粒体,再通过其他转位酶复合体分选至线粒体的各个部位。TOM复合体是由7个亚基组成的膜蛋白复合体,其组装过程是多步骤且高度动态的,需要线粒体外膜SAM复合物的协助。但是,SAM复合物如何协助TOM组装的分子机制尚不清楚。  为了探索TOM转位酶复合体的组装机制,作物遗传改良国家重点实验室殷平教授研究团队独辟蹊径,利用哺乳动物细胞重组表达系统重构了该组装过程,并实现精准控制,可人为地为组装按下“暂停键”。该方法使得研究者捕获了TOM组装过程中的多个中间态并获得其蛋白样品,攻克了该领域多年来无法获得稳定的TOM复合体中间态的难题。研究团队利用单颗粒冷冻电镜技术首次解析了两个重要中间态的高分辨三维结构,并结合功能分析阐明了SAM复合物协助组装以及释放TOM的分子机制。  该研究成果有助于理解TOM转位酶复合体的组装过程,更好地探究线粒体蛋白的生物发生,为线粒体疾病治疗和作物遗传改良提供理论基础。相关研究成果于近期发表在Science杂志上。
  • 岛津创新:纳米表面分子导向限制性酶解(nSMOL)技术
    对大多数研究团队或制药公司而言,生物基质中单克隆抗体药物的定量分析常常面临着两个棘手的问题:首先是由于样品前处理方法不合适导致的选择性、重复性不佳;其次,若使用LC-MS/MS 进行分析时,会出现耗时或灵敏度不理想的情况。 岛津公司生命科学研究中心一直致力于开发一类通用型前处理方法,以实现对单克隆抗体药物便捷、高效地分析。蛋白酶解方法是目前常用方法之一,其将单克隆抗体分子水解为多个多肽片段,通过对特征性肽段进行检测,从而实现对抗体药物的定量分析。然而,经该方法酶解得到的多肽片段种类数量众多,组分较复杂,因此大大减弱了检测灵敏度。为了简化该前处理方法, 岛津公司推出了一项全新的技术——纳米表面分子导向限制性酶解(nSMOL, nano-Surface and Molecular Orientation Limited Proteolysis)技术,该技术由岛津公司 Takashi Shimada 博士开 发,可用于所有单克隆抗体药物的定量分析。 nSMOL 技术可在近生理条件下,完成对抗体药物的选择性酶解,并获得与之相应的特征性肽段组分。其工作原理是利用抗体树脂对样品中单克隆抗体药物进行捕获,之后通过蛋白酶纳米颗粒对树脂上抗体成分进行限制性酶解,得到多肽片段。该酶解主要针对抗体的 Fab 区域,Fab 区域外余下部分不受酶解作用且仍保留在原树脂上(如图所示)。因此,nSMOL 技术不仅能够保证获得特异性的抗体序列片段,而且限制性酶解技术大大降低了样品的复杂性,缩短样品前处理时间,提高了检测灵敏度。 针对 LC-MS/MS 分析时出现耗时或灵敏度不理想的情况,岛津公司推出的新一代三重四极杆质谱仪 LCMS-8050 和 LCMS-8060,实现了灵敏度和速度的创新性突破。其全新的离子导向技术增强了离子聚焦能力和信号响应,30000 u/sec 超快的数据采集速度和 5 msec 极性切换速度,使 LCMS-8050 和LCMS-8060 在保证高灵敏度的同时还具有出众的分析速度。因此, LCMS-8050 和 LCMS-8060 的问世为复杂的生物分析提供了高灵敏度、高稳定性,并缩短了分析时间。 nSMOL 技术与 LCMS-8050 或 LCMS-8060 的完美融合,为单克隆抗体药物的定量分析铺平了道路,开拓了视野。基于该技术,岛津公司完成了人血浆中曲妥珠单抗、贝伐珠单抗、利妥昔单抗等单克隆抗体药物的分析,研究成果已在多个国际期刊中发表。 nSMOL 技术结合岛津三重四极杆质谱仪 LCMS-8050 或 LCMS-8060 能够较好地解决单克隆抗体药物在定量分析中面临的问题,我们希望该技术能为有关从业人员提供新思路、新方法,也希望该技术能在抗体药物临床前及临床研究中发挥重要作用。岛津三重四极杆质谱仪 LCMS-8050 或 LCMS-8060
  • 岛津创新:纳米表面分子导向限制性酶解(nSMOL)技术
    对大多数研究团队或制药公司而言,生物基质中单克隆抗体药物的定量分析常常面临着两个棘手的问题:首先是由于样品前处理方法不合适导致的选择性、重复性不佳;其次,若使用LC-MS/MS 进行分析时,会出现耗时或灵敏度不理想的情况。 岛津公司生命科学研究中心一直致力于开发一类通用型前处理方法,以实现对单克隆抗体药物便捷、高效地分析。蛋白酶解方法是目前常用方法之一,其将单克隆抗体分子水解为多个多肽片段,通过对特征性肽段进行检测,从而实现对抗体药物的定量分析。然而,经该方法酶解得到的多肽片段种类数量众多,组分较复杂, 因此大大减弱了检测灵敏度。为了简化该前处理方法, 岛津公司推出了一项全新的技术——纳米表面分子导向限制性酶解(nSMOL, nano-Surface and Molecular Orientation Limited Proteolysis)技术,该技术由岛津公司 Takashi Shimada 博士开 发,可用于所有单克隆抗体药物的定量分析。 nSMOL 技术可在近生理条件下,完成对抗体药物的选择性酶解,并获得与之相应的特征性肽段组分。其工作原理是利用抗体树脂对样品中单克隆抗体药物进行捕获,之后通过蛋白酶纳米颗粒对树脂上抗体成分进行限制性酶解,得到多肽片段。该酶解主要针对抗体的 Fab 区域,Fab 区域外余下部分不受酶解作用且仍保留在原树脂上(如图所示)。因此,nSMOL 技术不仅能够保证获得特异性的抗体序列片段,而且限制性酶解技术大大降低了样品的复杂性,缩短样品前处理时间,提高了检测灵敏度。 针对 LC-MS/MS 分析时出现耗时或灵敏度不理想的情况,岛津公司推出的新一代三重四极杆质谱仪 LCMS-8050 和 LCMS-8060,实现了灵敏度和速度的创新性突破。其全新的离子导向技术增强了离子聚焦能力和信号响应,30000 u/sec 超快的数据采集速度和 5 msec 极性切换速度,使 LCMS-8050 和LCMS-8060 在保证高灵敏度的同时还具有出众的分析速度。因此, LCMS-8050 和 LCMS-8060 的问世为复杂的生物分析提供了高灵敏度、高稳定性,并缩短了分析时间。 nSMOL 技术与 LCMS-8050 或 LCMS-8060 的完美融合,为单克隆抗体药物的定量分析铺平了道路,开拓了视野。基于该技术,岛津公司完成了人血浆中曲妥珠单抗、贝伐珠单抗、利妥昔单抗等单克隆抗体药物的分析,研究成果已在多个国际期刊中发表。 nSMOL 技术结合岛津三重四极杆质谱仪 LCMS-8050 或 LCMS-8060 能够较好地解决单克隆抗体药物在定量分析中面临的问题,我们希望该技术能为有关从业人员提供新思路、新方法,也希望该技术能在抗体药物临床前及临床研究中发挥重要作用。岛津三重四极杆质谱仪 LCMS-8050 或 LCMS-8060关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 建模成功!Nature子刊:成功建立新冠肺炎重症模型,揭示新冠病毒感染的分子机制
    自2019年年底开始,新型冠状病毒(SARS-CoV-2)引起的新冠肺炎(COVID-19)疫情一直在全球范围内流行,全球死亡率居高不下,已经导致全球的公共卫生危机。COVID-19的临床症状多样,从发烧、乏力、干咳到呼吸困难,从轻度肺炎到急性肺损伤(ALI)和严重病例的急性呼吸窘迫综合征均可出现。  与SARS-CoV类似,SARS-CoV-2属于冠状病毒科β冠状病毒属,是一种包膜单链阳性RNA病毒。人血管紧张素转换酶2 (hACE2)已被证实是SARS-CoV-2的功能性受体。目前在各个国家都已开展对SARS-CoV-2的相关研究,一些hACE2表达小鼠模型,如hACE2转基因小鼠,AAV-hACE2转导小鼠和Ad5-hACE2转导小鼠已经被开发出来。然而,大多数模型只会对小鼠造成轻度至中度的肺损伤。一种能够重现COVID-19最严重呼吸道症状和高病死率的小动物模型仍然是当务之急。  近日,中国军事科学院军事医学研究院秦成峰/王慧团队联合中科院生物物理所王祥喜团队在国际期刊《Nature Communications》上在线发表了题为“Characterization and structuralbasis of a lethal mouse-adapted SARS-CoV-2”的研究论文,公开表示团队成功建立新冠肺炎重症模型并揭示新冠病毒跨种感染分子机制。  首先,研究团队在之前的研究中已经生成了一株SARS-CoV-2 (MASCp6)小鼠适应株,能对小鼠造成中度肺损伤。在此基础上,研究人员进一步连续传代30次,以产生更强毒力的小鼠适应株,最终在第36代产生了SARS-CoV-2(命名为MASCp36)。  实验表明,对不同月龄、性别的BALB/c小鼠进行不同剂量的鼻内注射后,9月龄小鼠对MASCp36毒性高度敏感,且对MASCp36毒性呈剂量依赖性。所有9个月大的小鼠受到高剂量MASCp36的攻击后,均出现典型的呼吸道症状,并表现出皮毛皱褶、驼背和活动减少等特征。此外,雄性小鼠比雌性小鼠对MASCp36更敏感。  (图注:MASCp36对不同性别、年龄的小鼠的毒性不同)  为了进一步确定MASCp36感染小鼠的病理结果,研究团队收集了肺组织进行组织病理学和免疫染色分析。裸眼观察发现,与未感染的对照动物相比,MASCp36感染小鼠的肺损伤严重,双侧呈红色,肺内有黏液。镜下观察可见细支气管管内大量脱皮上皮细胞(黄色箭头),肺泡上皮细胞大面积坏死,肺泡壁融合炎性细胞浸润,以中性粒细胞为主。血管周围严重水肿(青色箭头),散在出血(蓝色箭头),这都表明MASCp36感染诱发了坏死性肺炎和广泛弥漫性肺泡损伤。  (图注:MASCp36感染引起的小鼠急性肺损伤)  最后,研究团队就此模型进行了一系列深入的研究,深度测序发现MASCp36在连续传代中共检测到12个氨基酸突变位点,其中3个(N501Y、Q493H和K417N)位于S蛋白受体结合区(RBD),进一步实验证实,这一结构使得MASCp36病毒和鼠源ACE2亲和力显著增加,通过电镜发现,致死株MASCp36的RBD与鼠源ACE2可形成稳定结合的致密结构,这与野生型病毒RBD与人源ACE2的结构高度类似。  (图注:不同小鼠模型的RBD突变以及与hACE2的亲和力)  综上所述,这一研究产生了一种新的小鼠适应的SARS-CoV-2毒株MASCp36,该毒株会导致严重的呼吸道症状和死亡率。模型也显示了与严重COVID-19类似的年龄和性别相关死亡率。在体内传代过程中,通过对MASCp36受体结合区域(RBD)的深度测序,发现了N501Y、Q493H和K417N三个氨基酸替换。本研究为明确SARS-CoV-2发病机制提供了平台,并揭示了其快速适应和进化的分子机制。
  • 赛默飞与GeneProof合作推出分子诊断新产品
    2023年4月17日——全球诊断领导者ALPCO-GeneProof和赛默飞世尔宣布建立战略合作伙伴关系,将TaqPath Menu | GeneProof PCR试剂盒引入市场。此次合作将ALPCO-GeneProof在分子诊断方面的专业知识与赛默飞世尔强大的供应链和支持系统相结合。赛默飞世尔提供的产品组合包括来自ALPCO-GeneProof产品组合的37种CE-IVD分子诊断分析,建立在其创新的“一个工作流程”技术之上,易于使用且与各种qPCR仪器兼容。赛默飞世尔计划分阶段发布TaqPath Menu |基因防护PCR试剂盒,首先是血液传播感染和性传播感染(STIs)。随后将推出呼吸道感染、移植和免疫功能低下,血栓性突变和媒介传播的疾病。赛默飞世尔将在2019年举行的ECCMID2023上正式推出TaqPath Menu | GeneProof产品组合将于2023年4月15日至18日在哥本哈根举行。关于赛默飞:赛默飞世尔科技有限公司是服务科学领域的全球领导者,年收入超过300亿美元。使命是让我们的客户使世界更健康、更清洁、更安全。无论客户是在加速生命科学研究,解决复杂的分析挑战,改善患者诊断和治疗,还是提高实验室的生产力,都可以为他们提供支持。关于ALPCO-GeneProof:ALPCO成立于1991年,是北美生命科学市场免疫测定产品的进口商和分销商。该公司已发展成为专业测试实验室新型免疫诊断试剂的领先生产商。2022年,ALPCO与总部位于捷克共和国的专业分子诊断解决方案提供商GeneProof合并。GeneProof成立于2005年,提供超过50种IVDD和6种IVDR PCR检测试剂盒,用于传染病和基因突变,以及一套用于各种规模临床实验室的专有仪器。
  • 赛默飞购入一家分子诊断公司9%股份
    p    strong 仪器信息网讯 /strong 赛默飞世尔科技近日宣布,通过行使该公司的认股权证,收购了分子诊断公司Yourgene Health 9%的股份。 /p p   Yourgene,前身为Premaitha Health,总部位于英国曼彻斯特,在台湾和新加坡也设有办事处。购买协议达成后,Yourgene将在东南亚市场的Thermo Fisher Ion Torrent新一代测序系统上独家推广其非侵入性产前检测产品三年。 /p p   此前,赛默飞世尔曾向Yourgene提供过几笔贷款,包括2015年的500万英镑(760万美元),2017年的500万美元,以及2018年的120万英镑(300万美元)贷款,用于支付与Illumina诉讼相关的法律费用。最新消息显示,Yourgene和Illumina之间的争议已解决,Yourgene同意授权Illumina的NIPT专利并开发Illumina NGS系统的Iona测试版本。 /p p   Yourgene首席执行官Lyn Rees在一份声明中表示,该协议将使该公司能够“无债务地进入新的财政年度,不会受到诉讼的干扰,并且能够加强领导团队,以实现相关业务在NIPT和更广泛的基因检测市场中得以推广。“ /p p   Rees补充说,赛默飞世尔拥有“强大的新产品机会”,将扩大我们的产品范围,使Yourgene与我们的全球合作伙伴更加相关。 /p p   根据新协议,Yourgene将使用约380万英镑的收益偿还向赛默飞世尔的贷款。赛默飞将注销剩余1270万英镑贷款。为保证权益得到积极行使,赛默飞也有可能将其控制权增加至17%。 /p
  • 仪器信息网走访赛默飞分子光谱工厂
    2014年3月2-6日,Pittcon 2014在美国芝加哥召开,仪器信息网编辑参加了此次展会,并在展会后走访了赛默飞世尔科技(以下简称赛默飞)位于威斯康辛州的分子光谱工厂。   时值三月初,威斯康辛州下了大雪,工厂附近银装素裹,分外美丽。当地时间上午10点,仪器信息网一行四人来到了赛默飞分子光谱工厂,赛默飞分子光谱全球产品总监Simon Nunn先生、分析仪器光谱解决方案市场经理Maria Perr女士、分子光谱事务经理Lisa Briquelet女士热情地接待了我们。 赛默飞分子光谱工厂外景   坐拥四大品牌,构建丰富光谱产品线   Maria Perr女士介绍了赛默飞整个公司的概况。赛默飞目前在50个国家拥有员工50000余名,年收入达到170亿美元。2013年收购Life Technologies后,赛默飞在全球财富500强的位置由170位升至120位。   公司使命是帮助客户使世界更健康、更清洁、更安全,产品和服务主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,帮助各行各业的客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。   赛默飞光谱产品线历史悠久。通过不断的收购与整合,赛默飞构筑了种类丰富的光谱产品线,既有原子光谱,也有分子光谱。   仅就分子光谱而言,赛默飞的产品线包括:各种普及型、分析型及研究型 FT-IR 光谱仪;独立型及联机型拉曼光谱仪、显微拉曼光谱仪及各种拉曼附件;通用、专用近红外光谱仪、红外气体分析仪,红外油分析仪及红外半导体分析仪;显微红外光谱仪,及齐全的红外制样附件;多种应用软件,如智能化定量分析软件、红外谱图解析软件、红外应用文献库软件等;世界上最大数量的傅立叶红外、拉曼的标准谱库;微型核磁共振波谱仪等。   分子光谱产品大放异彩   赛默飞红外/拉曼光谱产品线来自于Nicolet(原美国尼高力仪器公司),其紫外可见分光光度计主要来自于UNICAM(原英国UNICAM光学仪器公司),这些品牌都因为其精湛的技术、卓越的产品而享誉全球。通过收购,赛默飞获得了许多独特的技术。据了解,目前赛默飞是唯一坚持采用全息母光栅的厂家,也是唯一一家公司可对外提供标准校准滤光片的厂家,更是唯一一家可提供进行全自动计量校正系统CTU、CVC的厂家。   收购这些品牌之后,赛默飞结合已有技术,推出了许多新产品,这些产品获得了业内的广泛认可,屡获大奖。比如Nicolet&trade iS5 FT-IR Spectrometer 在pittcon 2010上获得科学家选择奖,Nicolet&trade iS50 FT-IR Spectrometer 获得2013年的R&D大奖。   Simon Nunn先生为我们梳理了赛默飞分子光谱几大产品线的最近发展情况:   (1)紫外可见分光光度计   赛默飞推出了Genesys&trade 系列和 Evolution&trade 系列两大类产品,为单一或混合的固态、液态以及混合态样品的定量分析提供了可靠的途径,将检测时间从原先的几天缩短到几毫秒。产品广泛应用于各类基础研究和应用研究实验室,尤其在生命科学、QA/QC和材料科学实验室,更为常见。   作为赛默飞紫外可见分光光度计家族的重要成员,NanoDropTM系列微型紫外可见分光光度计主要用于核酸与蛋白的定量测量,在生物技术企业、制药企业、医院、科研院所也得到了广泛的应用。   (2)NMR   收购picoSpin公司后,赛默飞拥有了微型核磁共振波谱仪(NMR)产品线,对其红外光谱及拉曼光谱产品是很好的补充。赛默飞在之前picoSpin 45的基础上推出了升级产品picoSpin 80。   Simon Nunn先生表示:&ldquo NMR是有机分子表征的首选技术。传统的NMR使用成本高,对实验室空间、日常维护都有很高的要求,实用性相对较差。微型NMR在以上方面有很大的改进,不仅体积大幅缩小结构紧凑,而且操作简单,非常适用于教学以及化学品管理。&rdquo 微型NMR picoSpin 80   (3)傅里叶红外光谱仪、拉曼光谱仪、近红外光谱仪   赛默飞现拥有傅里叶红外光谱仪、拉曼光谱仪、近红外光谱仪等光谱产品线,拥有科研级傅里叶红外光谱仪Nicolet iS50、Nicolet iS5、傅里叶近红外Antaris II、显微红外成像光谱仪Nicolet iN10 MX、DXR显微拉曼光谱仪等明星产品。   这些产品可用于固态、液态、气态物质的单一样品及混合样品的化学性质及形态相关信息的辨认,为化工、食品、制药、法医、材料等多个领域的企业、检测机构及科研机构提供材料表征、新材料开发、企业质量控制等提供全套解决方案。 DXRxi显微拉曼成像光谱仪   在Pittcon 2014上,赛默飞发布了新品&mdash &mdash DXRxi显微拉曼成像光谱仪。该产品具有以下特点:   采用新型以图象为中心的赛默飞OMNICxi软件,实现可视化快速采集、直观精准的样品定位以及直观参数优化界面 自动准直与校标功能将为用户节省大量的时间与精力 快速实现样品化学信息的可视化成像,在数秒钟内就能提供详细的光谱信息,无需专业光谱专家解析,易于使用 超强的大面积区域快速扫描功能。   Simon Nunn先生介绍说:&ldquo DXRxi相比与其他同类型的产品,它最大的优势在于软件平台。用户购买的是仪器硬件,但实际上他们使用的是软件,几乎可以说软件就是全部。所以,我们在软件的改进上做了很大的努力。&rdquo   DXRxi的新型设计致力于快速准确显示分子结构、化学组份以及样品形貌等信息,为研究开发、材料缺陷和产品质控等应用带来高可信度,将帮助药物科学、生命科学、半导体制造以及地质学等领域的科学家、工程师以及科研工作者在材料领域的相关应用研究。   赛默飞应用科学家为仪器信息网工作人员介绍DXRxi软件平台   Simon Nunn先生表示,在未来赛默飞在仪器研制方面将仍致力于仪器本身性能的提升,同时在也将会在仪器联用方面进行更多的尝试。目前赛默飞已经实现了红外分别与气相色谱仪、热重分析仪及流变仪的联用,这样的联用能够从一个样品上获得更丰富信息。   三大措施保障产品质量   会谈之后,仪器信息网参观了赛默飞分子光谱工厂。该工厂共有员工400余人,生产FTIR、NIR、NMR、UV-Vis(包括Micro UV-Vis)、RAMAN、EDS、WDS、EBSD等产品,我们参观了其中的NMR及FTIR生产线。 工厂一角   据Lisa Briquelet女士介绍,工厂基本上根据订单生产,目前交货期平均是两周。为保证产品的高质量,赛默飞非常重视三个方面:产品设计、生产流程控制及供应商质量。   赛默飞分子光谱仪器出厂前的测试时间不长,以Nicolet iS5红外光谱为例,生产一台该仪器通常只需要6个小时,然后经过严格测试即可出厂发货。之所以能够这样的生产速度之下,仍能保证产品的质量,这得益于赛默飞在产品设计过程中的精益求精。   Simon Nunn先生表示,实际上赛默飞把整个产品质量的控制提前到源头上,即产品设计阶段,这个阶段的时间一般很长。在这个阶段,产品的可靠性、稳定性是工程师们最关注的,工程师们力求把产品在未来使用过程中可能会出现的问题降低到最少。设计出来的产品只有经过严格的测试才会付诸生产。 工厂内部产品生产管理表   参观过程中,我们看到了张贴在工厂宣传版上的Nicolet iS50的生产管理表。可以看到:赛默飞将该产品生产重要环节进行了分解,每个环节都指定了负责人,并指定了详细的日程。赛默飞要求产品生产各个环节的负责人严格把控产品生产流程,严格执行该表上的事项,在出现问题的时候会一起讨论并解决。这对于生产效率的提升以及产品质量的把控至关重要。   该工厂的所有零部件都是全球范围内采购的,其中一部分来自包括中国在内的亚洲。工厂在选择零部件的时候会经过非常严格的挑选与测试,这个过程是长久的、持续的。 参观合影   更多信息请参见:赛默飞世尔分子光谱   http://www.instrument.com.cn/netshow/SH100328/
  • 黄伟国团队开发基于菲啶的多功能荧光探针分子
    利用荧光探针监测微环境在细胞成像、疾病诊断、材料缺陷跟踪和高分辨传感中起着至关重要的作用。然而大多数荧光分子只能检测微环境中的一种或几种分析物或物理参数,极大地限制了它们在动态复杂微环境中的应用。开发可检测多种分析物或物理参数的荧光探针不但可用于监测多种微环境,还能提供更全面的微环境信息,实现实时监测微环境的动态变化。中国科学院福建物质结构研究所研究员黄伟国团队设计开发了基于菲啶的荧光探针分子:B1,F1,和T1。B1由菲啶和吡咯单元融合,表现出一维线性的分子构型。F1含有三个B1单元,中间以苯环为核进行连接,呈现出二维的刚性平面共轭分子构型。T1含有四个B1单元,中间以1,3,5,7-环辛四烯(COT)为核进行连接,从而形成三维的动态共轭分子构型。基于COT的特性,T1可发生由马鞍形三维分子构型和平面二维分子构型的动态转变。由于三个分子均含有菲啶单元,因而可和多种分子形成Polar-π相互作用,展现出反刚致变色行为。菲啶单元上的 “N” 杂原子可对微环境中质子和离子进行响应。在极端高压下,三者均展现出荧光发射红移,其中以F1荧光红移程度最为明显(高达163nm),并实现了有机荧光分子鲜有的全彩“压致变色现”象。在细胞成像方面,F1和T1选择性地对细胞核进行染色,而B1主要对细胞质进行染色。该研究为具多重响应的荧光探针提供了新的设计方法,并在信息安全、细胞内传感、早期诊断及“靶向选择性” 治疗方面具潜在的应用前景。近期,相关研究成果发表在《德国应用化学》(Angewandte Chemie International Edition)上。研究工作得到国家海外高层次人才计划、国家自然科学基金、福建省自然科学基金杰出青年项目、中国福建光电信息科学与技术创新实验室等的支持。多功能荧光探针在微环境检测方面的应用
  • 赛默飞与天津大学分析测试中心共建分子光谱应用实验室, 推动分子光谱领域发展
    2018年11月28日,天津大学分析测试中心与赛默飞世尔科技(中国)有限公司签订战略合作协议,并举行揭幕仪式,宣布共建分子光谱应用实验室。 双方通过共建应用实验室建立战略合作伙伴关系,依托天津大学分析测试中心平台的资源与赛默飞世尔先进的技术平台和强大的服务团队,实现平台与资源的共享,进一步加强天津大学分析测试中心的科技力量,推进分子光谱领域技术革新。 会议伊始,天津大学分析测试中心主任崔兰与赛默飞材料与结构分析高级商务总监陈厅行签订共建分子光谱应用实验室协议,并为共建实验室揭幕。 在上午的共建分子光谱应用实验室成立仪式过后,下午天津大学的科研师生与赛默飞应用专家就分子光谱领域产品的应用前沿展开深入的探讨和分享。 关于天津大学 天津大学始建于1895年10月2日,是中国第一所现代大学,素以“实事求是”的校训、“严谨治学”的校风和“爱国奉献”的传统享誉海内外。 天津大学分析测试中心是校管大型分析仪器科学研究的平台,提供部分物质结构、成分与物性的分析测试服务,承担分析测试基础理论、实验和操作技能的培训。 关于赛默飞 赛默飞世尔科技作为全球科学服务领域的领导者,一直致力于在材料科学研究领域为客户提供全面的解决方案,我们的解决方案以客户应用为核心,提供跨学科跨产品线的综合服务。目前我们的解决方案已经在不同领域的众多客户的实验室取得了成功应用案例,为用户的研究工作提供从宏观到微观,从分子结构到物理形貌等有价值的表征工作,帮助用户发现更多信息,加速研究工作的进程。 相信,天津大学分析测试中心与赛默飞世尔科技(中国)有限公司共建分子光谱应用实验室将全面加速科研进程,为分子光谱领域提供更多成功应用案例贡献力量。
  • 广西建设非粮生物质酶解国家重点实验室
    经科技部审批,非粮生物质酶解国家重点实验室已列入第二批依托转制院所和企业建设国家重点实验室名单,正式落户广西投入建设。   该重点实验室承建单位是广西明阳生化科技股份有限公司,技术支持单位是广西科学院,其主要任务是围绕国际非粮生物质酶解的前瞻、前沿性技术及国内生物质产业发展的共性、关键技术,开展生物质酶的发展和评估、酶的分子改造、酶的表达和制备等应用基础研究。
  • 赛默飞联合阜外医院分子诊断中心和安塞斯生物共建精准医疗联合培训中心
    p & nbsp & nbsp & nbsp strong 仪器信息网讯: /strong 赛默飞世尔科技(以下简称:赛默飞)联合阜外医院分子诊断中心(以下简称:阜外分子诊断中心)和安塞斯(北京)生物技术有限公司(以下简称:安塞斯生物)共同设立的“精准医疗联合培训中心”于6月28日正式挂牌投入使用。这一联合实验室将依托赛默飞在精准医疗及其现代基因分析平台上的完整解决方案、阜外医院分子诊断中心强大的临床和研究实力,以及安塞斯生物专业的数据分析和数据解读能力,进一步推动国内遗传性心血管疾病检测进程。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 500px HEIGHT: 333px" title=" 赛默飞联合阜外分子诊断中心和安塞斯生物于今日正式成立“精准医疗联合培训中心”.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201606/insimg/91aa2d36-b05a-4d4b-98e1-4ae243d6a5eb.jpg" width=" 500" height=" 333" / /p p & nbsp & nbsp & nbsp 中国心血管病患病率处于持续上升阶段。根据《中国心血管病报告2014》,心血管病占我国居民疾病死亡构成的40%以上,成为我国居民死亡的最主要病因,每5例死者中就有2例死于心血管病。赛默飞中国区总裁江志成先生(Gianluca Pettiti)表示:“遗传性心血管疾病已经成为威胁人类生命健康的主要疾病之一。赛默飞拥有全球领先的创新分子基因分析和客户定制和解决方案,同时高度关注中国遗传性心血管疾病的研究进度和发展。此次合作是赛默飞推动遗传性心血管疾病检测进程的有益探索,我们三方将实现资源共享和互通有无,践行‘帮助客户使世界更健康、更清洁、更安全’的使命。” /p p & nbsp & nbsp & nbsp 阜外医院周洲主任介绍道:“遗传性心血管疾病由单基因突变造成,这对于基因诊断技术提出了较高的要求。赛默飞是全球基因检测分析的领导者,阜外医院是世界领先心血管病诊治中心,积累了丰富的临床诊疗经验以及样本资源,相信通过我们的强强合作, 必将对遗传性心血管疾病的前期诊断和治疗研究实现重要突破。”安塞斯生物CEO周洋补充道:“此次合作为心血管疾病的临床研究和发展奠定了里程碑。我们很高兴可以联合该疾病研究领域的两个重要合作伙伴,共同为广大患者的健康出谋划策。此外,安塞斯还成功与两个合作伙伴在线搭建了主动脉疾病的致病基因突变查询系统iAorta数据库,旨在利用分子遗传学揭示在中国人群中主动脉疾病和相关基因突变的致病关联性。” /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 500px HEIGHT: 333px" title=" 赛默飞中国区总裁江志成先生和赛默飞基因分析业务中国区总裁张焱博士在阜外医院周洲主任的带领下参观联合实验室.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201606/insimg/2a9a9d4a-f09a-4dd9-8e0c-46babf8a1798.jpg" width=" 500" height=" 333" / /p p style=" TEXT-ALIGN: center" strong 赛默飞中国区总裁江志成先生(右一)和赛默飞基因分析业务中国区总裁张焱博士(左一)在阜外医院周洲主任的带领下参观联合实验室 /strong /p p & nbsp & nbsp & nbsp 根据合作意向书内容,赛默飞将充分利用在测序技术的领先优势,为该中心提供先进的二代测序产品及技术;阜外医院分子诊断中心暨“心血管疾病分子诊断北京市重点实验室”集医教研为一体,致力于心血管疾病精准医学事业;安塞斯公司为中心搭建二代测序技术服务及Ion S5高通量测序大数据分析平台。此次合作旨在促进Ion Torrent 系列二代基因测序技术平台更好地服务于中国,深入研究开发二代测序平台在心血管疾病检测领域的应用,促进二代测序技术更快速更普及地应用于临床研究和实验室检测,共同推动中国精准医学检测进程,并引领全国遗传性心血管分子诊断研究的发展。 /p p & nbsp /p
  • 【时事新闻】赛默飞联合阜外医院分子诊断中心和安塞斯生物共建精准医疗联合培训中心
    p style=" text-align: center " strong ——推动遗传性心血管疾病检测进程 /strong /p p br/ /p p strong 2016年6月28日,北京 /strong ——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)联合阜外医院分子诊断中心(以下简称:阜外分子诊断中心)和安塞斯(北京)生物技术有限公司(以下简称:安塞斯生物)共同设立的“精准医疗联合培训中心”于今日正式挂牌投入使用。这一联合实验室将依托赛默飞在精准医疗及其现代基因分析平台上的完整解决方案、阜外医院分子诊断中心强大的临床和研究实力,以及安塞斯生物专业的数据分析和数据解读能力,进一步推动国内遗传性心血管疾病检测进程。 /p p br/ /p p 中国心血管病患病率处于持续上升阶段。根据《中国心血管病报告2014》,心血管病占我国居民疾病死亡构成的40%以上,成为我国居民死亡的最主要病因,每5例死者中就有2例死于心血管病。赛默飞中国区总裁江志成先生(Gianluca Pettiti)表示:“遗传性心血管疾病已经成为威胁人类生命健康的主要疾病之一。赛默飞拥有全球领先的创新分子基因分析和客户定制和解决方案,同时高度关注中国遗传性心血管疾病的研究进度和发展。此次合作是赛默飞推动遗传性心血管疾病检测进程的有益探索,我们三方将实现资源共享和互通有无,践行‘帮助客户使世界更健康、更清洁、更安全’的使命。” /p p br/ /p p 阜外医院周洲主任介绍道:“遗传性心血管疾病由单基因突变造成,这对于基因诊断技术提出了较高的要求。赛默飞是全球基因检测分析的领导者,阜外医院是世界领先心血管病诊治中心,积累了丰富的临床诊疗经验以及样本资源,相信通过我们的强强合作, 必将对遗传性心血管疾病的前期诊断和治疗研究实现重要突破。安塞斯生物CEO周洋补充道:“此次合作为心血管疾病的临床研究和发展奠定了里程碑。我们很高兴可以联合该疾病研究领域的两个重要合作伙伴,共同为广大患者的健康出谋划策。此外,安塞斯还成功与两个合作伙伴在线搭建了主动脉疾病的致病基因突变查询系统iAorta数据库,旨在利用分子遗传学揭示在中国人群中主动脉疾病和相关基因突变的致病关联性。” /p p br/ /p p 根据合作意向书内容,赛默飞将充分利用在测序技术的领先优势,为该中心提供先进的二代测序产品及技术;阜外医院分子诊断中心暨“心血管疾病分子诊断北京市重点实验室”集医教研为一体,致力于心血管疾病精准医学事业;安塞斯公司为中心搭建二代测序技术服务及Ion S5高通量测序大数据分析平台。此次合作旨在促进Ion Torrent 系列二代基因测序技术平台更好地服务于中国,深入研究开发二代测序平台在心血管疾病检测领域的应用,促进二代测序技术更快速更普及地应用于临床研究和实验室检测,共同推动中国精准医学检测进程,并引领全国遗传性心血管分子诊断研究的发展。 /p p br/ /p p 欲了解更多“赛默飞、阜外医院和安塞斯生物iAorta数据库”信息,请点击以下链接地址: /p p br/ /p p a href=" http://iaorta.analyses.cn/BTW/" http://iaorta.analyses.cn/BTW/ /a /p p br/ /p p style=" text-align: center " img title=" 赛默飞联合阜外分子诊断中心和安塞斯生物于今日正式成立“精准医疗联合培训中心”.jpg" src=" http://img1.17img.cn/17img/images/201606/uepic/f018b575-9f16-486c-8a93-fdad7c61f4d6.jpg" / /p p style=" text-align: center " 赛默飞联合阜外分子诊断中心和安塞斯生物于今日正式成立“精准医疗联合培训中心” /p p br/ /p p style=" text-align: center " img title=" 赛默飞中国区总裁江志成先生和赛默飞基因分析业务中国区总裁张焱博士在阜外医院周洲主任的带领下参观联合实验室.jpg" src=" http://img1.17img.cn/17img/images/201606/uepic/34d03a23-80e4-4576-a1ef-6a04258c029d.jpg" / /p p style=" text-align: center " 赛默飞中国区总裁江志成先生和赛默飞基因分析业务中国区总裁张焱博士在阜外医院周洲主任的带领下参观联合实验室 /p p br/ /p p -------------------------------------- /p p br/ /p p strong 关于赛默飞世尔科技 /strong br/ 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美 元,在50个国家拥有约50,000名员工。我们的 使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发 展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站: a href=" http://www.thermofisher.com" www.thermofisher.com /a /p p br/ /p p strong 赛默飞世尔科技中国 /strong br/ 赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为 了满足中国市场的需求,现有7家工厂分别在上海、北京和苏州运营。我们在全国共设立了4个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网 站: a href=" http://www.thermofisher.com" www.thermofisher.com /a /p p br/ /p p strong 关于阜外医院 /strong br/ 中国医学科学院阜外医院建于1956年,是一所集医疗、教学、科研、预防为一体的三级甲等心血管病专科医院,也是国家心血管病中心、心血管疾病国家重点实验室、国家心血管疾病临床医学研究中心所在地。医院是世界最大心脏病诊治中心之一,以诊治各种复杂、疑难和重症心血管病而享誉国内外。2015年心脏外科及心脏介入手术已连续五年双双突破万例,在“2015年度中国最佳医院及最佳专科排行榜”中,医院获得最佳专科排行榜心血管病专科第一名和心外科专科第一名,这已是医院连续第七年获此荣誉。阜外医院自2013年7月成立分子诊断中心,已经成为国内医院集成度最高的分子诊断平台,并于2015年获批“心血管疾病分子诊断北京市重点实验室”。 /p p br/ /p p strong 关于安塞斯公司 /strong br/ 安塞斯(北京)生物技术有限公司成立于2014年,拥有雄厚的临床应用开发和专业的数据分析平台。汇集了国内外优秀的生物信息学及医学专家,是一家致力于应用高通量基因测序技术为临床医学提供整体解决方案的生物公司。通过与顶级医院建立合作,累积了丰富的临床服务经验,是基因测序技术实现临床转化的践行者!目前安塞斯合作医院:阜外医院、协和医院、天津血液病医院、北大人民医院等。 /p p br/ /p
  • 中国化学会超分子化学专业委员会完成换届,王梅祥连任新一届主任
    根据中国化学会《关于分支机构换届的通知》(化会字〔2022〕16号),各学科/专业委员会换届工作陆续完成。中国化学会超分子化学专业委员会按照换届要求完成换届,新届期将自2022年至2026年。新一届委员会委员信息如下:主任:王梅祥(清华大学) 副主任:刘鸣华(中国科学院化学研究所)、黎占亭(中国科学院上海有机化学研究所)、黄飞鹤(浙江大学)、陈国颂(复旦大学)秘书(长): 陈鹏磊(中国科学院化学研究所)、杨海波(华东师范大学)委员(按姓氏拼音排序):委员姓名工作单位曹利平西北大学曹晓宇厦门大学陈传峰中国科学院化学研究所陈国颂复旦大学陈鹏磊中国科学院化学研究所陈玉哲中国科学院理化技术研究所程晓红云南大学丁宝全国家纳米中心杜祖亮河南大学樊江莉大连理工大学侯军利复旦大学胡晓玉南京航空航天大学黄飞鹤浙江大学蒋 伟南方科技大学金龙一延边大学黎占亭中国科学院上海有机化学研究所李春举天津师范大学李霄鹏深圳大学刘鸣华中国科学院化学研究所刘绍琴哈尔滨工业大学刘世勇中国科学技术大学刘一流华南理工大学刘志常西湖大学刘 育南开大学马 骧华东理工大学潘世烈中国科学院新疆理化技术研究所彭海炎华中科技大学齐崴天津大学曲大辉华东理工大学任劲松中国科学院长春应用化学研究所石 峰北京化工大学孙俊奇吉林大学田 威西北工业大学汪 成武汉大学王德先中国科学院化学研究所王江云中国科学院生物物理研究所王乐勇南京大学王梅祥清华大学王瑞兵澳门大学王 为兰州大学王 瑶山东大学吴 彪北京理工大学吴光鹭吉林大学吴骊珠中国科学院理化技术研究所颜朝国扬州大学杨 成四川大学杨海波华东师范大学杨清正北京师范大学阴彩霞山西大学尤 磊中国科学院福建物质结构研究所于 洋上海大学余孝其四川大学臧宏瑛东北师范大学臧双全郑州大学张绍东上海交通大学张文彬北京大学张 希清华大学赵达慧北京大学赵 新中国科学院上海有机化学研究所
  • iCS 2018第二天 分子光谱技术“魅力吸睛”
    p    strong 仪器信息网讯 /strong 2018年5月29日,由仪器信息网主办的第七届光谱网络会议(iCS 2018)暨第一届“光谱仪器在线展览会”(Spectroscopy Online Exhibition)正式开幕。本届网络会议为期三天(5月29日-31日),采取在线研讨会(iCS)、网上展览会、促销活动等多种形式全面展示光谱的最新技术和产品。 /p p   iCS 2018分设4个专场:原子光谱技术与应用进展、分子光谱技术与应用进展、近红外光谱技术与应用进展及拉曼光谱技术与应用进展。大会邀请了27位业内光谱专家、以及厂商技术人员针对不同的主题做精彩报告,为业界人士搭建一个交流平台,提高光谱研究与应用水平。 /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCS2018/" target=" _blank" img title=" 00.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/df8ee841-0974-484e-be9e-77727dc12a09.jpg" / /a /p p   5月30日,分子光谱技术与应用进展、近红外光谱技术与应用进展专场共安排了8位相关专家进行精彩的报告,累计报名人数依然超过1000人!用户互动持续火热,数十个用户问题得到沟通和解答! /p p   报告内容聚焦分子光谱的最新技术及应用,涵盖了分子荧光光谱,近红外光谱,基于固相萃取光谱的快检技术以及便携、专用和在线仪器等,并从多个角度介绍了这些分子光谱技术在过程/在线分析、快速检测、及科学研究等方面的应用。以下为报告内容简要,以飨读者。 /p p style=" TEXT-ALIGN: center" span style=" COLOR: #ff0000" strong 分子光谱技术与应用进展 img title=" 袁洪福.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/0b079c1a-3ddc-4a05-8615-f7cdb2d93cc0.jpg" / /strong /span /p p span style=" COLOR: #ff0000" /span & nbsp   分子光谱(近红外、红外和拉曼)产生于分子振动能级跃迁,即从分子水平上反映了物质的组成与结构信息,是一种物质定性和定量分析的理想信号。随着材料与科学仪器制造技术的发展,分子光谱仪器(包括傅里叶变换、光栅阵列、MEMS等)及其各种测量附件的发展也很快,不同用途的便携、专用和在线仪器等多种专用仪器不断涌现,目前技术上已经可以方便地获取气体、液体和固体等复杂形态物料的分子光谱,使得分子光谱分析已从实验室快速走向过程分析领域。分子光谱结合计算机信息处理技术,可以实现对过程物料多种性质的快速、无损、同时的定性和定量分析,称之为分子光谱过程分析技术。 /p p   本次讲座旨在介绍分子光谱过程分析技术和作者主持研究的分子光谱过程分析技术最新科研成果及其在智能制造领域中的应用展望。 /p p style=" TEXT-ALIGN: center" img title=" 周磊.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/ba795619-1a63-4440-a596-6362442563bb.jpg" / /p p   HORIBA发布Duetta新一代分子荧光光谱仪,吸收与荧光功能二合一,重新定义分子荧光系统。针对荧光定量定性分析中内滤效应(IFE)的问题,首次提出了A-TEEM技术,开发了独有的同步吸收-荧光光学设计,消除IFE,扩展浓度的线性区间,特别适用于有颜色,高浓度样品的分析 在荧光指纹图谱(EEM)分析中,CCD检测器眨眼间(1s)获得三维荧光光谱,避免样品有位置变动(抖动或沉降)影响的光谱结果,并可经过IFE校正(利用吸收信号校正荧光信号)获得更加准确的EEM图谱 超宽的CCD响应范围,远超常规PMT光谱仪的极限检测范围,实现一次采谱完美获得全谱范围响应信号(~1100nm),无拼接,无切换,解决近红外一区全谱测试,可进行全谱动态测试 首发EzSpec软件,使得荧光光谱仪进入智能触屏时代,摆脱鼠标键盘束缚 智能样品附件识别设计,支持热插拔标准附件,无需软件安装 整机免维护,换灯免服务人员,轻松使用。此次网络讲座就这款新产品的新技术与应用进行了介绍。 /p p style=" TEXT-ALIGN: center" img title=" 杜一平.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/cfc78213-ba62-49ef-807a-44f02cf3f5cd.jpg" / /p p   利用近红外光谱技术进行常量组分的快速检测已经比较成熟,但是微量甚至痕量物质的光谱快检还有很多问题,核心的难题是灵敏度和选择性问题。本讲座介绍基于固相萃取光谱的快检技术。 /p p   固相萃取光谱技术就是把固相萃取与光谱检测相结合,样品经固相萃取而富集被测组分,并分离干扰物质后,不经洗脱直接在固相材料上检测光谱,它简化了操作、有效提高了灵敏度和选择性,是很有潜力的新型快检技术。本讲座从实验装置和应用实例等方面详细介绍了该项技术。 /p p style=" TEXT-ALIGN: center" img title=" 李娜.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/761284ac-da2a-4db9-abda-053e8ca82ab0.jpg" / /p p   贵金属纳米簇是由几个至几十个贵金属原子组成的纳米材料,具有光致发光的特性。在各类模板分子中,DNA分子可通过编辑序列调控银纳米簇光学性质、本身可作为识别与组装基元,在分析应用中具有优势,因而常用作荧光贵金属纳米簇的模板。 /p p   本报告针对DNA模板保护的贵金属纳米簇研究中存在的问题开展了研究,在尺寸调控、发光机理研究、光谱探针模块化以及银纳米簇的分析应用方面进行了探索。 /p p style=" TEXT-ALIGN: center" span style=" COLOR: #ff0000" strong 近红外光谱技术与应用进展 img title=" 杨增玲.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/b51ea0c3-7a93-42a9-adad-2d1d2529e4b6.jpg" / /strong /span /p p   现代近红外光谱分析技术主要利用有机化学物质在近红外光谱区的光学特性而获取有效信息进行快速检测,是一种无损、环保的新式检测技术。该技术的开发利用最早始于农业领域,用于谷物中的水分和蛋白质的测定,之后在诸多领域得到了广泛的推广。 /p p   中国农业大学工学院生物质资源与利用实验室长期致力于循环农业的绿色检测技术研究,研究开发了循环农业中各环节物质成分含量及资源化利用关键参数的绿色速测技术、模型及配套设备,并探索性研究了近红外光谱技术在饲料行业、有机肥行业和厌氧发酵产沼气等生物质能行业过程分析中的应用。 /p p style=" TEXT-ALIGN: center" img title=" 王睿.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/dd58288c-f644-42ea-bc2a-1b587ff1edd2.jpg" / /p p   随着近红外光谱技术的发展,其应用场景不断的拓展,应用潜力被不断地挖掘出来。在棕榈油行业和新兴的化工行业,近红外技术的大面积推广使用,解决了实验室原有分析方法的繁琐、污染和高成本缺陷,大大提高了分析效率,节约了大量成本,为用户创造了价值。 /p p style=" TEXT-ALIGN: center" img title=" 刘全.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/7db56c13-aedd-4f11-b3fa-721a84cf9ce1.jpg" / /p p   当前,我国正在施行《中国制造2025》战略,“智能制造”、“工业4.0”、“互联网+”等口号给我们许多制造行业带来了大量活力。但是,化工行业因为其特殊性,许多化工生产企业目前却面临着安全、环保等方面的巨大压力。能否适应此阶段国家战略发展方向,采用新工艺、新技术进行产业升级,可能直接决定着一些化工生产企业的发展未来。 /p p   与所有制造业一样,信息化、智能化也是化工生产行业追求的目标,自动化是实现信息化、智能化的基础。但我国的化工生产行业,尤其是中小规模的精细化工生产企业,还没有完全实现自动化,其中一个方面是缺少有效的实时工艺过程信息(PI)采集手段、及基于过程信息的实时反馈控制系统,比如,许多化工生产企业目前还是依靠人工到生产现场取样、到实验室进行化验,车间操作人员再根据实验室化验结果来调控生产工艺参数。由此带来的问题是反馈速度慢、信息不及时、取样带来的危险和污染、实验室分析的高成本、严重人工依赖等。 /p p   因此,对化工生产流程中如反应、精馏、溶剂回收、萃取分离等单元操作过程进行实时在线分析,对提升化工生产企业的自动化、信息化水平具有重要意义。但是,化工生产条件相对恶劣、装置规模大、工艺参数苛刻、强腐蚀性、操作人员技术水平层次不齐等,又为在线分析手段的选择带来了挑战。 /p p   近红外光谱具有类似中红外光谱的信息,光谱数据易获取,样品无需预处理,可采用长距离光纤远距离安装,可多点监控,易于与DCS等控制系统集成等特点,使得该技术成为了目前化工生产行业最可靠的技术手段之一。本报告旨在分享作者在过去约15年的近红外应用开发工作中成功执行的一些过程分析项目的经验及这些项目为企业所带来的效益等。 /p p style=" TEXT-ALIGN: center" img title=" 罗苏秦.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/ab06cb05-7ed2-4944-920e-8afd14f01604.jpg" / /p p   近红外光谱包含了样品特有的分子振动信息(C-H, O-H, N-H)、样品的物理性质信息(密度, 硬度, 粒径)以及样品与测量仪器之间特有的交互作用信息(穿透, 漫射等)。传统以来, 我们多半认为近红外分析仅仅是建立有效的化学计量学模型,确认光谱与其性质的定量关系,并且强调近红外光谱的吸收波峰复杂而无法有效解析, 似乎建模似乎是近红外分析的唯一选项,但是回到基本层次, 近红外光谱技术的本身兼顾了化学与物理信息, 而解析光谱图是了解样品分子结构与其特征吸收谱带之间的因果关系。 /p p   为了更进一步的了解近红外光谱技术的化性与物性优势, 报告人探讨了以”看光谱图说故事”的方式解决一些制药工艺中的根本原因分析, 并回答以下的问题: 如何有效的解析近红外的光谱吸收特征信息? 如何直观近红外光谱图而能判断化性与物性的差别?如何对近红外光谱采取简单或复杂的数据分析手段? /p p   为促进国内外光谱工作者的在线采购与洽谈交流,加强合作,与第七届光谱网络会议同期举行的iCS 2018暨第一届光谱仪器在线展也拉开了序幕,共计14家仪器厂商参展。本次展会通过网上展览会、促销活动等多种形式全面展示光谱的最新技术和产品,为光谱行业参展商及买家搭建一个高效、便捷的交流与商贸平台! /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/zc/OnlineExhibition" target=" _blank" img title=" 11.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/3092ddb0-b204-435b-af42-6bdeb9f31d7e.jpg" / /a /p p style=" TEXT-ALIGN: left"   本次展会分设原子光谱、分子光谱、近红外光谱、拉曼光谱四大展区。将优质的光谱仪器产品、核心部件、解决方案、资料等内容同步在线集中展示给仪器用户。具有节约营销成本、品牌强势推广、目标用户精准、销售线索反馈四大优势。 /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/zc/OnlineExhibition/Area" target=" _blank" img title=" 22.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/700decc3-b8d4-40f8-817d-4f976d2cf939.jpg" / /a /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/zc/OnlineExhibition/Area" target=" _blank" strong iCS 2018暨第一届光谱仪器在线展品牌参展商 /strong /a /p p   5月31日,聚焦当前“火热”的拉曼光谱而开设的“拉曼光谱技术与应用进展专场”精彩继续,请继续关注仪器信息网后续报道。 /p p   报名参加iCS 2018请点击 a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCS2018/" target=" _blank" span style=" FONT-SIZE: 20px COLOR: #ff0000" strong “我要参会” /strong /span /a ! /p
  • Nature|清华大学魏飞团队实现分子筛孔道内单分子原子级显微成像突破
    有机小分子在以分子筛为代表的多孔材料中的单分子成像与构象研究,是深入理解其相变、吸附、催化和相互作用过程的基础与关键。其中,有机小分子(吡啶,苯,噻吩等)在室温或更高温度下的原子级成像,一直是电子显微学领域的圣杯。近日,魏飞团队借助于包含酸性位点的孔道允许吡啶分子较大机率形成平躺稳定构象的原理,制备了利于观察的高硅铝比准二维片层ZSM-5(2-3个单胞厚度),利用电子显微镜技术,首次实现了在室温下ZSM-5分子筛孔道内限域的有机小分子(吡啶、噻吩)的原子级成像,实现了分子筛孔道内单分子原子级显微成像突破。2021年至今,魏飞团队利用对二甲苯和苯分子与ZSM-5孔道的匹配特性,首先在室温下,巧妙地借助了两个对位甲基与多孔骨架间的受限空间势阱的构型束缚效应,率先成功研究了客体分子与主体骨架间的范德华力相互作用;在此基础上,通过高温原位实时观测苯分子与骨架结构的相互作用,揭示了苯分子与分子筛在亚纳米尺度上的拓扑柔性行为(相关工作发表于Nature 592, 541, 2021;Science 376, 6592,2022),为此次突破打下了坚实的基础。图1 孔道内吡啶分子吸脱附过程的原位成像研究表明,在分子筛孔道中,主客体氢键相互作用和范德华力能够稳定吡啶分子在分子筛孔口处平躺时的原子构象,当吡啶六元环被充分地暴露在孔口成像投影方向上时,能够从静态图像甚至原位实验中直观地识别分子的原子排列、键长及与酸性位的相互作用。这一成像策略的核心是积分差分相位衬度扫描透射电子显微技术(iDPC-STEM)可以实现超低电子剂量下有机小分子的皮米级高分辨成像,以及高硅铝比准二维片层ZSM-5(2-3个单胞厚度)孔道内相互作用势阱能够限域单个吡啶分子,利用酸碱相互作用使吡啶单分子平躺在孔口处,实现了吡啶六元环的原子级分辨率成像。首先,采用原位成像实验研究了孔道内吡啶分子动态吸脱附过程,随着脱附过程的进行,能够在部分孔道中观察到与酸性位点相互作用的吡啶六元环结构(如图1所示),这证明了酸性位结合孔口范德华力作用使小分子环球结构原子级分辨的成像策略可行性。更进一步,如图2所示,实现了对单个吡啶分子的原子级成像,吡啶六元环上的原子清晰可辨。通过图像和计算的对比,证实了吡啶分子的成像结果,同时通过最小二乘法确定了吡啶环中N原子的位置。此外,根据吡啶环的位置和取向,能够识别出孔道内酸性位点的位置。图2 孔道内限域单个吡啶分子的原子级解析上述工作不仅提供了一种有效、通用的相互作用势阱在室温下对单个有机小分子的原子级结构成像策略,同时推动了电子显微学在有机小分子原子级成像上的进一步应用。可以预期,使用其他类型的相互作用来稳定目标分子,可以从原子和化学键的新视角,研究各种分子结构在反应条件下单分子演变和相互作用行为,例如催化反应中小分子结构演化的分子电影和生物大分子构型的转变等重要命题。更重要的是,这些分子行为可以在室温甚至更高温度下成像,这更接近它们实际应用条件下的真实状态,将有助于理解各种化学和物理过程中分子的真实行为。上述研究成果以“电子显微镜对分子筛限域单分子的原子级成像”(Atomic imaging of zeolite-confined single molecules by electron microscopy)为题,于7月13日发表在国际学术期刊《自然》(Nature)上。论文共同第一作者为清华大学化工系2020届博士毕业生申博渊(现已入职苏州大学)、2018级博士生王挥遒、2019级博士生熊昊。论文通讯作者为清华大学化学工程系魏飞教授和陈晓助理研究员。参与该项工作的研究人员还包括清华大学化工系骞伟中教授、赛默飞世尔科技的Eric G. T. Bosch和Ivan Lazić。论文链接:https://www.nature.com/articles/ s41586-022-04876-x
  • 北大屠鹏飞团队在《PNAS》发表中药分子靶点新成果
    p   7月4日,国际著名学术期刊《美国科学院院刊》(PNAS)在线发表了我室屠鹏飞教授研究团队题为“Highly selective inhibition of IMPDH2 provides the basis of anti-neuroinflammation therapy”的研究论文,深入阐明了中药活性成分苏木酮A(sappanone A)发挥抗神经炎症作用的分子靶点及其作用机制。屠鹏飞教授和曾克武副研究员为本论文的共同通讯作者,北京大学药学院天然药物及仿生药物国家重点实验室为第一单位。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/2b3d780a-d537-4019-bc15-2a5388fe2a77.jpg" / /p p style=" text-align: center " strong 论文网站截图 /strong /p p   中药是我国最具特色和原创思想的物质财富,是中国走向世界的一张名片。然而,长期以来中药研究只注重临床实践,而缺乏循证医学的直接实验证据,特别是药效物质和作用靶点不明确,因而难以深入揭示其治疗疾病的分子机理,严重制约了中药现代化和国际化。苏木是传统活血化瘀中药,在民间应用于治疗跌打损伤及缺血性脑中风,虽然疗效明确,但是其药理机制和分子靶点均不清楚。 /p p   屠鹏飞教授团队经过多年的探索,创造性地将当前化学生物学领域的新兴技术引入到中药研究。即将中药活性分子改造成为化学探针,利用反向药物寻靶策略从细胞中“钩钓”相应的药物靶点,进而针对所发现的靶点开展深入的生物学功能和分子药理机制研究,从靶点源头上诠释中药活性成分的治病机理。团队的研究在今年取得突破,发现中药苏木的关键活性成分苏木酮A发挥抗神经炎症的作用靶点为IMPDH2,即苏木酮A可通过直接作用于神经小胶质细胞中靶点蛋白IMPDH2的140位半胱氨酸位点,诱导其发生变构失活,进而抑制下游NF-κB等炎症相关信号通路,发挥抗神经炎症作用。该研究的意义在于阐明了苏木抗神经炎症的直接靶点,进而从细胞分子层面解释了其抗炎作用的分子机理 同时也为进一步指导临床精准用药和中药国际化推广奠定了理论基础。 /p p   上述研究结果发表在《美国科学院院刊》(PNAS)。研究团队中的廖理曦(博士1年级)、王丽超(博士2年级)、宋小敏(硕士2年级)为本论文的共同第一作者。该工作获得了国家自然科学基金项目(No. 81303253,30873072)和国家重大新药创制项目(No. 2012ZX09301002-002-002)的资助。 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/ec9ec2e2-521c-48e0-8a51-6bd888cc0039.jpg" / /p p style=" text-align: center " strong 屠鹏飞教授(中),曾克武(右二),王丽超(右一),廖理曦(左二),宋小敏(左一)。 /strong /p p   延伸阅读: /p p   屠鹏飞,教授,博士生导师,国家杰出青年基金获得者。承担了国家和省部级项目70余项。成功研制二类新药2项,获得新药证书4个。研究成果以第一完成人获得国家科技进步奖二等奖1项,教育部自然科学奖一等奖、科技进步奖一等奖、科技进步奖(推广类)一等奖各1项,教育部自然科学奖二等奖、科技进步奖二等奖各1项,中华中医药学会李时珍医药创新奖1项。发表论文710多篇,其中SCI收载300多篇,著作14部,授权专利42项。其本人荣获2016年度“全国脱贫攻坚奖创新奖”、“全国最美生态公益人物”和2017年度“全国创新争先奖奖状”等荣誉。 /p p   曾克武,副研究员,硕士生导师。长期从事天然活性分子探针的发现与药物靶标鉴定研究。发表学术论文60余篇,其中SCI论文52篇,包括PNAS,Cancer Letters,Neuropharmacology,Scientific Reports,Toxicology and Applied Pharmacology,Journal of Cellular Biochemistry等国际学术期刊。申请专利5项,承担国家级省部级科研项目3项,国际合作课题3项。 /p p style=" text-align: right "   北京大学天然药物及仿生药物国家重点实验室 /p p style=" text-align: right "   北京大学中医药现代研究中心供稿 /p p & nbsp /p
  • 进口美素奶粉现活虫 商家称赔偿需证明虫子国籍
    据中央人民广播电台报道 为宝宝买来荷兰进口奶粉,没想到却在奶粉里发现了一条活虫。在与经销商沟通索赔时,竟然被要求先证明虫子是荷兰国籍的。这是青岛市民王先生最近遇到的蹊跷事。   王先生是在一家专卖店为孩子选购了一桶荷兰原装进口美素奶粉,开封后第二天竟然在奶粉罐里发现了一条活虫。随后,王先生联系了青岛美素奶粉经销商,在查看了奶粉后,经销商确认,按照虫子的排泄物来看,虫子的确在开罐前就在奶粉里,并承诺解决。最初经销商表示将赔偿两小桶奶粉。而当王先生要求加大赔偿力度时,经销商态度恶劣,改了口,说他们原装进口的奶粉生产链都是在荷兰,王先生要证明虫子是荷兰籍的,他才按要求进行赔偿。   美素奶粉中国总公司市场公关部的黄女士表示,美素奶粉的整个生产过程全部是在荷兰,要经过高温杀菌和真空包装,不可能有活物存活的条件。不过考虑到消费者的利益,他们会积极协调,争取早日解决问题。他们决定由公司出钱将奶粉送去国外检测,或者是请北京或者山东的生物检测机构代为检测,看看虫子是荷兰物种还是中国物种。如果证实的确是奶粉公司的疏漏,他们一定会按照相关法律赔偿消费者。
  • 分子光谱学术论坛暨赛默飞新品发布会在京隆重召开
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 2019年12月10日,由赛默飞世尔科技(中国)有限公司(以下简称为“赛默飞”)及中国光学学会光谱专业委员会主办的“分子光谱学术论坛暨赛默飞新品发布会”在北京隆重召开。近百位分子光谱及相关领域的工作者齐聚一堂,交流分子光谱的新技术、新应用。大会上,多位专家进行了报告,分享了分子光谱及相关领域最新的研究进展和成果,增进了广大光谱科学工作者们之间的交流与探讨。同时,赛默飞还介绍了其最新上市的红外光谱和拉曼光谱产品——赛默飞Nicolet iS20傅里叶变换红外光谱仪、赛默飞Nicolet Summit傅里叶变换红外光谱仪和赛默飞DXR3系列拉曼光谱仪,并就其新产品的各项性能以及在分子光谱领域的实际应用进行了详细的介绍。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/0d41cc5d-7212-4ba2-b0cf-ed8b3bd48a09.jpg" title=" 会议现场.jpg" alt=" 会议现场.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 会议现场 /strong /p p style=" text-align: justify text-indent: 2em " 会议开始,中国光学学会光谱专业委员会主任、北京师范大学谢孟峡教授与赛默飞分子光谱全国销售总监李健分别致辞。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/9ce6f615-08a1-4004-b7c2-b813d3dc6e02.jpg" title=" 谢孟峡报告.jpg" alt=" 谢孟峡报告.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国光学学会光谱专业委员会主任、北京师范大学 谢孟峡教授 /strong /p p style=" text-align: justify text-indent: 2em " 致辞中,谢孟峡教授表示,他课题组从30年前便开始使用赛默飞品牌的红外光谱仪,经历几次更新换代,赛默飞的仪器为他的科研工作提供了很大的帮助,并感谢了赛默飞对分子光谱的发展做出的贡献。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/8f247cb2-3726-48c2-8ed0-f5af45e6b045.jpg" title=" 李健.jpg" alt=" 李健.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 赛默飞分子光谱全国销售总监 李健 /strong /p p style=" text-align: justify text-indent: 2em " 李健在致辞中对在场分子光谱及相关领域工作者的到来表示热烈欢迎,并对大家多年以来对赛默飞的支持表示了衷心的感谢。他指出,赛默飞非常注重产品研发领域的投入,本次会议就将为大家详细介绍赛默飞近一年最新发布的三款分子光谱领域新品。 /p p style=" text-align: justify text-indent: 2em " 随后,大会进入报告环节,北京理工大学张韫宏教授、中国农业大学闵顺耕教授和中国科学院青岛生物能源与过程研究所黄长水研究员分别带来了精彩的报告。 /p p style=" text-align: center " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/4706c012-eb5b-4a29-9b1c-e716635fd588.jpg" title=" 张韫宏.jpg" alt=" 张韫宏.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 北京理工大学 张韫宏教授 /strong br/ /p p style=" text-align: center " strong 报告题目:气溶胶微粒的FTIR研究 /strong /p p style=" text-align: justify text-indent: 2em " “雾霾”是大气细颗粒物污染物,其严重影响了人体的健康,而雾霾的主要来源是二次颗粒物,包括硫酸盐、硝酸盐、铵盐等二次无机气溶胶,以及二次有机气溶胶,它们都具有吸湿特性,因此,有关气溶胶的吸湿性研究,对治理雾霾有着实际的意义。张韫宏教授在报告中介绍了他课题组,如何利用气溶胶流管FTIR、ATR-FTIR、显微红外等方法,开展气溶胶的吸湿性、风化结晶、非均相化学反应动力学过程等方面的研究,展示红外光谱技术对气溶胶颗粒物研究的独特优势。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/225fff38-2b09-452e-bf41-97d0f284cbab.jpg" title=" 闵顺耕.jpg" alt=" 闵顺耕.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国农业大学 闵顺耕教授 /strong /p p style=" text-align: center " strong 报告题目:红外光谱法快速检测农药中隐性成分的研究 /strong /p p style=" text-align: justify text-indent: 2em " 我国是农药大国,目前工信部核准的农药企业有1870家,在农业部登记的企业有2213家,农药制剂产品41514个。在农药质量监管中,通常存在原料质量不稳定、添加隐性成分、配方变更等问题,其中隐性成分问题会造成作物减产、农残超标、环境污染等诸多危害。闵顺耕教授在报告中从样品前处理与红外光谱测定、农药红外光谱库、隐性成分定性鉴定、定量分析几个方面介绍了红外光谱在农药检测中的应用,证明其具有易用性、时效性、可行性和经济性等特点。 /p p style=" text-align: center " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/8bc8995a-ff65-4f9b-a44b-a93d0fb63015.jpg" title=" 黄长水.jpg" alt=" 黄长水.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国科学院青岛生物能源与过程研究所 黄长水研究员 /strong /p p style=" text-align: center " strong 报告题目:拉曼光谱原位监测新型碳纳米材料器件过程 /strong /p p style=" text-align: justify text-indent: 2em " 报告中,黄长水研究员从拉曼和碳材料、拉曼用于石墨烯半导体器件原位监测、拉曼用于碳基电池器件原位监测等几个方面介绍了拉曼光谱在功能性分子材料设计、新型能源存储和转化材料的开发等领域的应用。 /p p style=" text-align: justify text-indent: 2em " 在大会的最后,赛默飞红外应用经理张梦霖博士与赛默飞拉曼应用经理张衍亮博士分别对今年发布的红外光谱及拉曼光谱新品的各项性能及应用做了详细介绍。 /p p style=" text-align: justify text-indent: 2em " 赛默飞新品的性能及亮点: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 210px " src=" https://img1.17img.cn/17img/images/201912/uepic/ff9c8a5d-4ab5-441e-812f-3f7677d9e618.jpg" title=" 微信图片_20191211161349.png" alt=" 微信图片_20191211161349.png" width=" 300" height=" 210" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 赛默飞Nicolet iS20傅里叶变换红外光谱仪 /strong /p p style=" text-align: justify text-indent: 2em " 赛默飞Nicolet iS20傅里叶变换红外光谱仪采用了全新的LightDrive光学引擎,包含新型的高性能激光器、光源、干涉仪和半导体制冷温控(TEC)检测器等部件,其激光器、干涉仪和光源具有10年的超长质保。除了在性能上,其外观及软件也进行了优化,Nicolet iS20采用了触摸屏的集成操作面板、多色LED扫描条实时显示仪器状态,软件功能也得到了提升。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 267px " src=" https://img1.17img.cn/17img/images/201912/uepic/22979970-1ae6-4395-a197-6d178194b1a6.jpg" title=" 微信图片_20191211112146.jpg" alt=" 微信图片_20191211112146.jpg" width=" 300" height=" 267" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 赛默飞Nicolet Summit傅里叶变换红外光谱仪 /strong /p p style=" text-align: justify text-indent: 2em " 赛默飞Nicolet Summit傅里叶变换红外光谱仪同样引入了LightDrive光学引擎及超长的光学平台质保,在保证性能的同时做到了更小的体积,可以携带到任何环境进行样品检测,SMART背景采集功能也能帮助用户节约近50%的测样时间。Nicolet Summit还集成了一台Windows10电脑及Wifi功能,可以随时随地保持与实验室的连接。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/ec550c8a-ebaa-4068-850b-7b3df19d91fd.jpg" title=" 微信图片_20191211112139_副本.png" alt=" 微信图片_20191211112139_副本.png" / strong 赛默飞DXR3系列拉曼光谱仪 /strong /p p style=" text-align: justify text-indent: 2em " 赛默飞DXR3系列拉曼光谱仪分为三款仪器,分别为:DXR3显微拉曼光谱仪(便捷易用的研究性能、专注结果的软件)、DXR3智能拉曼光谱仪(快速便捷的散体样品分析、针对QA/QC的自动化采样及采样多功能化)和DXR3xi显微拉曼成像光谱仪(可视化驱动成像、具备3D可视化及先进颗粒分析功能的OMNICxi)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/a9cee1cb-f4a3-495f-8873-cf8de11cde35.jpg" title=" 专家合影.jpg" alt=" 专家合影.jpg" / strong 部分专家代表合影 /strong /p p style=" text-align: justify text-indent: 2em " strong 关于赛默飞世尔科技(中国)有限公司 /strong /p p style=" text-align: justify text-indent: 2em " 赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数超过5000名。产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案。 /p
  • 黄超兰团队与合作者全面揭示新冠肺炎不同阶段的免疫分子图谱
    图. 免疫功能紊乱、胆固醇代谢障碍和心肌功能受损贯穿于新冠肺炎的不同阶段(BBA-Proteins and Proteomics期刊2022年度封面)研究者对来自不同疾病进展阶段的新冠肺炎患者的血清和尿液样本开展了基于DIA-PASEF方法的定量蛋白质组学分析。结果显示,与健康对照组相比,免疫反应在无症状患者中被激活,但在轻中症和重症患者中则出现不同程度的紊乱,免疫反应发生变化的转折点在于中性粒细胞功能的改变。此外,康复患者体内呈现出显著的免疫抑制,这一现象会一直持续到患者康复后的12个月。本研究表明,免疫反应、胆固醇代谢和心血管功能的长期失调可能是潜在后遗症发生的关键诱因,相关研究结果全面揭示了新冠肺炎不同阶段的免疫分子图谱,有助于未来进一步探索有效改善复杂疾病后遗症的早期干预策略。本研究基于具有超高鉴定深度和准确度的血清和尿液蛋白质组学数据,为全面探索新冠肺炎患者的预后评估提供了可靠的重要分子基础和机制信息。多组学中心在黄超兰教授的带领下,基于临床,前沿技术和基础学科的深度交叉融合,已在新冠科研攻关研究中取得了多个重要成果。此前黄超兰主任领衔的多组学中心团队与高福院士领衔的多学科团队紧密合作,发现早期新型冠状病毒感染主要为免疫抑制并或存在“两阶段”机制1,并通过描绘新冠刺突蛋白糖基化图谱,首次揭示了“O-Follow-N”的糖基化新规律2。此外,与本研究结果一致,黄超兰团队还与浙江大学第一附属医院郑敏教授团队开展合作研究,首次关注新冠肺炎康复患者的血清蛋白表达变化,提出康复患者在1个月后仍会出现胆固醇代谢紊乱和心肌受损3。在黄超兰教授的带领下,多组学中心团队始终坚持以具有重要意义的科学和临床问题为起源,开发质谱和蛋白组学的创新方法,探究和揭示生命科学的未知领域,得到能贡献生命科学和人类健康的真正产出。中国科学院高福院士,中国疾控中心病毒病所刘军研究员和北京大学医学部精准医疗多组学研究中心主任黄超兰教授为论文共同通讯作者,北京大学医学部精准医疗多组学研究中心陈扬副研究员、张楠博士,中国疾控中心病毒病所张杰博士,北京大学医学部精准医疗多组学研究中心郭江涛,湖北省麻城市疾控中心董少波研究员为论文共同一作。原文链接:https://www.sciencedirect.com/science/article/pii/S1570963921001424?via%3Dihub相关文章:1. Tian, W. M. et al. Immune suppression in the early stage of COVID-19 disease. Nat Commun 11, doi:10.1038/s41467-020-19706-9 (2020).2. Tian, W. M. et al. O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an "O-Follow-N" rule. Cell Res 31, 1123-1125, doi:10.1038/s41422-021-00545-2 (2021).3. Chen, Y. et al. Proteomic Analysis Identifies Prolonged Disturbances in Pathways Related toCholesterol Metabolism and Myocardium Function in the COVID-19 Recovery Stage. J Proteome Res 20, 3463-3474, doi:10.1021/acs.jproteome.1c00054 (2021).
  • 单分子成像技术揭示毛细管电泳机理
    p   中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室汪海林课题组在高灵敏分析的基础研究方面取得重要进展。他们利用先进的单分子成像技术研究并揭示了独特的等速电泳聚焦和分离的机理,其有关“DNA单分子不连续运动成像揭示场强变化的等速电泳动力学”的研究发表在国际著名化学期刊《美国化学会志》(J. Am. Chem. Soc. 2013, 135, 4644 - 4647)上。 br/ /p p   带电组分在均一和非均一电场中的运动是电泳应用于化学、物理学、生命科学以及新兴的纳米科技领域的基础。目前,人们对带电组分在均一电场中的运动已经有了充分的认识,而对其在非均一电场中运动的了解却有限。事实上,通过巧妙设计非均一电场,可实现其它技术难以分离的超大DNA分子(80 kb) 的分离和多种分析物的高倍浓缩(可达百万倍)。因而,认识非均一电场中带电组分的运动机制对发展高灵敏的生物分子分析技术和方法具有特殊意义。尽管非均一电场的使用已有百年历史,但对于其形成机理的认识由于存在技术瓶颈而踯躅不前。 /p p   为了解决这一学科难题,汪海林课题组通过改造全内反射荧光显微成像仪器,首先实现了毛细管电泳-单分子荧光成像分析。在此基础上,以毛细管等速电泳(cITP)作为非均一电场模型,对流经毛细管检测窗口处单个DNA分子实时成像。由于每一幅像记录了单个DNA分子在50 毫秒内的运动轨迹,因此可以计算出每一时间点DNA单分子的运动速度。而DNA运动速度的大小直接与电场强度相关,从而可获得毛细管中电场强度的动态分布信息。通过研究电场强度的实时变化,揭示了电渗流存在下等速电泳的动力学,并首次提出了三区带模型,突破了传统二区带模型的局限。利用这一研究成果,他们发展一种新颖的DNA单分子聚焦方法,实现对极低浓度下随机分布的、难以检测的单分子成像,可检测出4´ 10-17mol/L DNA分子。 /p p   在这项研究工作中,汪海林课题组创造性地利用单分子成像技术测定电场强度的分布,提供了一种全新的非均一电场研究方法,这对发展基于电泳分离的高灵敏生物分析技术和方法具有重要意义。 /p p   该工作得到了国家杰出青年基金、国家973计划、重点实验室等的支持。 /p p br/ /p
  • 大分子互作出类拔萃,小分子互作不咸不淡?用“实例”证明“实力”
    近年来,分子互作分析仪市场涌现出很多新品牌、新产品参与市场竞争,技术多元化,“百花齐放”。目前国内外分子互作分析仪厂商已涌现近20余家,为帮助广大科研工作者了解前沿分子互作分析技术、增强业界相关人员之间的信息交流,同时也为用户提供更丰富的分子互作分析产品与技术解决方案,仪器信息网特别策划了《“百舸争流”,谁将成为下一代金标准?——分子互作技术与应用进展》专题。本期,我们特别邀请到赛多利斯生物分析高级应用经理陈涛先生谈一谈赛多利斯的分子互作技术以及应用进展。赛多利斯生物分析高级应用经理 陈涛陈涛,赛多利斯生物分析高级应用经理,从事生物层干涉技术(BLI)类产品的技术支持12年,有着丰富的Octet®使用和troubleshooting经验,承担了国内华东地区现有客户的售后支持,并多次举办了在线培训和其他各种形式的培训班。在他的支持下,目前仅国内利用生物层干涉技术发表的SCI就有500余篇,是互作技术领域非常知名的“陈老师”生物层干涉(BLI)技术是一种非标记技术,可实时提供高通量的生物分子相互作用信息。此技术采用”浸入即读”的生物传感器对样品直接进行检测,无需对检测样品做任何荧光或同位素标记【1】,也不存在流路系统,从而实现更简便、更快速的分子互作定量分析。2020年,BLI技术被收录于美国药典1108章节,成为药物结合活性分析的标准方法之一。作为将BLI技术应用于分子互作检测的开创者和引领者,赛多利斯Octet®分子互作分析系统被广泛应用于包括蛋白、抗体、病毒颗粒、疫苗、多肽、小分子以及DNA/RNA等各类生物分子间相互作用分析。BLI技术的动力学分析可用于检测相互作用的亲和力以及可逆的非共价结合的结合常数(kon)、解离常数(koff)以及亲和力常数(KD)。典型的非共价结合由静电作用、氢键、范德华力和疏水作用组成。分子之间的特异性相互作用对生物学的许多过程以及药物研发至关重要【2】。凭借高通量、非标记、实时定量且无液路的特点,Octet®在大分子相互作用分析和生物药研发领域具有突出优势。越来越多的高分文献及应用实例证明了BLI技术在小分子、化合物片段、未知样品垂钓、竞争分析等应用中表现优异,传感器分析模式也更容易开发灵活和创意的检测方案。BLI技术在小分子互作分析的应用案例BLI技术用于片段化合物筛选基于生物传感器的片段化合物筛选是药物研发过程中一个非常具有价值的工具。这种方法优于许多其他的生化方法,因为苗头化合物可有效地通过具体的结合图谱以及响应值从非特异性或非理想的相互作用中区分开来,从而降低假阳性。BLI技术通过监测生物分子结合导致的光的干涉图谱的变化实现分子间的相互作用的实时检测。Charles A. Wartchow等【3】将重组表达纯化得到AVI-Tag生物素标记的蛋白或通过体外的方式标记生物素(biotin-LC-LC-NHS)固化至链酶亲和素传感器上。通过缓冲液建立基线噪音信号,以基线噪音信号的3倍标准差为阈值筛选苗头化合物(图1)。使用了包含6500种化合物的片段文库,以BCL-2、JNK1、eIF4E等蛋白为靶点进行了筛选,比较了这些靶点的苗头化合物的比率。图1 根据化合物的信号值筛选苗头化合物【3】Francesca E. Morreale等【4】同时使用差示扫描荧光(DSF)和BLI技术筛选E2泛素连接酶Ube2T的抑制剂。将Ube2T固化在链霉亲和素传感器上,对片段库的化合物进行筛选。利用DSF方法筛选出4种化合物,而采用BLI方法也筛选出4种化合物,其中有2种是同时用两种方法都筛选了出来。所有六种化合物用核磁共振(NMR)进行了验证并确认这些化合物在靶点蛋白上的结合位点。新冠病毒的RNA依赖的RNA聚合酶(RdRp)是理想的抗病毒靶点。中国医学科学院的研究人员【5】首先通过基于结构的虚拟筛选,选择结合最强的几十个hits,通过Octet高通量分析这些化合物与靶点SARS-CoV-2 RdRp的结合活性,发现Corilagin (RAI-S-37)作为SARS-CoV-2 RdRp的非核苷抑制剂,KD值达到0.54 μM。在细胞外和细胞活性检测中均能有效抑制聚合酶活性。Corilagin具有良好的安全性和药代动力学的数据,使其成为新冠肺炎潜在的治疗药物。化合物为分析物的亲和力检测 化合物药物与靶点的动力学参数是非常重要的表征参数,直接影响到了化合物在体内的半衰期以及所需的药物剂量。苗头化合物的亲和力通常比较低(10uM),而通过修饰改造后的小分子化合物的亲和力可以化合物为固化物的亲和力检测考虑到空间位阻与修饰后化合物的活性,一般在化合物的非活性基团上偶联一个生物素,再将化合物固化在链霉亲和素传感器上,并且生物素与小分子之间有10个碳的连接臂。Basudeb Maji等【7】利用BLI技术筛选cas9的小分子抑制剂,并且合成了生物素化的小分子,固化在链霉亲和素传感器上,然后和七个浓度的Cas9/gRNA复合物结合,测得亲和力为700 nM(图3)。 图3 化合物与不同浓度的Cas9/gRNA复合物的结合解离图,右边为生物素化小分子的结构【7】如果化合物有氨基,也可以用氨基偶联传感器对化合物进行固化。Terry F. McGrath等【8】将软骨藻酸(Domoic acid),固化在氨基偶联传感器上,用竞争法检测软骨藻酸的浓度,灵敏度可以达到2 ng/mL。另外,化合物也可以偶联在诸如牛血清白蛋白(BSA)等载体蛋白上,然后疏水固化在传感器上。Melanie Sanders等【9】将鸡卵白蛋白(OVA)偶联的呕吐毒素固化在疏水传感器上,与呕吐毒素的抗体反应,其亲和力在pM级别。化合物竞争实验如果已知某化合物与蛋白结合,需要观察另一个化合物是否阻断这种结合。可以参考前面“化合物为固化物的亲和力检测”部分将化合物进行固化,然后检测另一个化合物与蛋白的混合物。Kahina Hammam等【10】将生物素化的Masitinib固化在链霉亲和素传感器上,然后检测Imatinib与脱氧胞苷激酶(dCK)的混合物。如果Imatinib与Masitinib结合的是dCK的同一位点,那么dCK/Imatinib复合物就不会和Masitinib结合了。图4 竞争法实验示意图【10】通过竞争实验可见,Masitinib与Imatinib几乎完全竞争,这证明了他们的结合位点一致。但是与核苷类化疗药物(吉西他滨、阿糖胞苷和地西他滨)竞争关系不明显。BLI技术还可以检测化合物是否可以阻断受体配体的结合,并计算IC50。Zhu J 等【11】用BLI技术检测化合物NUCC-555对激活素(activin)和其配体结合的影响。将激活素配体ALK4-ECD-Fc固化至ProA传感器上,检测激活素与不同浓度NUCC-555的混合物。随着NUCC-555的浓度提高,由于NUCC-555与ALK4-ECD-Fc竞争结合激活素导致激活素与ALK4-ECD-Fc结合信号降低,IC50大概为1.6 μM。由此证明NUCC-555是选择性的竞争抑制激活素和其配体的结合。总结BLI技术不仅可以用来检测化合物与蛋白、细胞的相互作用【12】,也可以检测化合物与DNA/RNA【13,14】等其他物质的相互作用。应用BLI技术可以灵活的设计相互作用实验,比如将小分子固化或者蛋白质固化。固化方式可以根据蛋白所带的标签决定:组氨酸融合标签可以用NTA传感器或者已经固化了组氨酸标签抗体的传感器;如果蛋白带有生物素标签,可以用链霉亲和素传感器。一般来说,为了克服空间位阻和获得比较高的固化密度,建议选择链霉亲和素传感器固化蛋白。一般分析物需要知道明确的分子量和摩尔浓度才能获得结合常数(ka)和亲和力常数(KD)。分析物的分子量检测下限约为150 Da, Chenyun Guo等【15】用BLI技术成功检测了分子量142 Da的化合物并且获得了可观的信号(0.1 nm)。总之,BLI技术可以实现对相互作用更加定量化地测定,非常适合亲和力比较低的化合物检测。化合物解离比较快,传统方法有洗涤等步骤,可能造成结合的小分子被洗掉后产生假阴性结果。另外传统方法多数需要标记,可能改变靶点分子的构象,产生假阳性结果。BLI技术的非标记和实时检测能够克服传统方法的弊端,因此,小分子相互作用检测结果更加真实可靠。参考文献:1.A, Sultana. et al. Measuring protein‐protein and protein‐nucleic acid interactions by biolayer interferometry. Current protocols in protein science. 2015,79:19.25.1-262.Concepcion, Joy. et al. Label-free detection of biomolecular interactions using Biolayer interferometry for kinetic characterization. Combinatorial Chemistry & High Throughput Screening.2009,12(8):791-8003.Wartchow, C. A. et al. Biosensor-based small molecule fragment screening with biolayer interferometry. J. Comput. Aided Mol. Des.2011, 25 :669-6764.Francesca E. Morreale. et al. Allosteric Targeting of the Fanconi Anemia Ubiquitin-Conjugating Enzyme Ube2T by Fragment Screening. J. Med. Chem.2017, 60:4093-40985.Li Q, et al. Corilagin inhibits SARS-CoV-2 replication bytargeting viral RNA-dependent RNA polymerase, Acta Pharmaceutica Sinica B, 2021.6.Chen P. et al. Discovery and Characterization of GSK2801, a Selective Chemical Probe for the Bromodomains BAZ2A and BAZ2B. Journal of medicinal chemistry,2016,59(4) :1410-14247.Basudeb Maji. et al. A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell,2019,177:1067-10798.Terry F. McGrath. et al. An evaluation of the capability of a biolayer interferometry biosensor to detect low-molecular-weight food contaminants. Anal Bioanal Chem.,2013,405:2535-25449.Melanie Sanders. et al. Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust. Toxins,2016, 8, 10310.Kahina Hammam. et al. Dual protein kinase and nucleoside kinase modulators for rationally designed polypharmacology. Nature Communications,2017,8:1420.11.Zhu J. el al. Virtual high-throughput screening to identify novel activin antagonists. J. Med. Chem.,2015,58:5637–564812.Verzijl, D. et al. A novel label-free cell-based assay technology using biolayer interferometry. Biosensors & Bioelectronics,2017,87:388-39513.Ting-Yuan Tseng. et al. Binding of Small Molecules to G-quadruplex DNA in Cells Revealed by Fluorescence Lifetime Imaging Microscopy of o-BMVC Foci. Molecules.,2019,24(1), 3514.Ezequiel-Alejandro Madrigal-Carrillo. et al. A screening platform to monitor RNA processing and protein-RNA interactions in ribonuclease P uncovers a small molecule inhibitor. Nucleic Acids Research,2019,47(12): 6425–643815.Chenyun G. et al. Anti-leprosy drug Clofazimine binds to human Raf1 kinase inhibitory protein and enhances ERK Phosphorylation. Acta Biochem Biophys Sin. ,2018,1-6
  • Nature Immunology:分子细胞卓越中心等揭示过敏原调控肺上皮细胞IL-33释放的新机制
    7月6日,《自然-免疫学》(Nature Immunology)在线发表了中国科学院分子细胞科学卓越创新中心孙兵研究组与广东医科大学附属医院合作完成的研究成果(Allergen proteases-activated stress granules assembly and Gsdmd fragmentation control IL-33 secretion)。该研究揭示了过敏原蛋白酶诱导的二型免疫反应过程中上皮细胞释放IL-33的分子机制。研究表明,蛋白酶暴露激活了上皮细胞独立于eIF2α(真核生物起始因子2α)磷酸化的应激颗粒(SGs)组装,从而促进IL-33的核质转运;蛋白酶刺激诱导细胞产生新的Gasdermin D(Gsdmd)N端剪切形式p40功能片段,可在细胞膜上形成孔道直接促进细胞质的IL-33释放到细胞外。这两种机制共同高效地的调控细胞核内IL-33的分泌,为干预IL-33依赖的气道过敏性疾病提出新的治疗策略。GSDMD调控IL-1家族蛋白释放机制图  呼吸道过敏性疾病如哮喘、花粉热(过敏性鼻炎)等是困扰人类的常见疾病。当患者暴露于尘螨、霉菌、细菌、植物花粉和动物皮屑等过敏原时,这些疾病通常加剧并恶化。过敏原中的蛋白酶活性成分是重要致病因子,多种源自尘螨(HDM)、烟曲霉菌真菌(Aspergillus fumigatus)及地衣芽孢杆菌(Bacillus licheniformis)中的丝氨酸蛋白酶和半胱氨酸蛋白酶,被报道可高效地在体内外诱导白细胞介素33(Interleukin 33: IL-33)的释放。IL-33是一种组成性表达,并定位于细胞核的二型炎症因子,可快速响应环境损伤刺激从而释放到细胞外,进而引发过敏性炎症反应,在引发哮喘等呼吸道炎症性疾病中起到关键作用。尽管IL-33的胞外功能已被广泛报道,但其如何响应外界损伤信号(包括蛋白酶)刺激进而从细胞核释放到细胞外的过程,知之甚少。  该研究建立了过敏原蛋白酶诱导的小鼠肺部过敏模型和人肺上皮细胞释放IL-33的细胞模型。体外研究发现IL-33可以在30min内快速相应多种的过敏原蛋白酶的刺激释放到细胞外,此过程伴随着具有细胞焦亡功能的Gsdmd蛋白的活化,即N-端剪切新形式p40的产生,但不伴随明显的细胞死亡。这一现象也存在于免疫细胞如巨噬细胞(骨髓来源的巨噬细胞)中。敲除巨噬细胞中的Gsdmd可以显著抑制IL-33在过敏原蛋白酶刺激下的释放,且Gsdmd p40的剪切以及IL-33的释放这一过程不依赖于经典的炎性caspase家族的蛋白酶,因而这是一种新发现的Gsdmd剪切活化的途径。进一步的机制研究表明,过敏原蛋白酶可以快速诱导细胞的应急颗粒(Stress granules)组装活化,进而促进IL-33的核质转移,进入细胞质的IL-33不能直接释放,而需要过敏原蛋白酶诱导的Gsdmd p40的帮助才能释放到细胞外。多种过敏原蛋白酶都可以诱导应急颗粒的组装,但不同于经典的eIF2α-p依赖的应急颗粒组装,过敏原蛋白酶促进eIF2α的降解,从而促进应急颗粒组装。使用eIF2α的抑制因子抑制剂Actinomycin D,可以有效抑制过敏原蛋白酶诱导的IL-33释放。研究发现,在小鼠体内,Gsdmd蛋白在HDM诱导的二型免疫反应的小鼠肺部呈现升高表达趋势,敲除小鼠的Gsdmd,可以有效抑制包括HDM和木瓜蛋白酶(Papain)诱导的气道免疫反应。在哮喘病人中,研究也观察到Gsdmd肺部表达与肺灌洗液中的IL-33以及血液中的IgE呈现正相关趋势,提示通过抑制Gsdmd蛋白剪切可能作为治疗二型免疫反应的新策略。  研究工作得到国家自然科学基金、科技部、上海市科技创新行动计划,以及分子细胞卓越中心公共技术服务中心动物实验技术平台/化学生物学平台/细胞生物学平台/分子生物学平台的支持。原文链接:https://www.nature.com/articles/s41590-022-01255-6
  • 比朗简述核酸分子杂交技术及未来展望
    核酸分子杂交技术是20世纪70年代发展起来的一种崭新的分子生物学技术。它是基于 DNA分子碱基互补配对原理,用特异性的核酸探针与待测样品的DNA/RNA形成杂交分子的过程。分子杂交实验依据其形式的不同可以分为液相杂交、固相杂交、原位杂交,而固相杂交又可以分为菌落杂交、点/狭缝杂交、Southern印迹杂交和Northern印迹杂交。各类型杂交稻基本原理和步骤是基本相同的,只是选用的杂交原材料、点样方法有所不同。   核酸分子杂交的技术应用:   (1)Southern印记杂交   1、单基因遗传病的基因诊断:早在1978年,简悦威等医学家在镰状细胞贫血症的基因诊断中就采用过Southern杂交的方法,取得了基因诊断的突破。   2、基因点突变的检测:例如ATP敏感性钾离子通道的亚单位内向整流钾通道基因A635G突变的检测   (2)Northern印记杂交Northern印记技术多用来检查基因组中某个特定的基因是否得到转录以及转录的相对水平。   目前,Northern印记技术仍然被认为是检测基因表达水平的金标准。(3)液相杂交 以液相杂交技术为基本工作原理设计的多功能悬浮点阵仪是液态芯片技术应用的典范。这一技术平台已被应用于遗传突变的分子诊断,如出生缺陷干预工程中的Down&rsquo s综合征、珠蛋白合成障碍性贫血、葡萄糖-6-磷酸脱氢酶缺陷的基因诊断,也已被用于SNPs分析、感染性疾病的鉴别诊断、药物敏感性和亲子鉴定。此外,还可以应用于基因表达谱的分析,从而进行肿瘤性疾病如血液病、乳腺癌、肝癌、胃癌、肺癌、膀胱癌和结肠癌的分子病理学研究。   比朗小编总结到尽管核酸分子杂交技术的应用越来越广泛,但其在临床实用中仍存在不少问题,必须提高检测单拷贝基因的敏感性,用非放射性物质代替放射性同位素标记探针以及简化实验操作和缩短杂交时间,这样,就需要在以下三方面着手研究:   第一,完善非放射性标记探针   第二,靶序列和探针的扩增以及信号的放大   第三,发展简单的杂交方式,只有这样,才能使DNA探针实验做到简便、快速、低廉和安全。   上海比朗仪器有限公司专业生产分子杂交仪、分子杂交箱、紫外交联仪厂家,了解分子杂交技术更多信息请链接:http://www.canytec.info
  • Nature Communications:高内涵助力纳米材料新剂型研究--酶分子的胞内高效递送、催化和检测
    近日,中国科学院过程工程所(ipe)生化工程国家重点实验室生物剂型与生物材料课题组与清华大学(thu)及天津大学(tju)合作,基于无定形金属有机框架开发出一种新剂型,可实现酶分子的细胞内高效递送和催化,在单细胞水平上实现细胞代谢产物的原位检测。该工作发表于nature communications 2019,10,5165,题目为"packaging and delivering enzymes by amorphous metal-organic frameworks"。受限于细胞膜的屏障作用和细胞内的降解因素,外源的酶分子难以进入细胞内发挥高效的催化反应。为解决上述难题,本论文的研究团队制备了新型的无定形态金属有机骨架纳米颗粒,用于酶分子的负载。该剂型能够克服细胞膜屏障,将酶分子高效递送进细胞中;同时利用纳米颗粒的保护作用,保证酶分子的天然活性;进一步借助无定形态金属有机骨架的介孔结构(3-6 nm,晶态结构仅1 nm),强化底物和产物的传质扩散(图1 a-d)。基于上述优势,该剂型可用于细胞内代谢产物的原位检测。以葡萄糖为例,经过该剂型催化后的产物可以与相应的荧光探针反应,借助高内涵技术在单细胞水平上实现无损伤的实时定量检测,细胞在96孔板中贴壁24小时后,加入纳米颗粒包装的葡萄糖氧化酶及底物荧光探针,使用operetta cls高内涵系统连续观察4小时(37 °c and 5% co2),输出各组长时间细胞荧光图像。使用harmony分析软件计算获得单细胞荧光信号变化数据,结果显示葡萄糖代谢活跃度高的肿瘤细胞显示更高的荧光强度(hepg24t1mcf-7mgc803)。此方法可用于细胞代谢状态的判断以及正常细胞和癌细胞的区分(图1 e-j),相比传统的化学方法,保证精确度的同时实现了活细胞无损伤原位葡萄糖代谢检测,为慢性病的监控和癌症的早期诊断提供了新思路。 图1 无定形金属有机框架纳米剂型的构建及其在细胞代谢物原位检测中的创新应用。无定形纳米载体(a)及酶-无定形纳米载体复合物(b)的扫描电镜图;(c)cryo-em成像显示无定形载体的结构;(d)酶分子经过负载后的表观活性;不同代谢状态下细胞的荧光强度变化图(e)以及对应高内涵图像(f)正常肝细胞(橙色)和肝癌细胞(蓝色)的荧光强度变化图(g)以及对应高内涵图像(h);(i)不同细胞胞内葡萄糖浓度和荧光强度的关系;(j)每种细胞荧光强度达到峰值时的对应图像。吴晓玲博士(thu)、岳华副研究员(ipe)和博士生张原宇(thu)为本文共同第一作者,戈钧长聘副教授(thu)、魏炜研究员(ipe)、张麟教授(tju)和李赛研究员(thu)为本文共同通讯作者。该研究得到国家自然科学基金优秀青年基金以及国家重点研发计划项目等支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制