当前位置: 仪器信息网 > 行业主题 > >

反应路径解析

仪器信息网反应路径解析专题为您整合反应路径解析相关的最新文章,在反应路径解析专题,您不仅可以免费浏览反应路径解析的资讯, 同时您还可以浏览反应路径解析的相关资料、解决方案,参与社区反应路径解析话题讨论。

反应路径解析相关的资讯

  • 解析:基因治疗作用机制、技术路径与行业发展趋势
    一如大家所知,生命科学的中心法则是所有生命活动遵循的基石,DNA双螺旋结构发现者之一Francis Crick在1958年提出的这一规则为现代分子生物学乃至整个生命科学领域奠定了最坚实的科学基础,也为生物医药领域,特别是近年来愈发明显的新型modality、多学科融合的新型疗法、不断涌现的生物技术新范式提供了底层科学上的指导。倚锋资本投资团队遵循这一科学法则,尝试探讨行业发展趋势与其中存在的投资机会。题为“生命科学中心法则系列”,本篇为第一期“基因治疗”,作为开篇,期待讨论与交流。基因治疗的定义基因治疗(gene therapy)是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,进而达到治疗的目的。基因治疗是一种根本性的治疗策略,有望从根本上治愈一些现有常规疗法不能解决的疾病。导入的基因可以是与缺陷基因对应、在体内表达具有特异功能的同源基因,也可以是与缺陷基因无关的治疗基因。按照导入基因的策略,可分为三种类型:基因增补、基因抑制、基因编辑。图片来源:Nature,兴业证券研究所基因治疗的三种策略从源头而言,大多数疾病的发生都是基因层面出了问题,根据基因变异类型的不同,大致可分为两类:1)基因突变导致其指导合成的蛋白质功能异常,表现为蛋白质没有功能、功能变弱或过强,甚至产生有害蛋白;2)基因表达强度异常,表现为不该表达的基因表达、应该表达的基因不表达、基因表达的强度过强或过弱等。基因增补:将外源基因导入表达靶细胞(如肝脏细胞),其表达产物能修饰缺陷细胞的功能,是目前已上市和在研基因疗法的最主要策略。简而言之,就是“缺啥补啥”,也是迄今理论基础最清晰、最容易成药的策略。基因抑制:使无法正常工作的致病基因减弱或沉默,实现方式有些类似于基因编辑,难度较大。相比之下,小核酸干扰机制(RNAi)反而更适用于该策略。基因编辑(以CRISPR/Cas9为代表):切割靶基因,并对其进行精确编辑(删除、插入、替换等),实现对患者基因组“错误”基因的修正,基因编辑可以认为是基因治疗的终极手段,其涉及的治疗过程比基因增补复杂、潜在风险也更大、技术挑战也更高,目前发展阶段不如基因增补成熟。基因治疗的作用机制:中心法则生命科学的中心法则:在生物体内,遗传信息沿着“DNA-RNA-蛋白质”的方向逐级传递,蛋白质是遗传信息的表现形式,亦是一切有机生命体的表现形式,因此疾病发生时多表现为蛋白质层面的异常;DNA、RNA、蛋白质三个层面,传统的小分子(如靶向药)、大分子(单抗,重组蛋白等)都是针对蛋白质层面的治疗策略,基因治疗是针对源头(DNA)的治疗策略,RNAi、mRNA是针对中间过程的治疗策略。图片来源:Nature;倚锋资本投资团队绘制;网络根据中心法则,每一个生理过程都可以理解为特定的基因在特定的时间和空间里表达的结果,平衡被打破就会诱发疾病。几乎所有疾病的发生理论上都可以在DNA水平进行解释,这也是基因治疗的理论基础。根据基因变异类型的不同,导致疾病发生的基因异常大致可分为两类:1)基因突变导致基因指导合成的蛋白质功能异常,表现为蛋白质没有功能、功能变弱或功能过强,甚至产生有害蛋白;2)基因表达强度异常,表现为不该表达的基因表达、应该表达的基因不表达、基因表达的强度过高或过低等。然而,疾病的发生往往涉及多个基因,对应的蛋白质之间的相互作用形成了一个庞大的调控网络,仅对某一个或几个基因进行调节难以达到治疗疾病的目的。目前对人体基因功能和疾病发生机制的研究仍然非常有限,存在大量未被发现的新基因和信号网络。基因和疾病太多的不确定性极大地限制了基因治疗的应用领域,故而基因治疗目前只适用于少数致病机制或治疗方案非常明确的疾病,其中以单基因遗传病为代表。资料来源:倚锋资本团队整理基因治疗与传统药物的成药机制比较小分子(以靶向药、小分子抑制剂为代表)、大分子(以单克隆抗体为代表)大多作用在蛋白质层面,基本作用机制是抑制或激活特定蛋白的活性 基因治疗从DNA的层面介入,可以从源头上解决疾病的发生。图片来源:researchgate.net资料来源:倚锋资本团队整理基因治疗的分类体内&体外根据给药方式和治疗流程的不同,基因治疗可分为“体内”治疗和“离体”治疗(体外)两大类:“体内”基因治疗的操作流程相对简单,大致可分为3个步骤:1)利用基因工程的方法将正常基因插入到 病毒载体的DNA上;2)将重组后的病毒DNA体外包装产生具有感染能力的完整工程病毒;3)把重组后的病毒直接注入病人体内,病毒感染病变细胞并将正常基因带到靶细胞中,实现疾病的治疗。“体外”基因治疗可分为6个步骤:1)将正常基因插入到病毒载体的DNA上;2)将重组后的病毒DNA体外包装产生具有感染能力的完整工程病毒;3)获取病人的体细胞,如造血干细胞等,体外培养扩增;4)用重组后的病毒感染获取的病人细胞,病毒把正常基因导入靶细胞中;5)对携带正常基因的重组细胞体外 培养扩增;6)将携带正常基因的重组细胞回输到病人体内,实现疾病的治疗。图片来源:Proceedings Biological Sciences,华金证券研究所细胞与基因治疗(Cell Gene Therapy)细胞治疗是指利用某些具有特定功能的细胞的特性,采用生物工程的方法获取和/或通过体外扩增、特殊培养等处理后,产生的特异性功能强大的细胞,回输体内后,从而达到治疗疾病的目的。细胞治疗和基因治疗并不容易划分清楚,为了更好的概括,有一种方法是将细胞和基因治疗合称细胞和基因治疗(cell and gene therapy,CGT);另外一种是分为广义、狭义的区分,按照技术类别来分,这种方法更容易区分。狭义的基因治疗只是基因递送,不包括CAR-T/TCR-T和溶瘤病毒治疗,广义的基因治疗则包含了基因递送和 CAR-T/TCR-T、溶瘤病毒。图片来源:The source, harvesting procedure, culture and several potential uses of stem cells,兴业证券研究所基因治疗的技术路径分类(FDA)FDA将基因治疗产品按照技术方式分为五类(载体方式):质粒DNA基因治疗:是指基因工程化的、能够将治疗性基因导入人类细胞的环形DNA分子。通常是分离/扩增目的基因后将其导入到质粒中,然后转染细菌进行质粒的增殖,以生产用于治疗的质粒产品,质粒进入细胞核后可转录出mRNA从而表达目标蛋白。比如2019年3月在日本获批的Collategene,即为搭载肝细胞生长因子 (HGF)的质粒,用于治疗外周动脉闭塞性疾病。病毒载体基因治疗产品:对病毒进行改造(比如删去复制基因)去除其引发传染性疾病的能力,再将目的基因通过质粒共培养的方式装载到病毒颗粒中,病毒感染细胞进入细胞核后释放目的基因并转录表达。比如于 2019年5月由FDA批准上市的诺华公司的Zolgensma,即为搭载SMN1基因的改造AAV9病毒,递送到神经系统后可表达出SMN蛋白从而可以治疗脊髓性肌肉萎缩症(SMA),曾经为史上最昂贵的药,售价为210万美元。(Bluebird的Zynteglo在2022年8月17号于FDA获批,高达280万美元/1900万人民币,刷新了世界最昂贵药物的记录。但是在短短一个月后,2022年9月16日Bluebird又再一次官方宣布FDA已加速批准基因治疗药物Skysona上市,用于减缓4-17岁早期活动性脑肾上腺脑白质营养不良(CALD)男孩神经功能障碍的进展,Skysona在美国的定价为300万美元,这意味着全球最贵药物的记录在短短30天内再次被打破,最新的天价药王诞生)。细菌载体基因治疗:通过改造去除细菌(如沙门氏菌)引发传染性疾病的能力但仍然保留其对某些组织(如肿瘤)的亲和性,再将目的基因/寡聚核苷酸导入细菌,给药后即可感染靶细胞并释放基因改造材料。暂无该类药物上市,在研的包括癌基因沉默的产品、提高癌抗原表达的产品。基因编辑治疗:能够精确对生物体基因组的特定目标基因进行修饰,从而达到破坏有害基因或者修复变异基因的目的。基因编辑技术包括同源重组、锌指核酸酶(ZFNs)技术、转录激活样效应因子核酸酶(TALEN)技术和获得2020年诺贝尔化学奖的CRISPR/Cas9技术。目前暂无药物上市。细胞基因治疗产品:从患者提取细胞后,经过基因改造(通常使用病毒载体)后返输回患者体内。比如于2017年获批的Kymriah,即是将患者的T细胞取出,通过慢病毒将CD19抗体基因转染到T细胞中,该基因可在T细胞表面表达出CD19抗体,经筛选增殖后回输患者体内,实现对B细胞淋巴瘤的杀伤。图片来源:FDA,The promise and challenge of therapeutic genome editing,兴业证券研究所基因治疗的核心因素核酸序列的设计。1)直接影响目标蛋白的表达,以及分泌效率;2)DNA序列决定了蛋白的表达,同时也决定了表达蛋白的二级、三级结构(蛋白的折叠与空间构象,是生命科学的最重要话题之一);3)蛋白的二级与三级结构又直接会影响到从靶细胞(如肝脏细胞)向血液中的分泌能力。这是决定药物剂量的第一个因素。将核酸序列递送至靶细胞中,即:递送问题。如何更加有效的将核酸序列递送至靶细胞,取决于载体的递送效率、载体的制备质量、对靶细胞的转染效率。这是决定药物剂量的第二个因素。工业化生产(CMC,临床转化)。基因治疗的CMC(关键化学、制造和控制)不同于传统的化学药,在整个IND临床报批、上市后稳定生产供应要求更高,而且有一点非常关键:基因治疗是新兴技术,获批上市的产品为数尚少,不像传统的小分子与大分子药,没有大范围的可遵循的IND、BLA(NDA)、CMC固定行业标准,所以企业与监管机构的有效沟通显得格外重要。一款优秀的基因治疗产品,从科学到临床的几个要素第一个要素是致病基因。比如DMD,序列改造很重要,将改造后的序列装进容量有限的AAV里面做成药,是几乎所有基因治疗产品都要面对的首要核心话题 又譬如血友病A,删除B Domain,如何保留序列、如何引入外源序列、增强分泌,亦是一个核心的science话题。所以,在第一个层面上的设计,将会很大程度上影响后续的研发与推进;第二个要素是基因表达的系统。病毒的瞬时作用元件,首要是启动子,天然抑或是人工改造的启动子,在基因药物的设计中非常重要,不同的启动子;还有在表观遗传学里面,增强子起到至关重要的调控作用;第三个要素是基因载体。以AAV为例:复制的起点、包装的信号、末端的序列,AAV的自身天然序列ITR,外壳蛋白的CAP序列 第四个要素是基因导入系统。转入到特定的组织细胞里面,AAV不同血清型、突变型、人工改造型,决定了基因药物的有效性、副作用;优化AAV的设计,使其具备更好的组织靶向性、器官靶向性,将会有效的降低剂量、降低毒副作用;第五个要素是在临床用药的实施。不同的给药方式,如静脉、肌肉、鞘内注射、玻璃体/脉络膜上腔注射的具体选择,对于不同的产品、患者群体、以及不同的适应症,是一个非常重要的课题,Zolgensma在国外是静脉注射,在国内报批的临床是鞘内注射(2022年6月开启,北大一院儿科熊晖教授)。核酸序列设计针对翻译后蛋白合成过程进行优化,特异性启动子,蛋白折叠、适量表达等多种因素;启动子效果不能太强、也不能太弱,根据具体的治疗蛋白需求,设计恰到平衡的启动子是关键之一;针对蛋白质分泌过程进行优化,增加目标蛋白向血液中的分泌效率(外泌率)、提高目标蛋白的活性 譬如,如何让肝脏细胞把蛋白快速分泌到血液循环中,真正起到治疗效果;如果生产的蛋白不能正确的折叠、不能有效的分泌出细胞膜,而是“憋”在细胞里面,就会造成毒性。上述两点使得治疗效果得以改善,同时可以降低治疗剂量,这对于基因治疗是关键制约因素之一。序列设计往往在过分强调载体优化的大背景下被忽略。从投资的角度而言,或许是一个差异化的机会。图片来源:网络递送载体现有基因治疗载体的核心话题是基因到达靶细胞的效率,理想状态下只要能把基因递送到指定的细胞上,许多疾病基本可以治疗,但实现起来有诸多困难。比如,肝脏疾病只有40%的传递效率,眼科疾病20-40%,脑科疾病甚至低于10%(由于血脑屏障);理想的基因治疗载体特性:1)具有靶向特异性,能靶向特定的器官、组织、细胞,且可以高效转导、长期稳定表达转基因;2)有足够的空间来容纳和递送大片段的治疗基因;3)具有高转导效率,能感染分裂和非分裂的细胞;4)缺乏自动复制载体自身的能力,具有较低的免疫原性的或致病性,不会引起炎症;5)高度稳定、易制备、可浓缩和纯化,具备大规模生产的能力。其中:对于靶细胞的转染效率与安全性(毒性)直接相关,因为较高的转染效率意味着较低的使用剂量,直接降低了细胞毒性,最典型的就是肝毒性。图片来源:Nature Reviews Drug Discovery载体的分类非病毒载体:主要有裸露的DNA、质粒、脂质体、微球粒,以及内源性的物质如外泌体、红细胞及囊泡、血小板。该类载体具有低免疫原性、可以多次给药等优点,但目前工程化、量产化的CMC、纯化等工艺问题还存在不少瓶颈;病毒载体:包括腺相关病毒(AAV)、慢病毒(LV)、腺病毒(AdV)和逆转录病毒(RV)等,相比于腺病毒和逆转录病毒来说,腺相关病毒(AAV)与慢病毒载体(LV)安全性较好,两者所占临床试验的比例近年来也在逐步增加,其中AAV载体已经成为基因治疗的首选载体;当前大部分CGT治疗项目为病毒载体,使用非病毒载体的项目大约仅占项目总数的28.3%。几种载体的对比资料来源:倚锋资本团队整理基因治疗的首选载体:AAV - 自然进化的礼物腺相关病毒(adeno-associatedvirus,AAV)是一种大小约为26nm,只包含一条单链线状DNA基因和蛋白质衣壳的无包膜病毒,最早在恒河猴肾细胞的培养物中首次发现;AAV是目前发现的一类结构最简单的单链DNA缺陷型病毒,所以无自主复制能力,需要与辅助病毒(腺病毒或疱疹病毒)进行共感染以便复制,需要辅助病毒(通常为腺病毒)参与复制。目前的科学界共识是AAV不会导致任何人类疾病,大多数成年人都感染过AAV病毒,但尚未发现该病毒是任何疾病的致病因素。图片来源:Semantic Scholar作为基因疗法载体的重组腺相关病毒(rAAV)携带的蛋白衣壳与野生型AAV几乎完全相同,然而衣壳内的基因组中编码病毒蛋白的部分被删除,取而代之的是治疗性转基因(transgene)。AAV基因组中唯一被保留的部分是ITRs,它起到指导基因组的复制和病毒载体组装的作用。将编码病毒蛋白的部分完全删除的优点是:一方面可以最大化重组AAV携带转基因的容量,另一方面减小体内递送转基因时产生的免疫原性和细胞毒性。AAV作用机制重组AAV颗粒通过与宿主细胞表面表达的糖化受体相结合,通过网格蛋白(clathrin)介导的内吞作用进入细胞。在内吞形成的内体(endosome)酸化之后,病毒衣壳的VP1/VP2部分构象发生变化,导致病毒从内体中脱离,并且通过核孔进入细胞核。进入细胞核后,单链DNA从衣壳中释放出来。这时单链DNA还不能进行转录,它们需要变成双链DNA。单链DNA可以利用宿主细胞的DNA聚合酶来 合成互补链,或者两条从不同AAV颗粒中释放的互补链退火(annealing)形成双链DNA。双链形式的AAV基因组然后利用ITRs进行分子内或分子间基因组重组,这一过程让AAV基因组成为稳定的游离DNA(episomal DNA),导致基因组能够在不再进行有丝分裂的细胞中持续进行基因表达。图片来源:Nature Reviews Drug DiscoveryAAV血清型的靶向性目前已发现12种AAV血清型和100多种突变体,不同血清型的区别在于衣壳蛋白,因此导致不同血清型AAV对各组织或细胞感染效率不同(靶向性)。多数基因疗法的靶向组织是肝脏、横纹肌和中枢神经系统,几乎所有天然AAV能够在肝脏中转染,因此重组AAV为靶向肝脏提供了优良的基因递送平台,包括A型和B型血友病、家族性高胆固醇血症等疾病。AAV8和AAV9衣壳蛋白能够靶向身体中的多种肌肉类型,这让AAV介导的基因疗法能够用于治疗多种肌肉疾病,其中包括杜氏肌营养不良症(DMD)。值得一提的是,肌肉可以作为生成治疗性分子的“体内工厂”,因此靶向肌肉组织的基因疗法可以用于治疗非肌肉疾病。AAV递送的另一个重要方向是中枢神经系统(CNS),包括眼睛和大脑。眼睛是一个相对隔离的环境,直接进行眼内注射递 送AAV基因疗法能够达到治疗多种遗传性眼病的效果。Spark公司开发的获批疗法Luxturna就是治疗由于RPE65基因突变而导致失明的患者。资料来源:NatureReviews Drug DiscoveryAAV载体面临的一些问题预存免疫(pre-existing anti-AAV antibody):据传染病学统计,40-80%的人体内携带针对AAV的抗体。这可能导致AAV作为基因疗法载体在未递送转基因时就被免疫系统摧毁,降低转基因的表达水平。解决策略包括使用从非人灵长类中分离的AAV衣壳,AAV载体的理性设计与定向进化。提高AAV载体对于组织的特异性:几乎所有天然AAV衣壳蛋白能够在肝脏中引发有效的转基因表达;AAV8和AAV9衣壳蛋白能够靶向身体中的多种肌肉类型;AAV9和AAVrh.10能够穿越血脑屏障。通过载体设计优化得到更多组织特异性更佳的AAV载体也是当前的方向。装载容量的问题:AAV载体的容量只有约4.7kb,对于很多较大的基因,需要选择其截断的有功能的区域,如递送凝血八因子FVIII时去除了其B-domain,递送DMD基因时,选择了micro-DMD基因。核心解决策略在于优化治疗基因序列的设计。图片来源:Nature Reviews Drug DiscoveryAAV基因治疗的发展现状2016-2019年临床以AAV为载体的基因治疗试验数量增长迅猛,从不足10个增加到了接近45个 临床试验中所用最多的是基于AAV2血清型载体,但是新的血清型如AAV8、AAV9、AAV10也在不断被用于临床试验 以AAV为载体的基因治疗主要靶向眼、肝、肌肉和脑部,其中尤以靶向眼部疾病的临床试验数量为多,大多进行I/II期临床试验。图片来源:NatureReviews Drug Discovery基因治疗的适应症主要包括:眼部疾病、血液疾病、神经退行性疾病以及其它遗传类疾病。目前全球已发现7000多种已确定的罕见病,超过80%的罕见病具有已知的单基因致病机理。从基因治疗MOA的角度而言,最佳的适应症范围即为单基因致病机理的遗传疾病。比如,眼科适应症在基因治疗中具有以下优势:1)相对的免疫豁免;2)两只眼睛,其中一只可以做control;3)相对安全;4)AAV的用量相对较少;5)20%的遗传疾病都发生在眼睛上,可选择疾病种类较多。基因治疗的获批上市产品体内基因治疗获批三款:Glybera(已退市,UniQure)、Luxturna(Spark)、Zolgensma(诺华)资料来源:兴业证券研究所Spark,Luxturna,FDA首款2017年12月,FDA批准了Spark公司的Luxturna上市,用于治疗双等位RPE65基因突变导致的II型先天性黑蒙症 (LCA,Leber’s congenital amaurosis),Luxturna是FDA历史上第一个基因治疗药物。已有研究发现了19个与LCA相关的致病基因,其中由RPE65基因突变导致的LCA称为LCA II型,约占LCA的16%。RPE65基因突变导致RPE65蛋白失去异构酶活性,从而造成光感受器细胞不能对光发生反应,最终导致视力丧失。Luxturna采用了AAV2载体,递送RPE65基因,直接注射到视网膜色素上皮(RPE)细胞中。在患者细胞表达RPE65蛋白后,细胞内的视黄醛循环得以继续,从而渐渐获得感光的视觉能力。图片来源:Spark公司官网;网络罗氏在2019年12月完成了48亿美元收购企业Spark Therapeutics的交易,包括已上市的罕见眼科疾病药物Luxturna和处于III期阶段的B型血友病疗法SPK-9001等。Luxturna每只眼睛定价42.5万美元,双眼治疗价格在85万美元(眼科基因疗法的独特优势是:可以选择单眼治疗,也可选择双眼治疗)。其2018年共销售了75份,销售额达2700万美元。从Spark Therapeutics公司公布的III期临床试验数据来看,在接受治疗的29名患者中有27名患者的规力得到了显著改善,有效率高达93.1%,随访1年后,仍有21名患者保持良好的治疗效果。Leber氏先天性黑蒙症(LCA)是一组遗传性视网膜变性疾病,由至少18个不同基因的突变引起。它是儿童遗传性失明的最常见原因,10万名儿童中会有3人受到影响。该疾病一般出现在儿童时期,并导致严重的视力丧失和潜在的失明。LCA最常见形式为LCA10,约占所有患者的20%-30%,目前没有可用的治疗选择。全球首个上市的眼科基因疗法Luxturna的方法在LCA10患者中是不可能的,因为导致该病的突变基因太大,无法放入用作运送工具的灭活病毒中。目前正在临床中的做法是采用Crispr基因编辑策略。诺华,Zolgensma2019年,FDA批准了诺华公司研发的AAV基因疗法Zolgensma,用于治疗2岁以下患有存活运动神经元1(SMN1)等位突变导致的脊髓性肌萎缩症(SMA)的儿童患者。Zolgensma采用了AAV9载体,能够透过血脑屏障,将SMN1基因递送到中枢神经系统从而发挥功能。资料来源:FDA官网基因治疗的差异化投资方向1.病毒载体向非病毒载体的过渡,如LNP,特别是人体内源性物质如外泌体、红细胞及囊泡、血小板;未来的大方向是低免疫原性、可重复给药;2.序列设计的持续优化、差异化,从biology的角度降低AAV剂量;3.小分子诱导、转录因子based目标序列表达开关,即带有signal on/off机制的基因治疗;4.AAV的器官靶向优化,降低空壳率,进而降低AAV剂量与毒性;5.从罕见病向常见病的拓展,譬如眼内表达抗VEGF的蛋白(脉络膜上腔注射);6.明确的MOA(science),尚待改进的技术手段(technology)。
  • JMCA最新研究:实验室台式吸收谱(XAFS)助力解析缺陷位点在全解水反应中的高效应用
    近年来,表面缺陷调控工程被认为是提高催化剂催化活性的一种高效方法。因为表面缺陷工程可以有效调控活性位点的配位环境,从而优化催化剂的电子结构,实现电子转移和中间产物(*OH、*O和*OOH)吸附自由能的优化,大大提升催化反应效率。层状双金属氢氧化物(LDH)因其在水氧化(OER)反应中的优异性能而被广泛研究。而表面缺陷的引入将进一步提升其在OER中的催化效率。近期,郑州大学马炜/周震教授及其他合作者成功揭示了NiFe双金属氢氧化物纳米片中表面缺陷对于OER反应的巨大提升作用,同时通过结合X射线吸收谱(台式easyXAFS300+,美国easyXAFS公司),成功揭示了表面缺陷在催化反应中的作用机制,相关研究成果发表于Journal of Materials Chemistry A, 2021, 9(25): 14432-14443. 该课题组通过利用H2O2和H2O(v/v=1:1)的混合溶液将水热条件下制备的NixFe1-x(OH)2/CNT复合物进行氧化,得到了富含缺陷的NixFe1-x(OH)2/CNT-t(为双氧水处理氧化时间)催化剂。经过24h的氧化处理, Ni1/2Fe1/2(OH)2/CNT-24表面形成了丰富的缺陷结构。相较与没有氧化处理的催化剂, NixFe1-x(OH)2/CNT-24催化剂表面展现出明显的孔洞,这是由于氧化过程中,Fe(OH)2向α-FeOOH转变而从层间脱离,形成的孔洞和缺陷结构。 为了进一步验证氧化处理后催化剂的缺陷结构,研究人员利用实验室台式X射线吸收谱(easyXAFS300+)进行催化剂表征。相关测试结果如图1所示,为实验样品中Ni的k edge X射线吸收谱图(XAFS),可以看出,实验样品与Ni foil有着明显的吸收边和近边结构的区别,说明主要的实验样品皆为+2价Ni元素。图1b为Ni k edge傅里叶变换R空间数据,可以得知经过24h氧化的样品的Ni-O的散射路径长度为1.80 Å,明显小于原始样品(NiFe-LDH)的1.89 Å。且氧化后样品的Ni-O配位数为4.5,明显低于原始样品(NiFe-LDH)的配位数6。以上数据表明经过双氧水的氧化后,部分Ni-O键断裂,Ni展现出不饱和配位,催化剂中存在氧空位。同时,通过二壳层的分析发现,氧化样品中Ni-Fe/Ni-Ni的散射路径长度为2.96 Å,配位数为4,而原始样品中Ni-Fe/Ni-Ni的散射路径长度 2.95 Å,配位数为4。由此可见,经过双氧水的氧化腐蚀作用,NiFe-LDH样品中存在明显的金属缺陷和氧空位(镍缺陷或铁缺陷)。 图1. (a) Ni1/2Fe1/2(OH)2/CNT-24及其他样品的XAFS图,Ni k edge(b)径向距离χ(R)空间谱,(c)χ(R)空间拟合曲线图,(d)k2χ(k)空间谱拟合曲线 经过电化学水分解测试表明,Ni1/2Fe1/2(OH)2/CNT-24纳米片展现出低的过电位(244 mV),且与当前已报道的过渡金属催化剂对比,展现出优异的OER活性。另外,其Tafel斜率很小,约为41 mV dec-1,表明氧化后的样品具有较有快的OER动力学,这是由于引入缺陷增能够有效的加速电子转移,并且优化中间产物的吸附自由能(*OH,*O和*OOH),从而提升催化反应效率。台式XAFS谱仪很好的揭示了氧化前后催化剂的精细结构变化,为进一步的反应机理研究提供的强有力的支持。 图2. easyXAFS公司的台式XAFS/XES谱仪 实验室台式XAFS谱仪优势:1. 台式设计,可以在实验室内随时满足日常样品分析;2. LabVIEW软件脚本控制,附带7位自动样品轮, 可以同时进行多个样品或样品参数条件下的测试;3. 可集成辅助设备,搭配原位池,可实现高压、气体氛围、电化学等条件下的测试(已辅助客户成功验证),实现原位表征测试。4. 台式XAFS/XES谱仪具有XAFS和XES两种工作模式,可快速切换,满足不同科研试验需求 5. 台式XAFS/XES谱仪测得的谱图效果可以媲美同步辐射数据,如图3所示,其测得的Ni元素的EXAFS,Ce和U元素的L3-edge的XANES谱图数据与同步辐射光源谱图效果完全一致; 图3. (a, b)台式XAFS/XES谱仪与同步辐射光源测得的Ni EXAFS及傅里叶变换后R空间对比谱图, (c、d)Ce和U L3-edge XANES谱图数据对比图6. 多种型号和配置可选,满足不同科研要求;7. 操作便捷,维护成本低,安全可靠. 参考文献:[1] Ge J, Zheng J Y, Zhang J, et al. Controllable atomic defect engineering in layered NixFe1-x (OH)2 nanosheets for electrochemical overall water splitting[J]. Journal of Materials Chemistry A, 2021, 9(25): 14432-14443.
  • 大气污染治理的“辛集路径”——辛集市利用科技手段实施精准治霾、铁腕治霾、合力治霾
    精准溯源 强力执法 靶向治理大气污染治理的“辛集路径”——辛集市利用科技手段实施精准治霾、铁腕治霾、合力治霾来源:中国环境报 记者:刘晓星对于河北省辛集市的百姓来说,地处京津冀这一特殊的扩散区域内,“蓝天常在,繁星闪烁”曾几何时是如此奢侈;而现如今,他们更加期许的是碧蓝如洗的天空能够常驻,飘逸灵动的云彩可以长留。这一改变缘于以下一组数据:2017年8月原环境保护部发布的《京津冀及周边地区2017-2018年秋冬季大气污染综合治理攻坚行动方案》中的数据显示,辛集市PM2.5平均浓度同比下降25%,重污染天数同比下降20%;来自辛集市环保局的最新数据显示,2018年1至6月份,辛集市PM2.5为78微克/立方米,较2017年同期下降25%,下降率在河北全省168个县中排名第18位。自2017年以来,为坚决打赢大气治理攻坚战,辛集依托泛测(北京)环境科技有限公司国内领先的博士专家团队和设备生产基地,成立了辛集市空气质量监测反应指挥中心,严格落实精准治霾、科学治霾、铁腕治霾、协同治霾,2017年全市PM2.5年均浓度同比下降21.6%,下降幅度位居全省第一,走出了一条大气污染综合治理的“辛集路径”。关注一:监测监控突出“全”,确保无缝隙全覆盖辛集市属于京津冀大气污染防治重点区域,污染形势严峻,特别是冬季采暖期间,多次出现重污染天气,对生产生活秩序、群众身心健康造成严重影响。在辛集治霾的历程中,也曾一度受到PM2.5数值爆表却无法精准找到污染源的困惑。如何通过对大气环境全方位、立体化、全时段的实时监测,最终实现大气污染治理的精细化、科学化及精准化?辛集市委书记邸义给出的答案是:大气污染的有效控制依赖于核心技术问题的突破和环境管理指导思想的创新,因此,必须依靠科技力量来实现精准治霾。在实施蓝天保卫战的征程中,辛集市始终坚持把科技创新作为破解难题、引领发展的第一动力,瞄准国内一流的大气环境监测设备生产商——泛测(北京)环境科技有限公司,引设备、引技术、引人才、引服务,并在辛集建设了国内领先的环保设备生产基地,走在了国内大气污染治理的最前沿。2017年11月,由河北思蓝环境科技有限公司承建的辛集市空气质量监测反应指挥中心正式建成,由市委督查室牵头,从环保局、交通局、住建局、城管局、公安交警大队、辛集镇各抽调一名骨干成员组成专门队伍,全面调度开展大气污染防治有关工作。走进辛集市空气质量监测反应指挥中心,记者看到电子屏上显示着一个个监测点位及分布情况,且每个监测点颜色不一,实时反映着监测点位的污染程度变化情况。泛测(北京)环境科技有限公司管祖光博士向记者介绍说,近年来,我国人工智能云计算技术、物联网技术发展迅速,将物联网大数据的功能融合在环境监测领域,有效地解决了目前监测工作中的难点问题。辛集市空气质量监测反应指挥中心这个平台融合了一个辛集市网格化空气环境全覆盖监测网络、一个空气质量传感监测设备的管理平台、一个空气环境监测大数据展示和分析平台及对散煤、秸秆和典型排放源智能监控与解析。图为高新区高桥科技公司微站站点。辛集市空气质量监测反应指挥中心主任刘理宪指着显示屏介绍说,生态环境部将京津冀及周边重点区域“2+26”城市按照3km×3km划分网格,共计约3.6万个。在这个基础上,辛集结合自身企业分布和污染源分布情况进一步优化,在全市工业园区、重点企业、典型村街、主要道路等关键部位加密安装150个微型大气环境监测仪,并预留10个流动监测仪,根据监测情况,随时对重点区域、异常区域加密布置,确保做到监测无缝隙、全覆盖;在全市所有乡(镇、区)设置34个蓝天卫士高清视频探头,采用红外捕捉功能,对其周边2至3公里范围内发生的焚烧秸秆、垃圾等污染行为进行实时报警,并抓拍锁定证据;三是用好“无人机”。指挥中心两台无人机,与各乡镇40余台无人机集团作战,实现市域全覆盖,彻底消灭监控死角死面;组织人员每天开展日常巡查,特别是对异常点位进行重点巡查。从“雷达站”“千里眼”再到“无人机”,辛集在全市960平方公里上建起了一张空气质量监测监控网。自指挥中心成立以来,蓝天卫士视频监控系统发挥了重大的作用,已经有效制止焚烧秸秆垃圾的行为360余起,各乡镇区、公安派出所共对31名故意焚烧的行为人采取了行政拘留措施,收到良好社会效果。2018年麦收期间,全市彻底实现了“不着一把火、不冒一股烟”的目标。截至目前,指挥中心两台无人机已经查处取缔散乱污企业20余家,拆除沿街商店燃煤锅炉30余台,查扣非法超载超限、拉运蓝湿皮车辆12辆,解决群众反映强烈的周边异味、偷拍偷放问题10余起,起到强有力的震慑作用。关注二:污染成因突出“准”,确保科学分析研判在建立完善监测网络的基础上,辛集市坚持问题导向,及时对监测数据进行精准分析,研判成因,有针对性地制定治理措施。泛测(北京)环境科技有限公司王立国向记者介绍说,该公司拥有一套“数据采集——数据分析——技术服务”的完整技术体系。在数据分析和技术运维服务方面,汇集了一支包括环境科学家、大数据和人工智能专家的强大科学家团队,运用物联网+云计算+大数据技术,自主研发生态环境大数据分析与管理平台(FDATA)和空气质量大数据监管与解析平台(AQmap)。生态环境大数据分析与管理平台融合了地理、空气、气象和溯源等多源数据,不仅可对指定地区空气质量多维监测数据进行可视化展示,更多是对环境全方位分析,助力环保部门的日常管理。比如从时间维度上实现历史数据的横向和纵向对比分析,从空间维度上实现区域污染事件发现和报警,支持具体污染情况深入分析。空气质量大数据监管与解析平台,配合数据服务功能可实现每日污染排放监管和特定事件来源分析,从而为环境管理者提供高精度空气质量监测数据的大数据分析和服务。保证实时反馈到位。采用泛测公司自主研发的高精度、高集成、高性价比全参数空气质量传感器,对PM2.5、PM10、SO2、NO2、CO、O3以及温湿度等参数进行实时监测,所有采集数据利用物联网技术传输到中心平台,为及时掌握分析空气质量情况提供大数据支撑。保证精准分析到位。以泛测公司博士团队为依托,对辛集市空气质量大数据及时进行研判,既分析辛集内生因素,又分析周边环境影响;既分析短期数据异常,又分析长期波动变化;既分析自然天气因素,又分析人为影响因素,科学研判全市空气污染成因。保证分类施策到位。2017年,辛集市出台了《中共辛集市委辛集市人民政府关于强力推进大气污染综合治理的意见》(“1+27”方案)、《辛集市2017-2018秋冬季大气污染综合治理攻坚行动方案》等一系列文件,将每项治理任务逐一分解到牵头部门、责任部门,同时各牵头单位分别制定了本部门、本系统的工作实施方案,将任务逐步分解到责任领导、责任科室及具体责任人,并明确时间节点和任务要求。图为辛集市委书记邸义现场分析污染状况。关注三:反应处置突出“快”,确保第一时间查处2017年12月1日16时到12月2日15时辛集市空气质量指数AQI为222,空气质量为重度污染,首要污染物为PM2.5。平台通过对辛集市及周边区域的污染过程研究发现,在重度污染天气的大环境前提下,辛集市的空气质量要明显好于周边县市,说明辛集市的本地污染排放控制初见成效,但是辛集市的污染主要受到不利的气象地理条件以及周边城市的污染传输的影响比较明显。依据排污活动分析结果,建议落实预警期间工业源停产状况;城区及周边减少劣质煤燃烧及杜绝秸秆等生物质类燃烧。辛集市在第一时间发布橙色预警,启动重污染天气Ⅱ级(橙色)应急响应。辛集市委书记邸义带领相关部门负责人第一时间赶到空气质量监测反应指挥中心,从监测平台上研判空气质量变化情况,分析恶劣天气形成原因,要求采取更加强有力的应对措施,开展精准治霾、协同治霾。预警启动后,各乡镇、各部门迅速落实红色预警应对机制,采取各种措施积极应对。辛集市环保局派出6个督导组61人,对全市重点企业、施工工地进行检查。各督导组严格按照市新版预案要求,认真检查企业重污染天气应急响应操作方案、在线设备监测数据,设备停限产、厂区环境现场管理等情况,现场督促指导企业将停限产措施落实到方案、落实到设备、落实到操作人员,切实实现削峰降速、科学减排、精准治霾效果。辛集市空气质量监测反应指挥中心主任刘理宪介绍说,辛集市空气质量监测反应指挥中心设置预警专员,实时监测各类影响环境质量的问题,并实现了随时发现、随时交办、随时处置的目标。设置巡察专员,利用两台无人机、手持式VOCS检测仪对重点区域、重点企业、建筑工地等不断进行巡察监测,及时解决发现的各类问题。设置分析专员,随时对空气质量检测仪、蓝天卫士视频探头监测情况进行汇总分析,一日一报告、一周一通报、一月一考核,为政府决策提供科学精准数据。那么,这么多的任务又是怎样实现及时交办、快速处置的呢?——织牢三级责任网。健全完善生态环境保护市乡村三级网格管理体系,进一步明确辛集市19个市直部门、16个乡(镇、区)、344个村街网格长、网格员的监管范围、工作职责、考核奖惩,做到千斤重担万人挑、人人肩上有担当。——建立互动微信群。组建500人的“大气污染防治治理微信群”,市级领导、各职能部门“一把手”、各乡(镇、区)主要领导和主管副职、各派出所所长、重点企业负责人、各村街支部书记和村主任全部加入。指挥中心交办任务后,市委、市政府主要领导及时跟进督导。截至目前,指挥中心交办的焚烧柴草垃圾、监测点数据不正常等400余件问题,全部得到快速有效解决。——联合打好保卫战。指挥中心牵头,协调公安、环保、市场监管、法院等部门开展联合执法,严管重罚、顶格处理,对7家违法排污企业进行了行政处罚,对31名焚烧秸秆垃圾的行为人实行了行政拘留,收到良好社会效果。同时,积极发动人民群众举报各类环境违法行为,共奖励举报人员7人,奖励金额48.5万元,打了一场保卫蓝天的人民战争。图为生态环境大数据分析与管理平台。关注四:压力传导突出“严”,确保治理效果长效大气污染治理是民生工程,更是政治任务,辛集市站在与京津共享一片蓝天的高度,辛集市委、市政府主要领导亲自科学布置监控点位,亲自到基层一线夜查空气污染源,亲自跟专家一起研判污染成因,亲自研究制定有针对性的严实举措,确保了大气污染综合治理工作取得实效。在大气污染治理攻坚战中,辛集市委书记邸义是一位多面手,是领导,是专家,更是司令员!从技术选择到监测点位设计都有自己独到的见解。在他的领导下,辛集市善于利用高科技秘密武器来解决环保问题。除了引进泛测公司的空气质量网格化监管方案,辛集市还将申科公司的环保设备精准在线监测系统应用到污染企业的生产过程监控中,通过物联网通信和大数据分析技术来预防企业“偷排漏排”;在水环境治理方面,辛集市率先引进光纤传感技术,实现了对长距离流域的高密度监测监管。“环境监测点位的选择要有代表性、可比性及科学性。”他解释说,监测点位的设计要能客观反映一定空间范围内环境空气质量水平和变化规律,客观表征污染源排放特征或评价区域环境空气状况;又要考虑地理、气象、工业布局、人口分布特点,反映城市主要功能区和主要大气污染源的污染现状及变化趋势。压力在层层传导中更严,更实。针对监测中发现的问题,辛集市探索建立务实管用的长效机制,确保治理效果稳定化、常态化,持续改善辛集空气质量。——用好通报“利剑”。每天对污染排放活动频繁排名前10的点位,通过《空气质量日报告》进行通报,责成相关部门第一时间排查问题原因并反馈现场照片,对排查后仍然排名靠前的点位,指挥中心会同思蓝泛测公司专家利用无人机、热感摄像头等手段进行现场排查,真正查找污染源头。同时,每月对各乡镇常规空气污染6参数综合指数、同比改善率一月一排名、一月一通报,切实增强了乡村干部的责任感和压力感。——用好督查“利剑”。建立空气质量监测反应指挥中心发现问题交办反馈情况台账,对发现的问题及时交办乡镇部门主要负责同志,责任到人,及时解决。同时,对交办事项进行跟踪督查问效,确保问题真正解决到位。对敷衍推诿、瞒报谎报的严肃问责,并在全市通报。——用好考核“利剑”。将大气污染综合治理纳入全市重点工作大督查,并将督查结果与乡科级领导班子年终考核挂钩。制定了农村干部基础职务补贴发放办法,明确了环境治理、违法占地、信访稳定、软弱涣散、场所建设五个绩效补贴一票否决项,以此倒逼村级组织这第一道防线认真履行监管职责,确保从源头上解决大气污染问题。应该说,辛集充分利用网络化监测与服务,通过人工智能技术对空气的大数据进行分析和挖掘,为科学决策提供强大支撑。总结辛集大气治理的路径,对于区域大气污染治理带来了诸多启示。2017年,为提高重点区域环境监管效能,第一时间发现问题、解决问题,生态环境部启动“千里眼计划”,对京津冀及周边地区“2+26”城市(以下简称“2+26”城市)全行政区域按照3km×3km划分网格,利用卫星遥感技术,筛选出PM2.5年均浓度较高的3600个网格作为热点网格,进行重点监管。经过一年多的试点,现已在“2+26”城市全面开展,取得较好成效。据了解,下一步,生态环境部将逐步扩大“千里眼计划”实施范围。2018年10月前实施范围为“2+26”城市;10月起增加汾渭平原11城市;2019年2月起增加长三角地区41城市,从而实现对重点区域的热点网格监管全覆盖。此外,生态环境部还将研究通过地面监测微站和移动式监测设备(车载式或便携式)等技术手段,综合运用互联网技术和大数据理念,探索构建“热点网格+地面监测微站+移动式监测设备”的工作模式,不断深入实施“千里眼计划”,细化执法监管区域,精密监控PM2.5等污染物质的浓度变化和异常时段,进一步提升热点网格日常监管和执法检查的针对性和精准性,提高大气污染监管水平。辛集在大气污染治理的历程中,为探索“热点网格+地面监测微站+移动式监测设备”的工作模式积累了丰富的实践经验,走出了一条大气污染治理的“辛集路径”。
  • 使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(中)
    本篇承接上文,《使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(上)》(点击查看)。2.2反应性光遗传控制和酵母连续培养的单细胞解析特性作者首次应用ReacSight策略的动机是酵母合成生物学应用。在这种情况下,精确控制合成路径并在定义明确的环境条件下测量其输出,并具有足够的时间分辨率和范围是至关重要的。光遗传学为控制合成路径提供了一种极好的方法,生物反应器支持的连续培养是对环境条件进行长时间严格控制的理想方法。为了测量单个细胞的路径输出,细胞术提供了高灵敏度和高通量。因此,借助ReacSight策略,利用台式细胞仪作为测量设备,组装了一个完全自动化的实验平台,实现了对酵母连续培养物的反应性光遗传学控制和单细胞解析表征(图2a)。补充说明2提供了平台硬件和软件的详细信息,此处仅讨论关键要素。八个反应器与移液机器人相连,这意味着每个时间点都会填满一列取样板。虽然机器人可以接触到三列细胞仪输入板,但作者仅使用一列,由机器人进行广泛清洗,以实现小于0.2%的残留,使用免疫磁珠进行验证。通常在机器人平台上安装两个倾翻箱和两个取样板(2×96=192个样本),因此,在没有任何人为干预的情况下,八个反应器中的每一个都有24个时间点。为了实现基于细胞数据的反应性实验控制,作者开发并实施了算法,以在重叠荧光团之间执行自动选通和光谱反褶积(图2b)。作者首先通过对组成性表达来自染色体整合转录单位的各种荧光蛋白的酵母菌株进行长期恒浊培养来验证平台的性能(图2c)。荧光团水平的分布是单峰的,随着时间的推移是稳定的,正如在具有组成型启动子的稳定生长条件下所预期的那样。mNeonGreen和mScarlet-I在单色和三色菌株之间的分布完全重叠。这与从强pTDH3启动子表达一个或三个荧光蛋白对细胞生理学的影响可以忽略不计的假设是一致的,并且三色菌株中转录单位的相对位置(mCerulean第一,mNeonGreen第二,mCarlet-I)对基因表达的影响很小。与单色品系相比,三色品系中测得的mCerulean水平略高(~15%)。这可能是由于反褶积中的残余误差造成的,与自荧光和mNeonGreen相比,mCerulean的亮度较低加剧了这种误差。为了验证平台的光遗传学能力,作者构建了一个基于EL222系统17的光诱导基因表达路径并对其进行了表征(图2d)。正如预期的那样,应用不同的蓝光开-关时间模式导致荧光团水平的动态分布覆盖范围很广,从接近零水平(即几乎无法与自体荧光区分)到超过强组成启动子pTDH3获得的水平。高诱导表达水平的细胞间变异性也很低,变异系数(CV)值与pTDH3启动子相当(0.22vs0.20)。作者组装的第一个平台使用了一个预先存在的定制光生生物反应器阵列。这种设置有几个优点(可靠性、工作容量范围广),但其他实验室无法轻易复制。由于ReacSight架构的模块化,可以通过将这个定制的生物反应器阵列与最近描述的开放硬件、光遗传学就绪的商用Chi.生物反应器(图2a(右图))交换,快速构建具有类似功能的平台的第二个版本。为了验证该平台的另一版本的性能,作者使用图2d中相同的菌株进行了光诱导实验,并获得了各种光诱导曲线的极好的反应器到反应器再现性。图2基于ReacSight的自动化平台组装,实现对酵母连续培养物的反应性光遗传学控制和单细胞解析表征。a平台概述。OpentronsOT-2移液机器人用于将支持光基因的多生物反应器连接到台式细胞仪(GuavaEasyCyte14HT,Luminex)。机器人用于稀释细胞仪输入板中的新鲜培养样本,并在时间点之间清洗。“点击”Python库pyautogui用于创建细胞仪仪器控制API。定制算法是在Python中开发和实现的,用于实时自动选通和去卷积细胞数据。使用定制的生物反应器装置(左图)或Chi生物反应器(右图)组装了两个版本的平台。b选通和反褶积算法说明。例如,显示了重叠荧光团mCerulean和mNeonGreen之间的反褶积。c多代单细胞基因表达分布的稳定性。从pTDH3启动子驱动的转录单位中组成性表达mCerulean、mNeonGreen或mCarlet-I的菌株(“三色”菌株),整合到染色体中,在浊度调节器模式下生长(OD设定值=0.5,上限图),每小时采集一次细胞仪(垂直绿线)。所有时间点的荧光强度分布(通过高斯核密度估计进行平滑)(选通、反褶积和前向散射归一化后,FSC)用不同的颜色阴影绘制在一起(下图)。RPU:相对启动子单位(见方法)。为了简单起见,未显示“三色”的OD数据,与其他类似。d基于EL222系统的光驱动基因表达电路的特性。应用三种不同的开-关蓝光时间剖面图(底部),每45分钟采集一次细胞仪。门控、去卷积、FSC标准化数据的中位数如图所示(顶部)。此图中显示的所有生物反应器实验均在同一天与定制生物反应器平台版本并行进行。源数据作为源数据文件提供。2.3使用光实时控制基因表达为了展示平台的反应性光遗传控制能力,作者开始动态适应光刺激,以便将荧光团水平保持在不同的目标设定点。这种用于体内基因表达调控的电子反馈有助于在存在复杂细胞调控的情况下剖析内源性路径的功能,并有助于将合成系统用于生物技术应用。作者首先构建并验证了光诱导基因表达的简单数学模型(图3a)。将三个模型参数与图2d的表征数据进行联合拟合,得到了良好的定量一致性。考虑到模型假设的简单性,这一点值得注意:光激活下的mRNA生成速率恒定,每mRNA的翻译速率恒定,mRNA(大部分降解,半衰期为20分钟)和蛋白质(大部分稀释,半衰率为1.46小时)的一级衰变。因此,当实验条件得到很好的控制并且数据得到适当的处理时,人们可以希望用一小套简单的过程来定量地解释生物系统的行为。然后,作者将拟合模型合并到模型预测控制算法中(图3b)。该算法与ReacSight事件系统一起,实现了对不同反应器中不同目标的荧光水平的精确实时控制(图3c)。为了进一步证明平台的稳健性和再现性,作者在几个月后进行了另一个单8反应器实验,涉及两个荧光团目标水平的四个重复反应器运行。所有的重复都能很好地跟踪目标,并且控制算法决定的光分布在相同目标的重复之间非常相似,但并不完全相同。作者还研究了之前使用的诱导系统在更长时间尺度上的遗传稳定性。遗传稳定性是工业生物生产的一个重要因素。作者观察到,EL222驱动的mNeonGreen蛋白的诱导可以持续5天以上,并且具有很好的稳定性(图3d顶部)。更进一步,作者测试了同一蛋白的分泌版本是否表现出类似的表达稳定性。作者观察到,诱导约2天后细胞水平显著降低。细胞异质性也增加了(图3d右侧)。为了弥补细胞水平的下降,作者将表达盒整合成多个拷贝(三次,串联染色体插入)。诱导后,获得了非常高的荧光水平(图3d底部)。令人惊讶的是,这些水平比非分泌蛋白高一个数量级,并伴随着强烈的应激,正如未折叠蛋白应激报告所反映的那样(pUPRmScarletI)。诱导后,细胞内蛋白质水平逐渐下降。细胞内蛋白质水平显示出明显的双峰分布,强烈的遗传不稳定性迹象(图3d右侧)。最后,当以最大诱导水平的三分之一诱导时,相同的三重拷贝结构表现出非单调行为:高水平初始反应,随后细胞内水平缓慢下降,如完全诱导的三重结构,随后长期内部高蛋白水平的非预期缓慢恢复(图3d底部)。这种恢复可以通过细胞适应高生产需求来解释,或者更可能的是,通过选择高产亚群来解释,该亚群能够更好地保存HIS3选择标记,即使在完全培养基中也具有轻微的生长优势。这个实验证明了作者的平台能够执行长时间的实验,并以相对较高的时间分辨率提供单小区信息。此外,它促使探索和利用营养素可用性对健康和压力的影响。图3闭环:使用光实时控制基因表达。a光驱动基因表达电路的简单ODE模型拟合到图2d的表征数据。拟合参数为γm=2.09h−1,σ=0.64RPU小时−1,γFP=0.475小时−1km被任意设置为等于γm,以仅允许从蛋白质中值水平识别参数。b实时控制基因表达的策略。每小时进行一次细胞仪采集,在选通、反褶积和FSC归一化后,数据被送入模型预测控制(MPC)算法。该算法使用该模型搜索10个周期为30分钟的工作循环(即5小时的后退地平线)的最佳占空比序列,以跟踪目标水平。c四种不同目标水平的实时控制结果,在不同的生物反应器中并行执行(自定义设置)。左:单个单元格的中位数(控制值)。右:单细胞随时间的分布。请注意,所有绘图都使用线性比例。d表达系统的长期稳定性和蛋白质分泌的影响。表达EL222驱动的mNeonGreen荧光报告子的细胞,无论是否分泌,在浊度调节器中生长5天,每2小时进行一次细胞仪测量。表示整个实验期间的平均表达水平。荧光分布也显示在选定的时间点(诱导后0、6、48和120小时)。细胞也有分泌应激的荧光报告子(pUPRmScarlet-I)。还提供了三个拷贝中整合的mNeonGreen报告蛋白的分泌形式的结果。相关蛋白(mNeonGreen水平)和应激水平(mCarlet-I水平)分布的时间演变如补充图11和12所示。源数据作为源数据文件提供。曼森生物高通量菌株筛选平台技术上海曼森生物科技公司专注于高通量、自动化、智能化实验室技术产品开发,逐步形成了全自动化的高通量菌株筛选平台技术,可根据用户需求定制化高通量全自动菌株筛选平台。每天筛选通量可从几千到10万,是人工通量的几十倍上百;在传统生物技术上,加速工业化菌株的遗传进化,帮助提高底物转化率和产量提升;在合成生物技术上,可为选择的平台化合物表达菌株的遗传稳定性、表观遗传进化提升效率。此外高通量筛选必须有高通量的自动化分析检测技术支撑方能发挥最大价值。曼森高通量自动样品检测机器人文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
  • 艾玮得器官芯片药敏检测,精准医疗新路径
    随着近代医学的诞生,在近100年里,肿瘤的治疗经历了从经验医学到循证医学,进而到转化医学和精准医学的变革,基于组学的肿瘤分子分型检测指导临床精准用药取得显著成效。然而,肿瘤的异质性会造成基因 - 药物关联性的不确定,无法辅助临床精准用药,且并非所有患者都具有明确的驱动基因,仅 10%~15%的患者有机会匹配精准药物治疗[1]。这也是为什么有些患者可以使用这类药物,而另一些患者却不行,尽管他们都患有相同的肿瘤。肿瘤类器官与器官芯片技术的发展,为精准医疗打开了新路径。通过对患者来源的肿瘤组织类器官构建“器官芯片”微环境,可以很好地保留体内肿瘤的关键特征,并精准模拟出人体真实的生理环境,让“替身试药”成为可能,为医生提供更加精准的个性化治疗方案,并预测患者对治疗的反应。 类器官是临床治疗有效性评估理想的预测模型 Science研究:类器官对患者靶向药物或化疗的反应阳性预测率达88%。[2]Cell中国真实世界研究:类器官预测药物敏感性与临床反应一致性达 83.33%。[3] 器官芯片+类器官模拟高仿真的人体微环境高仿真模拟类器官无法复制发育器官的复杂和动态微环境,在仿生度、可重复性与可控性上具有一定的局限性。因此,为类器官搭载合适的器官芯片,通过共培养技术实现复杂模型构建,克服类器官培养局限性,更精确模拟细胞间复杂互作关系的生理环境,实现更高仿生,从而更精准的呈现药敏反应。以肝肿瘤类器官+器官芯片的构建为例,艾玮得以高通量药敏芯片为核心,对患者的肝肿瘤组织进行类器官与其他细胞的共培养,实现细胞组分、细胞外基质组分、物理化学环境三个方面的高仿真构建,使它满足高通量肝肿瘤药物筛选需求。分别加入索拉非尼、瑞戈非尼等药物,观察不同药物作用下的肿瘤抑制反应。在本案例中,我们通过肝肿瘤微环境的构建,促进肝肿瘤类器官微血管的形成,瑞戈非尼作为一种抗血管生成的药物,表现出明显的抑制效果。肿瘤精准治疗新路径作为肿瘤精准治疗新路径,艾玮得器官芯片药敏检测一站式解决方案具有高度模拟肿瘤微环境,促进肿瘤细胞微血管的形成,实现无介入、无破坏性、动态可持续地监测类器官对药物反应等优势特性。艾玮得器官芯片药敏检测全程严格质控,从取下肿瘤组织到出具报告仅需2-3周。器官芯片药敏检测服务流程癌症患者生存质量差、生存周期短,盲目试药会增加患者的生存负担和耽误宝贵的治疗时机,所以需要临床前药物敏感性的功能性测试。器官芯片药敏检测技术的出现,让医生在肿瘤用药筛选的时候,有更多精准高效的选择方法。 文献参考:[1] S CA. et al. c u r r o p i n g a s t r o e n t e r o l , 2020, 36(5):428-436.[2] GV. et al. science. 2018 FEB 23 359(6378): 920–926[3] WU YI-L, et al. cell rep med. 2023 FEB 21 4(2):100911.
  • 重要成果!1000 mA/cm²高活性OER,easyXAFS台式X射线吸收精细结构谱仪解析电催化剂
    电化学分解水是一种将间歇性能源(如风能,太阳能)转化为氢能的有效途径,有利于推动碳中和。开发廉价高活性的氧析出(OER)电催化剂是该技术走向实际应用的关键之一。研究表明,过渡金属催化剂在OER过程中可重构形成具有更高活性的羟基氧化物,且杂原子的加入可促进这一表面重构反应。基于此,太原理工大学与新南威尔士大学合作提出一种原位重构策略,以FeB包覆的NiMoO作为预催化剂进行表面重构,获得了高活性的OER催化剂。作者利用美国easyXAFS公司研发的台式X射线吸收光谱仪XES150解析了催化剂的精细结构,并结合多种其他表征技术及理论计算,证明重构过程形成的稳定高价态Ni4+物种可促进晶格氧活化进而提升OER反应。该项工作揭示了催化活性的提升机理,并实现了1000mA/cm2级别的超高反应电流,以“Stable tetravalent Ni species generated by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efficient water oxidation at large current densities”为题发表于期刊Applied Catalysis B: Environmental。 本文中使用的台式X射线吸收光谱仪XES150无需同步辐射光源,可以在实验室内测试XAFS和XES数据,谱图数据与同步辐射光源谱图数据完全一致。仪器推出至今,已在全球拥有100+用户群体,市场份额遥遥领先,久经时间考验,细节打磨更完善,稳定性可靠性更高。设备还可实现图1. 台式X射线吸收精细结构谱仪-XAFS/XES 图一展示了催化剂的合成示意图,NiMoO/FeB 预催化剂通过原位重构形成NiFeOOH,其中的准金属硼诱导形成纳米片/纳米棒结构。所得的催化剂的OER活性高于纯NiOOH和贵金属RuO2(图2a)。该催化剂仅需1.545 V vs. RHE即可驱动1000 mA/cm2电流,性能优于其他文献报道(图2b)。作者利用台式XES150 system (Easy XAFS LLC, USA)测试了样品X射线吸收谱。通过Ni-K边 X射线吸收近边结构 (XANES) 光谱分析Ni的电子态。白线峰与 1 s 到 4p 跃迁相关。在 NiFeOOH 的 XANES 光谱中白线峰峰值位于 8352.66 eV,高于 NiOOH(图 2c),这表明NiFeOOH中Ni的平均氧化态高于NiOOH中的平均氧化态,并且NiFeOOH中形成了更多的Ni4+物种。 同时,由于金属 4p 轨道的离域,NiFeOOH吸收边向较低能量移动,峰展宽且边缘跃迁强度增加(即 1 s→4p),这些对配体-金属共价性敏感的特征性变化表明Ni-O 共价键增加(图 2d)。作者进一步分析拟合了Ni K-边的傅立叶变换扩展X射线吸收精细结构(EXAFS)的k3χ数据,以探究局部原子结构(图2e-2h)。与NiOOH 相比,NiFeOOH 的 Ni-O 散射路径原子间距离从 1.98 &angst 减小到 1.85 &angst ,证明 Ni-O 键的共价性质的增加。 Ni-O 散射路径的偏移归因于NiOOH 和 NiFeOOH 中不同的局部配位环境,这是由于其中NiOOH 和 NiO2物相的比例不同。 上述结果表明,NiFeOOH 中的稳定态物种主要是 Fe 掺杂的 NiO2 物质,这是由 Fe 掺杂和重构过程(即中等高电位下的电化学极化)引起的。 Ni4+生成量的增加导致Ni-O共价性增大,从而促进晶格氧的活化,提升OER催化反应活性。图1. NiMoO/FeB 预催化剂与NiFeOOH 催化剂的合成示意图。图2. (a) 催化剂的LSV曲线。(b)本文催化剂过电势与其他文献报道对比图。(c)(d)Ni-K边XANES谱图。(e)Ni-K边EXAFS谱图。(f)NiO, (g) NiOOH,及 (h) NiFeOOH的EXAFS拟合结果。参考文献:[1]. Yijie Zhang et al., Stable tetravalent Ni species generated by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efficient water oxidation at large current densities, Applied Catalysis B: Environmental, Volume 341, February 2024, 123297.相关产品1、台式X射线吸收精细结构谱仪-XAFS/XEShttps://www.instrument.com.cn/netshow/SH100980/C327753.htm
  • 北京公布大气细颗粒物最新源解析结果
    4月15日,北京市环保局局长陈添介绍了北京大气细颗粒物(PM2.5)来源的最新解析结果。   通过模型解析,北京全年PM2.5来源中,区域传输约占28%&mdash 36%,本地污染排放占64%&mdash 72%。而在本地污染源中,机动车占比高达30%以上。   北京市环保局最新披露的数据显示,机动车、燃煤、工业生产、扬尘成为北京市大气细颗粒物(PM2.5)的主要来源。专业人士表示,治理大气污染,仍待有的放矢、联防联控。   北京大气细颗粒物三成来自外地传输   北京市环保局局长陈添介绍说,由于空气的流通性,北京大气中的PM2.5约30%来自于外地传输。他表示,空气质量是一个区域性问题,周边对北京市有影响,但北京市在区域内也是一个污染节点,也会影响别人,&ldquo 要改善区域空气质量,需要大家共同为之付出努力,就是联防联控&rdquo 。   陈添透露,从主要成分看,北京市空气中PM2.5成分主要为有机物、硝酸盐、硫酸盐、地壳元素和铵盐等,分别占PM2.5质量浓度的26%、17%、16%、12%和11%。   在北京的PM2.5中,70%是二次粒子,也就是说由一次排放的气态污染物在大气氧化过程中反应而产生的细颗粒物。陈添说,例如机动车排放的尾气中,氮氧化物和碳氢化合物会转化成PM2.5。所以,从科学的分析来看,应该&ldquo 先测成分再去推导原因,再去推导来源&rdquo 。   源解析锁定四大污染源   按照环保部的部署,6月底前,北京、天津和石家庄要完成污染源解析。   北京最新的分析结果显示,在北京本地PM2.5污染中,机动车、燃煤、工业生产、扬尘为主要来源。机动车占31.1%,燃煤占22.4%,工业生产占18.1%,扬尘占14.3%,餐饮、汽车修理、畜禽养殖、建筑涂装等其他排放约占14.1%。这其中,机动车对PM2.5的贡献是综合性的,既包括直接排放的PM2.5及其气态前体物,也包括间接排放的道路交通扬尘等。   陈添介绍,以上结果是对北京过去一年半PM2.5的源解析,这一研究成果已通过环保部、中科院、工程院等单位的专家论证。   陈添强调,源解析是制定空气清洁行动计划的根本依据。&ldquo 从来源来看,锁定机动车、燃煤、工业排放和扬尘,这四大块是没错的。&rdquo 陈添说。   例如,冬春时节是北京空气污染较为严重的季节。今年至今已经出现了8次重污染过程,重污染天达23天。去年同期,北京出现了15次重污染过程,重污染天为31天。陈添介绍,这个季节容易出现重污染的原因,一是供暖季节污染物排放量偏大,二是气象条件影响。   关电厂退企业,大气治理需联防联控   围绕PM2.5的不同来源,治理需要采取不同举措。   机动车方面,陈添介绍说,目前对于高排放的黄标车实施了六环路内(含)以及城关镇限行的措施,实际上已经实施了&ldquo 低排放区&rdquo 政策,将来还可能进一步完善。同时,未来还将研究在已有低排放区的基础上征收交通拥堵费。陈添表示,2017年底,公共服务车辆使用新能源车力争达到20万辆,其中公交车使用新能源与清洁能源车总量预计在60%左右,出租车将更换1.5万辆,环卫车、邮政车预计达到50%。   燃煤方面,北京将关停四大燃煤热电厂,2016年底前建成四大燃气热电中心。目前东南和西南两座热电中心已投入运营,石景山正在建设的西北热电厂今年年底有望建成。   工业方面,去年北京市共调整退出污染企业288家。陈添介绍说,今年还将针对现存的污染企业进行调整和污染治理。具体来说,一是对于现存的高污染企业采取限期退出的措施 二是未来还将制定一批新的更加严格的污染物排放标准 三是今年1月1日起大幅提高了排污收费标准,增加企业排污成本。&ldquo 今年计划再退出300家污染企业。&rdquo 陈添说。   关于大气联防联控,陈添介绍,各个地区、各个部门要制定好自己的规划和措施,落实自己应该干的所有的工作。在&ldquo 联&rdquo 上面,要共同做好规划,互通信息。   陈添表示,PM2.5主要由人类的活动造成,他建议,在政府主导的前提下,企业承担起大气污染的主责,市民从自我做起,从点滴做起,为减排做贡献。
  • 科学家利用高分辨太赫兹光谱方法揭示水溶液中硼酸的氟化反应机理
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • 低温电镜解析蛋白结构十大进展
    结构生物学领域有一条不成文的观点:结构决定功能。只有知道生物分子的原子排布,科学家们才能了解这个蛋白的功能。几十年来,分析蛋白结构有一个无冕之王——X射线晶体衍射。在X射线晶体衍射中,科学家们让蛋白结晶,然后利用X射线照射,随后根据X射线的衍射来重建蛋白的结构。在蛋白质数据银行(Protein Data Bank)的100000多条蛋白词目里,超过90%的蛋白结构是利用X射线晶体衍射技术解析得到的。  尽管X射线晶体衍射一直是结构生物学家的最佳工具,但是它存在较大的限制。科学家们将蛋白进行大块结晶通常需要多年的时间。而很多基础蛋白分子,例如嵌在细胞膜上的蛋白,或是形成复合体的蛋白却无法被结晶。  X射线晶体衍射技术(X-ray crystallography)即将成为历史,低温电子显微技术(cryo-electron microscopy, 也称作electron cryomicroscopy, cryo-EM)引发结构生物学变革。  低温电子显微镜适用于研究大的、稳定的分子,这些分子能够承受电子的轰击,而不发生变形——由多个蛋白组成的分子机器是最好的样本。因此由RNA紧紧围绕的核糖体是最佳的样本。三位化学家用X射线晶体衍射研究核糖体溶液的工作在2009年获得了诺贝尔化学奖,但这些工作花了几十年。近几年,低温电镜研究者们也陷入了“核糖体热”。多个团队研究了多种生物的核糖体,包括人类核糖体的首个高清模型。X射线晶体衍射的研究成果远远落后于LMB的Venki Ramakrishnan实验室,Venki获得了2009年的诺奖。Venki表示,对于大分子来说,低温电子显微镜远比X射线晶体衍射要实用。  这几年,低温电子显微镜的相关文章有很多:2015年一年,这个技术就用于100多个分子的结构研究。X-射线晶体衍射只能对单个、静态的蛋白晶体成像,但低温电子显微镜能够对蛋白的多种构象进行成像,帮助科学家们推断蛋白的功能。  现在低温电镜迅猛发展,专家们正在寻找更大的挑战作为下一个解析目标。对很多人来说,最想解析的是夹在细胞膜内的蛋白。这些蛋白是细胞信号通路中的关键分子,也是比较热门的药物靶标。这些蛋白很难结晶,而低温电子显微镜不大可能对单个蛋白进行成像,这是因为很难从背景噪音中提取这些信号。  这些困难都无法阻挡加利福利亚大学(University of California)的生物物理学家程亦凡。他计划解析一种细小的膜蛋白TRPV1。TRPV1是检测辣椒中引起灼烧感的物质的受体,并与其它痛感蛋白紧密相关。加利福利亚大学病理学家David Julius等人之前尝试结晶TRPV1,结果失败。用低温电子显微镜解析TRPV1项目,一开始进展缓慢。但2013年底,技术进步使得这一项目有了重大突破,他们获得了分辨率为0.34纳米的TRPV1蛋白的结构。该成果的发表对于领域来说,无异于惊雷。因为这证实了低温电子显微镜能够解析小的、重要的分子。  尽管低温电子显微镜发展迅速,很多研究者认为,它仍有巨大提升空间。他们希望能制造出更灵敏的电子探测器,以及更好地制备蛋白样本的方法。这样的话,就能够对更小的、更动态的分子进行成像,并且分辨率更高。5月,有研究者发表了一篇细菌蛋白的结构,分辨率达到了0.22纳米。这也显示了低温显微镜的潜力。  1997年时,英国医学研究委员会分子生物学实验室结构生物学家Richard Henderson非常坚定地宣称,低温电镜会成为解析蛋白结构的主流工具。在将近20年后的今天,他的预测比当年有了更多底气。Henderson表示,如果低温电镜保持这样的势头继续发展,技术问题也得以解决,那么低温电镜不仅会成为解析蛋白结构的第一选择,而是主流选择。这个目标已经离我们不远了。  1. 施一公小组在《Science》发两篇论文报道剪接体三维结构    U4/U6.U5 tri-snRNP电镜密度及三维结构示意图。  2015年8月21日,清华大学生命科学学院施一公教授研究组在国际顶级期刊《科学》(Science)同时在线发表了两篇背靠背研究长文,题目分别为“3.6埃的酵母剪接体结构”(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)和“前体信使RNA剪接的结构基础”(Structural Basis of Pre-mRNA Splicing)。第一篇文章报道了通过单颗粒冷冻电子显微技术(冷冻电镜)解析的酵母剪接体近原子分辨率的三维结构,第二篇文章在此结构的基础上进行了详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。清华大学生命学院博士后闫创业、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者。  这一研究成果具有极为重大的意义。自上世纪70年代后期RNA剪接的发现以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。施一公院士研究组对剪接体近原子分辨率结构的解析,不仅初步解答了这一基础生命科学领域长期以来备受关注的核心问题,又为进一步揭示与剪接体相关疾病的发病机理提供了结构基础和理论指导。详细新闻报道参见:施一公研究组在《科学》发表论文报道剪接体组装过程重要复合物U4/U6.U5 tri-snRNP的三维结构。(Science, 20 Aug 2015, doi: 10.1126/science.aac7629 doi: 10.1126/science.aac8159)  2. Science:HIV重大突破!史上最详细HIV包膜三维结构出炉!    这项研究首次解析出HIV Env三聚体处于自然状态下的高分辨率结构图,其中HIV利用Env三聚体侵入宿主细胞。图片来自The Scripps Research Institute。  在一项新的研究中,TSRI的研究人员解析出负责识别和感染宿主细胞的HIV蛋白的高分辨率结构图片。相关研究结果发表在2016年3月4日那期Science期刊上,论文标题为“Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer”。  这项研究是首次解析出这种被称作包膜糖蛋白三聚体(envelope glycoprotein trimer,以下称Env三聚体)的HIV蛋白处于自然状态下的结构图。这些也包括详细地绘制这种蛋白底部的脆弱位点图,以及能够中和HIV的抗体结合位点图。(Science, 04 Mar 2016, doi: 10.1126/science.aad2450)  3. Nature:史上最详细转录因子TFIID三维结构出炉,力助揭示人类基因表达秘密  在一项新的研究中,来自美国加州大学伯克利分校、劳伦斯伯克利国家实验室和西班牙国家研究委员会(CSIC)罗卡索拉诺物理化学研究所的研究人员在理解我们体内被称作转录起始前复合物(pre-initiation complex, PIC)的分子机构(molecular machinery)如何发现合适的DNA片段进行转录方面取得重大进展。他们史无前例地详细呈现一种被称作TFIID的转录因子所发挥的作用。相关研究结果于2016年3月23日在线发表在Nature期刊上,论文标题为“Structure of promoter-bound TFIID and model of human pre-initiation complex assembly”。论文通信作者是劳伦斯伯克利国家实验室生物物理学家Eva Nogales,论文第一作者是Nogales实验室生物物理学研究生Robert Louder。其他作者是Yuan He、José Ramón López-Blanco、Jie Fang和Pablo Chacón。  这一发现是非常重要的,这是因为它为科学家们理解和治疗一系列恶性肿瘤铺平道路。Eva Nogales说,“理解细胞中的这种调节过程是操纵它或当它变坏时修复它的唯一方式。基因表达是包括从胚胎发育到癌症在内的很多重要生物学过程的关键。一旦我们能够操纵这些基本机制,那么我们就能够要么校正应当或不应当存在的基因表达,要么阻止这种过程[即基因表达]失去控制时的恶性状态。”(Nature, 31 March 2016, doi:10.1038/nature17394)  4. Science:科学家成功解析人类剪接体关键结构   在最近发表的一篇Science研究论文中,来自德国的科学家们利用冷冻电镜技术首次在分子级分辨率水平上重现了人类剪接体中一个关键复合体——U4/U6.U5 tri-snRNP的结构。剪接体是一种由RNA和蛋白质组成的用于切掉mRNA前体中内含子的分子机器。该研究解析的U4/U6.U5 tri-snRNP是构成剪接体的一个重要组成部分,研究人员利用单颗粒冷冻电镜获得了人类U4/U6.U5 tri-snRNP的三维结构,该复合体分子量达到180万道尔顿,解析分辨率达到7埃。该研究模型揭示了Brr2 RNA解螺旋酶如何在分离的人类tri-snRNP中通过空间结构阻止未成熟的U4/U6 RNA发生解链,还展现了泛素C端水解酶样蛋白Sad1如何将Brr2固定在预激活位置。  研究人员将他们获得的结构模型与酿酒酵母tri-snRNP以及裂殖酵母剪接体的结构进行了对比,结果表明Brr2在剪接体激活过程中发生了显著的构象变化,支架蛋白Prp8也发生了结构变化以容纳剪接体的催化RNA网络。(Science, 25 Mar 2016, doi: 10.1126/science.aad2085)  5.北京大学毛有东、欧阳颀课题组与其合作者在Science发表炎症复合体冷冻电镜结构    炎症复合体三维结构  北京大学物理学院毛有东研究员、北京大学物理学院/定量生物学中心欧阳颀院士与哈佛医学院吴皓教授合作利用冷冻电子显微镜技术解析了近原子分辨率的炎症复合体的三维结构,首次阐释了其复合物在免疫信号转导过程中的单向多聚活化的分子结构机理。该研究工作以“Cryo-EM Structure of the Activated NAIP2/NLRC4 Inflammasome Reveals Nucleated Polymerization”为题于2015年10月8日在线发表在国际期刊Science。  先天免疫是人类免疫系统的重要组成部分,炎症复合体在触发先天免疫响应的过程中起到了关键信号转导的效应器作用,从而启动细胞凋亡等免疫应答和炎症反应。炎症复合体是胞浆内一组复杂的多蛋白复合体,是胱天蛋白酶活化所必需的反应平台,其复合物单体由多个结构域构成,并在上游蛋白的激活下诱导组装形成环状复合物。炎症复合体的结构对于认识先天免疫的信号转导过程、免疫调控和病原诱导活化等免疫响应机理具有关键的核心价值,因而成为国内外一流结构生物学和免疫学实验室追捧的研究对象。(Science, 23 Oct 2015, 10.1126/science.aac5789)  6. Nature:施一公团队揭示γ -分泌酶原子分辨率结构    人体γ -分泌酶3.4埃三维结构  日前,清华大学教授施一公团队与国外学者合作,构建了分辨率高达3.4埃的人体γ -分泌酶的电镜结构,并且基于结构分析了γ -分泌酶致病突变体的功能,为理解γ -分泌酶的工作机制以及阿尔茨海默氏症的发病机理提供了重要基础。相关成果8月18日在《自然》发表。  阿尔茨海默氏症是最为严峻的老年神经退行性疾病之一,但其发病机理尚待揭示。目前研究已知β -淀粉样沉淀是该病的标志性症状之一。而β -淀粉样沉淀的产生是APP蛋白经过一系列蛋白酶切割产生的短肽聚集而来。在此切割过程中,最关键的蛋白酶是γ -分泌酶。γ -分泌酶由四个跨膜蛋白亚基组成,其中,编码Presenilin(PS1)蛋白的基因中有200多个突变与阿尔茨海默氏症病人相关。γ -分泌酶在阿尔茨海默氏症的发病中扮演着重要角色。  研究人员通过收集更多的数据、大量的计算并升级分类方法,计算构建出3.4埃原子分辨率γ -分泌酶的三维结构,可以观察到绝大部分氨基酸的侧链以及胞外区部分糖基化修饰和结合的脂类分子。在高分辨结构的基础上,施一公研究组对PS1上的致病性突变体进行了研究,发现这些突变主要集中在两个较为集中的区域内。他们对于其中一些突变体进行了生化性质的研究,发现这些突变会影响γ -分泌酶对于底物APP的酶切活性,然而对切割活性的影响却有所不同。(Nature, 10 September 2015, doi:10.1038/nature14892)  7. Nature:人类核糖体结构终于被解析!    核糖体是进行蛋白质翻译的机器,能够催化蛋白质合成。目前,许多研究已经对多种生物的核糖体结构进行了原子水平的结构解析,但获得人核糖体结构一直存在很大挑战,这一问题的解决对于人类疾病的深入了解以及治疗手段和策略的开发都有重要意义。  近日,著名国际学术期刊nature在线发表了法国科学家关于人类核糖体结构解析的最新研究进展。  在该项研究中,研究人员利用高分辨率单颗粒低温电子显微镜以及原子模型构建的方法获得了人类核糖体接近原子水平的结构。该核糖体结构的平均分辨率为3.6A,接近最稳定区域的2.9A分辨率水平。这一研究成果对人类核糖体RNA,氨基酸侧链的实体结构,特别是转运RNA结合位点以及tRNA脱离位点处的特定分子相互作用提供了深入见解,揭示了核糖体大小亚基接触面的原子细节,发现在核糖体大小亚基的旋转运动过程中,其接触面发生了强烈的重构过程。(Nature, 30 April 2015, doi:10.1038/nature14427)  8. Nature:日本科学家成功解析代谢关键因子受体结构  近日,著名国际学术期刊nature在线发表了日本科学家的最新研究进展,他们利用结构生物学方法对脂联素(adiponectin)受体,AdipoR1和AdipoR2,进行了结构解析,发现脂联素受体具有与G蛋白偶联受体不同的七次跨膜螺旋,对于靶向脂联素受体的肥胖及其相关代谢疾病治疗方法开发具有重要意义。  在该项研究中,研究人员对人类AdipoR1和AdipoR2的晶体结构进行了解析,分辨率分别达到2.9 ?和2.4 ?,他们通过解析发现脂联素受体是具有不同结构的一类新受体。脂联素受体的这种七次跨膜螺旋在构象上与G蛋白偶联受体的七次跨膜螺旋不同,在这种新的 七次跨膜螺旋中,由三个保守组氨酸残基协同一个锌离子形成了一个大的腔体。这种锌结合结构可能在adiponectin刺激的AMPK磷酸化和UCP2表达上调方面具有一定作用。(Nature, 16 April 2015, doi:10.1038/nature14301 )  9. Molecular Cell:中国科学家揭示A型流感病毒RNA聚合酶复合体的三维冷冻电镜结构  2015年1月22日,中科院生物物理所刘迎芳研究组与清华大学王宏伟研究组在著名期刊Molecular Cell杂志在线发表了题目为 “Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3 ? Resolution”的论文,揭示了流感病毒RNA聚合酶复合体的结构和功能。  生物物理所刘迎芳和清华大学王宏伟课题组等中外多方参与的实验室通过使用最新的高分辨率单颗粒冷冻电镜三维重构技术,解析了含有A型流感病毒RNA聚合酶大部分成分的4.3埃分辨率的四聚体电镜结构。该复合体涵盖了流感病毒聚合酶催化活性的核心区域。从三维重构密度图中可以清晰识别出该空腔内PB1上的催化结构域以及结合的RNA复制起始链,据此,研究人员推测这是进行RNA合成反应的区域。这一活性中心结构与正链RNA聚合酶具有相似性,研究人员也因此提出了流感病毒合成新生RNA链的机制。(Molecular Cell, 5 March 2015, doi:10.1016/j.molcel.2014.12.031)  10. Cell:科学家获得首个中介体复合物精确结构图    中介体复合物(Mediator Complex)是细胞中最大也最为复杂的分子机器之一。现在,来自斯克利普斯研究所(TSRI)的科学家们在《细胞》杂志上报告称,他们利用用电镜获得了首个中介体复合物(Mediator)的精确结构图。  Mediator是所有动植物细胞中的关键分子机器,对于绝大多数基因的转录有着至关重要的调控作用。Mediator拥有二十多个蛋白亚基,解析它的结构是基础细胞生物学的一大进步。这一成果能够为许多疾病提供宝贵的线索(从癌症到遗传性的发育疾病)。论文资深作者,TSRI副教授Francisco Asturias表示:"明确这些大分子机器的结构和作用机制,可以帮助我们理解许多关键的细胞过程。"  在这项新研究中,研究人员获得了高纯度的酵母Mediator,并通过电镜成像得到了迄今为止最为清晰的Mediator3D模型,分辨率达到约18埃。随后他们又进行了多种生化分析,例如在逐个去除蛋白亚基的同时观察电镜图像发生的改变。他们由此确定了酵母Mediator25个蛋白亚基的精确定位。  项新研究获得的结构图谱,全面修正了之前的Mediator' 粗略模型。论文第一作者Kuang-LeiTsai表示:"定位了所有的蛋白亚基之后,我们发现头部模块应该位于Mediator的顶部而不是底部。"此外,研究人员还对人类Mediator进行了深入研究。Tsai说:"大体上看,人类和酵母的Mediator总体结构颇为类似。"最后研究人员在结构数据的基础上,为人们展示了Mediator调控转录时的构象变化。(Cell, 29 May 2014, doi: 10.1016/j.cell.2014.05.015)
  • 如何精准找出CIS影像晶片缺陷?透过量子效率光谱解析常见的4种制程缺陷!
    本文将为您介绍何谓量子效率光谱,以及CIS影像晶片常见的4种制程缺陷。SG-A_CMOS 商用级图像传感器测试仪相较于传统光学检测设备可以提供更精细的缺陷检测资讯,有助于使用者全面了解CIS影像晶片的性能表现。量子效率光谱是CIS影像晶片的关键参数之一,可以反映CIS影像晶片对不同波长下的感光能力,进而影响影像的成像质量。1. 什么是CIS影像晶片的量子效率光谱?CIS影像晶片的量子效率光谱是指在不同波长下,CIS晶片对光的响应效率。物理上,光子的能量与其波长成反比,因此,不同波长的光子对CIS影像晶片产生的响应效率也不同。量子效率光谱可以反映传感器在不同波长下的响应能力,帮助人们理解传感器的灵敏度和色彩还原能力等特性。通常,传感器的量子效率光谱会在可见光波段范围内呈现出不同的特征,如波峰和波谷,这些特征也直接影响着传感器的成像质量。2. Quantum Efficiency Spectrum 量子效率光谱可以解析CIS影像晶片内部的缺陷,常见的有下四种:BSI processing designOptical Crosstalk inspectionColor filter quality and performanceSi wafer THK condition in BSI processing3. 透过量子效率光谱解析常见的4种制程缺陷A. 什么是BSI制程?(1) BSI的运作方式BSI全名是Back-Side Illumination.是指"背照式"影像传感器的制造工艺,它相对于传统的"正面照射"(FSI, Front-Side Illumination)影像传感器,能够提高影像传感器的光学性能,特别是在各波长的感光效率的大幅提升。在BSI制程中,像素置于矽基板的背面,光通过矽基板进入感光像素,减少了前面的传输层和金属线路的干扰,提高了光的利用率和绕射效应,进而提高了影像传感器的解析度和灵敏度。(2) 传统的"正面照射"(FSI, Front-Side Illumination)图像传感器的工作方式FSI 是一种传统的图像传感器制程技术,光线透过透镜后,从图像传感器的正面照射到图像传感器的感光面,因此需要在感光面(黄色方框, Silicon)的上方放置一些电路和金属线,这些元件会遮挡一部分光线,降低图像传感器的光量利用率,影响图像的品质。相对地,BSI 技术是在感光面的背面,也就是基板反面制作出感光元件,让光线可以直接进入到感光面,这样就可以最大限度地提高光量利用率,提高图像的品质,并且不需要额外的电路和金属线的遮挡,因此也可以实现更高的像素密度和更快的图像读取速度。(3) 为什么BSI工艺重要?BSI工艺是重要的制造技术之一,可以大幅提升CIS图像传感器的感光度和量子效率,因此对于低光照环境下的图像采集有很大的帮助。BSI工艺还可以提高图像传感器的分辨率、动态范围和信噪比等性能,使得图像质量更加优良。由于现今图像应用日益广泛,对图像质量和性能要求也越来越高,因此BSI工艺在现代图像传感器的制造中扮演着重要的角色。目前,BSI 技术已成为图像传感器的主流工艺技术之一,被广泛应用于各种高阶图像产品中。(4) 量子效率光谱如何评估BSI工艺的好坏如前述,在CIS图像芯片的制造过程中,不同波长的光子对于图像芯片的感光能力有所不同。因此,量子效率光谱是一种可以检测图像芯片感光能力的方法。利用量子效率光谱,可以评估BSI工艺的好坏。Example-1如图,TSMC使用量子效率光谱分析了前照式FSI和背照式BSI两种工艺对RGB三原色的像素感光表现的差异。结果表明,BSI工艺可以大幅提高像素的感光度,将原本FSI的40%左右提高到将近60%的量子效率。上图 TSMC利用Wafer Level Quantum Efficiency Spectrum(量子效率光谱)分析1.75μm的前照式FSI与背照式BSI两种工艺对RGB三原色的像素在不同波长下的感光表现差异。由量子效率光谱的结果显示,BSI工艺可以大幅提升像素的感光度,将原本FSI的40%左右提高到将近60%的量子效率。(Reference: tsmc CIS)。量子效率光谱的分析可以帮助工程师判断不同工艺对感光能力的影响,并且确定BSI工艺的优势。(5) 利用量子效率光谱分析不同BSI工艺工艺对CIS图像芯片感光能力的影响Example-2 如上图。Omnivision 采用Wafer Level Quantum Efficiency Spectrum量子效率光谱分析采用TSMC 65nm工艺进行量产时,不同工艺工艺,对CIS图像芯片感光能力的影响。在1.4um像素尺寸使用BSI-1工艺与BSI-2的量子效率光谱比较下,可以显著的判断,BSI-2的量子效率较BSI-1有着将近10%的量子效率提升。代表着BSI-2的工艺可以让CIS图像芯片内部绝对感光能力可以提升10%((a)表)。此外,量子效率光谱是优化CIS图像芯片制造的重要工具。例如,在将BSI-2用于1.1um像素的工艺中,与1.4um像素的比较表明,在蓝光像素方面,BSI-2可以提供更高的感光效率,而在绿光和红光像素的感光能力方面,BSI-2的效果与1.4um像素相似。另外,Omnivision也利用量子效率光谱分析了TSMC 65nm工艺中不同BSI工艺工艺对CIS图像芯片感光能力的影响,发现BSI-2可以提高近10%的量子效率,从而使CIS图像芯片的感光能力提高10%。将BSI-2工艺用于1.1um像素的制造,并以量子效率光谱比较1.4um和1.1um像素。结果显示,使用BSI-2工艺的1.1um像素,在蓝色像素方面具有更高的感光效率,而在绿色和红色像素的感光能力方面与1.4um像素相近。这个结果显示,BSI-2工艺可以在保持像素尺寸的前提下提高CIS图像芯片的感光能力,进而提高图像质量。因此,利用量子效率光谱比较不同工艺工艺对CIS图像芯片的影响,可以为CIS制造优化提供重要参考。上图 Omnivision采用了Wafer Level Quantum Efficiency Spectrum量子效率光谱,以分析TSMC 65nm工艺在量产时,不同工艺工艺对CIS图像芯片感光能力的影响。通过这种光谱分析技术,Omnivision能够精确地判断不同工艺工艺所产生的量子效率差异,并进一步分析出如何优化CIS图像芯片的感光能力。因此,Wafer Level Quantum Efficiency Spectrum量子效率光谱分析是CIS工艺中一项重要的技术,可用于协助提高CIS图像芯片的质量和性能。(Reference: Omnivision BSI Technology.)B. Optical Crosstalk Inspection(1) 什么是Optical Crosstalk?CIS的optical cross-talk是指光线在图像芯片中行进时,由于折射、反射等原因,导致相邻像素之间的光相互干扰而产生的一种影响。(2) 为什么Optical Crosstalk的检测重要?在CIS图像芯片中,optical crosstalk是一个重要的问题,因为它会影响图像的品质和精度。optical crosstalk是由于像素之间的光学相互作用而产生的,导致相邻像素的光信号互相干扰,进而影响到像素之间的区别度和对比度。因此,降低optical cross-talk是提高CIS图像芯片品质的重要目标之一。(3) 如何利用QE光谱来检测CIS 的Crosstalk?量子效率(QE)光谱可用于检测CMOS图像传感器(CIS)的串音问题。通过测量CIS在不同波长下的QE,可以检测CIS中是否存在串音问题。当CIS中存在串音问题时,在某些波长下可能会观察到QE异常。在这种情况下,可以采取相应的措施来降低串音,例如优化CIS设计或改进工艺。缩小像素尺寸对于高分辨率成像和量子图像传感器是绝对必要的。如上图,TSMC利用45nm 先进CMOS工艺,来制作0.9um 像素用于堆叠式CIS。而optical crosstalk光学串扰对于SNR与成像品质有着显著的影响。因此,TSMC采用了一种像素工艺,来改善这种optical crosstalk光学串扰。结构如下图。结构(a)是控制像素。光的路径线为ML(Microlens)、CF (Color Filter)、PD(Photodiode, 感光层)。而在optical crosstalk影响的示意图,如绿色线的轨迹。光子由相邻的像素单元进入后,因为多层结构的折射,入射到中间的PD感光区,造成串扰讯号。TSMC设计结构(b) “深沟槽隔离(DTI)" 技术是为了在不牺牲并行暗性能的情况下抑制光学串扰。由(b)可以发现,DTI所形成的沟槽可以隔离原本会产生光学串扰的光子入射到中间的感光Photodiode区,抑制了串扰并提高了SNR。像素的横截面示意图 (a) 控制像素 (b)串扰改善像素。Wafer Level Quantum Efficiency Spectrum of two different structure CISs. 在该图中,展示了0.9um像素的量子效率光谱,其中虚线代表控制的0.9um像素(a),实线代表改进的0.9um像素(b)。由于栅格结构的光学孔径面积略微变小,因此光学串扰得到了极大的抑制。光学串扰抑制的直接证据,在量子效率光谱上得到体现。图中三个黄色箭头指出了R、G、B通道的串扰抑制证据。蓝光通道和红光通道反应略微下降,但是通过新开发的颜色滤光片材料,绿光通道的量子效率得到了提升。利用Wafer Level Quantum Efficiency Spectrum技术可以直接证明光学串扰的抑制现象。对于不同的CIS图像芯片,可以通过量子效率光谱测试来比较它们在不同波长下的量子效率响应,进而分辨optical crosstalk是否得到抑制。上图展示了0.9um像素的量子效率光谱,其中虚线代表控制的0.9um像素(a),实线代表改进的0.9um像素(b)。由于栅格结构的光学孔径面积略微变小,因此光学串扰得到了极大的抑制。光学串扰抑制的直接证据,在量子效率光谱上得到体现。图中三个黄色箭头指出了R、G、B通道的串扰抑制证据。C. Color filter quality inspection(1) 什么是CIS 的Color filter?CIS的Color filter是一种用于CIS图像芯片的光学滤光片。它被用于调整图像传感器中各个像素的光谱响应,以便使得CIS图像芯片可以感测和分离不同颜色的光,并将其转换为数字信号。Color filter通常包括红、绿、蓝三种基本的色彩滤光片。而对于各种不同filter排列而成的color filter array (CFA),可以参考下面的资料。最常见的CFA就是Bayer filter的排列,也就是每个单元会有一个B、一个R、与两个G的filter排列。Color filter在CIS图像芯片中扮演着非常重要的角色,其质量直接影响着图像的色彩再现效果。为了确保Color filter的性能符合设计要求,需要进行精确的光谱分析和质量检测。透过率光谱可以评估不同Color filter的光学性能 量子效率光谱可以检测Color filter与光电二极管的匹配程度。只有通过严格的质量检测,才能保证CIS芯片输出优质的图像。图 Color filter 如何组合在“Pixel"传感器中。一个像素单位会是由Micro Lens + CFA + Photodiode等三个主要部件构成。Color filter的主要作用是将入射的白光分解成不同的色光,并且选择性地遮挡某些色光,从而实现对不同波长光的选择性感光。(2) 为什么Color filter的检测重要?在CIS图像芯片中,每个像素上都会有一个color filter,用来选择性地感光RGB三种颜色的光线,从而实现对彩色图像的捕捉和处理。如果color filter的性能不好,会影响像素的感光度和光谱响应,进而影响图像的品质和精度。因此,优化color filter的性能对于提高CIS图像芯片的品质至关重要。Color filter 的检测是十分重要的,因为color filter 的品质和稳定性会直接影响到CIS 图像芯片的色彩精确度和对比度,进而影响整个图像的品质和清晰度。如果color filter 存在缺陷或不均匀的情况,就会导致图像中某些颜色的偏移、失真、色彩不均等问题。因此,对color filter 进行严格的检测,可以帮助制造商确保其性能和品质符合设计要求,从而提高CIS 图像芯片的生产效率和产品的可靠性。(3) 如何利用QE光谱来检测CIS 的Color filter quality?CIS的Color filter通常是由一种称为“有机色料"(organic dyes or pigments)的物质制成,这些有机色料能够选择性地吸收特定波长的光,以产生所需的颜色滤波效果。这些有机色料通常是透过涂布技术将它们沉积在玻璃或硅基板上形成彩色滤光片。量子效率(QE)光谱可以测量CIS在不同波长下的感光度,从而确定Color filter的品质和性能。正常情况下,Color filter应该能够适当地分离不同波长的光,并且在光学过程中产生较小的串扰。因此,如果在特定波长下的量子效率比预期值低,可能是由于Color filter的品质或性能问题引起的。通过对量子效率 (QE)光谱的分析,可以确定Color filter的性能是否符合设计要求,并提前进行相应的调整和优化。TSMC利用Wafer Level Quantum Efficiency Spectrum晶片级量子效率光谱技术,对不同的绿色滤光片材料进行检测,以评估其对CIS图像芯片的感光能力和光学串扰的影响。如上图,TSMC的CIS工艺流程利用Wafer Level Quantum Efficiency Spectrum的光谱技术,针对不同的绿色滤光片材料进行检测,以评估其对CIS图像芯片的感光能力和光学串扰的影响。晶圆级量子效率光谱显示了三种不同Color filter材料(Green_1, Green_2和Green_3)的特性。透过比较这三种材料,可以发现:(1) 主要绿色峰值位置偏移至550nm(2) 绿光和蓝光通道的optical crosstalk现象显著降低(3) 绿光和红光通道的optical crosstalk现象显著增加。通过对量子效率(QE)光谱的分析,可以确定Color filter的性能是否符合设计要求,并提前进行相应的调整和优化。以确保滤光片材料的特性符合设计要求,并且保证图像的品质和精度,提高CIS图像芯片的可靠性和稳定性。D. Si 晶圆厚度控制(1) 什么是Si 晶圆厚度控制?当我们在制造BSI CIS图像芯片时,需要使用一种称为"减薄(thin down)"的工艺来将晶圆变得更薄。这减薄后的晶圆厚度会直接影响CIS芯片的感光度,因此晶圆的厚度对图像芯片的感光性能和质量都有很大的影响。为了确保图像芯片能够正常工作,我们需要使用"Si 晶圆厚度控制"工艺来精确地控制晶圆的厚度。这样可以确保我们减薄出来的晶圆厚度能够符合设计要求,同时也可以提高图像芯片的产品良率。BSI的流程图。采用BSI工艺的CIS图像芯片,会有一道重要的工艺“减薄"(Thin down), 也就是将晶圆的厚度减少到一定的程度。(2) Si 晶圆厚度控制工艺监控中的量子效率检测非常重要在制造CIS芯片时,Si 晶圆厚度控制工艺的控制对于芯片的感光度有着直接的影响。这种影响可以透过量子效率光谱来观察,确保减薄后的CIS芯片拥有相当的光电转换量子效率。减薄后的晶圆会有一个最佳的厚度值,可以确保CIS芯片拥有最佳的光电转换量子效率。使用450nm、530nm和600nm三种波长,可以测试红色、绿色和蓝色通道的量子效率。实验结果显示了不同减薄厚度的CIS在蓝光、绿光、红光通道的量子效率值的变化。减薄厚度的偏差会对CIS的感光度产生直接的影响,进而影响量子效率的值。因此,量子效率的检测对于Si 晶圆厚度控制工艺的监控至关重要,以确保制造的CIS芯片具有稳定和一致的质量。下图显示了在不同减薄厚度下CIS图像芯片在蓝、绿、红三个光通道的量子效率值变化。蓝光通道的量子效率值是利用450nm波长测量的,当减薄后的厚度比标准厚度多0.3um时,其量子效率值会由52%下降至49% 当减薄后的厚度比标准厚度少0.3um时,蓝光通道的量子效率只略微低于52%。红光通道的量子效率值是利用600nm波长测量的,发现红光通道的表现在不同厚度下与蓝光通道相反,当减薄后的厚度比标准厚度少0.3um时,红光通道的量子效率显著地由44%下降至41%。在较厚的条件(+0.3um)下,红光通道的量子效率并没有显著的变化。绿光通道的量子效率值是以530nm波长测量的,在三种厚度条件下(STD THK ± 0.3um),绿光通道的量子效率没有显著的变化。利用不同的Si晶圆厚度(THK)对CIS图像芯片的量子效率进行测试,测试波长分别为600nm、530nm和450nm,并且针对红色、绿色和蓝色通道的量子效率进行评估。结果显示,在绿光通道方面,Si晶圆厚度的变化在±0.3um范围内,530nm波段的量子效率并未有明显变化。但是,在红光通道方面,随着Si晶圆厚度的下降,量子效率会有显著的下降。而在蓝光通道450nm的情况下,量子效率会随着Si晶圆厚度的下降而有显著的下降。这些结果表明,Si晶圆厚度对于CIS图像芯片的量子效率有重要的影响,且不同通道的影响程度不同。因此,在制造CIS图像芯片时需要精确地控制Si晶圆厚度,以确保产品的质量和性能。
  • “双碳背景下,石油和化工企业发展前景解析”会议,20+位专家将出席此盛会,免费报名通道开启!
    为了切实应对全球气候变化,全球大部分国家和地区都制定了相应的减碳路线图。我国表示将于2030年前实现“碳达峰”、2060年前实现“碳中和”。在石油化工这个碳排放强度相对较高的行业中,许多企业已经开启将减碳等ESG(环境、社会与企业治理)相关工作列为优先开展的事项。石化行业体量大、流程长、发展惯性大、路径依赖强,在满足人民生活需要的前提下实现碳达峰、碳中和将面临严峻挑战。“双碳”趋势将重构化工产业格局,给化工产业带来长期性巨大影响的同时,也带来了巨大的发展机遇。为进一步促进石油、化工企事业单位高质量发展,促进科技成果转化,同时也给石油化工相关工作者提供一个学习交流的平台,仪器信息网于10月18日-10月19日举办“双碳背景下,石油化工企业发展前景解析”主题网络研讨会(2022),力争把最新的政府决策、最前沿的行业信息、最新的技术进展与研究成果呈现给大家。为保证广大网友的听会质量,只开放1000个参会名额,感兴趣听会的朋友请速点击链接进行免费报名!点我免费报名!本会议将开设4大专场:专场一:石油和化工行业发展政策与大项目解析、实验室建设本专场邀请到了:白雪松(石油和化学工业规划院 石油化工处处长)、谢强(荷兰达芬奇实验室解决方案有限公司 北京代表处首任首席代表、中国区总经理)、肖在峰(中国石化工程建设有限公司 教授级高工)、乙志静(万华化学集团股份有限公司 万华烟台质检中心主任)等5位专家坐镇,为大家讲解国内外石化行业的发展政策与实验室建设解决方案。专场二:石油和化工行业分析技术研究新进展本专场为技术专场,我们邀请到了:徐广通(中石化石油化工科学研究院有限公司 首席专家)、郭彦丽(岛津企业管理(中国)有限公司 高级专家)、薛慧峰(中石油石油化工研究院分析检测与标准化研究室 高工)、王威(中石化石油化工科学研究院 研究员)等5位专家,为大家讲解GC-MS、高分辨质谱、超临界流体色谱等技术在石化行业的前沿应用。专场三:氢能源分析本专场重点分享氢能源的行业发展、政策解析及检测方法、分析技术等内容。同样我们邀请到了5位行业内资深专家为我们带来分享,分别是:刘思明(石油和化学工业规划院 副处长/主任/高级工程师)、高枝荣(浙江福立分析仪器股份有限公司 大化工技术总监)、潘义(中国测试技术研究院化学研究所 研究员)、管玉柱(上海炫一智能科技有限公司 工业在线仪器部经理)、王亚敏(中石化石油化工科学研究院 高级工程师)。专场四:石油和化工企业环境监管政策及污染物分析、溯源及处理本专场为石化企业的环境监管及污染物分析,我们邀请到了:崔积山(生态环境部 副主任/正高级工程师)、张颖(中国环境监测总站 研究员)、张大为(实朴检测 专家)等专家为大家带来精彩分享!会议日程详情,点击下方链接,并可限时免费报名!https://www.instrument.com.cn/webinar/meetings/petrodcarbon2022/若报名不成功,或关于会议任何问题,可扫描下方二维码加助教微信号:更多免费会议,欢迎关注网络讲堂服务号:相关会议赞助,请联系刘经理,欢迎各位厂商前来咨询!
  • 普析 ✖ 仪器优选:布局用户选型路径,合作三年实现流量、询盘双提升
    一、客户背景介绍在科研、医疗、制药、电子和半导体等领域对高纯度水需求日益增长的背景下,纯水器、超纯水器的市场规模呈稳定增长的趋势,整个纯水器、超纯水器市场竞争也变得愈来愈激烈。前有以默克密立博、赛默飞等群雄逐鹿,后有新兴品牌不断入局。北京普析通用仪器有限责任公司已与仪器信息网合作20余年,其产品线包括光谱、色谱、质谱、X射线类分析测试仪器等。普析旗下超纯水器产品线自2022年推出以来,率先布局仪器信息网旗下选型平台“仪器优选”,先后合作金榜题名、品牌直通车服务。二、客户需求阐述普析作为纯水器、超纯水器这一赛道的新兴势力,将重点提升其品牌在该细分品类下影响力,提高品牌曝光度,同时,能够获取销售线索,在超纯水器这一赛道中分一杯羹。推广目标:入局超纯水器市场,提升品牌影响力及曝光度。提高超纯水器品类产品流量(PV)。获取询盘线索,提升产值。三、合作成果展示1、产品排名通过合作金榜题名,普析产品GWB-1T/2T 1E/2E超纯水器由原来的第127名,提升至第5名,提高了产品曝光及点击率。同时,数次登上超纯水器仪器热度榜。以7月为例,GWB-1T/2T 1E/2E超纯水器位于超纯水器仪器热度榜第6名。 2、品牌排名纯水机、超纯水机品类选型界面,国内外主流厂商齐聚,普析加入,位列第6,彰显品牌影响力。3、产品浏览量PV从2022年开始,普析超纯水器品类PV呈稳步增长趋势,通过持续宣传,产品PV同比增长94%。4、询盘线索对比2022年,2023年普析纯水产品询盘线索量提升显著,初步实现了立足纯水市场的第一步。四、总结仪器优选纯水器、超纯水器三级类是用户仪器选型的主界面,普析通过布局用户选型路径,经过三年的不懈努力,超纯水器仪器PV实现了94%的大幅增长,同时,销售线索也实现了显著提升,标志着普析初步在超纯水器这一细分赛道中占据了一席之地。“仪器优选”作为用户选型的主平台,未来我们将继续丰富完善平台选型内容,为用户提供快捷选型服务的同时,不断创新营销手段,助力厂商营销提质增效。合作推广,请扫码添加客服企业微信咨询↑↑↑
  • 谱图解析,你真的懂吗?
    p strong 关于谱图解析你是否有以下疑惑? br/ /strong br/ & nbsp & nbsp & nbsp & nbsp  1、有机质谱繁杂的裂解规律归纳提炼为简要、易学、易记的六大裂解类型,是如何做到的? br/   2、我们又如何使用专属应用软件或手工计算的方式,计算未知物的元素组成呢? br/   3、30年谱图大师宝贵资源倾囊相授,为您提供若干免费网站资源,进一步查找特定元素组成可能的对应结构,为您的谱图技能升华保驾护航! br/   4、以实例剖析偶电子离子的裂解规律,应用于ESI源(CID谱),案例式教学,通俗易懂! br/   5、运用合理的中性碎片及氮规则等谱图解析中的核心原理,化解你实验中识别分子离子峰的难题 br/   ……… br/ strong   一切难题,来现场与老师一起交流吧,你将不虚此行! br/ br/   信立方培训中心(仪器信息网旗下培训中心)致力于质谱应用技术培训工作。为提高相关从业人员的技术水平,使质谱更好地为科研、生产工作服务,适应当前从事质谱应用技术科技人员的迫切需求,自2009 年起,先后开设了近四十期不同类型和层次的质谱技术培训班,受到广大学员欢迎和好评。 br/   近年来,质谱技术在我国快速发展,广泛应用于食品安全、环境保护、化学化工、制药、生命科学、材料科学等各领域,成为日常工作中非常重要的定性定量分析方法。质谱的定性分析基于对质谱谱图的解析。但因有机化合物种类繁多,裂解规律繁杂不易掌握,在缺乏谱图解析思路和方法的情况下,许多分析人员在拿到谱图后常感到无从下手。应广大分析工作者需求,信立方培训中心将于 span style=" color: rgb(0, 32, 96) " 2017年5月16日-19日在北京举办第十六期有机质谱谱图解析应用技术培训班 /span ,欢迎有志提高有机质谱谱图解析水平的分析人员报名。 br/ br/ 招生对象 br/   各企事业单位、科研院所从事食品卫生、检验检测、石油化工、环境监测、制药等行业负责分析测试的技术人员,以及各大专院校相关专业在校研究生、分析中心专业技术人员。 br/ br/ 学习目标 br/   系统掌握有机质谱谱图解析方法,了解有机化合物的裂解反应类型和基本裂解规律,结合实例讲解谱图解析的思路和方法,为有机质谱定性分析打下坚实基础。 br/ br/ 课程内容 br/   一、谱图解析基础知识 br/   1、原子中电子的排布 br/   2、奇电子离子与偶电子离子 br/   3、氮规则 br/   4、环加双键值 br/   5、同位素峰 br/   6、单分子反应 br/   二、离子的丰度 br/   1、质荷比与离子丰度包含的结构信息 br/   2、影响碎片离子丰度的基本因素 br/   三、离子碎裂的基本机理 br/   1、断裂 br/   2、环的开裂 br/   3、重排反应 br/   4、置换反应 br/   5、消除反应 br/   四、常见有机化合物的裂解及质谱图特征 br/   1、碳氢化合物 br/   2、醇、酮、醛、酸、酯、醚 br/   3、胺类、酰胺类、氨基酸、硝基化合物、腈基化合物 br/   4、卤代物 br/   5、多官能团化合物 br/   五、由质谱图推测分子结构 br/   1、基本方法及思路 br/   2、实例练习 br/   六、NIST谱图库检索实用技术 br/   1、NIST谱图库简介 br/   2、NIST谱图库主要功能 br/   3、NIST谱图库检索实例 br/ br/ 授课专家 br/   1、王光辉 中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一,参与了国内多项质谱仪器的研发工作,有丰富的理论知识、实践经验和培训教学经验。代表著作:《有机质谱解析》; br/   2、苏焕华 北京石油化工科学研究院高级工程师,70年代初开始有机质谱应用研究,参与了国内质谱仪器的研发工作,组织过多种质谱应用技术培训,有丰富的教学经验。代表著作:《色谱-质谱联用技术及应用》; br/   3、李重九 中国农业大学理学院应用化学系教授,农残分析领域著名质谱专家,在大学主讲色谱、质谱等仪器分析课程。代表著作《有机质谱应用:在环境、农业和法庭科学中的应用》 br/ 举办时间/地点 br/ br/ 2017年05月16日-19日 北京-外国专家大厦 br/ br/ 培训费用 br/   每人3800元,2人以上组团报名可每人优惠100元(含报名费、培训费、资料费、培训期间每日午餐费用) br/ br/ 报名咨询 br/   联系人:李茹 br/   电话:010-51654077-8119 br/   手机:15910410867 br/   邮箱:liru@instrument.com.cn /strong /p
  • “净零碳国际经验与中国路径”国际会议举办
    日前,“净零碳国际经验与中国路径”国际会议在山东财经大学燕山校区召开。山东财经大学校长赵忠秀、中国电子节能技术协会理事长黄建忠出席开幕式并致辞。德国马丁路德哈勒维腾贝格大学、欧洲经济研究院、日本名古屋大学,以及中国电子节能技术协会、山东大学、对外经济贸易大学、中国社会科学院大学等高校和机构的专家学者参加会议。赵忠秀表示,实现碳达峰碳中和目标是重大战略决策,也是推动经济社会高质量发展的内在要求。山东财经大学于2020年11月成立中国国际低碳学院。举办本次国际会议,旨在积极探索符合我国具体国情的零净碳中国发展路径,为促进经济社会发展全面绿色转型建言献策。会上,马丁路德哈勒维腾贝格大学教授卜玉洗(Ulrich Blum),名古屋大学特聘教授薛进军,德国欧洲经济研究院院长阿希姆瓦姆巴赫(Achim Wambach),德国工程院院士、德国联邦政府“未来能源”专家委员会主席吕安迪(Andreas Loeschel),中国电子节能技术协会执行秘书长李鹏,马丁路德哈勒维腾贝格大学教授拉尔夫维尔斯波恩(Ralf Wehrspohn),山东财经大学黄河商学院院长刘毅鹏,奥地利前任驻华大使艾琳娜(Irene Giner-Reichl)等专家学者作了主题报告。他们围绕净零碳排放路径、欧洲气候政策、低碳技术发展路径、净零碳发展的先进经验、欧洲碳边境调节机制等主题,深入探究“净零碳”发展路径、先进经验和理念实践方案。
  • 环境监测的“互联网+”路径
    图片来源:百度图片 被称为&ldquo 史上最严&rdquo 的新环保法自今年1月实施以来,各地环保部门执法力度日益加大,而中国环保产业在新法的约束与推动下,发展日趋成熟。在云计算、大数据、移动互联网、物联网应用快速发展的时代背景之下,&ldquo 互联网+&rdquo 环保或许能够成为当今产业潮流中最为夺目的产业之一。 这些都是在近日举行的&ldquo 互联网+&rdquo 环保产业发展论坛上,国家环保部门相关负责人及环境监测服务提供者们得出的一致结论。 环境监管模式创新 &ldquo 新法赋予了环保部门按日计罚、查封扣押等新监管手段,这是对环境监察机构的肯定,也对环境执法提出更加严格的要求。&rdquo 环境保护部环境监察局处长杨子江说,互联网的加入,为重点污染源监控提供了新的手段。 据了解,目前全国范围内的一万多家国家重点环境监控企业,基本上都装有在线监测设备,实时监测四大类需减排的污染物排放量。&ldquo 按照要求,大部分地方直接监管的一级环保局都会把监测数据向社会实时公开。&rdquo 杨子江说。 此外,我国已有29个省市的环保部门使用手机、笔记本等便携设备协助环境执法。&ldquo 把执法程序固化在手机App和电脑软件里面,现场考察工厂的排污指标情况时,只需要将达标部分画勾,未达标部分画叉,这样自动生成执法笔录。&rdquo 杨子江介绍说,这要根据不同的生产企业进行软件的调整和更新。 环保部门对环境的监测方法不断创新,个人对环境信息的获得也越来越方便。 蔚蓝地图是阿里巴巴作出的使互联网和环保行业结合的尝试,通过这款App,用户可以点击获得全国各个地区水、空气、土壤的参数和指标。&ldquo 蔚蓝地图充分体现了环境监测的全民参与和服务自治。&rdquo 阿里巴巴集团阿里云事业群部委业务事业部业务拓展专家胡穗说。 &ldquo 一个App既能提升公众参与度,推进政府处理一些老百姓关注的问题,还能提高企业的研发和技术能力,最终三位一体地做一些社会关注的事件,为客户、为企业、为社会带来一些贡献。&rdquo 胡穗在提到蔚蓝地图的设计初衷时说。 互联网为环保监测、执法提供越来越多方法的同时,传统工具的使用并没有被放弃。 记者拨打12369环保热线反映小区附近环境问题时,被告知其执法管辖范围是以营利为目的的企事业单位在生产经营中所产生的水、气、声、渣。12369环保热线确实有人接听,并详细解答,这也使得普通百姓对工矿企业监督、投诉有门。 多渠道资源整合 &ldquo 有了&lsquo 互联网+&rsquo 环境执法的技术基础,下一步就是怎么把它们整合起来,让互联网的作用成倍或者成几何方式提升执法效力。&rdquo 杨子江分析说,&ldquo 执法人员数量不可能无限扩充,技术手段的应用肯定是必要的。&rdquo 环境保护部环境监测司处长汪志国指出,互联网与环境监测结合应用分为以下几个方面:第一,利用互联网技术进行数据传输。&ldquo 现在全国各个地方的环境空气质量数据、地表水数据、饮用水源地数据、土壤数据等,我们将这些原始监测数据以及加工之后的监测报告发送给中国环境监测总站,由监测总站负责审核并形成综合报告。&rdquo 汪志国说。 第二,环保监测部门利用远程网络质控平台,实时了解每一个企业的运行情况、数据质量情况,出现异常会报警。 第三,信息发布是环境监测利用互联网最多的形式。据介绍,环保部2013年1月1日建立全国空气质量实时发布平台,发布城市空气实时监测数据,包括PM10、PM2.5、SO2、NO2、O3、CO2等6项指标的实时监测数据和空气质量指数;从2015年1月1日起,实现了全国338个地级及以上城市空气质量监测数据的实时发布全覆盖,环保部官网均可查到数据。 &ldquo 此外,卫星遥感监测、综合在线自动监控系统、环境保护综合管理系统等智能环保建设的加强,使得环境数据资源越来越充分、环保管理越来越科学。&rdquo 汪志国说。 环保企业的互联网思维或许能给环保产业带来更大效益。 博乐宝互联网智能净水器的水质滤膜,其使用和耗损情况可以通过手机查看,&ldquo 这是直接利用互联网成为产品的组成部分。&rdquo 北京金控数据技术股份有限公司总经理杨斌举例说,如果将净水器搬到厨房台面之上,加个屏幕投放广告,&ldquo 这样互联网的使用就脱离了产品本身,靠占有客户而占有产品终端&rdquo 。 目前,小米就在开发一款此类净水器,硬件价格实惠。&ldquo 这种新商业思维就是互联网思维,它是把当前的价值在时间和空间上进行重构。&rdquo 杨斌介绍,这款净水器的市场预计已经达到4亿美元。 给产业带来新发展新环保法明确了生态文明建设和可持续发展的理念、肯定了环保的基本国策,完善了一系列环保管理制度,还把一些行之有效的做法以法律形式固定下来,同时强化了政府部门和企业的环保责任。&ldquo 新环保法对环保产业的推动无疑是巨大的。&rdquo 杨子江介绍说。 &ldquo &lsquo 互联网+&rsquo 环境执法推动环境监测产业发展,对环境监测设备软件和硬件提出更高的要求,同时提升了环境监测产品质量、性能适应性,提升了监测技术水平,加快环境监测制造业的发展。&rdquo 汪志国感叹,&ldquo 环保监测的技术和产品通过与互联网融合,更新换代非常快。&rdquo &ldquo 互联网+&rdquo 给环保产业带来的变化还包括技术集成的创新和产业模式的创新。 &ldquo 环境工程将互联网、物联网、信息管理等多领域成熟的技术做了一个集成,&lsquo 互联网+&rsquo 就是把这些元素都加进来。&rdquo 河南大河水处理有限公司董事长苗伟介绍说,&ldquo 大数据运营管理云平台在工业水处理方面,为第三方运营服务提供了全套科学的实用工具,为工业用户效益的提升和第三方运营发展起到了推动作用。&rdquo &ldquo 互联网的进步推动环保监测产业进而带动了整个环保产业发展。&rdquo 北京西思多纳信息技术有限公司董事长高振刚说。 细化到环保监测产业,handle技术或许能助一臂之力。&ldquo 互联网就是信息高速公路,路修通了,路上跑的内容却没有&lsquo 牌照&rsquo ,handle就是给这些内容发&lsquo 牌照&rsquo 和标识的。&rdquo 高振刚说,&ldquo 对互联网数据进行标识、解析、管理,将有利于保持各项数据的唯一性、安全性和可拓展性,今后,环保产业在企业端、平台端、客户端也要通过类似技术获得联系。&rdquo 据悉,国家发展改革委已经对国家物联网标识管理公共服务平台进行阶段性验收。&ldquo 这个平台要求编码体系要科学、数据在全世界都能解析、建立全世界数据管理机构。环保监测和执法当中的难题或许能够通过该技术得到解决。&rdquo 高振刚说。 &ldquo &lsquo 互联网+&rsquo 将使环保产业从文化、理念、组织、战略到销售模式进行重新部署和思考。&rdquo 高振刚说,&ldquo 谷歌执行董事长埃里克· 施密特曾预计我们目前所认识的互联网将消失,到时,人类的生产、消费、娱乐活动都离不开互联网,就像每个人离不开空气一样。到时,环保产业所面临的问题自然会迎刃而解。&rdquo 背景资料 环境监测技术新机遇 目前环境监测是以环境分析为基础,通过对影响环境质量因素代表值的测定,研究环境质量的变化,并描述环境状态与演化、科学预报环境质量的发展趋势。环境监测是开展环境管理和环境科学研究的基础,是制定环境保护法规的重要依据。 我国环境监测起步较晚,但是经过近些年的快速发展,环境监测已经从单一的环境分析发展到生物监测、物理检测、生态监测、遥感、卫星监测。自动连续监测逐步替代了原来的间断性监测,检测范围也从一个断面发展到一个城市、一个区域乃至全国。 目前,我国已初步形成了有中国特色的环境监测技术规范、环境质量标准体系、环境监测分析方法和环境质量报告制度,并正在迈向标准化。而且,环境监测信息、环境管理政务等实现对公众的公开化,监测系统紧扣环境管理和社会公众的需求,提高了公众的环保意识,提升了环境监测的形象。 虽然我国环境监测暂时与发达国家存在差距,但是我们对于未来的发展应该有信心。为了保障人们呼吸清新空气、饮用干净水、享受放心食品,我国正在全力加强工农业生产和生活污染的防治工作,安全处置危险废物,确保空气、水源、海洋、放射性、电磁辐射等的环境安全。 对于未来,环境监测技术正在由经典的化学分析向仪器分析发展;由手工操作向连续自动化迈进;由微量分析向痕量、超痕量发展;由污染物成分分析发展到化学形态分析;仪器也逐步走向联合使用和电子计算机化。
  • 华大集团发布纳米孔基因测序仪,成全球唯一拥有三种不同技术路径测序仪的机构
    2024年9月9日,华大集团在25周岁生日到来之际,向全球发布最新测序技术——CycloneSEQ测序技术,两款小而美、小而优,拥有自主产权的新型基因测序仪——纳米孔测序仪CycloneSEQ-WT02(以下简称“WT02”,中文名“梧桐”)、CycloneSEQ-WY01(以下简称“WY01”,中文名“五岳”)首次呈现在世人面前。纳米孔测序仪CycloneSEQ-WT02发布现场伴随全读长时代的到来,生命更加可以测量。华大在“读”生命的工具——基因测序仪领域成为全世界唯一拥有激发光、自发光、不发光三种不同技术路径测序仪的机构,中国将给全世界更多、更新、更好的选择。今年6月,华大智造获得华大序风纳米孔测序产品的全球市场经销权,WT02将于即日起开放订购,WY01计划将于2025年上半年上市。这也意味着,除了DNBSEQ高通量基因测序仪以外,华大智造将为全球用户提供包括纳米孔测序仪在内的多组学工具,为生命科学6D时代注入澎湃动能。华大集团同时发布面向临床的基因检测多模态大模型、面向人人的基因组咨询平台和智能化的疾病防控系统,还正式发起“探极计划”,呼唤全球合作伙伴,共同推动极端环境下的样本采集、科学研究和产业应用。先利其器:读、写、存工具贯穿华大集团联合创始人、董事长汪建致辞上个世纪以来,世界进入大科学时代,科研范式发生深刻变革,一个个大科学计划深刻影响世界力量格局。从DNA双螺旋结构到生命中心法则,从DNA重组到DNA测序,20世纪中叶尤其是人类基因组计划实施20多来,生命科学和生物技术突飞猛进。为了祖国的荣誉,为了破解生命密码,华大于1999年9月9日诞生。怀着强烈的家国情怀,在汪建、杨焕明、刘斯奇、于军4位创始人的倡议和带领下,华大排除万难,牵头承担并圆满完成大科学计划——人类基因组计划1%项目,中国成为唯一参与人类基因组计划的发展中国家,被中华世纪坛青铜甬道永远铭刻。从北京到杭州到深圳,华大诞生25年来,始终坚持大目标导向,坚持“基因科技造福人类”,坚持大平台、大资源、大合作、大场景、大数据、大科学、大产业多管齐下,聚焦生命多组学,聚焦生命科学“读写存”工具的研发、应用,勇于创新,敢于突破,以任务带学科、带产业、带人才,研产学一体化,成为全球领先的生命科学前沿机构,中国也成为继美国之后第二个掌握临床级高通量测序仪的国家,成为多组学这个新的竞赛场地的重要规则的制定者之一。斗转星移。如今的华大集团,全球总部位于深圳,分支机构遍及全国以及全球50多个国家和地区。员工总数约万人,其中国际员工800多人,平均年龄33岁。华大集团由非盈利板块、产业板块构成。非盈利板块包括华大生命科学研究院、华大教育中心、国家基因库(代运营)、GigaScience出版社等,产业板块包括华大基因、华大智造、华大万物、华大营养、华大鉴正、华大细胞、华大序风等,成为一个核酸奠基、自强不息的生命体,也成为基因产业链的链主企业,为中国基因产业降低对外技术依存度、基因科技实实在在造福全人类做出了重要贡献。“从激发光测序仪到自发光测序仪,再到今天公布的不发光测序仪,三类机器,三种不同原理、不同测序方式结合在一块,我们是全世界唯一的一家。在下一个生命时代,我们绝对不能亦步亦趋,要走出一个新的路子,换一种交通方式。我们要飞起来,让“旋风”旋起来,在未来以大数据为基础的生命科学发展、生物经济发展上走出一条引领世界、支撑世界的发展道路。”华大集团联合创始人、董事长汪建在发布会致辞中表示。十年一剑:从“首款”到“首款”华大生命科学研究院院长、华大集团执行董事徐讯介绍新产品凡是生命,皆为序列。130多亿年宇宙史、40多亿年地球史、30多亿年生命史……自有生命以来,所有生命都使用一种语言,即都是由A、T、C、G这4种碱基对组成。一部社会发展史,就是一部科技进步史、一部工具进步史。从最初购买,到后来的引进、消化吸收、再创新,过去十多年来,华大投入上百亿资金,联合上下游产业机构,经过艰苦卓绝的努力,实现生命科学读、写、存工具全贯穿,研制出一系列具有自主知识产权的“大国重器”:“读”工具上,覆盖高中低不同通量,全球最高通量测序仪DNBSEQ-T20X2的单人全基因组检测试剂成本降到100美元以下;“写”工具上,高通量基因合成仪不仅变成现实,还初步实现规模化、商业化;“存”工具上,已经研制出DNA存储设备、生物样本库。在测序技术基础上,华大还实现时空组学技术突破,分辨率达到500纳米,被誉为“超广角百亿像素生命照相机”。共有共为共享,坚持走工程生物学道路,华大智造测序仪已经覆盖70多个国家和地区。从2015年首款自研高通量基因测序仪发布,到如今首款华大纳米孔基因测序仪诞生,自发光、激发光、不发光三种技术路径的测序仪均已问世,十年磨一剑,华大已成为国内首个掌握“短读长”及“长读长”测序工具的机构,也是全球唯一一家掌握超高通量、超低成本、超长读长测序仪的机构, 真正实现了“全读长”测序产品的全周期闭环。基于全新推出的CycloneSEQ测序技术,华大生命科学研究院院长、华大集团执行董事徐讯在发布会上正式带着两款小巧便携的“WT02”及“WY01”测序仪亮相。这两款测序仪在核心技术和关键组件上实现突破,特别是在单芯片孔道蛋白数量、测序速度、测序读长和准确率等关键指标上表现卓越,彰显了其在测序领域的领先地位。“有了工具在手,我们在基础科研、临床应用上不断取得新的突破。然而随着不断探索,我们遇到了到基于DNB的短片段测序仪仍然无法解决的问题。 基因组上仍然有8%的‘暗物质’区域无法检测到;许多微生物基因组GC含量异常,常规测序无法完成组装;现有DNB平台面对复杂结构变异造成的遗传疾病很难解析;也无法实现实时、快速的测序,解决ICU里感染的快速检测需求。面对这些挑战,已有成熟的技术和产品,提升10%,已经是极限。只有打破惯性,寻找提升10倍、甚至100倍的新技术,也许能够更容易、更快地解决问题。”徐讯介绍道。WT02是一款中通量的纳米孔基因测序仪,小巧便携,采用双芯片架构,支持独立运行,具有灵活的通量选择。它的优势可以用三个词概括:全覆盖、快速读和自由测。它不仅能够轻松应对复杂序列的挑战,而且单次测序成本低、无需凑样、随测随停,能实时输出测序结果。WT02在生命科学领域有广泛的应用场景,比如,它能快速识别病原微生物并且快速溯源;准确完整检测复杂遗传病帮助更多家庭;获取基因组图谱推进生物多样性研究等。WY01是一台高通量纳米孔测序仪,配套高通量高密度芯片,不仅具有超长读长和持久续测等性能,更能够全面覆盖复杂基因组序列。它可应用于数据通量需求更高的应用场景,比如大基因组、人基因组重测序、全长转录组测序和表观遗传学检测等。WY01的出现,填补了国内纳米孔测序领域高通量芯片的空白,多项关键性能处于全球领先的水平,它可加速疾病研究和诊断,促进跨学科研究合作,支持生物多样性和生态学研究。如果说WT02可以被喻为“全公路越野车”,稳定且强悍,能够在复杂的样本中精准捕捉细微信息。那么,另外一款纳米孔测序仪WY01更像是一辆全副武装的工程车,其独特的生产能力令人瞩目。这款设备能够在短时间内完成更多的任务,快速而高效地扫描整个基因组。在性能参数方面,两款纳米孔测序仪的测序读长均覆盖百bp至Mbp (1Mbp等于10的6次方)级别的读长范围,可满足从基础科研到复杂疾病研究的广泛需求;在测序时长与速度上,用户可根据实验需求在10分钟至72小时内完成测序,测序速度为350 - 420 nt/s,每分钟可以产生10Mb的数据,并且可实时获取测序序列结果。在测序准确率上,单次测序准确率为97%。在更深的测序深度下可实现99.99%的一致性准确率。 此外,WT02的单芯片孔道蛋白数高达4092个,单芯片实验室最大通量达50Gb(1Gb 等于10的9次方)。WT01在此基础上,单芯片将提供8倍数量的孔蛋白,将达到惊人的3万个蛋白孔,单芯片数据产量将提升到8倍。CycloneSEQ测序平台经过多个用户测试,证实了其卓越的性能和稳定性。该平台在感染疾病诊断中能迅速识别各种病原体,如呼吸道百种病原,同时也能在遗传病诊断中精确检测复杂的遗传变异,如地中海贫血等疾病。在科研领域,CycloneSEQ已经成功完成上千个物种的单菌组装图,并实现了多个动植物染色体级别参考基因组图谱的构建,其中包括首次完成鬃狮蜥Z染色体的完整解析,发现大量的转座单元和频繁重组区域,提示了这个物种潜在的性别决定机制。面对极端GC含量基因组等技术挑战,CycloneSEQ也能实现环状基因组的完整组装。作为深海测序仪系统之一,它在极端环境下稳定运行,并成功地对水体环境微生物进行了原位鉴定。此外,结合时空组学和细胞组学工具等多组学工具,CycloneSEQ提供了多维基因组分析,为推动生命科学领域的发展提供了强大的支持。生态赋能:给世界更好的选择伴随对生命认识的加深和工具的进步,人类在科技创新的精度上显著加强,对生物大分子和基因的研究进入精准调控阶段,从认识生命、改造生命走向合成生命、设计生命,一场多组学革命正在全球范围掀起,世界正在加速进入生物经济时代。 欲善其事,先利其器。2015年,历经引进、消化吸收、再创新的艰难历程,中国首款国产桌面型高通量基因测序仪BGISEQ-500问世。此后将近十年的时间里,华大智造构筑了覆盖高中低不同通量的完整产品矩阵,将基于DNBSEQ技术的“短读长”测序仪带到了全球70多个国家和地区,测序设备新增装机市场份额连续两年位居国内第一,中国国产测序仪在生育健康、肿瘤和传感染疾病防控、慢性病管理等场景,在大人群基因组学、疾控、海关、司法、教育、文物、生态环境、生物多样性等领域得到越来越广泛的应用。作为行业奠基者、引领者,伴随技术带动和外溢效应,中国基因检测行业也得到了长足发展。2024年,随着代表“长读长”技术路线的首款纳米孔测序仪正式推出,华大实现了“全读长”测序产品的闭环。基于前期积累的全球化网络与稳定的物流供应链、完善的售后服务体系,华大将为用户带来更好的体验。华大集团CEO、执行董事尹烨在《生命可测:SEQ ALL》主旨演讲中指出,生命科学领域也有自己的“光刻机”,那就是基因测序仪,而“不能自己造硬件的实验室,可以是一流,却往往不是顶尖。”他特别提到了行业有关“测序技术代际关系”的描述常常存在“误解”,他认为“测序从不分代,只是技术路线不同。能解决问题的,就是好技术。”华大集团CEO、执行董事尹烨做主旨演讲尹烨表示:“在过去的20年间,基因测序成本下降为千万分之一。短短9年的时间,我们从‘给世界多一个选择’,到如今实现 ‘给世界更好的选择’。100美元个人全基因组已经由华大团队率先实现,而10美元基因组,我们已经在路上。”伴随学科交叉融合的不断发展,科学技术和经济社会发展的加速渗透融合,科学研究也正向极宏观拓展、向极微观深入、向极端条件迈进、向极综合交叉发力,不断突破人类认知边界。华大人的“足迹”,也正不断向极端环境迈进,已经延伸到了海拔8848米的珠穆朗玛峰、10900米深的马里亚纳海沟,以及南北极区,不同研究团队持续进行极端环境下的科学研究。尹烨在发表主旨演讲时宣布,华大集团正式发起“探极计划”,期待联合全球合作伙伴,共同推动极端环境下的样本采集、科学研究和产业应用。CyloneSEQ纳米孔测序仪发布后,在汪建和华大集团执行董事、华大智造CEO牟峰的见证下,超过70家科研及临床用户代表与华大生命科学研究院领域首席科学家、华大序风总经理董宇亮,华大智造副总裁 、中国区总经理彭欢欢共同签署合作协议,首批CycloneSEQ用户达成签约合作意向。随后,超过140家科研机构及企业代表共聚一堂,正式宣布“SEQ ALL联盟”成立,该联盟旨在构建开放、透明的应用生态合作组织,基于“全读长”测序平台及多组学工具,凝聚行业之力,共同推动行业标准的制定与完善,提升行业技术水平及服务质量,为行业良性发展提供标杆,共同攀登生命科学技术高峰,同时更广泛地在卫生健康、科研等领域加以应用,推动“基因科技造福人类”进一步变成现实。AI驱动:人人基因组时代加速到来近些年来,伴随高通量基因测序、自动化数据分析、生物信息分析等技术的发展,生命科学研究越来越依赖于大数据技术分析,尤其是深度学习的人工智能方法。根据《2023年基因行业蓝皮书》分析,基因产业链包括基因测序、基因合成、基因治疗等,从竞争力上分析,我国在测序仪、生物信息分析、无创产前筛查等方面处于世界领先水平,但在分子育种、基因治疗、基因大数据等领域与行业先进水平比还有很大差距。近年来,伴随美国、英国等国家围绕生物技术和生物制造、工程生物学等出台一系列国家战略、目标和愿景,生命科学和生物技术领域的竞争日趋激烈。无尽前沿,无尽探索。在向生命科学高峰不断攀登的征程中,核心工具将继续发挥关键作用。从“给世界多一个选择”到“给世界更好的选择”,华大将进一步拥抱多组学浪潮,持续推出更灵活、更多元、更完整的生命解码工具,为解决生老病死、万物生长、生命起源、意识起源等终极问题持续提供先进“利器”。面对人人基因组时代的呼啸而至,面对大数据驱动下的范式变革,从规模化到智能化,从大队列到大人群,从珠峰到深海,从沙“膜”到多年生作物,从生命起源到意识起源,华大将进一步联合学界业界同仁,以实际行动践行“基因科技造福人类”的使命和愿景。
  • 蛋白质结构解析六十年
    几种不同折叠模式的蛋白质模型(图片来源Protein Data Bank Japan )   上个世纪初,科学家们认为蛋白质是生命体的遗传物质,而具有独特的作用。随着这个理论被证伪,真正的遗传物质DNA的结构被给予了很大关注。然而,蛋白质作为生命体的重要大分子,其重要性也从未被忽视,而且在1950年代开始,科学家一直在探寻DNA序列和蛋白质序列的相关性。与此同时,蛋白质测序和结构解析蛋白质结构的努力开始慢慢获得回报。更多的生化研究揭示了蛋白质的功能重要性,因此蛋白质的三维结构的解析对于深入理解蛋白质功能和生理现象起着决定性作用。   本文简要回顾了蛋白质结构解析的重大历史事件,并总结了蛋白质结构解析的常用方法和结构分析方向。通过了解蛋白质结构,能够让我们更好地理解生物体的蛋白的理化特性,以及其相关联的化学反应途径及其机制,对于我们认识生物世界和研发治疗方法和药物都起着关键作用。在即将召开的2015高分辨率成像与生物医学应用研讨会上,各位专家学者将会进一步讨论相关议题。   蛋白质结构解析六十年来大事件   在1958年,英国科学家John Kendrew和Max Perutz首先发表了用X射线衍射得到的高分辨率的肌红蛋白Myoglobin的三维结构,然后是更加复杂的血红蛋白Hemoglobin。因此,这两个科学家分享了1962年的诺贝尔化学奖。事实上,这项工作在早在1937年就开始了。   然后在1960年代,蛋白质结构解析方法不断进步,获得了更高的解析精度。这个时期,蛋白质序列和DNA序列间关系也被发现,中心法则被Francis Crick提出,然后科学界见证了分子生物学的崛起。分子生物学(Molecular Biology)的名称在1962年开始被广泛接受和使用,并逐渐演变出一些支派,如结构生物学。然后在1964年,Aaron Klug提出了一种基于X射线衍射原理发展而来的全新的方法电子晶体学显微镜(crystallographic electron microscopy ),可以解析更大蛋白质或者蛋白质核酸复合体结构。因为这项研究,他获得了1982诺贝尔化学奖。1969年,Benno P. Schoenborn 提出可以用中子散射和原子核散射来确定大分子中固定位置的氢原子坐标。   进入1970年代,很多新的方法开始发展。存储蛋白质三维结构的Protein Data Bank(1971年) 开始出现,这对于规范化和积累蛋白质数据有着重要意义。1975年新的一种仪器叫做多丝区域检测器,让X-ray的检测和数据收集更加快速高效。次年,Robert Langride将X-ray衍射数据可视化,并在加州大学圣地亚哥分校成立了一个计算机图形实验室。同年,KeithHodgson和同事首次证明了可以使用同步加速器获得的X射线并对单个晶体进行照射,并取得了很好的实验效果。然后在1978年,核磁共振NMR首次被用于蛋白质结构的解析 同年首个高精度病毒(西红柿丛矮病毒)衣壳蛋白结构被解析。   在1980年代,更多蛋白质结构被解析,蛋白质三维结构的描述越来越成熟,而且蛋白质结构解析也被公认成为药物研发的关键步骤。在1983年,冷冻蚀刻的烟草花叶病毒结构在电子显微镜结构下得到描述。两年后德国科学家John Deisenhofer等解析出了细菌光合反应中心,因此他们共享了1988年的诺贝尔化学奖。次年,两个课题组解析了HIV与复制相关的蛋白酶结构,对针对HIV的药物研发提供了理论基础。   下一个十年,因为大量同步加速器辅助的X射线衍射的使用,数千个蛋白质结构得到解析,迎来了蛋白质结构组的曙光。1990年多波长反常散射方法(MAD)方法用于X射线衍射晶体成像,与同步辐射加速器一起,成为了近二十多年来的最常用的的方法。Rod MacKinnon在199年发表了第一个高精度的钾离子通道蛋白结构,对加深神经科学的理解起了重要作用,因此他分享了2003年的诺贝尔化学奖。Ada Yonath等领导的课题组在1999年首次解析了核糖体结构(一种巨大的RNA蛋白质复合体)。  进入新千年,更多的技术细节被加入到蛋白质解析研究领域。2001年,Roger Kornberg和同事们描述了第一个高精度的RNA聚合酶三维结构,正因此五年后他们共享了诺贝尔化学奖。2007年,首个G蛋白偶联受体结构的解析更是对药物研究带了新的希望。近些年来,越来越多的大的蛋白质结构得到解析。Cryo-EM超低温电子显微镜成像用于超大蛋白质结构成像的研究日益成熟,并开始广泛用于蛋白质结构的解析。   蛋白质结构解析的常用实验方法   1.X-ray衍射晶体学成像   X射线衍射晶体学是最早用于结构解析的实验方法之一。X射线是一种高能短波长的电磁波(本质上属于光子束),被德国科学家伦琴发现,故又被称为伦琴射线。理论和实验都证明了,当X射线打击在分子晶体颗粒上的时候,X射线会发生衍射效应,通过探测器收集这些衍射信号,可以了解晶体中电子密度的分布,再据此析获得粒子的位置信息。利用这种特点,布拉格父子研制出了X射线分光计并测定了一些盐晶体的结构和金刚石结构。首个DNA结构的解析便是利用X射线衍射晶体学获得的。   后来,获得X射线来源的技术得到了改进,如今更多地使用同步辐射的X射线源。来自同步辐射的X射线源可以调节射线的波长和很高的亮度,结合多波长反常散射技术,可以获得更高精度的晶体结构数据,也成为了当今主流的X射线晶体成像学方法。由X射线衍射晶体学解析的结构在RCSB Protein Data Bank中占到了88%。   X射线衍射成像虽然得到了长足的发展,仍然有着一定的缺点。X射线对晶体样本有着很大的损伤,因此常用低温液氮环境来保护生物大分子晶体,但是这种情况下的晶体周围环境非常恶劣,可能会对晶体产生不良影响。而且,X射线衍射方法不能用来解析较大的蛋白质。   上海同步辐射加速器外景(图片来源 上海同步辐射光源网站)   2.NMR核磁共振成像   核磁共振成像NMR全称Nuclear magnetic resonance,最早在1938被Isidor Rabi (1946年诺贝尔奖)描述,在上世纪的后半叶得到了长足发展。其基本理论是,带有孤对电子的原子核(自选量子数为1)在外界磁场影响下,会导致原子核的能级发生塞曼分裂,吸收并释放电磁辐射,即产生共振频谱。这种共振电磁辐射的频率与所处磁场强度成一定比例。利用这种特性,通过分析特定原子释放的电磁辐射结合外加磁场分别,可以用于生物大分子的成像或者其他领域的成像。有些时候,NMR也可以结合其他的实验方法,比如液相色谱或者质谱等。   RCSB Protein Data Bank数据库中存在大约11000个用NMR解析的生物大分子结构,占到总数大约10%的结构。NMR结构解析多是在溶液状态下的蛋白质结构,一般认为比起晶体结构能够描述生物大分子在细胞内真实结构。而且,NMR结构解析能够获得氢原子的结构位置。然而,NMR也并非万能,有时候也会因为蛋白质在溶液中结构不稳定能难得获取稳定的信号,因此,往往借助计算机建模或者其他方法完善结构解析流程。   使用NMR解析的血红蛋白结构建模(图片来源RCSB PDB)   3.Cryo-EM超低温电子显微镜成像   电子显微镜最早出现在1931年,从设计之初就是为了试图获得高分辨率的病毒图像。通过电子束打击样本获得电子的反射而获取样本的图像。而图像的分辨率与电子束的速度和入射角度相关。通过加速的电子束照射特殊处理过的样品表明,电子束反射,并被探测器接收,并成像从而获得图像信息。具体做法是,将样品迅速至于超低温(液氮环境)下并固定在很薄的乙烷(或者水中),并置于样品池,在电子显微镜下成像。图像获得后,通过分析图像中数量众多的同一种蛋白质在不同角度的形状,进行多次的计算机建模从而可以获得近原子级别的精度(最低可以到2.0埃)。   Cyro-EM解析TRPV1离子通道蛋白(图片来源Structure of the TRPV1 ion channel )   将电子显微镜和计算机建模成像结合在一起的大量实践还是在新世纪之后开始流行的。随着捕捉电子的探测器技术(CCD技术,以及后来的高精度电子捕捉、电子计数electron counting设备)的提升,更多的信息和更低的噪音保证了高分辨率的图像。   近些年来,Cryo-EM被用来解析很多结构非常大(无法用X-ray解析)的蛋白质(或者蛋白质复合体),取得了非常好的结果。同时,单电子捕捉技术取代之前的光电转换成像的CCD摄像设备,减少了图像中的噪音和信号衰减,同时并增强了信号。计算机成像技术的成熟和进步,也赋予了Cryo-EM更多的进步空间。然而,Cyro-EM与X-ray不同,该方法不需要蛋白质成为晶体,相同的是都需要低温环境来减少粒子束对样品的损害。   除去介绍的这三种方法以外,计算机建模技术也越来越多地被用在了蛋白质结构解析中。而且新解析的结构也会提高计算机建模的精确度。未来,我们或许能够用计算机构建原子级别的细胞模型,构建在芯片上的细胞。   蛋白质结构对了解生命体的生化反应、有针对性的药物研发有着重要意义。从1958到如今已经接近60年,蛋白质结构解析得到了较快的发展。然而,在如今DNA测序如此高效廉价的时代,蛋白质和DNA结构解析并没有进入真正高速发展阶段,这也导致了在如此多的DNA序列数据非常的今天,结构数据却相对少的可怜。大数据时代的基因组、蛋白质组、代谢组、脂类组等飞速发展的时候,蛋白质结构组也得到了更加广泛的重视。发展高精度、高效的结构解析技术也一直都有着重要意义。未来,蛋白质结构解析,对针对蛋白质的药物筛选,和计算机辅助的药物研究研究不应被低估。未来说不定在蛋白质结构领域有着更多惊喜,让我们拭目以待。 第一届电镜网络会议部分视频回放
  • 谱图大牛,教你重新认识有机质谱谱图解析!
    有机质谱分析基于不同质荷比(m/z)的带电离子在电场或磁场中的不同运动行为进行定性或定量分析,具有灵敏度高、样品用量少、分析速度快、同时进行多组份分析等优点。近年来在我国发展很快,广泛应用于食品安全、环境保护、化学化工、制药、生命科学、材料科学等各个领域,成为日常工作中非常重要的定性定量分析方法。质谱的定性分析基于对质谱谱图的解析而实现,但由于有机化合物种类繁多,繁杂的裂解规律不易记忆,又缺乏解析的思路和方法,很多质谱分析人员在拿到谱图后常感觉到无从下手。 为适应广大分析技术工作者的需求,信立方培训中心将于2015年8月18日-21日在北京举办第十二期有机质谱谱图解析专题培训班,欢迎有志提高有机质谱谱图解析水平的分析人员来参加。 培训时间:2015年8月18-21日 培训地点:外国专家大厦(华严北里8号院外国专家大厦(北四环) 适用对象: 各企事业单位、科研院所从事食品卫生、检验检测、石油化工有环境监测及等行业负责分析测试的技术人员,以及各大专院校相关专业在校研究生及分析中心等技术人员。 学习目标: 系统掌握有机质谱谱图解析的基本方法,了解有机化合物的裂解反应类型和基本裂解规律,结合实例讲解谱图解析的基本思路和方法,为有机质谱的定性分析打下坚实基础。 课程特色: p 讲师均为长期从事质谱分析研究的高职人员,具有丰富的理论知识和实践经验; p 有机质谱谱图解析的基础知识、基本规律和精选实例相结合,深入浅出,通俗易懂; p 独有的有机质谱谱图解析水平测试题,可清楚的对比学习前后的技术水平; p 学员可带问题参加学习班,在学习班和专家即时讨论交流,解决实际问题; 授课专家:   1、王光辉 中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一,参与了国内多项质谱仪器的研发工作,有丰富的理论知识、实践经验和培训教学经验。代表著作:《有机质谱解析》;   2、苏焕华 北京石油化工科学研究院高级工程师,70年代初开始有机质谱应用研究,参与了国内质谱仪器的研发工作,组织过多种质谱应用技术培训,有丰富的教学经验。代表著作:《色谱-质谱联用技术及应用》; 3、授课专家不宜公开; 授课大纲:  一、谱图解析基础知识   1、原子中电子的排布   2、奇电子离子与偶电子离子   3、氮规则   4、环加双键值   5、同位素峰   6、单分子反应 二、离子的丰度   1、质荷比与离子丰度包含的结构信息 2、影响碎片离子丰度的基本因素 三、离子碎裂的基本机理  1、断裂  2、环的开裂  3、重排反应  4、置换反应   5、消除反应 四、常见有机化合物的裂解及质谱图特征   1、碳氢化合物   2、醇、酮、醛、酸、酯、醚   3、胺类、酰胺类   4、卤代物、硝基化合物 5、腈 五、由质谱图推测分子结构   1、基本方法及思路 2、实例练习 六、NIST谱图库检索实用技术   1、NIST谱图库简介   2、NIST谱图库主要功能 3、NIST谱图库检索实例 培训费用 每人3800元,2人以上组团报名可每人优惠100元(含报名费、培训费、资料费、培训期间每日午餐费用)。 颁发证书 参加相关培训并通过考试的学员,可以获得: 由信立方培训中心颁发并有授课老师签字的结业证书。该证书可作为有关单位专业技术人员能力评价、考核和任职的重要依据。 报名咨询 联系人:李茹 电话:010-51654077-8119/15910410867 邮箱:liru@instrument.com.cn
  • 固体核磁共振“超级放大镜”观察催化反应网络
    2016年,中国科学院大连化学物理研究所(以下简称大连化物所)院士包信和和研究员潘秀莲等提出的OXZEO催化技术发布于《科学》杂志。该项技术自提出以后就广受关注,并且入选了当年的“中国科学十大进展”。  近日,基于OXZEO催化剂设计概念,大连化物所院士包信和、研究员侯广进等利用固体核磁共振技术,在金属氧化物分子筛(OXZEO)双功能催化剂催化合成气转化机理研究领域取得了新进展。相应研究成果于6月23日发表在《自然-催化》上。  重要的催化过程与复杂的反应网络  催化技术在资源利用、能源转化和环境保护等诸多领域发挥着关键作用,是人类现代社会发展速度与质量的重要保证。而石油资源是当代能源和材料的核心来源。近年来,随着石油资源的日益匮乏,寻找补充性乃至替代性技术路径,以此满足现代社会发展日益旺盛的能源和材料需求尤为重要。  我国长期以来“富煤、缺油、少气”的资源结构,导致石油资源长期高度依赖进口。但是石油进口依赖国际环境,价格不可控,获取也容易受限。此外,人们对生态环境的保护意识也在不断增强,改良乃至废止高污染、高排放化工过程的呼声越来越高。但同时,生产效率又不能被牺牲,这使得催化研究领域面临很大的挑战。  针对国家的需求和能源现状,包信和从20世纪90年代回国起就全身心投入到能源小分子催化转化的科学研究中,带领团队深入的开展基础研究,聚焦“纳米限域催化”领域,一干就是二十余年。2016年,包信和与潘秀莲等在煤基合成气转化制低碳烯烃的研究中,创建了OXZEO催化过程。随着研究的不断深入,OXZEO催化概念已拓展成为碳资源转化的重要平台。  然而,OXZEO催化体系中涉及合成气经C1物种到多碳产物的转化过程,其反应网络非常复杂,包含催化剂表面众多的活化过程和复杂的多碳中间体,如何确定其活性组分和中间产物成为研究的难题,反应机理研究面临着挑战。  独特的设计思路  长期以来,基于在表界面催化及固体核磁共振谱学表征领域积累的丰富研究经验,包信和和侯广进等想到可以借助固体核磁共振方法对复杂多碳物种及其所处吸附相化学环境的原子超高分辨表征的优势,实现对OXZEO催化转化过程中催化剂表面活化多碳中间体的准确鉴别。  “在中科院和大连化物所的大力支持下,为研究团队搭建了优异的仪器平台,特别是前些年中科院的修购计划支持了包括高场800MHz固体核磁共振谱仪等的仪器装备,为催化反应机理研究提供了重要的设备保障。”侯广进说。  先进的表征技术和优秀的研究平台是团队在催化反应机理领域克难攻坚的利器。  基于对OXZEO催化过程的大量反应实践,研究团队发现,以甲醇催化转化为代表的传统C1转化反应机理并不能准确解释OXZEO催化体系中观察到的很多实验现象。为了充分论证OXZEO催化体系中包含的特殊反应路径,基于ZnAlOx金属氧化物是典型的合成气转化制甲醇催化剂,而H-ZSM-5分子筛是经典的甲醇转化制烃催化剂。于是团队提出要建立一个ZnAlOx/H-ZSM-5模型催化体系,可以说,这是一种独特的设计思路。  “如果我们可以在模型体系中观测到不同于甲醇直接转化过程报道过的中间体,并能够与OXZEO催化过程中观测到的独特反应现象相关联,”论文的第一作者纪毅说,“我们就可以说明OXZEO双功能催化概念是独特的,而我们观测到的关键中间体也对应了OXZEO催化中涉及的独特反应路径。”  研究人员利用模型催化体系,借助准原位固体核磁共振-气相色谱联用的分析检测方法,观测了从初始碳-碳键生成到稳态转化过程中,包括表面多碳羧酸盐、多碳烷氧基、BAS吸附环戊烯酮、环戊烯基碳正离子在内多种中间体的动态演化过程。检测到了数量众多、种类丰富的含氧化合物中间体物种,揭示了合成气直接转化的OXZEO过程与传统甲醇转化的重要区别,有力的解释了OXZEO合成气转化过程中烯烃及芳烃产物独特的高选择性。  接下来“向前也向后”  在上述研究的基础上,团队进一步提出和论证了一氧化碳和氢气在分子筛中也参与了含氧化合物的生成,并初步建立了OXZEO催化转化过程中C1中间体到多碳产物的反应网络和反应机理。  除了模型催化体系外,研究人员还在多种OXZEO催化剂上均观测到了关键中间体,验证了包括含氧化合物路径在内的反应机理的普适性。  但是,团队的研究工作不止于此,后续的基础研究会“向前也向后”。  “我们会进一步深入开展金属氧化物上C-O、H-H键活化以及C-H键形成的机理研究,进而拓展到其它碳资源转化领域如二氧化碳加氢等。”论文共同第一作者高攀告诉《中国科学报》。  与此同时,大家心里都有一个“梦”,就是将催化机理研究与实际反应密切结合,尽早实现OXZEO过程的工业化。  “基础研究需要一步一个脚印的积累,如果这些催化化学中基础科学问题的研究成果能够帮助应用研究学者建立一套完整的催化体系,设计出更高效的、理想化的催化剂,那我们的梦想就一定能实现。”侯广进提到。  有了前进的方向,整个团队将卯足精神,向前冲锋。侯广进对组内人员也提出了希望:“每个人都要有自己的思考,带着研究性思想去做工作,及时沟通交流,团队合作,协力攻坚,相信我们一定会取得更多、更好的研究成果。”  “作为包老师研究团队中的一个研究组,核磁共振是我们的特色也是优势,与其他几个研究组形成学科交叉、优势互补。最终目标,肯定是要从基础研究推向实际应用。”侯广进说。
  • 信立方培训中心“第11期有机质谱谱图解析”培训班在京成功举办
    2015年05月26-29日由信立方培训中心在北京举办&ldquo 第十一期有机质谱谱图解析&rdquo 培训班,历时四天,于2015年05月29日圆满落幕。 近有24家企业,共计30多位参加。  本次培训由中国科学院化学研究所质谱中心研究员王光辉、北京石油化工科学研究院苏焕华、天津大学材料科学与工程学院范国樑三位老师进行授课讲解。四天的课程从有机质谱与分子结构关联的角度,深入讲述与质谱谱图解析紧密相关的奇电子偶电子规则,氮规则,分子离子识别,离子丰度,离子碎裂规律等核心概念。介绍各类典型有机化合物---碳氢化合物、(脂肪烃,炔,芳烃等),醇,醚,酮,醛,羧酸,酯,胺,卤代物,硝基化合物等的裂解及质谱规律,并以丰富的实例讲述从质谱图推测分子结构的基本方法。 此次培训学员反映很有收获,通过参加此次培训班也与业内的其他同行进行了交流。 中国科学院化学研究所质谱中心研究员 王光辉 天津大学材料科学与工程学院 范国樑 北京石油化工科学研究院高级工程师苏焕华 学员认真听讲 王光辉老师给学员认真讲解实际遇到的问题 苏焕华老师现场讲解学员的疑问 学员与王光辉、范国梁老师的合影 学员与苏焕华老师的合影 联系人:李老师 电 话: 010-51654077-8119 手 机:15910410867 邮 件:liru@instrument.com.cn 更多培训班相关动态,请关注信立方培训中心微信公众号:training17
  • 得利特技术创新的四层逻辑生成 探索油液水分含量分析国产路径
    石油工业踏着改革开放的节拍,走得越来越从容自信。从能源“凛冬”到油气饭碗端在自己手里,我国石油工业一路高歌猛进。与石油工业一同加速的还有其检测行业。作为油品质量的“把关人”,油品检测作用日益凸显。   滚石上山、爬坡过坎。对得利特(北京)科技有限公司(以下简称“得利特”)技术经理王志强来说,油液分析与他共度半生。“油品检测产品要增强核心竞争力、迈出技术高水平自立自强坚实步伐。”王志强一语道出现阶段油品检测的动力,同时解读了得利特的发展逻辑和产业路径:挑战、创新、扩张与精进。   坚韧性挑战:研发力从“量变”到“质变”   “2000年离开无线电元件厂后,我进入了油分析仪器仪表行业。”王志强回忆。长久的钻研让王志强看到行业更多可能性,同时极具挑战性的科研工作强烈吸引着王志强。“我喜欢挑战,科研毫无疑问是属于这种工作。”科研成就感和价值感让王志强在油品分析仪器仪表路上越走越远、越走越深。   加入得利特后,王志强迎来了更多挑战机会,这得益于得利特的发展思路:注重原创技术攻关,走自主创新的可持续发展道路。在得利特创立初期,王志强秉持上述企业思路,与技术团队加大科技投入,专注核心技术研发,心无旁骛地啃技术“硬骨头”。   掌握核心技术绝非朝夕,需要年复一年技术积累。在王志强与技术团队的共同努力下,得利特推出精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等多款仪器。如今,适合采用库伦法测量微量水分的测定仪设备面世,实现企业研发力从量的积累迈向质的飞跃。   突破性创新:满足精确微量水分测定需求   水分含量分析是油液检测的重要项目。“石油产品中的水分蒸发时吸收热量,发热量降低;而在低温情况下,燃料中的水会结冰,堵塞燃料导管和滤清器,阻碍发电机燃料系统的燃料供给。此外,石油产品中有水会加速油品的氧化生胶,润滑油中有水时不但会引起发动机零件的腐蚀,而且水和高于100℃的金属零件接触时会变成水蒸气,破坏润滑油膜。”王志强解释。   轻质油品密度小、黏度小,油水容易分离,而重质油品则相反,不易分离。这一特性对微量水分检测仪器的自动化、便捷度提出更高要求。久居油品检测技术场,王志强察觉,相比其他水分检测方法,库伦法测量自动化、节省人工等优势备受青睐。基于该种方法的测量仪器能够在尽可能节省人工的同时得到更精确数据。   “微量水分检测数据的精度、便捷度大幅提高,这是得利特库伦法测量微量水分测定仪的突破性创新点。”王志强补充。基于两个核心优势,以及智能自检等新功能,该款微量水分的测定仪受众广泛,在油液水分含量分析市场中占达到了一定份额。下一步,得利特将侧重于设备测量时的自动化,脱离人工干预,并通过电子监测,更加准确地判断出油液中水的含量。   体系性扩张:产研结合扩充技术链条   挑战、创新让得利特尝到甜头。得利特微量水分的测定仪等多款产品广泛应用于石化、电力、环保、医药、军工、航空等领域,并得到用户充分认可。如何实现持续性研发,保持企业机动力?这是技术企业在“后创新时代”思考的问题。   在王志强看来,产学研结合能够及时丰富技术创新力量,扩充技术链条。这一想法不仅与得利特的技术班底相映照,更与产学研融合的政策相呼应。   实际上,得利特成立之初就整合石化科学研究院、中国计量科学研究院、北京铁道科学研究院、空军计量总站等单位的油品、仪器方面专家,将其作为企业技术班底,加速成果转化,优势互补、互惠互利。“我们正在与多家大学、电科院联合研发新产品。”   产学研融合为得利特建造了人才高地,推动预见性与实践性并存,调和国产仪器研、产不对等矛盾,解决油液水分析多个难题。同时,人才补充和研发合作鼓足得利特底气,其以北京为研发销售中心,开拓吉林、山东为生产加工中心,扩充企业链条。   精进性守业:精确性与智能化并进   技术跟上后,石油分析检测形势一片大好,但王志强直言:“国内对油液水含量的分析还能有很大的提升空间。**设备检测准确性高,但相对价格高;国产设备价格低,但稳定性、工艺水平有待提高。”基于上述难题,王志强带领团队提高优化电解液的配方,增强实验结果的广泛适用性、稳定性,提高关键部件工艺水平,在促进实验结果的重复性等方面下工夫,为油液水分含量分析的稳定性与工艺水平献力。   精确性技术攻克热火朝天。与此同时,更加长远、持久的计划箭在弦上。今年年初,多部门联合发布《关于“十四五”推动石化化工行业高质量发展的指导意见》,指出加快改造提升,实施智能制造,推进石化产业数字化转型。   提及石油化工检测技术发展方向,王志强说道:“强化检测技术的数字化,控制技术的智能化是我所期待重点的发展方向。”   他认为“十四五”高质量发展的主要目标是基本形成自主创新能力强、结构布局合理、绿色安全低碳的高质量发展格局,这一格局离不开数字变更。5G、大数据、人工智能等新一代信息技术与石化化工行业逐渐融合,检测过程数据获取能力不断增强,基于工业互联网的产业链监测、精益化服务系统正在完善。“高端油液检测产品还应提高智能化程度,增强核心竞争力,迈出高水平自立自强的坚实步伐。”王志强补充。   王志强透露,得利特将沿着自动化方向和智能化趋势,为国内企业提供高性能的自动化油品分析仪器和专业化的技术咨询、培训等服务,帮助企业以高效率、精细化管理、解决油品检测、设备润滑管理方面存在的问题。   后记:国产石油分析检测企业如何在产业扩张中顺势而为,与**品牌分庭抗礼,是摆在石油石化分析检测行业面前的一道必答题。面对错综复杂的行业形势,作为一股国产油液分析检测力量,得利特在王志强及技术团队把控下,按照四层增长逻辑和既定节奏,由高速转向高质量发展,积极构建创新型、智能化产业。   百尺竿头,更进一步。拥有突破性创新、体系性扩张,积极精益求精时,企业产能规模自然更上一层。这四层增长逻辑不仅带来良性增长,更难能可贵的是,其或将成为众多国产油液分析检测企业的范本。
  • 青岛:为海洋仪器设备“国产化”探索突围路径
    为了打破长期使用国外仪器设备形成的“路径依赖”,驻青涉海高校、院所、企业努力突破关键核心技术,积极拓展市场应用青岛:为海洋仪器设备“国产化”探索突围路径在青岛创业5年多,从事海洋仪器设备研发的郭经理有一个烦恼。“多年来,公司致力于海洋传感器特别是温盐深仪(CTD)的自主研发,相关核心技术打破了国外垄断,国产化率近100%。但国内科研单位在购买CTD时,几乎全部选用代购的美国Sea-bird品牌。国产CTD研发耗费了大量人力物力,突破了关键核心技术,却难获得用户青睐。”进入海洋世纪以来,国家大力支持企业自主创新,但长期以来,国产海洋仪器设备科研成果难以走向市场已成为社会的关注焦点。记者调查发现,这与我国海洋仪器设备研发较晚、整体水平与国外仍有一定差距有关,也与国内长期使用国外仪器设备形成的“路径依赖”有关,此外,我国科研的考评机制也在一定程度上影响着国产海洋仪器设备的使用率。工欲善其事,必先利其器。一方面,海洋仪器设备的有无、优劣,极大影响着对海洋的探索开发是否深入。另一方面,只有牢牢掌握核心技术,不断提高海洋仪器设备的国产化率,才能在风云变幻的时代环境下不受制于人。青岛作为我国海洋仪器设备研发重镇,勇担使命,正在加快探索、布局,积极融入国家战略,为海洋仪器设备国产化建言献策,贡献青岛力量。国产海洋仪器设备走向市场步履维艰记者近日走进青岛多家海洋科研院所的实验室和科考船,发现使用的海洋仪器设备几乎清一色来自国外进口,而国产海洋仪器设备难寻踪迹。多位工作人员评估说,在很多实验室及绝大多数科考船上,至少90%的海洋仪器设备都来自国外进口。在海洋监测领域,我国海洋核心传感器和高端仪器国产化率仅23%,其中深海和高精度传感器几乎全部依赖进口。“这与我国海洋仪器设备研发起步较晚有一定关系。”相关负责人分析说,目前,美欧等国家研发的诸多海洋仪器设备已经实现了商业化生产和全球性应用,尽管我们采用自主创新等发展模式加快追赶,但差距依然存在。一些国产海洋仪器设备虽然突破了关键核心技术,但还存在原创性不足、可靠性不高等问题,反映在市场上,就是客户不敢贸然使用。一位从事海洋科考船仪器设备采购的负责人进一步作了解释。“科考船上的仪器设备通常较为昂贵,最基本的如CTD、ADCP(声学多普勒流速剖面仪)价格都在百万元左右,因此我们在采购仪器设备时必须十分谨慎。”这位负责人说,海上科考每天的成本动辄需要十余万元。如果科考设备出现故障,不仅极大浪费日常开销,而且直接影响到科考项目进展。应该说,国产海洋仪器设备难以推向市场,与生产方研发的一些海洋仪器设备整体水平落后于国外产品有关,同时也与海洋仪器设备这个行业自身的特殊性有关。“海洋仪器设备行业不仅生产投入大、研发周期长,而且除水产养殖等特定领域,大规模应用的产品相对较少。”相关院所负责人说,使用海洋仪器设备一般都是国家行为,民用较少,所以就更加难以市场化。相较而言,西方企业研发的一些海洋仪器设备,不仅有几十年的技术积累,产品较为成熟,同时还在根据客户反馈不断改进。而国产同类产品虽然突破了关键核心技术,但由于市场化程度低,没有“使用”,也就没有“反馈”,更没有“改进”,在这个生态下,国产海洋仪器设备行业发展陷入“有货无市”的死循环,缺少进一步优化完善,更难达到国外同类产品水平。出于稳定性、可靠性等综合考虑,国内长期使用国外海洋仪器设备并形成了“路径依赖”,甚至有的单位在采购海洋仪器设备时出现了“只买进口、不买国产”的现象,国产海洋仪器设备走向市场步履维艰。产品精、满足定制化需求是发展思路作为我国知名的海洋科技城,青岛在海洋仪器设备的诸多细分领域具备自主研发能力,并已推出系列化高质量产品,服务于国家和地方发展。作为海洋科考、海洋科研重镇,青岛同时还是海洋仪器设备的重要市场之一,国内众多海洋仪器设备生产商已与青岛院所、高校建立起合作关系。在什么样的情况下,青岛自主研发的海洋仪器设备更容易销售?青岛敢用愿用国产海洋仪器设备?这是值得关注的问题。记者调查发现,在青岛从事海洋仪器设备研发的单位主要分两类,一类是企业行为,他们有的也是国外海洋仪器设备的代理商,但大多数都致力于通过自主创新建立品牌,将国外同类产品实现国产化、产业化;另外一类是院校行为,他们以实际使用为目标牵引,研发的海洋仪器设备直接用于自身或国家业务化运行,或者将成果转化给其他院校。值得注意的是,近年来一些院校还成立了产业化公司和更高能级研发平台,力图做大做强国产海洋仪器设备,占据更大的市场份额。必须承认,青岛海洋仪器设备推向市场也面临着行业“有货无市”的普遍难题,但又不尽相同。首先是青岛的研发优势带来的市场优势。例如中船重工710研究所旗下全资子公司青岛海山海洋装备有限公司自研的HM2000型Argo浮标,是国内唯一获得国际Argo组织认可的国产化浮标,已经在Argo计划中得到应用;青岛海舟科技有限公司研发的“黑珍珠”波浪滑翔器,填补国内波浪滑翔器应用领域空白,已有几百套产品推向市场;青岛双瑞海洋环境工程股份有限公司和青岛海德威科技有限公司研发的船舶压载水管理系统,技术水平先进,市场规模位居国际前列。其次,青岛既是海洋仪器设备的“生产方”又是“使用方”的身份,较为方便将研发优势和使用需求相搭配,从定制化的角度研发、购买海洋仪器设备。青岛从事海洋仪器设备研发的涉海院所、高校就是代表案例。例如,中国科学院海洋研究所按照自身科考、科研需求,既自主研发“中科海”系列取样系统等海洋产品供自己使用,也向山东省科学院海洋仪器仪表研究所(以下简称“海仪所”)等院所、企业定制海洋浮标等产品,还根据客户实际需要,将自己的“中科海”海洋产品成果转化给海地所等院所。院所、高校、企业之间定制“需求”,互通有无,推广了国产海洋仪器产品的使用。对于海洋领域的仪器设备,使用方特别看重实际应用。可以看出,“产品精”是赢得市场青睐的关键。同时,相当多应用于海洋中的仪器设备具有产品系列化、需求多样化的特性,昭示着满足不同客户的定制化需求,是未来国产海洋仪器设备发展的一个思路。青岛也在加快布局,例如在水下滑翔器领域,青岛海舟科技有限公司正不断降低生产成本,实现更大批量稳定生产,同时根据项目的具体需求,布局“定制”不同的滑翔器型号。布局未来,提高国产海洋仪器使用率近年来,随着我国投入大量人力物力,国产海洋仪器设备研发飞速发展,取得了较大成绩,大幅缩小了与国外的差距。“一些国产海洋仪器设备的关键参数已经达到甚至超过国外产品水平,一些设备指标很好、应用时却不符合实际的情况也变少了。”某科考船上的一位首席科学家说,正因如此,科考船上也开始使用一些定制化国产产品。“一方面,很多国产海洋仪器设备已经可以和国外媲美,只是缺少进一步的优化和客户使用。另一方面,我们也必须承认,一些国产海洋仪器装备与欧美国家相比还有一定差距。”海仪所长期在国家层面从事海洋监测技术研究和产品开发,在海洋监测仪器领域长期保持“四项冠军”:国产海洋监测装备总体市场占有率第一;船舶气象仪国内军用市场占有率100%;海洋资料浮标国内市场占有率90%以上;海洋台站占我国海洋台站观测网的60%以上。海仪所副所长刘岩表示,国家应该不断倡导使用国产海洋仪器设备的风气,提高国产海洋仪器设备使用率,培育国产海洋产品发展的蓬勃态势。同样重要的是,生产方要认清差距,不断提高产品的质量水平,布局未来,实现超越。今年6月底,“中国海洋监测仪器装备发展战略研究”启动会暨实施方案咨询会在青岛举行。“海仪所将牵头评估我国海洋监测仪器装备发展情况、规划未来发展思路以及技术路线,破题国产海洋监测装备高精尖发展瓶颈。”刘岩展望,预计十年之内,海仪所研发的海洋监测仪器装备将成系列化、体系化、高端化,逐步满足国内的各种海洋监测应用需求。当然,国产海洋仪器设备行业的快速发展,需要国家战略格局的推动,也需要项目方的青睐采购。众多专家进一步建议,国家应借鉴已有方案,出台相关政策或者加强项目立项,对国产海洋仪器设备的采购比例提出具体要求。在同等或接近国外产品的条件下,优先考虑国产装备。在国家重大海洋发展专项中,尽量减少国外仪器进入,给予国内企业产品更多应用机会。“推动国产海洋仪器设备发展,还需要我国在科研考评机制上做出一定改变。”致力于深海装备研发、中国科学院海洋研究所正高级工程师栾振东表示,国内的科研机构、科研人员倾向于使用国外进口产品,不仅是因为其设备的高性能,还因为应用进口设备有利于论文的发表。据介绍,由于国外海洋学科起步较早、研究水平较高,我国的科研人员普遍重视发表国外期刊论文,而国外期刊刊载国内论文,又会关注到论文中使用的海洋仪器设备。如果科研人员是应用国产设备做出的实验,国外期刊编辑有时会对其观测数据准确性等提出质疑,以致影响论文发表;如果是应用了市场认可度高的国外设备,相对论文发表就比较顺利。目前我国对科研人员的考评,一个重要的方面就是论文。论文发没发、发了多少,特别是发在哪本期刊,都很关键。业内专家表示,随着我国海洋实力的强大,国内的科研论文不必唯西方SCI马首是瞻。只要得到同行的高度认可,无论论文发表在国外还是国内期刊上,科研考评都应该尽量一致,这样有利于提高国产海洋仪器设备使用率,推动产业进一步发展。
  • 碳中和下中国道路交通的碳减排潜力与脱碳路径
    2022年12月31日,《自然》子刊npj Urban Sustainability在线发表了中国科学院大学教授汪寿阳和段宏波团队等关于碳中和下中国道路交通的碳减排潜力与脱碳路径研究成果。交通部门是重要的温室气体的排放源,其低碳化转型的程度密切关系到中国碳中和愿景的达成,也可能成为中国唯一不能如期达峰的部门。由于我国交通部门的能耗和排放统计等微观数据的质量总体上较发达国家偏低,因此现有的多数研究只能基于统计年鉴的宏观年度数据来分析交通部门的碳排放,这显然难以支撑这一部门的碳排放精细化管理和双碳目标的评估。研究人员基于中国高频乘用车销量数据和机动车驾驶行为实时监测大数据,通过建立自底向上的核算框架形成了中国道路交通部门跨城市的高频碳排放数据库,围绕我国的“双碳”目标,构建了中国道路交通低碳转型规划模型(CRT-LCTP),通过技术情景分析,给出了我国中长期道路交通碳中和转型路径。研究发现,尽管考察期内(2016-2019年)我国新能源汽车保有量实现了4倍增长,但其占总机动车的比重依然较小,道路客运交通排放的年均增速依然高达20.5%。碳排放的空间异质性明显,一、二线城市碳排放具有“存量”特征,而郑州、重庆等中西部地区碳排放预期增势强劲。交通电气化的减排效果显著,但当前有限的电动车扩散规模限制了其减排潜力。结果显示,若电动汽车消耗的电力来自火电,则当前交通电气化的减排贡献仅为0.6%,而若电力来自水电等清洁能源,则减排贡献可进一步升至1.4%。从时间上看,每年电动车销量的高峰期是下半年,特别是12月。这主要归结于年底各商家集中进行的汽车降价促销活动以及新能源补贴资金的定点拨付方式。一般而言,经济发展水平很大程度决定了消费者的购买力,后者又决定了汽车存销量及相关碳排放量。但不少城市,如北京、广州、天津等,表现出交通逆低碳化趋势,这意味着经济发展与居民的购车意愿并不总是正线性相关。为了链接历史核算的微观碳排放与未来宏观碳减排路径,研究构建了中国道路交通低碳转型规划模型(CRT-LCTP),并设计了三种典型的政策情景,即一般政策情景(CPS),转型政策情景(TPS)和加强政策情景(EPS)。同时,针对共享社会经济情景(SSP)对路径结果进行了对比分析和评估。总体上看,交通部门实现碳中和的挑战较大,但强化政策情景下,道路交通的碳排放达峰时间可与国家温室气体减排目标承诺的时间点基本一致,峰值水平约为1330.98 Mt。交通电气化和机动车总量控制是最大的减排贡献因素,2060年的贡献比重最高分别可达33%和66%以上。道路交通系统中燃油车的存续惯性将为道路交通部门实现净零排放带来较大难度,未来道路交通部门碳中和的实现可能依赖于强有力的燃油车强制淘汰和更实质性的交通低碳化转型。
  • 周琪院士:建设生命健康科技强国的路径思考
    p & nbsp & nbsp & nbsp 中国的科研创新需要的是忘记小我、实现大我、创新为民、敢为人先、有情怀的科学家。没有家国情怀、没有奉献精神的科学家不可能全身心投入到需要长期坚忍,可能会失败、可能没有功名和回报的创新过程;一个没有情怀、没有精神、没有信仰的群体也无法胜任中华民族的复兴伟业。因此,科学创新的路径设计中最重要的是应该给心有梦想、心有大爱、情系国家的科学家以信任和发展的空间。 /p p style=" text-align: center " strong 建立科研自信 /strong /p p strong   建设科技强国,首先要建立科研自信 /strong /p p   建设科技强国的首要一点是要建立科研自信。多年来中国在科研创新能力的累积方面取得了长足的进步,各项工作发展迅速,但是在快速跟进国际科技前沿的过程中,部分科研人员也逐渐形成了研究的惰性,缺乏科研定力和科研判断能力,对开展前瞻性工作缺乏自信,跟风式科研方式盛行,这些现象归根结底是科研自信不足。 /p p   2016年全国科技创新大会期间,周琪在接受《焦点访谈》记者采访时说:“作为一个全新的领域,每一个进步都是伴随着科技创新和突破产生的,干细胞和再生这个领域我们前面没有现成的经验可以复制,要在一个完全没有路的情况下走一条路,这种挑战和压力可能会更大,但我们完全可以去引领世界的科学方向与技术潮流”。 /p p    strong 勇闯“无人区”,真正的创新从科技规划开始 /strong /p p   面对重大科技创新推进上的诸多困难,当主要聚焦点还集中在对体制机制问题的探讨与实践上的时候,科技如何在一个创新的道路上勇闯无人区应该成为建设科技强国的一个首要问题。 /p p   真正的科研创新应该从科技规划开始。如果科研规划本身就是跟踪性、模仿性的,科技成果至多会取得“点”上的突破,不可能产生重大创新,只能越落越远。 /p p style=" text-align: center " strong 立足国情,解决现实困难 /strong /p p    strong 生命与健康领域的突出矛盾:一“小”一“老”& nbsp 、一“生”一“死” /strong /p p   在生命与健康领域的科研规划上,必须要坚持立足中国国情,解决困扰中国的现实困难,不能人云亦云。 /p p   现阶段我国在生命与健康领域的突出矛盾是人口结构失衡,老龄化社会的加速发展导致的人口安全和健康问题,创新发展的路径应该紧密围绕解决上述矛盾开展。 /p p strong   “小”——高龄孕妇井喷式增加 /strong /p p   多年来,中国已经历了人口爆炸、“独生子女”& nbsp 和“全面二孩”等政策的调整,在全面放开二孩政策以后,“& nbsp 70后”“& nbsp 80后”加入再育的行列,高龄孕妇井喷式增加。 /p p   我国高龄孕妇的比例,1995年为0.9%,2005年为4%,2015年为10%。数据显示,全国符合生育二孩条件的9000万左右家庭中,60%的女方年龄在35岁以上,50%在40岁以上。 /p p   据世界卫生组织人类生殖特别规划署报告:中国出生缺陷率达5.6%,是发达国家的2倍;而近年来符合二孩政策的高龄产妇井喷式的增加据信会导致生殖障碍和出生缺陷比例大幅上升,我国人口安全的形势非常严峻。如果没有在科学研究和诊疗技术上的重点布局和突破,有可能在中国建设创新型国家的努力中带来人口安全与健康的巨大风险。 /p p strong   “老”——老龄化社会加速发展 /strong /p p   除了出生人口质量与安全问题外,老龄化带给我们的也不仅仅是社会问题,我国65岁以上人口已经超过1.2亿,医疗需求快速增长,将对我国生物医药产业未来发展提出新的要求。 /p p strong   培育发展生物医药产业,开发新的治疗技术和手段 /strong /p p   另外,虽然我国生物医药产业规模庞大,到2014年全产业销售额接近2.5万亿元人民币,但我国药物的自主研发仍很薄弱,药品生产以仿制为主,原创性药物较少,生物医药关键技术也和国际水平有较大的差距。因此,培育发展生物医药产业,开发新的治疗技术和手段,并力促整个产业涉足国际竞争,将成为提升我国生物医药产业整体发展水平和竞争力的关键。 /p p    strong 在生命与健康领域的研发布局上,应该着重加强技术预测能力,建立科学自信。 /strong /p p   中国在生命健康领域规划方面应该坚持把重心放在一“小”一“老”、& nbsp 一“生”一“死”上,重点解决困扰中国的核心矛盾和问题,加速布局人口与健康领域的前瞻性科学研究,重点布局早期诊断、早期预防和治疗研究,开发新的诊疗手段。 /p p style=" text-align: center " strong 改革科技管理,激发创新活力 /strong /p p   在实施创新驱动发展战略、建设创新型国家的新时期,建立符合创新规律和要求的、新的管理机制至关重要。有挑战性的项目有风险、有难度,应该鼓励试错、宽容失败,评估评价机制应更加符合科技创新。创新型国家建设的核心在于体制改革,改革的核心是营造有利于创新的环境。而现行的管理和评价系统显然和推动创新研究的要求还有一定差距。 /p p    strong 科技管理应激发科研人员的创新活力 /strong /p p   科技管理应该以能够激发科研人员创新活力,能够鼓励每个人在各自岗位上发挥创造力,完成使命为宗旨,对那些从事基础研究的重点考核不应僵化地以论文为主要考核指标,而应考核他们解决实际需求,解决瓶颈问题,解决关键技术障碍的完成情况。 /p p   对成果的考核也不应该以奖励的级别、专利的数量为主体,而应该以成果的转化效率和最终收益为主要的评价指标和据。 /p p   对技术支撑人员应该以服务的质量和任务完成的数量作为考核的指标。 /p p   只有做到分级分类的指标的细化,才会激发不同类型人员的创造力。 /p p    strong 科研管理改革如何做? /strong /p p   科研管理改革应该有助于推动科学家把科学研究的重心投放到加强科研攻关、强化服务民生、聚焦医疗健康等社会关切的方向上。 /p p   改革应以实现科学、协同、规范、高效的管理为目标,促进学科交叉融合,打破旧的思维定势和工作惯性,动态调整科研布局、优化资源配置等改革举措,聚焦国家重大战略需求,紧密结合国际科学前沿,发挥先导引领作用,全面提升创新能力,促进我国科学研究整体实力从“跟跑者”向“并跑者”转变,并进一步形成“领跑”优势。 /p p style=" text-align: center " strong 重视成果转移转化 /strong /p p strong   做好科研成果转化的“大文章” /strong /p p   中科院要坚持“三个面向”“四个率先”的新时期办院方针,要强化高端引领,加强前沿领域战略布局和技术预判,全面提高创新源头供给能力,必须着力解决好科技成果转移转化能力建设,做好科研成果转化的“大文章”,把创新驱动发展落到实处。 /p p   科学研究应该考虑国计民生,应该符合人民需求,面向国民经济主战场,应该促进和推动将科研成果转化为支撑社会发展的动力。 /p p style=" text-align: center " strong 遴选核心人才 /strong /p p strong   科学创新,遴选核心人才是重要环节 /strong /p p   科研创新的主体任何时候都是人,而不是物,跨越式发展应该建立差异化的人才政策。创新是人的心智投入的创造过程,不是按图索骥、照方抓药,在科学创新的路径设计中,应该把遴选核心人才作为重要的一环。 /p p   按照论文指数、考核指标、经费预算的设计可以完成科研流程,但不能保证科研创新。如何发挥科学家,尤其是领军科学家的作用至关重要。 /p p   中国的科研创新需要的是忘记小我、实现大我、创新为民、敢为人先、有情怀的科学家。没有家国情怀、没有奉献精神的科学家不可能全身心投入到需要长期坚忍,可能会失败、可能没有功名和回报的创新过程;一个没有情怀、没有精神、没有信仰的群体也无法胜任中华民族的复兴伟业。因此,科学创新的路径设计中最重要的是应该给心有梦想、心有大爱、情系国家的科学家以信任和发展的空间。 /p p   路径、管理和制度体系只是一个正常运行社会里规范个人行为的条款,制度设计里面过于强化功名的牵引、利益的诱惑,过于强调局部利益和团体的成就,而忽略了对爱国敬业、敢为人先、淡泊名利、甘于奉献这些重要指标,忽略掉精神而仅仅靠制度设计的各种指标遴选的团队难以承载建设科技强国的梦想,可能和创新的理念是不相符合的。 /p p   除了支持那些引领科技革命的天才科学家之外,更应该弘扬“两弹一星”精神,弘扬为崇高目标舍弃自我,报效国家的爱国情怀。 /p p   能够在中国的科技创新伟业中大展宏图、在科技无人区里面冲锋陷阵的主体必定是那些怀着赤诚报国热情,怀着敢为人先的创业精神,把个人的发展和祖国的发展伟业融为一体的科学家,要减少对他们创造力的束缚,给他们充分的信任和足够的支撑,支持他们投身于创新的发展实践。 /p p   创新的最核心要素是人,要逐步在社会中形成一个崇尚创新,尊重人才的社会风气,营造良好的创新文化和环境,支撑中国建设科技强国,实现“两个一百年”的宏图伟业。 /p p style=" text-align: right " (作者:周琪,中国科学院院士,中国科学院动物研究所所长) /p p /p
  • 科学家研发出新型塑料降解酶 展示工业规模酶塑料回收的可行路径
    塑料垃圾为生态环境带来了严峻挑战,酶降解技术是实现塑料垃圾回收利用的一条潜在绿色途径。近期,美国科学家结合机器学习,成功研发出一种新型塑料降解酶,且该酶可用于塑料的闭环回收。研究成果发表在《Nature》期刊,标题为“Machine learning-aided engineering of hydrolases for PET depolymerization”。PET(聚对苯二甲酸乙二酯)是一种应用广泛的塑料,其产生的垃圾占全球固体垃圾的12%。以往报道的PET水解酶对pH和温度范围缺乏稳定性、反应速度慢,不能直接降解未经处理的消费塑料废品,极大地限制了其应用。科研人员开发了一个机器学习系统,该系统能预测可能提高PET降解酶热稳定性和活性的突变。通过对突变体进行蛋白质工程改造和测试,科研人员确定了一种相比野生型PET酶(PETases)含有五个氨基酸突变的酶,将其命名为FAST-PETases。FAST-PETases在30~50℃和一系列pH水平范围内显示出优异的水解活性。研究发现,FAST-PETases几乎能在1周内完全降解51种不同的未经处理的PET塑料废品。同时,FAST-PETases对晶态和非晶态的PET均能高效降解。研究人员进一步进行了概念验证,利用FAST-PETases分解PET,并利用回收的单体重新合成PET,从而展示了PET闭环回收的过程。这项研究展示了一条在工业规模上进行酶塑料回收的可行路径。论文链接:https://www.nature.com/articles/s41586-022-04599-z
  • 谱图解析的“欢乐颂”,来一场完美逆袭吧!
    近年来有机质谱分析技术在我国发展很快,被广泛应用于食品安全、环境保护、化学化工、制药、生命科学、材料科学等各个领域。质谱的定性分析基于对质谱谱图的解析而实现,但由于有机化合物种类繁多,繁杂的裂解规律不易记忆,又缺乏解析的思路和方法,很多质谱分析人员在拿到谱图后常感觉到无从下手。  为满足广大分析技术工作者的需求,信立方培训中心将于2016年05月24-27日在北京举办第13期有机质谱谱图解析最新应用技术培训班,带领你们成功逆袭!1、授课大纲    2、适用对象  各企事业单位、科研院所从事食品卫生、检验检测、石油化工有环境监测及等行业负责分析测试的技术人员,以及各大专院校相关专业在校研究生及分析中心等使用有机质谱联用仪进行常规检测、科研或研发的技术人员。3、课程特色  讲师均为长期从事质谱分析研究的高职人员,具有丰富的理论知识和实践经验;  有机质谱谱图解析的基础知识、基本规律和精选实例相结合,深入浅出;  独有的有机质谱谱图解析水平测试题,可清楚的对比学习前后的技术水平;  学员可带问题参加学习班,在学习班和专家即时讨论交流,解决实际问题;4、课程受益  系统掌握有机质谱谱图解析的基本方法,了解有机化合物的裂解反应类型和基本裂解规律,结合实例讲解谱图解析的基本思路和方法,为有机质谱的定性分析打下良好基础。5、培训时间/地点  时间:2016年05月24-27日   地点:北京外国专家大厦(华严北里8号院外国专家大厦(北四环))6、授课专家  王光辉 中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一,参与了国内多项质谱仪器的研发工作,有丰富的理论知识、实践经验和培训教学经验。代表著作: 《有机质谱解析》  苏焕华 北京石油化工科学研究院高级工程师,70年代初开始有机质谱应用研究,参与了国内质谱仪器的研发工作,组织过多种质谱应用技术培训,有丰富的教学经验。代表著作:《色谱-质谱联用技术及应用》  李重九 中国农业大学理学院应用化学系教授,农残分析领域著名质谱专家,在大学主讲色谱、质谱等仪器分析课程。代表著作:《有机质谱应用:在环境、农业和法庭科学中的应用》  7、报名咨询  联系人:李老师  座机:010-51654077-8119  电话:15910410867  邮箱:liru@instrument.com.cn
  • 信立方第二期谱图解析培训班11月举办
    近年来有机质谱分析广泛应用于食品安全、环境保护、化学化工、制药、生命科学、材料科学等各个领域,成为一种非常重要的定性定量分析方法。质谱的定性分析是基于对质谱谱图的解析实现的,但由于有机化合物种类繁多,繁杂的裂解规律不容易记忆,又缺乏解析的思路和方法,很多质谱分析人员在拿到谱图后常感觉到无从下手。   为适应广大分析工作者的工作需求,2009年信立方质谱培训中心与仪器信息网合作,在北京举办期了第一期谱图解析培训班,广受学员好评,但由于名额有限,许多分析人员错过此次培训机会。为了继续满足广大质谱分析工作者的培训需求和热情,培训中心定于2009年11月30日-12月4日在北京举办第二期有机质谱谱图解析专题技术培训班,欢迎有志于提高谱图解析水平人员报名并尽早确认。 【适用对象】使用有机质谱联用仪进行常规检测、科研或研发的技术人员 【培训目标】系统掌握有机质谱谱图解析的基本方法,了解有机化合物的裂解反应类型和基本裂解规律,结合实例讲解谱图解析的基本思路和方法,为有机质谱的定性分析打下良好基础。 【主讲专家】 王光辉(中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一) 苏焕华(北京石油化工科学研究院高级工程师,组织过多种质谱应用技术培训) 【课程内容】 一、谱图解析基础知识 1、原子中电子的排布 2、奇电子离子与偶电子离子 3、氮规则 4、环加双键值 5、同位素峰 6、分子离子的识别7、单分子反应 二、离子的丰度 1、质荷比与离子丰度包含的结构信息 2、影响碎片离子丰度的基本因素 (a) 产物的稳定性 (b) 空间因素 (c) 键的不稳定性 三、离子碎裂的基本类型 1 、电荷及游离基定域的概念 2 、σ 断裂,简单的键断裂 3 、α 断裂,游离基诱导键断裂 4、 i 断裂,电荷中心诱导键断裂 5、 α 断裂与 i 断裂的竞争 6、 环的开裂 7、 重排反应 (a) 游离基诱导的重排 (b) 电荷诱导的重排 8 、置换反应 (rd) 9 、消除反应 (re) 四、常见有机化合物的质谱特征 1、碳氢化合物 2、醇、酮、醛、酸、酯、醚 3、胺类 4、酰胺类 5、腈 五、由质谱图推测分子结构 基本方法、思路及实例练习 六、NIST谱图库简介 注:学员可自带原始数据采集文件,讲师可采用学员的文件作为案例进行分析 【课程特色】 讲师均为长期从事质谱分析研究的高职人员,具有丰富的理论知识和实践经验 内容以应用技术为主,并有基础知识讲解理论、实践与应用全面结合 独有的有机质谱应用技术水平测试题,可清楚的对比学习前后的技术水平 学员可带问题参加学习班,在学习班和专家即时讨论交流,解决实际问题 学员专享网上社区,学员可互动交流,免费下载资料,参加讲师的网上答疑活动。 培训结束后所有学员均送仪器信息网VIP积分2000分,用以下载资料或换取礼品。   信立方质谱培训中心致力于有机质谱培训,每年均开设气质联用、液质联用、谱图解析等不同类型和层次的质谱培训班。更多培训信息请参阅信立方质谱培训中心在仪器信息网的专栏http://training.instrument.com.cn   另:信立方质谱培训中心将于11月25日在北京召开的BCEIA展会上举办GC-MS、LC-MS、MALDI-TOF-MS采购讲座,邀请王光辉、盛龙生、苏焕华等资深专家讲解有机质谱采购中的必备知识及注意事项,有相关采购需求的用户可来电咨询报名办法。 信立方质谱培训中心: 电话:010-51299927-101 13269178446 传真:010-51413697 Email:training@instrument.com.cn 联系人:张老师
  • 【重磅】冷冻电镜Cryo-EM解析出新冠病毒首个S蛋白的近原子分辨率结构
    电镜不仅可以揭示新冠病毒形态、扩增过程及传播途径,同时,使用冷冻电镜解析病毒的刺突糖蛋白(Spike glycoprotein, S蛋白)结构是助力疫苗与抗病毒药物研发的关键所在。2月15日,美国得克萨斯大学奥斯汀分校Jason S. McLellan教授团队和美国国立卫生研究院NIH联合在预印版网站bioRxiv上发表了首篇使用冷冻电镜解析新冠病毒S蛋白的研究文章。Jason Mclellan团队通过冷冻电镜Cryo-EM技术,解析了新冠病毒S蛋白三聚体的3.5埃的近原子分辨率结构,从生物物理及结构生物学的角度加深了我们对新冠病毒的认知。01为何2019-nCoV的传染性如此之强?作者使用了来自赛默飞旗下品牌Thermo Scientific的Titan Krios冷冻电镜,解析了新冠病毒刺突糖蛋白(简称S蛋白)三聚体预融合构象的近原子分辨率结构,其分辨率达3.5埃(10-10 m)。该研究中发现新冠病毒S蛋白三聚体的在多数时候其三个受体结合域(Receptor-binding domains,RBDs)中的一个发生了旋转,使得其更容易与细胞表面的受体相互作用。作者还借助于其他生物物理和负染电镜(Thermo Scientific Talos TEM)技术,发现 2019-nCoV S结合细胞表面受体血管紧缩素转化酶2(angiotensin-converting enzyme 2, ACE2)的亲和力高于SARS-CoV的 S蛋白。这两方面的数据说明了为何2019-nCoV的传染性较其他冠状病毒传染性更强。*新冠病毒S蛋白三聚体预融合构象的近原子分辨率结构作者进一步通过动力学实验检测确认新冠病毒、SARS病毒与宿主细胞受体ACE2亲和力的差异。令人震惊的是,2019-nCoV结合ACE2的亲和力是SARS病毒结合受体亲和力的10-20倍。该研究成果进一步阐释了新冠病毒能够迅速在人际间传播的原因。*新型冠状病毒相对SARS病毒对ACE2具有高亲和性02为何SARS-CoV的抗体对2019-nCoV无效?由于新型冠状病毒与SARS-CoV病毒之间的结构同源性,通过比较,研究者发现了2019-nCoV S蛋白与SARS-CoV S蛋白的结构差异。此外,他们还测试了三种研发用于结合SARS-CoV S蛋白的单克隆抗体,研究发现这些抗体并不能与2019-nCoV S蛋白RBD产生交叉反应,这说明SARS-CoV的抗体并不能用于2019-nCoV, 针对2019-nCoV必须重新设计抗体和疫苗。*2019-nCoV S与SARS-CoV S的结构对比总而言之,此文章利用冷冻电镜技术对新型冠状病毒的S蛋白进行了近原子分辨率的解析,为进一步精确地疫苗设计以及抗病毒药物的研发提供了重要的结构生物学基础,为发展新型冠状病毒的医疗对策提供了技术支持。后续如有相关疫苗或抗病毒药物的研究进展,冷晓镜会持续跟进报道。冷晓镜小课堂Q刺突糖蛋白(简称S蛋白)为何这么重要?冠状病毒的刺突糖蛋白(Spike glycoprotein, S glycoprotein)是Ⅰ型跨膜糖蛋白,也是病毒最大的结构蛋白,其包含了病毒的主要抗原决定簇,能够刺激机体产生中和抗体和介导免疫反应,通常包括由球状的受体结合亚基S1和棒状的融合亚基S2两部分。同时,S蛋白的S1亚基决定了受体细胞的表面受体的特异性,而S2亚基又决定了病毒进入细胞的融合过程的特性,可以说S蛋白的结构对于设计疫苗来产生抗体或者设计药物阻断病毒吸附与侵染具有重要作用。*美国疾病控制中心 (CDC) 创建的新冠病毒立体模型“ 作为冷冻电镜(cryo-EM)技术的开拓者,赛默飞世尔科技一直致力于该技术的研发和普及,在不断推出新产品的同时,还专门与客户合作开发了冷冻电镜免费在线学习工具https://em-learning.com,希望为广大生命科学工作者及相关行业提供更完备更易用的解决方案。目前,赛默飞世尔科技冷冻电镜产品家族包括旗舰级300 kV产品Krios G4,最新推出的200 kV产品Glacios,用于冷冻样品制备的Vitrobot和用于样品筛查的入门级产品Talos L120C G2,以及用于冷冻电子断层扫描(cryo-ET)细胞样品减薄的冷冻聚焦离子束Aquilos 2等。”
  • 陈素明课题组实现了电化学中间过程的时间分辨质谱解析
    近日,国际权威学术期刊Angew. Chem. Int. Ed(《德国应用化学》)在线发表了高等研究院陈素明教授课题组在结构导向的质谱分析方面最新研究成果。论文题为“Elucidation of Underlying Reactivities of Alternating Current Electrosynthesis by Time-resolved Mapping ofShort-lived Reactive Intermediates”。武汉大学为论文唯一署名单位,高等研究院万琼琼副研究员为论文的第一作者,陈素明教授、易红研究员为论文共同通讯作者。该工作通过构建具有时间分辨能力的Operando电化学-质谱分析装置,实现了电化学过程中活性中间体以及自由基异构体的结构和动力学解析,揭示了电化学反应的内在机制(图1)。图1.时间分辨的Operando电化学-质谱分析装置与电化学芳胺功能化反应质谱是对分子进行定性和定量的有力工具,但在实际的复杂研究体系中,常规的质谱分析方法很难实现深层次的结构解析和定量分析。其中,化学反应瞬态中间过程的分析就是一个巨大的挑战。电化学合成是合成化学的新兴领域,但是电化学反应过程的机理研究一直受限于短寿命活性中间体的捕获和结构分析鉴定。为了解决电化学中间过程分析的难题,本研究开发了一种具有超快时间响应的原位电化学-质谱分析装置,可以在电合成工况条件下时间分辨地解析电化学反应过程中的短寿命活性中间体。由于该装置可以最大程度地模拟直流电合成和交流电合成反应,因此通过全面解析电化学芳胺功能化反应过程中活性中间体的结构和动力学,揭示了交流电合成相对于直流电合成具有独特反应性的内在机制。包括:减少中间体的过度氧化/还原,促进氧化-还原电生活性中间体的有效反应,尤其是控制多步电合成反应过程中氮中心自由基的动力学来减少竞争反应。这些发现对于深入理解交流电合成反应的机理提供了关键的信息。此外,本研究还发展了一种解析反应过程中氮中心自由基异构体的新型分析策略。由于中性的氮中心自由基和胺自由基阳离子在质谱分析时都会呈现出相同质量的质子化离子峰,因此难以在质谱中进行区分。研究巧妙利用中性自由基能形成碱金属加合峰的特性,并通过时间分辨的电化学-质谱分析装置测定中性自由基和自由基阳离子的寿命差异,从而准确地分辨出了反应过程中的氮中心自由基异构体。该方法不仅揭示了电化学芳胺功能化过程中隐藏的自由基反应历程,而且提供一种氮自由基异构体解析的通用方法,从而可以深入理解氮中心自由基的反应动力学。据悉,该研究得到了国家自然科学基金、国家重点研发计划等项目经费的支持,雷爱文教授课题组为该工作提供了电化学实验装置支持。
  • 有机质谱谱图解析培训班即将开班,从速报名
    信立方质谱培训中心致力于质谱应用技术培训工作。为满足当前从事质谱应用技术人员的迫切需求,培训中心与仪器行业最大的门户网站仪器信息网合作,在考察全国各类质谱应用技术培训现状的基础上,借鉴、发扬培训成效显著的质谱应用技术培训班的成功经验,旨在提高相关从业人员应用技术水平,使质谱技术更好地服务于科研、生产及质控,监测等领域。自2009年,迄今已开设二十余期不同类型和层次的质谱培训班,受到广大学员的欢迎和好评。2013年培训中心将继续举办此系列质谱培训班,并不断增加和更新培训内容,详情请查看信立方质谱培训中心。报名地址:http://www.instrument.com.cn/training/training_info.asp?TRI_No=101009 有机质谱分析基于不同质量数的带电离子在电场或磁场中的不同运动行为的原理进行定性或定量分析,具有灵敏度高、样品用量少、分析速度快、可同时进行多组分分析等优点,近年来在我国发展很快,广泛应用于食品安全、环境保护、化学化工、制药、生命科学、材料科学等各个领域,成为一种非常重要的定性定量分析方法。质谱的定性分析是基于对质谱谱图的解析实现的,但由于有机化合物种类繁多,繁杂的裂解规律不容易记忆,又缺乏解析的思路和方法,很多质谱分析人员在拿到谱图后常感觉到无从下手。为适应广大分析技术工作者的需求,我们将与仪器信息网合作于2013年12月3日-6日在北京举办有机质谱谱图解析专题培训班,欢迎有志提高有机质谱谱图解析水平的分析人员来参加。 专家团队   &diams 王光辉 中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一,参与了国内多项质谱仪器的研发工作,有丰富的理论知识、实践经验和培训教学经验。代表著作:《有机质谱解析》   &diams 苏焕华 北京石油化工科学研究院高级工程师,70年代初开始有机质谱应用研究,参与了国内质谱仪器的研发工作,组织过多种质谱应用技术培训,有丰富的教学经验。代表著作:《色谱-质谱联用技术及应用》 课程大纲 一、谱图解析基础知识 二、离子的丰度 1、原子中电子的排布 2、奇电子离子与偶电子离子 3、氮规则 4、环加双键值 5、同位素峰 6、单分子反应 1、质荷比与离子丰度包含的结构信息 2、影响碎片离子丰度的基本因素 三、离子碎裂的基本机理 四、常见有机化合物的质谱图特征 1、断裂 2、环的开裂 3、重排反应 4、置换反应 5、消除反应 1、碳氢化合物 2、醇、酮、醛、酸、酯、醚 3、胺类 4、酰胺类 5、腈 五、由质谱图推测分子结构 六、NIST谱图库检索实用技术 1、基本方法及思路 2、实例练习 1、NIST谱图库简介 2、NIST谱图库主要功能 3、NIST谱图库检索实例 咨询及报名联系方法   电话:010-51654077-8113 13810253507 传真:010-82051730   Email:training@instrument.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制