当前位置: 仪器信息网 > 行业主题 > >

放电速率

仪器信息网放电速率专题为您整合放电速率相关的最新文章,在放电速率专题,您不仅可以免费浏览放电速率的资讯, 同时您还可以浏览放电速率的相关资料、解决方案,参与社区放电速率话题讨论。

放电速率相关的资讯

  • 日本富士电波公司等离子放电烧结装置SPS-211H在厦门大学顺利中标。
    日本富士电波公司等离子放电烧结装置SPS-211H在厦门大学顺利中标。 我司全权代理的日本富士电波公司SPS-211H装置在厦门大学顺利中标并于近日签订商务合同。该装置是日本富士电波公司推出的世界最新型可扩展为双电源放电等离子烧结炉。放电等离子烧结炉SPS-211H以其精巧的设计,精良的制造工艺,优异的烧结性能和经济适用的特点正在引领SPS行业向新的方向进军。等离子放电装置SPS-211H可以根据客户需要将来追加高频电源等扩展为双电源放电等离子烧结炉SPS-211HF。后者具有比较前者更快的加热速率,在双电源复合磁热效应的作用下,加热速率可达1000度/分,可以使纳米材料的合成在更短的时间和更低温度进行得以完成。同时一台烧结设备可以当做3种烧结设备使用也进一步提高研究效率。
  • 黑龙江科技大学订购的最新双电源型放电等离子烧结炉SPS-211H近日顺利出东京港
    黑龙江科技大学订购的最新双电源型放电等离子烧结炉SPS-211H近日顺利出东京港黑龙江科技大学订购的日本富士电波工机株式会社制造的世界最新型高双电源放电等离子烧结炉SPS-211H近日顺利从日本东京港发出,预计下周到达天津新港。我司全权代理的日本富士电波公司SPS-211H装置是日本富士电波公司推出的世界最新型可扩展为双电源放电等离子烧结炉。SPS-211H以其精巧的设计,精良的制造工艺,优异的烧结性能和经济适用的特点正在引领SPS行业向新的方向进军。等离子放电装置SPS-211H可以根据客户需要将来追加高频电源等扩展为双电源放电等离子烧结炉SPS-211HF。后者具有比较前者更快的加热速率,在双电源复合磁热效应的作用下,加热速率可达1000度/分,可以使纳米材料的合成在更短的时间和更低温度进行得以完成。同时一台烧结设备可以当作3种烧结设备使用也进一步提高研究效率。近年来上海硅酸盐研究所,北京科技大学,厦门大学等陆续导入该装置。希望大家来电咨询!
  • 富士电波双电源放电等离子烧结炉SPS-211Lx在重庆大学中标
    p 日本富士电波工机株式会社制造的双电源SPS-211Lx放电等离子烧结炉近期在重庆大学中标,这是一台全新技术的放电等离子烧结设备,具有无可比拟的加热速率,在双电源致热效应的作用下,加热速率可达15度/秒,可以使纳米材料的烧结在更短的时间内完成。我公司所代理的SPS放电等离子烧结设备近几年来被众多大学及研究机构所采购,说明SPS烧结设备在材料创新领域越来越受到科研人员的欢迎。SPS设备可以广泛应用于各种新材料的制备和研究,尤其是在纳米烧结和功能梯度材料烧结方面。双电源SPS-211Lx以其小巧的设计,精良的制造工艺,优异的烧结性能和经济适用的特点尤其广受青睐。 br/ & nbsp & nbsp & nbsp & nbsp 富士电波工机株式会社还提供更多型号的SPS烧结设备,敬请垂询。 br/ br/ /p p & nbsp /p p br/ /p
  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • 南方科大订购的双电源放电等离子烧结炉SPS-625HF近日顺利出横滨港
    南方科大订购的最新双电源放电等离子烧结炉SPS-625HF近日顺利出横滨港南方科技大学何佳清教授订购的日本富士电波工机株式会社制造的世界最新高双电源放电等离子烧结炉SPS-625HF近日顺利从日本横滨港发出,预计今日抵达蛇口。该装置一台设备可以作为3台烧结炉(单脉冲电源烧结,单高频电源烧结,混合电源烧结)使用。尤其是在电磁波和直流脉冲双重热效应的作用下它的加热速率可达1000度/分,从而使纳米材料的烧结在更短的时间内或更低温度下完成,或者说更细晶粒的新纳米材料可以被合成出来。此外双电源使得用户更方便地用它制作各种梯度材料。第4个特点是它还可以大幅度提高加热均匀性。因此人们期待着用它探讨新的材料合成机理进而创制出各种新材料。和重庆大学,东莞理工大学等导入的SPS-212HF装置相比,南方科技大学的SPS-625HF装置最大脉冲电流和载荷分别提高了5倍,即最大压力和脉冲电流分别是100KN和5000A。此外何教授5年前曾导入我司同样品牌不同型号的小型SPS-211Lx,此次是第2次导入我司产品,南方科技大学的其他2位教授也紧随何教授之后分别导入SPS-211Lx。由此足以看出我司产品在南科大具有良好的口碑。希望广大用户来电垂询!
  • 小菲课堂|声学成像技术在局部放电监测中的应用(一)
    高压局部放电局部放电是电力设备绝缘在足够强的电场作用下局部范围内发生的放电,每一次局部放电对绝缘介质都会产生一些影响,使绝缘强度下降,造成高压电力设备绝缘损坏,甚至会造成人安全隐患。目前,预防性维护人员已经开始使用声学成像技术定位局部放电,甚至能在设备过热之前就发现设备特有的声音特征。与FLIR红外热像仪配合使用,像FLIR Si124之类的声学成像仪是必不可少的设备,可以有效地发现局部放电,避免出现设备故障、代价高昂的损坏和意外停机等问题。局部放电的过程与危害根据IEC 60270的正式描述,局部放电指“只是局部地桥接导线间绝缘体的局部放电现象,可能发生在导线附近,也可能发生在其他地方。通常,局部放电是局部电应力在绝缘体或绝缘体表面集中的结果,一般表现为持续时间远远小于1毫秒的脉冲。电流总是趁人不注意时试图逃逸、跳离导线、徒劳地尝试桥接附近的电极。在寻找逃逸路线时,它首先会从老化的绝缘体上的裂缝开始。如果是架空电线,则是从因多年积污的电线表面开始。也许是在高压电缆的纸绕组上戳一个小孔,也可能隐藏在老化的液体电介质中形成的气泡附近。在电压正弦波的每个波峰和波谷,它都会持续不断地尝试(局部放电)。电流就这样日复一日地试图穿越到相邻的导线上,肉眼却无法看到这类局部放电。受持续性高压应力影响,附近的绝缘材料会在某个时刻失效,丧失对电流的约束。最终,电流会分流进入另一导线。这种情况发生时,导线会完全失效。这会对线路上连接的电气设备、开关设备、机械或设施造成了极大的破坏,代价高昂。局部放电有可能损坏工厂设备或灼伤敏感的电子设备。严重时,局部放电可能导致社区停电数小时,闲置设备,浪费宝贵的生产力。声学成像仪是预防性维护的必要工具局部放电检测是状态监测(CBM)或预防性维护(PdM)计划切实发挥作用的必要条件。越早发现,局部放电对绝缘体的损坏就越少,设备故障和后续停机风险也就越低。追踪局部放电问题有着简单的经济动机:发现问题,安排停机,然后在局部放电现场修复和更换绝缘体及电气接头,其成本和破坏性要低得多。为了准确定位局部放电,电气承包商、检查人员和专业维护人员可以使用多种诊断技术。绝缘测试仪提供了绝缘体的有效性或电阻的数值读数。FLIR红外热像仪可以定位并识别电气设备产生的阻热,通过逐像素的温度读数在可视图像中精确定位问题所在。还可以将热成像技术与声学成像技术结合起来,确定局部放电的严重程度。温度升高和声学特征可以表明绝缘设备的完整性遭到破坏。FLIR Si124满足声像仪的所有需求作为整个诊断生态系统的一部分,FLIR在红外热像诊断方案以外,还推出了声学成像解决方案。FLIR Si124工业声学成像仪是一款基于声学原理的解决方案,它可以定位和分析工业故障、老化以及缺陷如局部放电等。研究发现,在元件发热到能被红外热像仪检测到之前,局部放电会导致声音异常。这就为我们额外提供了一层提示,帮助我们提前检测到潜在的故障。虽然我们经常能在电线附近听到嗡嗡声,但人耳通常是听不到局部放电的,因此局部放电人耳很难定位,尤其是在过于嘈杂的工作场所。借助手持式声学成像仪(FLIR Si124),用户可以扫描一整个区域,在被检组件的声像图上看到局部放电产生超声波的位置,即使人耳听不到、背景噪声很大也没关系。虽然在声学成像方面,电工有许多工具可选,但从便携性到精度,需要考虑多种因素。首先,虽然大多数声学成像工具都很轻便,但要选择便于换场作业的款式。选择一台简单易用、单手可握、携带方便,符合人体工学设计且便于瞄准的手持式成像仪。很显然,FLIR Si124工业声波成像仪很好地满足了以上所有要求!麦克风更多,检测速度快10倍科技领域有一条通用法则:越多越好。从这个意义上讲,声学成像仪中增加麦克风的数量对形成细节丰富的声学图像至关重要。同样在科技领域,对于麦克风本身而言,(体积)大不一定好,因此使用MEMS(微机电系统)类型的麦克风。这类麦克风的性能达到了良好的平衡,能在不同环境下稳定地工作,功耗低,支持小体积电池,续航时间长。另外,体积小意味着更容易把它们紧凑地布置在手持工具上。更多的麦克风,都有哪些优势呢?灵敏度:FLIR Si124声学成像仪搭载了由124个MEMS麦克风精心布成的阵列,这些麦克风相互配合,使灵敏度达到高水平。麦克风越多越可以降低“空间混叠”的可能,也就是降低图像上声源错位的可能。检测范围与访问:增加麦克风的另一个优势是可以扩大检测范围。声音在空气中的传播距离每增加一倍就会衰减6分贝(距离声源15米处听到的声音比30米处听到的声音强6分贝),中型局部放电的分贝值约为40分贝。为了检测范围更广,声学成像仪制造商通过增加麦克风的数量来扩大检测范围。FLIR Si124声学成像仪将麦克风增加三倍,从而使检测范围扩大一倍。出于安全考虑,许多电气设备周围都有栅栏,或者离地较高,很难接近访问。这种访问限制也可能与时间有关,比如需要客户联系人在场时才能进入。鉴于这些访问限制,远距离也能精确定位局部放电的工具就显得至关重要。处理能力:FLIR Si124会产生124个音频数据流,这些数据流经过处理后可转换为视觉图像。这款声像仪搭载了自动音频频率筛选功能,既不牺牲性能,也简化了操作过程。数据和图形处理能力的进步使得将如此大量的声学数据,瞬间整合成屏幕上易于理解的图像成为可能。如果用户选用搭载较少麦克风或老款处理器的成像仪,结果只能得到较低品质图像、较低的分辨率、以及较慢的刷新率。就生产效率而言,像FLIR Si124这样先进的声学成像仪在发现问题的速度方面比其它可用工具快10倍。配备124个麦克风的FLIR声学成像仪不仅检测速度快人一步麦克风频率还会影响检查效果想知道关于声学成像仪的更多理论知识持续关注我们
  • 小菲课堂|声学成像技术在局部放电监测中的应用(二)
    声学成像仪在高压局部放电中的应用原理小菲在上周的文章中提到一部分没看到的小伙伴戳这里:小菲课堂|声学成像技术在局部放电监测中的应用(一)下面继续为大家详细解说声学成像仪:智能除噪,结果准确电气承包商选择检测局部放电的工具本身,也可能会导致人们对局部放电的识别效果产生误解。比如,局部放电以40 kHz的频率恒定地发出超声波,许多声学成像设备就只有这个频率的范围,尽管这些设备在某些情况下可能有用,但在大多数情况下,选择这些设备可能大大削弱检测的灵敏度。例如,在远距离工作时(如户外变电站),使用更宽的频率范围(10 kHz-30 kHz)可以产生更好的结果。目前,声学成像已迅速发展成对维护供电基础设施正常运行不可或缺的技术。越来越多的状态监测管理人员开始把FLIR Si124之类的声像仪加入工具箱。此类设备可以快速、轻松地发现问题,降低维修成本,减少意外停机,很快就能带来投资回报。 当高压设备内有悬浮导体时(比如用垫片隔开),就有可能产生悬浮放电,悬浮放电被认为是最常见的局部放电类型。导线(如输电线)周围作为绝缘材料的空气在高湿度或污染环境下会丧失部分绝缘能力,进而发生空气放电。这会导致电流进入空气中,进一步降低近处的空气质量和导线的性能。分析声学图像可能需要一定的培训和学习,尤其是在理解不同类型的局部放电时。了解问题及其严重性有助于制定更好的报告、维修建议和更明智的后续行动。FLIR Si124声学成像仪采用人工智能算法分析局部放电,可助电气承包商一臂之力。用户可以将声学图像上传到FLIR Acoustic Camera Viewer云服务,后者会自动将这些图像与数千张局部放电图像进行比较。先进的人工智能服务有助于减少误差,加快报告制作,成为客户检查业务的关键优势。简单易用的特性也有助于使更多工人加入声学成像检测队伍,共同开展状态监测或预防性维护工作。声学成像仪重点检测区域对于局部放电易发生的区域,主要包括:★ 导线和母线★ 发电机★ 输配电设备★ 变电站★ 定子、电机和线圈★ 开关设备★ 变压器声学成像可以检测到超声波的能力,已成为公用事业组织用于确定是否存在局部放电的有效方法。它使专业人士能够执行更多例行预防性维护,有助于提供对即将发生的会导致关键系统停机的电气故障的关键初步预警。所以,电气供应商们要与时俱进,选择更有效、更快捷的工具检测电气设备的局部放电哦~想要了解更多详情。
  • 清华大学两台放电等离子烧结设备验收完毕
    清华大学两台放电等离子烧结设备验收完毕 由日本富士电波工机株式会社为清华大学制造的2台放电等离子烧结设备SPS-211Lx近日在清华大学材料学院顺利安装完毕。 创元公司代理的日本富士电波工机株式会社的放电等离子烧结设备以其优异的品质获得了用户的青睐。富士电波工机株式会社是最早开发出SPS制造技术的住友石炭公司的继承人,拥有世界上最先进的SPS技术。世界范围内拥有多达350多名的用户,其生产的放电等离子烧结设备已经广泛应用于各种新材料的研发和生产。 清华大学继2000年首次购置SPS-1050T以来取得了一系列令人瞩目的成果。时隔15年后清华大学材料学院李敬锋副院长和林元华副院长再次同时购置2台SPS设备说明了以其为代表的国内知名高校以及科研机构对于富士电波工机株式会社SPS产品的充分认可。
  • 辉光放电光谱仪:方便快速的镀层分析手段
    研究镀层特性,有哪些常用的分析技术?   如今,大多数材料不是多层结构,如薄膜光伏电池、LED、硬盘、锂电池电极、镀层玻璃等就是表面经过特殊处理或是为改善材料性能或耐腐蚀能力采用了先进镀层。为了很好地研究和评价这些功能性镀层特性,有多种表面分析工具应运而生,如我们熟知的X射线光电子能谱XPS、二次离子质谱SIMS、扫描电镜SEM、透射电镜TEM、椭圆偏振光谱、俄歇能谱AES等。   为什么辉光放电光谱技术受青睐?   辉光放电光谱仪作为一种新型的表面分析技术,虽然近年来才崭露头角,但已受到了越来越多的关注。与上述表面分析技术相比,辉光放电光谱仪在深度剖析材料的表面和深度时具有不可替代的独特优势,它的分析速度快、操作简单、无需超高真空部件,并且维护成本低。   辉光放电光谱仪最初起源于钢铁行业,主要被用于镀锌钢板及钢铁表面钝化膜等的测定,但随着辉光放电光谱技术的逐步完善,仪器的性能也得以提升,可分析的材料越来越广泛。   其性能的提升表现在两方面:一方面随着深度分辨率的不断提升,辉光放电光谱技术已可以逐渐满足薄膜的测试需求。现在,辉光放电光谱仪的深度分辨率可达亚纳米级别,可测试的镀层厚度从几纳米到150微米,某些特殊材料可以达到200微米。   另一方面是辉光源的性能改善,以前辉光放电光谱仪主要用于钢铁行业的测试,测试的镀层样品几乎都是导体,DC直流的辉光源即可满足该类测试,但随着功能性镀层的不断发展,越来越多的非导体、半导体镀层出现,这使得射频辉光源的独特优势不断凸显。射频辉光源既可以测试导体也可以测试非导体样品,无需更换任何部件和测试方法,使用方便。如果需要测试热敏材料或是为抑制元素热扩散则需选用脉冲射频辉光源。脉冲模式下,功率不是持续性的作用到样品上,可以很好地抑制不期望的元素扩散或是造成热敏样品的损坏,确保测试结果的真实准确。   辉光放电光谱的工作原理   辉光放电腔室内充满低压氩气,当施加在放电两极的电压达到一定值,超过激发氩气所需的能量即可形成辉光放电,放电气体离解为正电荷离子和自由电子。在电场的作用下,正电荷离子加速轰击到(阴极)样品表面,产生阴极溅射。在放电区域内,溅射的元素原子与电子相互碰撞被激化而发光。 辉光放电源的结构示意图,样品作为辉光放电源的阴极   整个过程是动态的,氩气离子持续轰击样品表面并溅射出样品粒子,样品粒子持续进入等离子体进行激化发光,不断有新的层在被溅射,从而获得镀层元素含量随时间的变化曲线。   辉光放电等离子体有双重作用,一是剥蚀样品表面颗粒 二是激发剥蚀下来的样品颗粒。在空间和时间上分离剥蚀和激发对于辉光放电操作非常重要。剥蚀发生在样品表面,激发发生在等离子体中,这样的设计可以很好地抑制基体效应。   氩气是辉光放电最常用的气体,价格也相对便宜。氩气可以激发除氟元素外所有的元素,如需测试氟元素或是氩元素时需采用氖气作为激发气体。有时也会使用混合气体,如Ar+He非常适合于分析玻璃,Ar+H2可提高硅元素的检出,Ar+O2会应用到某些特殊的领域。   光谱仪的主要功能是通过收集和分光检测来自等离子体的光以实现连续不断监控样品成分的变化。光谱仪的探测器必须能够快速响应,实时高动态的观测所有元素随深度的变化。辉光放电光谱仪中多色仪是仪器的重要组成部分,是实现高动态同步深度剖析的保障。而光栅是光谱仪的核心,光栅的好坏决定了光谱仪的性能,如光谱分辨率、灵敏度、光谱仪工作范围、杂散光抑制等。辉光放电是一种较弱的信号,光通量的大小对仪器的整体性能有至关重要的影响。   如何进行定量分析?   和其他光谱仪一样,通过辉光放电光谱仪做定量分析也需要建立标准曲线。不同的是,辉光放电光谱仪的标准曲线不仅是建立信号强度和元素浓度之间的关系,还会建立时间和镀层深度间的关系。   下图是涂镀在铁合金上的TiN/Ti2N复合镀层材料的元素深度剖析,直接测试所得的信号强度(V)vs时间(s)的数据经过标准曲线计算后可获得浓度vs深度的信息,可清晰的读取各深度元素的浓度。   想建立标准曲线就会涉及到标准样品,传统钢铁领域已经有非常成熟的方法及大量的标准样品可供选择。然而一些先进材料和新物质,很难找到标准样品做常规定量分析。HORIBA研发的辉光放电光谱仪针对这类样品开发了一种定量分析方法,称为Layer Mode,该方法可以使用一个与分析样品相类似的参比样品建立简单的标准曲线,实现对待测样品的半定量分析。   辉光放电光谱的主要应用   除了传统应用领域钢铁行业,辉光放电光谱仪现在主要应用于半导体、太阳能光伏、锂电池、硬盘等的镀层分析。下面就这些新型应用阐述一下辉光放电光谱仪的独特优势。   1. 半导体-LED芯片   如上图所示,LED芯片通常是生长在蓝宝石基底上的多镀层结构,其量子阱活性镀层非常薄(仅有几纳米),而且还包埋在GaN层下。这种结构也增加了分析的难度。典型的表面技术如SIMS和XPS可以非常好表征这个活性镀层,但是在分析过程中要想剥蚀掉上表面的GaN层到达活性镀层需要耗费几个小时,分析速度慢,时效性差。   辉光放电光谱仪的整个分析过程仅需几十秒即可获得LED芯片镀层中各元素随深度的分布曲线,可快速反馈工艺生产过程中遇到的问题。   2、太阳能光伏电池   太阳能电池中各成分的梯度以及界面对于光电转换效率来说至关重要,辉光放电光谱仪可以快速表征这些成分随深度的分布,并通过这些信息优化产品结构,提高效率。分析速度快、操作简单、非常适用于实验室或工厂大量分析样品。   3、锂电池   锂离子电池的正极材料是氧化钴锂,负极是碳。   锂离子电池的工作原理就是指其充放电原理。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。   同理,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回到正极。回到正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。   辉光放电光谱仪可以通过测试正负电极上各种元素随深度的分布来判定其质量及使用寿命等。   辉光放电光谱仪除独立表征样品外,还可以和其他分析手段相结合多方位全面的进行表征。如辉光放电光谱仪可以与XPS、SEM、TEM、拉曼和椭偏等技术共同分析。   总体来说,辉光放电光谱仪是一种非常方便快速的镀层分析手段。它的出现极大地解决了工艺生产中质量监控、条件优化等问题,此外还开拓了新的表征方向。   关于HORIBA 脉冲射频辉光放电光谱仪   HORIBA研发的脉冲射频辉光放电光谱仪是一款用于镀层材料研究、过程加工和控制的理想分析工具。脉冲射频辉光放电光谱仪可对薄/厚膜、导体或非导体提供超快速元素深度剖析,并且对所有的元素都有高的灵敏度。   脉冲射频辉光放电光谱仪结合了脉冲射频供电的辉光放电源和高灵敏度的发射光谱仪。前者具有很高的深度分辨率,可对样品分析区域进行一层层剥蚀 后者可实时监测所有感兴趣元素。   (本文由HORIBA 科学仪器事业部提供)
  • 高动态角速率测量仪研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr td width=" 91" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 530" colspan=" 3" style=" word-break: break-all " p style=" text-align: center line-height: 1.75em " strong 高动态角速率测量仪 /strong /p /td /tr tr td width=" 100" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 530" colspan=" 3" p style=" line-height: 1.75em " 高动态导航技术北京市重点实验室 /p /td /tr tr td width=" 100" p style=" line-height: 1.75em " 联系人 /p /td td width=" 162" p style=" line-height: 1.75em " 付国栋 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " fuguodd@163.com /p /td /tr tr td width=" 100" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 527" colspan=" 3" p style=" line-height: 1.75em " □正在研发 & nbsp & nbsp & nbsp □已有样机 & nbsp □通过小试 & nbsp □通过中试 & nbsp √可以量产 /p /td /tr tr td width=" 100" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 527" colspan=" 3" p style=" line-height: 1.75em " √技术转让& nbsp & nbsp √技术入股 & nbsp & nbsp √合作开发& nbsp & nbsp □其他 /p /td /tr tr td width=" 648" colspan=" 4" style=" word-break: break-all " p style=" line-height: 1.75em " strong 成果简介: /strong & nbsp & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201604/insimg/8c56e480-1306-43a5-919d-a9f238e912f4.jpg" title=" QQ图片20160415140809.jpg" / /p p style=" line-height: 1.75em " & nbsp & nbsp 在灾难救援、消防安全、应急预警、国防等领域,载体运动过程伴随着大过载、高速、高旋等恶劣环境条件约束,现有各类陀螺无法满足& gt 10000g过载、& gt 10r/s转速条件下的角速率实时精准直接测量需求。本成果针对上述迫切需求,重点突破传统角速率检测仪难以适应11000g以上过载、高速滚转和高速度扰动环境下交叉耦合难以抑制、全温度段陀螺零偏和标度因数不稳定的技术瓶颈,实现一种新型角速率检测仪,在全温度(-45~+55℃)工作条件下,能够适应大于11000g过载冲击和大于800m/s线速度扰动复杂应用环境、具有大于3600& amp #176 /s滚转速率测量范围且耦合系数小于0.1%,随机漂移优于8& amp #176 /h,全温度段零位偏差优于0.6& amp #176 /s,标度因数综合误差优于0.1%,具备成果推广与产业化条件。 /p /td /tr tr td width=" 648" colspan=" 4" style=" word-break: break-all " p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp 成果在该产品在灾难救援、消防安全、矿山开采预警、水坝山体滑坡预警、国防等领域等领域有广泛应用前景。 br/ & nbsp & nbsp 预计国内市场年需求量在8000~10000台,市场规模约5亿元。 /p /td /tr tr td width=" 648" colspan=" 4" style=" word-break: break-all " p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp 获奖情况:北京市科学技术奖三等奖1项,吴文俊人工智能科学技术进步二等奖1项。 br/ & nbsp & nbsp 授权发明专利6项,受理发明专利2项,主要专利: br/ & nbsp & nbsp (1)专利名称:钟形振子式角速率陀螺振子结构设计方法(专利号:ZL201110117526.4) /p /td /tr /tbody /table p br/ /p
  • 关于物理吸附行业“吸附速度”与“吸附速率”的区别
    在物理吸附行业,经常有不少学生、老师甚至业内的专家,不确定自己要测试的物理量该叫“吸附速度、脱附速度、解吸速度”还是“吸附速率、脱附速率、解吸速率”;不少硕士、博士论文中,甚至较专业的一些技术文章,也经常出现不统一的叫法。由于“速度”相对“速率”偏口语化,”速率“比”速度“更显“学术”,因此经常发现不少专业的人,把本该叫“吸附速度、脱附速度、解吸速度”等的参数,叫成了“吸附速率、脱附速率、解吸速率”。要搞清楚到底该叫“吸附速度”还是“吸附速率”,首先要搞清楚“速度”和“速率”的区别。速度为矢量,有方向和大小;速率为标量,只有大小,没有方向。举例说明:对于位于边长为100m的等边三角形3个角的A、B、C 3点,某物体以匀速10m/秒的速度大小从A经C到达B点,耗时20秒;对于这个情况,该物体从A到B的速度为5m/秒,整个过程其移动速率为10m/秒。再例如,对于悬浮于气体中一个做布朗运动的气体分子或灰尘,其不规则运动的即时速度大小或速率是很大的,但是,在我们我们讨论其从A点运动到B点的速度时,我们是用AB的直线距离除以时间来表示,而速率就不需要考虑其方向性,“只看大小”。在我们讨论吸附质在吸附剂表面的物理吸附现象中,由于吸附和脱附时同时并存发生的两种现象。大家都知道,当处于吸附平衡状态,吸附速率和脱附速率都不是零,只是相等,但吸附速度和脱附速度是零。再比如,对于其它所有条件都相同只是温度不同的两个吸附平衡状态下,温度高的状态的吸附速率或脱附速率有可能相对温度低的都大,但是吸附速度或脱附速度都是零。“吸附速率”或“脱附速率”,更多的偏向于表征吸附质分子单纯聚集于吸附剂表面或单纯离开固体表面的速度大小;而“吸附速度”或“脱附速度”,则更多的偏向于表征在一定时间内由于吸附速率和脱附速率差造成的“净聚集”或“净离开”吸附剂表面的吸附质的量,由于有“方向性”,偏向于表征“效果”。在目前市面的大多数涉及“吸附速度、解吸速度”测试的仪器,测试的其实是一段时间内吸附剂表面吸附质的增加量或减少量,那么,此类仪器就应该叫做吸附速度测试仪或解吸速度测试仪是更恰当的,而不应该叫做吸附速率测试仪或解吸速率测试仪、分析仪等,因为其分析的不是“速率大小”。其实,关于类似这些“专有”名词或概念的普及,主要一方面来自课本,也有不小一部分来自于相关商家或研究单位。假若理解不对的人过多,且一时没有权威单位给予纠正和说明时,商家就有可能从商业利益出发,跟随“潮流”而“被迫”舍弃“严谨”;像“吸附速度”这个词,可能不少国内外商家其实是明白应该怎么个叫法,但是从商业角度考虑,为了更好的可接受性和被认识被发现,而跟随大众。尤其在网络搜索占主要推广方式的当下,这种情况更明显。不少通俗易懂但又不严谨的词语,就是这么产生的。贝士德仪器作为从事气体吸附、蒸汽吸附类分析仪器的制造商和研究单位,有责任给出科学的说明,并倡导正确使用“吸附速度”和“吸附速率”等此类名词。
  • 辉光放电光谱、火花源原子发射光谱的新应用
    仪器信息网讯 2014年10月20-21日,由中国工程院、中国合格评定国家认可委员会、中国标准化协会、中国金属学会、国际钢铁工业分析委员会、中国钢研科技集团有限公司主办的&ldquo CCATM&rsquo 2014国际冶金及材料分析测试学术报告会&rdquo 之&ldquo 辉光光谱/表面分析/火花源原子发射光谱&rdquo 分会在北京国际会议中心举行。 会议现场   辉光放电光谱(GD-OES)由于具有固体样品直接分析、可分析非导体样品、分析速度快、气体消耗量低、分析成本低等优点,近年来,在元素分析中的应用逐渐增多。目前应用的商业化辉光放电光谱仪厂商主要有美国的Leco公司、德国的Spectro公司、法国的Horiba Jobin Yvon公司。 报告人:首钢技术研究院徐永林 报告题目:辉光放电光谱法在镀锡板检测上的应用   徐永林利用辉光放电光谱仪对镀锡板样品进行逐层剥离,根据样品由表至里的辉光放电积分图谱,分别设定公式积分计算镀锡板镀层厚度及重量、钝化层厚度及重量、基板成分、镀层中有害元素等。通过与传统方法的分析结果比对,说明采用辉光放电光谱法分析这些检测项目具有较佳的准确度及精密度,提高了检测效率,同时达到了镀锡板多个检测项目的同时测定。 报告人:首钢技术研究院梁潇 报告题目:直流辉光放电光谱法同时测定铸铁中12种元素   梁潇研究了利用辉光放电光谱法同时测定铸铁中的多种元素含量。通过分析激发电压、激发电流、光电倍增管、预燃时间和积分时间等因素对各元素光谱强度和稳定性的影响,以铁为内标建立了同时测定铸铁中碳、硅、锰、磷、硫、镍、铬、钼、铜、钒、硼等元素含量的分析方法。对不同铸铁样品进行准确度和精密度试验,均得到了很好的结果。   火花源原子发射光谱分析法是一项成熟的分析技术,具有操作简便、分析速度快和准确度高的优点。在生产实践中分析金属试样表现出的快速、准确和高精度是其他分析方法无法取代的,因而广泛的应用于钢铁和有色冶金行业炉前快速分析,也是分析各种常见固体金属材料的一种普及的标准分析方法。   在会议中,多位报告人介绍了火花源原子发射光谱的最新应用研究。江苏沙钢集团的陈熙介绍了火花源原子发射光谱快速测定钢中低含量硅 钢研纳克检测技术有限公司宋宏峰介绍了火花源原子发射光谱法分析高锰铬钢 上海宝钢工业技术服务有限公司张叶介绍了火花源发射光谱分析焊丝钢线材试样 宝山钢铁股份有限公司研究院赵涛介绍了火花源原子发射光谱法测定铁基非晶合金中的硅和硼。
  • 利用原位CT观察锂电池在充放电中的变化
    近几年中国锂电池的出货量持续增长,对电池的各种研究也在不断深入。锂离子电池充电后,其中的活性物质会发生体积膨胀,原位表征技术成为分析工作中的重要手段。这种变化有时并不显著,利用原位CT可以捕获微小变化的差异,让分析工作更加简单,品质管理更科学可靠。 小型锂电池外观电池整体的断面图像图中可见,间隙部分的增大。 放、充电后电池各层电极将放、充电后电池各层电极的图像进行对比,可见电极厚度上有微小膨胀,最终导致整体厚度的增加。 岛津微焦点X射线CT系统 inspeXio SMX-225CT FPD HR Plus——一款支持锂电池充放电试验的微焦点CTinspeXioSMX-225CTFPDHRPlus(可搭载充放电系统) • 人性化操作的理念贯穿整个设计。即使CT试验的步骤简化到三步,依然能拍摄出高质量的数据。• 维护保养简便易行,让设备的使用无后顾之忧。 本文内容非商业广告,仅供专业人士参考。
  • 清华大学两台放电等离子烧结设备从日本出港
    由日本富士电波工机株式会社为清华大学制造的2台放电等离子烧结设备SPS-211Lx近日从日本东京顺利出港。创元公司代理的日本富士电波工机株式会社的放电等离子烧结设备以其优异的品质获得了用户的青睐。富士电波工机株式会社是最早开发出SPS制造技术的住友石炭公司的继承人,拥有世界上最先进的SPS技术。世界范围内拥有多达350多名的用户,其生产的放电等离子烧结设备已经广泛应用于各种新材料的研发和生产。清华大学继2000年首次购置SPS-1050T以来取得了一系列令人瞩目的成果。时隔15年后再次同时购置2台SPS设备说明了以其为代表的国内知名高校以及科研机构对于富士电波工机株式会社SPS产品的充分认可。
  • 思尔达发布熔体流动速率仪新品
    RL-Z1B1+ 系普通材料型,RL-Z1B1- + 系耐腐型。 熔体流动速率测定仪(亦称熔融指数仪)是测定热塑性塑料在一定条件下的熔体流动速率的专用仪器。热塑性塑料的熔体流动速率(熔融指数)是指热塑性塑料在一定温度和负荷下,熔体每10分钟通过标准口模毛细管的质量或熔融体积,用MFR (MI)或MVR 值表示,它可区别热塑性塑料在熔融状态下的粘流特性。对热塑性塑料及化纤的原料、制品等产品的质量保证,有着重要的意义。本机控制温度精度高,关键零件氮化处理,强度、硬度高,变形小,这对精确测定流动速率提供了良好的条件。RL-Z1B1-型的料筒、活塞杆、口模及相关零部件均采用了航空发动机用的特殊材料,耐腐蚀性能好,甚至能用于测试F46(四氟乙烯六氟丙烯聚合物)等材料。 各国都对测试温度的精度作了相应规定,其中ASTM定为±0.2℃,ISO定为±0.5℃,JIS定为±0.2℃,我国规定为±0.5℃。 本仪器符合ISO1133:1997(E)、ASTMD1238-95、JIS-K72A以及国家标准GB3682-2000、JB/T5456、JJG878和其它相应标准制定的技术指标。 RL-Z1B1熔体流动速率仪是在RL-Z1B型的基础上对结构作进一步改进而成的。一. 主要技术参数1. 温度控制范 围 100 - 400℃ 准 确 度 不劣于±0.2℃(125℃~300℃内) 国际标准ISO1133,GB3682规定的试验温度:125、150、190、200、220、230、250、265、275、280、300℃ 波 动 不劣于±0.1℃(国家检定规程JJG878规定,不得超过±0.5℃) 8h 漂 移 ≤0.1℃ (国家检定规程JJG878规定,4h内不得超过±0.5℃) 分 布 ≤0.5℃ (国家检定规程JJG878规定,不得大于1℃) 分 辨 率 0.1℃ 误差修正 随机2. 加料后料筒温度恢复时间≤4min3. 计 时 钟 范 围 0~9.999s~999.9s~9999s; 分 辨 率 0.001s/0.1s/1s4. 切割装置4.1 自动切割装置切割:定时切割0~999s4.2 手工切割刀切割5. 口模内径 Φ2.095±0.005mm16. 料筒内径 Φ9.550±0.020mm7. 负荷: 精 度 不劣于±0.5% 组合负荷:325g,1200g,2160g,3800g,5000g,10000g,12500g,21600g(根据ISO1133、GB3682全配备)8.国家标准样品(PE)试验: 重复精度 ≤2%(国家检定规程JG828规定,不超过8%) 准 确 度 ≤5%(国家检定规程JJG828规定,不超过±10%)9. 测定范围 0.02~2000g/10min(自动测试时) 0.03~50000px3/10min(自动测试时)*能保证在预热恒温时,熔料不流出的情况下;手动切割测试时由于存在人体反映速度,对高流动速率值有较大影响。10.电 源 220V,AC,50Hz,6A11.外形尺寸 1×b×h=520×410×890mm312.重 量 主机40Kg,砝码箱25Kg二.主要构造 本仪器主要是由电脑系统、检测装置、负荷、自动测试机构及电动切割装置五大部分组成。1. 检测装置(附图1)1.1 料筒* 采用氮化钢材料,并经氮化处理制作,HV≥700。1.2 料杆(活塞杆)* 采用氮化钢材料,并经氮化处理制作,HV≥600,料杆头部比料筒内径均匀地小0.075±0.015mm,顶部装有一隔热套,使料杆与负荷隔热,在料杆上有二道相距30mm的刻线作为参考标记,它们的位置是:当料杆头下边缘与口模顶部相距20mm时,上标记线正好与料筒口持平(见图2)。1.3 口模*Φ2.095±0.005mm,HV≥700。*RL-Z1B1- 耐腐蚀型,由制造航空发动机的特殊材料制成。创新点:电动加载砝码,触摸屏,自动计算打印
  • 辉光放电光谱技术受青睐 市场前景可瞻——访HORIBA辉光放电光谱仪应用支持工程师武艳红及汕头大学王江勇教授
    p span style=" font-family: 楷体,楷体_GB2312, SimKai "   1968年,W.R.Grimm(格里姆)推出了辉光放电光源,很快发展为辉光放电光谱(GD-OES)和表面分析技术,用于材料及镀层金属的逐层分析 1978年,出现了第一台商品化仪器 20世纪90年代,GD-OES在表面分析领域上得到迅速发展...... /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   与其它表面分析技术相比,辉光放电光谱仪在深度剖析材料的表面和深度时具有不可替代的独特优势,它的分析速度快、操作简单、无需超高真空部件,并且维护成本低。鉴于此,辉光放电光谱仪受到了越来越多专业人士的关注,其应用领域也不仅仅限于最初的钢铁行业,可分析的材料越来越广泛。 /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   那么,辉光放电光谱仪目前的技术水平和市场情况怎么样?用户的实际反馈情况如何?为了深入了解辉光放电光谱仪的技术及市场概况,日前仪器信息网编辑特别采访了HORIBA辉光放电光谱仪应用支持工程师武艳红及汕头大学王江勇教授。 /span /p p    span style=" color: rgb(255, 0, 0) " strong 辉光放电光谱仪中国市场需求量逐年提升 /strong /span /p p span style=" color: rgb(255, 0, 0) " strong br/ /strong /span /p p style=" text-align: center " img title=" 1.jpg" style=" width: 177px height: 246px " src=" http://img1.17img.cn/17img/images/201708/insimg/750dd2b6-0440-4ffc-8f38-83060d85a331.jpg" width=" 177" vspace=" 0" hspace=" 0" height=" 246" border=" 0" / /p p style=" text-align: center " strong HORIBA辉光放电光谱仪应用支持工程师武艳红 /strong /p p strong   仪器信息网:从行业发展角度分析,辉光放电光谱仪目前的技术水平如何?有哪些新的技术亟待推出或者有哪些技术瓶颈亟待突破? /strong /p p    strong 武艳红: /strong 目前,辉光放电光谱仪已经是一类成熟的表面分析设备,被广泛应用到各个领域的定性和定量分析中。辉光放电光谱技术是有损分析技术,在分析后会在表面留有一个溅射坑,但溅射坑使得分析更加深入,检出限更好,当然样品不可回收也是它的主要缺点。不过,如果对内部结构感兴趣的话也可以利用这个溅射坑为其他表面分析设备服务,比如样品剥蚀完后还可以用扫描电镜观测袒露出来的内部表面结构,或是与XPS联合使用获得镀层结构、元素、分子等方面的信息。此外,辉光放电光谱仪目前在定量方面仍受限于国际标准样品的种类及数量,无法为新型镀层材料做定量曲线,尤其是新型材料还处于定性分析阶段,或实验室自行制备参比样品进行定量。 /p p    strong 仪器信息网:您认为辉光放电光谱仪未来的市场需求情况怎么样? /strong /p p    strong 王江勇: /strong 目前辉光放电光谱仪主要应用于工业界,比如,钢铁及半导体等行业,相信今后随着相关理论工作进一步地跟进与完善,辉光放电光谱仪不仅会拓宽其在工业领域的应用范围,而且也将逐渐被学术界所接受,更多地应用于表面、薄膜、涂层科学研究,所以,可以肯定辉光放电光谱仪未来市场的需求会越来越大。 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/9b4addd0-8eee-4b0b-afed-fbb63472c775.jpg" / /p p style=" text-align: center " strong 汕头大学 王江勇教授 /strong /p p    strong 仪器信息网:为什么会选择购置辉光放电光谱仪?主要是基于哪方面的科研需求? /strong /p p    strong 王江勇: /strong 实验室选择购置辉光放电光谱仪主要有以下原因:深度分辨率较高,溅射速度快 较其它深度剖析设备价格低 完善现有的深度剖析定量分析理论模型 薄膜相变及功能多层膜成分的表征需求等。 /p p    strong 仪器信息网:贵实验室采购的辉光放电光谱仪的配置情况如何?目前的使用情况如何?取得了哪些研究成果? /strong /p p    strong 王江勇: /strong 我们实验室于2016年购置的HORIBA GD-Profiler 2辉光放电光谱仪, 配有47个谱线通道,并配有一个可进行扫描的单色通道,可以说是目前配置最为完备的辉光放电光谱仪,原则上可以测量所有元素的辉光激发光谱。另外,该谱仪还配备了去年开发出来的新附件-微分干涉测厚仪(DIP),可进行溅射坑深度的实时测量。 /p p   该仪器目前使用良好,几乎每天都有使用。在成果方面,从理论上定量分析了溅射坑形貌对深度分辨率的影响 实验上,对各种基底材料(包括有机材料)最佳的深度剖析条件进行了探索,以确保高分辨率深度剖析的测量。总体来说,目前已对纳米级的金属-金属、氧化物、功能多层膜等进行了高分辨率的深度剖析测量。 /p p    strong 仪器信息网:为什么会选择HORIBA的辉光放电光谱仪? /strong /p p    strong 王江勇: /strong 选择HORIBA的辉光放电光谱仪是基于多方面的考虑:产品技术比较成熟,性价比高,售后团队强大等。 /p p   从仪器技术的角度,HORIBA的辉光放电光谱仪的射频光源可以适用于导体、半导体及非导体材料,应用面广,符合实验室多类型材料分析的需求 全自动脉冲分析模式对于玻璃衬底样品、热敏感样品或脆性样品的分析至关重要,可以有效抑制元素在分析过程中的元素层间扩散或样品受热下非期望性变化 深度分辨率高,样品剥蚀坑底部更加平整,有效支撑理论计算和模型建立 此外,HORIBA的辉光放电光谱仪还有多项专利技术为仪器性能改善、实际分析带来益处。 /p p    span style=" color: rgb(255, 0, 0) " strong 多项专利技术 HORIBA辉光放电光谱仪优势明显 /strong /span /p p style=" text-align: center " img title=" 3.jpg" style=" width: 300px height: 357px " src=" http://img1.17img.cn/17img/images/201708/insimg/142d7c83-5317-4315-aeb8-ffdf91597c79.jpg" width=" 300" vspace=" 0" hspace=" 0" height=" 357" border=" 0" / /p p    strong 仪器信息网:HORIBA在辉光放电光谱仪方面的研发历史?目前主推的仪器类型? /strong /p p strong   武艳红: /strong 1984年HORIBA拥有了辉光放电光谱仪产线,从此踏上了辉光放电光谱仪不断改进、创新研发之路。。在过去的三十年间,HORIBA应用了17项专利技术以提高其性能,如高动态检测器、全自动脉冲式射频源、polyscan技术、超快速溅射、微分干涉测厚系统(DIP)等。现在辉光放电光谱仪可以分析含量ppm级以上元素随镀层深度的变化,深度分辨率小于1nm,可测深度200um。目前主推的仪器型号为GD-Profiler 2,最新技术有DIP深度测试附件等。 /p p    strong 仪器信息网:HORIBA的辉光放电光谱仪器相比同类产品有哪些优势? /strong /p p strong   武艳红: /strong 相对于其它表面分析技术如SIMS、XPS、俄歇、能谱仪等,辉光放电光谱仪分析速度快、操作简单且无需超高真空(UHV),良好的深度分辨率还可为扫描电镜剥蚀制备样品。 /p p   在同类竞争产品中,HORIBA的辉光放电光谱仪在光谱分辨率相同的情况下,能减小设备的焦长,可提高仪器的稳定性和光通量 采用两个真空泵维持辉光灯的气氛的稳定性,使其深度分辨率低于1nm HDD高动态检测器的线性动态范围可达10^9,当样品浓度从无到100%变化时不会饱和溢出,且无需手动设置电压 HORIBA作为全球光栅领导者,可根据设备特性改良光栅使其光谱分辨率和光谱响应达到当前最佳水平。 /p p    strong 仪器信息网:HORIBA辉光放电光谱仪在中国的用户情况? /strong /p p strong   武艳红: /strong HORIBA辉光放电光谱仪目前主要应用于渗氮渗碳、镀锌钢板、LED芯片、太阳能光伏、金属镀层、半导体器件、彩涂板、微弧氧化陶瓷、表面处理等领域。中国对辉光放电光谱仪的接触历史比较短,客户主要集中于钢铁行业、高校研究所和半导体公司。代表客户如鞍钢、武钢、汕头大学、复旦大学、清华大学、原子能研究所、LED公司等。 /p p    strong 仪器信息网:针对辉光放电光谱仪,HORIBA在市场方面的推广重点在哪里? /strong /p p strong   武艳红: /strong 从近年来用户的关注可以看出,目前主要的问题还是如何快速的让更多科研院所、半导体公司了解该技术。HORIBA每年都会投入大量的市场费用,用于技术交流会、会议赞助、网络讲堂、线下光谱学堂等,以便越来越多的人能够熟知辉光放电技术,并通过这个技术将自己的研究推向更高。 /p p    strong span style=" font-family: 楷体,楷体_GB2312, SimKai " 后记: /span /strong span style=" font-family: 楷体,楷体_GB2312, SimKai " 今年8月份,由汕头大学等单位协办的“ a title=" " href=" http://www.instrument.com.cn/news/20170821/227131.shtml" target=" _blank" 2017年全国表面分析科学与技术应用学术会议 /a ”于8月10日-13日在在汕头大学召开。本届学术会议旨在推动我国表面分析科学及其应用技术的发展,促进国内外表面分析研究领域的专家学者交流,探讨表面分析技术与其它学科的共同发展,进一步拓展表面分析技术的应用领域。参加本届会议的代表约130多人,创历届之最,云集了国内外学术界的专业人士,除了来自国内的代表外,还有来自美国、德国、法国、日本、匈牙利、西班牙、新加坡及南非等的国外代表。 /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   大会开幕式由汕头大学王江涌教授主持,会议组织安排的六个大会报告既是各位专家对自己研究成果的精彩总结、也是对国内外近年来表面分析科学及其应用技术的高度概括,对广大年轻人的表面分析科学及其应用技术学习、成长和进一步凝练方向具有重要的指导意义,大会报告更是令大家开拓了新的视野。 /span /p
  • AGUS发布SPS-225Sx放电等离子烧结系统新品
    日本SUGA公司自SPS-放电等离子烧结技术诞生以来,一直伴随着SPS技术在全世界的发展,1997年开始代工生产SPS设备,经过多年的技术积累,现推出Sx、Rx系列SPS放电等离子烧结炉。 SPS-放电等离子烧结炉是当今世界上先进的快速热压炉之一,由于工件直接由热流脉冲加热,所以烧结工艺周期可以缩短至几分钟,因此具备烧结速度快,样品致密度高等优点,是烧结纳米相材料,梯度功能材料,介孔纳米热电材料,稀土永磁材料,合金非平衡态材料及生物材料最有力的工具。SPS-225Sx 主机压力系统立式单轴伺服电机最大压力20 kN最小压力0.5kN最高烧结温度2500℃加压行程50 mm开放高度200mm烧结电极特殊的密封水冷结构真空腔水冷腔脉冲电源电源AC 200V, 3相,50/60Hz输出电流2500A脉冲控制On 1~999 ms, Off 1~99 ms创新点:1.采用Tie-Bar框架,保证压力装置更稳固; 2.匹配中国电源要求,无需用户再配置变压器; 3.优于同行业的真空技术,可3min内从常压抽到5Pa; 4.多种安全措施,保证设备安全运行;如:烧结腔室门未关闭,烧结电源无法启动;
  • 全新FLIR Si2声学成像仪,让局部放电故障位置一目了然!
    全新FLIR Si2-PD和Si2-Pro声学成像仪配备了智能局部放电检测分析功能其可帮助用户检测、辨识和分析电气系统中象征着存在问题和故障隐患的局部放电提前定位故障点,避免出现重大事故那么它是如何做到精准又快速的呢?局部放电被听见的必要性顾名思义,局部放电(PD)指绝缘体局部故障,其可能在任何类型(固体、空气、气体、真空或液体)的绝缘体上发生。如果电荷经常穿过绝缘体,很可能导致绝缘体被彻底击穿,从而造成灾难性的故障,因此及时发现局部放电非常重要,它能有效规避重大事故的发生。局部放电分为多种不同类型,其特征因类型而异。在实际应用中,可分为四类:负电晕放电、正负电晕放电、浮动放电以及表面或内部放电。不同放电类型的局部放电相位分布(PRPD)图谱略有差异,想要详细解读的菲粉们可以点击下方图片,获取“FLIR Si2系列声学成像仪局部放电检测深度分析白皮书”,它能让您对局部放电有更深层次的理解!声学成像仪智能分类局部放电的类型不同类型的局部放电主要表现为50或60Hz周期的不同时段中的脉冲或脉冲簇。对局部放电进行电气测量,能够测出这些脉冲期间转移的电荷,并显示其与电压相位的相对关系。这就是所谓的局部放电相位分布(PRPD)图谱。局部放电相位分布(PRPD)图谱PRPD图谱具备数种特征,可用于推断存疑局部放电的类型。例如,PRPD图谱通常拥有两个明显的脉冲簇,一个靠近正电压峰值,另一个则靠近负电压峰值,这些脉冲簇的大小和形状可能不同。这两个脉冲簇在大小和形状上可能对称,也可能高度不对称。在某些情况下,可能只存在一个脉冲簇而非两个。因此,可以根据不同的PRPD图谱来判断局部放电的类型。下载白皮书,详细介绍典型的PRPD图谱FLIR声学成像仪将自动检测具有较强50或60Hz周期性的信号,并构建类似的PRPD图谱。但要注意,即使声学成像仪界面显示了PRPD图谱,也不代表声源一定是局部放电。例如,某些类型的低压电子设备也可能产生类似的周期性图谱,因此还要进一步分析。选择FLIR Si2声学成像仪的优势FLIR Si2系列声学成像仪内置124枚麦克风,接收频率范围在2kHz至130kHz,涵盖了局部放电的声波范围,在远距离或嘈杂环境中也能直观地显示超声波信息,生成精确的声像。声像实时叠加在可见光数码图像上,使用户可以准确地查明异常声音来源。对于局部放电检测,Si2声学成像仪内置局部放电严重程度评估和纠正措施建议功能,通过对局部放电进行分类,能让用户迅速做出决策,减少故障的影响。这样的检测,比传统方法要将近快10倍哦~Si2具备人工智能技术辅助分析和故障严重程度评估功能,可现场提供决策支持FLIR Si2系列声学成像仪其配备的插件还能让用户将声像导入FLIR Thermal Studio软件中,进行离线编辑、分析和创建高级报告。专业的报告和分析软件,让局部放电检测后的结果处理变得更加简单明了!利用超声波对局部放电进行检测不仅设备轻便,适应性好,性价比高还能保障操作人员的安全,精准定位故障点FLIR Si2系列声学成像仪作为其中的佼佼者可作为电力检测人员的“完美”工具。
  • 华质泰科发布SICRIT 流过式介质通路放电源新品
    仪器简介: 流过式介质通路放电源(SICRIT® )为最新型原位电离源技术,是继实时直接分析源(DART)、解析电喷雾源(DESI)、液滴萃取表面分析源(LESA)等发源于“诺奖”级质谱技术如电喷雾(ESI)及大气压化学电离(APCI)之后,新一代变革性的常压离子发生技术。SICRIT(Soft Ionization by Chemical Reaction in Transfer)仅利用电极放电瞬间激发和离子化质谱入口端流路上的气态化学物质,来实时识别流入物质的化学成分和形态,无需(像传统液质依赖的ESI那样依赖溶剂)使用溶剂及任何辅助性气体,直接实现快速、广谱、灵敏、高通量的准确定量、定性、溯源、筛查、或聚类分析。该技术由苏黎世联邦理工学院(ETH) Renato Zenobi 教授课题组最先发明,继由德国 Plasmion 公司的 Jan Wolf 博士和 Thomas Wolf 博士二次创新并商业化。SICRIT 具备无歧视和快速广谱软电离有机成分(极性、弱极性、非极性)尤其是中性(如烷烃)或几无极性的难电离化合物(如多环芳烃 PAHs)的特长,结合使用 ① 串联四极杆(QQQ)质谱,依靠 QQQ 的 MRM/SRM 多反应监测功能,实现高灵敏度(达 ppt 即 pg/mL 到 ppb 即 ng/mL 级别)的靶标定量如化学毒物分析、农兽药检测,或示踪分析如新生儿筛查、化学品迁移;或 ② 高分辨质谱(HRMS),如轨道阱质谱 Orbitrap、Q-Exactive、飞行时间质谱 QTOF 等,以高分辨率(达几万至几十万分辨)和高质量准确度(1-2ppm)的特性,结合当今质谱已经具备的快速扫描(每秒达10-20张全谱)和极速正、负切换功能;或 ③ 移动便携或小型车载多级质谱,如曾用于航天的 MT50 小型便携质谱仪(不到35公斤),实现高灵敏度的化学品、食品药品、农副水产品、材料固废、或复杂基质体系如生物体液或组织内上百种痕量、超痕量的有毒有害、营养和功能成分的快速筛选、快速鉴定和高通量定量定性分析,大大提高实验室效率、分析检测能力及设备与人员的投资回报率。技术原理: 质谱为当今分析检测界的顶级化学分析鉴定技术,大小分子的定性定量常可“一锤定音”。质谱仪大体分四大类:① 气质(GCMS)的离子发生方式多依赖电子轰击源(EI),用于挥发性的中性或极弱极性小分子(800Da 以下)的 GC 分离后分析,技术成熟但需时很长;EI 离子化很硬(70eV),完整的分子离子很难保留,多靠子离子碎片库检索但因缺少完整分子离子信号,常出现假阳性和假阴性;② 液质(LCMS)的质谱仪真空腔内的离子分离检测部分发展很快,但传统 LCMS 的离子发生多依赖 ESI 或偶尔利用 APCI,涵盖极性和中弱极性分子,但对极弱至非极性分子代谢物难以覆盖造成漏检,曾经出现过的 APPI 光喷雾技术应用面狭窄操作繁琐,很难普及。ESI 需要 LC 分离因而需时也长,近来 DART、DESI、LESA 等技术对 LCMS 的性能提升巨大,实现了原位快速分析和成像应用,无论是 ESI,APCI,还是 DART、DESI、LESA 等,都是利用外力(气、液、电)和正压力方式促成化合物解离并离子化;即使 DART 已经剔除了溶剂的使用,和实现了无损检测,但离子发生依然需要高纯氦气或氮气等载气辅助,气体的供应及车载运输是许多应用场景的瓶颈因素。液质 LCMS 是有机生物领域使用最为广泛的质谱技术,占每年质谱新装机总量的一半左右。③ 等离子体质谱(ICP-MS)用于部分无机物检测;④ 基质辅助激光解析电离质谱(MALDI-MS)多用于微生物鉴定和搜库识别,库的局限性和基质的非匹配性信号丢失是其中的限制性因素之一。MALDI 后端的质谱传统上为 TOF 类飞行时间质谱,分辨率和定量有些瓶颈,是为限制性因素之二。当今的 APMALDI 常压基质辅助激光解析电离可灵活串接 Orbi 类高分辨质谱、QTOF 类飞行时间质谱、或 QQQ 类高灵敏度三级四极杆类定量质谱,实现了常压高通量分子量测定和结构鉴定,及常压原位质谱成像。质谱仪包括四大部分:离子发生器、离子分离器(真空腔内)、离子检测器(真空腔内)、数据处理器。离子发生器如电喷雾(ESI)等当红技术解决了有机和生物分子自常压状态解离生成离子信号的世纪难题,每年仅中国即进口三千多套带有 ESI 离子源的质谱设备。ESI 的瓶颈是必须在溶液状态下操作,样品需首先必须溶解成液态。但 ESI 本身有离子竞争和抑制或选择性歧视的内在缺陷,即使结合 LC 液相分离(又需要长时间完成)也难以消除离子抑制和极性歧视。原位质谱(Ambient Ionization MS)更进一步!连接 AI 原位源的质谱整机的灵敏度和特异性保持了 LCMS 质谱仪部分的优势,但速度和效率比 LCMS 液质或 GCMS 气质提高近 30-1000 倍(平均每样品3~10秒),硬件成本降低近一半,耗材及使用成本降至 1/4 以下,还不算因用时大大缩减而节约的人力物力投资和机会成本。传统的离子化方法中,分析物在被传输到质谱之前发生电离。因此,不可避免在离子传输到质谱的期间发生离子排斥和中性粒子损失现象。而 SICRIT 是在常温常压下,流过式物质经放电发生介质通路放电和光电离,产生分子离子,继而以质谱或串联质谱的自真空负压吸入,实现瞬时检测。该技术不需要引入其他气体、溶剂、试剂来影响离子的形成过程,真正实现直观、直接、快速、在线分析。在毒化、食药、组学、临床、风味等有机分子的分析检测领域,SICIRT 是原位源家族的最新优选技术,即可直接在线分析气态或风味物质分子,不再特别需要对样品进行冗繁的前处理或耗时昂贵的色谱分离,也可以和顶空分析(包括静态顶空、顶空固相微萃取)实现高灵敏度检测,更可以和气相(GC)及微纳流液相(microLC、nanoLC)等实现在线软电离广谱无歧视(有别于 ESI 的歧视性离子化)检测分析。通过结合前端自动化高通量样品注入方式,SICRIT 结合后端串联质谱(MS/MS)、高分辨质谱(HRMS)或移动便携(Portable MS)或小型车载多级质谱,能充分实现几秒内的快速、高通量、在线样品分析,大大提高大批量样品的瞬时定量和定性检测能力。SICRIT® 典型客户包括瑞士苏黎世联邦理工学院(ETH),瑞士联邦民防局(FOCP),德国曼海姆大学仪器分析研究所,瑞典巴斯夫股份公司(BASF SE)等,旨在毒物/滥用药、物证和化学武器分析、气味鉴定、环境污染监测、食品药品质量控制、临床诊断等方面的研究,同时也运用在未知样品的非靶标筛选以及代谢组学样品的分析。设备主要用途: SICRIT 结合后端串联质谱(MS/MS)、高分辨质谱(HRMS)、移动便携(Portable MS)质谱、小型(miniMS)质谱、或车载(Field-Deployable MS)质谱,能充分实现几秒内的实时快速、灵敏高通量、无损在线样品分析,大大提高大批量样品的瞬时定量和定性检测能力。SICRIT 与串联质谱如 QQQ 和 QTRAP 质谱仪(MS/MS)、QTOF 和 QE 等高分辨质谱仪(HRMS)、MT50 和离子阱等小型质谱仪联机,利用广谱无损无歧视的原位采样和原位软电离、极简或不必的样品预处理需求和省却冗长的色谱分离等待、高灵敏度的 MRM/SRM/SIM 多反应离子检测、中性丢失扫描、前端离子扫描、子离子扫描、高分辨率识别、高质量准度鉴定等功能,实现凝固态、气态、液态或气味样品如毒物、食药、农品、材料、保化、环境、临床等复杂基质样品中成百上千种痕量、超痕量的化学毒剂、药物、生物标志物、等有毒有害物质、代谢物、营养或功能性成分的快速筛选、快速鉴定和高通量快筛和高敏定量分析,大大提升测样服务报告速度、数据质量、和学术水平。SICRIT-MS 的优势还包括非歧视性地同时电离中弱极性、非极性的痕量及超痕量的靶向或非靶向标志物分子,大大提升分子检测覆盖率、特异性、和识别灵敏度。利用快速产生的海量大数据辅以统计学分析,识别化学毒物、风味物种、协诊关键疾病变化(包括健康与病症识别)、监控食药掺伪、和药物分布与毒物迁徙,获取材料、食药、及动植物组织中的化学及生物分子空间分布(成像)信息。创新点介绍:和液质 LC-ESI-MS 及 GC-EI-MS 联用相比,SICRIT-MS 具备诸多优势,使质谱分析 “更软、更直接、更快速、更经济”。例如:(1)直接分析:SICRIT 基本不需要样品制备,样品分析时间很短(1秒内),满足了现代社会对高通量样品快速分析的需求;(2)操作简便、节省人力:SICRIT 不需要调节源的参数,不需要专门时间和知识去优化操作,直接获得分析结果;(3)绿色、低碳:分析过程几乎不需要化学溶剂,甚至不需要任何载气,耗能少,减小钢瓶等配件使用,更方便车载便携,且减少了外来污染源;(4)可在常温常压下分析液态、及气态样品,或来自任何形状样品(比如药片、叶子、咖啡豆、食品、农产品、水产品、玩具、包材)的气味或风味。(5)能同时离子化中性、中极性、和弱极性的活性化合物、药物、毒物、和残留有机物。对中性化合物如烷烃、芳香烃等难电离组分同样灵敏有效,且不需像 ESI 或 MALDI 那样必须先行溶解样品;(6)不产生加合盐离子,离子信号仅包括所有能离子化的待测组分的单电荷离子,简化定量分析和谱图解析;(7)保持分子离子完整性,无碎片,简化谱库制定、定量和谱图解析;(8)样品分析非常简便,只需将样品手动或自动置放于装配在质谱仪离子采样口前端延伸线上 SICRIT 的入口即可瞬时在线产生信号。不需要调节任何参数,操作异常方便,实现全自动和现场分析;(9)和众多主流质谱厂商(如 SCIEX、Agilent、ThermoFisher、Bruker、Shimadzu 等)各种类型的质谱仪如飞行时间、离子阱、三级四极杆及各类混联质谱联用。仪器或技术设备名称:“流过式介质通路放电源 – 串联或高分辨质谱系统(SICIRT-MS/MS或SICRIT-HRMS)”或 “流过式介质通路放电源”,作为已装机的质谱仪的升级配件品牌与型号:SICRIT® 生产商为 Plasmion(德国);中国独家总代理为华质泰科生物技术(北京)有限公司。型号: a) SICRIT® SC-20X 基础配置,含源、控制器及耗材配件;b) SICRIT® GC/SPME Module 加在线 SPME 模块配置c) SICRIT® GC, GC/SPME Module 加在线 SPME 及 GC 恒温桥模块配置安装尺寸或功率:SICRIT 安装尺寸约 250 x 180 x 80mm,自重 2.4 kg公斤。功率没有特殊要求。不需要额外气瓶、不需要流动相、不需要液相色谱仪和色谱柱等耗材。创新点:和液质 LC-ESI-MS 及 GC-EI-MS 联用相比,SICRIT-MS 使质谱分析 “更软、更直接、更快速、更经济”。 (1)绿色、低碳:分析过程几乎不需要化学溶剂,甚至不需要任何载气,耗能少,减小钢瓶等配件使用,更方便车载便携,且减少了外来污染源; (2)可在常温常压下分析液态、及气态样品,或来自任何形状样品的气味或风味。 (3)能同时离子化中性、中极性、和弱极性的活性化合物,对中性化合物如烷烃、芳香烃等难电离组分同样灵敏有效,且不需像 ESI 或 MALDI 那样必须先行溶解样品; (4)不产生加合盐离子,简化定量分析和谱图解析; (5)样品分析非常简便,只需将样品置放于装配在质谱仪离子采样口前端延伸线上 SICRIT 的入口即可瞬时在线产生信号。不需调节任何参数,操作异常方便,实现全自动和现场分析; (6)和众多主流质谱厂商各种类型的质谱仪及各类混联质谱联用。 SICRIT 流过式介质通路放电源
  • 安捷伦宣布推出实时活细胞 ATP 速率测定试剂盒
    安捷伦宣布推出实时活细胞 ATP 速率测定试剂盒新测定方法扩大了 Agilent Seahorse XF 技术的应用范围2018年5月8日,北京——安捷伦科技公司(纽约证交所:A)日前宣布推出一款新产品 — Agilent Seahorse XF 实时 ATP 速率测定试剂盒,这款试剂盒将帮助生物学家增进对活细胞实时功能的了解。Seahorse XF 实时 ATP 速率测定试剂盒使研究人员可以测定并定量分析细胞的三磷酸腺苷 (ATP) 产生速率,ATP 是一种在多个生物学过程中都非常重要的复杂有机物。事实上,这是唯一一款能同时测定两种产能通路(线粒体呼吸和糖酵解)中 ATP 生成的产品。这一新测定方法为细胞表型和功能提供了独特见解,为驱动细胞信号转导、增殖、活化、毒性和生物合成的关键功能研究提供了平台。该检测方法扩大了 XF 技术(可用于检测细胞代谢和生物能量中发生的不连续变化)的应用范围,提供了生理相关指标,另外与仅测量细胞 ATP 静态总终点水平的传统方法相比,此方法能提供更丰富的信息。加州大学洛杉矶分校分子和医学药理学系助理教授 Ajit Divakaruni 博士表示:“对于重点研究细胞代谢如何影响生理机能和疾病的研究人员来说,Seahorse XF 实时 ATP 速率测定试剂盒是一款非常强大的工具。它对使用 XF 分析仪的分析而言是一次巨大飞跃,因为它突破了实时定性测量的阶段,迈向了对细胞中主要能量转换通路的定量计算。”他还谈道:“此外,这是一种非常灵敏的检测方法,传统 ATP 水平的即时快照测定仅在极端情况下才能获得丰富信息,相比之下新方法在此基础上有了巨大的提升。这款试剂盒与传统方法保持一致,便于使用并能提供可靠而直观的数据,我已迫不及待想见证研究界利用这一新试剂盒发现的内容。”安捷伦科技细胞分析事业部高级总监 David Ferrick 博士谈道:“我们非常荣幸能为客户提供一项能得到所有细胞生物学研究人员青睐的突破性功能。这是首个可依据 XF 技术测定线粒体和无氧糖酵解中活细胞 ATP 生成速率的测定方法。现在科学家们可以追踪发生的生物过程,特别是对于疾病相关因素或细胞功能的驱动因素,从而揭示与生理和病理生理变化相关的转折点。”Seahorse XF 实时 ATP 速率测定易于运行,利用便捷的数据处理工具并具有优化的一次性使用形式,可降低复杂性并简化工作流程。安捷伦设计这款试剂盒的初衷是加快各领域的研究进程,包括生物化学、生物技术、肿瘤学、免疫学、细胞生物学、分子生物学、神经学、基因组学、蛋白质组学、代谢组学、毒理学和药物研发。 关于安捷伦科技公司安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2017财年,安捷伦的营业收入为44.7亿美元,全球员工数为14200人。 如需了解安捷伦公司的详细信息,请访问 www.agilent.com。 # # #
  • 安捷伦宣布推出实时活细胞 ATP 速率测定试剂盒
    p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong 新测定方法扩大了 Agilent Seahorse XF 技术的应用范围 /strong /span /p p   2018年5月8日,北京——安捷伦科技公司(纽约证交所:A)日前宣布推出一款新产品 — Agilent Seahorse XF 实时 ATP 速率测定试剂盒,这款试剂盒将帮助生物学家增进对活细胞实时功能的了解。 /p p   Seahorse XF 实时 ATP 速率测定试剂盒使研究人员可以测定并定量分析细胞的三磷酸腺苷 (ATP) 产生速率,ATP 是一种在多个生物学过程中都非常重要的复杂有机物。事实上,这是唯一一款能同时测定两种产能通路(线粒体呼吸和糖酵解)中 ATP 生成的产品。 /p p   这一新测定方法为细胞表型和功能提供了独特见解,为驱动细胞信号转导、增殖、活化、毒性和生物合成的关键功能研究提供了平台。该检测方法扩大了 XF 技术(可用于检测细胞代谢和生物能量中发生的不连续变化)的应用范围,提供了生理相关指标,另外与仅测量细胞 ATP 静态总终点水平的传统方法相比,此方法能提供更丰富的信息。 /p p   加州大学洛杉矶分校分子和医学药理学系助理教授 Ajit Divakaruni 博士表示:“对于重点研究细胞代谢如何影响生理机能和疾病的研究人员来说,Seahorse XF 实时 ATP 速率测定试剂盒是一款非常强大的工具。它对使用 XF 分析仪的分析而言是一次巨大飞跃,因为它突破了实时定性测量的阶段,迈向了对细胞中主要能量转换通路的定量计算。” /p p   他还谈道:“此外,这是一种非常灵敏的检测方法,传统 ATP 水平的即时快照测定仅在极端情况下才能获得丰富信息,相比之下新方法在此基础上有了巨大的提升。这款试剂盒与传统方法保持一致,便于使用并能提供可靠而直观的数据,我已迫不及待想见证研究界利用这一新试剂盒发现的内容。” /p p   安捷伦科技细胞分析事业部高级总监 David Ferrick 博士谈道:“我们非常荣幸能为客户提供一项能得到所有细胞生物学研究人员青睐的突破性功能。这是首个可依据 XF 技术测定线粒体和无氧糖酵解中活细胞 ATP 生成速率的测定方法。现在科学家们可以追踪发生的生物过程,特别是对于疾病相关因素或细胞功能的驱动因素,从而揭示与生理和病理生理变化相关的转折点。” /p p   Seahorse XF 实时 ATP 速率测定易于运行,利用便捷的数据处理工具并具有优化的一次性使用形式,可降低复杂性并简化工作流程。安捷伦设计这款试剂盒的初衷是加快各领域的研究进程,包括生物化学、生物技术、肿瘤学、免疫学、细胞生物学、分子生物学、神经学、基因组学、蛋白质组学、代谢组学、毒理学和药物研发。 /p p   strong  关于安捷伦科技公司 /strong /p p   安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2017财年,安捷伦的营业收入为44.7亿美元,全球员工数为14200人。& nbsp /p
  • 什么是果蔬呼吸测定仪?果蔬呼吸速率测定全靠它!
    果蔬呼吸测定仪是一种用于测量植物呼吸作用的仪器,它可以精确地测定果蔬等植物组织的呼吸速率。该仪器对于研究植物生理生态、优化果蔬采后管理、提高果蔬贮藏寿命等方面具有重要应用价值。 产品链接https://www.instrument.com.cn/netshow/SH104275/C519684.htm 一、采后管理优化 在果蔬的采后管理中,呼吸测定仪可以帮助研究人员了解不同果蔬的呼吸特性,从而优化冷藏、气调等保鲜技术。通过调节贮藏环境的氧气和二氧化碳浓度,可以减缓果蔬的呼吸速率,延长保鲜期。 二、农业科学研究 在农业科学研究领域,果蔬呼吸测定仪用于研究植物对环境变化的生理响应,如温度、光照、水分等对呼吸作用的影响。这些研究对于指导农业生产、提高作物产量和质量具有重要意义。 三、食品加工与贮藏 在食品加工与贮藏行业,该仪器可以测定加工过程中果蔬的呼吸速率,为食品的包装、运输和贮藏提供科学依据。通过控制呼吸作用,可以减少营养损失,保持食品的新鲜度和营养价值。 四、生态环境监测 果蔬呼吸测定仪还可以应用于生态环境监测,评估环境污染对植物生长的影响。例如,通过测定污染环境下植物的呼吸速率,可以评估污染物对植物生理功能的影响。 果蔬呼吸测定仪是一种多用途的科研和生产工具,它在果蔬采后管理、农业科学研究、食品加工贮藏以及生态环境监测等领域发挥着重要作用。随着对食品安全和质量要求的提高,果蔬呼吸测定仪将在未来的农业生产和食品工业中扮演更加关键的角色。
  • 火花放电原子发射光谱仪性能评价方法 征求意见中
    关于征求CSTM标准《火花放电原子发射光谱仪性能评价方法》(征求意见稿)意见的通知各位专家、委员及相关单位:由中国材料与试验团体标准委员会科学试验领域委员会科学试验评价技术委员会(CSTM/FC 98/TC04)归口承担的CSTM LX 9804 00962-2022《火花放电原子发射光谱仪性能评价方法》团体标准已完成征求意见稿,按照《中关村材料试验技术联盟团体标准管理办法》的有关规定,现公开广泛征求意见。请于公告在CSTM官方网站/全国团体标准信息平台发布之日起30个自然日前将《中国材料与试验团体标准征求意见表》以电子邮件形式反馈至项目牵头单位或者CSTM/FC 98/TC04秘书处。1.火花放电原子发射光谱仪性能评价方法(征求意见稿).pdf2.火花放电原子发射光谱仪性能评价方法编制说明.pdf3.中国材料与试验团体标准征求意见表.docx
  • 700万!山东大学计划采购辉光放电质谱仪
    项目概况一、项目基本情况项目编号:SDLR-SDU-2022-009(SDJDHF20220253-Z099)项目名称:山东大学辉光放电质谱仪采购项目预算金额:700.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1辉光放电质谱仪 1台详见公告附件 合同履行期限:详见招标文件要求本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业、监狱企业、残疾人福利性单位采购的项目;3.本项目的特定资格要求:无三、获取招标文件时间:2022年10月12日 至 2022年10月18日,每天上午9:00至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:济南市历下区经十路12111号中润世纪锋1号楼21层方式:因疫情防控期间人员聚集易产生交叉感染,报名方式采用发送邮件报名,将营业执照副本、法定授权委托书或法定代表人证明、标书费汇款底单,将以上材料扫描为一个PDF文件,发至山东龙融招投标代理有限公司邮箱:sdlongrong@126.com,邮件名称命名为:投标人名称-项目名称,在邮件正文中注明所报公司全称、所报项目名称、项目编号、授权人姓名及联系方式,并电话通知招标代理查收(提交标书费须标明项目编号及公司名称,我公司开户银行:中国民生银行股份有限公司济南明湖支行,开户名:山东龙融招投标代理有限公司第一分公司,银行账号:157102632) 本项目实行资格后审,获取招标文件成功不代表资格后审通过。售价:¥300.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年11月02日 09点00分(北京时间)开标时间:2022年11月02日 09点00分(北京时间)地点:济南市历城区二环东路3966号东环国际广场A座20层会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、本项目允许原装进口产品参加投标;2、 在“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)等网站中被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的投标人,不得参加本次政府采购活动;3、单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动;4、上传的技术指标附件仅作为参考,最终以招标文件中的技术指标为准。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:山东大学     地址:0531-88369797        联系方式:王老师      2.采购代理机构信息名 称:山东龙融招投标代理有限公司            地 址:0531-58562236 17753351990            联系方式:宫小寒 单长芹            3.项目联系方式项目联系人:宫小寒 单长芹电 话:  0531-58562236 17753351990
  • 新型辉光放电质谱仪(Element GD)演示及讨论会通知
    在春光明媚的三月底,国内第一台新型辉光放电质谱仪(Thermo Scientific Element GD)在短短十天内顺利地完成了安装,调试和初步的培训,交付用户使用。 在金川镍钴研究设计院的领导的大力支持下,我们拟定在六月五号到六号两天借用研究设计院的设施和仪器,向广大关心辉光放电质谱仪的现状和发展的老师演示Thermo Scientific的新型辉光放电质谱仪(Element GD)。届时Element GD的设计者Dr. Rottman 和应用专家Dr. Hinrichs都会到场为大家介绍Element GD的研发,现状和应用,并演示仪器的操作。 金川镍钴研究设计院位于兰州市榆中和平开发区,离兰州市中心车程30分钟左右。欢迎各位老师踊跃参加。(会议交通费,食宿自理) 有意参加的老师请联系: 赛默飞世尔科技(上海)有限公司 尹松 电话:021-68654588(分机2183) 传真:021-64281793 手机:13816109156 Email: song.yin@thermofisher.com 期待着在兰州与各位老师再会。 祝好! 赛默飞世尔科技(上海)有限公司
  • 上硅所完成GD90辉光放电质谱验收并提供对外测试服务
    p img title=" W020150714386651658960.jpg" src=" http://img1.17img.cn/17img/images/201508/uepic/7a52471d-7484-417f-9937-1a291320d621.jpg" / /p p 北京众星联恒科技有限公司于6月底完成了Autoconcept& nbsp GD90-RF辉光放电质谱仪在中科院上海硅酸盐研究所的安装调试验收工作,目前该设备已正式投入使用并提供对外测试服务。( a title=" 上硅所辉光放电质谱对外测试" href=" http://sic.cas.cn/xwzx/gdxx/201507/t20150714_4393048.html" target=" _blank" 点击查看详情 /a a title=" 上硅所辉光放电质谱对外测试" href=" http://sic.cas.cn/xwzx/gdxx/201507/t20150714_4393048.html" target=" _blank" http://sic.cas.cn/xwzx/gdxx/201507/t20150714_4393048.html /a ) /p p br/ /p
  • 850万!昆明理工大学双聚焦辉光放电质谱仪设备采购项目
    项目编号:YNGH[2022]-291项目名称:昆明理工大学真空冶金国家工程实验室双聚焦辉光放电质谱仪设备购置(双一流23)预算金额(万元):850最高限价(万元):850采购需求:拟采购双聚焦辉光放电质谱仪1套合同履行期限:合同签订之日起180日历天(供应商在此期限内自报最短交货期)本项目(否)接受联合体投标。
  • 南方科技大学再次购置SPS-211L放电等离子烧结设备
    南方科技大学再次购置SPS-211L放电等离子烧结设备创元公司代理的日本富士电波公司的SPS-211Lx放电等离子烧结设备于2014年底在南方科技大学顺利验收完毕,经过这段时间的使用,基于对sps-211LX的良好认同,南方科技大学在购置一台SPS-211Lx之后,决定再购买一台以增加科研能力。这款设备可以广泛用于各种新材料研究。尤其是纳米烧结和梯度烧结。该设备以其精良的制造工艺,优异的烧结性能和经济适用的特点,非常适合各大学、大专院校材料实验及研究开发,一经推出就深受广大用户喜爱。请参见本网站有关SPS的详细技术资料。
  • 谱育科技 在线式臭氧生成速率监测系统,实现臭氧超标精准管控
    O3生成与其前体物VOCs和NOx呈非线性关系,管控具有复杂性。臭氧生成速率是O3控制策略制定的重要指标,若生成速率大于分解速率,臭氧总量动态平衡会被打破,臭氧总量就会增加。对臭氧生成速率的研究一直备受关注,目前此类研究主要使用模型模拟,具有很大不确定性,也无法进行有效、实时的监测,对臭氧污染的研究工作亟需一种可以对臭氧生成速率和臭氧生成敏感性进行有效定量的检测技术。从“看不见、摸不着”到“可看、可算、可知”谱育EXPEC 2620 臭氧生成速率监测系统➢ 直接测量臭氧净生成速率的连续监测系统 , 能够准确评估区域臭氧的变化趋势;➢ 可以结合大气标准站数据,比较臭氧生成速率变化,准确量化臭氧本地产生和区域传输贡献;➢ 通过前体物引入流动反应管技术,实现在线相对增量反应活性(RIR)分析,准确识别敏感性主控因子;➢ 采用高灵敏度CAPS-NO2直测技术,绘制本地臭氧生成特征网格,精准定位重点污染源头。测量原理基于两个置于室外的相同流动反应管,分别为接受太阳紫外辐射的反应管和隔绝太阳紫外辐射的参照管,通过自动切换不同测量通道,利用腔衰减相移光谱法测量NO2技术得到两个腔室的Ox(O3+NO2)的差值,计算得到大气中臭氧净生成速率(P(O3)net),代表了实际环境大气中的臭氧生成速率与臭氧分解速率之差,反映了臭氧总量积累快慢。优势亮点臭氧生成速率监测系统可以开展哪些工作?准确评估区域臭氧的潜在生成趋势,准确量化臭氧本地产生和区域传输贡献,准确识别敏感性主控因子,理清臭氧生成演化机制,为臭氧污染防治提供直接有效的措施指导。01 在线、快速、直接实时获取臭氧净生成速率02 量化本地生成和区域传输贡献占比03 在线式敏感性分析前体物引入流动反应管技术,可实现自动在线相对增量反应活性(RIR)分析,准确识别臭氧本地生成敏感性主控因子,无需复杂计算和专业人员投入。移动监测通过网格化移动监测,可绘制区域臭氧生成速率热力图,精准判断本地臭氧生成热点,实现精准管控。应用场景丰富,灵活可选站点监测、移动监测两种场景模式可灵活选择凭新而变,从更好到更全大气臭氧及光化学污染源解析解决方案搭载谱育科技自主研发的光化学组分、过程因子监测系统以及臭氧生成速率和大气氧化性监测分析系统,结合全面的数据分析能力,掌握详实的区域复合污染情况数据,实时获得区域内臭氧前体物的排放水平及变化规律,摸清生成臭氧的重点污染物种类和污染来源,为有效改善环境空气质量、打赢蓝天保卫战提供多方面的技术和数据支持。
  • 标准解读 |《汽车用金属材料圆棒室温高应变速率拉伸试验方法》
    10月26日,中国汽车工程学会正式发布由泛亚汽车技术中心有限公司联合中国汽车技术研究中心有限公司、清华大学苏州汽车研究院、中国飞机强度研究所、ITW集团英斯特朗公司、道姆光学科技(上海)有限公司、东风汽车集团有限公司等单位联合起草的CSAE标准《汽车用金属材料圆棒室温高应变速率拉伸试验方法》(T/CSAE 233-2021)。本标准提出的金属材料圆棒高应变速率拉伸试验方法适用于汽车底盘用的铸造、锻件类零件材料的高应变速率拉伸测试。本标准在GB/T 228.1-2010及GB/T 30069.2-2016基础上,对金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的规定,以确保棒材高应变速率拉伸测试的准确性。当前,汽车底盘用的铸造类零件如Knuckle和Mount等零件的材料高速拉伸曲线是CAE碰撞分析中重点关注技术参数,为了建立CAE分析用高速拉伸所需数据库,提高碰撞安全分析的准确性,需要借助高速拉伸机、三维光学测试(Digital Image Correlation, DIC)技术获取金属棒材的应力、应变场数据。目前对于铸铁、铸铝的圆棒试样的高速拉伸测试还没有相应的国际、国内标准,各整车企业及总成制造商对铸件材料的高应变率拉伸试验方法未见详细说明,测试结果也存在在较大差异,由此带来该对底盘类铸件材料性能和可靠性的评价存在诸多差异。起草工作组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了GB/T 30069 《金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。编制组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了《GB/T 30069 金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。图1 钛合金和45#钢夹具及分别在100-1s时的拉伸曲线在应变片的粘贴和标定方面做了详细的试验,在本标准中给出了具体阐述,尤其指明标定的系数R2≥0.999。设备状态的确认中,如果测试力的同时还需要测试应变,设备需要连接额外的数据线,试验前需检查所有的连线是否牢固连接,尤其是信号触发线。每次测试前先在静态试验机上低应变速率拉伸,然后在高速试验机上以同样的速率拉伸同一批次的试样检验设备。静态试验根据 GB/T 228.1-2010规定进行。为了验证验证圆棒试样的应变是否需要三维测试,分别用单台和两台相机试验,发现当使用单台相机时,大截面尺寸(5毫米直径棒材)会出现由于散斑扭曲导致跟踪不了散斑变化产生测量误差或试验失效,因此当出现散斑测试的应变变化跟不上力值变化时,应使用两台相机测试。如图2、3所示。铸铝(左) 铸铁(右)图2 一台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线铸铝(左) 铸铁(右)图3 两台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线标准起草组对于数据采集频率也做了研究,图像拍照及采集系统的采样频率应考虑试样断裂时间。当应变速率≤100s-1时,所取得的应变有效数据大于力值的采样数据,而且一般会大于400。当应变速率100s-1时,应变的有效数据会急剧下降,应调整应变的采集频率和拍摄参数,最终应变的有效采集不低于100个点。否则不能有效测出弹性模量及剪切模量。对于拉伸速度偏差认可的确认,各测试单位做了详细讨论,考虑到高应变率速度的影响因素复杂,因此给出按照最大力对应的应变划分不同平均速度的限制要求。即当最大力对应的应变率大于5%时,实际应变速率的平均值推荐在目标应变速率的±5%以内,当最大力对应的应变率小于5%时,记录实际应变速率到报告中。试样尺寸也是本标准重点考虑的内容,较短的测试长度有助于获得高的应变速率,但测量长度不能过小,否则不能保证反映材料的性能。因此参考静态的标准及高应变速率拉伸的现有标准,制作了4种不同的试样并测试。试样的装夹方式,尺寸及夹具材料在标准中得到具体描述。优化后的的试样如图4,并给出推荐尺寸。 图4 典型的试样尺寸说明:(1)尺寸公差为0.05mm,平行段工作部分粗糙度0.32,同轴度为0.01毫米。(2)推荐区域直径为5mm,=10mm,=15mm,R=16mm,=5mm,=35mm,D=12mm,或者区域直径为3mm,=10mm,=15mm,R=12mm,=5mm,=35mm,D=6mm。综上所述,该标准围绕车用金属材料的使用工况,对3毫米直径以上的哑铃型拉伸试样进行充分的试验,给出了从夹具,散斑制作,相机标定,系统试验前验证,试样尺寸与装夹,力的测试,数据采集及处理等方面系统的说明,试验准确性高,试验失效率低,同时避免不同试验员试验结果差异等问题。本标准充分考虑了汽车行业用到的铸件和锻件零件,具有普遍适用性,可以为CAE仿真高效地提供更加准确可靠的材料数据。与目前使用的GB/T 30069 《金属材料 高应变速率拉伸试验》和ISO 26203 《金属材料高应变率拉伸试验》中的方法协调统一,互不交叉,提供了标准外的常用形状试样的高应变速率下的详细试验方法,对现有标准起到补充作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制