当前位置: 仪器信息网 > 行业主题 > >

反相制备方法

仪器信息网反相制备方法专题为您整合反相制备方法相关的最新文章,在反相制备方法专题,您不仅可以免费浏览反相制备方法的资讯, 同时您还可以浏览反相制备方法的相关资料、解决方案,参与社区反相制备方法话题讨论。

反相制备方法相关的资讯

  • 清纯半导体“半导体功率器件及其制备方法”专利公布
    天眼查显示,清纯半导体(宁波)有限公司“半导体功率器件及其制备方法”专利公布,申请公布日为2024年6月28日,申请公布号为CN118263325A。背景技术功率半导体器件是电力电子装置中电能转换与电路控制的核心元器件,随着近年来新能源汽车、光伏、轨道交通、智能电网等产业的发展,市场对功率器件的需求迅速升温。第三代半导体SiC材料在禁带宽度、导热性能、临界击穿场强、电子饱和漂移速度上的优势明显,符合未来电力电子系统小型轻量化、高效一体化、安全可靠化的发展趋势。随着平面型SiC MOSFET技术的不断迭代,其元胞尺寸的缩减能力逐渐趋近极限,相较而言,沟槽型SiC MOSFET从结构上更小的元胞尺寸、更高的沟道密度等天然优势,注定是下一代SiC功率器件的发展趋势。对于沟槽型SiC MOSFET而言,反向阻断状态下,其底部栅氧的电场集中是制约其性能及可靠性的关键问题。发明内容本发明提供一种半导体功率器件及其制备方法,半导体功率器件包括:半导体衬底层;位于所述半导体衬底层一侧的漂移层;位于所述漂移层中的栅极结构;阱区,分别位于所述栅极结构两侧的漂移层中;在所述漂移层中围绕所述栅极结构的底面和部分侧壁的保护单元;所述保护单元包括:第一掺杂保护层,位于所述栅极结构部分底部的漂移层中;第二掺杂保护层,位于所述栅极结构的部分侧壁和部分底部的漂移层中,所述第一掺杂保护层的导电类型和所述阱区的导电类型相同且和所述第二掺杂保护层的导电类型相反,所述第二掺杂保护层的掺杂浓度大于所述漂移层的掺杂浓度,所述第二掺杂保护层和所述第一掺杂保护层构成PN结。提高了对栅介质层的保护。
  • 沃特世全新网络版Oasis方法开发工具,简化样品制备开发流程
    Oasis工具可以针对客户样品推荐订制的优化方案 沃特世公司(纽约证券交易所代码:WAT)今日发布了全新网络版Oasis® 方法开发工具,该工具专为帮助客户缩短样品制备方法开发的时间而设计,是沃特世Simple Prep&trade 活动的一部分。 Oasis方法开发工具可以根据客户样品需求推荐优化的固相萃取(SPE)方案,为液相色谱和质谱应用开发出具有高回收率的可靠方法。 &ldquo Oasis是目前使用最为广泛的SPE样品制备产品,可用于包括生物分析、临床、食品和环境在内的多个领域,&rdquo 沃特世消耗品部副总裁Michael Yelle说道,&ldquo 全新Oasis方法开发工具是我们与Oasis客户合作开发的产品,它大大简化了SPE方法的开发流程。此工具可以帮助科学家们更好地了解SPE产品背后的化学原理,使得他们能够将样品制备方法开发时间缩短至数分钟,与传统以小时和天计的开发时间形成鲜明对比。 全新的Oasis工具同时具备基础和高级功能。微量样品方法开发工具(Micro Sample Volume Tool)可以为25至300 µ L体积的样品优化选择合适的吸附剂和方案,省去了蒸发和复溶步骤,可使目标化合物浓缩最多达15倍。而最大选择性方法开发工具(Maximum Selectivity Tool)则能为复杂基质中的样品完全纯化推荐离子交换和反相方法。通用方法开发工具(General Purpose Tool)是对大批量化合物和分子进行筛查的理想选择。 Oasis在线工具地址:www.waters.com/MDtools 关于沃特世公司(www.waters.com) 50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2012年沃特世公司拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters和Oasis是沃特世公司注册商标。Waters Simple Prep是沃特世公司商标。
  • 5根Ascentis色谱柱,帮你搞定极性化合物从保留到样品制备
    我是一个从事液相色谱分析的实验猿,近期在我升职加薪的路上遇到了一些困难,使我夜不能寐… 一直以来,我对色谱柱的要求简简单单:保留目标化合物 满足分离度宽pH耐受 完美峰形高柱效 长寿命 但是近期我发现:放眼望去,实验室都是C18,换了一根又一根的C18,分不开还是分不开;遇到极性化合物,C18上难保留;碱性化合物,峰拖尾;色谱柱过载峰平头… … 在宝贵的人生旅程中,为了这些问题夜不能寐也太得不偿失了(保护好我方发量)。其实解决极性化合物从保留和样品制备并不难!我们可以针对化合物种类和所面对的不同分离目标和挑战,选择合适固定相的Ascentis系列色谱柱即可!瞧,这里就有5种供您选择:固定相化学美国药典USP代号主要竞争特征方式主要应用Ascentis C18L1高表面积惰性表面反相小分子和多肽Ascentis RP-Amide(反相-酰胺)L60化学相稳定,低固定相流失反相在常规反相方法开发中是C18柱的优选替代柱,用于极性分子,特别是酚类和其它氢键给予体,酸类,碱类(不带电荷),苯胺Ascentis Phenyl(苯基)L11化学相稳定,低固定相流失反相,HILIC环状化合物和强偶极子,π-酸类,π-电子接受体,芳杂环,硝基芳烃类Ascentis Silica(硅胶)L3高的装载容量,可控和一致的表面活性正相(非水),HILIC非极性化合物(在正相方式下)高极性化合物(在HILIC方式下),核苷类,氨基酸类Ascentis C8L7高表面积,惰性表面反相小分子和多肽Ascentis系列的HPLC色谱柱一般特征:1、高纯,B型硅胶,具有高惰性,重复性和稳定性 2、现代键合反应过程优化了键合相的覆盖率和稳定性,同时也减少了键合相的流失和降低了不需要的二级相互作用 3、多种键合相化学柱和硅胶柱提供了较宽的选择性 4、具有增强极性化合物保留的键合相化学 5、适用于LC-MS等当今所用的高灵敏仪器和方法 6、可选择从分析柱到制备柱的不同柱类型 7、高表面积硅胶拥有高的柱载量,有利于制备色谱Ascentis提供从分析柱到制备柱的放大分离硅胶基质的高比表面积可以提高色谱柱的载样量,用于样品的纯化制备,并且硅胶和键合相在不同粒径上完全一致。这样就使得分析柱上开发的方法可以放大到制备柱上进行分离;同样,制备柱上开发的方法也可以转移到分析柱上进行快速分析。 Ascentis系列色谱柱兼容通用型检测器(比如质谱检测器或CAD检测器)在使用通用型检测器时,固定相和键合相流失都会带来很大的背景干扰,引起检测灵敏度的下降,也会增加仪器维护成本。Ascentis系列色谱柱通过采用硅胶处理工艺和现代键合方法,降低了固定相的流失,能够很好得兼容通用型检测器。 不知道这一期Ascentis系列色谱柱有没有打动您呢?下一期我们将为您分别介绍每一个系列的应用和选择性,尽请期待哦。 如果您对Ascentis系列色谱柱有需求,扫描下方二维码简单登记,我们将尽快与您联系。感谢您对默克分析化学的支持!
  • 培安新伙伴——ISCO制备色谱专家
    ISCO 多通道平行和连续快速制备色谱的发明者1950年,创始人Dr. Allington认识到制备液色谱法需要自动收集器,开发了通用于各类色谱的馏分收集器,风靡全球实验室。从此, ISCO不断创新获得多项专利技术,专注于特别是实验室色谱量化制备的应用。早期创新包括开发第一个独立吸光单元的吸光度检测器(AU),峰检测信号输出控制专利用于馏分收集器,以及专利的高效液相色谱(HPLC)的高压梯度泵,从60-70年代, ISCO推出了适用于低压和高压液相色谱的各种泵和检测器, 20世纪80年代,推出了半自动制备型高效液相色谱系统,包括大容量自动进样器, 90年代末, ISCO发明了自动闪式色谱系统,为小分子化合物的研究发展做出了贡献。ISCO在丰富历史基础上,发明了各种先驱的制备色谱系统,我们聆听用户的心声,保持持续创新的传统,并继续领先未来。 ISCO 制备色谱市场的领导者ISCO一直是闪式色谱设备的市场领导者,销售了成千上万套系统。独家推出了闪式梯度色谱系统,并首先推出了包括平行闪式和顺序闪式系统,全自动大容量系统,和系列检测技术,包括蒸发光散射检测(ELSD)和质谱检测器,覆盖大范围尺寸和分离填料的系列RediSep闪式色谱柱,备受市场尊崇。 ISCO 经过ISO 9001认证的色谱专家ISCO拥有专业团队, ISO 9001垂直一体化生产管理体系,集研究、工程、销售、服务和制造包括塑料成型、机械车间、自动化色谱柱填装和组装操作于一体,是积极进取、关注质量,追求理想的公司。 ISCO 设计理想和宗旨:绿色、环保、节省实验室时间绿色化学和工艺重要原则&ldquo 最大化效率、满足需求、减少过剩", ISCO设计理念是帮助用户实现这一原则。优化梯度方法最大限度地提高效率,允许在较大的样品装载下进行纯化,最大限度地减少废物输出和溶剂消耗,节省时间。优化梯度消除了超过80%的默认梯度过程的需要,目标化合物没有洗脱到色谱柱或已经被洗脱的情况。减少色谱浪费是创新产品提高生产力的方式,共同改善地球上的生活质量。 ISCO 相关产品快速中低压制备色谱仪系列 CombiFlash® NextGEN系列快色液相制备色谱仪可从制备纯化过程中进行自动识别色谱尺寸和类型,提高制备实验效率,无论是在提纯合成化合物、天然产品、肽或聚合物。直观的PeakTrak软件可在数秒内开始分离。根据要纯化的样品的类型和数量选择正相或反相柱,允许RFID标签载入运行参数,确认检测器设置(UV, Vis, ELS和MS),按下开始,载入样品,即可开始自动工作,无需人员值守。实验进行时随时更改参数?当分离实验开始时,依然可以修改参数,包括溶剂百分比、波长、流速和运行时间等,不需要进行重复分离。流量300ml和压力300psi允许运行750 g或高达1-2kg的色谱柱以较高的压力极限纯化低溶解度的样品12"或15"智能触摸屏更宽动态范围的检测器改进的基线校正支持使用吸收性溶剂通过简化的用户界面更快地处理节省空间:顶部托盘可容纳四个4L的瓶子改进的梯度曲线可减少多达50%的溶剂 EZ Prep 中压/高压制备色谱一体机 EZ Prep制备系统是一种双重功能的纯化设备,提供了 FLASH 闪式和 Prep HPLC 两种色谱模式无缝切换,灵活和性能的不妥协,应对多样化类型样品分离。闪式色谱,中低压预分离后,对于要进一步提高纯度,从高压分离得到更高分离率和纯度化合物,是非常理想的选择,满足高纯度要求。高压运行HPLC大范围高效液相色谱柱,高压高流速减少运行时间。中压制备液相FLASH和HPLC高压制备液相二合一紧凑空间设计, 自动从正相到反相溶剂的智能切换FLASH中压预纯化4mg-100gHPLC高压精纯化mg-g级,纯度达99%HPLC色谱柱最大直径50mm,填料粒径在5um以下二元梯度流速达200 mL/min,最大耐压: 3500 psiUV, UV/VIS, ELSD和MS等多种检测器可选 ACCQ Prep HP150 高压制备型HPLC色谱系统 HP150直观、易于使用、简单纯化设计理念,用户界面友好,消除了普通高效液相色谱系统中不必要的和复杂的参数设置。提高高效液相制备色谱性能和准确性,提高纯化样品回收率。内置馏分收集器和集成触摸屏,紧凑设计节省空间,HP150系统技术特点:流速1-150 mL/min开发分析方法和制备方法操作压力可达6000 psiUV或UV/VIS基础上选择ELSD和MS检测器一键生成聚焦优化梯度纯化时间最小化,样本回收率最大化 TORRENT 大型纯化制备色谱仪 无人值守大规模自动分离纯化,自诊断系统确保足够溶剂进行纯化和废液溢出;适合各种溶剂器皿和废液排放,专利智能液位技术监测溶剂供应和废液。1 L/min流速、100 psi压力、300g纯化、多功能定制系统,满足各种样品、溶剂、馏分和废物处理设置。大流量泵在1L/min流速即使梯度很小的情况下,可提供准确可靠的、重复性高的二元梯度。性能:1000ml/min 的流速,可快速的分离高达600g的样品。安全:安全性超过了法规的要求,标准配备了流动相系统的压力传感器和仪器周边环境溶剂蒸汽传感器,确保仪器在正常情况下运行,一旦出现异常及时给出报警并停机。多功能性:用户可使用或修改默认的参数,开发自定义的分离程序,同时所有实验参数均可在运行过程中加以更改,可实时控制实验过程(包括点击并拖动修改梯度)。操作简便:使用Peaklrak软件,可以非常直观地在屏幕中了解参数。应用范围:可用于工艺放大、化学研发、生产制造等生产实验。广泛应用于制药、药物化学、天然物质、农用化学、化妆品、香精香料等行业。
  • 迪马QuE创新应用亮相第三届全国样品制备学术报告会
    2017年8月24日,由中国仪器仪表学会分析仪器分会样品制备专业委员会主办,昆明理工大学分析测试研究中心协办的第三届全国样品制备学术报告会在昆明文汇酒店隆重召开。 中国科学院大连化学物理研究所研究员关亚风、军事医学卫生学环境医学研究所研究员高志贤、东北大学理学院化学系分析科学研究中心教授王建华、中国农业科学院农业质量标准与检测技术研究所研究员王静、武汉大学化学与分子科学学院教授冯钰锜、清华大学教授张新荣等200余专家、学者出席此次盛会。会议现场 大会报告:《QuEChERS样品前处理技术在食品检测中的创新应用》 迪马科技作为全球领先的色谱消耗品制造商、供应商出席了此次会议,并在会议上作了《QuEChERS样品前处理技术在食品检测中的创新应用》的报告,重点讲解了迪马科技使用QuEChERS方法创新性应用于磺胺类、沙星类、氯霉素、孔雀石绿等多种类兽药残留检测。对比国标方法,QuEChERS方法具有前处理简单、方便、快速;大大降低检测成本;降低基质效应;净化效果理想,回收率结果稳定可靠;方法检出限符合或优于国标要求等优点。此应用可供广大分析工作者普及使用。市场部经理谢巧金作大会报告 现场展示:新品和色谱消耗品 此次会议,迪马科技特别展示了新产品:Inspire苯基系列液相色谱柱,产品包括Inspire PFP、Inspire DP、Inspire Phenyl和Inspire Phenyl-hexyl四个键合相。该系列色谱柱利用π-π键相互作用,具有独特的选择性,适用于反相色谱模式下芳环类和具有不饱和键化合物、极性化合物和异构体的分离,因而能够拓宽反相色谱的应用范围,方法开发更加简单易行。新产品:Inspire苯基系列液相色谱柱 除新品Inspire苯基系列液相色谱柱外,会议上迪马科技还展示了常用的色谱耗材:各类HPLC色谱柱、SPE小柱、QuEChERS产品、样品瓶、针头式过滤器、标准品等,吸引了众多专家学者驻足、咨询。迪马产品咨询台 8月25日,第三届全国样品制备学术报告会完美落幕,来自全国各地样品前处理的专家和学者齐聚一堂,以样品制备为主题,分享了样品制备的新型材料应用进展、新的样品制备技术、创新的检测技术等,新方法层出不穷。迪马科技也通过参加此次会议分享了迪马科技在样品前处理方面的最新技术进展,相关产品受到了广大用户的一致好评和认可。与会者合影
  • 铁的金相样品制备方法之避免腐蚀坑的出现
    实验室的制备方法有很多种,不同材料制备的方法也迥然不同。今天可脉小编想要分享给大家的是,实验室铁的制备方法以及如何防止在制备过程中腐蚀坑的出现,详情如下:材料:电工纯铁要求:抛光后镜面,表面无划痕;500X观察方法编号:铁-防止腐蚀坑的出现制备方法切割:CRE-10-1535砂轮切割片镶嵌:热压镶嵌使用EpoPowder G环氧树脂;冷镶嵌使用AcryQuick丙烯酸树脂和固化剂磨抛:手动磨抛机Qpol-M1;自动磨抛机METPOL-A注意事项1. 铁易被腐蚀,用水基的抛光液和冷却液会出现腐蚀坑,改用油基的抛光液和冷却润滑液。2. 如果样品切割的表面质量好,则只用一道金相砂纸。3. 结束后,立即用无水酒精冲洗、吹干。4. 每一步结束时都要好好清洗试样、手、夹具、抛光盘、抛光机底盘,防止颗粒沾染。 了解其他样品制备方法的更多详细信息,请联系可脉检测的应用工程师,共同探讨解决方案,可脉检测南京实验室提供技术支持!
  • 芯联集成“键合结构及其制备方法”专利公布
    天眼查显示,芯联集成电路制造股份有限公司“键合结构及其制备方法”专利公布,申请公布日为2024年7月23日,申请公布号为CN118380407A。背景技术晶圆级键合是半导体制造技术中重要的一个工艺步骤,共晶晶圆键合技术是使两表面间的键合能(Bonding Energy)达到一定强度和密封性,而使这两晶圆片结为一体。晶圆级键合主要的作用是机械保护和一定的气体氛围或真空度要求下的密封,为了保证机械强度和密封性,一般密封环占用了大量的芯片面积,尤其是考虑到键合的对准偏差,密封环还要增加面积,图1示意出现有技术中常见的一种密封环的结构,该密封环包括第一键合层100、第二键合层200和位于两侧的阻挡件300,考虑到键合的对准偏差,第二键合层200比第一键合层100单侧宽10um,密封环单侧宽度达到120μm,如图2中所示,密封环两侧宽度之和为240μm,而芯片宽度为1mm,由此两侧的密封环占据了芯片约25%的尺寸,密封环会导致单个晶圆上的芯片数目减小,不利于降低成本。发明内容本发明提供一种键合结构及其制备方法,所述键合结构包括:第一晶圆和第二晶圆;所述第一晶圆具有环形凹槽,所述第二晶圆具有环形凸起部,所述环形凹槽具有V型纵截面,所述环形凸起部具有三角状纵截面,所述三角状纵截面的顶角角度与所述V型纵截面的夹角相等;所述环形凹槽的表面覆盖有第一键合层,所述环形凸起部的表面覆盖有第二键合层,所述环形凸起部部分嵌入所述环形凹槽内,使得所述第一键合层和所述第二键合层彼此相键合。本发明所形成的键合结构,键合层不必为了减小对准偏差而增加尺寸,从而密封环可采用更小尺寸的设计。
  • 制备液相色谱仪器及其应用研究和有关问题的探讨
    李昌厚 (中国科学院上海营养与健康研究所,上海 200233)摘要: 本文根据仪器学理论、分析化学理论和作者使用液相色谱、制备色谱仪器的实践,简单综述了制备液相色谱仪器的发展趋势、基本原理、特点;制备色谱仪器结构组成、制备色谱的分类、主要应用等;同时,对制备色谱仪器的研发者、生产者、使用者工作中应该注意和重视的有关问题做了讨论,并对打破崇洋媚外的思想、弘扬我国民族分析仪器等问题进行了探讨。本文可供制备液相色谱仪器的研发者、制造者、使用者参考。一、前言制备色谱是科研、生产工作中,特别在制药、生物、环保等行业,可以说是必不可少的仪器之一。近几年来,由于国家对分析仪器的重视,广大科技工作者在制备色谱仪器和应用方面,做了很大的投入、付出了很多艰辛努力,取得了令人振奋的进步和丰硕成果。本人长期从事光谱、色谱仪器及其应用研究,通过实践,深深认识到制备色谱非常重要;作者通过在色谱仪器,特别是在制备色谱的研发、使用和维修方面的实践工作取得了一些经验、教训,愿与有关的科技工作者分享。本文主要对制备色谱仪器及其有关问题做了一些讨论,对制备液相色谱仪器的研发者、生产者、使用者、维修者和有关的管理人员都有参考作用。二、国产制备色谱仪器发展概况自从20世纪60年代HPLC问世以来,国内外很多科技工作者一直在摸索如何得到HPLC的分离产物,经过长期探索,国外的有关科技工作者首先推出了在生命科学领域应用的制备色谱仪器,例如:Biotage公司推出的Isolera制备色谱等等。我国的广大科技工作者也在努力攻关,研发制备色谱仪器,并且取得了可喜的成绩。例如:上海科哲公司2021年推出了系列制备色谱系统。据作者参观了解的有关信息,上海科哲公司的制备色谱目前已经有:实验室型半制备/制备液相色谱系统、中试放大型制备液相色谱系统等18种产品。每一类产品又包含多种不同的型号,款款都有针对性,都是根据用户提出的实际需求研发的,实用性非常强。有的专为高校打造、有的专为药企打造、有的专为CRO/药企打造、有的专为科研院所打造,大大方便了各类用户对仪器的选择。其中全自动化的进样与馏分收集器,无人化操作是仪器全自动的核心,也是最重要的创新集结点。既符合集成创新的特点,又符合二次创新的特点。其中:高压系列制备色谱,已经有从100型制备液相色谱系统发展到8000型高压制备色谱系统,有10种产品可复盖全行业的用户,可供各类用户选择;中低压系列制备色谱,从1000型快速制备纯化系统发展到5000型快速制备纯化系统,可供各类用户选择;DAC中试系列制备系列,从50型制备色谱系统发展到150型制备色谱系统,可供用户任意选择。又如:大连依利特公司推出的P230A/P分析-半制备一体化液相色谱系统,在保证其良好准确性、重复性及宽泛流量范围等优点的同时,方便实用,实现分析与半制备系统之间的快捷切换,一机两用,极大降低用户仪器的采购成本。此外,大连依利特还推出了P3500高压恒流泵,这是大连依利特分析仪器有限公司在P230p高压恒流泵基础上,设计开发的具有自主知识产权的高压恒流泵。可广泛应用于医药、生化、环保、质量控制等领域高效液相色谱的分析及制备,也适合在一些特殊领域作为高精度进料泵使用;小凸轮驱动短行程柱塞的双柱塞并联式往复恒流泵,取消了传统液相色谱仪缓冲器,降低了系统体积。上海伍丰公司推出的LC-100P系列制备液相色谱,可以满足常规实验室纯化制备,并可根据使用需要,搭配紫外检测器组成等度系统,高压二元梯度系统,实现实验室制备提取,广泛用于制药、化工、食品、生化、环保等领域。上海通微公司推出了半制备高效液相色谱分析系统EasySepTM-1050 高压输液泵。该产品采用浮动式柱塞安装方式,确保了柱塞杆与密封圈的同心,从而使柱塞杆与密封圈的寿命大幅延长。小凸轮驱动短行程柱塞杆设计,极大降低输液脉动。微处理器控制微步驱动电路,使得步进电机运行平稳、噪声低;采用紫外/可见光检测器,具有精密定位的光路结构,确保仪器的波长准确度和稳定性;全新设计的数字信号直接输出模式,避免色谱信号因多次转换造成的信号畸变和干扰,降低仪器的基线噪音和漂移。仪器更采用全程数字滤波,大大提高了信噪比和抗干扰能力,具备出色的检测灵敏度和稳定性。江苏汉邦(Han bon)公司推出的NS4000系列制备色谱,是为小试、中试放大而研发的制备色谱产品,适合不同系统的特殊使用要求。汉邦推出的Han bon CS-Prep工业制备色谱系统,具有高效、快速、智能、防爆等特点,在生物、医药、食品等领域有广阔的应用前景。总体而言,我国目前已有多个公司都在研发、生产各种不同类型的制备或半制备液相色谱仪器,可以说,我国制备色谱仪器发展形势大好。但是因为篇幅所限,本文不能一一提到,希望有关的研发者、生产者、使用者们谅解。三、 制备色谱的原理和特点高效制备液相技术是利用混合物中各组分物理化学性质的差异,使它们以不同程度分布在两个不相溶的相中,且各组分可在两相的相对运动过程中,在两相中发生多次分布,从而达到分离、得到被检测物质产物的目的。制备液相色谱具有以下特点:1)采用色谱柱,其填料多为细颗粒多孔材料,所以分离效率高;2)应用范围广泛,对极性和非极性、离子型和非离子型、小分子和大分子、热稳定性和热不稳定性的化合物均具有较好的分离效果;3)根据所分离化合物的理化性质可配备不同类型的检测器,如紫外检测器(UVD)、二极管阵列检测器( DAD )、荧光检测器( FD )、蒸发光散射检测器( ELSD)等,实现稳定可靠的在线检测;4)可连续自动化操作。 四、 制备色谱仪器的结构组成制备型(Prep)色谱或纯化色谱是利用色谱方法,分离出一定量达到足够纯度的化合物,用于后续实验或处理的色谱方法。用户首先要确定目标化合物,然后开发色谱方法,将目标化合物从原料、副反应或其它杂质中成功分离出来。其总体目标是满足日益增长的高通量和高效率需求,同时运用各种纯化技术达到相应的规模、纯度和重现性的要求。一般制备液相色谱系统的原理示意图如下:上图中:溶剂泵的流量大小和流量稳定性、色谱柱的直径和填料、检测器的灵敏度和功能、数据处理工作站的性能等等,都是非常值得重视的关键部件。研发者、使用者都必须高度重视这四个方面。因为篇幅所限,本文不能展开讨论。五、制备色谱的分类1、根据系统的压力分类制备色谱可分为中压制备、低压制备和高压制备三种,其主要区别是:1)柱子粒径不同---高压制备常用10μm粒径以下的填料;中、低压制备常用20μm粒径以上的填料,一般为20-60μm。2)分离难度不同---中压分离难度较低,样品量大;高压分离难度较高,样品量相对较小。3)溶剂级别不同---中压溶剂要求比较低,常用于粗分、富集,工业级或分析级试剂;高压制备通常是色谱级。4)应用场景不同---复杂样品通常先中压粗分,高压二次制备2、根据制备色谱柱分类根据固定相和流动相的极性,制备色谱可分为反相色谱与正相色谱1) 反相色谱流动相极性大于固定相极性,适用于能溶于水、有机混合物的中性或非离子化合物的分离。特点:保留时间重现性好、固定性耐用、可用甲醇、乙腈、THF作为常用溶剂,使用成本低廉。2) 正相色谱流动相极性小于固定相极性,适用于不溶于水、有机混合物的亲脂样品、异构体分离。特点:保留时间重现性稍差;石油醚/乙酸乙酯、二氯甲烷/甲醇是常用溶剂。3、根据流路分类1)通常采用泵前低压混合,梯度比例阀控制分离梯度。下面是一般低压、中压制备色谱流路图: 上图中:梯度比例阀、泵、色谱柱、检测器、馏分收集器都是非常重要的部件,所有的制备色谱研发者、生产者、使用者都应该特别重视这些部件。2)制备色谱的高压制备流路高压制备流路通常采用泵后高压混合,混合的效果更好。下面是高压制备色谱流路图: 上图中:泵、混合器、色谱柱、检测器、馏分收集器、色谱工作站都是非常重要的部件,所有的制备色谱研发者、生产者、使用者都应该特别重视这些部件。六、 制备色谱仪器的应用1、制备色谱在天然产物和中药中的应用中草药是我国的国药、,是我国新药研发的宝贵资源,为了从中草药中分离出更多的有效成分,以满足化合物药效结构的高通量筛选及药理作用研究的需要,需借助于具有快速、高效的分离能力的技术。例如:糖类化合物纯化生物、黄酮类化合物纯化、生物碱类化合物纯化、生物萜类化合物纯化、生物甾体化合物纯化、其它类型天然产物纯化等等。高效制备液相色谱以其良好的分离度、灵敏度和较大的样品通量使其成为现阶段天然产物、中草药研究中不可或缺的重要手段,是得到被研究产物的重要仪器之一。下图是上海科哲的PuriMaster-3000A制备色谱仪器,用于川芎药材中7种活性成份的制备结果,效果非常好。 上图中:1.阿魏酸,2. 洋川芎内酯I,3. 洋川芎内酯H,4. 阿魏酸松柏酯,5. 洋川芎内酯A,6. Z-藁本内酯,7. 欧当归内酯A2、制备色谱在蛋白纯化中的应用 蛋白质和肽类药物活性强,生物功能明确,特异性高,有利于临床应用,已成为医药产业中的一大类重要产品。但这些产品无论是来自于生物体内还是由化学合成,往往都带有复杂的混合成分,而目的蛋白或肽类的丰度又低,给分离纯化带来困难,需要多种方法联合使用以获得纯度满意的产品。在此过程中,反相制备通常在分离的最后阶段被用作获得高纯度产品的关键方法。色谱柱使用比较普遍的是烷基反相键合柱,例如 C18、C8 及 C4 等,具体选择可以由蛋白质相对分子质量或疏水性而定。流动相大多为甲醇或乙腈等有机相与水的混合体系,通常还添加三氟醋酸,以增加样品的溶解度,提高分离度。下图是上海科哲公司的制备液相色谱,在多肽纯化实验室的应用情况:由于很多蛋白质和多肽类药物的活性强,特异性高,所以反相制备色谱,通常在分离的最后阶段,被用作获得高纯度产品的关键方法。科哲的PuriMaster-3000A制备色谱仪器,由于功能齐全,可靠性好,已经广泛被用户用来作为蛋白质、多肽等的分离、纯化仪器。 3、制备色谱在生命科学中的应用液相色谱作为一种十分重要的分离分析技术,自60年代末期至70年代初崛起以来,一直受到生命科学界广大研究人员的高度重视,制备液相色谱仪用于一系列生命科学前沿领域中的重大课题,并在其中发挥了特殊作用,它在包括生物大分子在内的生物活性物质的分离分析,以及制备纯化方面得到了越来越广泛的应用,特别是它的制备纯化能力是其它方法无法取代的。例如:多糖化合物纯化,有些糖类化合物没有紫外吸收,一般用示差折光检测器检测,但是示差折光检测器容易受到温度的影响,所以检测效果不理想。维生素的纯化方面,很多使用者采用C18、C8柱的反相制备液相色谱分离,分析脂溶性维生素等效果比较好。目前制备色谱的应用非常广泛,因篇幅所限,本文不能展开,请读者自己查阅有关文献。并请大家谅解。七、有关问题的探讨从仪器学理论、分析化学理论和作者的长期实践来看,作者认为制备色谱的研发者、使用者必须认识并重视以下5个问题:1、要重视对制备色谱的泵、柱、检测器三者关系的认识:目前国内外的制备色谱研发者、制造者、使用者在这方面普遍存在一些问题。目前很多研发、使用制备色谱的科技工作者,没有搞清楚或没有完全搞清楚制备色谱中的泵、柱、检测器三者的关系。一旦仪器制造者或使用者在制备色谱仪器出现某些问题时,不是从仪器学理论上去分析、找问题,而是闭着眼睛盲目的从泵、柱、检测器,多方面去寻找问题。往往找了很久,一事无成。所以,虽说目前国内已经有20多家公司在生产HPLC或者同时在生产制备色谱仪器,但是,都是只做泵和检测器,而做色谱柱或填料的企业都不做泵和检测器。本人认为这是阻碍我国HPLC和制备色谱仪器及其应用发展的关键问题之一。基于本人长期的研发和使用色谱仪器的实践经验,感到研发、使用制备色谱时,应该特别注重把泵、柱、检测器三者联合起来看,要了解三者的关系、要知道各个部件的作用、相互影响和重要性!不能顾此失彼!希望制备色谱的生产企业,要重视泵、柱、检测器三者的关系,这样才能研发生产出高质量的整机制备液相色谱系统!因为篇幅所限,不能展开讲了。以后有机会作者将专文再讨论这些问题。2、应该对制备色谱柱及柱外效应的有关问题引起高度重视:1)色谱峰拖尾:与柱质量、流动相的流速、试样等有关,发现拖尾一定要从这些方面查找原因。 2)制备色谱柱很贵,作者的单位曾经购买过一根进口C18制备色谱柱,花费8万美金!所以,如何延长制备色谱柱寿命、保养制备色谱柱很重要。长期不用时应该用甲醇浸泡着,严格控制洗柱时间或洗柱的溶剂量。一般经常使用的柱,下班时应该洗 45分钟或用20倍床体积的溶剂冲洗。3)必须注意对“柱外效应”的控制:所谓“柱外效应”,,就是指除柱系统外,管路、连接件、卡套、进样器和流动池的死体积等引起的色谱峰增宽效应。 3、应该特别注重对色谱柱质量的判断:1)色谱柱的柱效:塔板数高者好,特别要注意影响柱效的因素,塔板数降到一定程度该柱就报废了。 2)重复性:一根柱子反复使用时,最好RSD能够保持小于0.1%。 3)耐用性(寿命):因为柱效很容易降低,所以需要重视对柱的保护。 4)色谱柱使用后一定要进行清洗 ,以免造成腐蚀、阻塞、降低塔板数。一般应该用20倍床体积冲洗;隔几天再用的制备色谱仪器,最好用20%甲醇:80%水冲洗30分钟左右后,再用纯甲醇冲洗20分钟后保存。 4、应该特别重视流动相问题 1)PH值特别重要:一般C18柱PH小于3时,容易损坏色谱柱,但是抗酸性的柱可以使用小的PH值。 2)注意选择试剂的截止波长:如乙腈截止波长215nm、丙酮截止波长330nm、正丁烷210nm等等。 3)流速:流速要适当,否则峰形难看,浪费溶剂。制备色谱应该根据制备需求的具体情况选择流速。5、应该注重溶剂前处理 调试时最好使用HPLC级的优质溶剂,溶剂使用前必须过滤和脱气,要注意以下几点: 1)过滤目的: 溶剂进泵前和样品注射前应该过滤除去溶剂中的微小颗粒、微生物,保证泵和色谱柱不会堵塞或损坏,保证分析数据可靠。 2)对过滤器的要求和最佳孔径选择方法: 对过滤器总的要求是速度快、溶出度小、死体积小、精确的孔径、体积适当、化学兼容性好等。3)脱气:主要目的是:除去流动相中溶解或因混合而产生的气泡。制备色谱流动相脱气使用较多的是离线超声波振荡脱气、在线惰性气体鼓泡吹扫脱气和在线真空脱气。流动相的气泡进入液相泵会引起压力的上下波动,造成仪器稳定性差,危害性很大。可以打开排空阀,大流速冲洗。 八、必须打破崇洋媚外的思想、弘扬民族精神、大力发展中国的民族分析仪器 我国的常规制备色谱仪器基本上可以与国外同类同档次的仪器抗衡,即:有些指标与国外仪器相当、有些指标优于国外仪器、少数非关键的指标不及国外仪器。有人说:“很多用户崇洋媚外,不愿意使用国产仪器”;有人说:“他们是质检部门,工作很重要,国产仪器数据不准确!必须用进口仪器”;还有人说:“他们是进出口产品检验工作,面对外国人,我们要求得到外国人的认可”… 作者认为这些说法完全是一种借口,事实并非如此。作者作为一个中国科学院的用户、作为一个年长的科技工作者,可以负责任的、坦率的、骄傲的告诉大家,我是中国科学院第一个使用国产光谱仪器(紫外可见分光光度计TU-901)、色谱仪器(FD-高效液相色谱)的科技工作者。我还可以告诉大家,用户不是一定要用进口的仪器的。例如:作者曾经研发了一台HPLC,采用了自制的高压泵、自制的检测器和国产的色谱柱。整个HPLC在美学性方面远远不及国外的HPLC,但是,我们用它在多肽、核酸等有机化学领域的科研工作中,解决了很多实际问题,发表了不少论文,效果很好。当时,中国科学院化学所和北京大学各有一位科技工作者在我们单位搞协作,他们把这个情况告诉了自己单位的有关领导和有关科技工作者。结果,这两个单位的老科学家、老教授都主动提出要求购买我们研发的HPLC。我们问他为什么不买进口HPLC?为什么要买我们这样难看的仪器?他们异口同声的回答说:“你们的HPLC不像国外某些厂商的HPLC,他们的仪器价格昂贵、性价比低、并且低浓度的样品做不出来,有时很难重复文献值;而你们的HPLC适用性强、技术指标实在、分析检测数据准确可靠,在实际工作中能解决问题”。这是为什么呢?因为一般科研工作基本上都是从重复文献开始,而仪器学理论告诉我们,噪声是HPLC分析检测误差的主要来源之一,它限制对被分析检测样品的浓度。如果在分析测试工作中,HPLC的噪声大了,样品浓度稍微稀一点,就因为噪声将样品的信号淹没了,就无法检测出结果。很多进口HPLC的噪声大,低浓度样品重复不出文献值、有时分析检测的数据也很不准确。所以,这个例子充分说明:广大用户需要的不一定是进口仪器,而是要求稳定可靠的仪器、是能得到准确可靠数据的仪器、是性价比高的仪器。至于什么“质检工作要求高”、“求外国人认可”,这些都是站不住脚的歪理。例如:我国的三聚氰胺事件中,为了建立国家检测标准,经过10多家实验室确证,并经专家组审查通过,决定采用HPLC法作为国家三聚氰胺标准检测仪器,并确定指标为:检测范围为0.3mg/Kg-100mg/Kg;检测限0.05mg/Kg。当时国家急于建立标准,决定采用招标方式选择建标中使用的仪器。大家找了北京普析通用与另外两家国外生产的HPLC仪器作为竞标对象。当时根本没有想到国产HPLC会中标,只是担心有人质疑建立国标不用国产仪器,是崇洋媚外的做法,所以选了普析通用的L6型HPLC。当时大家决定由国家标物中心拿出盲样,对三家仪器进行比对测试。比对测试的结果,普析通用和国外一家品牌产品的数据与标样数据非常接近,两家的比对测试数据基本一致,三家中排名前两名。最后,专家、领导共同讨论,从比对测试的数据可靠性、仪器的性价比、制订国标等多个因素全方位考虑,国产仪器L6中标。普析通用的L6型(现已升级到L600型)被选为《原料乳三聚氰胺快速测定--液相色谱法》国家标准起草时使用的唯一国产品牌的HPLC。随后,在国家建标过程中,采用普析通用的L6系列高效液相色谱仪,建立了奶粉/牛奶中三聚氰胺的HPLC-UV检测方法。奶中的三聚氰胺经1%三氯乙酸溶液提取,提取液加乙酸铅溶液沉淀蛋白,离心后上清液经混合型阳离子交换固相萃取柱(Cleanert PCX,60mg/3ml)净化,洗脱液吹干后定容,用L6型高效液相色谱仪进行测定,最低检测限为0.0416mg/L(优于安捷伦的HPLC检测结果),回收率为:95.87%-105.21%,在1-50ppm之间有良好的线性关系(R2=0.9996)。这个工作要求不高吗?这个比对工作外国人能不认可吗?这里能说明用户崇洋媚外吗?回答都是否。同时,这个例子说明国产HPLC不比进口的差,说明国产HPLC有些地方优于进口同类同档次的产品。从仪器学理论和使用者的实际要求、从仪器的性价比和售后服务等全方位来讲,进口液相制备色谱和国产制备色谱的质量都相差无几,例如:公司某进口品牌上海科哲仪器型号某型号FlashDoctor泵1-200mL/min1-200mL/min进样器注射器注入高压六通阀系统压力200psi200psi检测波长UV:200-400 nm(标配) UV:200-800 nm(选配)UV:190-850 nm(标配)软件操作英文界面中文界面,参数设置简单上表摘自《仪器信息网》的超级品牌活动日,2021-09-16.
  • 制备色谱中的良性竞争:纯度、产率、通量的平衡术
    在制备色谱的世界中,一场良性的竞争正在悄然展开,参与者有三位不同的选手,分别是:由于这些参数彼此依赖,所以纯化分离不可能同时优化这三个参数,所以,这并非一场激烈的对抗,而是一场巧妙的平衡术,其中每个角色都在化学家的指挥下为最终的分离纯化目的而努力。 图1:制备色谱三参数关系图下面英诺德INNOTEG为大家介绍下这3个参数1.产品纯度在合成化学中,产品纯度是指合成反应产物中目标化合物的纯净度或纯度程度。这是一个衡量所得产物中所含杂质和未反应起始物的量的指标。在实验室里,红外、紫外、核磁这些仪器,都要求样品达到足够的纯度,才能得到准确的结果。除此之外合成多肽的过程中可能会产生各种杂质,例如未反应的氨基酸、副产物等。纯化步骤有助于有效去除这些杂质,保证其活性和功能的稳定性。同时,通过纯化,可以降低反应的变异性,提高实验的重复性和可重复性。2.产品产率产品产率指的是纯化得到的目标物与初始样品中目标物的比值。高产率表示分离和纯化过程较为高效,少量目标化合物丢失或被废弃。低产率可能暗示着分离步骤存在问题,导致目标化合物的损失。在色谱制备中,产率的提高通常需要优化分离条件、调整溶剂体系、选择适当的柱材料和调整流速等因素。综合考虑这些因素有助于最大程度地保留目标化合物,并提高纯化过程的效率。3.制备通量制备通量是对整个色谱制备纯化工艺的评价,尤其是成本方面的考量。这是个复杂的评价过程,主要是对成本(物料成本、时间成本、人力成本)、安全性、一致性等多个方面考量。通量的高低直接关系到整个制备过程的效率和成本效益。下面小编为大家展示三种常见的色谱图 ● 色谱图1图中所显示的制备液相分离能有非常高的通量,但两个化合物分离得不好。每个化合物都可能得到一些高纯度的产物,但是回收率,即产率却相当低。● 色谱图2图中各个峰都得到了良好分离,两个化合物的纯度和产率都很高,但是通量/实验效率非常低。● 色谱图3该图是优化的制备液相结果,对所有三个参数进行了平衡考虑。色谱峰基本上达到了基线分离,得到了较高纯度和产率,通量也尽可能大。由此结果可知,分离的目的在于保证产品纯度和收率的前提下,尽可能的提高分离效率。实现色谱分离纯化的更佳效能还有其他方式?在色谱分离和纯化中,优化参数应根据具体的实验目的和合成要求来选择。这种差异化的优化有助于在不同的实验场景中实现更佳的效能和经济效益。除此之外,先进的纯化设备在日常实验室应用中也非常重要,英诺德INNOTEG EasyPrep中高压制备色谱,替代传统手动过柱,贴心的自动化体验、多方位的实时监测、智能提升纯化效率,是您实验室的得力助手!● 英诺德INNOTEG EasyPrep MP系统是一款整合了泵、检测器、收集器等几大部件功能为一体的快速纯化制备色谱系统,能对化合物进行分离、检测和收集;● 全自动的工作站控制,帮助您从繁琐的样品制备过程中解放出来,提高工作效率;● 英诺德INNOTEG EasyPrep产品涵盖中、高压制备,满足不同的应用需求;● 提供配套的Flash柱,多种规格Flash C18柱、Flash Silica柱、Flash C8柱、Flash HILIC柱、Flash AQ C18柱可选,使整个过程更加便捷。应用场景药物化学、精细化工、生物工程、植物化学、有机合成、及生命科学等领域。中压制备优势特点介绍:1. 溶剂通道:二元、四元可选;四元中压制备可以实现正反相直接切换;2. 适配4g-800g正、反相层析柱;3. 采用高精度计量泵,耐受溶剂腐蚀,寿命长,精度高;4. 实时压力监测、超压保护功能,保障实验室安全;5. 支持多种容器收集;支持全收集、峰收集、时间收集等多种模式,并实时峰 -管对应;6. 12.1英寸大屏显示,触摸屏操作;采用全自动工作方式,只需要输入相应方法参数,系统自动切换梯度比例、分析、收集;7. 支持在线添加、修改梯度,支持手动拖拽运行梯度曲线。支持在线修改流速;8. 可将实验图谱批量生成PDF实验报告;9. 可设置开机后一键式自动清洗;支持色谱柱吹干,实验完成后可干燥色谱柱。如果您对英诺德INNOTEG EasyPrep中高压制备色谱产品感兴趣,欢迎致电400 006 9696咨询。德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了多项奖项。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!英诺德INNOTEG英诺德INNOTEG是德祥集团旗下自主研发品牌,专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。多年以来,英诺德INNOTEG致力于研发高效的实验室创新设备。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了颇有成效的研究开发工作。此外,英诺德还与各大科研院所、高校合作,积极推进科技成果项目的产业化。英诺德INNOTEG凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。
  • 我国发明创新传感器电极制备新方法
    近日,中科院长春应用化学研究所研制的“全氟磺酸离子交换膜电极的制备方法”获国家专利授权。这一发明创新了一种改进的传感器电极制备方法,是研发具有自主知识产权的电化学气体传感器核心技术的一项新突破。   据悉,化学气体传感器以其体积小、检测速度快、准确、便携、可现场直接检测和连续检测等优点,越来越引起国内外专家学者的普遍关注,并成为竞相研发的热点项目之一。而我国电化学气体传感器研发起步较晚,一些核心技术还受制于国外,所需传感器几乎依赖进口。为此,不断强化电化学传感器核心技术的突破,尽快研发出具有我国自主知识产权的电化学气体传感器,成为我国经济建设急需解决的重要课题之一。   长春应化所绿色化学与工程实验室化学传感器组的王玉江研究员等发明设计的“全氟磺酸离子交换膜电极的制备方法”,包括活性物质的涂载、洗涤、全氟磺酸离子交换膜的复合成型三个步骤。其在二氧化硫、一氧化碳等电化学气体传感器的组装上得以实施,证明该方法通过增强敏感电极层催化剂与电解质之间的离子传输速率,从而提高了传感器对目标气体的响应灵敏度 此外,全氟磺酸离子交换膜的复合,克服了传统电极制备过程中因为层与层间物质不相溶而使得结构松散,长时间工作易剥离脱落等缺陷,大大提高了传感器的稳定性和寿命。
  • 博纳艾杰尔制备色谱技术交流会顺利举行
    仪器信息网讯 2011年10月13日上午,在BCEIA 2011召开期间,博纳艾杰尔举办了“制备色谱技术交流会”,邀请数位制备色谱专家分享最新的制备色谱材料、制备仪器和方法在药物纯化、多肽物纯化、天然产物的提取等领域的应用。同时,50余名制备色谱用户参加了此次技术交流会。 研讨会现场   制备色谱作为纯化的一种重要手段,越来越受到从事药品研究、天然产物提取和高纯试剂研究科学家的重视,并得到了广泛的应用。此次技术交流会由博纳艾杰尔刘建波博士主持,并围绕制备色谱技术的发展和应用展开了热烈讨论。 报告人:浙江海正药业股份有限公司中央研究院 陈峰主任 报告题目:制备色谱在医药行业的应用   陈峰主任向大家介绍了制备色谱在医药行业的应用及展望。陈峰主任表示高压制备色谱由于其纯化的高效性,在减少时间成本、人力成本、原料成本以及整体成本方面与中低压相比有非常明显的优势,必将成为替代中低压色谱纯化工艺的良好途径。并且随着博纳艾杰尔科技等国内生产商的发展成熟,高性价比高压制备填料的推出,对于降低运行成本、进行工艺推广有着积极的意义。 报告人:北京大学药学院 傅宏征教授 报告题目:制备色谱技术在皂苷类化合物分离中的应用   傅宏征教授介绍说,制备色谱技术是皂苷分离纯化过程中的必要手段,制备液相色谱具有柱效高、制备的化合物纯度高、制备量大、分离速度快等优点,没有制备液相色谱很难进行复杂结构皂苷的结构研究和生物活性研究。此外,傅宏征教授还向与会者介绍了自己在皂苷分离纯化过程中正相和反相制备色谱分离条件的研究成果。 报告人:百济神州(北京)生物科技有限公司 刘红霞博士 报告题目:浅谈制备色谱技术与应用   刘红霞博士在会上介绍了制备色谱的特点,并同大家分享了自己在使用制备色谱过程中的一些心得体会。刘红霞博士表示在制备色谱的应用中需要根据样品性质、样品量、时间要求、成本等因素选择合适的条件。其中最重要的是要关注成本,如方法优化、柱子的选择、流速大小、是中压还是高压都是由成本来决定的。仪器本身的质量水平是一方面,使用人员的操作和维护水平也很重要。希望大家以后在使用制备色谱中能够多和色谱、色谱填料生产商交流,在相互交流中促进制备色谱更好的发展。 报告人:军事医学科学院放射与辐射医学研究所 马百平教授 报告题目:中药化学成分的分离制备   马百平教授根据自己多年来的研究情况,向大家介绍了制备色谱在中药化学成分的分离制备中的应用,如葫芦巴中甾体皂苷的分离纯化、合欢皮中皂苷分离纯化、MCI有效分离中药远志中的皂苷和糖脂等,以及一些最新技术及填料的应用。马百平教授详细介绍了不同应用实例中提取、粗分、纯化等步骤中所采用等具体分析条件。马百平教授特别强调在研究中要明确自己的目的是什么,然后确定自己的研究思路,这样才能更好的选择合适的制备色谱分析条件。 报告人:天津博纳艾杰尔科技有限公司工程师王洪宇先生 报告题目:纯化创造价值 创新成就梦想   王洪宇先生向与会者详细介绍了博纳艾杰尔的新型分离纯化材料和设备。王洪宇先生介绍说博纳艾杰尔最新研制的CHEETAHTM HP100,是一种高智能化、高普适性、操作更为简单的制备系统,使得制备色谱的使用人员也从色谱分析工作者扩展到非色谱专业人员。   对于博纳艾杰尔可提供的制备纯化服务,王洪宇先生介绍说主要包括:推荐纯化填料规格、实际样品对填料性能进行验证、配套仪器整体解决纯化方案、标准品的制备、纯化工艺研究与放大可行性评估,天然产物、有机合成等提纯mg至kg级纯化服务,分离纯化专业技术培训等。最后,王洪宇先生介绍了天然酚类活性成分、肟类杂质标准品、生物活性小分子、多肽类提取物单一成分的制备等案例。 抽奖环节   研讨会中,各位专家的报告均得到了用户的热切关注,大家就自己的疑问及感兴趣的问题同专家做了充分的交流,通过此次研讨会,大家对于制备色谱的应用有了更多的了解和认识。另外主办方博纳艾杰尔为了感谢大家对于此次活动的支持,还特别设置了抽奖环节,给与会人员准备了一份惊喜。   更多精彩报道,敬请关注仪器信息网“BCEIA 2011网络直播”专题。
  • 沃特世推出全新SFC制备柱,助力纯化方法的放大研究
    全新Torus色谱柱可有效满足分析级到制备级的非手性SFC分离要求 沃特世公司(纽约证券交易所代码:WAT)今日隆重推出四款全新制备型超临界流体色谱(SFC)柱,为Torus™ SFC色谱柱产品系列再添新成员。这四款新的非手性SFC色谱柱专为纯化实验室而设计,适用于药物化合物、天然产物或合成化学品分离方法的放大研究。 智能新闻发布(Smart News Release)拥有多媒体功能。如需查看完整新闻稿,请访问:http://www.businesswire.com/news/home/20161219005035/en/ 沃特世全新非手性超临界流体色谱柱专为纯化实验室而设计,适用于药物化合物、天然产物或合成化学品分离方法的放大研究。(图片:美国商业资讯)。 圣地亚哥专用药品制药公司及研究机构Dart Neuroscience LLC最近评估了Torus色谱柱对小分子药物化合物的纯化性能。该公司的结构化学副总监Gerard Rosse表示:“全新Torus 2-PIC固定相能够有效避免保留损失,在采用甲醇和0.2%氢氧化铵分析碱性、中性和酸性类药分子时,能带来出色的选择性和优异的峰形。2-PIC色谱柱极具应用前景,有望成为一款通用型SFC固定相。” 沃特世公司消耗品团队副总裁Jeff Mazzeo指出:“两年多前,我们推出了Torus SFC分析柱并取得了不俗的成绩。此后,我们不断拓展Torus SFC色谱柱系列,以期为客户提供更多具有不同分离性能和分离能力的产品。对于采用Torus 1.7 μm色谱柱实现了标准化的实验室而言,现在可以直接放大分离方法,轻松开展更大规模的化合物纯化。而对于利用正相液相色谱法进行分析的人员,该系列色谱柱将推动其深入探索SFC的诸多优势,譬如优异的稳定性、更长的色谱柱使用寿命、更快的分离速度、更低的溶剂处置成本,以及更加环保的实验室。” Torus色谱柱适用于从分析级到制备级的所有非手性分离专用于制备级SFC分离的Torus色谱柱将赋予研究人员强大的分离能力,以全面满足其加速方法开发、将分析级非手性分离放大为制备级分离的需求。这些色谱柱以全新的专利键合填料为基础,提供四种不同的固定相,具有选择性广、稳定性高、重现性好等特点,可确保日间和批次间的分析一致性。Torus 1.7和5 μm色谱柱有四种填料可供选择:2-氨甲基吡啶(PIC)、二乙胺(DEA)、高密度二醇(DIOL)和1-氨基蒽(1-AA),并提供多种内径和柱长规格,且与Waters SFC 100系统及其它市售制备型SFC仪器搭配销售。 更多信息:www.waters.com/torus 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司已开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • 芯联集成“半导体器件的制备方法及半导体器件”专利获授权
    天眼查显示,芯联集成电路制造股份有限公司近日取得一项名为“半导体器件的制备方法及半导体器件”的专利,授权公告号为CN118073206B,授权公告日为2024年7月23日,申请日为2024年4月22日。背景技术半导体器件中的金属氧化物半导体(Metal Oxide Semiconductor,MOS)器件,因具有开关速度快、损耗小、可靠性高等优点,在诸如电源控制和驱动电路等领域得到越来越广泛的应用。例如,金属氧化物半导体器件中的横向扩散金属氧化物半导体(LaterallyDiffused Metal Oxide Semiconductor,LDMOS)器件,具有耐高压,大电流驱动能力以及低功耗的优点,而且容易与互补金属氧化物半导体器件工艺兼容,因此常用于射频功率电路和电源控制电路,以满足耐高压以及实现功率控制等方面的要求。功率集成电路高电压、大电流的特点常常要求金属氧化物半导体器件具有高击穿电压和低比导通电阻。场板技术是一种广泛应用的用于提高金属氧化物半导体器件的击穿电压的技术,但是目前结合场板技术的金属氧化物半导体器件的制作工艺较为复杂。因此如何在较好地提升金属氧化物半导体器件的击穿电压的同时,简化制作工艺是目前亟需解决的问题。发明内容本申请实施例涉及一种半导体器件的制备方法及半导体器件,属于半导体技术领域。半导体器件的制备方法包括:提供半导体材料层,半导体材料层中包括第一器件区,第一器件区中包括漂移区和体区;在部分漂移区的表面形成场氧化层;形成从场氧化层的表面延伸至漂移区的内部的至少一个第一沟槽;形成覆盖第一沟槽的内壁的第一介质层;在部分体区的表面形成栅介质层;形成填充于第一沟槽并延伸至部分场氧化层和栅介质层的表面的导电层;其中,位于第一沟槽中的导电层构成第一场板;位于第一场板和场氧化层的表面的导电层构成第二场板;位于栅介质层的表面的导电层构成栅电极层。如此,在有效提升器件击穿电压的同时使得器件的制备工艺较为简化。
  • 揭秘!3D打印金属粉末的主流制备方法
    球形金属粉末作是金属3D打印最重要的原材料,是3D打印产业链中最重要的环节,与3D打印技术的发展息息相关。在“2013年世界3D打印技术产业大会”上,世界3D打印行业的权威专家对3D打印金属粉末给予明确定义,即指尺寸小于1mm的金属颗粒群,包括纯金属粉末、合金粉末及具有金属性质的某些难溶化合物粉末。目前3D打印用金属粉末材料主要集中在钛合金、高温合金、钴铬合金、高强钢和模具钢等方面。随着金属3D打印技术的飞速发展, 球形金属粉末的市场将保持高增长态势。2016年3D打印金属粉末的市场规模约为2.5亿美元,预计2025年市场规模将达到50亿美元。为满足3D打印装备及工艺要求,金属粉末必须具备较低的氧氮含量、良好的球形度、较窄的粒度分布区间和较高的松装密度等特征。当前我国生产的金属粉末性能难以满足高端客户需求,高质量 3D 打印用金属粉末需依赖进口。因此,研究3D打印金属粉末的制备尤为重要。本文特整理了当前3D打印用金属粉末的4种制备方法,供大家参考。1、气雾化法 气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。根据热源的不同又可以将气雾化法细分为电极感应熔炼气雾化(EIGA)和等离子惰性气体雾化(PIGA)两种工艺,采用惰性气体既能防止产物氧化,又能避免环境污染。在 EIGA 工艺中,为电极形式的预合金棒将在不使用熔炼坩埚的情况下进行感应熔炼和雾化,其工艺原理图如下图所示。采用气雾化法所得粉末粒度分布广,大部分为细粉,杂质易于控制,但粉末由于粒径不同而冷却速度不同,导致颗粒内部易产生气泡,形成空心结构,粉末形状不均匀,出现行星球等,对粉末后期应用造成不利影响。 电极感应熔炼气雾化(EIGA)原理及其生产的金属粉末图片来源:南极熊3D打印2、等离子旋转电极雾化法(PREP) 等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是自耗电极端面被等离子体电弧熔化为液膜,并在旋转离心力作用下高速甩出形成液滴,然后液滴在表面张力的用下球化并冷凝成球形粉末。PREP 因采用自耗电极,制备出的粉末纯净度较高,且该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成。因此,相对于气雾化而言,PREP 制备的粉末中空心粉和卫星粉更少。PREP 制备的粉末球形度可达 99.5%以上,但是粉末粒径分布较窄,主要介于 50~150μm,存在着粉末尺寸 偏大的问题并且细粉收得率很低。目前俄罗斯最先进的 PREP 技术也只能收得约 15%的细粉(~45μm),难以服务于微细球形钛粉市场。 等离子旋转电极雾化法(PREP)原理及其生产的金属粉末图片来源:南极熊3D打印3、等离子丝材雾化法(PA) 等离子丝材雾化法(PA)是加拿大 AP&C 公司特有的金属粉末制备技术,PA 工艺是以纯度高的金属或合金丝为原料,以等离子枪为加热源,原料丝材被等离子体瞬间熔化的同时被高温气体雾化,形成的微小液滴在表面张力的作用下球化并在下落过程中冷却固化为球形颗粒的一种工艺。以合金丝为原料制备各种材质球形粉末的工艺,可实现高水平的可追溯性和较好的颗粒大小控制。该工艺生产出的粉末粒径分布范围窄,平均粒径约为 40μm,细粉收得率高(80%),几乎没有卫星球;粉末纯度高(低氧,无夹杂),球形度高,伴生颗粒非常少。具有出色的流动性和表观密度、振实密度。主要服务对象为生物医疗和航空航天工业,产品畅销20 余个国家。 等离子丝材雾化法(PA)原理及其生产的金属粉末图片来源:南极熊3D打印近年来,国外关于 PA 技术的研究取得了不少进展,现有技术已能够在单位时间内所消耗气体与原料的质量比小于20的条件下,制备大量(至少80%)粒径分布为0~106μm的金属粉末。加拿大 AP&C 公司是 PA 技术的专利持有者,加拿大 Pyro Genesis 公司也拥有相关类似专利,但均不对外出售等离子雾化设备。由于国外公司专利保护及技术封锁,一直以来国内关于 PA技术的研究进展缓慢。 4、射频等离子球化法 射频等离子体球化法是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子,利用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。射频等离子球化技术(PS)图片来源:南极熊3D打印目前国外在这方面研究较多的公司有代表性的包括:英国 LPW 技术公司和加拿大的泰克纳公司。其中,泰克纳 (TEKNA) 公司所开发的射频等离子体粉体处理系统,在世界范围内处于领先地位,可以实现 Ti、Ti-6Al-4V、W、Mo、Ta、Ni 等金属及其合金粉末的生产。 国内北京科技大学在射频等离子球化方面也进行了大量的研究,以不规则形状的大颗粒TiH2 粉末为原料,经过射频等离子高温区后 TiH2 粉末脱氢分解、爆碎,即发生“氢爆”。爆开的金属液滴下落过程中,在表面张力的作用下缩聚成规则的球状,得到微细球形粉末。所收得的粉末粒度范围可以达到 20~50μm,细粉收得率更是高达 80%以上,各项性能参数均不逊于国际一流队列的粉末,图 6 是氢化钛粉末经射频等离子球化前后粉末形貌图。同时,该团队还将该方法创新性地应用到了钨、高温合金、钕铁硼等金属粉末的球化处理当中,均取得了显著的成果。射频等离子体制备球形钛粉示意图图片来源:南极熊3D打印球化前后的粉末形貌对比图片来源:南极熊3D打印
  • 【步琦维修小课堂】Pure制备色谱管路中产生气泡的原因及排查手段
    步琦 Pure 制备色谱从 19 年发布至今,已经成为瑞士步琦色谱产品线的当家花旦,并且活跃于各种一线的研发实验室中。在这几年里,我们广泛收集客户的意见和反馈,发现仪器管路中的气泡是大家最为关心的问题之一。在本次的维修小课堂中,我们会给大家分享如何排除气泡问题,以及日常使用时的注意事项。如何判断气泡来源得益于 Pure 泵头外置的设计,我们可以很轻松地通过泵头上的管线判断气泡的来源。如果气泡在泵头内生成,则代表气泡由泵头及上游部件(流动相入口,阀门等)产生。如果气泡只生成于色谱柱的出口,则有可能是色谱柱未平衡完毕或者样品与流动相反应所生成。▲ Pure C-810 泵头内的气泡如何排查气泡问题 1拧紧仪器流动相管线的接头流动相管线接头的松紧会直接影响流速准确性和管路气密性,如果产生气泡,我们只需要用手尝试顺时针拧紧接头即可。流动相管线在仪器的后部,是两根管线中较粗的一根,可以参考下图的红圈。▲ Pure 仪器后部流动相管线入口2将溶剂瓶放置于顶部托盘内夏天时,南方地区的实验室内温度经常会接近 30 度,导致二氯甲烷等低沸点溶剂在桶内产生气泡,溶剂抽取会非常困难。Pure 制备色谱标配了一个顶部的溶剂瓶托盘,可以放置四瓶 4L 的溶剂。放置于顶部的溶剂由于虹吸效应会自行流至阀门口并形成正压,这样即使在高室温环境下抽取低沸点溶剂时,也可以有效改善气泡过多的现象。▲ 放置于 Pure 仪器顶部托盘内的流动相3尝试清洗泵腔泵腔内的异物也会导致泵头管线内生成气泡。Pure 的泵腔可以通过一些步骤彻底清洗,请参考以下视频:日常使用时的注意事项通过上述的排查方法我们可以发现,泵腔的彻底清洗是其中最为繁琐的。Pure 有一个简易的全机自动清洗程序,如果能保持清洗习惯,完全可以避免上述复杂的步骤。选择工具中的 NPRP,即正相反相。这个功能一般是在正反相切换时,用异丙醇作为过渡溶剂清洗全机管路而使用的。▲ 工具菜单中的 NPRP进入此功能后我们只需要准备 300mL 异丙醇和一个1号位有空试管的收集架即可。按照图示的步骤,将所有流动相管线至于异丙醇中,安装旁通管线,把收集架放置在左侧,然后按下清洗管线,系统会自动运行清洗程序。▲ 正相 反相功能菜单这个功能可以用异丙醇冲刷全机的管路、阀门、泵腔和流通池,并且可以确保泵腔内充满异丙醇。我们十分建议在需要长期停机前,如节假日前的最后一个工作日运行一次此程序,避免泵腔的密封圈和单向阀长期浸泡在侵蚀性的溶剂中。如需要购买各类配件套件(Customer Kit, PM Kit和Extended Kit),或 PM 预维护保养服务,请拨打 400-880-8720 咨询。Customer Kit,建议每年更换一次,客户可自行更换。PM Kit,建议每年更换一次,由工程师收费上门更换。Extended Kit,建议仪器使用第五年或超过五年,需更换一次,由工程师收费上门更换。仪器型号产品名称货号C-810PM 服务11CSN11179C-810Customer Kit11062655C-810PM Kit11062660C-810Extended Kit11062665C-815PM 服务11CSN11175C-815Customer Kit11062656C-815PM Kit11062661C-815Extended Kit11062666C-830PM 服务11CSN11176C-830Customer Kit11062657C-830PM Kit11062662C-830Extended Kit11062667C-835PM 服务11CSN11180C-835Customer Kit11062658C-835PM Kit11062663C-835Extended Kit11062668C-850PM 服务11CSN11177C-850Customer Kit11062659C-850PM Kit11062664C-850Extended Kit11062669
  • 粤芯半导体“半导体结构及其制备方法”专利公布
    天眼查显示,粤芯半导体技术股份有限公司“半导体结构及其制备方法”专利公布,申请公布日为2024年7月23日,申请公布号为CN118380405A。背景技术模拟电路中常见的噪声类型包括电阻热噪声、KT/C噪声、MOS管热噪声和闪烁噪声。其中,闪烁噪声形成后的原因是在硅晶体与氧化层的界面处出现了许多悬挂键,当电荷载流子流过这里的时候一部分会被俘获后又释放,使电流产生了不规则的起伏。传统工艺对MOS器件的闪烁噪声优化效果不理想。发明内容本申请涉及一种半导体结构及其制备方法,包括:提供初始半导体结构;所述初始半导体结构包括衬底以及位于所述衬底上的栅极结构,其中,所述衬底包括漂移区,所述栅极结构覆盖部分所述漂移区;于所述衬底内形成沟道区,所述沟道区包括第一离子注入区和第二离子注入区;所述第一离子注入区的离子注入类型与所述第二离子注入区的离子注入类型相反;所述栅极结构覆盖至少部分所述沟道区;于所述漂移区内形成漏区;于所述第二离子注入区内形成源区。在形成沟道区时增加了一道第一离子注入工序,可以避免表面沟道产生,减少导通饱和时载流子被硅晶体与氧化层的截面捕获而导致电流无规则起伏的现象发生,降低了闪烁噪声。
  • 你知道制备型 HPLC 用户喜欢分析色谱的两个原因是什么吗?
    样品的大量制备在时间、资源和未知性潜在问题方面需要花费的的成本很高。这就是为什么在进行规模实验之前进行小试分析,例如选择合适的固定相和流动相,以此来实现效益最大化。对于那些需要进行制备型HPLC的用户来讲,在较小规模上筛选纯化参数的完美方式是采用分析型HPLC。今天,“小步”同学讲向您展示为什么这种技术是有利的,以及是如何实现分析型HPLC与制备型HPLC的转化。制备型 HPLC在之前的文章中“小步”同学向大家描述了如何使用薄层色谱 (TLC) 来筛选合适的分离条件。在那篇文章当中,TLC 可以被视为小试实验。但是,如果您计划使用制备型 HPLC 进行大规模纯化,那么分析色谱则会等效于 TLC,成为您进行下一步的有效工具。分析色谱有助于选择流动相和固定相,同时节省时间、成本并减少大规模制备过程中可能发生的潜在意外因素。这是实验者喜欢这种方式的一个很好的原因。是的,分析型 HPLC 需要全自动设备,而且设备成本较昂贵。但与 TLC 相比,分析色谱可以使用梯度进行,这对用户非常有益。C18 反相色谱柱可以帮助提高过程的成本效益。这是因为 C18 固定相在用有机溶剂洗涤后可以重复使用,以去除强保留的杂质等。相反,Silica正相色谱柱在洗脱之后不能重复使用。当您编辑分析色谱方法过程时,您应该根据制造商的建议选择样品浓度和流速。通常情况下,建议载样量为 1-10mg,流速则为 0.1-10ml/min。分析色谱的目的是在最短的时间内以最大的负载量实现目标化合物与其余杂质等基线分离。一旦您对分析结果感到满意,您可以考虑直接运用制备型 HPLC 进行大量制备了。用户喜欢分析色谱的另外一个原因是,可以借助一些公式直接将分析色谱的方法转移到制备色谱上。最简单的方法是保持分析柱填料的粒径、长度与制备柱相同。如果您能做到这一点,您可以使用以下公式来确定载样量(体积或浓度)、流速和直径:载样A = 载样B x(直径A/直径B)² x(长度A/长度B)流速A = 流速B x(直径A/直径B)²其中:A 代表制备柱当量;B 代表分析柱当量除此之外,您依然可以使用相同的梯度方法(溶剂和时间的比率)。下表为一个示例:并且,“小步”同学还建议您从小一些的制备型 HPLC 色谱柱开始,如果需要的话,在之后的实验中再升级到更大的尺寸。希望这篇文章可以帮助您成功完成制备型 HPLC 的样品纯化,从而避免更多的时间与资源的浪费!好了,今天“小步”同学就介绍到这里,我们下期再见!低复杂度样品纯化左右滑动色块查看系统适合的应用范围↓对于低复杂度样品,可以轻松或妥善地分离感兴趣的峰与杂质。使用中至大粒径 (15 - 60 μm) 颗粒是标准应用最经济的解决方案高复杂度样品纯化左右滑动色块查看系统适合的应用范围↓高复杂度样品难以分离并显示出部分重叠的峰需要使用小粒径 (5 - 15 μm) 硅胶颗粒以提供出色的分离度 (=纯度),但会产生高背压从低到高样品浓度的进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 300g可支持 Flash 预填充色谱柱尺寸:最大 5000g可支持耐高压玻璃柱尺寸:直径 46-100mm支持固体上样和液体上样两种方式低样品浓度进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 1g可支持高压色谱柱直径尺寸:4.6-70mm支持液体进样检测生色团化合物左右滑动色块查看系统适合的应用范围↓生色团化合物吸收紫外波段或可见光波段 (200 - 800 nm) 的光线适用于紫外线检测的化合物通常含有不饱和键、芳族基或含杂原子的官能团。检测非生色团化合物左右滑动色块查看系统适合的应用范围↓非生色团化合物不吸收光,因此不能通过紫外线检测器显现典型化合物为碳水化合物非生色团化合物可通过蒸发光散射 (ELS) 检测装置来检测
  • 芯聚能“碳化硅MOSFET器件及其制备方法”专利公布
    天眼查显示,广东芯聚能半导体有限公司“碳化硅MOSFET器件及其制备方法”专利公布,申请公布日为2024年6月28日,申请公布号为CN118263326A。背景技术半导体是导电性介于良导电体与绝缘体之间的一种材料,半导体器件是利用半导体材料的特殊电特性来完成特定功能的电子器件,例如碳化硅MOSFET(Metal-Oxide-Semiconductor Field-EffectTransistor,金氧半场效晶体管)器件,可用来产生、接收、变换和放大信号,以及进行能量转换。相关技术中,由于碳化硅MOSFET器件自身结构特点,碳化硅MOSFET器件必然存在寄生电容,例如寄生的栅漏电容Cgd,该电容会导致米勒平台的产生,米勒平台会使碳化硅MOSFET器件在开通和关断的过程中损耗增大,导致碳化硅MOSFET器件在工作过程中不能快速地实现开关,影响碳化硅MOSFET器件性能。发明内容本申请涉及一种碳化硅MOSFET器件及其制备方法,碳化硅MOSFET器件包括衬底、第一掺杂区、栅极沟槽、控制栅结构和分裂栅结构,第一掺杂区设置于衬底内;栅极沟槽设置于第一掺杂区内,且从衬底的正面开口并沿衬底的厚度方向延伸,栅极沟槽包括第一子沟槽和第二子沟槽,第二子沟槽位于第一子沟槽背离衬底的正面的一侧;控制栅结构设置于第一子沟槽内,控制栅结构包括控制栅导电层和控制栅介质层,控制栅介质层位于控制栅导电层与第一子沟槽的槽壁之间;分裂栅结构设置于第二子沟槽内,分裂栅结构包括分裂栅导电层和分裂栅介质层,分裂栅介质层包覆分裂栅导电层;控制栅介质层的介电常数和分裂栅介质层的介电常数不同。
  • 天狼芯“半导体结构及其制备方法”专利获授权
    天眼查显示,深圳天狼芯半导体有限公司近日取得一项名为“半导体结构及其制备方法”的专利,授权公告号为CN118198137B,授权公告日为2024年7月23日,申请日为2024年5月16日。背景技术具备沟槽(Trench)结构的金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种垂直结构器件,是在传统平面结构MOSFET的基础上发展而来的,相比于传统平面结构的MOSFETT,沟槽结构的MOSFET在基底内形成沟槽,沟槽增大了器件的连接面积,进而可以并联更多的元胞,从而降低导通电阻,实现更大电流的导通和更快的开关速度。然而,在沟槽结构的MOSFET中,当器件处于反偏状态时,电场会集中在沟槽的拐角处,集中的电场会导致沟槽内的碰撞电离率升高,在器件长时间工作下,高的碰撞电离率会引发沟槽内栅极氧化层的缺陷问题,进而降低半导体结构的可靠性和电性。发明内容本申请涉及一种半导体结构及其制备方法。该半导体结构包括:基底结构;栅极结构;源极结构;源极场板结构,其中,栅极结构和源极场板结构分别位于源极结构相对的两侧;源极场板结构包括第一阶梯式介质结构、第二阶梯式介质结构、阶梯式场板和场板源电极,第二阶梯式介质结构至少部分和漂移区接触,第二阶梯式介质结构位于第一阶梯式介质结构与阶梯式场板之间,场板源电极位于阶梯式场板远离衬底一侧的上表面。通过将栅极结构和源极场板结构分别设置于源极结构相对的两侧,当器件处于反偏状态时,第二阶梯式介质结构可以调制栅极沟槽内的电场分布,解决了栅极沟槽内因电场集中导致的碰撞电离率升高,进而造成栅极氧化层缺陷的问题。
  • 岛津大力赞助上海CPSA 推介新型蛋白质样品制备平台
    日前,在上海淳大万丽酒店隆重举行的为期3天的第三届化学和药物结构分析上海研讨会(CPSA Shanghai 2012) 以&ldquo 从基准到决策-从基础到应用&rdquo 为主题,旨在为东西方的药物研发领域的科学家们建立一个交流、互动的平台。来自北美、欧洲和亚太地区生物制药领域的著名学者,全球知名制药厂家和CRO企业代表共计300余人与会。 CPSA是关于药物开发和分析的国际学术会议,科学家们和制药工业企业组织共聚一堂,分享药物领域的新发明、新应用以及实践经验,探讨对药物研发新技术、新方向、新政策的看法,以实现药物研发前沿科学与制药工业之间对接。岛津公司极为重视对中国制药工业的发展和加强中国与世界的联系方面起到积极推动作用的CPSA,大力赞助了本次年会。在会议期间,岛津资深专家Robert E. Buco 为本次年会带来了一场精彩的岛津Perfinity Workstation的报告会。 Robert E. Buco 介绍Perfinity Workstation Perfinity Workstation是岛津公司和Perfinity公司联合推出新型蛋白质样品制备自动化平台。 Perfinity Workstation 在大批量分析测试中关键是分析前期的样品分离,Perfinity公司将其自动化控制和色谱柱工艺技术集成到日本岛津仪器。该综合而成的Perfinity分析平台中,多层色谱柱设备可实现蛋白质的自动化分离和大批量分析样品的制备,为液相色谱-质谱分析提供更高的效率。Perfinity公司的五个最优色谱柱与岛津公司的硬件配件完整联合,大大提升了Perfinity分析平台的优异性能。其中,每一个色谱柱执行大批量样品制备过程的一小部分,包括亲和选择,缓冲交换,分离,脱盐淡化和反相分离。这些步骤的自动化集成,使用户能够在短短的10分钟内实现由血清样品分离得到液相色谱-质谱分析所需的肽。这个自动化解决方案大大减少了实验室的分析设备,并可进行大批量的蛋白质样品测试分析。 该新型的Perfinity分析平台把对抗体的选择性和色谱的分辨能力完美结合。在线完成缓冲交换和脱盐淡化。减少样品的处理时间,使得用户可以快速完成各种条件下的分析测试。Perfinity分析平台的样品分离方法的最大优点是用户无需固定抗体。这样,科研人员可以直接把抗体添加到样品中。由此可消除抗体固定操作步骤,进一步减少用户分析的操作失误的可能,使得Perfinity工作平台下的液相色谱-质谱分析更加准确、可靠。 该平台应用领域广泛,包括化学分析,蛋白质纯化,药物检测和生物应用开发。例如,在化学分析领域,平台所构建的方法的核心步骤,可很大程度上减少所需的最优化草案。 Robert E. Buco 的精彩报告,引起与会专家、用户的高度关注,对Perfinity Workstation新型蛋白质样品制备自动化平台显示出极大兴趣和期待。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • TCL华星“光刻机及电路基板的制备方法”专利公布
    国知局消息显示,TCL华星光电技术有限公司“光刻机及电路基板的制备方法”专利公布,申请公布日为6月15日,申请公布号为CN116243564A。图片来源:国知局专利摘要显示,本申请实施例公开了一种光刻机,本申请实施例的光刻机采用在掩模板设置位(第二设置位)的出光侧设置投影透镜组,投影透镜组包括第一透镜单元和第二透镜单元,所述第一透镜单元对入射光线的收敛角度大于所述第二透镜单元对所述入射光线的收敛角度。采用投影透镜组对掩模板上的图案进行光线收敛,进而在基板上形成比掩模板上的图案更小的图案,进而达到采用常规掩模板实现精密制程的效果。另外,本实施例采用第一透镜单元用于形成集成电路,第二透镜单元用于形成非集成电路,提高了制程的工作效率以及制程的适应性。据悉,本申请实施例提供一种光刻机,可以减低掩模板的制作难度,同时可以实现更精密的集成电路制作。
  • 科研人员研发出减少有机溶剂使用量制备格氏试剂的方法
    日本北海道大学创成研究机构化学反应创成研究据点(WPI-ICReDD)、北海道大学工学研究院等机构的科研人员共同组成的研究团队研发出几乎不使用有机溶剂便可简便制备格林尼亚试剂(Grignard reagent,简称“格氏试剂”)的方法。研究成果于近期发表于《Nature Communications》期刊,题为:“Mechanochemical Synthesis of Magnesium-based Carbon Nucleophiles in Air and Their Use in Organic Synthesis”。  格氏试剂作为有机合成中重要的试剂被广泛使用,制备通常需要在无水无氧的反应容器中进行,需使用高纯度的有机溶剂,并且要严格控制温度,不仅制备过程繁琐,有机溶剂还会产生废弃物和毒性。  为探索更为简便、高效的制备方法,科研人员通过球磨机左右震动和机械搅拌,只需添加少量的有机溶剂便可在短时间内简便、高效地制备格氏试剂。此种制备方法能将有机溶剂的使用量降低至原使用量的十分之一左右,无需使用高价高纯度的有机溶剂,并且,制备方法不易受到反应容器中水分和氧气的影响,可用于多种有机合成反应。  此项研究成果有效控制了格氏试剂制备过程中有害有机溶剂的使用量,不仅可以减少化学制品对环境的不良影响,还有助于降低化学制品的生产成本。   原文链接:  https://www.jst.go.jp/pr/announce/20211118-2/index.html  注:本文摘编自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
  • 科研人员提出孔径小于10纳米的固态纳米孔制备新方法
    近日,中国科学院近代物理研究所材料研究中心与俄罗斯杜布纳联合核子研究所合作,研发出一种孔径小于10纳米的固态纳米孔制备新技术。相关研究成果发表在《纳米快报》(Nano Letters)上。   高质量固态纳米孔的制备是DNA测序、纳流器件以及纳滤膜等应用的关键技术。当前,在无机薄膜材料中制备固态纳米孔的主流方法是聚焦离子/电子束刻蚀。该方法在制备过程中需实时反馈,更适合于单个纳米孔的制备。因此,探索孔径可调、孔密度可控和无需实时反馈的固态纳米孔快速制备技术具有重要的科学意义。   科研人员基于兰州重离子研究装置(HIRFL),利用快重离子作用于WO3纳米片材料,实现了直接“打孔”的制备方法。同时,科研人员利用分子动力学模拟对物理机理进行解释,发现重离子在材料中的沉积能量会引起材料局域瞬时熔融喷发,以及熔融相的粘度和表面张力大小是决定纳米孔形成的关键因素。   该方法通过改变重离子的电子能损调控孔径大小,改变重离子辐照注量调节孔密度,使得整个制孔过程一步完成,不涉及化学蚀刻,具有一定的普适性和应用潜力。   该工作为重离子束应用于固态纳米孔制备开辟了新途径,并为解释重离子在固体材料中潜径迹形成的微观机理提供了重要的理论依据。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院青年创新促进会等的支持。图:快重离子在WO3纳米片中直接形成纳米孔示例 图/徐丽君 翟鹏飞
  • 清华团队开发基于电喷雾电离技术的冷冻电镜样品制备方法
    生物大分子的三维结构可以直观地揭示其生物学功能、细胞内进程以及探索其在疾病中发挥作用的方式。冷冻电镜(cryo-electron microscopy,cryo-EM)单颗粒分析技术通过对生物大分子的直接成像进行高分辨率结构测定,已成为结构生物学的重要研究手段。冷冻电镜单颗粒分析技术需要对生物大分子溶液的冷冻样品采集大量电子显微数据,以进行三维结构解析,因此高质量的冷冻样品制备在其中起着至关重要的作用。良好的制样方法需要能够简便地、可控地制备出接近理想状态的生物大分子冷冻样品。诺贝尔化学奖获得者雅克杜博切特(Jacques Dubochet)等人于1984年发明了冷冻样品制备的滤纸夹置法(Pipet-blot-plunge),至今仍然是冷冻电镜样品制备的主要手段。在这种传统的制样方法中,研究人员难以精确控制样品冰层厚度和大分子颗粒分布,导致冷冻样品的均一性和可重复性较差。越来越多的证据表明,在样品被冷冻之前的瞬间,生物大分子会吸附在超薄的液体层的气液界面(Air-water interface, AWI)上,导致生物大分子的颗粒结构损伤、变性或产生优势取向,减低了高分辨率冷冻电镜结构分析的效率和成功性。如何获取可重复的高质量的生物大分子冷冻样品仍然是冷冻电镜技术应用中的一个难题。图1. ESI-cryoPrep方法设计和仪器装置示意图4月25日,清华大学生命科学学院王宏伟课题组和精密仪器系欧阳证、周晓煜课题组在《自然方法学》(Nature Methods)在线发表了题为“电喷雾辅助的冷冻电镜样品制备方法用以减轻界面吸附效应”(Electrospray-assisted cryo-EM sample preparation to mitigate interfacial effects)的研究论文。研究采用非变性质谱(Native mass spectrometry, native MS)中广泛使用的电喷雾电离(Electrospray ionization, ESI)技术,设计并搭建了一种新型冷冻样品制备装置ESI-cryoPrep(图1),成功实现了无需滤纸夹吸的冷冻样品制备,并获得了多种生物大分子近原子分辨率的三维结构。研究表明,ESI-cryoPrep可以有效地将生物大分子颗粒完整嵌入无定形态薄层冰中,避免其吸附在空气-水、固体-水界面上,并对该装置制备生物大分子冷冻样品过程中的界面模型进行了机理阐释。ESI-cryoPrep以“软”电离技术ESI为基础,通过向蛋白溶液施加高电压形成大量带电的蛋白液滴,可以有效地减少蛋白的变性与碎裂。在电场的驱动下,带电液滴飞向电镜载网的过程中伴随着去溶剂化的进行;液滴表面的电荷密度激增至瑞利极限导致库仑裂变形成带电的次级液滴;这一过程循环往复直至液滴最终沉积在电镜载网上;收集到带电液滴的电镜载网被插入液氮冷却的液态乙烷中即可实现对液滴的快速冷冻。该过程完全省却了滤纸的夹吸,避免了滤纸材料对液体和生物大分子的影响。因为液滴表面的小分子离子形成了双电层效应,生物大分子与液体的界面被隔绝开,从而避免了生物大分子吸附到气液或固液界面上,更好地保持了生物大分子的天然结构。该研究首次对ESI液滴中的生物大分子的天然结构(Native structures)进行了直接测定,指导获得ESI的“软着陆”电离参数进行冷冻制样与非变性质谱分析。该工作是冷冻电镜与质谱技术的交叉融合,共同致力于解答生物大分子结构解析与分析的科学问题。研究团队在搭建的设备上,经过多次摸索确定了制备高质量冷冻样品的相关参数。这些参数既能满足保存高比例完整结构生物大分子颗粒的需求,又能促进带电液滴在附着电镜载网表面的扩展和浸润。研究团队运用优化的ESI-cryoPrep装置制备了五种生物大分子的高质量冷冻样品,获得了与目标生物大分子尺寸相对应的理想冰层厚度,并实现了全部测试样品70Sribosome、20Sproteasome、apo-ferritin、ACE2和streptavidin的高分辨率三维结构解析,分辨率分别为2.7[gf]c5[/gf]、2.0[gf]c5[/gf]、2.1[gf]c5[/gf]、3.3[gf]c5[/gf]和1.9[gf]c5[/gf]。研究团队对冷冻电镜数据进行了深入的挖掘与分析,发现与预期假设一致的结果。ESI-cryoPrep可以有效地将生物大分子颗粒完整嵌入无定形态冰的薄层中间,抑制目标生物大分子在空气-水或石墨烯-水界面的吸附(图2),从而避免蛋白质颗粒的结构损伤或者优势取向问题。研究工作提出了电荷残留模型,阐明了电喷雾电离产生的液滴表面的电荷不均匀分布保护蛋白质颗粒免于界面吸附的作用和机制。这种学科交叉的研究成果不仅将为冷冻电镜样品制备提供应用价值,还将对冷冻电镜技术和非变性质谱领域的交叉和发展产生积极影响,为更多创新应用开辟新的可能性。自主研发的高质量冷冻电镜样品制备装置,一方面可以缩短结构解析的漫长探索过程,更高效地获得高分辨三维结构,分析其作用机理;另一方面也提升了原创研发具有自主知识产权和高精尖技术的能力,减少对国外相关仪器和设备的依赖。图2.ESI-cryoPrep方法制备的冷冻样品中蛋白质颗粒在断层成像中的代表性空间分布清华大学生命科学学院2017级博士生杨梓和精密仪器系2018级博士生范菁津(已毕业)为该论文共同第一作者,清华大学生命科学学院教授王宏伟,精密仪器系教授欧阳证和副教授周晓煜为论文共同通讯作者。清华大学生命科学学院王家副研究员和范潇博士等为课题的启动和推进作出重要贡献。研究得到国家自然科学基金、腾讯基金会等的资助,并得到清华大学冷冻电镜中心和计算中心的技术支持。
  • 一种重金属检测电极的制备方法获国家发明专利
    一种化学修饰碳糊铋膜电极的制备方法获国家发明专利授权   近日,中科院长春应用化学研究所郏建波等科研人员发明的一项专利“一种化学修饰碳糊铋膜电极的制备方法”获得了国家知识产权局的授权。   重金属是一种很危险的污染物,往往长期积累在生物体内不可降解,在极其微量的情况下也会产生不良后果,因此痕量重金属的定量分析在药物、食品、临床和环境检测等方面都是非常重要的。   该发明将碳粉、修饰剂和疏水性有机溶剂按一定的质量比混合、研磨成均匀的化学修饰碳糊,然后将化学修饰碳糊装入电极管壳内,即得到化学修饰碳糊电极,进一步采用预镀法或者原位镀膜法制得化学修饰碳糊铋膜电极。该发明制备的电极可以方便地实现对自来水、湖水、雪水等样品中重金属铅的电化学测定。该发明制备的电极的电位窗较宽、操作简单,有利于进行铋膜电极上多种重金属的同时测定。该发明制备的化学修饰碳糊铋膜电极的稳定性好、灵敏度很高,对于重金属离子的检测可达0.10 ppb 另外,该电极对样品的预处理要求很低、表面更新容易、制作工艺简单、价格低廉,易于重复和普及使用。
  • 北工大“原位透射电镜电学液体芯片及其制备方法”专利公布
    集微网消息,天眼查显示,北京工业大学“原位透射电镜电学液体芯片及其制备方法”专利公布,申请公布日为6月9日,申请公布号为CN116242847A。图源:天眼查专利摘要显示,本发明涉及原位透射电镜技术领域,提供一种原位透射电镜电学液体芯片及其制备方法。原位透射电学液体芯片包括:功能芯片、盖板芯片和盖板;功能芯片包括:第一基底、第一薄膜承载层和金属电极层,金属电极层包括工作电极、对电极和参比电极导线;钝化保护层,部分覆盖第一薄膜承载层和金属电极层;盖板芯片包括:第二基底和第二薄膜承载层;盖板设置于功能芯片的顶部,覆盖储液槽。据悉,本发明提供的原位透射电镜电学液体芯片及其制备方法,在实现液体环境施加的基础上,将传统电化学领域的三电极测试体系引入透射电镜,可对液体环境中样品的电化学行为进行原子尺度原位动态观测的同时,完成电学信号的精确控制及采集。
  • 合肥研究院发展出阴离子交换膜制备新方法
    近期,中国科学院合肥物质科学研究院等离子体物理研究所低温等离子体应用研究室助理研究员张呈旭等人采用等离子体方法在制备高性能阴离子交换膜方面取得新进展。相关研究成果近日发表在能源领域学术期刊《电源杂志》上(J. Power Sources, 2014, 272: 211)。   阴离子交换膜因其对离子具有选择透过作用,在能源、环境、化工等领域有着广泛的应用价值。目前,阴离子交换膜的制备方法主要有氯甲基化法和辐射接枝法。氯甲基化法利用氯甲基化反应在聚合物骨架结构上引入氯甲基基团,然后通过季铵化反应得到阴离子交换基团,然而氯甲基化反应常需要使用剧毒致癌物质氯甲醚,且季铵化试剂有机胺也具有毒性和挥发刺激性。辐射接枝法通过在聚合物膜上接枝功能性单体,再经季铵化处理获得阴离子交换基团,虽然可以避免使用氯甲醚,但仍需大量使用毒性有机胺试剂。同时,高的辐射能量容易引起聚合物基体结构损坏,影响膜的稳定性。   为此,研究人员发展了一种绿色、温和的阴离子交换膜制备新方法,以聚合物粉体为基体,经等离子体轰击和单体接枝聚合反应,在聚合物粉体上直接引入阴离子交换基团,制备功能基团均匀分布的阴离子交换膜。制得的阴离子交换膜具有较好的热稳定性、化学稳定性、离子交换容量、离子电导率和较低的乙醇透过率。前期研究成果均发表在国际权威学术期刊上,并已申请两项国家发明专利,有望直接面向市场应用。   该研究得到了国家自然科学基金和安徽省自然科学基金的支持。
  • 【ISCO 制备色谱仪】快速色谱法在简单碳水化合物纯化中的应用
    01 摘要碳水化合物化合物可利用 RediSep Gold Amine 色谱柱结合蒸发光散射检测(ELSD)进行简便的纯化。该色谱柱采用亲水相互作用液相色谱(HILIC)梯度洗脱法,以乙腈或丙酮与水的梯度进行操作。将待纯化的样品溶解于 DMSO 中,不仅允许大量样品加载,同时还能保持良好的分辨率。02 背景碳水化合物通常采用氨基柱进行分析,该方法具有良好的分辨率。这种分析方法一般使用乙腈和水作为流动相,样品通常溶解在水中。由于样品注射量较小,样品有机会吸附在固定相上。在制备色谱中,相对于色谱柱尺寸而言,样品负载和注射体积要大得多,因此将样品溶于水中注射可以防止碳水化合物吸附在柱子上,导致它们在空隙处洗脱。干法加载样品到固体装载小柱上通常用于快速色谱,但用户需要自己用氨基介质填充他们的小柱。样品仍然溶解在水中进行加载,这需要很长时间才能在运行样品前蒸发。二甲基亚砜(DMSO)常用于反相色谱的样品溶解,因为它能溶解大多数化合物。DMSO 能够溶解碳水化合物,但在 HILIC 中是一种弱溶剂,因此它允许样品吸附在柱子上。在使用氨基柱时,DMSO 在洗脱早期被洗脱;然而,在采用非氨基介质的其他 HILIC 运行中,它可能在梯度洗脱的后期才被洗脱。03 结果与讨论虽然亲水相互作用液相色谱(HILIC)属于正相色谱,但它使用的溶剂通常适用于反相色谱,因此需要根据表 1 中的设置调整蒸发光散射检测器(ELSD)的参数,以保持基线稳定的同时维持灵敏度。表1. 纯化碳水化合物的蒸发光散射检测器(ELSD)设置。ELSD控制设置值Spray Chamber20℃Drift Tube60℃Gain1SensitivityHigh样品均溶解于 DMSO 中。如有必要,将样品在热水浴中加热以促进溶解。使用 PeakTrak Flash Focus 梯度生成器在系统上开发方法。运行了一个亻贞查梯度以验证样品能够被洗脱,并证明化合物之间有足够的分辨率以实现成功的纯化。所需化合物的保留用于计算聚焦梯度的溶剂组成。所有运行均使用 RediSep Gold 氨基柱。运行完成后,用2-丙醇洗涤并储存柱子,2-丙醇与有机溶剂混溶,可实现较少极性化合物的快速纯化。第一个实例使用了核糖和葡萄糖。亻贞查梯度和聚焦梯度都使用乙腈作为弱溶剂。亻贞查运行只用了少量几毫克,并且为了提高这个小样品负载的灵敏度,ELSD 增益被调高到 3。第二个洗脱峰用于聚焦梯度;计算梯度后,ELSD 增益被重置为 1 以保持 ELSD 响应在量程内。总样品负载为 100 毫克,使用 50 克 RediSep Gold Amine 柱。果糖和蔗糖通常一起出现在样品中。图 2 展示了从葡萄糖杂质中纯化果糖的过程。该混合物以与核糖-葡萄糖样品类似的方式运行,梯度聚焦于葡萄糖。在约 1.8 柱体积(CV)出现的峰是用于溶解样品的 DMSO。图1. 核糖和葡萄糖在 5.5 克 RediSep Gold Amine 柱上运行亻贞查方法(上图),并聚焦到 50 克 RediSep Gold 胺柱上。样品总负载量为核糖和葡萄糖各 50 毫克。聚焦梯度中约 1.8 柱体积处的小峰是 DMSO。图2. 使用 RediSep Gold Amine 柱和乙腈/水梯度从蔗糖中纯化不纯的果糖。04 丙酮作为弱溶剂丙酮也是 HILIC 的弱溶剂,可以替代乙腈使用。尽管醇类可以用于 HILIC,但这些溶剂对于在胺柱上纯化碳水化合物来说太强了。使用丙酮纯化了一个果糖和葡萄糖的样品。该混合物的纯化方式与之前的例子相似,除了亻贞查梯度使用了一根 15.5 克的 RediSep Gold Amine 柱,因为 PeakTrak 允许使用任何尺寸的 Teledyne ISCO 柱进行亻贞查运行。聚焦梯度使用了一根 50 克的 RediSep Gold Amine 柱,但计算出的梯度需要较低的水浓度来纯化葡萄糖,这表明对于这些化合物,丙酮是比乙腈更强的溶剂。图3. 使用丙酮/水梯度纯化的果糖和蔗糖。亻贞查运行使用了一根 15.5 克的 RediSep Gold 胺柱。05 结论使用 NextGen 300+ 配备蒸发光散射检测器(ELSD)和 RediSep Gold 胺柱,通过 HILIC 梯度方法可以高效纯化碳水化合物。使用 DMSO 溶解样品既保证了高样品负载量,又保持了良好的分辨率。PeakTrak Flash Focus 梯度生成器使得 Teledyne ISCO 制造的所有色谱柱都能快速开发和放大方法。
  • Pure制备色谱应用——上样量篇(一)Flash和Prep液相色谱上样量选择的理论基础
    在制备液相色谱中,样品的上样量是影响分离效果的重要因素之一。要纯化分离的样品应以合适的浓度添加到色谱柱柱床上,以实现窄的水平谱带。如果上样量太大,则谱带变宽,分离效率降低。Flash和Prep HPLC的上样量有很大不同。由于Flash色谱通常用于预纯化,高分辨率不是优先考虑的因素,因此上样量往往比Prep HPLC高。在Prep HPLC中,主要目的是获得最高纯度的物质,故基线必须得到分离。正相和反相二氧化硅(如C-18、氨基或二醇基)的上样量也存在相当大的差异。由于非键合相二氧化硅的表面积大,故这种固定相的载样能力更高。正相二氧化硅的载样能力通常比键合二氧化硅的载样量高约10倍。标准二氧化硅(粒径40-60 μm)通常可接受10%的载样量;在使用较小颗粒(15-30μm)时可以达到30%。然而,重要的一点我们要知道,无论是反相还是正相,上样量由样品的复杂程度决定的。对于含有多种化合物的复杂样品,决定其复杂性的因素是纯化目标化合物与其邻近的洗脱组分的分离程度。通常情况下,复杂样品需要少量多次的上样方式来处理。接下来“小步”同学将分享给大家一篇关于Pure制备色谱上样量的应用文章,来让大家感受下色谱的魅力。?在液相色谱中,样品可以通过两种不同的方式上样:固体或液体。液体上样,是将样品溶解在溶剂中后,直接注入色谱柱上。固体上样,是将粗样品与载体材料(如硅胶)的固体均匀混合物放在色谱柱前面。图1:液体和固体样品每种技术都有其需要考虑的特殊方面,下面将进行更详细的讨论。液体上样是一种将样品很好地溶解在洗脱初始溶剂中的方法,可用于Flash和Prep液相色谱应用中。推荐使用弱极性溶剂,因为强极性溶剂会降低分离度。液体上样被认为是最简单、最快捷的方法,但可能会造成样品损失,需要考虑的因素如下:- 化合物在初始溶剂中的溶解度:样品需要完全溶解,因为进样系统或色谱柱顶部的沉淀可能在系统中产生过大的压力,并最终导致样品流失。- 溶解溶剂的极性:如果使用极性溶剂溶解样品,则它们可能会吸附在极性硅胶柱基质上,并对更多极性化合物(后来在硅胶材料上洗脱的化合物)的分离产生不利影响。- 样品溶剂的体积:体积越大,样品从一开始就迁移到填料柱床中的风险就越高,从而导致谱带变宽、分离度降低。理想的样品体积不应超过色谱柱体积的10%。样品的保留率越高,可装载的体积就越大。- 样品量:每根色谱柱都有规定的装载量。理想的样品量不应超过纯化柱的最大装载量。在Flash液相色谱中,通常是在注射器的帮助下将液体样品手动直接注入到色谱柱顶部(如下图)。由于高背压,无法在Prep液相色谱柱上进行手动上样。因此,它是通过专用的进样阀完成的,如图所示:图2:Flash和Prep HPLC中的液体上样固体上样是仅适用于Flash色谱分离应用的技术,用于只能在强溶剂中溶解的样品,或用于具有难以溶解的粘性或多杂质样品。该方法可以通过减少谱带展宽和随后的拖尾效应来改善分辨率。一般来讲,固体上样分离较慢,但与液体上样相比,分辨率更高。推荐的样品量不应超过色谱柱的最大载样量。固体上样通常通过以下步骤完成:- 将粗样品溶解在合适的极性溶剂中。-然后,将该混合物在超声浴中超声几分钟,以提高溶解度。- 过滤混合物以除去尚未完全溶解的物质。非键合的二氧化硅是最常用的吸附剂,但可能不是最佳的选择。通常,建议使用与色谱柱相同类型的硅胶作为支撑材料。这样可以避免不必要的化学相互作用或样品的不可逆吸附。一种有用的替代材料是 Celithe,由于其中性的化学特性,它不与任何物质发生相互作用。
  • 派恩杰“集成ESD的SiC功率MOSFET器件及制备方法”专利获授权
    天眼查显示,派恩杰半导体(杭州)有限公司近日取得一项名为“集成ESD的SiC功率MOSFET器件及制备方法”的专利,授权公告号为CN112951922B,授权公告日为2024年7月23日,申请日为2021年3月25日。背景技术半导体领域,静电释放(ESD)会对芯片中的器件,特别是对于MOSFET器件这种极薄栅介质的器件,产生破坏作用,在栅极产生一个高电场,使得栅介质在高电场下发生绝缘击穿,从而使器件失效。静电保护是指当带有静电的物体或人体接触芯片时能够迅速消除静电产生的电压或电流,达到保护芯片器件的目的。在各种可靠性测试标准中都有静电(ESD)的标准,因此静电保护也是器件设计中一项重要指标。在现有的硅基的MOSFET和IGBT器件中,利用二极管作为集成ESD是很常见的设计,请参考图1,MOSFET器件M1的栅极和源极之间连接有一个二极管D1,当静电释放在MOSFET器件M1的栅极产生一个高电场,在栅介质被高电场下作用下发生绝缘击穿之前,优先击穿了二极管D1的PN结,使得MOSFET器件M1的栅极免于被击穿,从而达到保护芯片器件的目的。但现有的硅基的MOSFET和IGBT器件中,由于硅基的PN结二极管的击穿电压很低,所以硅基的ESD二极管通常设置在栅极的多晶硅中,采用N型和P型掺杂多晶硅得到二极管。但这种方法不仅需要额外的光刻版,增加了产品的成本,且由于是在栅极的多晶硅中集成二极管,也会影响MOSFET和IGBT的栅氧特性。发明内容本发明提供了一种集成ESD的SiC功率MOSFET器件及其制备方法,由于用于ESD的PN结二极管是集成在MOSFET器件本身需要的栅极压焊区下方,不需要额外的芯片面积,不会影响芯片的集成度。且栅极压焊区的面积较大,使得PN结二极管的面积也可以较大,PN结二极管环绕在栅极压焊区的下方,可以利用栅极压焊区的面积,增大PN结二极管的面积提高ESD泄放能力;由于通过调节PN结边缘的形貌和掺杂浓度就可以调节PN结二极管的击穿电压,因此通过在第一掺杂离子重注入区和第二掺杂离子注入区的边缘设置多个尖峰角,就可以调节PN结二极管的击穿电压;且所述PN结二极管的形成是和形成MOSFET器件的工艺步骤同步进行,不额外增加光刻掩膜步骤,不会增加芯片制作成本。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制