当前位置: 仪器信息网 > 行业主题 > >

反应中间体

仪器信息网反应中间体专题为您整合反应中间体相关的最新文章,在反应中间体专题,您不仅可以免费浏览反应中间体的资讯, 同时您还可以浏览反应中间体的相关资料、解决方案,参与社区反应中间体话题讨论。

反应中间体相关的资讯

  • 拉曼光谱新应用:原位光谱观测多种关键反应中间体
    在 BBC 纪录片《蓝色星球》第二季中,担任解说员的“世界自然纪录片之父”大卫爱登堡(David Attenborough)为了探究二氧化碳对海洋的危害,拜访了一位科学家。▲图 | 大卫爱登堡(左一)和一位海洋科学家(来源:见水印)后者把稀释的酸倒向水中,结果贝壳开始“消失”。贝壳由碳酸钙构成,而酸会溶解它们。构成珊瑚礁的材质,和贝壳是一样的。科学家认为,在 21 世纪之前,珊瑚礁有可能会消失。背后的“罪魁祸首”便是二氧化碳,它们溶解在海水中会变成碳酸。空气中的二氧化碳越多,海水酸性就越强,“死去”的珊瑚礁就越多。有证据显示,燃烧矿物燃料是造成二氧化碳浓度上升的主要原因。因此,全球许多国家都在致力于碳中和。实现“双碳”目标(2030 年前碳达峰、2060 年前碳中和)是中国为应对全球气候变化做出的重大战略决策和庄严承诺,也是构建人类命运共同体和促进人与自然和谐共生的必然选择。其中的战略路径选择之一,是实现碳化工与碳利用产业结构重构,比如利用风能、水能、太阳能等可再生能源,将CO2电催化成为高附加值的化工产品和化学燃料。目前,在用于CO2还原反应的各类催化剂中,铜(Cu)基材料是最具潜力的催化剂,因为其能直接将CO2电催化还原为多种高碳氧和碳氢化合物。此外,人们还可通过调整铜催化剂的形貌、晶面、孔径、颗粒间距离、次表面原子和晶界等参数,来实现特定的催化反应活性和选择性。因此,在实际的电化学反应条件下,原位研究铜表面上CO2的电催化反应、及其反应中间体是非常重要的,这有助于我们更深入地了解 CO2电催化反应机理,并借此设计出更合理、高效的催化剂。尽管目前许多原位表征测试技术,比如表面增强拉曼光谱(SERS,Surface-Enhanced Raman Scattering)、表面增强红外吸收光谱(SEIRAS,Surface-enhanced infrared absorption spectroscopy)、衰减全反射傅里叶变换红外光谱(ATR-FTIR,Attenuated total reflectance-Fourier transform infrared)、X射线吸收光谱、和X射线光电子光谱等,在研究CO2电催化还原反应中取得了快速的发展。但是,如何全面识别其众多表面反应中间体、理解其表面吸附物种之间的相互作用,仍然是一个巨大的挑战。基于此,南京工业大学材料化学工程国家重点实验室邵锋团队及其合作者针对上述挑战,结合运用电化学-壳层隔绝纳米粒子增强拉曼光谱 (EC-SHINERS,electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy)技术、以及从头算分子动力学(ab initio molecular dynamics,AIMD)模拟,对铜表面的一氧化碳电催化反应过程进行系统而深入的研究,首次用全光谱(40-4000cm-1)观测了多种关键反应中间体,指认了中间体的特征拉曼峰,提出了表面吸附物种相互作用机理,并通过同位素标记实验进一步获得证实。▲图 | 大卫爱登堡(左一)和一位海洋科学家(来源:见水印)概括来说,本研究主要关注CO2电催化还原反应中间体和机理的基础研究,以期指导新型高效铜催化剂的设计与制备。▲图 | EC-SHINERS 技术示意图、(FDTD,Finite-difference Time-domain)以及 AIMD 模拟示意图(来源:PNAS)近日,相关论文以《原位光谱电化学探测铜单晶表面一氧化碳氧化还原过程》(In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces)为题,发表在 PNAS 上[1]。邵锋教授(南京工业大学)担任第一兼通讯作者,李景国博士(瑞典乌普萨拉大学)和兰晶岗博士(瑞士洛桑联邦理工大学)担任共同通讯作者。▲图 | 相关论文(来源:PNAS)邵锋表示:“(投稿期间)印象最深的一个插曲,是在我们的返回第一轮审稿意见大概两个月后,编辑给我发来邮件说其中的一个审稿人失去联系了,准备再重新找一个新的审稿人开启新一轮的审稿。”而当时正是俄乌冲突发生最激烈的时候,并且欧美也开始了各类制裁和限制俄国和俄裔人士的风潮。课题组担心其中之一的审稿人可能是俄国或俄裔科学家,因此,或多或少会受到了一点影响,也耽误了审稿的进程。“因此我们的论文从投稿到接收,确实经历耗时很久。虽然虚惊一场,好在最后还是得到了编辑的肯定,最终论文被接收了!”邵锋说。同时审稿人表示,论文的光谱实验部分非常令人兴奋,包含大量有价值的信息,对研究反应机理非常有帮助。此外,理论计算部分质量也很高,预测了各种可能中间体的特征振动图谱,并能与实验结果很好地吻合。其还称,这是一项非常扎实的工作,进行了大量的控制实验和对比实验,同时结合了 AIMD 计算,故论文的论证路线和数据分析令人信服。此外,审稿人也提出了非常重要的建议:即对于特征拉曼峰的归属指认,如何排除其他接近的拉曼峰的重叠与干扰?例如,课题组首次观测并指认了 1220 和 1370cm-1 处的拉曼峰,为 CO-CO 耦合后迅速夺取表面水分子的质子而形成的*HOCCOH 中间体的特征峰。然而,这些峰的位置与反应过程中共存的 *HCO3–/*COOH /*CO32–/*CO2– 等表面中间体的拉曼峰十分接近。因此,该团队需要进行严格的对比实验,来排除可能的重叠与干扰。通过控制实验和理论计算相结合,课题组对这些中间体的特征拉曼峰进行了明确归属,并由此提出了相应的电催化反应机理和路径。研究中的第一步是对原位检测技术的选择。鉴于其具有明确的表面状态以及光电性质,铜单晶表面被用作电催化反应基底。常用的 SERS 技术很难应用于单晶界面研究,而基于红外的光谱技术又难以提供低波数范围(至-0.8 V);2. 不同反应氛围(CO 与 Ar 饱和溶液);3. 不同反应阳离子(CsOH、KOH 与 LiOH);4. 不同反应晶面(Cu(100)、(111)与(110)晶面5. 不同反应 pH 值(CsOH、CsHCO3 与 CsCl 溶液);6. 不同同位素标记(13CO 与 D2O 溶液);7. 不同中间体的稳定性(*OCCO、 *HOCCO, 和*HOCCOH物种)。8. 不同特征峰的重叠(*HCO3–/*COOH /*CO32–/*CO2– )等。值得注意的是,课题组的 AIMD 的计算还表明,溶剂水分子不太可能与铜表面吸附的一氧化碳形成氢键,这意味着 *CO 在较低的过电位下,难以直接从溶剂水分子里得到质子进而形成 *COH/*CHO。与此同时,之前文献报道的 *OCCO 和 *HOCCO 作为 C-C 耦合的关键中间体,它们在铜表面依旧拥有较高的反应活性而发生进一步的反应,最终形成 *HOCCOH 中间体。其中,吸附于铜表面的水分子可以作为质子源参与反应,同时还能留下 Cu-OHad 这一表面吸附物种。下一步,该团队计划开展基于新材料的 CO2捕获富集、催化转化与产物分离耦合的过程研究,以提高传统反应过程的资源和能源利用率为目标,助力“双碳”目标的高质量实现。参考资料:1.Shao, F., Wong, J. K., Low, Q. H., Iannuzzi, M., Li, J., & Lan, J. (2022). In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces. Proceedings of the National Academy of Sciences, 119(29), e2118166119.
  • 爆炸级反应安全化!炸药中间体苦味胺的连续合成
    苦味胺作为关键中间体用于合成DATB、TATB等高能材料,在染料行业被用于制备2,4,6-三硝基苯肼的前体。Scheme1: 对硝基苯胺一步硝化法制苦味胺&bull 先前苦味胺的合成主要是通过邻/对位硝基苯胺的再硝化得到(scheme1),但是硝酸会氧化氨基导致收率下降。有报道称,苦味胺可通过苦味酸和尿素(摩尔比1:3)在173℃@36hr 条件下合成得到,但收率仅有88%。这条路线的风险主要是高温和较长反应时间带来的潜在过程安全风险。截至目前,文献中报道大规模生产苦味胺的工艺具有很大的安全风险且难以放大。&bull 微反应器为此反应提供了机会,在微反应器中,极佳的传热和传质效率可以大大缩短反应的停留时间,在任何时间点上都只有很少量的原料、中间体和产物,对于高能材料而言可显著提升反应的安全性。来自印度的Ankit Kumar Mittal等人开发了一种从对硝基甲醚到苦味胺的连续合成路线(scheme2)。Scheme2: 对硝基苯甲醚两步法制苦味胺&bull 首先进行了step-1的条件筛选和优化,分别优化了不同的温度、停留时间和硝酸用量(Table1):Table1: step1连续合成条件筛选和优化 &bull 根据实验结果,选择硝酸用量2.5e.q.,温度80℃,停留时间2.5min,此条件下中间体TNAN含量最高且杂质苦味酸含量相对较少。&bull Step-1放大至16ml盘管中生产,15min可以得到6.27gTNAN,相当于25g/hr的产量,分离收率90%,纯度99%。&bull 同时做了step-1的连续流和釜式工艺的结果对比,釜式75min仅能达到25%收率,而连续流2.5min就可以达到90%的收率(Table2):Table2: step-1釜式和连续流工艺对比&bull 随后进行了step-2的条件筛选和优化,NH3 用量5.e.q.,温度70℃,停留时间30s,苦味胺纯度100%(Table3):Table3: step-1连续合成条件筛选和优化 &bull Step-2放大由于受到设备(10ml盘管)自身参数的限制,选择了60℃和1min的停留时间,15分钟可以拿到6.68g产品,相当于26g/hr的产能,纯度99%。Scheme3: step-2放大&bull 总结:&bull 1. 使用微反应器成功开发了苦味胺的连续合成工艺,产能26g/hr&bull 2. 两步的条件都很温和,可以在优化后的条件下成功放大&bull 3. 该工艺可以安全、经济地进行苦味胺的工业化生产&bull 4. 后续结合自动监控装置可以更有效地保障工艺的安全性和稳定性参考文献:An Asian Journal Volume 18 Issue 2 Pages e202201028Journal---------------------------------------------------------------------------------------------------------------------集萃微反应创新中心: 打造微通道反应器定制开发、绿色合成工艺研发、化工连续化与自动化生产技术、化工在线检测与在线数据处理平台;提供连续化、自动化、智能化生产技术、化工高效分离技术、副产物的高效回收与综合利用、在线检测与大数据收集等,实现化学合成生产过程 “连续化、微型化、信息化、智能化”。如您有连续流工艺开发、转化方面的需求,欢迎联系我们!
  • ​【诺华新案例】重氮-叠氮-环合,三步全连续制备药物中间体
    欢迎您关注“康宁反应器技术”微信公众号,点击图片报名一、早期药物发现一个自身免疫性疾病的治疗药物发现项目中,2H-吲唑类化合物被鉴定为高效的选择性TLR 7/8拮抗剂。在先导化合物发现阶段,化合物12被确定可进一步进行体内药效实验研究。图1. 微克级样品的合成路线药物的早期发现使得化合物12和作为关键中间体的化合物5(2H-吲唑)的需求迅速增加。项目团队认识到,该微克级的合成路线可能会在进一步批量放大中产生问题。分离不稳定、潜在危险的叠氮化物中间体4及其在热环化为2H-吲唑5的工艺过程中有安全性的隐患。【考虑到连续工艺在处理高活性、不稳定化合物方面具有的优势,从间歇反应切换到连续流工艺的多个驱动因素中,安全性是最重要的一个因素。在需要快速合成化合物的早期临床前阶段,流动化学作为一种新技术可以大大加快开发过程。】二、连续流工艺探讨针对100克及以上规模的合成,团队启动了流动化学的工艺研究,其主要目标是保持反应体积尽可能小,精确控制反应条件,并避免在任何时间内反应混合物中危险且不稳定中间体的积累。1. 间歇式工艺的连续流技术评估图2. 2H-吲唑类化合物5a的三步合成将氨基醛2a转化为叠氮化物4a,间歇式工艺采用了在酸性条件下使用亚硝酸钠的重氮化方案,然后在0°C下添加叠氮化钠。该反应通常在三氟乙酸(TFA)作为酸性介质和溶剂的存在下进行,可以获得高收率的结果,并常规用于小规模合成。【但含有叠氮化物4a的反应混合物形成的悬浊液明显不适合流动化学筛选。而当该反应在水和盐酸的混合物中进行时,观察到明显较低的产率和大量副产物的形成。考虑到下一步反应,叠氮化合物4与氨基哌啶化合物6在Cu(I)催化的热环化反应仍然面临不适合连续流工艺的固体溶解问题。】研究团队首先需要找到合适的反应溶剂和试剂,对这两步反应来说,合适的溶剂既要溶解所有的物料,又要保持高的转化率。其次,作为另一个重点考虑的事项,需要避免叠氮化合物中间体4的分离。2. 叠氮化合物4a生成的连续流工艺开发 1)溶剂的选择研究者首先用亚硝酸叔丁酯和三甲基叠氮硅烷来代替无机物亚硝酸钠和叠氮化钠,但仅得到了20%的转化率。接着,研究者发现利用二氯乙烷和水的两相混合溶剂与三氟乙酸组合,可以将反应体系中的物质完全溶解,并得到了很高的转化率。而其它酸的应用,如乙酸、盐酸、硫酸和四氟硼酸等,仍会造成沉淀的生成或者反应的转化率降低。2)工艺条件筛选对该反应仔细的研究揭示,需当亚硝酸钠完全消耗后再向反应混合物中添加叠氮化钠,如果过早加入叠氮化钠,它将立即被第一反应步骤中剩余的未反应的亚硝酸钠所消耗。图3. 叠氮化合物4a的连续流工艺流程【Entry 3的实验条件连续稳定运行60分钟,可产中间体16g/h,完全满足下游实验的需要。】3. 2H-吲唑5a连续流工艺开发在完成重氮化及叠氮取代的连续流工艺开发之后,研究团队继续研究铜催化环化的连续流工艺。1)间歇式工艺缺陷间歇式反应中,10% mol的氧化亚铜在体系中悬浮性差,不适合用于连续流工艺。对于流动反应而言,80°C下反应90分钟的时间太长,会导致不可接受的低生产率。这种环化反应的收率通常合理的范围在70−80%,研究团队使用LC-MS鉴定了两种主要副产物氨基亚胺8a和氨基醛2a。图4. 2H-吲唑 5a反应路径及副产物确认2)对铜催化剂和配体的筛选研究者发现,在1当量TMEDA存在下,0.1当量的碘化铜可溶于二氯乙烷中。经反应筛选后,研究者确定了流动条件下环化的合适参数。含有0.1当量碘化铜(I)和1当量TMEDA的0.45M 4a 二氯乙烷溶液,在120°C下,在20分钟的停留时间内,完全转化为吲唑5a。使用LC-MS分析反应混合物表明,叠氮化物4a被完全消耗,得到产物5a、氨基醛2a和亚胺8a,其比例分别为91.5%、3.4%和5.1%,与之前使用的间歇式工艺相比,有了显著的改进。3)停留时间及铜盘管催化为了缩短停留时间和提高生产率,研究者在寻求用更具反应性的催化剂代替碘化铜(I)和TMEDA过程中发现,内径为1mm的铜线圈也有效地催化了该环化反应。推断在铜线圈的内表面上形成了少量的氧化铜(I),起到有效催化该反应的作用。图5. 铜盘管反应器催化反应作为概念证明,制备了0.32M的4a溶液,该溶液已与1.2当量的胺6在甲苯中混合,并在120°C下泵送通过铜盘管,停留时间为20分钟。使用色谱法进行处理和纯化后,分离出5.6g吲唑5a,产率为85%,纯度为98%(图5)。4. 重氮-叠氮-环合三步全连续合成2H-吲唑类化合物图6. 2H-吲唑 5b的连续流工艺结果利用上述研究结果,研究者同样进行了类似物5b的连续流工艺开发。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。总结报道了三步反应的连续工艺开发,在100克的规模上制备了两个关键的药物中间体2H-吲唑化合物5a和5b。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。通过减小反应器的持液体积,避免固体叠氮化合物的分离,并确保精确控制反应参数,特别是反应温度和试剂的比例,改进了工艺的安全性。将两个连续流步骤整合到化合物12的多步合成中导致更安全地制备和处理叠氮化物中间体,并显著促进了高效和选择性TLR 7/8拮抗剂项目的加速开发。随后,连续流工艺从研究部门转移到化学开发部门,仅对工艺进行了少量的修改,便用于制备千克规模的5b。参考文献:Org.Process Res. Dev. 2022,26, 1308−1317
  • 重要科研用试剂核心中间体研发 申报指南
    关于发布“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”课题申报指南的通知 各有关单位:   为贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,满足我国科学研究对试剂需求日益增长的需要,科技部在认真总结前期工作的经验、成果并广泛征求各有关部门(单位)、地方对科研用试剂提出的需求的基础上,决定启动“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”。通过本项目的实施,将进一步完善产学研相结合的机制,在政府的引导下构建更加完善的科研用试剂产学研用联盟 发挥和提升我国科研用试剂的自主创新及产业化的能力,进一步推动我国科研用试剂行业的稳步发展,为科研提供更有力的支撑。   为充分调动各方的积极性,促进科技资源优化配置,公平、公开、公正地选择课题承担单位,科技部对本项目的课题采取公开申报,择优委托的方式选择课题承担单位,现将项目课题申报指南发给你们,请按照指南要求,做好组织申报工作。   联系人:王建伦 010-58881698       wangjl@most.cn   附件:“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”课题申报指南   科技部科研条件与财务司   二〇〇九年六月二十三日
  • 注射剂中间体质量标准制定策略
    药物成品之前的都是中间体。根据产品特点及工艺情况,综合确定关键中间体,关键中间体需要制定质量标准,并检验控制。对于注射剂而言,关键中间体一般是指在配液罐中完成调配的药液。对于注射剂产品,一般会将性状、含量、pH值列为中间体检查项,参考成品的质量标准,将含量和pH值的限度收一收。但光是这样做就有些粗糙了,我们应该根据剂型的特点,产品的特点,有目的地设定中间体检查项,更好地做好产品的质量控制。一、性状对于无色溶液,一般简单地规定“无色澄明液体”即可。但对于有色溶液,特别是灭菌后颜色会加深的产品,建议中间体增加溶液颜色检查项。这样一旦成品颜色比正常情况要深,便于分析是配液工序还是灭菌工序发生的异常。有些冻干产品,随着药液储存时间的延长,溶液颜色也逐渐加深,而一旦冻干开始,颜色即不再变化。这类产品更应建立溶液颜色检查项,并以此检查项确定配液灌装工序的储存时限。基于中间体检查需要简单、快速的特点,一般对比色号即可,不建议使用溶液颜色测定仪。二、含量可以认为,制剂成品的含量控制限度即是药物可以在人体内起效的限度,低于这个限度,药效降低。而制定中间体含量标准的目的就是要保证含量在药品有效期内符合其质量标准。对于非常稳定的品种而言,假如成品的含量限度是90.0%-110.0%,那么中间体含量限度定在95.0%-105.0%即可;假如成品的含量限度是95.0%-105.0%,中间体含量限度可定在97.0%-103.0%。由于含量在效期内基本不会发生变化,中控范围只需能够包容检测方法产生的系统误差。对于储存期间含量逐渐下降的品种,中控含量限度除了要包容方法的误差外,还要包容含量降低的幅度。假如成品的含量限度是90.0%-110.0%,含量在效期内预期降低6%,检测误差不会超过2%,则中控限度应定为98.0%-102.0%。对于冻干产品,由于其标示量和水针不同,影响产品含量的还包括装量。灌装机总是有精度误差的,因此在制定中控含量标准时,还应考虑这一因素。下面用一张图表示某冻干产品制定中控含量限度的思路。 对于其他特殊情况,如采用半透性包材包装的注射剂,也应根据其特点制定做相应的调整。此外,由于尚未灌装的药液不存在标示量这一概念,注射剂的中控含量采用浓度表示(如4.8-5.2mg/ml)较为规范。为了方便理解,企业可以在内部文件中注明浓度对应的百分比。如4.8-5.2mg/ml(96.0-104.0%)。三、pH值大多数的注射剂都对pH值非常敏感,一般不能将成品的pH值标准简单收紧作为中控pH值范围。如硫酸阿托品注射液,中国药典规定pH3.5-5.5,但pH低于4时水解速度明显下降;又如氨茶碱注射液,USP规定pH8.0-9.0,但事实上pH低于8.5原料根本无法溶解。因此,一般以药物最适的pH值范围作为中控范围,同时注意不要触及成品pH值的上下限。四、渗透压摩尔浓度因为渗透压的检测方法非常简单快捷,所以建议成品有渗透压检测项的也在中间体制定,有时投料出现偏差能及时发现。所有的输液产品都会规定渗透压检查项,水针品种用法中包含有静脉推注给药方式的要进行渗透压检测。需要注意的是,有的产品,虽然给药方式是静脉推注,但并不等渗。如地西泮注射液和托拉塞米注射液,限于API溶解性或稳定性的原因,处方中加入了较大量的有机溶剂,形成高渗溶液。这类产品建议也增加渗透压检查项,对产品质量形成更有效的控制。五、有关物质一般终端灭菌的注射剂不需在中间体进行有关物质检测。对于极不稳定的某些产品,如易水解的冻干制剂,可在中控中加有关物质项。并以此验证配液和灌装的试产。六、抗氧剂按照要求,制剂产品放行标准应包括所含的抗氧剂的含量测试,以保证有足够的抗氧剂保留在制剂中,能在整个货架期和所拟的使用期间一直对制剂起到保护作用。 依据上述理念,亚硫酸盐这类属于还原剂的抗氧剂的含量还是非常有必要定在中控标准中的,因为配液及药液在配液罐放置过程中,亚硫酸盐即在被消耗。而依地酸二钠的含量不会发生变化,因此无需进行控制。EMA在《药品注册上市许可申请材料中对辅料的要求》(Guideline on Excipients in the dossier for application for marketing authorisation of a medicinal product)中也指出抗氧剂应提供药品生产过程中的控制方法,但不适用于增效剂,如依地酸二钠。七、微生物负载对于注射剂的微生物负载,国内的GMP有很明确的规定,即:对于除菌过滤前非最终灭菌产品微生物的限度标准一般为:10CFU/100ml对于最终灭菌的无菌产品微生物的限度标准一般为:100CFU/100ml但对于微生物负载的取样位置,各企业却有不同的做法。有的企业会在配液罐中取,有的企业会在药液过0.45μm滤芯后取。后一种做法的依据是:GMP中规定最后一步除菌过滤前,料液的微生物含量应不大于 10CFU/100ml。但其实这样做是有些违背GMP理念的。在欧盟《药品、活性物质、辅料和内包材灭菌指南》中,有如下描述:In most situations, a limit of NMT 10 CFU/100 ml (TAMC) would be acceptable for bioburden testing. If a pre-filter is added as a precaution only and not because the unfiltered bulk solution has a higher bioburden, this limit is applicable also before the pre-filter and is strongly recommended from a GMP point of view. A bioburden limit of higher than 10CFU/100 ml before pre-filtration may be acceptable if this is due to starting material known to have inherent microbial contamination. In such cases, it should be demonstrated that the first filter is capable of achieving a bioburden of NMT 10 CFU/100 ml prior to the last filtration. Bioburden should be tested in a bulk sample of 100 ml in order to ensure the sensitivity of the method. Other testing regimes to control bioburden at the defined level should be justified.翻译如下:大多数情况下不超过10 CFU/100 ml(TAMC)的限度对于生物负载测试是可接受的。如果仅作为预防措施添加预过滤器而不是因为未过滤溶液具有更高的生物负载,则此限度也适用于预过滤器,并且从GMP的角度强烈推荐。如果由于已知具有固有微生物污染的起始物料,则预过滤前的生物负载限度高10CFU/ 100ml是可接受的。在这种情况下,应该证明第一个过滤器能够在最后一次过滤之前达到不超过10CFU/100ml的生物负载。生物负载应在100ml的样品中进行测试,以确保该方法的灵敏度。其他在特定浓度控制生物负载的测试方案应该是合理的。 显然,欧盟是建议在配液罐中取样进行微生物负载检测的。GMP的一个核心理念即是“可控”。要知道即使药液微生物负载很大了,经过预过滤滤芯后也会有几个数量级的下降。数据虽然好看了,但焉知预过滤前未知的微生物负载会不会导致细菌内毒素的失控?有的营养性药物,浓度大,确实适合微生物生长,但如果确知微生物的种类,在可控的前提下进行预过滤,是可以接受的。八、细菌内毒素建议在配液罐中取药液进行检测,与中控含量检测同步进行。九、可见异物、不溶性微粒这两个检查项可以取药液过滤后的样品,取滤芯后或灌装初始样品,各企业可以按照自己的习惯进行管理。不溶性微粒的中控标准制定必然是1ml药液含有多少微粒,而制剂成品的标准是每支样品中含有多少微粒。应注意换算关系,确保中控标准严于成品标准。
  • 德祥顺利参展第10届中国(长春)国际医药原料、中间体、包装设备展览会
    2017年3月23日到25日,第10届中国(长春)国际医药原料、中间体、包装设备展览会在长春国际会展中心顺利举办,德祥携手众多进口实验室仪器供应商在展会上亮相。 作为制药行业的展会,我司代理的德国Hettich离心机,德国Heidoph旋蒸、美国SP scientific、冻干机、德国Pharmatest等仪器作为代表参展,在展会期间,我们产品的质量和性能受到客户的高度认可,客户也对他们目前遇到的技术问题与我们工作人员进行沟通,我们的技术人员也一一给予了满意的答复。 德祥,作为进口实验室仪器的代理商,将一如既往为广大新老客户提供*的产品和完善的服务,欢迎来电咨询,了解更多资讯和产品详情! 电话:4009-000-900
  • 创新通恒参展2012中国国际医药原料药、中间体、包装、设备交易会
    第69届中国国际医药原料药、中间体、包装、设备交易会于2012年11月7日至9日在厦门国际会展中心隆重举行。本届展览交易会的主题是“药品安全之源,品牌优质之选”,旨在关注药品安全,打造创新制药品牌,引领中国制药工业发展大势。 本次交易会吸引了大批国内外众多知名厂商参与。 北京创新通恒科技有限公司作为国内能提供工业化核酸药物合成仪及大型工业级制备纯化系统的企业,组织了公司精干技术人员和市场人员参加了本次交易会。创新通恒十多年来一直专注色谱产品领域的研发及生产,不断攻坚克难,满足客户不同需求。本届展览交易会上我公司展出的产品受到了广大参观者的关注和好评。 “因为专注,所以专业”创新通恒一定能为广大客户提供优质的产品和服务,为用户创造价值。 交易会开幕式 客商正在参观创新通恒展品 创新通恒市场人员与客商进行交流 创新通恒技术人员解答客商的问题
  • 德国新帕泰克将参加第62届中国国际医药原料药、中间体、包装、设备春季交易会!
    德国新帕泰克公司将参加第62届中国国际医药原料药、中间体、包装、设备春季交易会(62nd API)! 德国新帕泰克公司将参加于2009年05月12-14日在西安曲江国际会展中心(西安市雁展路1号)举办的&ldquo 第62届中国国际医药原料药、中间体、包装、设备春季交易会&rdquo ,The 62nd API China 2009 Xi&rsquo an。 公司展位号B1309,届时公司会携专利的全自动干湿二合一激光粒度仪HELOS/OASIS 和世界上第一台光子交叉相关光谱纳米激光粒度仪NANOPHOX 参展!期待与大家进行专业的现场技术交流,并可以在现场提供样品粒度检测。 热忱欢迎各界人士光临公司展位!
  • 德国新帕泰克公司将参加第61届中国国际医药原料药、中间体、包装、设备秋季交易会!
    公司将参加于2008年11月05-07日在苏州国际博览中心(苏州工业园区现代大道博览广场.) 举办的“第61届中国国际医药原料药、中间体、包装、设备秋季交易会 The 61st API CHINA&INTERPHEX CHINA”。 公司展位号3A522,公司会携专利的全自动干湿二合一激光粒度仪HELOS/OASIS和世界上 第一台光子交叉相关光谱纳米激光粒度仪NANOPHOX 参展! 随着对原料药出口要求的不断提高,粒径分布已经成为原料药出口过程中一个很关键的参数指标。 德国新帕泰克专注于医药行业的粒度检测需要,在全球尤其欧美拥有大量的医药客户,专利的干 法激光粒度仪HELOS/RODOS能为您提供快速、方便的原料药粒度检测技术,功能强大,完全符 合FDA的各项要求! 届时中国区首席代表耿建芳博士等将与大家进行专业的现场技术交流,并可以在现场测试样品。 热忱欢迎各界人士光临公司展位!
  • 丹东百特精密仪器亮相第86届中国国际医药原料药中间体包装设备交易会
    在初夏的美丽羊城-广州,丹东百特携百特激光粒度仪Bettersizer 2600,纳米粒度电位仪BeNano 90 Zeta,智能粉体特性仪 BT-1001,图像颗粒分析仪BT-1600参加了为期三天的第86届中国国际医药原料药中间体包装设备交易会。此次展会吸引了生物制药行业上下游众多企业,同时丹东百特也为制药行业提供了全方位的颗粒检测解决方案。会议开展于广交会展馆,拥有9.2、9.3、10.2、10.3、11.2五个展区,分别展示了制药设备、干燥设备、包装设备、检测设备及原料药和辅药材料,吸引了数以万计的观众前来交流学习。期间,到访百特展位的观众络绎不绝,对于粒度检测比较陌生的观众,百特销售经理从激光粒度仪的原理、测试方法、报告解读以及售后保养等方面为每位观众进行详细全面的介绍。对于前来交流的的老客户,百特销售经理更是细心的询问仪器目前的使用状态是否良好,若出现疑问,销售经理和工程师在现场立刻解决问题,保证每位客户在百特展台的交流都有所收获。耐心的仪器讲解、一丝不苟的做事态度赢得了每一位观众的好评。针对生物制药行业,丹东百特深入研究行业标准,产品均符合ISO13320-2016,21CFR Part 11等制药标准及审计追踪。对于药物颗粒检测,Bettersizer 2600 同时可以具备干湿法分散器及微量耐腐蚀样品池进样方式。正反傅里叶光路设计使得粒度检测范围达到0.02μm-2600μm,重复性和准确性都能达到国际水平。对于纳米颗粒检测,例如蛋白质、脂质体、纳米悬浮液,丹东百特研发的第四代纳米粒度电位仪BeNano 90 Zeta,采用高性能APD和准确的温控系统能够准确测量颗粒的粒度和电位变化。BT-1600图像颗粒分析仪是颗粒检测的眼睛,它能够拍摄到清晰的颗粒照片并通过百特自主研发的高速率分析软件进行颗粒的多项指标分析,例如:长径比、圆形度、单体颗粒和颗粒群等。智能粉体特性仪能够测量粉末的14项粉体特性指标,能够充分表征粉末的物理特性。丹东百特仪器有限公司秉着“诚信经营,以客户为本”的经营方针,为广大制药用户提供全方位的颗粒检测方案,展会还在进行中,百特团队在广交会展馆9.2A06展位期待着您的光临。
  • 定位中国制药新未来——第82届中国国际医药原料药/中间体/包装/设备交易会在杭州召开
    p    strong 仪器信息网讯 /strong & nbsp 2019年5月8-10日,制药及制药设备行业盛会——第82届中国国际医药原料药/中间体/包装/设备交易会(以下简称“API China”)在杭州国际博览中心盛大召开。1200余家医药原料、辅料配料、医药包装、制药设备及检测仪器企业参展,超过5万名全球药品、保健品与化妆品领域专注研发与生产的精英人士汇聚于此,共同分享大健康产业蓬勃发展带来的巨大市场机遇,探讨中国制药行业未来的发展,为观众打造一场规模盛大、产业链齐全的制药工业展会。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/698835a3-34ce-4bb4-8460-709d2db1275e.jpg" title=" 观众入场.JPG" alt=" 观众入场.JPG" / /p p style=" text-align: center " 观众入场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/2c545a59-36c3-426c-b0df-73dbb1c52986.jpg" title=" 现场.JPG" alt=" 现场.JPG" / /p p style=" text-align: center " 展馆内景 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/9decb2af-c7d2-4017-af58-cef6551293c9.jpg" title=" 现场3.JPG" alt=" 现场3.JPG" / /p p style=" text-align: center " 展馆外景 /p p   API China是中国制药领域规模较大、历史悠久的展会,也是海内外数万家药品与保健品生产企业采购原料药、中间体、药用辅料、医药包材、制药设备的“一站式”的平台。展会当天,穿梭于各展馆之中,可以看到现场人头攒动,展商和参展观众热情高涨,气氛十分热烈。 /p p   除了展览之外,本次展会还给展商以及参展观众提供了一个与前沿技术接触、和专家学者交流的机会。当一致性评价、两票制、智能化、信息化、自动化等政策和趋势向制药工业袭来时,很多企业或许无法采取及时有效的应对措施。本次展会特针对于国内各种制药“新政”举办了三十余场高质量会议论坛,邀请了来自NMPA、CDE、核查中心、中检院、药典委、省市药检所等相关政府部门领导及国内外优秀的制药企业、CRO公司、原辅料企业的百余位嘉宾,为制药行业同仁带来最务实的分析、指导和建议。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/0578332c-f636-4dea-9904-fa05e4eea44c.jpg" title=" 高峰论坛.JPG" alt=" 高峰论坛.JPG" / /p p style=" text-align: center " 2019中欧医药产业发展论坛 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/1d8d1384-9206-4814-933b-a12bdf29abec.jpg" title=" 仪器论坛.JPG" alt=" 仪器论坛.JPG" / /p p style=" text-align: center " “工欲善其事,必先利其器——论现代仪器技术在药品研发与质控中的应用”论坛 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/9d0fe1b5-8f42-471c-b061-58bc2cb1a55e.jpg" title=" 一致性.JPG" alt=" 一致性.JPG" / /p p style=" text-align: center " API China 巡回交流会(杭州)注射剂一致性评价技术和法规研讨会 /p p    span style=" color: rgb(0, 112, 192) " strong 部分实验室仪器设备参展商: /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/909e4ccd-dc69-4316-8f16-ecff5fd194b3.jpg" title=" 永合创新.JPG" alt=" 永合创新.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 永合创信 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/5699fd34-8a39-4c8e-81af-46217216bedf.jpg" title=" 永岐实验.JPG" alt=" 永岐实验.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 永生仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/3a5e374c-939a-438e-a34e-dd221ea99dbe.jpg" title=" 苏盈仪器.JPG" alt=" 苏盈仪器.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 苏盈仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/d1685a44-34c3-4c55-ae7f-ce4241547797.jpg" title=" 真理光学.JPG" alt=" 真理光学.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 真理光学 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/799f973d-70ba-472e-a4b9-dc1404612bc7.jpg" title=" 长城.JPG" alt=" 长城.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 郑州长城 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/83938542-3488-4bf2-a322-ed06e4bf6966.jpg" title=" 岩征仪器.JPG" alt=" 岩征仪器.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 岩征仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/26c575da-30bd-4fde-8bb4-c9015961288f.jpg" title=" 马尔文.JPG" alt=" 马尔文.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 马尔文帕纳科 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/586bb406-01bb-4eb8-bbe5-e22b1d368003.jpg" title=" 庚yu .JPG" alt=" 庚yu .JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 庚雨仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/aa61d815-7eea-43ce-a924-b7253669736f.jpg" title=" 欧世盛.JPG" alt=" 欧世盛.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 欧世盛 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/9a4de8d0-be36-4822-8d7b-65df63b0dea2.jpg" title=" 上海雅称.JPG" alt=" 上海雅称.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 上海雅程 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/7c223040-8f13-45a6-8af4-f80178701006.jpg" title=" 仪器信息网.JPG" alt=" 仪器信息网.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 仪器信息网 /strong /span /p p br/ /p
  • 《质谱学报》“化学反应中间产物的质谱捕捉与测量”专辑征稿通知
    化学反应在自然界中无处不在。揭示化学反应及其相关过程的机制和基本规律,对认识化学反应的本质、创制新的物质有着不可替代的作用。质谱作为一种重要的分析检测技术,由于具有极高的原位性、特异性、灵敏度、操作性,在化学反应中间体的捕捉、化学反应机制的跟踪等方面大放异彩。从化学反应发生的物相来分,有气相反应、液相反应、固相反应、界面反应等 从化学反应发生的驱动力来分,有电化学反应、高电场反应、光化学反应、催化反应等 从化学反应发生的环境来分,有大气化学反应、生物化学反应、微液滴反应、气泡反应等。质谱技术在这些反应所涉及到的中间体捕获和机理探索研究中均已取得了很大的进展。  然而,机遇和挑战并存,化学反应中间产物通常有着不稳定、寿命短等特点,对质谱的进样、电离、结构解析等过程提出了一定的挑战,也对质谱方法的开发提出了新的要求。  为推动质谱技术在化学反应机制研究中的发展,集中报道相关领域的最新成果,促进广大质谱工作者的交流与合作,《质谱学报》计划组织一期“化学反应中间产物的质谱捕捉与测量”专辑。  本刊邀请南开大学张新星研究员担任该专辑的执行主编。  欢迎各位老师不吝赐稿!  1. 征稿范围(包括但不限于):  (1)多种类型、多种环境化学反应中间产物的捕捉与测量   (2)化学反应新、奇、特中间体的发现   (3)化学反应中间产物质谱检测新方法的开发。  2. 发表形式及时间:正刊(EI,中文核心),2024年1月  3. 稿件要求:  (1)研究性和综述论文,接收英文稿件   (2)投稿论文必须为未在正式出版物上发表过,不存在涉密问题,不存在一稿多投现象,不存在学术不端问题。  4. 投稿方式:  请登录《质谱学报》网站(http://www.jcmss.com.cn)进行在线投 稿。投稿时请选择“化学反应中间产物的质谱捕捉与测量”专辑。  5. 截稿日期:2023年8月底  6. 投稿咨询:  邮箱:jcmss401@163.com  电话:010-69357734  执行主编简介:  张新星,南开大学化学学院研究员、博士生导师,美国约翰霍普金斯大学博士,美国加州理工学院博士后。入选一系列国家和地方人才计划,获得中国化学会第二届菁青化学新锐奖、美国质谱学会ASMS新兴科学家称号、中国物理学会2021年度质谱青年奖。在气液界面质谱分析和相关质谱仪器开发,以及微液滴化学质谱分析领域取得了一系列成果,在PNAS,Angew. Chem.,JACS,Nat. Commun.等国际顶尖刊物发表SCI论文90余篇。
  • 陈素明课题组实现了电化学中间过程的时间分辨质谱解析
    近日,国际权威学术期刊Angew. Chem. Int. Ed(《德国应用化学》)在线发表了高等研究院陈素明教授课题组在结构导向的质谱分析方面最新研究成果。论文题为“Elucidation of Underlying Reactivities of Alternating Current Electrosynthesis by Time-resolved Mapping ofShort-lived Reactive Intermediates”。武汉大学为论文唯一署名单位,高等研究院万琼琼副研究员为论文的第一作者,陈素明教授、易红研究员为论文共同通讯作者。该工作通过构建具有时间分辨能力的Operando电化学-质谱分析装置,实现了电化学过程中活性中间体以及自由基异构体的结构和动力学解析,揭示了电化学反应的内在机制(图1)。图1.时间分辨的Operando电化学-质谱分析装置与电化学芳胺功能化反应质谱是对分子进行定性和定量的有力工具,但在实际的复杂研究体系中,常规的质谱分析方法很难实现深层次的结构解析和定量分析。其中,化学反应瞬态中间过程的分析就是一个巨大的挑战。电化学合成是合成化学的新兴领域,但是电化学反应过程的机理研究一直受限于短寿命活性中间体的捕获和结构分析鉴定。为了解决电化学中间过程分析的难题,本研究开发了一种具有超快时间响应的原位电化学-质谱分析装置,可以在电合成工况条件下时间分辨地解析电化学反应过程中的短寿命活性中间体。由于该装置可以最大程度地模拟直流电合成和交流电合成反应,因此通过全面解析电化学芳胺功能化反应过程中活性中间体的结构和动力学,揭示了交流电合成相对于直流电合成具有独特反应性的内在机制。包括:减少中间体的过度氧化/还原,促进氧化-还原电生活性中间体的有效反应,尤其是控制多步电合成反应过程中氮中心自由基的动力学来减少竞争反应。这些发现对于深入理解交流电合成反应的机理提供了关键的信息。此外,本研究还发展了一种解析反应过程中氮中心自由基异构体的新型分析策略。由于中性的氮中心自由基和胺自由基阳离子在质谱分析时都会呈现出相同质量的质子化离子峰,因此难以在质谱中进行区分。研究巧妙利用中性自由基能形成碱金属加合峰的特性,并通过时间分辨的电化学-质谱分析装置测定中性自由基和自由基阳离子的寿命差异,从而准确地分辨出了反应过程中的氮中心自由基异构体。该方法不仅揭示了电化学芳胺功能化过程中隐藏的自由基反应历程,而且提供一种氮自由基异构体解析的通用方法,从而可以深入理解氮中心自由基的反应动力学。据悉,该研究得到了国家自然科学基金、国家重点研发计划等项目经费的支持,雷爱文教授课题组为该工作提供了电化学实验装置支持。
  • 固体核磁共振“超级放大镜”观察催化反应网络
    2016年,中国科学院大连化学物理研究所(以下简称大连化物所)院士包信和和研究员潘秀莲等提出的OXZEO催化技术发布于《科学》杂志。该项技术自提出以后就广受关注,并且入选了当年的“中国科学十大进展”。  近日,基于OXZEO催化剂设计概念,大连化物所院士包信和、研究员侯广进等利用固体核磁共振技术,在金属氧化物分子筛(OXZEO)双功能催化剂催化合成气转化机理研究领域取得了新进展。相应研究成果于6月23日发表在《自然-催化》上。  重要的催化过程与复杂的反应网络  催化技术在资源利用、能源转化和环境保护等诸多领域发挥着关键作用,是人类现代社会发展速度与质量的重要保证。而石油资源是当代能源和材料的核心来源。近年来,随着石油资源的日益匮乏,寻找补充性乃至替代性技术路径,以此满足现代社会发展日益旺盛的能源和材料需求尤为重要。  我国长期以来“富煤、缺油、少气”的资源结构,导致石油资源长期高度依赖进口。但是石油进口依赖国际环境,价格不可控,获取也容易受限。此外,人们对生态环境的保护意识也在不断增强,改良乃至废止高污染、高排放化工过程的呼声越来越高。但同时,生产效率又不能被牺牲,这使得催化研究领域面临很大的挑战。  针对国家的需求和能源现状,包信和从20世纪90年代回国起就全身心投入到能源小分子催化转化的科学研究中,带领团队深入的开展基础研究,聚焦“纳米限域催化”领域,一干就是二十余年。2016年,包信和与潘秀莲等在煤基合成气转化制低碳烯烃的研究中,创建了OXZEO催化过程。随着研究的不断深入,OXZEO催化概念已拓展成为碳资源转化的重要平台。  然而,OXZEO催化体系中涉及合成气经C1物种到多碳产物的转化过程,其反应网络非常复杂,包含催化剂表面众多的活化过程和复杂的多碳中间体,如何确定其活性组分和中间产物成为研究的难题,反应机理研究面临着挑战。  独特的设计思路  长期以来,基于在表界面催化及固体核磁共振谱学表征领域积累的丰富研究经验,包信和和侯广进等想到可以借助固体核磁共振方法对复杂多碳物种及其所处吸附相化学环境的原子超高分辨表征的优势,实现对OXZEO催化转化过程中催化剂表面活化多碳中间体的准确鉴别。  “在中科院和大连化物所的大力支持下,为研究团队搭建了优异的仪器平台,特别是前些年中科院的修购计划支持了包括高场800MHz固体核磁共振谱仪等的仪器装备,为催化反应机理研究提供了重要的设备保障。”侯广进说。  先进的表征技术和优秀的研究平台是团队在催化反应机理领域克难攻坚的利器。  基于对OXZEO催化过程的大量反应实践,研究团队发现,以甲醇催化转化为代表的传统C1转化反应机理并不能准确解释OXZEO催化体系中观察到的很多实验现象。为了充分论证OXZEO催化体系中包含的特殊反应路径,基于ZnAlOx金属氧化物是典型的合成气转化制甲醇催化剂,而H-ZSM-5分子筛是经典的甲醇转化制烃催化剂。于是团队提出要建立一个ZnAlOx/H-ZSM-5模型催化体系,可以说,这是一种独特的设计思路。  “如果我们可以在模型体系中观测到不同于甲醇直接转化过程报道过的中间体,并能够与OXZEO催化过程中观测到的独特反应现象相关联,”论文的第一作者纪毅说,“我们就可以说明OXZEO双功能催化概念是独特的,而我们观测到的关键中间体也对应了OXZEO催化中涉及的独特反应路径。”  研究人员利用模型催化体系,借助准原位固体核磁共振-气相色谱联用的分析检测方法,观测了从初始碳-碳键生成到稳态转化过程中,包括表面多碳羧酸盐、多碳烷氧基、BAS吸附环戊烯酮、环戊烯基碳正离子在内多种中间体的动态演化过程。检测到了数量众多、种类丰富的含氧化合物中间体物种,揭示了合成气直接转化的OXZEO过程与传统甲醇转化的重要区别,有力的解释了OXZEO合成气转化过程中烯烃及芳烃产物独特的高选择性。  接下来“向前也向后”  在上述研究的基础上,团队进一步提出和论证了一氧化碳和氢气在分子筛中也参与了含氧化合物的生成,并初步建立了OXZEO催化转化过程中C1中间体到多碳产物的反应网络和反应机理。  除了模型催化体系外,研究人员还在多种OXZEO催化剂上均观测到了关键中间体,验证了包括含氧化合物路径在内的反应机理的普适性。  但是,团队的研究工作不止于此,后续的基础研究会“向前也向后”。  “我们会进一步深入开展金属氧化物上C-O、H-H键活化以及C-H键形成的机理研究,进而拓展到其它碳资源转化领域如二氧化碳加氢等。”论文共同第一作者高攀告诉《中国科学报》。  与此同时,大家心里都有一个“梦”,就是将催化机理研究与实际反应密切结合,尽早实现OXZEO过程的工业化。  “基础研究需要一步一个脚印的积累,如果这些催化化学中基础科学问题的研究成果能够帮助应用研究学者建立一套完整的催化体系,设计出更高效的、理想化的催化剂,那我们的梦想就一定能实现。”侯广进提到。  有了前进的方向,整个团队将卯足精神,向前冲锋。侯广进对组内人员也提出了希望:“每个人都要有自己的思考,带着研究性思想去做工作,及时沟通交流,团队合作,协力攻坚,相信我们一定会取得更多、更好的研究成果。”  “作为包老师研究团队中的一个研究组,核磁共振是我们的特色也是优势,与其他几个研究组形成学科交叉、优势互补。最终目标,肯定是要从基础研究推向实际应用。”侯广进说。
  • 解决反应中的固体,可放大的端到端三步反应全合成!
    个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度摘要莫达非尼是一种抗发作性睡病药物,用于治疗与睡眠呼吸暂停和轮班工作障碍相关的白天过度嗜睡并且无副作用或成瘾性。本文将向您介绍如何通过康宁Lab Reactor反应器无需中间纯化步骤,三步串联合成USP级莫达非尼。该工艺可以在单个串联工艺中进行,是构建端到端药物连续生产的一次非常有意义的尝试。[1]图1. 报道的典型的莫达非尼合成路线Bicherov[3]在Maurya的基础上做了改进的三步反应研究:利用硫代硫酸钠和2-氯乙酰胺制备氨甲酰甲基硫酸钠(SCS,图2)SCS与二苯甲醇反应生成 2-(苯甲酰硫代)乙酰胺中间体6中间体6氧化合成莫达非尼(图1)该合成路线,虽然避免使用昂贵的Nafion催化剂和含有巯基的试剂(有强刺激性气味)。但是产率和产能的问题依然没有很好的解决。图2. 适用于连续流技术三步合成莫达非尼研究者受到Bicherov的启发,通过仔细选择低毒性试剂和FDA3级溶剂,研究连续流反应条件。研究过程:一、初步连续流工艺研究图3. 3步连续合成流程图研究者尝试了3步连续合成莫达非尼。该工艺系统在不到6分钟内获得标准剂量莫达非尼(100毫克)。可运行1.5小时以上,产能为23克/天。经过研究3步串联基本反应条件和关键点如下:第一步:为了避免硫代硫酸钠与步骤二中甲酸反应堵塞通道,使用略微过量的2-氯乙酰胺。第二步:反应需保持中间产物6(熔点为110℃)为液体状态,实验选择115℃为反应温度。反应结束后,向反应液加入甲基丙酮(简称MEK)作为溶剂溶解反应物避免管道堵塞。在此步骤中随着反应时间变长选择性降低。第三步:在20℃使用钨酸钠作为催化剂(4 mol%),加入苯基膦酸作为稳定剂,背压7巴,反应时间大大缩短。【编者】作者利用自制微反应器可以做一些连续流反应的初步研究。为了进行更好的工艺条件优化和得到可放大的连续流工艺条件,作者使用康宁Lab反应器进行了实验。康宁反应器可以实现从实验室工艺到大生产的无缝放大,有利于迅速实现工业化生产。二、康宁Lab Reactor 三步连续合成莫达非尼利用康宁Lab反应器,研究者将第一步和第二步的停留时间减少到1分钟。在第二步反应温度调整到150°C,相较于自制微反应器,转化率从78%升高到97%,选择性也从86%增加到88%,纯度99%。采用高温进料方式,可以解决反应过程中的固体析出的难题。康宁反应器可以精确控制反应条件,如物料比和温度,最大程度上减少副产物的生成。图4. 康宁Lab Reactor连续流工艺流程图最终三步合成工艺:第一步:将2-氯乙酰胺和硫代硫酸钠溶液注入康宁Lab Reactor第一个模块,停留时间为1分钟。反应液与二苯甲醇甲酸溶液在第二单元模块混合,反应物流经第三单元模块保持温度150℃,停留时间为1 分钟。第二步:第一步输出溶液连接到Y型混合器与甲基丙酮混合。输出溶液进入第四个Lab Reactor模块。泵入钨酸钠(4 mol%)、苯基膦酸(4.5 mol%)和1.5当量的15%过氧化氢溶液,反应温度20℃,停留时间1.25分钟。Zaiput背压阀背压7巴。冰浴收集粗品,搅拌后通过饱和碳酸钠水溶液来溶解羧酸副产物,用甲基叔丁基醚(MTBE)清洗固体,去除剩余的中间体6,通过HPLC-DAD分析。获得77%的总收率,纯度99 %,符合USP要求。同时,研究者在选用溶剂的时候考虑了毒性问题,选择的都是符合FDA要求的低毒性溶剂。还从经济可行性考虑测算了成本,最后测算结果每片莫达非尼的成本为0.03欧元(每片100毫克)。较Maurya合成法成本7.30欧元相比降低了200多倍。结果与讨论本文报告的工艺展示了流动化学在合成领域的优势:反应时间短,可以精确地控制反应量,以减少杂质的形成,提高再现性;应用康宁AFR反应器串联在3分钟内即可完成整个3步反应,中间产物6的输出量为17.8克/小时,莫达非尼的输出量为5.3克/小时,纯度99%;该三步连续流工艺比目前任何工业化工艺E因子都低。不仅选用的溶剂环保而且产生副产物也是无害的(例如NaCl、NaHSO4);康宁反应器无缝放大的特性有助于未来实现连续工业化生产;药物端到端的多步合成的连续化,为药物的智能制造打开了大门。参考文献:[1]Green Chem., 2022,24, 2094-2103[2]Green Chem.,2017, 19, 629–633.[3]Chem. Bull., 2010, 59, 91–101.
  • 安全可控、提质增效!胶原蛋白关键中间体二甲基砜MSM的连续流合成工艺
    甲基砜(MSM)是一种重要的有机硫代物,在胶原蛋白合成中起着关键作用,并具有增加胰岛素敏感性和促进体内糖代谢的潜在健康作用。传统的硝酸氧化法生产MSM存在废酸产量高、气味难闻、安全性差等缺点。在绿色化工的指导下,使用双氧水作为氧化剂,因纯度高、原子利用率高且产物仅为水和氧而备受关注。由于生产工艺的强放热性,使用传统间歇釜存在反应失控甚至爆炸的风险,在绿色化学品和安全化学品的概念下,这种生产过程逐渐被淘汰。微通道反应器作为一种新兴技术,针对强放热反应可以有效避免热失控的风险,且尺寸小持液量少,具有本质安全,显著提高反应的过程安全性。近年来,微通道技术已应用于各种高危反应,包括硝化、氧化、氯化、加氢、烷基化、酰化等。来自南京工业大学的倪老师团队构建了几种不同规格的微通道反应器,并将其应用于MSM的连续流合成。实验开始,作者考察了通道直径、水浴温度、催化用量和停留时间对MSM产率的影响,MSM的收率和纯度都很高:图1:初始实验装置图2:初始考察通道直径、水浴温度、催化用量和停留时间对MSM收率的影响最佳条件为使用3mm*1mm的PTFE管道,水浴温度80℃,催化剂用量0.002e.q., 停留时间4min,收率可达91.5%。考虑到此反应初始阶段原料浓度高放热量较大,作者采用两段温区(温区一Tf+温区二Ts)进行研究:图3:第二阶段实验装置图4:第二阶段不同的温区组合对MSM收率的影响当温区一温度20℃,停留时间1.0 min,温区二温度80℃,停留时间3.0 min时,MSM收率最高98.1%。后续作者在自建的工业化微通道反应器上进行了工业化放大,时间收率为18.36吨/年,空间收率为36.43吨/年/m3(如图5):图5:工业化放大装置图5:釜式和连续流的对比总结:根据反应的放热特性,采用微通道反应器实现了MSM连续流合成工艺。单控温工艺,通道直径为3 mm × 1 mm,水浴温度为80℃,催化剂用量为0.002 mol,停留时间为4 min时,MSM收率达91.5%。双温控工艺,当温区一温度为20℃,停留时间为1.0 min,温区二温度为80℃,停留时间为3.0 min时,MSM的收率可达98.1%。在自建的工业化微通道反应器平台上对MSM的连续流工业化生产进行了研究。MSM年平均时间产量为18.36 吨/年,年平均空间产量为36.43吨/年/m3。微通道技术的应用可有效提高MSM制备过程的本质安全性和生产效率,具有广阔的工业应用前景。
  • 微反应、固定床、釜式反应器杂化,实现硝化、加氢、环化、还原全连续
    个前言在化学合成中,每一步反应都有其独特性。对应于其独特性,化学化工研究者需要寻找合适的反应器来研究其工艺参数,实现放大生产。今天给大家介绍一篇多步反应全连续的文章。作者应用微反应器、固定床反应器以及釜式反应器杂化,实现硝化、加氢、环化、还原全连续操作,实现了Afizagabar (S44819)关键中间体的连续生产。研究背景Afizagabar (S44819) 是一种首创的、有竞争性和选择性的 α5-GABAAR 拮抗剂。由于临床研究需要相对较高的剂量,在产品的开发阶段需要生产约150kg的Afizagabar。然而,在釜式工艺放大的过程中,特别是在硝化和氢化的步骤中,安全及放大问题阻碍了产品生产的进程。图1. Afizagabar方程式研究过程Afizagabar(S44819)的合成,涉及了两个关键中间体INT15和INT23 ,如图2所示,两者经过一系列反应最终合成产品S44819。图2. Afizagabar(S44819)合成路线INT15的合成过程:原料STM1先硝化后得到中间体11,中间体11经过Dakin−West反应、还原得到中间体13,中间体13关环、再经过硼氢化钠还原得到关键中间体INT15。本文主要介绍INT15的多步串联合成研究过程。一. 硝化工艺过程研究1. 釜式硝化工艺研究合成INT15的第一步硝化,釜式工艺是以硝酸-硫酸混酸为硝化剂,反应时间50−90分钟。但当温度升高,会生成危险的二硝基衍生物而安全风险大。硝化反应放热量大,步骤本身的反应热存在安全风险。而且后续步骤的反应热也存在安全风险。从DSC数据可知(图3),中间体11和中间体12的分解能量非常的高, (ΔHINT11 = −745 J/g, onset: 205 °C ΔHINT12 = −1394 J/g, onset: 187 °C),如果发生分解那么后果将会变得非常严重。图3. 中间体11和中间体12的DSC谱图2. 微反应连续硝化工艺研究作者对传统的硝化工艺进行了重新设计,使用微反应器代替间歇釜来实现硝化过程。图4.连续流硝化反应作者选用硝酸(HNO3)和冰醋酸(AcOH)作为硝化剂,对连续反应条件做了优化。通过实验得到硝化步骤的操作参数范围为:温度为35~45℃,停留时间30S,流速范围为1-6mL/min,反应转化率接近100%。该连续流工艺与传统釜式工艺相比:连续流微反应反应时间大大缩短(由釜式50−90分钟缩短到30秒);连续流无低温操作,节省能耗(微反应可以在35~45℃下进行,釜式在-65°C下进行);反应可控性好,易于放大;消除了二硝的产生,生产的安全性大大提升。二. 固定床加氢过程研究图5. 氢化步骤反应方程式针对INT12加氢的过程,作者采用了固定床工艺。作者选用Pd/Al2O3做为催化剂,在固定化床式加氢反应器中进行反应,通过加入HCL将INT13分批成盐的方式解决其不稳定的问题。并且,作者打通了微反应器硝化和固定床反应器氢化的两步连续过程。同时,为了减少单元操作和溶剂置换工序,作者对氢化、关环以及还原步骤的溶剂进行了优化。表1.不同溶剂对氢化和环化反应的影响研究发现,使用四氢呋喃/二氯甲烷/乙腈体系不仅有很高的氢化以及环化的转化率,而且可以将硝化、氢化、环合以及还原工序串联,实现连续化生产。多步反应全连续,溶剂的选择往往是成败的关键。三. 多步串联合成中间体INT15图6. 连续串联合成中间体INT5工艺流程图作者选用微通道反应器、固定化床加氢反应器、釜式反应器杂化的方式,经过溶剂筛选、工艺条件优化,将硝化、氢化、环化、还原反应步骤串联,中间不经过分离,实现了多步反应的全连续(图6)。多步全连续工艺不仅可以减少操作步骤,而且生产效率大幅度提高。串联后,实验室规模稳定运行5小时,并以11.95g/h的通量得到97.1%纯度的INT15。实验小结连续流技术改变了药物研究的时空产率,有了更广的参数窗口。与在线分析仪器的良好的兼容性,可以更好地实现自动化和智能化,有助于提高研发效率和快速转化,从而获得更好的技术优势;微通道连续流技术,由于其较低的持液量、强大的传质和换热能力,对于在传统间歇生产模式下具有安全风险的反应,例如涉及剧毒试剂、不稳定中间体的反应,具有较好的优势;此外,连续流生产是降低API合成工艺放大的有效工具,可以更快地应对市场变化,节省中试放大成本,提升企业的竞争力。参考文献:Org. Process Res. Dev. 2022, 26, 1223−1235编者语康宁反应器模块化的组装方式和开放的接口,非常适合与其他类型的反应器、在线检测设备以及后处理装置联用。康宁反应器无缝放大的技术,可以帮助客户实现更高效的工业化生产,尤其是硝化、加氢、重氮化、卤化等危险反应工艺。在过去的几年中,康宁已实施了多套杂化的多步连续工艺,帮助客户实现了传统间歇反应釜工艺向连续流技术的升级和改造,取得了非常好的社会效应和经济效应。
  • 【科普】多相催化氢化反应在药物合成中的应用
    催化氢化反应是指还原剂或氢分子等在催化剂的作用下对不饱和化合物的加成反应。它是有机化合物还原方法中最方便、最常用、最重要的方法之一。多相催化氢化反应主要包括碳碳、碳氧、碳氮键等不饱和重键的加氢反应和某些单键发生的裂解反应。被还原的底物和氢一般吸附在催化剂表面,活化后进行反应。多相催化氢化主要有如下优点。①还原范围广、反应活性高、选择性好、速度快:有些反应(如碳碳不饱和键的加氢)应用其他方法比较复杂和困难,而应用催化氢化比较方便;②经济适用:氢气本身价格低廉,成本低,操作方便,对醛酮、硝基及亚硝基化合物都能起还原作用,不需其他任何还原剂和特殊溶剂;③后处理方便、反应条件温和、操作方便:反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,产品纯度、收率都比较高,且干净无污染。因此,多相催化氢化在药物合成中有广泛的应用。01碳碳不饱和键的多相催化氢化1) 烯、炔的多相催化氢化:烯键和炔键均为易于氢化还原的官能团。通常用钯、铂和Raney镍作催化剂,在温和条件下即可反应。除酰胺卤和芳硝基外,分子中存在其他可还原官能团时,均可用氢化法选择性还原炔键和烯键。例如:抗精神病药物匹莫齐特(pimozide)中间体的合成。心血管系统药物艾司洛尔(Esmolol)中间体的合成。肺心病治疗药物樟磺咪芬(Trimetaphan)中间体的合成。一般规律:炔键活性大于烯键,位阻较小的不饱和键活性大于位阻较大的不饱和键,三取代或四取代烯需在较高的温度和压力下方能顺利进行反应。p-2型硼化镍能选择性地还原炔键和末端烯键,而不影响分子中存在的非末端双键,效果较Lindlar催化剂好。p-2型硼化镍在还原多烯类化合物时,不导致烯键异构化,也不导致苄基或烯丙基的氢解。在多相氢化反应中,炔烃、烯烃和芳烃的加氢常得到不同比例的几何异构体。一般认为,吸附在催化剂表面的是作用物分子不饱和结构空间位阻较小的一面,已吸附在催化剂表面的氢分步转移到作用物分子上进行同向加成(syn-addition)。因此,氢化产物的空间构型主要由作用物的空间因素和催化剂的性质两个方面决定。在炔类和环烯烃的加氢产物中,由于同向加成,产物以顺式体为主,但由于向反式体转化更稳定等因素,所以仍有一定量的反式体。雌性激素药雌酮(Estrone)中间体的合成。2)芳香环的多相催化氢化:苯为难于氢化的芳烃,芳稠环(如萘、蒽、菲)的氢化活性大于苯环。取代苯(如苯酚、苯胺)的活性也大于苯,在乙酸中用铂作催化剂时,取代基的活性为ArOhArNh2ArCOOhArCh3。不同的催化剂有不同的活性顺序,用铂、钌催化剂可在较低的温度和压力下氢化,而钯则需较高的温度和压力。如苯甲酸可用铂催化剂在较温和的条件下还原为环己基甲酸。激素药炔诺孕酮(Norgestrel)中间体的合成。某些取代苯选用铑作催化剂,可在较温和的条件下氢化,得到较好的收率。02醛酮的多相催化氢化目前,催化氢化还原是应用最广泛的将羰基还原为羟基的两种还原方法之一。醛和酮的氢化活性通常大于芳环而小于不饱和键,醛比酮更容易氢化。脂肪族醛、酮的氢化活性较芳香醛酮低,通常以Raney镍和铂为催化剂,而钯催化剂的效果较差,且一般需要在较高的温度和压力下还原。例如,由葡萄糖氢化的山梨醇(Sorbiol)。治疗帕金森病的药物左旋多巴(Levodopa)中间体的合成。与脂肪族醛、酮氢化不同,钯是芳香族醛、酮氢化十分有效的催化剂。在加压或酸性条件下,芳香族醛、酮氢化所生成的醇羟基能进一步被氢解,最终得到甲基或亚甲基。氢化法是还原芳酮为烃的有效方法之一。在温和条件下,选用适当活性的Raney镍作为还原剂,可得到醇。03羧酸衍生物的多相催化氢化1)酰卤的多相催化氢化:酰卤与加有活性抑制剂(如硫脲)的钯催化剂或以硫酸钡为载体的钯催化剂,于甲苯或二甲苯中,控制通入氢量略高于理论量,即可使反应停止在醛的阶段,得到收率良好的醛。在此条件下,分子中存在的双键、硝基、卤素、酯基等不受影响,如重要制药中间体三甲氧基苯甲醛的合成。2,6-二甲基吡啶的四氢呋喃可作为钯催化剂的抑制剂。在钯催化下,将氢 通入等当量的酰氯及2,6-二甲基吡啶的四氢呋喃溶液中,在室温下反应,即可以良好的产率得到醛。本法条件温和,特别适用于对热敏感的酰氯的还原。如8-壬酮酰氯用本法还原时,羰基不受影响。2)腈的多相催化氢化:催化氢化法是腈类化合物还原的主要方法。催化氢化还原可在常温下以钯或铂为催化剂,或在加压下以活性镍为还原剂,通常其还原产物中除伯胺外,还有较大量的仲胺,这是所生成的伯胺与反应中间物(亚胺)发生副反应的结果。为了避免生成仲胺的副反应,可以钯、铂或铑为催化剂,并在酸性溶剂中还原,使产物伯胺成为铵盐,从而阻止加成副反应的进行;或以镍为催化剂,在溶剂中加入过量的氨,使不易发生进一步脱氨,从而减少副产物的产生。例如,在抗皮炎药物维生素B6(Vitamin B6)中间体的合成中,一步催化氢化实现了硝基成氨基、氰基成氨甲基、氯被氢解掉等三个基团的转化。04含氮化合物的多相催化氢化1)硝基化合物的多相催化氢化:催化氢化法也是还原硝基化合物的常用方法,其具有价廉、后处理手续简便且无"三废"污染等优点。活性镍、钯、铂等均是最常用的催化剂。通常,使用活性镍时,氢压和温度要求较高,而钯和铂可在较温和的条件下进行。例如抗生素奥沙拉秦(Olsalazine)中间体的合成。由于催化氢化还原活性与催化剂及反应条件有关,因而可根据不同的需要,调节或控制反应活性。例如硝基苯还原,可选择合适的氢化条件,使反应停留在生成苯胲阶段,然后在酸性条件转位得对氨基酚。这是生产制药中间体对氨基酚的最简捷路线。硝基化合物尚可采用转移氢化法还原,常用的供氢体为肼、环己烯、异丙醇等。其中,应用最普遍的是肼。其反应设备及操作均十分简便,只需将硝基化合物与过量的水合肼溶于醇中,然后加入镍、钯等氢化催化剂,在十分温和的条件下,即可完成反应。分子中存在的羧基、氰基、非活化的烯键均可不受影响。2)肟和亚甲胺的多相催化氢化:催化氢化法亦是将肟和亚甲胺还原成伯胺或仲胺的有效方法,在制药工业中已广泛采用,常用的催化剂是镍和钯。抗心律失常药美西律(Mexiletine)中间体的合成。3)叠氮化合物的多相催化氢化:叠氮化合物可被多种还原剂还原生成伯胺。其最常用的方法是催化氢化和用金属氢化物。而在催化氢化法中常用的催化剂是活性镍和钯。例如降压药贝那普利(5)芳杂环类的多相催化氢化某些芳杂环类化合物也可发生多相催化氢化反应。其催化还原活性较苯类芳环大,但比醛酮类化合物小。参考:药物合成反应总结氢化反应在医药、精细化工和其他有机合成中具有非常重要的地位。氢化反应原子利用率很高,同时可以减少后续的分离和纯化过程。但氢气参与的反应在实验室和工业化生产中危险系数极大,难于控制,易造成安全事故,国家安监局把氢化反应纳入18类重点监管危险反应中。现阶段随着连续氢化技术的发展,使用连续氢化反应仪或设备将间歇式氢化反应转化成连续氢化反应,可极大的降低反应风险提高设备及操作的安全性。目前欧世盛连续氢化设备能成功实现双键还原,硝基还原,脱苄基,芳香环还原,氰基还原,氢化脱卤等反应。欧世盛研发出全自动加氢反应仪1:可配高压氢气发生器2:压力温度范围宽,满足绝大多数反应需求0-10Mpa,室温-200oC3:智能化程度高 可视智能控制界面,全自动气液分离4:工艺条件可放大至千吨级
  • 全新化学反应率先破坏最强化学键
    p   一种全新化学反应完全颠覆了传统反应中先破坏最弱化学键的模式,而先朝最强的化学键“开刀”,并可以在化学合成中形成全新的中间体。这一颠覆传统的化学反应模式证明,化学家们完全可以开创性地获得常规方法无法企及的一些化合物。相关论文发表在《美国化学协会杂志》上。 /p p   美国普林斯顿大学的研究人员选用催化剂对系统,通过两种催化剂的协同作用,首先断开了质子偶合电子转移反应(PCET)中分子内的最强化学键:氮—氢键(N-H)。许多重要的生物系统比如光合作用系统和呼吸系统,都是利用PCET来破坏化学强键。由于现在还无法得知PCET中都有哪些催化剂,这一原理在合成新分子中还没有得到推广。 /p p   据物理学家组织网报道,研究人员选用了一个简单的数学公式,这个公式能帮他们精确算出任何一对催化剂协同作用时断开的最强化学键强度,他们将其命名为“有效键强值”。 /p p   研究人员在实验室验证了这一公式的高效:有效键强值与反应效率之间存在严重相关性。当有效键强值比氮—氢键强度值高或者低时,中间体产量会很低 而当这两个数值相同时,就会获得非常高的中间体产量。 /p p   论文主要作者吉尔伯特· 蔡成功找到了这对神奇的催化剂系统,并深入研究了这一催化剂对的作用机理。他发现,其中的催化剂磷酸二丁酯最先启动化学反应,它能将氮—氢键中的氢原子不断拉开,让氮—氢键越来越长,从而逐渐变弱 另一种催化剂金属铱复合物靶向作用弱化后的氮—氢键,从化学键的电子对中“拽”走一个电子,将化学键从中间切断。 /p p   氮—氢键断开后,获得的氮中间体非常活跃,可与碳结合形成碳—氮键,产生结构更复杂的化学产物。新研究在没有发现PCET催化剂真面目的情况下,提供了研发全新化学反应的平台,甚至能开创更大的价值。 /p p   领导这一研究的化学副教授罗伯特· 劳勒斯表示,这一理念将开启全新的化学领域。 /p p & nbsp /p
  • 您知道微反应技术在农药合成中有哪些应用吗?
    微反应技术作为二十一世纪的一项颠覆性合成技术,在农药原药合成中的应用越来越广泛,今天就给大家介绍几个实用的案例。案例一:异丁草胺的连续合成异丁草胺(24353-58-0)的适用作物:玉米、马铃薯、甜菜、花生、大豆等。防治对象:一年生禾本科杂草和多种阔叶杂草,对稗草、马唐、狗尾草、稷属效果好。 使用传统反应釜合成异丁草胺,反应的时间比较长,而且物料的投加的摩尔当量比较大,工艺不环保,而采用微通道反应器,可以有效地避免这些缺陷,得到很好的结果。反应方程式:反应示意图:反应结果及对比:使用连续流反应器之后,可以采用一锅法对该反应进行反应,中间体不需要进行后处理就可以进行下一步,有效降低了后处理的难度;传统釜式需要使用6倍当量的碱,极大增加了废水和废盐的量,不利于环境保护,而使用微通道反应器,只需要2.2当量,极大减少了废碱的量;收率大幅度提升,两步总收率达到95%,含量达到96%; 使用微通道停留时间短、混合好、无反混,在反应中氯乙酰氯分解的比较少。分解少了之后,产生的盐酸少了,碱的用量可以大幅度减低。原料的摩尔当量,包括碱和氯乙酰氯都可以降低,极大提升了反应的竞争力; 参考文献:CN104262188 A案例二:噁霉灵连续化合成 噁霉灵,是新一代新型农药杀菌剂,内吸性杀菌剂、土壤消毒剂。绿色、环保、低毒、无公害产品,适合作物果树、蔬菜、小麦、棉花、水稻、豆类、瓜类等。属新型抗重茬产品。反应方程式:反应示意图:反应结果及对比:相较于传统的反应釜,连续流反应器依靠精准的控温、良好的换热和混合效率,不仅可以提高反应的效率,还能减少废液的排放,最重要的是可以保证安全。改成全连续合成后,产品收率由68%提高到86%,而主要副产物由22%减低到4%,且连续流工艺容易进行工业放大。参考文献:DOI10.1021 / acs.oprd.9b00047案例三:唑草胺关键中间体唑草胺是一个禾本科杂草除草剂,对稗草、异性莎草和其他一年生杂草药效尤佳。它可以与其他除草剂复配,作为一次性除草剂用于水稻田;其单剂主要用于草坪除草。反应方程式:反应示意图:反应结果及对比:研究结果显示,在两步连续的情况下,总反应停留时间为50秒,反应温度分别为10°C和25°C,反应收率可达85%,产物纯度98%。连续流工艺和釜式工艺相比,不仅提高了转化率、缩短了反应时间和产品的纯度也有所提高,而且很好地避免了副反应的产生,更重要的是大大提高了工艺的安全性。参考文献:DOI 10.1021/acs.oprd.8b00362案例四:杀虫剂和杀菌剂苯并噁唑-3-酮杀虫剂和杀菌剂苯并噁唑-3-酮化合物是结构新颖的杂环化合物,具有抗真菌活性,近年来开始受到了人们的广泛关注,在医药方面得到了广泛的应用。反应方程式:反应示意图:反应结果及对比硝化结果:氢化结果:环化结果:使用连续流反应器收率得到大幅度的提升,三步的总收率从67%提升至83%,具有极大的经济效益。该工艺可以做成全连续,不仅反应可以连续,而且后处理也可以连续,极大节省了人工成本;康宁经销的Zaiput高效液液分离器不但可以用来连续萃取,还可以用来置换溶剂进行下一步的反应。该工艺过程中涉及有危险的硝化工艺、催化加氢工艺,尤其是硝化反应会生成不稳定的二硝基化合物,在传统间歇生产工艺中,存在较大的安全隐患。使用连续流技术之后,从根本上降低了安全风险,使整个过程连续化。连续流工艺中,原料现制现用,解决了不稳定中间体储存和运输问题。工艺中可以降低原料消耗,并提高产品质量。参考文献:DOI:10.1021 / acs. oprd. 6b00409
  • 应用指南--expression CMS小型台式质谱仪实现流动化学反应监测和优化
    Flow chemistry 流动化学本意指在连续流动的系统中完成化学反应,不同于批次式反应,其创新地将传统独立分开的合成操作过程整合起来,加快了合成的速度,尤其是能进行危险的、不易实现的反应条件,对于绿色化学和实验室自动化领域具有非常重要的意义。 连续流动化学始于两种以上的物料—比如起始反应物,这些物料以设定流速用泵打入反应舱室、反应管或微型反应器,不同反应物料在此进行混合和反应。根据反应动力学和物料流速,需要保证反应物料在微型反应器中达到某一特定的停留时间,从而获得预期的反应转换率。因为反应是在连续流动的流体中进行,自然希望对反应进行监测以便得知各种反应条件状况,因此反应的监测就尤为重要。 本应用指南中,为大家介绍使用 expression CMS 进行的两种不同反应的流动化学合成实验案例。实验方法质谱系统:expression® CMS 小型台式质谱仪 一、仪器设置 实验中使用了两种略有不同的设置。在第一种方法中,使用注射器将反应混合物注入质谱中(通过阀门,图1)。 第二种情况,使用注射泵系统输送试剂,通过阀门切换自动将样品转移到质谱中(图2), CMS 的数据输入到反应优化和数据处理软件中。二、质谱条件扫描范围:m/z 100-m/z 800;扫描时间:400ms;扫描速度:1750 m/z units/s; 流速:0.2mL/min;流动相:MeCN,H2O(50:50)(0.1% 甲酸);离子源:ESI; 模式:正离子模式 Capillary Temp:200℃;Capillary Voltage:80V; Source Offset:30; Source Gas Temp:250℃; ESI Voltage:3500V;实验结果 反应数据(图3)显示实时监测到产物的增加和原料的减少,同时看到中间体和杂质,提供有关反应的有价值信息,该信息在对反应/过程把控上为实验人员提供了其他技术无法提供的的优势。 获得的详细数据有利于进一步优化反应(尤其对于工艺开发),加深理解反应机理,这对于进一步反应机理开发至关重要。 使用 CMS 监测流动池中不同停留时间的反应,可以密切监测反应进程,看到大量杂质/中间体的形成条件,并且可以选择最佳停留时间。该反应通过两种不同的中间体进行,如果反应没有得到适当控制和优化,最终可能会成为杂质。因此,密切监测和了解这一过程至关重要。 在本实验中,通过流动化学设备自动确定试剂配比,输送不同组分的反应混合物。通过 expression CMS 实时监测原料、产物和中间体,有利于后续优化反应。结论 1、expression CMS 是与流动化学系统联用的理想质谱仪。 2、expression CMS 上具有多个信号输入和输出口,使其具有独特且灵活的接口功能。 3、expression CMS 分析提供了有关反应的详细实时信息,这些信息通常是其他分析技术(例如色谱、核磁共振、红外/近红外、紫外)无法提供的。 4、ESI 和 APCI 多种离子源选项扩展了可监控的反应范围。 5、Advion Interchim Scientific 在质谱与新型合成化学联用的解决方案方面经验丰富,可提供多种质谱联用方案。
  • ​芳基重氮酯毒性大、易爆炸?看微通道反应器如何安全保驾护航
    个连续流光化学反应器在芳基重氮酯参与的环丙烷化反应中的应用研究背景芳基重氮酯在有机合成领域中应用广泛,特别是与杂环进行环丙烷化反应,能够得到重要的药物中间体(图1)。芳基重氮酯在学术研究中也具有很高的价值,但由于其毒性和爆炸性,在工业化中的应用受限。图1. 衍生自环丙烷化杂环的医药中间体和药物化学工艺的发展受安全性、工艺稳定性、成本和环境等因素驱动。连续流微通道反应器可以有效解决芳基重氮酯在工业应用中的安全性问题。它的明显优势包括,其更大的比表面积,能够提供更好的传质换热效果;持液体积大大减少,能够有效降低重氮化合物爆炸产生的危害性;在背压条件下可便捷的处理重氮类化合物参与的析气反应。可见光作为一种清洁、无污染的能源在成本、原子效率和可持续性等方面于连续流反应器相结合。可用于在环境条件下为化学反应提供动力。连续流光化学反应器可解决由于透射光与路径长度的对数相关性(比尔-兰伯特定律)导致光化学间歇反应的放大效应问题。近期,德国雷根斯堡大学Joshua P. Barham教授等人在前人研究的基础上,通过使用康宁连续流光化学反应器AFR-Lab Photo,对芳基重氮酯与杂环的反应进行了深入研究(图2,图3),该文章发表在Green Chemistry上。研究过程一.釜式工艺条件探讨与光催化确认作者首先在釜式条件的基础上对反应温度、停留时间、光强度、反应浓度、溶剂等条件进行了考察(表1)。研究中,作者发现碳酸二甲酯(DMC)能够有效提升反应的选择性和收率,且避免使用毒性大、易挥发、对环境有害等缺点的二氯乙烷(DCE)。此外,作者通过对照实验,验证了该反应只有在光催化条件下才能够发生反应。图2. A:釜式条件下进行的可见光参与的光化学环丙烷化;B:续流条件下不饱和碳进行的光化学环丙烷化;C:连续流条件下杂环的光化学环丙烷化图3. 光化学反应器实验装置的整体布局表1. 初始单因素筛选实验二. DoE工艺条件设计接着,作者利用DoE实验方法对光强、反应底物当量、反应停留时间等因素进行了考察,为了研究单因子的显著(α=0.05)效应以及多因子相互作用对反应的可能存在,采用了“两水平全因子”设计,设计包括了8个实验和几个验证误差的中心点。三. 工艺条件筛选得益于连续流反应器快速筛选的能力,仅用了两个下午的时间就完成了全部DoE条件的筛选(图4)。图4. 针对反应转化率、收率、选择性、产能的DoE条件筛选表2. DoE模型结果确认从DoE的结果分析可以看出,四种应变量都不受多因子相互作用的影响。转化率仅受两个因素的影响,总流速和光强。正如预期的那样,流速越大,停留时间越短,则转化率下降;而光强越强,则转化率更高。作者进而以反应选择性为最高优先级,选择最佳实验条件,进行了模型结果的确认(表2)。四. 最佳工艺条件下克级放大随后,作者在此实验基础上对反应液浓度进行了提高,对比了釜式和连续流条件下的最佳结果,并进行了克级的放大,产能由原来的0.61 g/h提升至1.34 g/h,运行了7.4 h获得了9.9 g的产物(图5),由图中可以明显看出,连续流与釜式相比,效率大幅度提高,由于连续流反应器持液体积更小,相比釜式而言安全风险更低。图5. 釜式反应与连续流反应的结果对比五. 底物拓展性研究最后,作者以该模板反应为基础对不同底物进行了反应适用性扩展,其对大部分底物均有良好的反应转化率和选择性。此连续流光化学催化方法每小时能成功地提供数百毫克的产物,作为高度官能团化的中间体,可以用于进一步的合成。总结研究者报告了一种光催化连续流方法,以杂化化合物和芳基重氮化合物为原料,高选择性、高转化率的制备环丙烷类化合物;重氮化合物的爆炸性及其在反应中氮气释放有关的危害性可以通过微通道模块的背压和较小的持液体积来安全控制;反应器系统的稳健性允许通过DoE快速筛选最优条件,并确定了对反应选择性和产率提高的关键因素;该反应适用各种杂环化合物和芳基重氮酯的反应,使用碳酸二甲酯作为一种无毒、可生物降解的绿色溶剂可以容易地将反应放大到克/小时的产能。参考文献:Green Chem., 2021,23, 6366-6372
  • 康宁反应器技术系列线上讲座开播啦!
    【2020康宁反应器技术年会延期通知】 期待着的2020康宁反应器技术年会,因为新冠肺炎的爆发将延期到2020年6月21日在上海举行。考虑到6月22-24日2020 CPhI& P-MEC China将在上海开幕,康宁反应器技术交流年会地点变更为上海浦东,时间定为6月21日,CPhI展会前一天。康宁真诚地为客户着想,一次出行,两场活动,让您满载而归。具体会议通知,请关注康宁反应器技术微信公众号,后续将陆续推出。 【康宁反应器技术线上讲座开播啦】 年会延期,复工延期,但化学人学习连续流新技术的热情不减。康宁反应器技术将陆续推出系列连续流技术线上讲座。实验室中的智能化-带您进入连续流的世界康宁G1反应器连续流流工艺开发案例分享康宁反应器技术工业化案例分享Zaiput连续分离技术在线核磁技术连续过滤技术连续流技术在药物研发中的应用连续流技术在农药研发及生产中的应用连续流技术在光化学中的应用连续流技术在硝化反应中的应用连续流技术在加氢反应中的应用连续流设备的安全和腐蚀 会议免费,将以微信群的形式进行。早日报名入群,即使错过会议,也可进群学习。具体会议内容以实际安排为准。敬请关注康宁反应器技术微信平台的信息发布。公众号:corningAFR 【线上讲座第一期】实验室中的智能化–Lab Reactor带您进入连续流世界 微化学工程与技术是当前化工行业科技创新的热点和重点之一,将开启医药和精细化工安全生产的新时代。微化工技术具可强化传热和传质能力,可平行放大、安全性高、易于控制等优点。在医药和精细化工领域可以大大提升研发及工业生产的效能,以自动化控制,微型化和绿色化满足化工过程的连续和高度集成的生产要求。 康宁自动化连续流化学反应快速筛选平台,自动化程度高,可对工艺条件进行快速筛选,反应结果瞬间可知。可在短时间内建立强大的化合物库,并可无缝放大,能在实验室条件下为供临床提供公斤级产品。 主办单位:康宁反应器技术有限公司 会议时间:2020年3月3日20:00-21:00 会议形式:网络微信会议 演讲嘉宾:伍辛军博士 康宁反应器技术中心主任 伍辛军,男,理学博士,2010年毕业于中国科学院成都有机化学研究所,获有机化学博士学位。2010-2013年在龙沙公司( Lonza )从事药物合成工艺研发与放大生产工作。2013年加入美国康宁公司,现任康宁反应器技术中心(中国)主任,从事康宁反应器技术在中国区应用与推广业务,主要负责带领康宁反应器技术团队为中国东亚太区客户提供技术培训、应用开发、工业化生产等技术支持与服务。 伍辛军博士曾在Chem. -Eur. J.等期刊发表论文10余篇,并申请多项发明专利。伍博士从事医药中间体、精细化工中间体、先进材料等合成工艺开发及工业生产工作多年,先后领导过数十个基于康宁微通道反应器技术的连续流工艺开发、工业生产项目,在康宁微通道反应器技术应用方面有丰富的经验。 【如何报名】1.请关注微信公众号:康宁反应器技术2.点击下方“产品介绍”,选择活动报名3.识别报名二维码,选择第一场:实验室中的智能化——带您进入连续流的世界4.填写完您的个人信息,即可成功报名参加我们的会议请记住3月3日,让我们相聚微信群,共享连续流技术饕餮盛宴。
  • 福州大学-康宁反应器应用认证实验室氧化新案例
    背景介绍环氧苯乙烷又称氧化苯乙烯,可用作环氧树脂稀释剂、UV-吸收剂、增香剂,也是有机合成,制药工业、香料工业的重要中间体。如环氧苯乙烷催化加氢制得的β-苯乙醇是玫瑰油、丁香油、橙花油的主要成分,广泛应用于食品、烟草、肥皂及化妆品香精。 二、传统工艺分析环氧苯乙烷工业上主要通过卤醇法和过氧化氢催化环氧化合成。卤醇法由于其能耗高,污染重,是一个急需改进的工艺;而借助有机金属催化进行的过氧化氢环氧化因其环保,无污染等优点,使得该工艺具备广阔前景。但其缺点也很明显,反应时间过长,过氧化氢用量过大,制约了其工业化应用。 三、连续流工艺探讨福州大学的连续流专家郑辉东团队就苯乙烯环氧化进行了一系列连续流研究,希望借助微反应器技术解决苯乙烯催化环氧化存在的问题。首先作者对2,2,2 -三氟苯乙酮的催化机理作了探讨。氟原子是一个良好的吸电子基团,2,2,2-三氟苯乙酮能与MeCN和H2O2反应后,生成一个更具活性的五元环氧化剂中间体,稳定这种过渡态是提高反应转化率和选择性的关键。?接着郑教授团队用该催化剂进行了釜式工艺的对照实验,确定了反应的催化剂,溶剂及缓冲液体系(如上图所示),并完成了20mmol的放大实验。这里,作者进行了釜式条件下,反应时间和转化率相关性的研究,如下:结果表明,只有通过延长反应时间至5小时,且增加反应浓度(减小反应体系的溶剂和缓冲液用量),才能得到90.3%转化率,95.7%选择性(Fig 1b);此外,过氧化氢的用量需4个当量。作者分析原因,认为是非均相反应放大过程中,两相无法快速有效地混合以及换热效率低下导致局部反应差异化过大所致。因此,作者希望借助Corning 反应器高效优异的传质传热特性来解决这一问题。作者根据釜式工艺,在筛选优化了反应温度,催化剂比例,溶剂配比和流速等参数后,最终确定以模式3进行连续流环氧化,如下图所示,在模式3下,反应在80℃,背压8bar,总流速30ml/min,缓冲液流速8.5ml/min,通过过氧化氢的二次进料以及首次反应液的二次反应,可实现96.7%转化率,95%选择性,最终收率可达91.8%。整个反应耗时仅需3.17min,与釜式工艺的5小时相比,反应时间大大缩短,且反应效果更好(釜式工艺下,转化率仅90.3%),此外过氧化氢用量减小至3个当量。究其原因在于Corning反应器独特的心形结构设计,从而大大强化了反应过程中的传质和传热,使得反应速度大大提升。实验结论:●通过Corning连续流反应器发展并优化出一种新的苯乙烯环氧化工艺;●使用该连续流工艺,可获得较之釜式更为优异的反应结果,转化率96.7%,选择性95%;●该连续流工艺反应耗时更短(3.17min),安全性更高;●该工艺可以无缝放大,非常适合苯乙烯环氧化的工业化应用。参考资料:Journal of Flow Chemistry (2020). DOI:10.1007 /s41981 -019-00065-62018年9月5日,福州大学和美国康宁公司就微反应器应用创新达成战略合作伙伴协议,成立了福州大学-康宁反应器应用认证实验室。这是美国康宁公司在中国高校系统搭建的第一家反应器应用认证实验室,也是全球第6家反应器应用认证实验室。福州大学是国家“双一流”、国家“211工程”重点建设大学。石油化工学院在坚持发展创新的同时,一直把环保和安全作为专业教育的重要内涵,同时积极推进“产学研”深度融合,实现了多方的互利共赢、共同发展。福州大学-康宁反应器应用认证实验室成立一年多,在郑辉东教授的带领下,完成了多项研究,实验室成果的技术转化正在稳步推进中。康宁反应器技术有限公司版权所有未经许可,不得做任何形式的转载和出版
  • 科学家利用高分辨太赫兹光谱方法揭示水溶液中硼酸的氟化反应机理
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • ThalesNano公司推出可实时监测的H-Cube连续流动氢化反应系统
    2010年5月17日,在各自领域均处于领先地位的ThalesNano公司和梅特勒-托利多公司正式宣布了一项合作计划。ThalesNano公司的H-Cube连续流动氢化反应系统与梅特勒-托利多的ReactIR&trade 流动池集成系统的结合俨然成为流动化学的新利器。 此项不仅融合了ThalesNano公司H-Cube连续流动氢化反应系统实时在线修改反应参数、在几分钟之内便可提高产量和优化选择性,还融合ReactIR&trade 可实时监测反应的特点。整合后的H-Cube连续流动氢化反应系统可以内部监测并通知用户是否所有的中间体或原料已反应完全,并且更适用于可能产生有毒/危险的反应中间体反应,使化学反应更便捷更安全。 这款H-Cube连续流动氢化反应系统也可应用于大规模合成:当ReactIR&trade 和H &ndash Cube Midi或H &ndash Cube Maxi(连续流动氢化反应放大系统)整合后,可监测工艺或生产过程中的化学反应中催化剂的活性,催化剂活性下降或催化剂中毒后,更换新催化剂柱。这将确保高纯度的产品,避免了不必要的废料的纯化费用。 Official ThalesNano website: www.thalesnano.com Official ThalesNano contact email: flowchemistry@thalesnano.com Official website: www.pynnco.com Contact Information: 美国培安公司 地址:朝阳区吉庆里14号佳汇国际A202 Email: sales@pynnco.com, Tel:010-65528800
  • 新光电子能谱仪助力研究氨生产催化反应机理
    瑞典斯德哥尔摩大学研究人员首次研究了氮和氢生成氨时铁和钚催化剂的表面特性。这一成果为更好了解催化过程,找到更高效材料,为化工行业绿色转型打开了大门。研究结果发表在1月10日的《自然》杂志上。哈伯法是一种通过氮气及氢气产生氨气的方法。利用该方法生产的氨年产量为1.1亿吨,而氨是目前生产化肥的基础化学品之一。《自然》杂志在2001年提出,哈伯法是20世纪人类最关键的科学发明之一。因为有了哈伯法大量生产化肥后,预防了大规模饥饿,拯救了大约40亿人的生命。不过,在真实的氨生产条件下,科学家还无法通过表面敏感方法对催化剂表面特性进行实验研究。在足够高的压力和温度下具有表面敏感性的实验技术尚未实现。斯德哥尔摩大学化学物理学教授安德斯尼尔森表示,关于铁催化剂的状态是金属的还是氮化物的不同假设,以及对反应机理重要的中间物种的性质,都无法得到明确的验证。研究人员此次建造了一台光电子能谱仪,可研究高压下的催化剂表面特性。因此,他们能观察到当反应直接发生时会发生什么,可检测反应中间体,并为反应机理提供证据。新仪器为理解氨生产催化打开了一扇新的大门。研究人员表示,新工具可开发用于生产氨的新型催化剂材料。这些材料可更好地与电解生产的氢气配合使用,实现化学工业的绿色转型。
  • 大连化物所揭示固体氧化物电解器阴极动态重构和CO2电解反应机制
    近日,大连化物所催化基础国家重点实验室包信和院士、汪国雄研究员与吕厚甫博士团队在高温CO2电解研究中取得新进展,通过电化学原位表征研究,揭示了固体氧化物电解器阴极动态重构和CO2电解反应机制。   固体氧化物电解器(Solid Oxide Electrolysis Cell,SOEC)在高温条件下利用可再生能源将CO2高效电解还原为CO,是一种极具工业应用潜力的负碳技术。然而,在CO2电解过程中,对SOEC阴极催化活性位点原位动态重构及CO2吸附活化机理认识仍然不足。本工作中,研究团队借助高温原位电化学X射线衍射(XRD)、近环境压力X射线光电子能谱(NAP-XPS)和原位X射线吸收光谱(XAS)等表征方法,深入研究了Ir掺杂的Sr2Fe1.45Ir0.05Mo0.5O6-δ(SFIrM)钙钛矿催化剂的动态电化学重构特性以及CO2吸附活化机制。研究发现,SFIrM钙钛矿阴极在CO2电解过程中表面偏析溶出高分散、高密度IrFe合金纳米颗粒(粒径约1.0nm,密度高于80000μm-2);并且IrFe合金纳米颗粒表现出随电压施加和停止相应形成和消失的特征,阐明了电压作为主要驱动力在CO2电解过程中原位促使IrFe合金纳米颗粒在钙钛矿表面溶出的机制。   此外,碳酸盐物种作为CO2吸附和活化反应中间体在原位NAP-XPS中被观测到,其强度随IrFe@SFIrM界面的形成与消失而相应变化。相对于未发生表面溶出的Sr2Fe1.5Mo0.5O6-δ电极,SFIrM电极具有更高的碳酸盐/CO2面积比,证明IrFe@SFIrM界面作为CO2电解反应中的催化活性位点,表现出更高的CO2吸附活化能力。IrFe合金纳米颗粒可通过短暂氧化实现再分散,进一步提高了SOEC中CO2电解稳定性。   本研究阐明了SFIrM阴极的表面重构过程和催化作用机制,有助于深入研究认识SOEC中CO2电解过程。   相关工作以“In situ electrochemical reconstruction of Sr2Fe1.45Ir0.05Mo0.5O6-δ perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells” 为题,发表在《国家科学评论》(National Science Review)上。该工作第一作者是我所502组博士研究生沈俞翔和刘天夫博士。该工作得到国家重点研发计划、国家自然科学基金等项目的支持。
  • 核磁共振技术结合色谱-质谱方法助力沸石分子筛催化丙烷芳构化反应机制研究取得突破
    近日,中国科学院精密测量科学与技术创新研究院研究员徐君、邓风科研团队, 在沸石分子筛催化丙烷芳构化反应机制研究方面取得重要进展。该团队利用原位固体核磁共振技术,探索镓(Ga)修饰ZSM-5分子筛(Ga/ZSM-5)催化丙烷转化制芳烃过程,发现环戊烯碳正离子中间体,并实验证实该碳正离子可作为活性“烃池”物种催化丙烷生成轻质芳烃(苯、甲苯、二甲苯)的转化机制。相关研究成果以Unraveling Hydrocarbon Pool Boosted Propane Aromatization on Gallium/ZSM-5 Zeolite by Solid-State Nuclear Magnetic Resonance Spectroscopy为题,发表在《德国应用化学》上,并被遴选为Hot Paper。  甲烷、乙烷和丙烷等低碳烷烃在地球上储量丰富,直接将低碳烷烃催化转化为附加值较高的烯烃、芳烃等化工产品,可替代目前依赖于石油的化工生产路线,具有重要的应用价值。Ga修饰的分子筛在丙烷芳构化反应中表现出较高反应活性,丙烷在催化剂上的转化涉及复杂的反应网络,尽管已有较多研究,而对丙烷芳构化反应机理目前尚未有明确认识,在一定程度上阻碍了此反应过程的工业化应用。  研究团队采用原位固体核磁共振技术结合色谱-质谱方法,剖析了Ga/ZSM-5分子筛催化丙烷芳构化反应过程,在间歇与流动反应条件下观察到重要中间体环戊烯碳正离子的生成及转化过程。研究表明,在间歇反应过程中,丙烷芳构化反应为自催化反应,包括初始期、诱导期及结束期三个阶段。反应过程中生成的环戊烯碳正离子可作为“烃池”物种,促进丙烷的转化,从而加速反应进行。在流动反应过程中,12C/13C同位素交换的固体NMR实验进一步揭示了环戊烯碳正离子是高活性的“烃池”物种,可促进丙烷的转化。科研人员基于实验结果构建了Ga/ZSM-5分子筛上丙烷芳构化反应机制,丙烷在分子筛上脱氢形成初始烯烃物种,该过程反应速度较慢。初始烯烃进一步生成环戊烯碳正离子,在接下来的过程中,环戊烯碳正离子自身可以转化为芳烃产物,环戊烯碳正离子能够通过夺取丙烷分子上的氢负离子(hydride)而加速其脱氢过程,进而促进芳烃的生成。该研究揭示了分子筛上丙烷芳构化机制,将为丙烷芳构化反应的工业化应用提供重要指导。  研究工作得到国家自然科学基金、中科院、湖北省科技厅及中科院青年创新促进会的支持。
  • 新专利 | AFR不仅仅是合成反应器̷̷
    微通道反应器技术被公认为是21世纪化学合成技术的革命性成果,在多个应用领域已经实现了化学品的连续合成生产。在原料药、精细化学品和新材料等行业,纯度直接影响到产品的性能与效益。康宁独特的“心型”微通道反应模块极大促进物料高效混合与萃取,帮助客户研发并生产高纯度、高品质的产品。在刚刚结束的API期间举办的制药&精细化工连续流本质安全及自动化生产发展论坛上,来自河南省科学院高新技术研究中心的李中贤博士分享了康宁反应器的一项新的应用研究成果"鱼油残液连续提取高纯度胆固醇的方法"。该研究已经获得中国发明专利(专利号ZL201910160333.3和ZL201910160334.8)本文将为大家介绍这一创新应用案例!胆固醇是一种重要的医药中间体,主要用于维生素D2、D3、人工牛黄、合成激素、抗癌药物等生产,还可作为虾的蜕皮激素、养殖饲料的添加剂以及光化学、电子液晶材料。这些应用都对胆固醇的纯度有很严格的要求。目前胆固醇是从羊毛脂、动物的脑干和鱼油中提取,其中都含有较多的24-脱氢胆固醇、7-烯胆烷醇、二氢胆固醇等杂质,难以满足医药生产的质量要求。这些杂质尤其是24-去氢胆固醇与胆固醇性质接近,通过传统的重结晶提纯方法难以去除,为达到医药级别的胆固醇含量需经过多次重结晶,收率较低。有研究者采用熔融结晶和溶剂重结晶相结合的方法得到了含量99 .0%以上的高纯度羊毛脂胆固醇,但收率只有60-75%,也难于实现连续工业化生产。胆固醇是一种重要的医药中间体,主要用于维生素D2、D3、人工牛黄、合成激素、抗癌药物等生产,还可作为虾的蜕皮激素、养殖饲料的添加剂以及光化学、电子液晶材料。这些应用都对胆固醇的纯度有很严格的要求。目前胆固醇是从羊毛脂、动物的脑干和鱼油中提取,其中都含有较多的24-脱氢胆固醇、7-烯胆烷醇、二氢胆固醇等杂质,难以满足医药生产的质量要求。这些杂质尤其是24-去氢胆固醇与胆固醇性质接近,通过传统的重结晶提纯方法难以去除,为达到医药级别的胆固醇含量需经过多次重结晶,收率较低。有研究者采用熔融结晶和溶剂重结晶相结合的方法得到了含量99 .0%以上的高纯度羊毛脂胆固醇,但收率只有60-75%,也难于实现连续工业化生产。研究内容河南省科学院高新技术研究中心余学军主任研究团队创新性的应用康宁微通道反应器实现了连续高效萃取制备高纯度胆固醇的方法。并基于此开发出从鱼油残夜中萃取制备高纯胆固醇,同时联产饲料添加剂过瘤胃脂肪,无含盐废水排放,清洁高效, 有利于满足高回收率的工业化生产需求。1.将正庚烷、乙酸乙酯、甲醇和水按0.9-1.2: 1.1-1.3: 0.8-1.0: 1体积比混合,静置后分开上、下相,用上相溶液溶解胆固醇粗品,下相溶液用乙酸调节PH=3.7-4.5作为萃取剂。2.将萃取剂泵入微通道萃取系统,所述微通道萃取系统包括n个康宁微通道混合模块M和n个分离模块S,混合模块和分离模块依次间隔,分离模块下相溶液出口连接前一级混合模块的进口,上相溶液出口连接下一级混合模块的进口,如此重复连接。3.具体进料操作步骤:1. 用进料泵分别连接萃取剂和胆固醇粗品溶液储液罐,且每个分离模块下相出口连接进料泵控制流速;2. 萃取剂依次进入混合模块Mn、分离模块Sn;待萃取剂占有分离模块Sn体积的约二分之一时,打开Sn下相溶液出料口,通过进料泵进入上一级混合模块Mn-1;3. 依此操作,逐级逆流至康宁微通道混合模块M1;4. 此时开始向混合模块M1泵入粗胆固醇溶液,二者在混合模块M1中充分混合萃取;5. 混合溶液进入分离模块S1分层,上相溶液进入微通道混合模块M2,下相溶液进入回收罐蒸发回收使用,下相液体流速与萃取剂流速相同;6. 如此逐级连续逆流萃取分离。过程中用气相色谱对每级分离模块上相的胆固醇纯度进行分析,直至纯度≥99.0%,收集该分离模块上相溶液,蒸馏回收溶剂,剩余物用乙醇重结晶得到目标产品。4. 基于上述方法,研究者成功实现从鱼油残夜中萃取制备高纯胆固醇。研究结果及讨论 利用康宁微通道反应/混合模块提高萃取效率,胆固醇的回收率≥80%,产品纯度完全满足医药级原料的要求 连续化操作,高效快速,质量稳定,适合大量制备 从鱼油废液中提取胆固醇,变废为宝 减少使用有机溶剂,无含盐废水排放,绿色高效。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制