当前位置: 仪器信息网 > 行业主题 > >

番茄红素脂质体

仪器信息网番茄红素脂质体专题为您整合番茄红素脂质体相关的最新文章,在番茄红素脂质体专题,您不仅可以免费浏览番茄红素脂质体的资讯, 同时您还可以浏览番茄红素脂质体的相关资料、解决方案,参与社区番茄红素脂质体话题讨论。

番茄红素脂质体相关的资讯

  • 上海市食品学会发布《番茄及其制品中六氢番茄红素和八氢番茄红素的测定》团体标准征求意见稿
    各相关单位代表及专家:《番茄及其制品中六氢番茄红素和八氢番茄红素的测定》团体标准已完成征求意见稿的编制,根据《团体标准管理规定》的要求,为保证标准的科学性、严谨性和可操作性,现在《全国团体标准信息平台》面向社会各界公开征求意见。请各相关单位代表及专家审阅标准文本,对本标准提出宝贵意见和建议,并于2023年10月27日前将《团体标准征求意见反馈表》(附件二) 以E-mail形式反馈给上海市食品学会。逾期未复函,将按无异议处理。此致!附件一:《番茄及其制品中六氢番茄红素和八氢番茄红素的测定》(征求意见稿)附件二:《团体标准征求意见反馈表》联系人:郭燕茹联系电话:18018674491电子邮箱:ssfs_office@163.com 上海市食品学会2023年9月28日关于《番茄及其制品中六氢番茄红素和八氢番茄红素的测定》团体标准征求意见函.pdf番茄及其制品中六氢番茄红素和八氢番茄红素的测定(征求意见稿).pdf《番茄及其制品中六氢番茄红素和八氢番茄红素的测定》征求意见反馈表.doc
  • 上海市食品学会发布《番茄及其制品中六氢番茄红素和八氢番茄红素的测定 高效液相色谱法》团体标准征求意见稿
    各相关单位代表及专家:《番茄及其制品中六氢番茄红素和八氢番茄红素的测定 高效液相色谱法》团体标准已完成征求意见稿的编制,根据《团体标准管理规定》的要求,为保证标准的科学性、严谨性和可操作性,现在《全国团体标准信息平台》面向社会各界公开征求意见。请各相关单位代表及专家审阅标准文本,对本标准提出宝贵意见和建议,并于2023年11月11日前将《团体标准征求意见反馈表》(附件二) 以E-mail形式反馈给上海市食品学会。逾期未复函,将按无异议处理。此致!附件一:《番茄及其制品中六氢番茄红素和八氢番茄红素的测定 高效液相色谱法》(征求意见稿)附件二:《团体标准征求意见反馈表》联系人:郭燕茹联系电话:18018674491电子邮箱:ssfs_office@163.com 上海市食品学会2023年10月12日关于《番茄及其制品中六氢番茄红素和八氢番茄红素的测定 高效液相色谱法》团体标准征求意见函.pdf番茄及其制品中六氢番茄红素和八氢番茄红素的测定 高效液相色谱法(征求意见稿).pdf《番茄及其制品中六氢番茄红素和八氢番茄红素的测定 高效液相色谱法》征求意见反馈表.doc
  • 韵鼎公司推出国内首套专用番茄红素软件
    经过三年时间在中国新疆,内蒙等众多番茄酱厂的跟踪实验和数据采集,上海韵鼎国际贸易有限公司正式推出国内首套也是唯一的一套番茄红素专用软件。与另外的美国HunterLab的测色软件结合以后,两套软件实现对番茄产品的所有颜色检测要求。本软件每年升级,以满足不同产地番茄的质量变化需要。该软件已经过新疆商检,内蒙商检,冠农股份和中粮集团等知名检测机构和生产企业的全面验证和认可,弥补国内乃至世界上该检测指标的空白。
  • 你眼里的西红柿,在拉曼看来只不过是番茄红素罢了
    p    strong 你眼中的红色 /strong /p p   最近德国的一项研究表明,和HPLC相比,表面增强拉曼光谱技术可以更好地研究食物中的类胡萝卜素和微量元素。 /p p   抗氧化剂对人类健康是否真的会有益处呢?这个争论到现在依然存在,尤其是人们认为遵循水果和蔬菜中高度着色色素膳食补充元素可以对人体有积极的作用。西红柿富含的番茄红素当中含有大量的红色素,人们认为这种化合物总体来说对人体有益处,尤其是食用大量的西红柿可以预防前列腺癌的发生。 /p p   来自德国耶拿大学的科研人员在Analyst杂志上发表了一片文章帮我们弥补了关于番茄红素和其他类胡萝卜素的知识。尽管我们对番茄红素和β胡萝卜素的了解很多,但是对于植物相中的这些化合物却知之甚少。因此他们借助表面增强拉曼光谱技术(SERS)寻找这些植物当中类胡萝卜素的差别。 /p p strong   关于摄入量 /strong /p p   科研团队建造了一种模拟矩阵,简单的将两种特定比例的类胡萝卜素混合,之后使用电子束曝光SERS有源衬底和488纳米激励源进行样本的探索。他们从真实的番茄植株中提取类胡萝卜素并对其进行了测量,然后使用主成分分析和偏最小二乘回归法对数据进行统计分析。他们将使用SERS方法得到的样本与HPLC测量得到的提取物进行比较。大多数番茄样本通过HPLC和SERS两种方式得到的结果之间找到了一致性。 /p p   之所以说这种技术及其重要,是因为尽管现在科学家已经掌握了600多种已知的类胡萝卜素,但是仅仅有50%会出现在人们的日常饮食当中,而且在这50%当中仅有很少一部分类胡萝卜素可以从人体的血浆当中检测到,这就是我们平时所说的α和β胡萝卜素、β隐黄素、番茄红素,叶黄素和玉米黄质。如果这些化合物真的对人体有益,那么我们好像真的缺少这些化合物的摄入。 /p p   通过代谢活动,一些类胡萝卜素是形成维他命A的维他命原,但一些类胡萝卜素有自己的氧和自由基清除性能。如果来自鱼油、动物肝脏和蛋类食物的维他命不能总是满足我们对此类维生素的需求的话,那么我们的发现就会显得非常重要。番茄红素本身,5或6类胡萝卜素通常在血浆中可检测到,他们是最有效的中和活性氧。在癌症扩散期间,中和活性氧可以有效的组织或减少癌症细胞的扩散。而吸烟和酗酒对身体造成的不利影响据说是因为摄入过量的类胡萝卜素所引起。 /p p strong   让我们取悦SERS技术吧 /strong /p p   因此从健康饮食的角度,我们必须保持饮食规律的平衡,为了达到这种平衡我们必须拥有关于我们所食用食物的成分和质量的详细信息。研究团队指出,HPLC是衡量食物中所含物质的“黄金标准”分析技术。但是HPLC技术不仅复杂缓慢而且费用昂贵,而SERS技术却可以提供区分现实世界样本中类胡萝卜素的优势。使用HPLC技术和SERS技术对不同成熟程度的番茄进行的测试结果之间达成了很好的一致性,这也为SERS技术的进一步开发提供了奠基。 /p p br/ /p
  • 技术解读:给药系统的脂质体表征
    马尔文仪器公司的高级应用科学家Pauline Carnell和技术支持经理Mike Kazsuba探讨了纳米颗粒跟踪分析技术以及光散射技术在表征脂质体作为药物载体中的应用及效果。   脂质体是一种重要的给药载体,已获批用于多种治疗配方。脂质体由磷脂质组成,具有单层或多层结构,拥有亲水内层和疏水外层,可制成不同大小的颗粒。这些颗粒可进行生物降解,基本无毒。最为重要的是,它既能封装亲水物质,又能封装疏水物质。此外,通过修饰脂质体表面,还可对特定生理部位进行靶向给药,延长脂质体在体内的留存时间,并可用于设计诊断工具。   正如其他类似的研究,应用脂质体的关键在于确保其物理特性与用途相符。例如,脂质体进入人体后会如何反应?脂质体是否足够稳定从而保证靶向性?粒度是否适合临床应用,或者是否会在血液循环中消失?   了解脂质体制剂的粒度、浓度和zeta电位能帮助人们预测它在生物体内的变化趋势,而带电脂质体与相反电性的分子关系也能通过测量两者产生的聚合物的zeta电位进行监控。这些因素对药物传输的有效性具有显著影响,尤其是当药物配方研究员认为某种脂质体适合传输载体时,应综合考虑以上因素。因此,能提供全面数据的分析系统对配方设计过程大有裨益。纳米颗粒跟踪分析技术和动态光散射技术正是其中两种重要的分析方法,为脂质体研究提供重要信息。   纳米颗粒跟踪分析技术   纳米颗粒跟踪分析技术(NTA)使用激光散射来检验溶液中的纳米粒度。使用该分析方法,研究人员能够观察到单个粒子并跟踪其布朗运动轨迹,从而基于单个粒子在短时间内快速制出每个粒子的粒径分布图。 图1:纳米颗粒跟踪分析技术效果展示图   使用科学数码摄相机可以捕捉溶液中颗粒的散射光,仪器软件可逐帧跟踪每个颗粒的运动轨迹。 图2: 图中光点为布朗运动中的粒子   颗粒的运动速度与由斯托克斯-爱因斯坦方程计算出来的球体等效流体力学半径相关。NTA技术能逐粒计算粒度,且因有影像片段作分析基础,用户可精确表征实时动态。 图3:斯托克斯-爱因斯坦方程   NTA技术能让研究人员在同一时间观察单个纳米颗粒,因此除基础的粒度分析以外,还能测定每个脂质体的相对光散射强度等。将数据结果与另行测得的粒度数据绘成坐标图,能够更加细致地分辨出由不同折射率(RI)或材料构成的颗粒。凭借这一独特功能,研究人员可探究纳米级药物输送载体(如脂质体)所封装的内容是否有所不同:空心脂质体的折射率(光散射能力)可能低于载有较高折射率物质的脂质体。这样的差异让人们得以区分大小相似的脂质体。此外,NTA的单个粒子检测系统使得颗粒浓度测量成为可能。   粒度和zeta电位   脂质体与细胞在体内发生作用的位置很大程度上是由脂质体的粒度决定。掌握脂质体制剂的zeta电位有助于预测脂质体在体内的变化趋势。颗粒的zeta电位是指颗粒在特定媒介中获得的总电荷。以基因治疗为例, zeta电位的测量可用于优化特定脂质体与各种DNA质粒的比率,从而将配方的聚集度降到最低。 图4:阳离子脂质体(带正电)与DNA(质粒)的络合   动态光散射(DLS)是一项相对成熟的、广泛应用的脂质体表征技术。此外,由于zeta电位也是一项重要参数,能够同时测量粒度和zeta电位的分析系统也日渐普及,马尔文仪器公司的Zetasizer Nano系统正是其中之一。一般而言,研究人员使用动态光散射技术测量粒度,采用激光多普勒微电泳技术测量zeta电位。   由颗粒布朗运动产生的光散射也是DLS技术的核心所在。DLS技术测量散射光强度随时间变化产生的波动,并确定颗粒的扩散系数。在此基础上利用斯托克斯-爱因斯坦方程将数据转化为粒度大小分布情况。   使用激光多普勒微电泳技术测量zeta电位时,向分子溶液或颗粒分散液施加电场,这些颗粒便会以一定的速率移动,而该速率正与zeta电位相关。通过测定该速率能够计算出电泳迁移率,并据此算出颗粒的zeta电位和zeta电位分布。   结论   脂质体的物理表征对于理解脂质体在各种应用中的适用性十分重要,快速、可重复的表征是研发及质量管控过程中的一个重要考虑因素。本文介绍的技术能够提供脂质体制剂的粒度、浓度、zeta电位等补充信息。(结束)   作者:马尔文仪器公司高级应用科学家Pauline Carnell、马尔文仪器公司技术支持经理Mike Kazsuba   联系地址:   Malvern Instruments Ltd   Grovewood Road, Malvern   Worcestershire WR14 1XZ UK   T: +44 (0) 1684 892456   F: +44 (0) 1684 892789   www.malvern.com
  • 新芝生物丨超声技术在脂质体制备中的应用研究
    01研究背景1.1脂质体脂质体是一种微型泡囊体,能将药物包封于脂质双分子层内,具有靶向、缓释、降低药物毒性等诸多优点,迄今已经在制药、医疗、生物化学、食品科学、化妆品等多领域广泛应用。评价脂质体质量的指标有外观、粒径分布和包封率等,制备方法不同,脂质体的粒径、结构都不尽相同。脂质体在不同领域应用,粒径是衡量脂质体内在质量的一个重要指标,探头式超声由于操作简便,已成为制备脂质体主要制备方法之一,但是由于超声条件的不同,制备的脂质体没有很好的重现性。影响超声效果因素包括输入功率、作用时间、超声频率等,通过控制这些因素,可以控制脂质体粒径的变化,从而得到理想大小的脂质体。02实验方法2.1脂质体的制备采用逆向蒸发法制备脂质体,精密称取一定量的卵磷脂、胆固醇、α-生育酚适量混合溶于一定量氯仿中,将脂质溶液移入250mL圆底瓶中,氮气中45℃恒温水浴减压去除有机溶剂,直至形成干燥脂质薄膜,待有机溶剂完全去除,停止旋转,从水浴中提起圆底瓶,加入一定浓度的PBS(pH6.5)溶液旋转洗膜,在45℃水浴中水合2h即形成乳白色脂质体混悬液。2.2脂质体溶液的超声方法图1为本实验所用超声装置,钛探针直径为1.5cm,反应池为一个开放的玻璃烧杯(直径3cm,高度7.5cm),冰水浴超声。实验设置20%、30%和40%三个功率百分比,超声处理脂质体,超声仪探针距杯底深度分别设置为1.5和3.0cm。15ml脂质体按上述条件针式冰水浴超声,超声5次,每次时间为4mim(单次超声30s,间隔30s)。超声完成后,关闭超声使容器冷却,用0.22μm微孔滤膜过滤除去钛颗粒杂质。激光粒度仪分析超声对脂质体粒径分布及对分散系数的影响。a:钛探针(直径1.50cm);b:烧杯(直径3cm,高7.5cm);c:大烧杯(直径7cm,高90cm);d:脂质体混悬液;e:冰水浴;x:探针与烧杯底部距离03实验结果3.1超声功率对脂质体粒径的影响不同输入功率,超声时间为20min,脂质体超声后平均粒径及粒径范围分布见附表。结果表明,随着超声功率的增加,脂质体粒径变小,粒径分布范围变窄,说明高功率超声得到的脂质体粒径更均匀。图2为磷脂含量为10mmol/L脂质体超声前后粒径图,超声之前(图2A)脂质体粒径呈单峰分布,平均粒径为300nm左右,随着超声时间的增加,超声20min后能明显观察到粒径变小,粒径分布变窄,见图2B,超声功率为40%时,20min后获得粒径约为70nm左右的单峰分布的脂质体。附表超声输入功率对脂质体粒径及粒径分布影响A:超声前脂质体粒径分布图;B:超声20min后脂质体粒径分布图,输入功率40%;超声时间20min;磷脂含量10mmol/L3.2超声时间对脂质体粒径的影响如图3所示,超声功率分别为20%、25%、30%、35%、40%,增加超声时间,磷脂含量为10mmol/L的脂质体粒径变化,结果显示,随着超声时间的增加,脂质体粒径减小,直到20min时得到一个稳定的脂质体粒径,不再发生变化。为了证实超声时间足够形成稳定的脂质体粒径,增加超声时间到25min,考察脂质体的粒径分布。3.3超声时间对脂质体粒径的影响设定中高低三个超声输入功率20%、30%和40%,烧杯底部和探头的距离分别为10和15mm。在不同的超声功率和深度下,超声时间不同,得到不同粒径的脂质体。图4显示的是磷脂含量为10mmol/L的脂质体,应用超声功率分别为20%、30%和40%,粒径随超声时间的变化图,结果表明,随着超声时间的延长,脂质体粒径降低,直到超声时间为20min,脂质体粒径不在变化,从图中还可以看出,随着超声功率的增加,脂质体粒径降低。应用不同的超声时间和不同的深度,获得的脂质体粒径也不同。考虑到连续的超声时间和功率,深度为15mm时,获得的脂质体粒径更佳。15mm与10mm探针深度获得的脂质体粒径并没有明显区别,然而在10mm时,脂质体空化现象更为明显,促进羟基自由基的形成,造成脂质体成分中磷脂的氧化。15mm深度时磷脂发生氧化的机率更低。这点在应用不饱和磷脂制备脂质体时尤其重要,因为不饱和磷脂容易氧化。从图中可以看出,功率越高,超声得到的脂质体分散系分散得越均匀,随着功率的增加,粒径和分散率降低,但超声时间过长,超声探头会释放更多钛颗粒杂质,造成污染。因此,超声条件为探针深度为15mm、超声功率为40%,超声时间为20min时,得到的脂质体粒径和分散度最好。A:磷脂含量为10mmol/L,超声功率分别为20%、30%和40%时粒径及分散性随超声时间的变化(探头深度10mm);B:磷脂含量为10mmol/L,超声功率分别为20%、30%和40%时粒径及分散性随超声时间的变化(探头深度15mm)04讨论4.1新芝生物全球样品制备专家超声波是由一系列疏密相间的纵波构成的,并通过液体介质向四周传播。通过研究脂质体制备过程中超声对其影响,来达到控制脂质体性质的目的,实验结果表明,影响脂质体粒径分布范围和zeta电位的三个超声参数分别为:超声深度、功率输入和超声时间。因此,为获得的均一性较好的脂质体应该从此三方面进行探索。新芝生物作为全球样品制备专家,深耕超声技术多年,产品功能齐全,超声产品具有功率调控、时间调控和超声深度调控等多方面功能。从用户实际需求出发,能够为用户提供高效率、高性价比的产品和解决方案。
  • 低电压、无负染,以“柔”克刚!脂质体、囊泡成像福音,生物型透射电镜LVEM
    脂质体—高效的载药颗粒-----以无厚入有间,游刃有余 脂质体是一类由双层脂质分子结构的封闭囊泡型人工膜。由于其和细胞膜的脂质双分子层有高度相似的特性,脂质体可以与细胞膜相融合,从而将其囊泡内包裹的载物释放到细胞内。利用这一特性,研究者们克服了传统药物递送中的诸多障碍,得以将药物分子/颗粒包裹在脂质体中,直接将药物递送到细胞内部,使之成为了一类高效的药物载体。尤其在近期的新冠疫情中,各类mRNA疫苗纷纷采用了脂质体作为递送载体,有效地避免了核酸被降解,提高了mRNA进入细胞的效率。脂质体的应用使得mRNA疫苗真正成为了一种稳定、高效可以广泛使用的疫苗,也促进了脂质体研究的广泛开展。 在脂质体的应用研究中,质量控制往往为重要也为困难的一环。脂质体的质量(如其包封率、载药率与稳定性)很大程度上取决于其囊泡的结构是否均匀、稳定,这就需要研究人员对脂质体进行透射电镜成像,来直接观测脂质体的囊泡结构、粒径等形态信息。传统生物样品透射成像的桎梏------刚者易折,过犹不及 随着科研的进步,人们对成像仪器的要求与日俱增。但是即便在高分辨成像设备多如牛毛的今天,生物样品的透射电镜成像却一直是一个难题。所谓“电镜易得,样品难求”,如何制得一个无损的电镜样品从而拍摄到清晰、高反差的生物样品图片,一直是生物样品透射电镜成像中的大的难题,也是脂质体等脆弱的囊泡类生物样品在电镜成像中亟待解决的难题。 这个难题很大程度上是由透射电镜的高电压与制样中的染色/负染步骤导致的。 生物样品一般由C、H、O、N等原子序数较低的“轻质”元素组成,在传统透射电子显微镜高达120kV的高能电子束轰击下,很快就会被击穿甚至灰飞烟灭,不能留下任何图像。也就是说生物样品在传统的透射电镜成像中太过于“脆弱”,需要给这些样品穿上一层“盔”,这层盔就是用一些电子密度高的物质(如重金属盐等)对生物样品进行染色。而在本文中所说的脂质体等囊泡状的生物样品制样过程中,这个染色步骤就叫做“负染”。 负染是在使用传统透射电镜对生物样品成像时“不得不”采用的样品处理手段,但是负染的处理手段也会带来显著的问题: 、就是生物样品制样复杂,在制样染色过程中,样品容易产生收缩、膨胀、破碎以及内含物丢失等结构改变; 二、重金属盐离子本身会对生物样品的形貌造成不可逆的损害,这种损害在传统制样过程很难避免; 三、负染所得的“负像”并不能真实地反映生物样品的形貌特征,尤其对于脂质体等囊泡结构,囊泡表面局部凹陷,可能会有少量染液遗留在凹陷处,或者载网表面有负染液残留的痕迹等,这些负染液在电镜观察时就会产生“假象”; 四、对于制样操作者的要求较高,生物样品的种类多种多样,而每一种生物样品负染时佳的制样条件(重金属盐溶液的种类、浓度,染色的时间长短等)都不一样。这就需要制样人员根据各自实验室的条件,在长时间地摸索与多次地试错来获取佳的制样条件,大量宝贵的时间和样品就这样浪费在染色制样条件的摸索中了; 五、传统透射电镜操作复杂,维护困难,而实验平台的透射电镜往往一“时”难求,生物样品的佳观测时间往往较短,经常会出现获得好的生物样品,却发现电镜早要在一周后才能预约的尴尬局面; 后,即便已经采用了负染等手段,脂质体类的囊泡生物样品还是非常脆弱的,在成像过程中经常会出现囊泡被长时间电子流照射给“轰碎”的状况,这就迫使操作者加快操作速度,更加手忙脚乱。摆脱传统电镜桎梏的生物型透射电镜------柔者易存,易低为高 Delong Instrument公司推出的LVEM生物型透射电子显微镜(LVEM5&25)采用了5kV与25kV的低加速电压设计,一次性地摆脱了上述所有的生物电镜成像难题,为生物样品的电镜成像提供为便捷高效的解决方案。 高衬度:低能量电子对有机分子产生更强烈的散射,具有更高对比度;无需染色:突破以往生物/轻材料成像需要重金属染色的局限性;高分辨率:无染色条件下能够达到1.5 nm的图像分辨率;多模式:LVEM5能够在TEM、SEM、STEM三种模式中自由切换;高效方便:真空准备只需要3分钟,空间小,环境需求低;易操作且成本低:友好智能化操作界面,低耗材,低维护费用,无需专业操作人员。 生物样品友好 -------柔者以利万物 LVEM生物型透射电镜采用的5kV与25kV低电压设计,对生物样品不会造成任何损伤,与传统高压电镜相比,低电压反而提高了生物样品成像的衬度/反差;无需重金属染液负染,对于脂质体等囊泡结构成像条件温和,摆脱了染液与负染过程本身可能对囊泡结构造成的损害,所得图像为“正像”,更加真实地展现囊泡的结构特征。 生物样品细节损失少------见微知著明察秋毫 如下图所示,传统高压透射电镜本身就会带来样品细节损失,在80-120kV下的透射电镜成像过程中,大量十几纳米尺寸的颗粒会直接被“击穿”。而LVEM生物型透射电镜采用的5kV与25kV低电压设计,不仅避免了传统高压透射电镜长时间照射对于生物样品的损害,还可以保留下更多地小有机颗粒图像,获得更多地细节。小型化设计,操作更加方便------芥子须弥内藏乾坤 传统透射电子显微镜体积庞大,对放置环境有严格的要求,并且需要水冷机等外置设备。通常会占据整间实验室。LVEM电镜从根本上区别于传统电镜,尺寸较传统电镜缩小了90%,对放置环境无严格要求,无需任何外置冷却设备,可以安装在用户所需的任意实验室或办公室桌面。操作界面智能化,更加方便。LVEM生物型电镜案例 LVEM生物型透射电镜对生物样品成像友好,除了脂质体之外,对于病毒颗粒、外泌体、噬菌体、DNA、细胞切片等生物样品的成像效果也非常,可以满足研究人员多样化的成像需求,且其操作简便,制样简单,是使生物科研工作者研究更加游刃有余的“科研利器”。部分用户单位:
  • 纳米流式颗粒成像分析仪在脂质体中的应用优势
    纳米流式颗粒成像分析仪是一种先进的单颗粒、多参数、高通量的纳米颗粒定量表征技术。这种分析仪特别适用于脂质体的研究,脂质体是由磷脂双层组成的封闭囊泡,被广泛应用于药物递送、基因治疗、生物成像等领域。下面我们将探讨纳米流式颗粒成像分析仪在脂质体研究中的应用优势。  1. 高分辨率的成像  纳米流式颗粒成像分析仪能够提供单个脂质体的高分辨率图像,这对于研究脂质体的形态、大小、分布等特征至关重要。通过获取清晰的图像,研究人员可以获得关于脂质体结构的直观信息,进而优化脂质体制备条件,提高其在药物递送中的效率。  2. 高通量分析  相比于传统的脂质体分析方法,如电子显微镜或激光动态光散射法,纳米流式颗粒成像分析仪能够以更快的速度处理大量样品,实现高通量分析。这对于筛选最优的脂质体配方或评估不同制备条件下的脂质体性能非常有用。  3. 多参数定量分析  纳米流式颗粒成像分析仪能够同时检测多个参数,如颗粒大小、荧光强度、表面标记等,这对于评估脂质体的功能性非常重要。例如,通过标记特定的表面蛋白或抗体,可以研究脂质体的靶向能力 通过检测荧光信号,可以评估脂质体的载药效率。  4. 实时监测  这种分析仪能够实时监测脂质体在不同条件下的变化情况,比如在不同温度或pH值下脂质体的稳定性,这对于理解脂质体的行为及其在体内环境中的适应性至关重要。  5. 操作简便  与复杂的电子显微镜相比,纳米流式颗粒成像分析仪的操作更为简便,不需要特殊的训练即可进行操作。这使得更多的实验室能够利用这项技术进行脂质体的研究。  6. 应用范围广泛  纳米流式颗粒成像分析仪不仅适用于脂质体的研究,还可以应用于病毒颗粒、外泌体等多种纳米级颗粒的分析。这为跨学科的研究提供了强大的工具。  纳米流式颗粒成像分析仪因其独特的高分辨率成像、高通量分析、多参数定量分析能力以及简便的操作方式,在脂质体研究领域展现出了显著的优势。这些优势有助于推动脂质体技术的发展,使其在药物递送、生物成像等方面发挥更大的作用。随着技术的不断进步,我们可以期待这种分析仪在未来脂质体研究中发挥更重要的作用。
  • 药物传输系统(DDS)中脂质体的测定
    1. 前言药物的传递系统DDS近年来备受人们的关注,人们期望利用它提高药物疗效。脂质体是一种基于双层膜的纳米囊状结构,由于它良好的生物安全性和对药物的容纳性,常作为DDS中的药物载体。图1 脂质体模型为了判断脂质体是否适用于药物传递系统(DDS),需要评估它的膜流动性和相变温度。常用的评估方法是在脂质体中引入荧光探针,测量荧光各向异性来评价膜的流动性和相变温度。 日立具有超高灵敏度和高扫描速度的荧光分光光度计,可以选配荧光偏振附件和控温附件,准确获取脂质体的荧光各向异性。 2. 应用实例样品:DPPC脂质体荧光探针:DPH/TMA-DPH附件:带有控温装置的样品池支架 荧光偏振附件仪器:日立荧光分光光度计 测量模式:定量分析图2 荧光偏振附件(左)和程序控温附件(右)使用荧光分光光度计和荧光偏振附件测定脂质体样品的荧光各向异性,对于相变变温度的确定,通过可编程控温样品池支架来逐渐改变样品温度,结果如图所示。图3 样品荧光各向异性随温度的变化在不同温度下的荧光各向异性测量结果证实,当温度高于42.5oC时,各向异性会发生变化。 该结果表明该脂质体的相变温度为42.5oC。3. 总结日立荧光分光光度计F-7100具有超高灵敏度和60000nm/min的扫描速度,而且可以选用多种附件,为生物领域的研发提供多种解决方案。
  • 《Small》:微流控混合器件实现一步式构建靶向脂质体
    脂质体是一种由磷脂分子在水相中自组装形成的球状泡囊体。脂质体具有良好的生物兼容性和低免疫原性,能够保护药物不被降解,是一种极具前景的药物递送载体。近年来,脂质体已经被广泛应用于肿瘤免疫治疗、基因治疗、多模态分子影像等领域。相比于常规的脂质体,靶向脂质体能够有效地改善药物的细胞摄取以及靶向富集能力,能够显著地提升药物递送效率。但是,常用的制备靶向脂质体的方法正面临着一些挑战,例如,操作复杂、耗时久、批次差异性大等问题。近期,中南大学湘雅医院皮肤科、中南大学机电工程学院等研究团队在《Small》(IF=15.153)期刊上在线发表题为 “ One-Step Formation of Targeted Liposomes in a Versatile Microfluidic Mixing Device ” 的原创性论著。该研究提出了一种基于微流控混合器件的靶向脂质体的一步式合成方法,成功实现了多种靶向脂质体的高通量、高可控性制备。使用微流控混合器件制备的靶向脂质体,在光声成像、小动物活体成像、光热治疗等研究中都表现出了优异的靶向性能。据悉,这项研究的第一作者和第一通讯作者单位均为中南大学。20级博士研究生单晗和20级硕士研究生孙鑫为该论文共同第一作者;中南大学湘雅医院皮肤科陈翔教授、赵爽副研究员和中南大学机电工程学院陈泽宇教授为共同通讯作者。 首先,作者基于靶向脂质体的制备流程筛选了微流控混合器的组合方案,提出了微流控混合器件实现靶向脂质体的一步式合成策略。然后,作者使用高精度3D打印技术(nanoArch S140,摩方精密)制作了微流控混合器件(MMD)。 图1 微流控混合器件(MMD)制备靶向脂质体策略图2 微流控混合器件(MMD)制造随后,作者对脂质体的组分、反应机理进行了设计,选择了吲哚菁绿(ICG)作为模型药物以及靶向PD-L1的适配体作为靶向基团,在MMD内发生混合后,巯基修饰的适配体和功能辅料DSPE-PEG-Mal发生共价结合,最终将适配体修饰到脂质体的表面(Apt-ICG@Lip)。 图3 一步式合成靶向脂质体Apt-ICG@Lip反应机理接下来,作者对靶向脂质体Apt-ICG@Lip的性质进行了测试,包括脂质体的粒径分布、重复性、稳定性、包封率、形貌、细胞毒性、适配体结合效率等。结果显示,使用微流控混合器件(MMD)制备的靶向脂质体Apt-ICG@Lip具有粒径小、批次重复性好、稳定性好、包封率高、低细胞毒性、适配体结合效率高等优点,适用于生物医学应用。图4 靶向脂质体Apt-ICG@Lip性质测试接着,为了验证靶向脂质体Apt-ICG@Lip的靶向性能,作者进行了光声成像(PACT)和小动物活体荧光成像研究。作者将高表达PD-L1的LLC肿瘤模型小鼠分为两组,实验组注射靶向脂质体Apt-ICG@Lip,对照组注射常规脂质体ICG@Lip。结果显示,靶向脂质体Apt-ICG@Lip具有更明显的肿瘤摄取和药物富集能力。 图5 靶向脂质体Apt-ICG@Lip光声成像和小动物活体成像研究接着,作者进一步进行了光热治疗研究。作者将LLC肿瘤模型小鼠分为PBS、ICG@Lip、Apt-ICG@Lip三组,在注射药物后分别使用808 nm激光进行照射,观测肿瘤的体积变化,并使用免疫组化和免疫荧光评估了肿瘤的治疗效果。结果表明,Apt-ICG@Lip由于具备主动靶向能力,具有更好的光热治疗效果,也进一步验证了MMD构建的靶向脂质体的性能。 图6 靶向脂质体Apt-ICG@Lip光热治疗研究最后,作者为了验证MMD构建靶向脂质体的通用性,进一步制备了多种不同用途的靶向脂质体。除了吲哚菁绿(ICG)外,作者还选择了FITC、NHWD-870和亚甲基蓝(MB)作为模型药物,并使用MMD制备了一种anti-Her2抗体修饰的靶向脂质体。作者使用Apt-FITC@Lip进行了细胞实验。结果表明,高表达PD-L1的细胞和Apt-FITC@Lip具有更明显的结合效果。 图7 靶向脂质体Apt-FITC@Lip细胞实验该工作提出的微流控混合器件(MMD)一步式构建靶向脂质体的方法,适用于多种靶向脂质体的制备,在靶向药物递送系统(分子成像、肿瘤治疗等)研究中具有巨大的应用前景。
  • 全国特殊食品标准化技术委员会发布国家标准《保健食品中番茄红素的测定》征求意见稿
    国家标准计划《保健食品中番茄红素的测定》由 TC466(全国特殊食品标准化技术委员会)归口 ,主管部门为国家市场监督管理总局(特殊食品司)。主要起草单位 中轻技术创新中心有限公司 、中国食品发酵工业研究院有限公司 、北京市疾病预防控制中心 、中轻检验认证有限公司 。附件:国家标准《保健食品中番茄红素的测定》征求意见稿.pdf国家标准《保健食品中番茄红素的测定》编制说明.pdf
  • 质谱成像新科研动态:髓鞘疾病脑脂质体空间分布和组成变化定义
    美国 Abbvie (Cambridge)、Biogen 和 Moderna Therapeutics 生物技术公司*联合在最近一期的 JHC 期刊 (Journal of Histochemistry & Cytochemistry 2019, Vol. 67(3) 203–219) 发表了髓鞘疾病脑脂质体空间分布和组成变化定义的研究论文。本文的主要作者之一李晓萍(音译)是 Biogen 的研究人员,她带领的研究小组使用solariX MALDI 高分辨质谱成像(MALDI-IMS)、免疫组织化学(IHC)和液相色谱-电喷雾-质谱法(LC-ESI-MS)评价由 Shi 和 Cz 小鼠模型构建的髓鞘疾病的脑脂质成分变化。MALDI-IMS 结果显示出磺胺肽和磷脂酰胆碱物质在胼胝体白质区域空间分布减少,而在 Cz 小鼠模型中,这些脂质物种的变化在发病后得到一定程度的自发恢复。通过 IHC 肯定了脂质分布变化和局部形态变化的相关性,同时也被 LC-ESI-MS 分析所验证。这些发现强调了磺胺肽和磷脂酰胆碱物质在维持正常髓鞘结构中的作用。Biogen 的方法为定义髓鞘疾病相关的脂质组成异常提供了形态学基础。*Biogen 是位于马萨诸塞州剑桥的神经科学研究公司, 主要从事重度神经性和神经退行性疾病的发病机理和治疗方法研究,Moderna 和 Abbvie 分别是 mRNA 个体治疗方案和生物医药开发的公司。
  • 甘肃检验检疫局专利技术巢式NEST-PCR试剂盒为番茄快速“体检”
    2010年6月12日,甘肃检验检疫局技术中心外繁种子检疫重点实验室一项技术发明———检测番茄溃疡病菌的巢式NEST-PCR试剂盒获得国家知识产权局专利授权。   这项凝聚着技术人员心血、耗时3年的实用新型专利,揭开了该局外繁种子检疫重点实验室解决种子检疫关键技术的序幕。   科研团队   科技攻关   ■检测灵敏度高 ■检测周期短 ■检测稳定性强 ■检测成本低   亚洲最大的制种基地:璀璨明星   河西走廊,闻名于世的古丝绸之路,戈壁千里,人烟稀少。祁连山雪水,养育着这个横亘中国西北的狭长地带上的数百万农牧民。在一个个建立在沙漠上的绿洲里,20多年前,开始形成了一个特殊的产业———制种业。年降雨不过200毫米,充足的光照、明显的昼夜温差、一望无际的荒漠隔离,这正是各种农作物制种得天独厚的条件。外商纷至沓来,他们带着原种,在这块土地上扩大繁殖之后,又出口到世界各地,历时20余年。到2009年,河西三地区(武威、张掖、酒泉)已有46家种子公司承担了欧洲、美国等全球25个国家和地区30余个境外公司的制种业务,2009年底繁育蔬菜、瓜类、花卉5万亩,品种100多个2000余个组合,年产值约7000万美元,种苗进出口规模占全国种苗出口的50~60%以上,全球10大种子公司中,有四大种子公司在河西走廊均有大规模制种业务。这些耀眼的数字,奠定了甘肃河西走廊作为亚洲制种行业老大的地位。   如今,夏天的河西走廊,绿叶千里、鲜花遍地。来自世界各地的种子,在这里开花结果,而这里生产的种子,又进入了全世界各地的城市花园和百姓餐桌。制种业,成了继敦煌莫高窟、酒泉卫星发射基地之后又一张甘肃名片。   专利证书   现场采样   有害生物入侵:不容小觑   祸兮福所倚,福兮祸所伏。种子———这种各种危险性病害远距离传播的最重要媒介,在给河西走廊带来欣欣向荣、蓬勃向上的特色产业的同时,也带来了“特色的”外来有害生物,威胁着我国的农业生产安全。   为了遏制有害生物随种子入境传播,20多年来,甘肃检验检疫局植检技术人员,时刻从实验室到田间跟踪着这些潜在的有害生物。自甘肃设立动植物检疫局以来,累计田间调查100余次,检测各种进口种子5000批次,检测各种植物病原细菌、病毒、真菌等有害生物60000余个,发现各种种子传播病害150余种,其中实验室截获的植物高风险病害如烟草环斑病毒、黄瓜绿斑驳病毒、番茄溃疡病菌、番茄疮痂病菌、小西葫芦黄花叶病毒等50余批次,普通种传病害100余批次。   以检测带动科研以科研带动平台   种传病害的最大特点,就是种子带菌(毒)率不足10%,也就是说100粒种子中,可能带菌(毒)的种子,不足10粒,事实上,大多数种传病害,种子带菌(毒)率仅有1~3%,要从100粒种子里,检测到1~3粒的带菌(毒)种子,其难度不亚于大海捞针。   虽然病原检测技术突飞猛进,各种高灵敏度的检测方法层出不穷,但是作为繁殖材料的种子,由于样本量、检测周期的限制等因素,种子检测的难度和工作量可想而知。   既要保证种子不带病下地,严把国门,又要保证不违农时,促进种子国际贸易,甘肃的检验检疫部门,面临着一个两难的选择。研究快速、准确、灵敏的种子检测技术,成了甘肃局外繁种子重点实验室亟待解决的问题。   实验室制定了“横向联合科研院所,挖掘自身潜力,加强种子病害检测技术研发”的研发策略,以提高现有检测技术灵敏度为切入点,尽可能降低种子带病入田。   实验室主任刘箐博士和兰州大学、甘肃农业大学、同济大学等科研院所合作,兼职硕士生导师招收研究生,专业从事种子病害检测技术的研发。番茄溃疡病菌,这种全球植物检疫部门重点盯防的危险性病害,成了检测技术研发的首选。   2006年开始,由刘箐博士领衔的研究团队逐渐组建起来,开始了番茄溃疡病快速、超灵敏检测技术的研发。从此以后,这个研究小组成了整个技术中心最忙碌的团队。位于甘肃局10楼的种子实验室,晚上10点仍然灯火通明,盒饭成了团队的家常便饭。   一份耕耘一分收获,经过三年的不懈努力,种子实验室建立了8种快速检测方法,并从检测灵敏度、检测周期,检测稳定性及检测成本等角度,筛选出四种快速、超灵敏检测技术,其检测灵敏度,比常用的酶联免疫高出10~10000倍,且检测快速、成本低廉、结果稳定,目前已经全部运用到检测实践上。以前常规方法无法检测到的病害,这些新技术和新方法的运用,近乎完美地解决了问题,大大提高了病害的检出率。   2009年,实验室截获各种有害生物58批次,不仅居于全系统种苗检疫截获率之首,也创下了实验室建立以来截获有害生物的最高纪录。   这种技术创新研发策略,不仅解决了番茄溃疡病的检测灵敏度问题,而且辐射到了其他种子病害检测技术的研发上。在不远的将来,将会研制出一种用一份检测样品,检测所有种子病害的生物芯片,逐渐建设“植物病原的生物芯片检测技术平台”。   此外,由于目前国内植物检疫所用抗体,全部依赖于国外进口,2009年开始,实验室又开始了“单克隆抗体制备技术”研发,目前已经获得番茄溃疡病单克隆抗体三株,期望在未来的几年中,建立“植物病原单克隆抗体生产平台”,逐渐做到种子病害检测抗体国产化。   链接   一个人的实验室变成八人团队   1999年“三检合一”的时候,原植物检疫实验室仅有一人和数台显微镜,大量的种子检测业务无法开展。2003年,甘肃局党组深入调研后,当即拍板自筹资金,投建500平方米的种子检疫实验室,其中建设洁净实验室250平方米,从此以后,种子实验室的建设拉开了序幕。   2004年,购进基本设备50余万元 2005年改造普通实验室,同时投建全自动日光隔离温室一个,引进专业硕士两名 2007~2009年间,购买各种大型设备十余台,价值达400余万元。在硬件大刀阔斧投入的基础上,实验室人员也由以前的一人增加到目前的8人,其中博士1名,硕士3名,实验员(本科)5人。种子检疫步入了快速发展的快车道。   目前,实验室设细菌组、病毒组、真菌组、害虫组、品质组、杂草组6个检测及科研小组,检测项目涉及植物病毒34种,细菌6种,真菌15种,进出口种苗检测检验业务量和检测水平均处于全系统前列。   “技术专利的申请,只是种子检疫技术创新的一个序幕,我们还有很多的种子检测技术正在申请专利或者授权”,对此次授权的技术专利,专利持有人、外繁种子检疫重点实验室主任刘箐博士轻描淡写地说。这位放弃国外优厚待遇,毅然回国从事检验检疫事业的年轻海归博士,这位兰州大学的兼职教授、甘肃农业大学和兰州大学两所大学的兼职硕士生导师提出,甘肃局外繁种子实验室在种子病害检测方面虽然已经取得了骄人的成绩,但是要达到国外同类实验室的技术水平,还有很长的路要走。
  • 新疆制定番茄酱检测行业标准
    新疆番茄制品产量占全国总量的90%以上,但由于检测手段不统一,效率低、准确性不高,番茄酱出口遭遇了越来越多的技术壁垒。日前,由新疆科技工作者研究出的《番茄酱中主要腐败微生物的检验方法》已成为国家质量监督检验检疫总局批准发布的行业标准,将于明年3月16日正式实施,为企业建立番茄酱产品的微生物安全预警机制提供技术支撑,大大提高了新疆番茄酱产品的质量和国际市场竞争力。
  • 韵鼎集团参加2012第四届中国番茄酱.果酱产业博览会
    上海韵鼎国际贸易有限公司作为美国HunterLab颜色管理公司的中国区唯一战略合作伙伴和代理将参加于2012年4月13日至15日在上海光大会展中心举行的2012年第四届中国番茄酱,果浆产业博览会。公司将展示番茄酱行业颜色检测的唯一符合国际标准的具备分光原理两款设备HunterLab LabScan XE和ColorFlex EZ以及专用的番茄红素检测软件,折光仪等。欢迎光大的番茄酱客户光临展台。
  • 广东省农业标准化协会立项《番茄中7种真菌毒素的检测 高效液相色谱-串联质谱法》团体标准
    各相关单位:根据《广东省农业标准化协会团体标准管理办法》的相关要求,2023年8月2日-8月9日,广东省农业标准化协会对《番茄中7种真菌毒素的检测 高效液相色谱-串联质谱法》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述所申报的团体标准符合立项条件,现批准立项。请制标单位严格按照相关要求抓紧组织实施,严把标准质量关,切实提高标准编制的质量和水平,增强标准的适用性和有效性。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。特此公告。 联系人:钱波 电 话:020-85161829 电子邮箱:gdnybzh@163.com广东省农业标准化协会2023年8月9日粤农标协字〔2023〕31号广东省农业标准化协会关于《番茄中7种真菌毒素的检测 高效液相色谱-串联质谱法》团体标准立项的公告.pdf
  • HunterLab再次点燃番茄酱行业热火
    第三届中国番茄酱博览会于2011年4月27-29日在上海光大会展中心举办 上海韵鼎公司携美国HunterLab公司参加了本次展会 我们展示了HunterLab的两款专用番茄酱色差仪--LabScan XE-Tomato及ColorFlex EZ-Tomato 同时展出的还有整个番茄酱实验室的打包产品,如Atago浓度仪、粘度仪等等 HunterLab中国区经理Eric Lau先生莅临了本次展会,并给予高度评价 韵鼎中国市场部021-61455229 销售部021-61455225 服务部021-61455221
  • 新疆诞生我国首台自主知识产权番茄切分机
    新疆维吾尔自治区农科院农机化研究所日前透露,我国第一台具有自主知识产权的番茄切分机近日在新疆诞生。   新疆农科院农机化所研究员梁勤安介绍,番茄切分机装有番茄自动定向装置,不仅可准确地将番茄一分为二,获得完整均匀的果瓣,满足制干番茄切分的工艺技术要求,且保证了番茄切割面平整,使果肉及汁液损失降至最低。   据测定,该机定向切分准确率可达90%以上,果肉损失率控制在2%以下,每小时可切分番茄2.5吨,节省劳力40人至50人。   据悉,制干番茄的加工生产是新疆近年来发展起来的新兴产业,产品主要出口欧美及俄罗斯等国家和地区。切分是制干番茄加工过程中一道最重要的工序,长期以来,新疆制干番茄的切分主要依靠人工,效率低、损失大、卫生条件差。
  • 宁夏化学分析测试协会立项《植物源性食品中番茄源性成分的检测 实时荧光PCR法》团体标准
    各相关单位:根据《宁夏化学分析测试协会团体标准制定程序》的有关规定,由宁夏回族自治区食品检测研究院申请的《植物源性食品中番茄源性成分的检测 实时荧光PCR法》团体标准,经我会评审符合立项条件,现批准立项。请起草单位按照要求,严格把控标准质量关,切实提高标准制定的质量和水平,增加标准的适用性和实效性,按期完成标准编制的相关工作。联系人:张小飞电话: 13995098931地址:宁夏银川市金凤区新田商务中心413室邮箱:1904691657@qq.com 2024团标立项公示9.5.pdf
  • 欧盟拟放宽番茄中8-羟基喹啉的最大残留限量
    近日,欧洲食品安全局就放宽番茄中8-羟基喹啉(8-hydroxyquinoline)的最大残留限量发布意见。   依据欧盟委员会(EC)No396/2005法规第6章的规定,西班牙收到一家公司要求修订番茄中8-羟基喹啉的最大残留限量的申请。为协调8-羟基喹啉的最大残留限量(MRL),西班牙建议对其残留限量进行修订。   依据欧盟委员会(EC)No396/2005法规第8章的规定,西班牙起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。   欧洲食品安全局对评估报告进行评审后,做出如下决定:建议将番茄(商品代码:0231010)中8-羟基喹啉的最大残留限量放宽至0.1mg/kg(现行标准是:0.01mg/kg)。
  • 单颗粒ICP-MS助力复合氧化物铁酸锰(MnFe₂O₄) 纳米材料诱导番茄提早开花的分子机制研究
    原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼 刘莉ENMs 在农业生产中,开花时间直接控制着果实数量和质量,提早开花通常伴随着高授粉率,意味着营养周期更短,可以最大限度地减少非生物迫害(例如气候变化与干旱)对农业生产的不利影响。如何控制开花时间也被认为是“植物科学的100个重要问题”之一。人工纳米材料(ENMs)在提高农业生产方面显现出巨大潜力。ENMs的小尺寸效应能使它们跨越生物屏障(植物气孔大小约为10~100μm),通过叶面或根部扩散至植物脉管系统,从而提高作物水分利用、增加养分吸收、诱导抗氧化、增强光合作用和促进开花等代谢过程,最终显著提升农业生产力。目前已陆续有文章报道了ENMs对高等植物生殖生长,包括开花过程的影响,然而ENMs诱导作物生殖生长改变的机制,尤其是初始植物激素的信号传送和代谢机制仍不清楚。江南大学环境与土木工程学院Le Yue,Yan Feng等以复合铁酸锰(MnFe2O4)ENMs和番茄作为研究对象,围绕 ①MnFe2O4 ENMs进入番茄叶片并促进光合电子传递的潜力;② MnFe2O4 ENMs对赤霉素(GA)的调节作用和对开花基因表达的诱导作用;③ 番茄果实产量和品质的采后变化等方面展开了深入研究,为揭示ENMs对作物生殖生长的作用机制提供了重要认知。相关研究的成果发表在ACS NANO期刊。 (点击查看大图) 01单颗粒ICP-MS的应用单颗粒ICP-MS技术是一项新兴的纳米颗粒检测技术,可以用于ENMs在植物体内的富集转化和迁移研究。相对于TEM、SEM、DLS等ENMs的传统表征手段,单颗粒ICP-MS(SP-ICP-MS)可以快速、同时获得ENMs的成分、粒径分布、颗粒浓度及离子浓度等参数信息,目前已越来越多地被应用于各种ENMs的表征研究。 (点击查看大图) 本研究使用了赛默飞iCAP TQ SP-ICP-MS分析技术,测定了叶片表面、角质层和内部叶片片段中的MnFe2O4ENMs的含量,明确了ENMs的有效接触和吸收规律;测定了番茄果实中的ENMs的含量,探究了铁(Fe)在果实中可能的存在形式。 (点击查看大图) 02番茄叶片ENMs的测定通过去离子水浸泡和涡流的方式回收叶片表面的ENMs。收集的溶液用“surface”表示,将经过水洗的叶片转移到35%(v/v)HNO3中,静置15min,以溶解角质层,收集的溶液用“cuticle”表示,剩余的叶片组织以“interior”表示。对于叶片内部,取 25 mg 的叶片组织,用去离子水清洗3次,然后在 3 mL 20mM 2-(N-吗啉代) 乙烷磺酸 (MES) 缓冲液 (pH=5.0) 中均质。随后在每份均匀混合物中加入 2 mL 5% 的离析酶 R-10,在 37 ℃ 下将混合物振荡 24 小时。沉淀 1 小时后,将上清液通过 0.45 μm 的滤膜,并用去离子水稀释。surface和cuticle溶液经0.45 μm滤膜过滤并用去离子水稀释。研究发现,经过ENMs处理的叶片中,Fe 和 Mn 的含量均明显高于未经处理的对照组(喷洒等量的去离子水)(下图a和c)。虽然在角质层的分离过程中使用 HNO3 会减少角质层溶液中的ENMs数量,但经过 MnFe2O4 ENMs处理后的叶片表面、角质层和内部的ENMs数量还是明显高于对照组(下图d),这表明 MnFe2O4 ENMs会在番茄叶片中累积。 (点击查看大图) 03番茄果实中ENMs的测定利用SP-ICP-MS 测定了番茄果实中的ENMs,发现MnFe2O4 ENMs很少能进入番茄果实,说明MnFe2O4 ENMs处理不会造成果实的健康风险。 (点击查看大图) 04结论 // 通过iCAP TQ SP-ICP-MS分析技术准确分析了番茄植株叶片和果实中的MnFe2O4ENMs含量,可为探究ENMs在植物体内的转化、迁移和富集规律提供精确的数据支撑。 参考文献:[1] Yue L, Feng Y, Ma C, et al. Molecular mechanisms of early flowering in tomatoes induced by manganese ferrite (MnFe2O4) nanomaterials[J]. ACS nano, 2022, 16(4): 5636-5646.[2] Vidmar J. Detection and characterization of metal-based nanoparticles in environmental, biological and food samples by single particle inductively coupled plasma mass spectrometry[M]//Comprehensive analytical chemistry. Elsevier, 2021, 93: 345-380.如需合作转载本文,请文末留言。
  • 爱拓发布ATAGO(爱拓)番茄无损糖度计PAL-HIKARi 3新品
    【产品介绍】无损非破坏(红外)糖度计 ——PAL-HIKARi 3(迷你番茄)无需采摘果实 无需破坏果皮 无需切取果肉 无需榨汁取样【产品简介】无损非破坏(红外)糖度计—— PAL-HIKARi 3(迷你番茄),又称为番茄无损糖度计。无需切取果肉!无需榨汁取样!通过探测器直接对果肉实现糖度检测!结果三秒即现!快速简易!【技术参数】【适用范围】科研机构:水果研究,栽培指导,果树改良,新品研发果园种植:成熟度检测,采摘期控制果品批发:快速分类,分级销售连锁超市:品质监控,快速抽检,销售定价创新点:ATAGO(爱拓)全新推出番茄无损糖度计,与传统型糖度计相比,无需取汁,无需破坏水果,通过红外原理检测果实内部糖度,快速高效! ATAGO(爱拓)番茄无损糖度计PAL-HIKARi 3
  • 日本ATAGO 爱拓全自动数显台式折光仪RX-5000α在上海番茄展上展出
    堪称番茄酱行业的一次贸易盛会-&ldquo 2012第四届中国番茄酱产业博览会&rdquo 于2012-4-13-15日在上海光大会展中心隆重举行,届时欢迎各位到场参观. 日本ATAGO爱拓 专注着食品行业的技术研究与应用,加强同行业间的交流与合作,ATAGO自动数显台式折光仪RX-5000&alpha 以及自动数显台式折光仪RX-5000&alpha -BEV已经在食品及饮料行业有了很好的口碑,也成为了食品及饮料行业生产提升优质产品的仪器好帮手。ATAGO仪器让食品检测部门检测提供解决方案,专注于提高生产效率和生产质量。 图为上海番茄展现场情况以及ATAGO 手持数显折射仪PAL-1测量番茄酱可溶性固体含量值 关于爱拓中国(ATAGO CHINA Ltd.) 2011年ATAGO(爱拓)中国分公司的成立和正式运行(全称广州市爱宕科学仪器有限公司),将使广大国内用户能够快速地购买产品,获得使用指导和维修服务。 网址:http://www.atago-china.com
  • 医用纳米粒子可为农作物输送营养
    p style=" text-indent: 2em " 根据英国《自然》杂志旗下《科学报告》近日发表的一项纳米科学研究,除了人体外,用于递送药物的医用纳米粒子也可以帮助治疗农作物的营养缺乏症,其将在农业生产领域帮助大幅提高作物产量。 /p p style=" text-indent: 2em " 在过去几十年中,脂质体作为一种先进的纳米药物传递系统,其优势已经被越来越多的人所承认。实际上,脂质体是指将药物包封于类脂质双分子层内而形成的微型泡囊体,这种纳米粒子可以穿过生物屏障,将填充在其内部的药物或其他物质递送至目标组织。它们已被证明可以有效地递送用来治疗癌症等疾病的药物。 /p p style=" text-indent: 2em " 由于这种纳米粒子的生物相容性良好,甚至可以被正常代谢,因此其作为载体的开发潜力巨大。此次,以色列理工学院研究人员艾维· 施罗德及其同事,测试了纳米粒子向幼苗和完全长成的樱桃番茄植株递送营养素的能力。研究团队分别采用两种方式对缺镁和缺铁的植株进行处理,一种是载有镁铁元素的纳米粒子,一种是不包含在纳米粒子内的工业镁和工业铁。 /p p style=" text-indent: 2em " 实验表明,经纳米粒子处理的植株克服了无法通过标准农业营养素治疗的急性营养缺乏症;施用14天后,经纳米粒子处理的营养缺乏植株恢复了健康,而用标准农业营养素处理的植株则没有。 /p p style=" text-indent: 2em " 研究人员表示,纳米粒子会遍布植株的叶子和根部,之后被植株细胞摄取,并在那里释放出营养物质。该研究结果表明,纳米粒子不但改变了许多疾病诊断、治疗和预防方法,将纳米技术应用于农业生产,同样有望提高作物产量。 /p p style=" text-indent: 2em " 编辑圈点 /p p style=" text-indent: 2em " 据估计,到2050年全球人口将达到98亿。人口在增长,耕地在减少,未来的地球如何养活如此多的人口令人担忧。对越来越多的人而言,饥饿的阴影正在远去,但它也很可能卷土重来。科学家们提出了多种多样的应对方案,比如学会食用蛋白含量丰富的昆虫或者在实验室培养人造肉。不过,这样的食物恐怕会让不少人反胃。依靠科技手段提高农作物产量,大概是最靠谱也最容易被接受的途径。 /p
  • 天津大学MFCM微流控流式细胞技术进展|针对原生质体样品的分析
    要更好地了解原生质体的表型异质性,需要对许多单个细胞的形态和代谢特征进行全面分析。在单细胞表型分析方面,流式细胞仪已证明其具有高通量定量分析和分离目标生物样品的能力。然而,传统的流式细胞仪体积庞大、复杂且需要高技能的人员。随着微流控技术的发展,微流控已与流式细胞仪相结合(MFCM),实现了强大的单细胞聚焦、检测和分选,已在各种生物应用中得到证明 ,包括单细胞 RT-PCR、干细胞筛选、蛋白质分析等。虽然 MFCM 已被证明是医学诊断和动物细胞研究中单细胞操作和分析的强大工具,但在植物细胞特性方面的类似工作仍然远远落后。天津大学环境科学与工程学院的Xingda Dai等人开发了一种带有荧光传感器的微流控流式细胞仪,为原生质体样品的分析提供了一种简单、直接且具有成本效益的解决方案。原生质体是植物细胞,其中细胞壁已被酶促或机械去除,是生物技术应用(如体细胞杂交和遗传转化)的非常有效的实验模型。原生质体提供了悬浮培养中的多细胞组织和细胞组装体所没有的许多细胞学优势,因此是研究细胞过程(如信号转导、细胞壁再生、压力和激素的作用等)的宝贵实验系统。然而,在细胞壁消化后,产生的原生质体是渗透敏感的、脆弱的结构,需要格外小心以保持其完整性。此外,原生质体的直径通常比哺乳动物细胞大,并且不像动物细胞那样粘附,因此使用流式细胞仪分析原生质体群体需要对仪器配置进行重大更改,并且极难实现稳定的流动。下图就是文章中所用的微流体流式细胞仪。(A) 开发平台示意图;(B) 已开发平台的照片;(C) 单个植物细胞通过通道的延时图像;(D) 单个植物细胞双通道荧光检测的实时响应。首先,基于用二氯二氢荧光素二乙酸酯 (DCFH-DA)染料检测拟南芥叶肉原生质体细胞内活性氧 (ROS) 的变化,研究了 H2O2、温度、紫外线 (UV) 和镉离子等各种外部应激因素对细胞内 ROS 积累的影响。下图显示的是外源 H2O2 介导的拟南芥原生质体 ROS 含量的变化。(A) 原生质体的荧光图像,比例尺为 25 µm;(B-D) 分别在 3、6 和 9 小时后由原生质体中的 H2O2 浓度诱导的荧光强度梯度;(E) H2O2 处理时间对原生质体荧光强度的影响。下图显示的是环境压力下拟南芥原生质体的氧化还原状态。(A) 原生质体在不同温度下的荧光图像,比例尺为 25 µm;(B) 原生质体在不同温度胁迫下的荧光强度;(C) Cd2+处理的原生质体荧光图像,比例尺为25 µm;(D) Cd2+下原生质体的荧光强度;(E) 紫外处理下原生质体的荧光图像, 比例尺为 25 µm (F) 紫外线下原生质体的荧光强度其次,从白色花瓣中分离出的矮牵牛原生质体比从紫色花瓣中分离出的原生质体中观察到更快和更强的氧化爆发,证明了花青素的光保护作用。第三,使用具有不同内源性生长素的突变体,证明了生长素在原代细胞壁再生过程中的有益作用。此外,UV-B 照射通过增加细胞内生长素水平具有类似的加速作用。该研究揭示了以前未被充分认识的原生质体群体中的表型变异性,并证明了微流体流式细胞术在评估单细胞水平的植物代谢和生理指标的体内动态方面的优势。
  • 耶鲁大学新进展!探索活细胞脂肪代谢过程:光学红外显微成像技术揭开DNL的奥秘
    从头脂肪生成(DNL)是脂肪和肝脏组织产生脂质代谢的关键过程。该途径的失调与肥胖、非酒精性脂肪性肝病和II型糖尿病密切相关。但是DNL在细胞内的研究非常困难,常规的脂质染料缺乏特异性,抗体和小分子染料很难特异性标记这些脂质体。虽然目前可以使用葡萄糖基代谢探针等同位素来标记这些物质,但是很难具备亚微米级别的空间分辨率,同时无法对细胞内部进行成像,也不能提供脂质的特性和其他环境生物分子的组成信息。这些都极大的限制了脂质体的相关研究,尤其是活细胞内脂质代谢的研究。美国PSC公司研发的全新非接触亚微米分辨红外拉曼同步测量系统——mIRage的出现为上述问题提供了新的解决方案。mIRage采用新型光学光热诱导共振(O-PTIR)技术,不仅具备传统FTIR的特性,可以对物质的分子结构进行解析,还克服了传统红外空间分辨率不足,无法精细表征细胞内部结构的问题,其分辨高达500 nm,可在亚微米尺度上实现对细胞结构的观测,与光学显微镜基本相同,有助于理解亚细胞器结构。设备光热膨胀技术能够在不接触样品的情况下进行检测,大幅度简化了样品制备过程,全程对样品无污染,并且没有米氏散射问题,可在不平整的表面上取得良好的谱线。而其特有的探测机制使得mIRage能够很大限度上避免水的干扰,真正实现活细胞的探测。 近期,耶鲁大学成功安装了非接触亚微米分辨红外拉曼同步测量系统——mIRage,并在活细胞脂肪代谢研究中取得了新的进展!在该研究中,Sydney O. Shuster等人使用非接触亚微米分辨红外拉曼同步测量系统——mIRage观测DNL在活细胞和固定脂肪细胞中的分布。作者认为在DNL、葡萄糖或其他碳水化合物代谢形成游离脂肪酸(FFA) 和甘油三酯的途径中,首先形成糖酵解丙酮酸,后被带进线粒体,通过TCA循环转化为柠檬酸盐。柠檬酸盐再转化为酰基辅酶a和丙二酰辅酶a用于脂肪酸合成并产生甘油三酯,然后储存在脂滴中作为能量储备。通过mIRage对固定的3T3-L1细胞的成像分析,作者通过脂肪代表性的酯羰基振动1747cm-1成功定位到细胞中的大部分脂质、甘油三酯的分布,并通过1655和1541cm-1处的酰胺-I和酰胺-II带定位蛋白质。DNL的代谢途径与固定细胞的明场与红外脂质体与蛋白的热图成像 为了跟踪葡萄糖代谢和DNL,作者给细胞喂入13C葡萄糖来代替12C葡萄糖。因为它的分子振动模式与所涉及的原子质量增加导致红外波数的红移,通过检测发现羰基的拉伸震动红移了44 cm-1。有趣的是1239 cm-1的波段本身不能明确地区分给C-O-C或PO2 ,而未标记细胞中的不对称拉伸在13C标记后时消失,这可能是红移到相邻的峰中导致的。这表明该峰值的主要来源是C-O-C 甘油三酯和/或胆固醇酯的不对称拉伸震动,并且磷脂不会显著地干扰3T3-L1脂肪细胞中的信号。而蛋白信号在这一过程中没有变化,表明蛋白质不会随着13C葡萄糖的供给而偏移。与之相对,CH3和CH2相关的1450cm-1波段蛋白质和脂类的变形和伸展震动的出峰不变。这可能是由于形成的甘油三酯来自游离脂肪酸和甘油的酯化。虽然两者都是 FFA和甘油由葡萄糖通过糖酵解产生,但它们以不同的速度产生和回收,影响着这些波段的移动速率。进一步对加入13C葡萄糖24、48和72小时后的细胞进行检测,结果显示平均单细胞13C/12C比率在测试期间(72小时)持续增加,最终比率为0.54±0.14。其中大部分的13C转化成甘油三酯,并且DNL在空间上也是异质的。对不同时间点固定的细胞进行观测和对比其中的DNL含量 在活细胞实验中,也取得了和固定细胞类似的结果,并且活细胞的光谱图像比固定的更清晰,细胞和与蛋白质酰胺-I信号重叠较少证明了这项技术甚至可以检测到活细胞中甘油三酯到12C甘油三酯13C比率的微小差异。活细胞的DNL含量观测综上所述,非接触亚微米分辨红外拉曼同步测量系统——mIRage在细胞成像中具有优异的潜力,可以提供脂质种类的信息,提供对低浓度物质如游离脂肪酸的定位,并允许对每个样品的脂质和蛋白质光谱特征进行全面位置光谱分析,并且能够应用长时间观测。这项技术未来将可以用于绘制细胞系和细胞内DNL的比率、疾病状态,进一步揭示DNL 导致代谢紊乱的原因。在评估针对调节DNL和治疗疾病的药物方面提供诸多帮助。 参考文献:Spatiotemporal Heterogeneity of De Novo Lipogenesis in Fixed and Living SingleCells. J. Phys. Chem. B 2023, 127, 2918&minus 2926为满足国内日益增长的生物红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了非接触亚微米分辨红外拉曼同步测量系统——mIRage,为您提供样品测试、样机体验等机会,期待与您的合作!
  • 得利特升级多款液体介质体积电阻率测定仪
    石化产业是国民经济重要的支柱产业,产品覆盖面广,资金技术密集,产业关联度高,对稳定经济增长、改善人民生活、保障国防安全具有重要作用。但仍存在产能结构性过剩、自主创新能力不强、产业布局不合理、安全环保压力加大等问题。石油化工产业作为高污染性产业,面临结构性改革的矛盾,国家政策引导对于促进石化产业持续健康发展具有重要意义。得利特顺应发展研发生产了系列石油产品分析仪器。最近技术人员仍然继续着研发工作并且将原来的产品做了部分升级改造。A1150液体介质体积电阻率测定仪符合DL/T421标准,适用于测定绝缘油和抗燃油体积电阻率,可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点采用双CPU微型计算机控制。控温、检测、打印、冷却等自动进行。采用**转换器,实现体积电阻率的高精度测量。具有制冷和加热功能。整机结构合理,安全方便。技术参数测量范围:0.5×108~1×1014Ωcm分辨率:0.001×107Ωcm重复性: ≤15% 再现性: ≤25%控温范围:0~100℃ 控温精度:±0.5℃电极杯参数:极杯类型:Y-18      极杯材料:不锈钢显示方式:液晶显示打印机:热敏型、36个字符、汉字输出环境温度:5℃~40℃ 环境湿度:≤85%工作电源:AC220V±10% ,50Hz功 率:500W外形尺寸:500mm×280mm×330mm重  量:17.5kgA1151油体积电阻率测定仪按DL421.91《绝缘油体积电阻率测定法》的电力行业标准为依据,根据有源电桥的原理研制成功的一种新型电阻率测定专用仪器。具有结构简单、线性度好、灵敏度高、测试结果稳定、操作安全等优点,其性能远高于通常的电压电流法。仪器由参数测量系统、油杯加热控温系统两部分组成,具有自动计时、液晶显示功能。可测量绝缘油体积电阻率。 技术参数测试电压:500VDC测试范围: 10 7~10 13Ωcm重复性: >10 12Ωcm ≯25% ,<10 12Ωcm ≯15% 加热功率: 100W 控温范围: 10℃~100℃ 控温精度: ±0.5℃ 测量误差: ≤±10%测试电极杯: 3个环境温度:0~40℃相对湿度:≤85% 工作电源: AC220V±10%,50Hz
  • 激光粒度分析技术在药物制剂研究、产业化中的应用
    激光粒度分析技术在药物制剂研究、产业化中的应用 源自:中国粒度仪网         日期:2012-8-14         浏览量:7 这项技术的研究和应用在医疗卫生实践和工业实践中占据着极其重要的地位,起着推动医、药科学向前发展的作用。近年来,由于药物新制剂已经成为了医药产业的增长点,全世界新释药系统销售额稳步增长,约占整个医药市场的10%以上。治疗新观念促进了新释药系统的开发,新技术推动了新制剂产品上市。激光粒度分析仪在药物制剂研究和生产中所发挥的作用越来越大,受到药物制剂研究和生产工艺中质量鉴控的工程技术人员、药品检验人员的重视。以下是微粒激光检测技术在新制剂科研和生产上应用的讨论。      一、微囊方面:      微型包囊技术是当今世界发展迅速、用途广泛而又比较成熟的一种技术。制备微胶囊的过程称为微胶囊化(microencapsulation),它是将固体、液体或气体包裹在一个微小的胶囊中。微囊的粒子大小,因制备工艺及用途不同而不同,理论上可以制成0.1~1000nm的微囊,从而有微米微囊和纳米级纳米囊之分。微囊的制备有物理化学法、物理机械法和化学法三类。其中物理化学法中相分离工艺现已成为药物微囊化的主要工艺之一,该工艺仍涉及一些质量问题未能作定量的研究并难于准确评价,如普遍存在的微囊粘连、聚集问题。相似的工艺得到的产品在粒径范围及释放数据方面有着很大的差异。用LS激光微粒测定方法,可以比较直观地观察到样品的微粒大小及其分布,分布得越集中,表示越均匀(图)。通过这一检测可发现工艺过程是否合理,并且控制得是否严谨。微囊化反应敏感程度是否合适,条件的微小变化会引起明显效果差异的情况下达到可控。例如,以明胶为囊材的工艺流程。      囊心物囊材      \/      &darr      混悬液(或乳状液)      &darr      凝聚囊      激光微粒检测点&rarr &darr 稀释液      &darr 沉降囊      └--&rarr &darr      固化囊      &darr      微囊&rarr 制剂      所用稀释液浓度过高或过低,可使凝聚囊粘连成团或溶解。      二、微球      微球(microspheres)是指药物分散或被吸附在高分子聚合物基质中而形成的微粒分散体系。药物可溶解或分散在高分子材料基层中,形成基层型微小球状实体的固体骨架物。其微粒大小一般在1~300&mu m,甚至更大。另外,将固体药物或液体药物作囊心物包裹而成药库型微小胶囊,称微囊。两者没有严格区分。微球粒径大小不一(0.01~700&mu m),检测方法除显微镜法、电子显微镜法之外,就是激光粒度测定法和库尔特计数仪法。激光粒度分析是比前两种方法所反映的面更广泛。显微镜局限于视野之内,电镜所观察到的范围更小,只能较为精细地观察到粒子的形态。从制剂研究和生产的角度出发,激光粒度分析和库尔特计算法更能指导工艺,反映质量。      三、粉雾剂(powderinhalation)      粉雾剂是一种或一种以上的药物,经特殊的给药装置给药后以干粉形式进入呼吸道,发挥全身或局部作用的一种给药系统,具有靶向、高效、速效、毒副作用小等特点。根据给用药部位的不同,可分为经鼻用粉雾剂和经口腔用(肺吸入)粉雾剂。粉雾剂的特点有:①无胃肠道降解作用;②无肝脏首过效应;③药物吸收迅速,给药后起效快;④大分子药物的生物利用度可以通过吸收促进剂或其他方法的应用来提高;⑤小分子药物尤其适用于呼吸道直接吸入或喷入给药;⑥药物吸收后直接进入循环,达到全身治疗的目的;⑦可用于胃肠道难以吸收的水溶性大的药物;⑧患者顺应性好,特别适用于原需进行长期注射治疗的病人;⑨起局部作用的药物,给药剂量明显降低,毒副作用少。不同的给药部位对微粒大小的要求不同,如肺吸入粉雾剂要求主药粒径应小于5&mu m,而鼻用粉雾剂粒径则应为30~150&mu m。粉雾剂的质量研究是粒子质量检查。主要检查粒径分布,粒子的形态,测定这些项目,用LS激光粒度分析仪是比较适合。      四、脂质体的粒径和分布      脂质体粒径大小和分布均匀程度与其包封率和稳定性有关,直接影响脂质体在机体组织的行为和处置。脂质体的粒径小于100nm,在血循环的时间较长,若脂质体的粒径大于200nm,则脂质体很容易被巨嗜细胞作为外来异物而吞噬,脂质体在体内的循环时间很短。影响脂质体粒径和分布的因素很多,可以这样认为,凡影响脂质体聚结稳定的因素,都关系到脂质体的粒径和分布。脂质体的检验,用激光粒度分析法能快速简单地显示出脂质体的粒径,可测出平均粒径、中位粒径,分布图可以判断出粒子是否均匀和稳定。      五、脂质体眼科用药系统      脂质体作为眼部给药系统,其组成材料为磷脂双分子层膜,类似于生物膜,易与生物融合,促进药物对生物膜的穿透性,故药物外用滴眼的跨角膜转运效率较高;通过选择不同的制备方法,制成脂质体粒径为0.02~5&mu m之间,滴入眼部无异物感,不影响眼睛的正常生理功能。      脂质体眼科用给药系统的制备与一般的脂质体相似。质量控制&mdash 运用激光粒度分析仪应在均质之后取样分析。      六、新型乳剂稳定性      乳剂是两种互不相混溶的液体借助表面活性剂的乳化作用,使一种液体分散在另一种液体中形成不均匀的微米或纳米分散系统。在这一范围内对乳剂作微观检查,应用激光粒度分析仪是可以测定乳剂微粒子的大小及其分布。可以通过116个分析通道分析出每一个粒子直径区间中粒子的大小及个数;可以通过粒子分布图观察粒子总体分布和均匀度;也可以通过对分布图统计表收集常用的技术参数。      七、纳米粒      一般认为纳米粒的粒径大小界定在1~1000nm范围内。已研究的纳米粒包括聚合物纳米与纳米球、药质体、脂质纳米粒、纳米乳和聚合物胶囊。      例如:油相用液状石蜡可制得纳米球平均粒径820nm      棉子油制得纳米球平均粒径560nm.等。      小结:随着药物制剂技术的迅速发展,新制剂逐步从实验室向医药生产企业进行产业化转移。激光粒度分析在工艺控制和药品质量控制中的应用也显得越来越重要。了解和掌握激光粒度分析方法迎接医药制剂新时代,将会使我们从中受益。
  • 第六届新药创制高层学术研讨会在羊城广州成功举办
    2019年5月21日,“2019第六届新药创制高层学术研讨会”继在上海张江举办之后,移师羊城广州再次盛大召开。本次大会由美中医药开发协会(SAPA)、浙江省药学会药剂专业委员会和岛津企业管理(中国)有限公司联合举办,继续以药物研发中的关键技术和质量属性探讨为主题,来自国内外的一百五十余位药物研发界专家出席大会,从不同角度展开了广泛深入的学术交流。 在大会开幕式上,岛津公司分析仪器事业部华南地区营业负责人朱精华部长率先发表致辞,他表示:今天能够在美中药协和浙江省药学会药剂专业委员会的共同组织下,将活跃在业界的各位专家聚集在此,共同对新药创制过程中的关键问题进行探讨,是一件非常有意义的事情。众所周知,"4+7"带量采购政策的实施对医药行业影响重大。因此,提升药品质量、促进药品研发,实现医药产业的健康发展,是我们共同的目的。我们期待今后能够更加积极地与医药行业的诸位专家加强交流,更好地理解诸位最前沿的分析需求,在提供高性能、高品质分析仪器和整体解决方案的同时,成为各位工作中最可信赖的伙伴。 浙江中医药大学中医药科学院副院长李范珠博士代表浙江省药学会发表致辞祝贺研讨会的召开。 SAPA理事王志云博士介绍美中医药开发协会(SAPA)的成长历史及开展的的活动与所取得的成果。 简短的开幕式结束后,大会进入报告环节。本届研讨会邀请了来自海内外著名高校,大型制药企业,药检所和药物科研机构等多位具有丰富实践经验的专家作大会报告,内容涵盖药物杂质研究和分析策略,注射剂一致性评价和包材相容性研究,先进制剂技术及工艺等多方面内容。 中检院化学药品检定首席专家、国家药典委员、药物分析领域的著名专家胡昌勤研究员率先做了题为《仿制药一致性评价杂质分析策略》的报告。他在报告中介绍了仿制药一致性评价与杂质谱分析、杂质谱控制相关法规与流程、杂质谱分析的关注点。他强调,仿制药一致性评价中,杂质谱分析是应被予以高度关注的项目;杂质谱不仅与药品的安全性密切相关,且常与药品生产过程的关键质量属性(CQAs)、关键原辅料参数(CPPs)相关联,表征产品的工艺控制水平等;对影响杂质谱分析关键因素的认知是杂质谱分析的关键。 美国罗格斯大学 (Rutgers University) 公共卫生学院教授洪钧言博士做了题为《药物杂质的毒性问题探讨》的报告。他在报告中介绍了药物杂质类型、药物杂质毒性以及药物杂质的规管,特别针对基因毒性深入探讨了其造成基因突变的机理以及常见的试验、评估与安全性评价的方法。并从ICH指导纲领到实际操作层面讲述了基因毒杂质的挑战与控制策略。 中山大学药剂学教授、国家药典委员会委员、广州新济药业董事长吴传斌博士做了题为《缓控释片剂的工艺设计与研发进展》的报告。他首先分析了新形势下对仿制药企业的影响,制药企业如何在新形势下寻求大的发展。在报告中他从药物经济学的角度分析了改良型新药的研发特点,指出与新分子实体相比,改良型新药的研发风险较低,投入成本低且回报高。对2018年FDA批准的新型口服制剂进行了分析。在报告中他详细解析了微粒片、迷你片、多层片、片中片、热熔挤出片等新型缓控释片剂的设计思路、工艺技术、产品种类、问题与解决方案、未来应用等。他在报告中指出,新型缓控释片可实现定时、定位、定速释放、有利于降低不良反应,提高药效;新型缓控释片的研发顺应了精准医学的需求;研究人员需攻克制备工艺和产业化的难题,研发出释药更智能的新品种。 岛津公司分析测试仪器市场部经理吴国华博士做了题为《塑料包装材料相容性研究分析探讨》的报告。他在报告中对塑料药包材相容性研究中的分析技术进行了探讨。他指出,包材相容性研究是药品关键质量属性研究的内容之一,药包材和药品之间可能产生物理、化学和生物的作用,发生物质的迁移、吸附或产生新的物质,影响药品的质量或者服用者的健康,所以要做相容性研究。他回顾了药包材相容性研究的背景、主要国家和组织的政策标准、技术指导原则,不同包材的风险等级和药包材的研究对象和研究方法,并通过塑料的生产过程,介绍了塑料药包材相容性研究的对象,然后针对这些研究对象提出药包材研究对分析技术的需求。最后,他分享了岛津公司为应对这些分析需求而提供的整体解决方案。 浙江中医药大学中医药科学院副院长、二级教授李范珠博士做了题为《智能靶向纳米递药体系的探讨》的报告。他首先介绍了靶向制剂概况、发展历史、20世纪80年代我国开始研究深入研究脂质体首创中药脂质体。靶向制剂具有提高药效、降低毒性、提高安全性与有效性、提高病人顺应性。他介绍了靶向制剂作用方式分类与影响被动靶向性的因素,强调了靶向制剂优点表现在控制药物释放、EPR效应实现实体肿瘤中药物蓄积、特异性组织、细胞的选择性、改善药动学参数、降低全身毒性。接着他介绍了其团队的研究进展,重点介绍了二氧化硅、PAMAM、脂质体亚砷酸钙、亚微米银胶体、磷脂复合物、微丸、微针等新型给药系统及靶向制剂研究的多项成果。最后他从多学科交叉、仿生化、智能化、靠近临床等视角展望了未来智能靶向纳米递药体系研究的发展方向。 健康元药业集团首席科学家,广州医科大学特聘教授金方博士做了题为《吸入制剂生物等效性研究的法规要求和技术挑战》的报告。她首先介绍了吸入制剂生物等效性研究,详细解读并对比了FDA与EMA的吸入制剂一致性评价指导原则与对于吸入制剂人体一致性评价要求。随后,介绍了吸入制剂药效学评价的技术挑战在于国内外肺功能FEV1变异系数大、各医院肺活量质量控制的执行难以统一规范、患者依从性差、生物钟效应对呼吸功能有较大影响等。在报告中她分享了吸入制剂生物等效性研究案例。最后她强调吸入制剂的治疗等效性是药学等效、吸收一致、疗效一致。 SAPA理事王志云博士做了题为《注射剂一致性评价经验分享&中美申报差异对比》的报告。她首先介绍了注射剂一致性评价的背景、分类,而核心内容包括:参比制剂选择、处方工艺技术要求、原辅包质量控制技术要求、质量研究与控制技术要求。随后,她介绍了注射剂药学资料的中美申报差异,涉及证明性文件、参比制剂选择及开发规格、产品开发、质量标准、分析方法、生产、稳定性研究等方面以及新增研究内容。她在报告分享了注射剂实例。在报告的最后,她强调,注射剂一致性评价是产品提升质量和改进工艺的良好契机,注射剂开发必须把握设计对质量的影响和对风险的高度控制,充分了解法规政策&设计合适的处方工艺,运用严谨的实验方法学,可以有效地缩短开发时间和保证开发成功率。 大会的最后环节为圆桌讨论,知名专家和与会者热烈互动,针对与会者提出的药物研发中关键技术和质量属性的相关问题以及目前工作中的困惑,专家们依据个人丰富的实践经验给予了全面、深入的解答。
  • 微纳流体产品参加青岛药机展完美收官
    全国制药机械博览会和同期举办的中国国际制药机械博览会始办于二十世纪九十年代,每年春、秋各一届,自2004年以来,连续被中华人民共和国商务部列为重点支持的展览会之一,2008年开始又被商务部批准为国际制药机械博览会。CIPM是业界公认的专业化、国际化、规模大、展品全、观众多,而且集贸易、研讨于一体的制药装备行业交流平台。 苏州微纳流体科技有限公司成立于2022年(以下简称“微纳流体”),地处苏州工业园区生物纳米科技园,是一家专注于高压微射流纳米均质设备组装生产、研发改进及供应相关配套技术服务的科技型企业。企业当前主营代理专业提供高压微射流均质机,高压均质机,微流控乳化机,微反应乳化机,脂质体挤出器及对射流金刚石交互容腔等设备和技术,为脂肪乳(前列地尔,氯维地平),精细化工(MLCC、锂电池、导电涂层),细胞破碎,纳米粒(紫杉醇白蛋白)、纳米脂质体(阿霉素、多柔比星)、混悬液(氯替泼诺,氟米龙)等领域客户提供了优质的均质解决方案。 “微纳流体”在秉持国际成熟技术的同时,坚持以质量和高效服务为导向,携手品牌部件国内供应链企业为合作伙伴,依靠江浙沪优势基础制造平台,整合国内外行业优势专家资源,通过高能研发团队做到仿创结合,针对微射流装备易损易耗件、非标定制化部件以及自动化系统进行自主研发与制造,实现了对重要材料、定制化部件以及自动化技术的高度自主掌握,这有效降低了设备制造成本,更提升了产品交付及服务响应的效率。 “微纳流体”始终坚持“以顾客为中心、以特色创品牌、以产品质量安全求生存、以完善企业质量管理求发展”的品质方针,严格GMPC质量标准引进品质控制,严抓产品质量关,全力贯彻“以质优价廉的产品和完善到位的技术服务客户”的经营宗旨,服务于国内流体控制和自动化控制领域。雄厚的技术力量和高素质的员工队伍,形成“微纳流体”规模化生产实力与技术积累;十余年国内外均质领域服务经验,带来了“微纳流体”与国外厂商的紧密合作关系;专业的技术支持和数年的国际贸易经验使我们积累了大量的重要客户和供应商;完善细致的售前、售中、售后服务,让我们赢得了广大客户和工控同行的广泛认可,成为纳米均质服务领域的专家。 经营范围 一般项目:技术服务、技术开发、技术咨询、技术交流、技术转让、技术推广,机械设备研发,生物化工产品技术研发,软件开发,工程和技术研究和试验发展,制药专用设备制造:制药专用设备销售 仪器仪表制造,仪器仪表销售。仪器仪表修理:机械设备租赁 机械设备销售 普通机械设备安装服务 化工产品销售(不含许可类化工产品):工业自动控制系统装置销售 软件销售 机械零件、零部件加工:机械零件、零部件销售(除依法须经批准的项目外,凭营业执照依法自主开展经营活动)(图片本次展出的气动式佐剂乳化器)(图片为本次展出的高速剪切机)微纳流体高速剪切机技术优势:1、灵巧、轻便的外形设计,方便使用。2、分散刀头结构简单,方便拆卸。3、反螺牙接口保证运转时刀头的牢靠。4、速度可调,保证了良好的分散效果。5、分散物料粘度可达5000cps。6、分散刀头采用316L不锈钢材质,拥有良好的防腐性能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制