当前位置: 仪器信息网 > 行业主题 > >

发芽生长

仪器信息网发芽生长专题为您整合发芽生长相关的最新文章,在发芽生长专题,您不仅可以免费浏览发芽生长的资讯, 同时您还可以浏览发芽生长的相关资料、解决方案,参与社区发芽生长话题讨论。

发芽生长相关的资讯

  • 种子恒温发芽箱的特点及应用范围|莱恩德新品
    点击此处可了解更多产品详情:种子恒温发芽箱  种子恒温发芽箱是一种用于种子发芽和生长的设备,具有温度、湿度和光照等控制系统。下面是一篇关于种子恒温发芽箱的文章的正文内容:    一、种子恒温发芽箱的概述    种子恒温发芽箱是一种专业的种子发芽设备,通过模拟自然环境中的温度、湿度和光照等条件,为种子的生长提供最佳的发芽环境。该设备可以有效地提高种子的发芽率和生长质量,广泛应用于农业、林业和园艺等领域。    二、种子恒温发芽箱的特点    1. 温度控制系统:种子恒温发芽箱具有精准的温度控制系统,可以根据不同种子的生长需求进行调节。同时,具有自动恒温功能,能够保持温度的稳定,避免温度波动对种子生长的影响。    2. 湿度控制系统:湿度是种子发芽的关键因素之一,种子恒温发芽箱具有独立的湿度控制系统,可以根据不同的种子类型和生长阶段进行调节。同时,配有水位指示和水位报警功能,确保湿度的稳定和种子的正常生长    3. 光照控制系统:光照是种子发芽的重要因素之一,种子恒温发芽箱具有独立的光照控制系统,可以根据不同的种子类型和生长阶段进行调节。同时,配有光照强度指示和光照强度报警功能,确保光照的稳定和种子的正常生长。    4. 可编程控制:种子恒温发芽箱具有可编程控制功能,可以根据不同的种子类型和生长阶段进行编程控制,实现自动化管理。    5. 移动便捷:种子恒温发芽箱设计轻便,移动便捷,方便用户在不同场所使用。    三、种子恒温发芽箱的应用范围    1. 农业领域:种子恒温发芽箱可用于研究不同作物种子的发芽特性和生长规律,为农业生产提供科学依据。    2.林依业领域:种子恒温发芽箱可用于研究不同树种的生长特性和适应能力,为林业生产提供技术支持。    3. 园艺领域:种子恒温发芽箱可用于研究不同花卉、草种的生长特性和花期控制,为园艺设计提供帮助。    4.科研领域:种子恒温发芽箱可用于科研实验,为研究不同植物种子的萌发和生长过程提供实验设备。    5. 教育领域:种子恒温发芽箱可用于学校和教育机构的生物课程和实验活动,帮助学生了解植物生长的过程和环境因素对植物生长的影响。    四、总结    种子恒温发芽箱是一种先进的种子发芽设备,具有温度、湿度和光照等控制系统,可以为种子的生长提供最该佳设的备发广芽泛环应境用。于农业、林业、园艺等领域以及科研和教育领域。其移动便捷、可编程控制等特点使得它在不同场所的使用变得更加方便和高效。随着科技的不断进步和发展,相信种子恒温发芽箱的技术和质量会不断得到提升和完善,为植物的生长和研究提供更加可靠的支持。种子恒温发芽箱的特点及应用范围|莱恩德新品
  • 百典品牌种子发芽箱双十一特惠大促销
    产品用途:种子发芽箱适用于植物的生长和组织培养,种子发芽、育苗、微生物的培养试验;昆虫小动物的饲养;水质监测的bod测定;药材、木材、建材的老化及使用寿命测试等,以及其他用途的光照,恒温、恒湿的专用试验设备。产品特点:● 微电脑程序控制温度、湿度、光照度,可模拟白天及黑夜的温度、湿度变化,也可选择生长环境充足稳定的光源。● 可设定30段程序,每段设置时间范围1-99小时(选配),可设置不同的分段参数,以满足植物生长的不同参数。● 国际品牌压缩机保证试验设备长时间连续运行,环保型制冷剂(r134a),高效率,低能耗,促进节能。● 采用镜面不锈钢内胆,四角半圆弧型过渡,隔板支架可以自由装卸,便于箱内清洗工作。● 设有独立限温报警系统,超过限制温度即自动中断,保证实验安全运行,不发生意外。(选配)● 可配rs485接口和电脑连接,通过电脑同步监控实验过程或记录实验数据。(选配)● 可增配:带co2进气口(促进植物生长)及co2控制器(进口红外线co2传感器) 产品名称种子发芽(催芽)箱 产品型zfx-80azfx-180azfx-280azfx-380azfx-500azfx-1000azfx-1200azfx-1500azfx-2000a容积80l180l280l350l450l1000l1300l1500l2000l控温范围无光照:0~50℃ 有光照:10~50℃温度分辨率0.1℃温度波动度±0.5℃光照强度a代表光照0-5000lx, a为三级可调光照方式80l为隔板式光照,其他型号为垂直光照,也可定制隔板式光照。a.b为两面光照c.d为三面光照。电源ac220v 50hz工作环境温度+5~30℃工作方式连续循环输入功率 350w 450w550w660w860w980w1120w1200w1460w内胆尺寸(mm) 540*540*450 540*540*650 540*540*960 540*540*1210 620*620*11501300*620*12101800*620*12101900*620*12102650*620*1210外形尺寸(mm) 590*590*1200 590*590*1340 590*590*1650 590*590*1890 680*680*18901240*620*18901860*620*18901960*680*18902700*680*1890载物托架(标配)1234469912开关门单门单门单门单门单门双门三门三门四门发货时以避光聚氨酯发泡门为主 1.仪器名称:种子发芽箱2.仪器型号:zfx-500a3.容积:450l 4.控温范围:0-50℃ ,控温精度±0.1℃,波动度±0.5 ℃ 不均匀度:±1.0 ℃ 5.控湿范围:无。6.额定光照度: 5000lx(68μmol/m2.s) 相对光照度控制范围:(0 1 2 三级可调)7.尺寸(mm): 外形尺寸:690*690*1890内胆尺寸:640*640*1150 8.升温时间: 0℃升至40℃≤60分钟 9 .降温时间: 40℃降至10℃≤100分钟 10.工作时间:连续循环 11. 工作环境: 温度4-30℃,湿度85%rh以下,无腐蚀性气体 12. 压缩机动延时间保护时间: 3分钟 13. 工作方式: 连续运行(压缩机间歇工作) 14. 噪 音: ≤70db 15 .电源要求: 220v(范围187v-246v)、50hz 16.风冷技术,无氟制冷。17.内胆不锈钢,内胆不锈钢,外观铝合金流线设计。18.聚氨酯发泡避光门设计,起到不透光的作用,促使植物对光的完全吸收。 19.光源为暖白光,色温4000k, 20.进口晶片,使用寿命50000h. 21.led显示屏,可显示温度,湿度,光照,时间。 22.后面安装有温湿度测试孔。 23.控温控湿方式:采用箱体内 背面风道循环制冷,下进上出,循环均匀,风量为2m/s. 24.光源数量:ppr植物生长灯。
  • 网曝达利园用发芽土豆做薯片?酶标仪、色谱齐上阵,浅谈龙葵碱检测技术(附:这些食物发芽还能吃)
    近日,在某短视频平台公布了一段疑似湖北达利园用发芽的和发臭的土豆制作薯片!从网友拍摄的视频中可以看到,土豆的芽已经从袋子里冒出来了,大部分芽尖有10厘米左右。视频发酵后, 汉川市市场监督管理局发布情况说明,网友所发视频与被检单位情况不一致。汉川市市场监督管理局表示,该事件还在进一步调查中,具体调查结果会对外公布。 发芽土豆——龙葵碱 众所周知,发芽的土豆因含有龙葵碱是不应继续食用的。 龙葵碱又名茄碱、龙葵毒素、马铃薯毒素,是由葡萄糖残基和茄啶组成的一种弱碱性糖苷。不溶于水、乙醚、氯仿,能溶于乙醇,与稀酸共热生成茄啶(CHNO)及一些糖类。茄啶能溶于苯和氯仿。存在及毒性:龙葵碱广泛存在于马铃薯、番茄及茄子等茄科植物中。在番茄青绿色未成熟时,里面含有龙葵碱。马铃薯中龙葵碱的含量随品种和季节的不同而有所不同,一般为0.005%~0.01%,在贮藏过程中含量逐渐增加,马铃薯发芽后,其幼芽和芽眼部分的龙葵碱含量高达0.3%~0.5%。龙葵碱口服毒性较低,对动物经口的LD50 为:绵羊500mg/kg 体重,小鼠1000mg/kg 体重,兔子450mg/kg 体重。人食入0.2~0.4g龙葵碱即可引起中毒。龙葵碱并不是影响发芽马铃薯安全性的唯一因素,引起中毒可能是与其他成分共同作用的结果,其毒理学作用机理还需要进一步研究。龙葵素的检测技术&科学仪器 马铃薯中龙葵碱的测定方法已经有很多报道,采用的方法主要有比色法,高效液相色谱法,酶联免疫法,薄层层析,气相色谱法和显色滴定法。本文简要介绍前三种方法供广大仪器用户了解。1. 比色法比色法的仪器是分光光度计,利用龙葵碱酸解后,在浓硫酸环境下与甲醛显色反应的性质,通过测定吸光度确定含量。比色法的优点就是所需的仪器很简单,具有很好的操作性,同时所需的时间也不是很长,其缺点就是精确度没有其余的方法高。点击进入专场查看2.高效液相色谱法(HPLC)高效液相色谱法:根据龙葵碱在流动相中的吸附性不同,所通过的速度不同,峰的出现时间也不同。国外目前的研究大部分都是采用此方法,如Bushway等(1986)、Carman 等(1986)。Friedman 等(1992)采用高效液相色谱法确定龙葵碱的含量。点击进入专场查看高效液相色谱法的优点是如果各种条件都满足的话,重复性好,回收率也很高,其中a 一茄碱可达93%士1.3,而a 一卡茄碱可达99%士3.1。其缺点是受很多种因素影响,如柱、溶剂的不同都影响其准确度。另外,色谱的流动相对实验的结果也有影响,而且一该方法所使用的仪器很昂贵,限于实验室中研究时使用。3.酶联免疫结合法酶联免疫结合法的原理是酶标记抗原或抗体,再利用免疫反应去测定抗原或抗体,其浓度可用酶活力的大小反映出来。Michael 等(1983)采用酶联免疫结合法测定龙葵碱的含量,利用龙葵碱一牛血清蛋白作为抗原有特定的抗血清反应。试验的抗原是通过高碘酸盐裂解法合成的。点击进入专场查看酶联免疫结合法中,马铃薯的预处理很简单,只需将马铃薯组织捣碎均匀并稀释即可。该方法优点是具有敏感性、特异性的特点,并且有一个很好的终点判断 且该方法不需要昂贵的仪器。但缺点是获得抗原和抗体所经历的时间较长,同时实验的操作时间也比较长。附:这些食物发芽还能吃(视频)
  • LemnaTec推出新品种子发芽检测系统Germination Scanalyzer
    种子质量是指一批种子潜在性能指标的总和。这些重要的指标包括惰性物质、其他作物或杂草种子的存在数量(纯净度),另外还有发芽率、活力、外观形态和种子抗病性能,优质种子应满足这些特征的最低标准。然而,传统方法分析这些特征对种子公司或实验室来说是异常繁重的,自动化方法则有效的降低时间和经济成本,同时也可以提高结果的精确性和重复性。德国LemnaTec公司是全球范围内利用传感器和自动化技术进行非破坏性植物表型数字化分析的领导者。LemnaTec提供视觉识别、机器人和智能软件等技术,使研究性育种和商业化育种的种子性状分析自动化。近期,LemnaTec公司推出新品种子发芽检测系统Germination Scanalyzer。Germination Scanalyzer是LemnaTec为种子公司及研究机构提供的性价比极高的种子管理解决方案。Germination Scanalyzer功能特性? 种子储藏? 周期性自动检查种子存储状态? 种子萌发指标分析? 建立种子质量管理的标准化流程Germination Scanalyzer系统组成? 用于图像获取的工业级数字相机? 图像处理软件,用户可建立自定义解决方案? 机械手用于储存空间及传感器之间样品传递Germination Scanalyzer测量指标可以分析不同植物种类包衣与未包衣种子的大小,颜色和形状,基于预定义的分级标准(数量,大小,颜色,形状)对种子进行分级及量化,包括但不限于如下的指标:? 种子发芽率(%)? 种子发芽速率(时间)? 种子形态学指标(大小,圆度)? 种子颜色及色泽分布? 幼苗形态参数(根长,胚轴长度)? 幼苗颜色及色泽分布Germination Scanalyzer优点高通量分析? 24 x 7全天候样品监测? 同时进行数百粒种子成像及分析? 高通量筛选提升种子分析的质量和效率提高精确度及重复性? 利用这一平台,为用户建立种子质量管理的标准化流程灵活性? 模块化设计,可以根据需要设计分析速度及储存能力图1:种子托盘的存储架, 带传感器的机器臂, 称重站和种子采集器 (可选),尺寸单位,mm。图2:机器臂和成像系统在中心,种子托盘储存架在外围,图片右侧是称重站。图3:蓝色/灰色滤纸放置在一个特别设计的塑料托盘内。在实验开始时,在滤纸上施加一定量的水,再在滤纸上装入定量的种子。托盘存储在货架上,并定期(根据用户要求)由机械臂移动进行成像和称重。种子的检测通过其与滤纸的背景颜色特性(如色相、饱和度)来实现,种子的形状用来计数。根被用作种子发芽的线索;只有在种子胚周围和一定半径内的根被认为是发芽的线索。每个种子都有一个被检测到的根段(在观察半径内)被标记为发芽。为了优化根检测,应用了一些规则,例如,就近原则、感兴趣区域和萌发线索。根的长度是根据检测到的根形状的内侧轴线来测量的。图4:时间跨度实验数据输出范例,几天内不同时间点发芽种子的数量占种子总数的百分比(发芽率)。不同的颜色曲线代表不同的种子类型。图5:可以根据用户需求生成不同形式的数据报告,并进行统计分析。
  • 中国粮食商业协会立项《发芽谷物中Y-氨基丁酸的测定 高效液相色谱-质谱联用法》等2项团体标准
    各有关单位:依据《中国粮食商业协会团体标准管理办法》的规定,经我会6月12日标准立项评审会专家评审,中国农业科学院农产品加工研究所等单位申报的《重金属污染稻谷安全利用技术规范》等2项团体标准(详见附件)符合立项要求,现予以立项并公告。请牵头起草单位按照中国粮食商业协会团体标准工作要求及流程,抓紧组织协调、深入开展调查研究、广泛征求意见、加强与企业沟通交流,确保标准的适用性和有效性,按时高质量完成标准的编制工作。同时欢迎社会各界和相关企业及个人,积极参与标准的编制工作。如有单位(或个人)对立项标准存有异议,请在公告之日起15日内将意见反馈至邮箱:cgta01@163.com联系人:戚道依,电话:010-80985979。联系地址:北京市东城区建国门内大街8号中粮广场8层。 附件:团体标准立项清单 中国粮食商业协会团体标准立项清单序号标准名称制定/修订完成时间牵头单位及主要起草人1重金属污染稻谷安全利用技术规范制定2023年10月中国农业科学院农产品加工研究所2发芽谷物中Y-氨基丁酸的测定 高效液相色谱-质谱联用法制定2024年6月陈克明食品股份有限公司中国粮食商业协会2023年6月20日
  • 德致死大肠杆菌病源初步锁定为豆芽 工厂已关闭
    中新社柏林6月5日电 德国下萨克森州农业部长林德曼5日晚召开新闻发布会宣布,产自该州的豆芽被初步认定为近来德国大面积传染的肠出血性大肠杆菌EHEC病源。生产这些带菌豆芽的工厂目前已被关闭,待次日实验室检验结果揭晓后再行处理。   林德曼称,位于下萨克森俞尔岑(Uelzen)地区的一家企业生产18种芽类蔬菜,生产过程中种子被放在一个滚筒中,经喷洒38度的热水后种子发芽,这个温度同样适合其它菌类的生长。林德曼说,这些芽类在生长过程中没有使用肥料,很可能是发芽用的水产生了污染,或者是种子事先沾染细菌,在发芽的环境中迅速繁殖。   该企业的产品被许多餐厅用作沙拉原料。调查结果表明,许多病人在不同餐厅食用了含有该企业生产的豆芽沙拉之后患病。并且该企业亦有两名工作人员感染腹泻,其中一名被证实感染肠出血性大肠杆菌。   由于目前还没有得到实验室的准确数据,联邦健康部没有证实这一结果。负责流行病预防及监督的罗伯特-考赫学院认为,在病源没有十分确定的情况下,建议民众继续放弃生吃蔬菜。   自五月初德国出现大面积EHEC病菌传染之后,该病菌首先在西班牙进口黄瓜上被发现,后被实验室证实黄瓜上病菌和致病病菌并非同一支。目前德国已知肠出血性大肠杆菌患者近2千人,20死亡,627人感染上并发症血溶性尿毒症。   芽类蔬菜曾经有多次致病先例。1996年,小红萝卜芽曾经在日本引起一场严重的肠道传染病。当时感染大肠杆菌的患者有12600余人,但只对少数人造成血溶性尿毒症这样的致命并发症。
  • Indigo500 系列变送器改进了对麦芽加工过程的控制
    作为优质麦芽产品供应商之一,Viking Malt 公司研究了其位于瑞典哈尔姆斯塔德的工厂中麦芽加工过程内持续湿度监测的优点。维萨拉 Indigo520 变送器已经与该工厂的控制系统集成,在经过 3 个月的试运行后,技术经理 Tony Öblom 说:“由于能够实时访问湿度数据,麦芽加工过程得到了更严格的控制,从而提高了质量,同时还节约了能源并提高了盈利能力。”背景麦芽是制造啤酒、威士忌和许多烘焙产品的关键成分。Viking Malt 总部设在芬兰,该集团在芬兰、丹麦、瑞典和立陶宛共经营有六家麦芽厂,并在波兰设有两家麦芽厂,每年麦芽总产量达 60 多万吨。大部分制造麦芽的谷物是大麦,但也可以使用小麦和黑麦,以及大米和玉米。麦芽厂设在北欧让 Viking Malt 拥有了很多优势。例如,其承包农场生产的大麦品质优良,麦芽特性优异。此外,寒冷的冬天会消灭病虫害,作物在午夜阳光下生长迅速,这意味着它们对杀虫剂的需求不大。麦芽加工过程麦芽加工涉及发芽的开始、管理和中止。这是通过仔细和准确地控制室内湿度、温度(有时控制二氧化碳)来实现的。 啤酒的好坏可能因个人口味而异,但风味的一致性和其他特性取决于是否采用优质麦芽。Tony 说:“在 Viking Malt,我们精益求精,确保生产风味一致的优质麦芽。这是通过精心甄选和管理原料以及尽可能仔细和准确地监测和控制生产来实现的。”根据原料的特性和所生产麦芽的规格,麦芽加工过程分为三个主要阶段,总共需要 7 到 10 天的时间。这三个阶段分别是:浸泡 – 谷物经洗涤后,其含水量在浸麦槽中增加,以刺激发芽。浸泡通常涉及不同时长的干湿期组合。发芽 – 种子发芽时会产生酶。例如,淀粉酶将种子中的淀粉转化为可发酵糖,蛋白酶分解蛋白质。烘烤 – 在过程的最后一部分,将“绿色麦芽”在窑中干燥和加热,以达到所需的规格。在麦芽加工过程开始时,窑内温度为 60°C 至 65°C,湿度可能达到 100%,而最终烘烤温度可能在 80°C 至 95°C 之间,目标湿度为 4%。监测的重要性
  • Bioactive Materials:血管生成的重大突破——基质硬度通过 p-PXN-Rac1-YAP 信号轴调节尖端细胞形成
    【研究背景】血管生成是指从现有血管中内皮细胞生长而生成新的血管,一旦血管开始生成,被称为细胞的特殊内皮细胞就会开始发芽过程。由此,血管芽内皮细胞的长出标志着血管生成的开始,这一过程在生理学和病理生理学过程中至关重要。然而,细胞外基质(ECM)的机械特性如何调节细胞的形成在一定程度上被忽视了。细胞的特性是血管生成和组织工程的关键,它可以定向迁移到无血管区域,对终形成的血管形态起决定作用。迄今为止,各种生化信号分子因素如 MST1-FOXO1等多见报道,然而功能血管的建立需要生化和生物力学信号线索的结合,后者取决于组织工程和再生医学中使用的生物材料的特性。近期,北京大学口腔医学院的郭亚茹博士以作者在Bioactive Materials发表了题为:Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis的研究文章。文章报道了基质硬度通过p-PXN-Rac1-YAP信号轴调节细胞形成,这项工作不仅有助于在组织工程和再生医学中寻找佳材料,也为肿瘤治疗和病理性血管再生提供了新的治疗策略。在生物材料设计和治疗一些病理情况方面具有特殊意义。邓旭亮教授为本文通讯作者。【研究概述】在这项研究中,作者研究了基质硬度对细胞形成的影响,并探索了基础机制。在肝癌细胞的外层发现CD31表达更高,组织硬度也更高。基质的硬度增加可以显著增加血管的生成和细胞富集基因的表达。硬度较大的基质增加了FAK和p-PXN的局灶黏附,提高了活性Rac1的水平,进而导致细胞骨架组织和细胞刚度增加。随后,YAP作为下游的力效应因子被激活并易位入核,上调靶基因的表达,终促进细胞的形成。p-PXN还可以减少细胞间的连接,从而促进细胞的形成。由此表明:基质硬度可通过p-PXN-Rac1-YAP信号轴调节细胞的形成。 【研究结果】硬度的增加还可以促进血管的生成(图1D),从三维(3D)EC球体(图1E)的芽入侵距离增加可证明这一点。与GM60和GM30凝胶(图1F)相比,硬凝胶(GM90)中球体的芽数量增加了2倍。qPCR分析表明,细胞富集基因,包括CD34、VEGFR2、DLL4、CXCR4、EFNB2和IGF2,在GM90基质(图1G)中显著上升。同时,更硬的凝胶中芽的宽度更厚,矩阵中含有更多和长的纤维状体(图1H和I)。由此数据表明,基质硬度增加可以促进血管生成和细胞的形成。图1. 基质硬度增强血管生成和细胞在体外和体内的形成。 在EC球形发芽模型中,从球体中产生的外层细胞和以下细胞分别被定义为细胞和茎细胞。未爬出球体的细胞被定义为密集细胞(图2A)。通过原子力显微镜(AFM),我们检测到每个细胞的16个位置,并制作了典型的力学热图(图2B)。细胞的刚度在数量上是茎细胞的两倍,是咽细胞的四倍(图2C)。此外,免疫荧光染色表明,细胞显示长应力纤维的增强组装,而在茎和密集细胞作用捆绑是相对较短的,并限制在细胞外围(图2D)。研究人员发现细胞中的YAT显示出明显的核定位,而YAT在咽细胞(图2D和E)中成为细胞质。通过免疫荧光、多功能单细胞显微操作系统FluidFM技术和原子力显微镜AFM,发现细胞扩散区域增加(图3A),粘附力(图3B和C)和细胞硬度(图3D),这表明 EC-ECM 连接增加,并通过 ECM 硬化提升细胞机械特性。另外,VP(YEP抑制剂)治疗显著降低了EC球体的延伸次数和芽入侵距离(图2F和G)。细胞富集基因也被VP(图2H)抑制。因此,可以推断基质硬度调节了ECs的细胞机械感知和机械传输,促进了YAC活化,终增强了细胞的形成。图2. 细胞、茎细胞和密集细胞的机械特性差异。图3. FluidFM粘附力检测过程示意图。 在确定了血管生成和细胞形成中EC亚型之间的机械差异后,作者探讨了ECM刚度通过PXN磷化调节细胞的形成,验证了 p-PXN 在硬 ECM 诱导细胞规范中的参与程度,进而推断,通过基质硬化强加的细胞形成需要PXN磷酸化。随后,作者验证了p-PXN-Rac1-YAP激活在ECM僵硬诱导细胞形成和血管生成体内的作用,研究人员通过在裸鼠体内皮下注射 HepG2 细胞创建肿瘤模型,并从 8 天起每天使用 VP 治疗一次(图4F)。4周后,在肿瘤胶囊(图4G)上发现发芽较少的血管,CD31、CD34和VEGF强度(图4H,图4I )。VP治疗减少肿瘤体积(图4J)。这些数据表明p-PXN-Rac1-YAP信号轴与ECM硬化促进的细胞形成和血管生成有很大关系。图4. p-PXN-Rac1 通过激活 YAP 促进细胞的形成和血管生成。 图5. 发芽血管生成受ECM硬度影响的潜在机制的示意图。 综上,基质的硬度增加可以显著增加血管的生长、发芽和细胞富集基因的表达。硬度较大的基质增加了FAK和p-PXN在局灶黏附,提高了活性Rac1的水平,进而导致细胞骨架组织和细胞刚度增加。随后,YAP作为下游的力效应因子被激活并易位入核,上调靶基因的表达,终促进细胞的形成。 【研究意义】本研究加深了我们对细胞形成和血管生成机理的理解,有助于优化组织工程和再生医学的生物材料设计,为一些病理情况提供新的治疗策略。无论是组织工程还是血管再生,都应考虑机械特性,如针对细胞形成的刚度,以设计佳功能生物材料。此外,ECM可以在许多病理状态下变硬,如癌症的发展过程,随着变硬癌周围细胞数量的增加,迫切需要靶向p-PXN、Rac1或YAP的药物来有效防止肿瘤的生长和转移。 【研究利器】——FluidFM技术在生物活性材料领域的创新应用本实验研究人员采用了多功能单细胞显微操作系统——FluidFM技术,实现了单个细胞的分离,单个细胞粘附力的测量。瑞士Cytosurge公司多功能单细胞显微操作系统——FluidFM,是集原子力系统、微流控系统、细胞培养系统为一体的单细胞操作系统。主要功能包括单细胞注射、单细胞提取、单细胞分离、单细胞粘附力的测定、生物3D打印等。实验中FluidFM探针以3 μm/s靠近细胞,设定力为100 nN。当探针连接到到达设定点的细胞时,在探针中施加-650 mbar 的力,并保持5 s,以确保细胞被探针完全抓取。然后,在保持-650 mbar的压力,以1 μm/s的速度将探针抬高至100 μm的高度,从而将细胞从基板上完全分离。FluidFM系统完全记录了每个单细胞的Z轴高度和力距离曲线,并分析其粘附强度。每个条件下至少测量并获得20个力距离曲线。所有细胞粘附测量实验过程都是在 37 °C在5% CO2细胞培养环境下进行。图6. FluidFM进行单细胞分离示意图。 图7. FluidFM进行单细胞力谱测定示意图。 【文末小视频】 本研究实际DEMO视频【联系方式】为了更好的服务客户,Quantum Design中国子公司也为大家提供样品测试、样机体验机会,还在等什么?赶快联系我们吧! 电话:010-85120277/78 邮箱:info@qd-china.com,期待与您的合作!【参考文献】[1] Y. Guo, F. Mei, Y. Huang, S. Ma, Y. Wei, X. Zhang, M. Xu, Y. He, B.C. Heng, L. Chen & X. Deng. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis. (2021) Bioactive Materials.
  • 运动发酵单胞菌运动亚种的特点与优势及培养方法!
    运动发酵单胞菌运动亚种的特点与优势及培养方法! 运动发酵单胞菌运动亚种是Zymomonas属的微生物,原产地为美国。G-,细胞具有圆端的短杆状,丛生鞭毛运动,单个或成对排列。主要用途为研究,具体用途为用于细菌发酵酒精的研究。 一、菌种简介平台编号:Bio-66722提供形式:冻干物拉丁属名:Zymomonas Mobilis Subsp. Mobilis中文名称:运动发酵单胞菌运动亚种属名:Zymomonas种名加词:mobilis subsp. mobilis其它中心编号:ATCC 31821来源历史:←北京工商大学化工学院(31821)收藏时间:2008.10.31原始编号:WAY资源归类编码:15131139101模式菌株:非模式菌株主要用途:研究具体用途:用于细菌发酵酒精的研究特征特性:G-,细胞具有圆端的短杆状,丛生鞭毛运动,单个或成对排列。利用葡萄糖、蔗糖或果糖产乙醇和CO2,利用山梨醇,不发酵麦芽糖、阿拉伯糖、鼠李糖、木糖。不还原硝酸盐,不液化明胶,接触酶阳性。 生物危害程度:四类致病对象:无培养基:葡萄糖 100.0g,酵母膏 5.0g,(NH4)2SO4 1.0g,KH2PO4 1.0g,MgSO4?7H2O 0.5g,琼脂 20.0g,蒸馏水 1.0L, pH7.0。培养温度:30℃资源保藏类型:培养物保存方法:真空冷冻干燥法实物状态:有实物共享方式:公益性共享;资源纯交易性共享;合作研究共享;资源交换性共享用途:研究;用于细菌发酵酒精的研究注意事项:仅用于科学研究或者工业应用等非医疗目的不可用于人类或动物的临床诊断或治疗,非药用,非食用(产品信息以出库为准) 二、产品特点1、菌种功能明确、品种稳定、应用 2、产品仅限用于科研本品芽孢含量高,稳定性好、耐高温和挤压 3、繁殖能力快、定植能力强、易存活、耐受低pH值环境 4、复活迅速,可在短期内成为优势种群 5、本品安全高效、无抗药性、不污染环境 6、对多数抗生素不敏感,可与低浓度抗革兰氏阴性菌抗生素同时使用。 三、产品优势1、产品质量稳定,是为科研和提供微生物菌种资源共享服务的专业平台。2、国内首创封闭管包装,冻干后的菌株使用时添加配套的复苏培养基后迅速而完全溶解。针对不同的菌株提供八种不同的培养方法,保证菌种的复苏质量。3、严格的质检程序,确保产品质量的稳定性。4、该类产品广泛使用到食品、药品、化妆品、水产品、化工等行业,疾控中心、质检局、出入境、药检局等等,得到广泛好评。 四、菌种的培养1、菌种是指食用菌菌丝体及其生长基质组成的繁殖材料。菌种分为母种(一级种)、原种(二级种)和栽培种(三级种)三级。工业发酵的有用菌种,其筛选步骤包括菌种分离、初筛和复筛。2、挑选具有某种能力的有用菌种,也称种子制备,是指菌种在一定条件下,经过扩大培养成为具有一定数量和质量的纯 菌种的制备过程。以作接入发酵罐中进一步扩大菌体量及合成产物之用。3、种子制备包括孢子制备和菌丝体制备菌种制备。4、保存在沙土管或冷冻管中的菌种,用无菌手续挑取少许,接入琼脂斜面培养基上,在25℃(或较高温度)下培养5~7天(或较长时间。所得孢子还需进一步用较大表面积的固体培养基以获得更多孢子(对于霉菌类孢子制备,多数采用大米、小米之类的天然培养基)。5、将培养成熟的斜面孢子制成悬浮液,接种到扁瓶固体培养基上,于25~28℃培养14天。将成熟的扁瓶孢子于真空中抽干,使水分降至10%以下,并放入 4℃冰箱中备用。一次制得的孢子瓶可在 上延续使用半年左右。6、如果有些菌种不产孢子,如赤霉素产生菌或产孢子不多的,则可采用摇瓶液体培养制得菌丝体,作种子罐的种子。种子罐的目的是使接入有限的孢子或菌丝体迅速发芽、生长、繁殖成大量菌体。其中的培养基组分应是易于被菌体利用的碳源(如葡萄糖)和氮源(如玉米浆),及无机盐(如磷酸盐)等。作为发酵罐的种子应生命力旺盛、染色深、菌丝粗壮,无杂菌及异常菌体。接种量一般在10%~20%。 五、保藏方法1、传代培养保藏法又有斜面培养、穿刺培养、疱肉培养基培养等(后者作保藏厌氧细菌用),培养后于4-6℃冰箱内保存。2、液体石蜡覆盖保藏法是传代培养的变相方法,能够适当延长保藏时间,它是在斜面培养物和穿刺培养物上面覆盖灭菌的液体石蜡,一方面可防止因培养基水分蒸发而引起菌种死亡,另一方面可阻止氧气进入,以减弱代谢作用。3、载体保藏法是将微生物吸附在适当的载体,如土壤、沙子、硅胶、滤纸上,而后进行干燥的保藏法,例如沙土保藏法和滤纸保藏法应用相当广泛。4、寄主保藏法用于目前尚不能在人工培养基上生长的微生物,如病毒、立克次氏体、螺旋体等,它们必须在生活的动物、昆虫、鸡胚内感染并传代,此法相当于一般微生物的传代培养保藏法。病毒等微生物亦可用其他方法如液氮保藏法与冷冻干燥保藏法进行保藏。5、冷冻保藏法可分低温冰箱(-20-30℃,-50-80℃)、干冰酒精快速冻结(约-70℃)和液氮(-196℃)等保藏法。6、冷冻干燥保藏法先使微生物在极低温度(-70℃左右)下快速冷冻,然后在减压下利用升华现象除去水分(真空干燥)。有些方法如滤纸保藏法、液氮保藏法和冷冻干燥保藏法等均需使用保护剂来制备细胞悬液,以防止因冷冻或水分不断升华对细胞的损害。保护性溶质可通过氢和离子键对水和细胞所产生的亲和力来稳定细胞成分的构型。保护剂有牛乳、血清、糖类、甘油、二甲亚砜等。 欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 欧盟发布芽菜及其种子的新规定
    2013年3月11日,欧盟颁布了三条规定。第一条规定(EU) No 208/2013是关于芽菜及其种子追溯性的相关要求,以确保能够根据《(EC) No 178/2002规定》第18条之要求进行追溯。第二条规定(EU) No 209/2013是对《(EC) No 2073/2005规定》的修订,这是一个有关芽菜和已宰杀家禽及新鲜家禽肉抽样微生物标准的规定。最后一条规定《(EU) No 211/2013》是关于进口到欧盟的芽菜及其种子认证的相关规定。这些规定将于2013年7月1日开始生效。   “芽菜”是由种子放入水或其它介质中培育发芽得到的,在长出真正的叶之前采集起来,连同其种子一起食用。   自2011年5月在欧盟地区爆发产志贺毒素大肠杆菌事件之后,芽菜被认为是最为可能导致这一事件的根源。欧洲食品安全局(EFSA)的结论是,致病菌对干种子的污染最有可能是导致芽菜相关污染事件的根源,而干种子上的致病菌在抽芽期内会成倍繁殖。《(EC) No 2073/2005规定》对此做出了具体的规定,(EU) 209/2013对此进行了修订,而(EU) 209/2013被认为是现行关于芽菜种子微生物标准、抽样标准、分析参照以及微生物限制(包括沙门氏菌以及其它六种产志贺毒素大肠杆菌血清组,即O157、O26、O103、O111、O145和O104:H4等其它致病菌)的规定。同时增加了已宰杀家禽、新鲜家禽肉和芽菜的抽样和检测规定。   欧盟(EU) No 208/2013指令对一批芽菜及其种子在加工、生产和销售的各个阶段的可追溯性作出了规定。该指令要求,有关种子和芽菜的准确描述信息、产量或数量以及经营商名称和地址均要登记在案以便保护欧盟地区公众的健康。所记录的信息每天都要予以更新,并且在被要求把这些信息发送到采购这些种子或芽菜的食品经营商以及主管部门时不得延误。   另外,将芽菜及其种子进口到欧盟地区的承运人以及源自或从第三方国家发运过来的必须有《(EU) No 211/2013规定》附录中所要求的相关证明,以表明芽菜或种子是按照《(EC) No 852/2004规定》中《附录I》之第一部分里相关卫生要求而生产的。同时,遵循了《(EU) No 208/2013规定》中对可追溯性的明确要求。
  • 广东省质量检验协会立项《豆芽中12种植物生长调节剂和喹诺酮类化合物的测定 液相色谱-质谱质谱法》团体标准
    各有关单位:按照有关法律法规和《广东省质量检验协会团体标准管理办法》规定,结合行业发展需要,经审核,同意《豆芽中12种植物生长调节剂和喹诺酮类化合物的测定 液相色谱-质谱质谱法》团体标准立项。联系人:招原春(020)38835232邮箱:gdaqi@gdaqi.org广东省质量检验协会2024年6月13日关于《豆芽中12种植物生长调节剂和喹诺酮类化合物的测定 液相色谱-质谱质谱法》团体标准立项的通知.pdf
  • 英都斯特发布磁场催化培养箱新品
    全球首家磁场催化类科学仪器生产商创新点:(1)以磁场催化为主要功能,比市面上常规培养箱效果更佳; (2)磁场催化有助于细胞生长,种子发芽等; 磁场催化培养箱
  • 北京第三代半导体产业技术创新战略联盟对《碳化硅单晶生长用等静压石墨构件纯度测定 辉光放电质谱法》等2项团体标准征求意见
    各CASA成员单位:由赛迈科先进材料股份有限公司牵头起草的标准T/CASAS 036—202X《碳化硅单晶生长用等静压石墨构件纯度测定 辉光放电质谱法》、T/CASAS 048—202X《碳化硅单晶生长用等静压石墨》已形成征求意见稿,为保证标准的科学性、先进性和适用性,现面向CASA成员单位征求意见。 T/CASAS 036—202X《碳化硅单晶生长用等静压石墨构件纯度测定 辉光放电质谱法》规定了采用辉光放电质谱法测定等静压石墨构件纯度的方法,包括术语和定义、试验原理、试验环境、仪器设备、试剂与材料、试样、试验步骤、试验结果及试验报告。本文件适用于单个杂质元素含量范围为0.01mg/kg~5mg/kg的碳化硅单晶生长用等静压石墨构件纯度的测定,所述构件包括碳化硅单晶生长炉中的加热器、坩埚、籽晶托等内部构件。碳化硅粉体合成用加热器、坩埚等石墨热场部件,以及碳化硅外延生长用石墨基材的纯度测定可参考本文件。 T/CASAS 048—202X《碳化硅单晶生长用等静压石墨》描述了碳化硅单晶生长用等静压石墨的技术要求、试验方法、检验规则、标识、包装、运输和贮存等。本文件适用于纯度要求达到5N5(质量分数99.9995%)以上的碳化硅单晶生长用或碳化硅粉体合成用等静压石墨,包括碳化硅单晶生长用加热器、坩埚、籽晶托等内部构件,以及碳化硅粉体合成用加热器、坩埚等石墨热场部件。 请于2024年8月24日前填写《CASA标准文件征求意见表》反馈至联盟秘书处。TCASAS 036 碳化硅单晶生长用等静压石墨构件纯度测定方法 辉光放电质谱法-征求意见稿.pdfCASA标准征求意见表 .docxTCASAS 048碳化硅单晶生长用等静压石墨-征求意见稿.pdf
  • 聚焦三大体系,《化学物质环境风险评估与管控技术标准体系框架(征求意见稿)》发布
    为落实《新污染物治理行动方案》关于建立完善技术标准体系的有关要求,生态环境部固体废物与化学品司组织有关单位,生态环境部编制了《化学物质环境风险评估与管控技术标准体系框架(征求意见稿)》,现公开征求意见。征求意见截止时间为2024年8月9日。《框架》按照“筛、评、控”和“禁、减、治”的原则编制, 主要包括:总体框架、化学物质环境风险筛查技术标准子体系、环境风险评估技术标准子体系、环境风险管控技术标准子体系等。其中,环境风险管控技术标准子体系又分为源头禁限类、过程减排类及末端治理类。对于化学物质环境管理的命名,《新化学物质申报类名编制导则》(HJ/T 420—2008)和《化学物质环境管理命名规范》(HJ 1357—2024)已分别于2008年1月和 2024 年 3 月发布。化学物质环境风险评估中重点关注的环境与健康危害项目:一、生态毒理项目化学物质环境风险评估中重点关注的生态毒理项目包括:藻类生长抑制毒性、溞类急性毒性、鱼类急性毒性或鱼类胚胎-卵黄囊吸收阶段短期毒性试验、活性污泥呼吸抑制毒性、吸附/解吸附性、蚯蚓急性毒性试验、大型溞繁殖试验、鱼类慢性毒性试验、种子发芽和根伸长试验或陆生植物生长试验、线蚓繁殖试验或蚯蚓繁殖试验、底栖生物慢性毒性试验等。二、健康毒理项目化学物质环境风险评估中重点关注的健康毒理项目包括:急性毒性、皮肤腐蚀/刺激、眼刺激、皮肤致敏、致突变性、反复染毒毒性、生殖/发育毒性、毒代动力学、慢性毒性、致癌性等。三、环境行为项目 化学物质环境风险评估中重点关注的环境行为项目包括:降解性、生物累积性等。附:《化学物质环境风险评估与管控技术标准体系框架(征求意见稿)》.pdf《化学物质环境风险评估与管控技术标准体系框架(征求意见稿)》编制说明.pdf征求意见单位名单.pdf
  • 让教育更有趣,FLIR ONE Pro协助学生解决各种热问题~
    “有了正确的心态,任何年龄的人都可以成为科学家” 。这是James Falletti通过一项名为“Growing Beyond Earth”的研究项目教他六年级学生的内容,这让他们有机会测试不同植物在空间站上生长的可行性。借助科学方法和FLIR ONE Pro等专业测量工具,这些学生通过收集有效数据,来确定地球外层空间可能种植的作物。Growing Beyond Earth 研究项目由Fairchild植物园与NASA(美国国家航空航天局)合作运营。现在已经进入第六年,美国已有超过10,000名中学生参加了此项目,学生的研究直接导致了两个植物品种(“Dragoon”生菜和““Extra dwarf”白菜)的选择,迄今为止在国际空间站上长大。启动太空种植项目Falletti 通过与NASA的联系了解“Growing Beyond Earth”的项目,她曾是美国宇航局休斯顿航天中心的太阳系大使 (SSA) 和机组成员。“我在 NASA 做了很多工作,并尽可能将技术融入到太空教育和生态意识中”他说。在获得该项目的批准后,Falletti的班级收到了一个装有Dragoon生菜种子的工具包,用于设置并开始种植。MARSfarm种植箱中的Dragoon生菜学生们对此都非常感兴趣,并尝试接受它。“他们经常会问,我可以测量它吗?”Falletti说。从检测湿度水平到检查温度水平,学生们都感到很有趣!“这是六年级的学生,”他强调说。11岁和12岁的孩子自己收集数据并将其输入到电子表格中,这些数据实时发送给NASA的科学家。“这是一个了不起的项目,”Falletti说。“孩子们正在学习环境科学、生物学、生命科学、物理学等,他们在这方面玩得很开心,学的很快乐。”学生仔细观察农作物,种子被种植在粘土中,而不是土壤中,以模拟空间站上的种植条件使用热像仪解决问题与任何科学实验一样,研究人员很可能会遇到一些意想不到的结果。差不多两周后,他们注意到只有一株生菜在生长,六个盆中每盆有四颗种子。为了解决为什么他们的植物不生长的问题,学生们开始对可能出现的问题提出假设。在他们研究可能的原因时,一名学生假设植物因生长灯而变得太热。“嗯,我碰巧有这个东西,”Falletti说完并举起他的 FLIR ONE Pro。FLIR ONE Pro拍摄的植物图片通过FLIR红外热像仪观察之后,学生们意识到植物只生长在花盆的边缘,那里温度明显升高。他们假设花盆中部的黑暗区域可能太冷或太湿,植物无法发芽。因此他们决定把剩下的种子种在一边,三四天之后竟然发芽了!利用科学方法和手头的工具,学生们想出了解决问题的办法,很赞!学生假设热图像中较暗(较冷)的区域可能显示粘土太湿而无法发芽新型教学工具:FLIR ONE Pro在课堂上,Falletti不止一次拿出FLIR ONE Pro来帮助演示热力学概念。尤其是,FLIR ONE Pro已被证明是帮助克服社交距离所需障碍的宝贵工具。例如,当Falletti演示化学反应时,热像仪可以帮助学生在安全距离范围内查看实验效果。“通过在手机上使用它,向学生们展示热量特征,并向他们展示植物的生长程度或是否开始变冷。”使用 FLIR ONE Pro,学生可以亲眼看到反应是吸热还是放热,即使从远处也能获得更好的视野。学生们在学习热血动物和冷血动物的同时,还能够在热环境中观察班上的宠物——鳄龟。他们在徒步旅行时去寻找热血哺乳动物,利用热特征和泥中的脚印等线索推断他们发现了一只浣熊。“这很有趣,我们尝试尽可能多地融入其中,”Falletti说。“我们正在利用自然世界,将其与科学技术联系起来,并与他们一起开启全新的、有趣的、令人兴奋的体验,这很重要。”学生们在给植物浇水教育不应只局限于教室“我认为教育不应该只局限于教室,”Falletti说。Growing Beyond Earth项目将他的学生与全国乃至国际的科学家联系起来。“我们有一个来自巴西的伙伴,他正在与我们合作开展一个项目,这将是一项全球性的实验。”他分享道。在如此充满挑战的一年中,找到让学生参与其中并获得灵感的方法是一项至关重要的工作。感谢所有像James Falletti这样竭尽全力为学生服务的老师。FLIR ONE Pro在实验的过程中,为学生们解决了很多关于热特征的问题,为他们展现了不一样的红外世界!FLIR ONE Pro不仅能检测房屋隔热层的完整性,还能检测空凋问题、电气故障、地暖泄露、房屋潮湿、墙体发霉等生活常见问题,还可以作为生活乐趣的小助手,目前京东和天猫官方旗舰店均有售
  • 苏芽食品与江南大学组建联合实验室
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 近日,无锡苏芽食品有限公司与江南大学达成产学研深度合作意向,签约设立了“江南大学——无锡苏芽食品联合实验室”,将共同实施推进“芽苗菜生产与深加工关键技术研究”项目,加快提升以芽苗菜为主体的现代农业产业发展水平和效益。 br/ & nbsp & nbsp & nbsp & nbsp 据了解,无锡苏芽食品有限公司是目前国内最大的现代工业化芽苗菜生产企业,也是江苏省第一家获得国家农业部认证的无公害豆芽生产企业。此次与江南大学在科技开发、人才培养、成果转化、合作交流、咨询服务等方面开展深度合作,将帮助企业在筛选芽苗菜生产益生菌、优化芽苗菜生产工艺、开发芽苗菜深加工产品、做大产品市场营销等四方面实现质的提升,助力企业做强延伸芽苗菜产业链,加快打造特征鲜明的现代农业产业体系。 /p
  • 中国人首次在太空种菜 栽培装置部分来自3D打印
    天宫二号11月13日电,大家好!今天(11月11日)是神舟十一号飞行乘组进入组合体第二十四天。我是新华社太空特约记者、航天员景海鹏。  听说有很多网友关心我们在天宫种植的生菜,今天我就具体和大家讲一讲。  【航天员中心环控生保研究室副研究员王隆基解说:选择栽培生菜有以下原因:一是生菜的生长周期是一个月,这一次在轨时间恰好是30天 二是生菜在地面上的种植技术比较成熟 三是生菜可食用,在后续的在轨实验中可以作为食材 四是生菜是老百姓比较常见的植物,有利于进行科普宣传。】  今天做的是一些常规照料工作,主要是检测栽培基质的含水率、养分含量,灯光照射以及用注射器往基质推入空气。我们有一个仪器检测含水率,如果显示指数低,就说明需要给生菜浇水了。注入空气是为了让生菜的根部呼吸到新鲜空气,有利于植物的成长。我们就像是太空的“农民”,每天至少都要花10分钟的时间来照料生菜。  另外,在太空种生菜使用的基质和地面的土壤是不一样的,我们用的是蛭石。  【王隆基解说:蛭石是一种矿物质,它的吸水性非常好,水分在其中传导非常均匀,即使是在地面有重力的情况下,向上吸附都非常流畅 另外它密度小质量轻,便于携带上天。】  植物栽培是在我们进入组合体的第二天开始的,首先我们需要安装栽培装置,就像是搭积木一样,把装置的各个部件组装成一个白色箱体。  【王隆基解说:白色装置的固件是3D打印的,都是尼龙性材料,比较轻便,白色和绿色形成了一个鲜明的对比,视觉效果也很好。它上面有两个器件,一个用来测量土壤中的水分和养分参数,另一个用来在植物生长后期在封闭情况下测量植物光合作用。】  接着我们就会浇水、播种。在上天之前,有一部分种子已经放入白色的单元格里面,这些种子是经过特殊处理的丸粒化种子。由于生菜的种子比芝麻粒还小,为了方便我们播种,专家们特意在外面做了一层包衣,使它和绿豆粒差不多大,方便直接手拿。包衣在吸饱水后会裂开,但在后面的成长过程中,我们发现,包衣对种子发芽的速度会有细微的影响。  在天上播种的方式和地面不同,地面一般是先播种后浇水,但由于我们带入太空的白色单元格是硬质材料,只有吸水软化后,种子才能放进去,所以我们是先浇水后播种。  播种完后,我们会在装置里铺上一层保鲜膜,就和种庄稼的地膜一样。它的作用是保护植物,防止水分流失。  在进入组合体的第五天早上,我们发现种子发芽了。当时我和陈冬兄弟都非常高兴,第一时间把这个好消息告诉了地面工作人员。我们拍了很多照片,还跟生菜芽合影留念了。  种子发芽后,我们就会拿掉地膜,把安装在白色装置顶端的灯打开,给生菜提供光照。灯光是由红、蓝、绿三种颜色组合而成的,主要偏红色。  【王隆基解说:生菜对红光吸收效率非常高,在红光照射下生长得很好 采用绿光是因为它照射到生菜叶上,视觉效果非常好 蓝光则是对植物形态舒展具有较强作用。】  生菜进入成长期后,在光照的作用下,就开始变绿了。  我们第一次给生菜间苗和补水是播种后第六天。间苗那天,我和陈冬兄弟发现生菜长得特别新鲜,看着比地面的要绿一些。  我们间苗用的是镊子,主要是把长得相对差一些的生菜连根拔出来,在每个单元格里保留两棵菜苗。因为菜苗都非常嫩,所以我们得非常小心,一不留神就会把保留的生菜苗损坏。  过了3天后,我们开始了第二次间苗和浇水,这时每个单元格就只有一棵菜苗了。浇水其实不是每天都需要做的,专家为我们设定了5次浇水,每次浇水使用的是注射器,将水注入生菜根部。  除了播种、间苗、浇水,我们还需要每天对生菜进行观察、拍照,检查基质的含水率、养分含量等。  到今天为止,在我们亲手照料下的生菜,已经长得很好了。我们看着它们一天天成长,很有满足感。  有网友提问,在太空,生菜生长的方向会发生变化吗?长得怎么样了?  在这里,我要告诉这位网友,我们种植的生菜和地面是一样的,也是向上生长的,而且长得好像比地面更高一些。  【王隆基解说:虽然太空是失重环境,但是因为植物有趋光性,所以它依然是朝上长 同时植物还具有趋水、趋肥性,它的根部就会朝着富有水分和养分的基质生长。】  下周二,是我们在轨种植蔬菜的最后一天,到时候我们会进行植物采样,把生菜的叶子和根茎剪掉,放到低温储蓄装置中,再把它们带回。  听说有网友很好奇,种出来的生菜能吃吗?  这次我们种的蔬菜是用来做实验的,暂时不食用。我相信经过研究,以后我们在太空种的各种蔬菜,肯定是可以吃的。我也期待着在太空吃上自己种出来的蔬菜。  【王隆基解说:这次是我国首次在太空人工栽培蔬菜,暂时不让航天员食用。我们要把植物采样带回来,进行生物安全性检测,比如检测植物表面的微生物是否超标。只有检测合格后,我们才会在下次实验中考虑让航天员食用栽培的蔬菜。在轨植物栽培技术,是未来长期太空载人活动、深空探测等必不可少的一项技术,将来我们还会做其他物种的大面积栽培实验,通过几轮实验,逐步掌握植物在太空生长的规律,便于以后在空间站种植种类更多、面积更大的植物。】
  • Quantum Design中国引进高性能激光浮区法单晶生长系统
    浮区法单晶生长技术在晶体生长过程中具有无需坩埚、样品腔压力可控、生长状态便于实时观察等诸多优点,目前已被公认为是获取高质量、大尺寸单晶的重要手段之一。激光浮区法单晶生长系统可广泛用于凝聚态物理、化学、半导体、光学等多种学科领域相关单晶材料制备,尤其适合高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。Quantum Design中国引进的高性能激光浮区法单晶生长系统,传承了日本理化研究所(RIKEN,CEMS)的先进设计理念,具有更高功率、更加均匀的能量分布和更加稳定的性能。 图1:RIKEN(CEMS)设计的五束激光发生器原型机实物图2:RIKEN(CEMS)设计的同源五束激光发生器原型机原理图 与传统的激光浮区法单晶生长系统相比,新一代激光浮区法单晶炉系统具有四项技术优势:● 采用技术五束激光设计,确保熔区能量分布更加均匀;(号:JP2015-58640)● 更加科学的激光光斑优化方案,有助于降低晶体生长过程中的热应力;(号:JP2017-136640, JP2017-179573 )● 采用了特的实时温度集成控制系统。(号:JP2015-78683 ) 采用新一代激光浮区法单晶炉系统生长出的部分单晶体:(图片由 Dr. Y. Kaneko (RIKEN CEMS) 提供)Sr2RuO4Ba2Co2Fe12O22SmB6Y3Fe5O12 新一代激光浮区法单晶炉系统主要技术参数:加热控制激光束源5束同源设计激光功率2KW熔区可实现高温:~3000℃*测温范围900℃~3500℃温度稳定性+/-1℃晶体生长控制晶体生长大设计长度150mm*晶体生长大设计直径8mm*晶体生长大速度/转速200mm/hr 40rpm样品腔真空度/压力10-4torr to 10 bar样品腔气氛O2/Ar/混合气晶体生长监控高清摄像头晶体生长控制PC控制其它占地面积D140 xW210 x H200 (cm)除此之外,Quantum Design还推出了多款光学浮区法单晶炉以满足不同的单晶生长需求。高温光学浮区法单晶炉:采用镀金双面镜以避免四镜加热带来的多温区点、高反射曲面设计,高温度可达2100-2200摄氏度,高效冷却节能设计不需要额外冷却系统,稳定的电源输出保证了灯丝的恒定加热功率。适用于生长高温超导体、介电和磁性材料、金属间化合物、半导体/光子晶体/宝石等。德国SciDre公司的高温高压光学浮区炉:能够提供2200–3000℃以上的生长温度,晶体生长腔可大压力可达300Bar,甚以及10-5mBar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。Quantum Design中国期望能够给予浮区法晶体生长技术的科研学者更多的支持与帮助!
  • Nature发表!单颗粒冷冻电镜技术助力中国科学家阐明生长素极性运输的分子机制
    近日,浙江大学团队联合湖北大学,实现了植物生长素极性运输研究的重大突破,让植物向性这一百年科学难题的关键一环得以解决,为生长素极性运输的进一步调控打下基础。 近日,相关论文发布在 Nature 上。担任共同通讯作者的浙江大学医学院生物物理系长聘副教授/附属第四医院双聘教授郭江涛 表示:“对于弄清楚 PIN 蛋白(pin-formed protein)介导生长素转运的分子机制,学界早已翘首以盼,而该工作终于揭晓这一机制。这为开发基于结构靶向 PIN 家族蛋白的新型小分子抑制剂奠定了基础。这些抑制剂既能作为工具,去研究生长素的极性运输机理;也可作为农业除草剂,助力于作物改良。”图 | 浙江大学研究团队主要成员合影。前排左起:郭逸蓉、张素芬、张艳、苏楠楠、竺爱琴、杨帆 ;后排左起:周晨羽、叶繁、郑绍建、郭江涛 、常圣海同时,作为共同作者单位的湖北大学,也借此迎来该校第一篇 Nature 论文。审稿人评价称:本文报道了一个重要的结构,为植物生长素运输提供了新的研究思路;这些发现是开创性的,真正为 PIN 蛋白的功能提供了新的见解,从而为研究打开了许多新的途径。此外,PIN 蛋白与胆汁酸/钠转运蛋白的结构也存在有趣的相似性,这可能有助于更好地理解 PIN 蛋白的起源及其转运机制。另据悉,通过比对拟南芥其他生长素转运蛋白序列,课题组发现生长素转运位点是保守的,这种保守性也会延伸到其他的植物物种中。因此,可以认为此次研究结论,也能被推广到其他植物中。近日,相关论文以《拟南芥生长素转运蛋白 PIN3 的结构与机制》(Structures and mechanisms of the Arabidopsis auxin transporter PIN3 )为题发表在 Nature 上[1]。图 | 相关论文(来源:Nature)共同通讯作者分别为郭江涛 、浙江大学医学院生物物理学系研究员杨帆 、以及湖北大学生命科学学院&省部共建生物催化与酶工程国家重点实验室吴姗 教授。郭江涛 团队的博士后苏楠楠、杨帆 课题组的博士生竺爱琴、以及吴姗 团队的博士生陶鑫为论文共同一作。PIN 蛋白在拟南芥中介导生长素极性运输机制据介绍,生长素对植物的生长发育起核心调控作用。一般来讲,低浓度的生长素促进生长,高浓度的生长素抑制生长。生长素主要合成部位是在芽、幼嫩的叶和发育中的种子,然后被运输到作用部位。其中,生长素调控植物生长发育与其在植物各个组织中的不对称分布有着密切的关系。而这种不对称分布,主要由于在细胞与细胞之间的生长素运输具有一定的方向性,这也被称为生长素极性运输(Polar Auxin Transport,PAT)。那么,PIN 蛋白缘何能导致植物具有向光性?植物的向光性,是指植物受到单侧光的刺激而引起的生理弯曲现象。而植物体内生长素的不对称分布,和这种向光性息息相关。生长素在植物体内运输有两条途径:一是通过韧皮部完成长距离运输的非极性运输;二是需要转运蛋白参与的单方向极性运输。其中,对于生长素的不对称分布,极性运输起着关键作用。PIN 蛋白可以将生长素转运至细胞外。PIN 蛋白在细胞膜上的极性定位,决定着植物体内生长素极性分布,从而会导致植物的向光性。至于为何要采用拟南芥作为研究对象?郭江涛 表示,拟南芥作为模式植物,其基因组已于 2000 年由国际拟南芥基因组合作联盟完成测序,是第一个实现全序列分析的植物基因组。目前,人们已在 30 多种植物中鉴定出了不同数量的 PIN 基因。作为模式植物,拟南芥中有 8 个 PIN 蛋白成员(PIN1-PIN8)。学界在这方面的生物学功能研究,也比针对植物其他物种的研究更透彻,这能帮助该团队更好地认识 PIN 蛋白的生化、生理以及遗传等特征。同时,鉴于本研究旨在研究植物生长素的极性运输机制,因此其选择拟南芥为研究对象。据介绍,生长素极性运输主要依赖于三种膜定位转运体:AUX/LAX 家族蛋白、 PIN-FORMED 家族蛋白和 ABCB 家族蛋白。通过调控这些家族蛋白,植物可以调节生长素的极性运输和分布。研究发现,拟南芥 PIN 与 ABCB 蛋白可以共同定位。而通过酵母双杂交和免疫共沉淀的实验表明,PIN 和 ABCB 蛋白存在直接的物理互作。PIN蛋白在极性胚胎发育和器官形成等需要定向生长素极性运输的过程中其决定作用,而 ABCB 则在顶端组织生长素转运及长距离运输中起重要作用,二者在调控生长素的转运上具有一定的独立性。AUX 蛋白为生长素转入蛋白,PIN 蛋白为生长素外排蛋白。它们通过协同工作,一起维持植物体生长素平衡。(来源:郭江涛 课题组)解析三个高分辨率冷冻电镜结构本研究最开始且关键的一环是课题选择,首先通过大量的文献调研,课题组确定了研究对象——PIN 蛋白。PIN 蛋白是生长素转运蛋白,在植物的生长素极性运输方面发挥了巨大作用。因此,研究人员希望通过结构生物学的手段解释PIN蛋白介导的生长素极性运输的分子机制。而拟南芥 PIN 蛋白家族被分为两个亚家族,一类是定位在质膜上的 long PINs (PIN1–PIN4、PIN6 和 PIN7),另一类是定位在内质网上的 short PINs (PIN5 和 PIN8),这两大家族通过共同工作,一起维持着植物生长素的内稳态。研究中,该团队首先对 7 个 AtPINs (AtPIN1–5, AtPIN7–8)进行表达纯化筛选,最终选择 AtPIN3 作为研究对象。原因在于,AtPIN3 与其他 long AtPINs 有至少 54% 的序列同源性,可作为 PIN 家族结构和功能分析的模型。随后,通过哺乳动物细胞 HEK293 外源表达系统、对 PIN 蛋白进行过表达并纯化后,课题组得到了均一且稳定的蛋白样品。借助单颗粒冷冻电镜技术,该团队解析了三个高分辨率冷冻电镜结构,分别处于三种状态:PIN 蛋白未结合底物状态、底物 IAA 结合状态以及抑制剂 NPA 结合状态。接下来是功能实验验证阶段。研究团队建立了体外放射性 3H-IAA 转运实验体系,针对底物 IAA 与抑制剂 NPA 结合位点突变体的生长素转运活性和抑制活性,进行相关的测试。随后又通过表面等离子体共振技术,测试底物 IAA 与抑制剂 NPA 结合位点突变体分别与 IAA 和 NPA 的结合能力。然后,通过功能实验的多重验证,课题组阐明了 PIN 转运蛋白对 IAA 的识别和转运机制,以及抑制剂 NPA 抑制生长素转运的分子机制。最终解释了 PIN 蛋白介导的生长素极性运输的分子机制。(来源:郭江涛 课题组)将探索开发新型农药除草剂在整个研究过程中,研究人员遇到了很多困难。AtPIN3 二聚体的分子量仅为 140 kd,蛋白颗粒取向优势严重,从结构上来看几乎只有跨膜区,这对冷冻电镜数据处理带来了极大的挑战。郭江涛 表示:“从拿到均一稳定的蛋白样品到拿到较好的密度图,经历了大半年的时间。我们通过尝试改善蛋白颗粒的取向优势问题,采用不同的电镜数据处理方法,总结经验,最终得到高分辨率结构。”AtPIN3 与底物 IAA 复合物结构的解析,同样是本研究的一大难点。由于 IAA 与 AtPIN3 亲和力相对较弱,研究团队在前后多次对 AtPIN3 与 IAA 的复合物样品进行单颗粒冷冻电镜数据收集,但是 IAA 的密度一直不是很清晰,这让其无法准确判断 IAA 与 AtPIN3 准确的结合模式。后来,通过提高样品中 IAA 的浓度、更换蛋白样品缓冲液体系、更换冷冻电镜样品载网、制样条件、以及改善样品进孔问题,课题组终于成功拿到复合物高分辨结构。(来源:郭江涛 课题组)通过功能实验对 IAA 和 NPA 的作用机制进行验证也是本研究的难点之一。建立一个准确有效的检测生长素转运的实验体系,对他们来说是一个全新的尝试,经过不断摸索学习总结,最终也成功建立了放射性 3H-IAA 外排实验体系。“从最开始的困难重重到最后柳暗花明的整个研究过程中,我们认识到做研究要有决心,有破釜沉舟的勇气,始终要有把工作做到极致的信念,有做世界最一流工作的信念。”郭江涛 总结称。后续,其计划以 PIN 蛋白为靶点筛选新型小分子抑制剂,并通过体外放射性 3H-IAA 转运实验体系对小分子进行功能验证,也将通过冷冻电镜技术手段解析复合物结构,并在此基础上对筛选的小分子化合物进行优化,进而开发新型除草剂农药。
  • 祝贺冠亚种子水分仪入选中国热带农业科学院
    中国热带农业科学院(简称“中国热科院”)是隶属于农业农村部的科研机构,创建于1954年,前身是设立于广州的华南热带林业科学研究所,1958年迁**海南儋州,1965年升格为华南热带作物科学研究院,1994年更为现名。 中国热科院现有儋州、海口、湛江和三亚(筹)四个院区,科研试验示范基地6.8万亩,在海南、广东“两省六市”设有16个科研和附属机构。拥有**重要热带作物工程技术研究中心、海南儋州**农业科技园区、省部共建**重点实验室培育基地、农业部综合性重点实验室等70多个部省级以上科技平台和3个博士后科研工作站。 种子活力是指在广泛的田间条件下,决定其迅速整齐出苗和长成正常幼苗潜在能力的总称。目前我国商品种子**检验标准中只规定了发芽率、含水量、净度、纯度四大指标,对种子活力指标未做任何形式的说明与要求。目前应用较多的种子活力测定方法仍然是基于发芽试验的发芽速度测定。由于耗时长,越来越不能满足快速准确掌握种子质量信息的需求。 日前中国热科院选定冠亚种子水分仪为哈密瓜示范基地项目实验室种子含水量实验提供科学准确的测试工作。 冠亚种子水分仪,种子含水量测定仪SFY-6D采用进口精密称重系统称量取样,采用卤素辐射源快速干燥样品,在测量样品重量的同时,加热单元和水分蒸发通道快速干燥样品,在干燥过程中,水分仪持续测量并即时显示样品丢失的水分含量%,干燥程序完成后,终测定的水分含量值被锁定显示,直接计算干燥前后样品质量的变化来求取含水率。相对于烘箱来说在冠亚卤素快速水分测定仪工作的过程中,减少了人为、环境等方面所带来的失误。与国际烘箱加热法相比,可以短时间内达到加热功率,在高温下样品快速被干燥,其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法。因此冠亚卤素快速水分测定仪被越来越多的科研单位,生产企业所青睐和选用。
  • 硅表面生长纳米激光器技术问世
    据美国物理学家组织网近日报道,美国加利福尼亚大学伯克利分校科学家利用新技术直接在硅表面生长出了极微小的纳米柱,形成一种亚波长激光器,这一成果将为制造纳米光学设备如激光器、光源检测仪、调制器、太阳能电池等带来新的突破。   硅材料奠定了现代电子学的基础,但它在发光领域还有很多不足之处。工程人员转向了另外一族名为III-V半导体的新材料,以此来制造光基元件,如发光二极管和激光器。   加利福尼亚大学伯克利分校的研究人员通过金属—有机化学蒸发沉积的方法,在400摄氏度条件下,用一种III-V族材料铟镓砷在硅表面生长出纳米柱。这种纳米柱有着独特的六角形晶体结构,能将光线控制在它微小的管中,形成一种高效导控光腔。它能在室温下产生波长约950纳米的近红外激光,光线在其中以螺旋形式上下传播,经过光学上的相互作用而得以放大。   研究人员指出,将III-V和硅结合制成单一的光电子芯片面临的最大障碍是,目前制造硅基材料的工业生产设备无法与制造III-V设备兼容。“要让III-V半导体在硅表面上生长,与硅制造设备兼容是关键,但由于经济和技术方面的原因,目前的硅电子生产设施很难改变。我们选用了一种能和CMOS(互补金属氧化半导体,用于制造集成线路)兼容的生长工艺,在硅芯片上成功整合了III-V纳米激光器。传统方法生长III-V半导体,要在700摄氏度或更高温度下进行,这会毁坏硅基电子元件。而新工艺在400摄氏度下就能生长出高质量III-V材料,保证了硅基电子元件正常发挥功能。”主要研究人员、加州大学伯克利分校电学工程与计算机科学教授康妮张-哈斯南说。   张-哈斯南还指出,这种亚波长激光器技术将对多科学领域产生广泛影响,包括材料科学、晶体管技术、激光科学、光电子学和光物理学,促进计算机、通讯、展示和光信号处理等领域光电子学的革命。“最终,我们希望加强这些激光的特征性能,以实现光子和电子设备的结合。”
  • 澳大利亚集团公司CBH选用波通公司的降落数值仪,受益匪浅!
    澳大利亚集团公司CBH选用波通公司的降落数值仪,受益匪浅! CBH集团公司是澳大利亚最大的谷物组织,日前宣布自从增加购买使用降落数值仪后,获得几百万澳元的收益。 在这样一个收获的季节,雨水的破坏时有发生,使用降落数值仪对收入的谷物进行彻底的检测可以将谷物从单一货载里分级,哪些是饲料用,哪些是一般常用,哪些是制粉等级的。这是简单的目视检测或者从粮仓里抽样检测都无法达到的效果。 下面是CBH集团公司11月14日发表的新闻的原文,也可以通过链接进入其网站。 更多关于降落数值仪信息请查看此链接: please click here. 更多关于CBH的信息请查看: please click here.» 降落数值仪检测为谷物增值数百万(CBH新闻,2011年11月14日发布)。 谷物种植者今年收获的季节收益增长了7.5百万美金,主要归因于CBH集团采用降落数值仪准确检测收入的谷物中受雨水损伤的谷物。 CBH从收获季节开始就在受暴风雨影响严重的地区现场启用80多套降落数值仪,高峰期使用量甚至达到100多套。 根据西澳大利亚谷物行业官方承认的小麦收购标准以及西澳大利亚谷物交易标准,任何批次被检测受发芽损害的谷物都归类为饲料级谷物,除非降落数值仪检测结果推翻此结果。 通过使用降落数值仪,CBH可以将饲料级的受损谷物升级为正常使用级别的谷物甚至是APW和H2制粉级别的谷物 CBH总经理Colin Tutt说:逐批采用降落数值仪检测,根据检测结果可以确保最佳的分类,排除视觉上认为是发芽损伤的谷物。这是让可能成为饲料级别的谷物升级为更高价值的制粉级别谷物的唯一方法。 Mr Tutt说:&ldquo 到目前为止,CBH已经检测了3500批次的货物,预计价值达到7.5百万美金。 考虑到我们只有10%的机会进入到预期的收获,因此很明显潜力很大。&rdquo Mr Tutt说&ldquo 降落数值仪检测每批货物的时间需要5-10分钟,而这额外的时间在忙碌的收购现场确实令人沮丧,但是我们劝谷物种植者这个耐心的等待是值得的,因为饲料级别的谷物和更高级别的谷物的价值是不同。 我们的降落数值仪现场为种植者提升谷物的价值,这正是他们种植谷物所希望的,我们的目标是不要降低任何看上去有发芽受损的谷物成饲料级别的,然而当大面积的谷物受到气候恶化的影响时就会增加我们的难度。&rdquo CBH客户质量经理Dr Richard Williams说:&ldquo 损伤的谷物含有破损的淀粉和蛋白成分,会导致最终产品质量变差。使用受损的面粉制作的面包皮黑,里面发粘,严重时面包里面有空洞;而使用受损的面粉制作的面条会发粘,煮的时候容易断裂。&rdquo 他继续说:&ldquo CBH的管理计划是将逐批检测和现场监测结合以达到对小麦交货时的最佳分级从而保持WA在小麦供货质量上的的良好声誉&rdquo 。
  • 瀚辰小课堂丨作物育种养活100亿人
    Nature Biotechnology 杂志发表了由澳大利亚昆士兰大学的植物遗传学家Lee Hickey领衔撰写的题为“Breeding crops to feed 10 billion”的综述文章,该文章介绍了如何利用Speed Breeding(加速育种)技术,结合高通量表型、基因编辑、基因组选择、从头驯化等其他生物育种技术,来提高育种效率,以应对未来需要养活全球100亿人的巨大挑战。以下为全文翻译:前言作物改良可以帮助我们应对要养活100亿人口的挑战,但是我们能够足够快的培育出更好更多种的作物吗?基因分型、分子标记辅助选择、高通量表型、基因编辑、基因选择和从头驯化等技术通过利用快速育种技术被激发,使育种学家能够跟得上不断变化的环境和持续增长的人口。 未来30年,全球人口预计将增长25%,达到100亿。迄今为止,传统育种方法生产产量高的营养作物,可以收获相对足够的粮食,以满足不断增长人口的粮食需求。但目前主要农作物(小麦、水稻和玉米)产量增加的速度,不足以满足未来的需求。育种学家和植物学家面临的压力有:改善现有作物和培育出高产、更有营养、抗病虫害和适应气候型新作物。所以需要利用各种手段提高育种效率,将最先进的技术与快速育种相结合,为将来满足100亿人口的粮食生成奠定基础。不像12000年前,如今植物育种者可以应用大量的创新技术来提高育种效率和质量(图1)。举个例子,自动化高通量表型系统的发展给更巨大的人口数量带来了提高选择强度、提升选择精度的价值。二代三代测序平台意味着育种家可以负担的起使用DNA标记来辅助选择,并且促进了基因发现、形状解剖和预测育种技术。 作物育种的一个关键制约因素是作物过长的生长周期,特别典型的就是一年 一生、两生的作物,可以通过利用延长的光周期和可控的温度这样的“Speed Breeding 快速育种”技术手 段来缓解,将春小麦、大 麦 、鹰嘴豆和油菜的生长周期缩短至一半 。 将最先进的技术和快速育种相结合为应对养活10亿人的挑战打下基础。 图1 植物育种关键技术与其他技术简表左边绿色时间表示传统育种。右边绿色表示基因工程。棕色表示DNA标记。粉色表示基因组测序。蓝色表示其他重要事件。快速育种发展史大约150年前,植物学家首次证明了植物可以利用碳弧灯在人工光下生长。不久之后,我们评价了连续光对植物生长的影响。Arthur和他的同事报告说,在持续光照下,近100种植物中的大多数的开花速度更快,包括蔬菜、谷物、杂草、草本植物和花园观赏植物。在1980年代中期,NASA和犹他州立大学合作开拓在空间站持续的光照下种植快速循环小麦的可能性。这一共同努力的结果开发了一种矮小、生长周期快的小麦“USU-Apogee”。与此同时,1993年俄罗斯科学家提议测试“太空镜”,一种把黑夜变成白天的理论来提高地球农业生产率。在1990年,威斯康辛大学开始探索LED对植物生长的影响开始,随着LED技术的不断发展,不仅使室内植物育种系统的成本越来越低,而且提高了作物产量。受美国宇航局工作的启发,2003年,昆士兰大学的研究人员创造了“加速育种”(speed breeding)一词,用于描述一套加速小麦育种的改进方法。现在快速育种也应用于多种农作物中。与双单倍体技术不同,双单倍体技术产生单倍体胚胎,染色体加倍,产生完全纯合子的品系,快速育种适用于不同的种质资源,不需要专门的实验室进行体外培养。该技术利用最佳的光质量、光强度、昼长和温度控制来加速光合作用和开花,并结合早期种子收获来缩短世代时间。对于需要特定环境线索来诱导开花的物种,如春化处理或短日照。当这些技术应用于可以高密度生长的小谷物,例如1000株/平方米,与开发大量自交系相关的空间和成本可以减少。种子切片和单株植物追踪条码技术的结合能够促进高通量标记辅助选择。为了加快植物研究的进展,可以在快速育种系统中进行诸如杂交、定位群体的开发和对特定性状的成年植物表型等活动。此外,快速育种可以加速性状的回交和聚合(图2),以及转基因通道。图2 通过快速育种和标记辅助选择,实现性状快速叠加 小麦穗前发芽(Phs-A1)、小麦锈病(Lr34)、镰刀菌头疫病(Fhb1)和耐盐性(Nax1)为小麦优良品种。a,通过四轮回交和选择产生近等基因系(96%纯种),结合两轮杂交(基因构建步骤1和2),选择一个携带所有四个性状的纯合系(基因堆积步骤3)。b、实现四种性状叠加的时间轴分别为田间(每年一代)、常规温室(每年两代)和快速繁殖温室(每年六代)。精心的策划可以用来创建一个DNA标记测试、快速育种和现场评估的通道。第一个采用快速育种技术开发的春小麦品种“DS Faraday”于2017年在澳大利亚发布。在这种情况下,快速育种被用于加速抑制作物成熟时萌发的籽粒休眠基因的渐渗,从而产生具有提高对收获前发芽的耐受性的高蛋白碾磨小麦。对于没有大型设施的研究人员,可以建立小型、低成本的快速繁殖单位。快速育种还可以加速发现和利用地方品种和作物野生近缘种的等位基因多样性。例如,利用快速育种对瓦维洛夫小麦收集的叶锈病抗性进行筛选,以及与已知基因相关的DNA标记,发现了新的抗性来源。更快更好的表型表型是指对植物生长、发育和生理学的任何方面的测量。表型产生于基因型和环境之间的相互作用,包括光合机制的荧光特性、生长速率、抗病性、非生物胁迫耐受性、总体形态、物候学,以及最终的产量成分和产量。稳健的表型是植物育种的核心,因为它是选择品种培育新品种的主要基础。因此,表型方法的改进必须平衡提高的准确性、速度和成本。虽然“育种者的眼睛”可能永远不会被取代,但工程可以增加育种者所看到的东西,并告知更好的基于表型的选择。创新是多方面的,包括机器人技术植物成像(使用输送机、移动陆地车辆和无人机),在可见波和长波光谱中有多达数百个光谱波段。这使得利用计算机视觉和机器学习对植物的生长和功能进行无破坏性监测,以处理图像和提取有价值的信息(特征)。利用高度连接的环境监测,可以自动地得到关于植物生长环境的相应信息(https://www.miappe.org)。结合起来,这些技术为提高表型准确性和降低其成本提供了令人兴奋的机会。这种平台,即在受控环境中部署的平台的早期例子是植物加速器(https://www.plantphenomics.org.au),它在解决需要受控环境变化的问题时仍然具有重要的作用。更便宜的、基于现场的平台正变得越来越强大和有用,特别是随着无人机更容易获得,这些无人机有合理的飞行时间,可以携带大量的有效载荷。这个新一代表型的主要持续挑战仍然是数据处理和图像处理。计算机科学家的持续贡献将对保持快速发展至关重要。随着基因组学的快速发展,更好的表型工具正在引领加速育种计划。育种家们通过天然存在的或实验室控制群体结构来理解表型-基因型之间的关联性,表型分析也随之发展。例如,这些方法已经成功地绘制出了影响复杂表型的遗传区域,如水稻的产量成分和高粱的高度。将这些技术与基因组辅助育种方法相结合,可以更快地改善作物品系。田间种植作物表型创新只能与目标环境和快速育种条件之间的快速育种相结合,以便选出在目标环境和快速育种条件(如长日照时间和人工光谱)之间均保持稳定的性状。耐受某些害虫和疾病的抗性表型分析也可以整合到快速育种研发线中,以进行单一性状的表型分析,如一些形态特征和能力,能保持植物生长在次优条件下(例如,与凉爽的日子或温暖的夜晚),可能使植物应对特定的非生物压力。将快速育种设施与自动化高通量表型平台相结合,将进一步加速位点和基因的发现,以及鉴定特定基因对植物生长发育的影响。通过使用低成本的计算机和其他硬件,表型平台正变得廉价和容易获得。而且,尽管在受控环境中进行表型有优势,但对于简单的疾病性状,表型最好在多个现场试验中得到证实。对于更复杂的性状,包括耐旱性或产量,必须在目标环境下的田间进行表型分析。作物改良的快速编辑基因编辑和转基因性状的优势可以通过将这些工具整合到快速育种管道中更快地实现。许多第一代基因编辑应用仅依赖于一两个非优良基因型,这些基因型能够从植物组织培养和转化中再生。最近发展起来的技术甚至为一些优良基因型提供了高转化效率。应用基因编辑仍然需要耗费时间进行组织培养,以及具有适合使用Cas9基因和单导RNA (sgRNA)序列进行基因操作的专门实验室。然而,将基因编辑直接纳入快速育种的系统中,如ExpressEdit(图3),可以避免植物材料体外操作。虽然还不是常规操作,但已经采取了许多步骤来快速跟踪基因编辑,如下所述。图3 快速编辑的方法中,快速基因组编辑可以直接在快速育种系统中进行为了避免实验室中植株再生的问题,Cas9基因和sgRNA序列可以直接应用于植物。从分离的后代中筛选出新的性状(例如,抗病性),并且识别出缺乏Cas9基因但含有新性状的植物。或者,Cas9可以留在“CRISPR-ready”植物中,通过将sgRNA应用于不同的基因靶点,这些植物就可以经历更多的编辑周期。在CRISPR基因编辑中,sgRNA将Cas9酶引导到目标DNA位点,Cas9切割该位点切割DNA。可以创建包含异源Cas9基因的“CRISPRready”基因型。例如,携带Cas9转基因的转化植株可以作为供体,利用速度标记辅助回交创建一系列优良自交系。如下所述,有不同的方式来传递sgRNA进行靶向基因组编辑。然而,这种技术仍将产生受调控的转基因植物,随后编辑的转基因(s)位点,在大多数情况下,将需要Cas9和一个可选择的标记基因。在没有组织培养的情况下整合基因组编辑和快速育种需要许多技术突破,最佳结果是不需要组织培养或应用外源DNA的等位基因修饰,因为这些将避免转基因生物标签(图3)。它已被广泛证明,可以实现单一或多重编辑,这现在可以使用以下无组织培养技术来实现。举个例子, 例如,可以使用CRISPR-Cas9核糖核酸蛋白复合物进行基因组编辑。这被应用于许多物种中,包括小麦、玉米和马铃薯(茄属)。目标组织一般是未成熟的胚胎或原生质体,在理想情况下,这种方法将用于优化成熟的种子或发芽的幼苗。表型可以在后代中显现,允许性状的堆积。另外,粘土纳米片可以传递Cas9蛋白质和sgRNA。粘土纳米片还可用于向植物传递RNAi,使其具有抗病毒能力。RNAi在植物中持续数周,并在整个植物中移动。病毒载体可以传递Cas9和sgRNA成分,如双病毒载体,或通过成熟种子的茎尖分生组织的planta粒子轰击,或在不培养愈伤组织的情况下通过生物DNA传递,使编辑机制进入细胞,如小麦。该方法可将预组装的Cas9-sgRNA核糖核酸蛋白导入植物茎尖分生组织中,产生基因编辑或将编辑机制导入花粉和花序组织中。快速基因组选择 标记辅助选择(Marker-assisted selection)是一种利用连锁DNA标记跟踪少量基因或性状的方法,已成功地应用于很多作物育种项目中,目的是寻找具有较大效应突变的性状。相比之下,基因组选择使用全基因组DNA标记来预测培育个体复杂性状的遗传优点。这项技术的发展是为了了解复杂的性状,如产量,这些性状受到大量基因和/或调控因子变异的影响,通常每个变异的影响都很小。通过与全基因组DNA标记连锁不平衡效应来捕捉这些变异的影响,例如,单核苷酸多态性(SNP)。还有在大参考样本和群体中评估标记的影响,在群体中测量个体品系的基因型和性状。只要估计了标记的影响,就可以知道培育的候选品系基因型。然后,为了评估每个候选育种品系的价值,估计它们的基因组育种值(GEBVs)作为它们携带的标记等位基因的标记效应之和。选择具有高GEBV的植株作为下一代亲本。基因组选择相比传统育种的一个优点是,可以较早地在多个发育体系中选择利用品系作为亲本;并且基于GEBV的多个育种周期可以在与传统育种单个周期相同的时间内完成。对于那些通常在生长发育后期(评估阶段,图4)进行测量的性状和表型分析成本较高(如产量)的性状,基因组选择在节省时间和资源方面有着较好的优势潜力。基因组选择正在大规模地用于个人的作物育种项目,例如玉米育种。Cooper和 Gaffney 等人说明了由基因组选择产生的耐干旱玉米杂交种在工业生产规模下评估的影响。这些变异品种(“AQUAmax”杂交品种)现在广泛种植在农民的土地上。对农业生产数据的评估表明,无论是有利还是干旱胁迫条件下,AQUAmax玉米杂交种的产量都显著提高,在水资源有限的情况下提高了产量稳定性,降低了农民面临的风险。 为了获得更大的产量,可以使用基因组选择同时选择多个优秀性状。例如,为了选择产量提高的植物,可以使用多性状分析方法来提高选择的准确性,该方法包括在早期高通量测量性状的表型分析,如冠层温度和不同植被指数,以及关于产量的GEBV。另一个例子是测定关于最终用途的性状,这是小麦育种计划中最后要测定的性状之一。利用红外和核磁共振光谱分析,再结合DNA标记预测得到准确的GEBV。这些值可以用来选择具有理想性状的植物,在育种周期中,比其他方法的利用更早。 基因组选择的最大好处是当结合其他技术时,能(i)减少一代间隔和(ii)包括影响目标性状或特征的致病突变的精确位置,因为在这种情况下预测不再依赖DNA标记和致病突变之间的连锁不平衡。由于快速育种可以大大减少世代间隔,通过在每一代应用基因组选择来挑选下一代的亲本,可以大大增加这种方法的遗传增益。目前,基因组选择的最大问题是基因分型成本过高。为了减少成本,隔两代或三代才应用基因组选择,或者只选择那些在快速培育周期中表现出超过阈值的良好表型(例如一些抗病性)。利用高通量测序的新基因分型策略,如rAmpSeq,可以显著降低基因组选择的基因分型成本。尽管在某些情况下已经发现了SNP单核苷酸多态性,但许多性状的病因SNP的精确位置是未知的。如果这些多态性发生在野生或非优良种质资源中,一个可能的策略是采用ExperessEdit方法通过基因工程,将SNP导入优良的材料中,然后通过全基因组DNA标记,使用基因组选择来选出编辑的基因和其他成千上万个影响所需性状的SNP(图4)。另一个有前途的选择是将基因组选择与快速抗病基因克隆技术相结合。虽然标记辅助选择可用于转移具有较大影响的抗性基因,但将该方法与基因组选择相结合可以帮助积累和维持有助于有效抗性的微小基因变异。这种方法可能会减少病原体变异后克服抗性基因的选择压力。 图4 育种策略 育种策略的可视化表示和传统育种与利用双单倍体育种(DH)、快速育种(SB)、基因组选择育种(GS)和快速编辑 (剪刀表示)的周期长度比较。粉色底纹表示在快速育种条件下进行的步骤,绿色底纹表示在常规条件下进行的步骤。一个箭头表示一个世代。曲线箭头表示育种中的步骤,在这些步骤中,通过田间测评或基因组选择最佳品系,利用其作为亲本来进行新的杂交。基因组选择也可以用于在整个基因组中堆叠有用的单倍型,从而从群体中分离的现有单倍型中创建一个最佳的种植品系。例如,基因组区域可以通过连锁不平衡块来定义。单倍型GEBV被定义为单倍型标记效应的和。然后,可以为基因组的每个部分识别出具有最佳GEBV的单倍型,并且这些最佳的单倍型可以利用最佳的杂交模式堆叠在单个个体中。具有理想的基因编辑位点或抗病等位基因的单倍体可以设置为特定基因组区域的“最佳”单倍体,并在最终个体中组合。当与快速育种相结合时,这种叠加方法可用于快速开发具有多种性状的新型作物品种。加速驯化植物驯化(植物选择培育)是一个漫长的过程,选择突变的一系列性状,最终使植物可培养。通过对野生物种的新驯化来模拟这一过程可能是培育现代品种的另一种方式。这提供了获取驯化基因库中没有的基因和性状的途径。驯化通常与多倍体有关:事实上,大多数作物都是多倍体的。然而,由于与亲本的有性隔离和多体遗传,多倍体作物改良十分复杂。通过多倍体重建的快速再培养是从野生物种中引入新的基因和等位基因的直接方法。这种再培育过程可以通过快速育种来加速。可以利用这种方法培育多倍体作物花生(Arachis hypogea)和香蕉(Musa sp.)。花生是异源四倍体,由野生二倍体AA-和BB-通过秋水仙素和多次回交选择得到。在培育花生的多次选择步骤中,快速培育缩短了再培育的时间。在香蕉中,多倍体AA,BB通过杂交得到AAA、AAB和ABB。基本多倍体事件的少量发生,加上多年生植物在世界范围内的无性系繁殖,对毁灭性疾病几乎或根本没有抵抗力,加剧了遗传多样性狭窄造成的问题。在香蕉、花生中,通过利用不同二倍体和快速培育,合成多倍体可以得到新性状,包括抗病性,也有助于新品种的快速发展。此外,在香蕉中,直接编辑现有的三倍体优良品种,可以在短期内快速得到改良系,从而避免了重新合成三倍体所需的成本和时间。为了避免多体遗传,在某些物种中,可以使用具有所需性状的供体在二倍体中繁殖,然后通过未减少(缩短缩小)的配子和/或倍体间杂交(交叉)重新构成多倍体。与直接育种多倍体相比,该方法所需的时间和资源更少,为培育新品种提供了一条有效的途径;可以利用于一些作物上,如香蕉和土豆。同样,快速育种可以在加快杂种生长方面发挥作用,以便进行评估和进一步的杂交和选择。以香蕉为例,育种工作是在二倍体优良品系和野生近缘种之间进行,然后对选定的二倍体进行杂交(二倍体杂交种),并对选定的二倍体进行染色体加倍,以快速产生间倍体杂交(即 4x× 2x),从而培育出无籽三倍体。香蕉植株很大,周期很长,从杂交品种的产生到初步评估长达三年。同样,快速育种可能在加速杂交品种的评估和进一步的杂交和选择方面发挥作用。新物种的其他选择培育的途径包括已知的基因工程。在农作物和野生物种中通过CRISPR-Cas9进行基因组编辑,得到与再选择培育有关的基因。基因工程得到的新再培育系可以直接作为农作物,也可以与优良品系杂交得到新的优良性状。编辑技术和诱变技术结合快速培育也可以应用于培育健康食品——例如,增加维生素B9的水稻或去除藜麦中的皂苷等有害蛋白质、芸苔属种子的抗营养硫代葡萄糖苷和草豌豆的神经毒素等。基因编辑驯化是一种令人兴奋的途径,可以通过生产可以直接与遗传阻力小的先进品系杂交的品系来快速利用作物野生近缘植物的基因库。与快速育种结合,这些工具提供了快速获取新的遗传变异,并意味着加速部署这种变异到种植者的领域。快速育种2.0LED技术创新性地结合了扩展的光周期和早期种子收获,使加速育种得到了更广泛的应用。但进一步提高速度还有多大空间?加速育种的目的是优化和整合影响植物生长和繁殖的参数,以减少世代和观察表型所花费的时间,特别是观察那些在发育后期出现的表型。我们如何定制加速育种,以满足不同作物、品种和表型的具体要求?打破种子休眠是提高育种速率的第一步。在许多物种中,母体植物在胚胎发育过程中种子是处于休眠状态。种子的休眠可以在收获后立即被打破,通过冷分层,即种子在低温下吸水或使用促进发芽的激素,如赤霉素(图5a)。早期收获小麦和大麦种子,在开花后第14天,接着是干燥的第3天和冷分层的第4天,与成熟的种子相比,打破休眠可以减少大约15天的生产时间(图5b)。类似的方法也被应用于扁豆。更早的收获可以通过利用胚胎来实现,成花12天后,培养2-3天后发芽率达100%。这种方法避免了给种子干燥和分层,至少缩短了8天的生产时间。向开花的过渡也可以被缩短。有些植物需要较长时间的冷处理(春化)来介导向开花的过渡;冬小麦品种需要6到12周。控制春化的分子成分在许多植物中都已知。短暂地操纵这些控制点-例如,通过下调中央调节器VERNALISATION 2-可以导致“快速春化”的发展(图5c)。在关键的生长阶段,通过提高温度可以加速植物的生长。高温会导致水蒸气不足,阻碍植物生长和花粉发育;然而,当允许的水蒸气水平保持不变时,(高温使)营养生长和衰老的速度加快。这已经在玉米中得到了证明,尽管植物在较高的最低(夜间)温度下容易受到粮食产量的大幅下降。当已知植物的温度敏感性时,就有可能在适当的生长阶段进行高温干预,以加速生长。在面包小麦中,在减数分裂期间发现了一个籽粒产量下降的温度敏感期(图5d.ii)。因此,在营养生长过程中可以采用高温,而在生殖阶段可以保持低温来维持籽粒的发育(图5d.i)。优化日照时间和光照质量可以改善繁殖时间线。昼长和光照质量的变化可以加速植物的生长(图5f)。较长的日照促进中性或长日照植物的生长,而光合作用优化的光质量可以提高初级产量。此外,红光与蓝光的比值对开花也很重要,在小麦中,这在粉红色光下最早被诱导,其比值约为1。现有的速度育种系统的一个特点是使用led来改善光质量和降低操作成本。相反,激光可以用来进一步降低成本,因为它具有更高的电转换效率,40-60%的能量被转换为光,这取决于光的颜色。除了促进生长和增加能源输入的回报,激光还可以在生长柜或温室外产生,在植物内部发射,然后分散在植物上,消除了在可控环境下使作物研究昂贵的大量冷却成本。土壤一直是植株成功培养的关键。但是,水培生长系统可以优化营养成分和更快的吸收,同时保持根系生长的最佳有氧条件(图5th:100% max-height:100% width:1152px height:1498px " src="https://img1.17img.cn/17img/images/202402/uepic/3c2ad034-cf76-444f-99b0-e3e705ad7c5e.jpg" title="表1.jpg" alt="表1.jpg" width="1152" height="1498"文章来源:Hickey LT, N Hafeez A, Robinson H, etal.,(2019) Breeding crops to feed 10 billion. Nat Biotechnol. 37(7):744-754. doi:10.1038/s41587-019-0152-9.https://www.nature.com/articles/s41587-019-0152-9
  • Conviron公司携手德祥科技公司参加第十八届国际拟南芥研究大会
    加拿大Conviron公司研制的植物生长箱系列,以提供“精确可靠的箱体环境参数”闻名于世。旗下的Adaptis系列产品,依据多年的研发生产经验设计而成,为市场提供了最完美的人性化实验室平台。Adaptis A1000多功能培养箱方便灵活,是为研究性实验而设计的多用途产品。经济型的AdaptisA1000AR专用于培养模式植物拟南芥,其*的温度和湿度控制很好的摒除了部分培养箱在培养拟南芥的过程中容易发芽,或者湿度过大而死亡的弊病。 德祥科技有限公司作为Conviron在大中国地区的独家代理,全权负责Conviron产品在该区域的市场及销售、技术及应用支持工作。 2007年6月20日至6月23日,Conviron公司与德祥科技携手参加第十八届国际拟南芥研究大会,取得圆满成功。来展台莅临指导的除了世界*的研究机构外,还有众多国内知名的高校、研究所,包括中科院、农科院、北京大学、清华大学、北京生命科学学院和中国农业大学等,大家纷纷就拟南芥培养中出现的问题做了有益的探讨。德祥科技有限公司也会一如既往的为Conviron植物生长箱的广大新老用户提供完善*的服务!
  • 德国LemnaTec公司完成企业重组
    自1998年以来,LemnaTec作为国际上植物表型测量技术商业化的公司,已成为世界植物表型和高通量筛选领域的硬件和软件系统专家,并不断地被其他公司模仿。LemnaTec表型系统测量植物在大小、形状、颜色、含水量、温度、叶绿素荧光、植被指数等方面的参数,这些参数代表了植物不同部位生长状况、植物生产力和质量的特征。LemnaTec公司在一个极具吸引力的未来市场中稳固地建立了自己行业地位。其表型技术在科学研究、生物经济以及农产品的开发和质量控制方面,引起了科研工作者、育种公司等不同领域用户的极大兴趣。LemnaTec的表型及其品种测量和评估解决方案为Corteva,BASF、杜邦先锋和拜耳作物科学等工业企业以及例如法国农科院、英国洛桑研究所、德国IPK、澳大利亚植物功能基因组中心等众多国际研究机构和大学提供定制解决方案。除了植物分析,LemnaTec还提供了检测植物疾病以及昆虫和其他动物感染的分析方法(这些动物通常作为植物的病原体出现)。LemnaTec开发的数字种子测试解决方案确实为种子行业和基因库提供了有价值的发芽率、发芽质量和种子质量服务。LemnaTec野外型高通量植物表型平台——Field Scanalyzer(图片来自英国洛桑研究所官网)LemnaTec GmbH公司的企业重组计划于2019年6月开始,经过两个月的运作,LemnaTec正式成为国际光电子行业巨头Nynomic AG的新子公司,以第七支柱整合到该集团中,使得LemnaTec的业务运营将进入一个新的高增长时期。LemnaTec国内代理商及战略合作伙伴——上海泽泉科技股份有限公司,在国内已经建立了良好的用户基础,已有用户包括中科院遗传与发育生物学研究所、中国农业科学院生物技术研究所、北大荒垦丰种业公司、中科院上海植物逆境生物学研究中心、广西农科院甘蔗研究所、南京农业大学、四川大学等众多科研院所、高校等单位。上海泽泉科技股份有限公司将一如既往地保持与LemnaTec公司良好的合作伙伴关系,维持并持续增加未来的业务往来。中科院遗传发育研究所的LemnaTec温室型高通量植物表型平台
  • Alit大型人工气候室/药物稳定测试室新品上市
    大型步入式植物生长箱/人工气候室 FITOCLIMA WALK-IN BIO系列 FitoClima箱体产品适用于植物生长、组织培养、拟南芥、种子发芽、孵化、昆虫学研究、昆虫存储以及其他生命科学中的应用,FitoClima生物学研究用培养箱可提供灵活多样的配件选择以及控制条件来满足不同研究者的需求。 FITOCLIMA WALK-IN BIO HP系列 FitoClima高效箱体适用于需要大量光照强度和广泛光谱条件的植物,常应用于: 小麦、玉米、水稻、棉花、咖啡、软木等各种常见的需要高光照强度的大型植物。 Fitoclima Pharma应用于制药行业的药品稳定性和耐光性试验 箱体设计符合人用药物注册技术要求国际协调会(ICH)的所有要求,这些箱体被应用于医药产品的稳定性(Q1A标准)及耐光性(Q1B标准)测试,符合国际通用标准以及ICH, DIN, EN, IEC ISO, NP和UNE的要求 箱体体积从600L到无体积限制的大型步入式药品测试室,Fitoclima Pharma系列箱体为制药行业提供独特的精度控制、均匀性和稳定性的气候条件。 欢迎新老客户前来咨询合作! 艾力特国际贸易有限公司 网址:www.alit.com.cn 邮箱:marketing@alit.com.cn 电话:021-62299622
  • PERCIVAL 新款三色光培养箱LED-30Elite Series
    PERCIVAL 新款三色光培养箱LED-30Elite Series LED-30 Elite系列培养箱是美国PERCIVAL公司最新推出的植物生长培养箱,该系列培养箱采用LED冷光源,多种光源模块设计以及光强可任意调节,满足了多种植物或农作物材料的研究及生长培养,具有更宽广的应用范围。 应用领域 可用于维管植物生产、植物病理学、种子发芽及发育、基因表达、生态学、藻类生产、药物研发以及药用植物、植物生理学、植物生物化学、 植物分子生物学、昆虫学、光合作用等方面的研究。 性能特点 · LED-30 Elite培养箱采用多通道可调节光照系统,可分别控制LED光强0-100% · 单灯组,包含8个高输出、多彩色的LED模块 · LED模块包含白光/红光和白光/远红光组合 每个LED模块中均包含白色LED灯,提供高光强输出,进行光谱补偿尤其是蓝光(450nm) 红光及远红光LED灯主要峰值在670nm和735nm。 · 最大光照输出900umol/m2/s · 温控范围0-44℃(± 0.5℃)开灯时,-10° -44℃(± 0.5℃)开灯时 · 内部容积10.9ft3(0.31m3),工作面积3ft2(0.23m2) 植物生物学小贴士 叶绿素A和叶绿素B主要吸收波谱 植物光合作用主要利用两种叶绿素:叶绿素A,吸收光谱在430nm和662nm,叶绿素B,吸收光谱在453nm和642nm。400nm以上的蓝光可激活植物的光合作用,植物通常利用650nm-700nm的红光。但是,较纯的红光会引起植物的非正常生长,因此,需要蓝光的补充,才能进行正常的伸长生长。另外,蓝光还可激活植物叶片打开气孔吸收CO2。 五洲东方官方微博:http://e.weibo.com/ostc
  • Nature:翻转新陈代谢开关,减慢癌症生长
    来自加州大学圣地亚哥分校的一项新研究表明,丝氨酸棕榈酰转移酶(serine palmitoyl-transferase)可以用作减少肿瘤生长的代谢反应“开关”。这一发现公布在8月12日的Nature杂志。研究小组通过限制饮食中的氨基酸——丝氨酸和甘氨酸,或在药理上靶向丝氨酸合成酶磷酸甘油酸脱氢酶,成功诱导肿瘤细胞产生了有毒脂质,从而减缓小鼠的癌症进程。研究人员表示,之后还需要进行进一步的研究,确定如何将该方法是否可以用于患者。在过去的十年中,科学家们发现从动物饮食中去除丝氨酸和甘氨酸会减缓某些肿瘤的生长。但是,大多数研究团队都集中研究了这些饮食如何影响表观遗传学,DNA代谢和抗氧化活性上。而来自加州大学圣地亚哥分校和Salk生物研究所的研究人员发现,这些干预措施对肿瘤脂质,特别是在细胞表面的脂质产生了巨大的影响。文章作者Christian Metallo说:“我们的工作凸显了新陈代谢的复杂性,以及在考虑采用这种新陈代谢疗法时,跨多种生化途径理解生理学的重要性。”在这种情况下,丝氨酸代谢是研究人员的重点。丝氨酸棕榈酰转移酶(SPT)通常使用丝氨酸制造称为鞘脂的脂肪分子,这对于细胞功能至关重要。但是,如果丝氨酸水平较低,则该酶的作用发生变化,可以使用其他氨基酸(如丙氨酸)作为底物,从而产生有毒的脱氧神经鞘氨醇。研究小组在检查了某些酶与丝氨酸的亲和力,并将它们与肿瘤中丝氨酸的浓度进行比较后,决定了这一研究方向。Metallo说:“通过将丝氨酸限制与鞘脂代谢联系起来,这一发现可能使临床科学家能够更好地确定哪些患者的肿瘤对靶向丝氨酸的疗法最敏感。”这些有毒的脱氧神经鞘氨醇在“anchorage-independent”条件下能最有效地减少细胞的生长,在这种情况下,细胞无法轻易粘附在体内肿瘤生长的表面上。为了更好地了解脱氧神经鞘氨醇对癌细胞有毒的机制,以及它们对神经系统的影响,研究人员认为有必要进行进一步展开研究。在最新这项研究中,研究小组向异种移植模型小鼠喂了低丝氨酸和甘氨酸的饮食。他们观察到,SPT转化为丙氨酸时,会产生有毒的脱氧神经鞘氨醇而不是正常的鞘脂。此外,研究人员还使用氨基酸类抗生素myriocin抑制了饲喂低丝氨酸和甘氨酸饮食的小鼠的SPT和脱氧神经鞘氨醇合成,结果发现肿瘤的生长得到了改善。Metallo指出,长期剥夺丝氨酸生物会导致神经病变和眼部疾病。去年,他领导了一个国际团队,确定降低的丝氨酸水平和脱氧神经鞘氨醇的积聚是一种罕见的黄斑病(称为2型黄斑毛细血管扩张症,MacTel)的关键驱动因素。这项工作发表在《新英格兰医学杂志》上。然而,丝氨酸限制或用于肿瘤治疗的药物治疗不需要长时间的诱导动物,或与年龄有关的疾病的神经病的治疗。
  • 科学家发现调控儿童生长速度和青春期发育时间的关键蛋白
    黑素皮质激素3受体(MC3R)一直被认为在新陈代谢和能量平衡中发挥着重要的作用。20年前,MC3R基因被发现,并被证明这种基因的缺失会导致小鼠生长减缓。  近期,英国剑桥大学的研究团队发现,MC3R是调控人类儿童生长速度和青春期发育时间的关键蛋白。该研究结果在《Nature》上发表,题为:MC3R links nutritional state to childhood growth and the timing of puberty。  大脑可以通过调节行为、生长、营养分配和发育等调控体细胞能量储存状态,比如中枢黑素皮质素系统通过黑素皮质素4受体(MC4R)控制食欲、食物摄入以及能量消耗。研究人员发现,MC3R可以调节性成熟的时间、线性生长速度和去脂体重的增加,这些过程都与能量有关。对MC3R功能缺失突变的人进行跟踪,他们青春期开始的时间比正常人晚,与之前在小鼠中的研究结果一致,他们的线性生长、去脂体重和胰岛素样生长因子1(IGF1)的水平都有所下降。缺乏MC3R的小鼠性成熟延迟,生殖周期长度对营养补给不敏感。MC3R基因在控制生殖和生长的下丘脑神经元中大量表达,发育过程中表达增加,与性成熟的调节作用一致。  这些发现表明,中枢黑素皮质素途径通过MC4R信号控制能量的获取和储存,而通过MC3R信号主要调节能量向生长、去脂体重和性成熟时间的分配。   论文链接:  https://www.nature.com/articles/s41586-021-04088-9
  • 光学浮区法单晶生长技术在氧化物和金属间化合物材料领域应用进展
    化学性质活泼、高熔点、高压、高质量单晶生长法宝! 新一代高性能激光浮区法单晶炉-LFZ助您实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。高精度光学浮区法单晶炉-IRF助您实现高温超导体、介电材料、磁性材料、热电材料、金属间化合物、半导体、激光晶体等材料的生长工作。高温高压光学浮区炉助您实现各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等材料的生长。四电弧高温单晶生长炉助您实现化学性质活跃但熔点高的金属间化合物,包括含有稀土元素(或者金属铀)的二元及四元金属间化合物、合金单晶等材料的生长。高质量单晶生长设备——单晶炉系列1. 高精度光学浮区法单晶炉在休斯勒型镍-锰基合金磁致冷材料领域的应用 休斯勒(Heusler)型的镍-锰基材料自从发现其巨磁热效应以来,在过去的几十年中已成为被广泛研究的热点新型磁致冷材料之一。研究发现,休斯勒型铁磁性材料镍-锰-锡在从高温至低温的变温过程中会发生高温相(铁磁奥氏体相)到低温相(顺磁马氏体相)的转变,且该转变受磁场调制。高对称性的奥氏体相经一结构相变成低对称性的马氏体相,会造成磁有序降低,磁熵增加,这一过程为吸热过程,亦即形成反磁热效应,这也是磁致冷的基本原理。而休斯勒型镍-锰-锡合金材料也因为其成本廉价、无毒、无污染、易于获取、磁热效应显著、相变温度可调等一系列的特点成为一种具应用潜力的室温磁致冷材料。 研究表明,休斯勒型镍-锰-锡合金的单晶材料具有更大的磁效应导致的应变或磁热效应,且具有强烈的各向异性特点,因此研究者希望其单晶或单向织构晶体具有更加优异的磁性能。目前,已有学者采用布里奇曼技术和Czochralski方法制备出了镍-锰-镓和镍-锰-铟材料的单晶材料,但镍-锰-锡合金由于在晶体生长过程中易形成氧化锰,因此其高质量的单晶样品制备具挑战性。上海大学的余金科等人克服了镍-锰-锡合金单晶生长中的氧化锰形成及挥发的难题,采用光学浮区技术成功合成了高质量的镍-锰-锡合金单晶样品。晶体生长过程及样品腔实物图片晶体实物及解理面图片 余金科等人所用的光学浮区法单晶炉为Quantum Design日本公司推出的新一代高精度光学浮区炉单晶炉,文献中报道的相关晶体生长工艺参数为:生长速度6 mm/小时;转速(正、反)15转/分钟,氩气压力7bar。 Quantum Design 日本公司推出的高温光学浮区法单晶炉,采用镀金双面镜、高反射曲面设计,高温度可达2100℃-2200℃,系统采用高效冷却节能设计(不需要额外冷却系统),稳定的电源输出保证了灯丝的恒定加热功率,这对于获得高质量单晶至关重要。浮区炉技术特色:■ 占地空间小,操作简单,易于上手,立支撑设计■ 镀金双面高效反射镜,加热效率更高■ 可实现高温度2150°C■ 稳定的电源■ 内置闭循环冷却系统,无需外部水冷装置■ 采用商业化标准卤素灯 参考信息来源:[1]. Optical Floating-Zone Crystal Growth of Heusler Ni-Mn-Sn Alloy. Yu, Jinke & Ren, Jian & Li, Hongwei & Zheng, Hongxing. (2015). TMS Annual Meeting. 2015. 49-54.[2]. Ni-Mn-Sn(Co)磁制冷薄带材料结构相变及磁性能表征,王戊 硕士论文,上海大学 2. 高精度光学浮区法单晶炉在磁电领域取得重要进展在人类漫长的历史发展长河中,“材料学”贯穿了其整个历程。从人类活动早期开始使用木制工具,到随后的石器、金石并用(此时的金属主要指铜器)、青铜、铁器等各个时代,再到后来的蒸汽、电气、原子、信息时代,每个发展阶段无不伴随着人类对材料的认识和利用。在诸多材料中,铁是人类早认识和使用到的材料之一,早在西周以前我国就已开始将铁用于生产生活中[1];人们在长期的实践中也逐渐认识到相关材料的磁性并将其运用于实践中,司南就是具代表性的发明。这些在不少历史典籍中都有记载,比如:《鬼谷子谋篇十》记载:“故郑人取玉也,载司南之车,为其不惑也。夫度材量能揣情者,亦事之司南也”;《梦溪笔谈》提到:“方家以磁石磨针缝,则能指南”;《论衡》书曰:“司南之杓,投之于地,其柢指南”等等[2]。由此可见,人们对磁性材料的兴趣也算由来已久。 当时代来到21世纪,化学、物理、生物、医学、计算机等各个领域的技术都有了前所未有的突破,先进的生产力也将人类的文明推进智能工业化、信息化时代,随之而来的是人们对材料的更高要求。在诸多材料当中,多铁材料兼具铁磁、铁电特性,二者之间有着特的磁电耦合特性;与此同时,磁场作用下的电化和电场作用下的磁化等性质为未来功能材料探索和发展提供了更为宽广的选择和可能,在存储、传感器、自旋电子、微波器件、器件小型化等领域拥有巨大的潜在价值。2007年的《科学》杂志对未来的热点发展问题进行了报道,其中,多铁材料作为的物理类问题入选[3]。因此,研究并深刻理解磁电耦合和多铁材料背后的机理,有着非常重要的理论价值和实践意义。 近期,哈尔滨工业大学的W.Q.Liu等人对磁电材料Mn4Nb2O9单晶样品进行了深入的研究。研究表明:零磁场测试介电常数时,没有发现介电常数的反常,此时Mn4Nb2O9基态表现为顺电特性;而在磁场条件下,介电常数在Neel温度处发生突变的峰,且随着磁场的增加介电峰也增强,且峰位向低温端偏移,这意味着磁场有抑制反铁磁转变的趋势;高场(H≥4T)下的介电常数-温度依赖关系也跟H2正比关系,由此也表明Mn4Nb2O9是线性磁电材料。更多研究结果可参考文献[4]。以上图片引自文献[4].在该项研究工作中,作者合成Mn4Nb2O9单晶样品所用设备为Quantum Design Japan公司的高精度光学浮区法单晶炉,文章中所用单晶生长参数为:Ar气氛流速4 L/min,生长速度6 mm/h,转速25 rpm。参考信息来源:[1]. https://baijiahao.baidu.com/s?id=1713600818043231130&wfr=spider&for=pc[2]. https://baike.baidu.com/item/%E5%8F%B8%E5%8D%97/3671419?fr=aladdin[3]. https://www.science.org/doi/10.1126/science.318.5858.1848[4]. Wenqiang Liu, Long Li, Lei Tao, Ziyi Liu, Xianjie Wang, Yu Sui, Yang Wang, Evidence of linear magnetoelectric effect in Mn4Nb2O9 single crystal, Journal of Alloys and Compounds,Volume 886,2021,161272,ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2021.161272.3. 高温高压光学浮区法单晶炉在外尔半金属材料领域应用案例 1929年,德国科学家外尔(Weyl)解出了无质量粒子的狄拉克方程,相应的无质量粒子被称为外尔费米子。然而直到2015年科研人员才在实验中观察到外尔费米子,被中国科学院物理研究所的研究人员报道,距离外尔费米子概念的提出,足足过去了近90年。2018年科研人员通过性原理计算预言RAlGe(R=Pr,Ce)体系有望成为新的磁性外尔半金属。目前人们对RAlGe(R=Pr,Ce)材料的物理性质研究还比较少,更进一步深入的实验研究需要大尺寸的单晶样品去支持。 H. Hodovanets等人曾用助熔剂方法生长CeAlGe单晶,但由于实验中需要用到SiO2容器,导致用该方法获取的单晶样品中会存在Si杂质,同时伴有CeAlSi相;另外,轻微的Al富集会导致形成不同的晶体结构。这些都大限制了拓扑外尔点的形成。因此,获取化学计量比的单晶样品对于研究材料的物理性质非常重要。Pascal Puphal等人近期的研究工作报道了其分别用助熔剂方法和高温高压浮区法两种晶体生长技术获得的RAlGe(R=Pr,Ce)单晶样品及研究成果。尽管作者为了避免Si的污染,采用了Al2O3坩埚,但终样品中Al的含量偏高问题依然存在,单晶样品表面成分:Ce1.0(2)Al1.3(5)Ge0.7(3)/ Pr1.0(1)Al1.2(2)Ge0.8(2),剥离面成分为:Ce1.0(1)Al1.12(1)Ge0.88(1)/Pr1.0(1)Al1.14(1)Ge0.86(1)。而采用浮区法则生长出了近乎理想化学计量比(1:1:1)的单晶样品,成分分别为:Ce1.02(7)Al1.01(16)Ge0.97(9)和Pr1.08(24)Al0.97(7)Ge0.95(17)。 浮区法得到的晶体的劳厄图片 Pascal Puphal等人所采用的浮区法单晶炉为德国ScIDre公司的HKZ高温高压光学浮区炉,文献中提到的相关实验参数为:5 KW功率的氙灯,晶体生长速度为1 mm/小时,CeAlGe采用30 bar的Ar保护气氛,PrAlGe采用5 bar的Ar保护气氛。德国ScIDre公司推出的高温高压光学浮区法单晶炉高能够提供3000℃的生长温度,晶体生长腔大压力可达300 bar,甚至10-5 mbar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。ScIDre单晶炉技术特色:► 采用垂直式光路设计► 采用高照度短弧氙灯,多种功率规格可选► 熔区温度:高达3000℃► 熔区压力:10bar/50bar/100bar/150bar/300bar等多种规格可选► 氧气/氩气/氮气/空气/混合气等多种气路可选► 采用光栅控制技术,加热功率从0-100% 连续可调► 样品腔可实现低10-5 mbar真空环境► 丰富的可升选件 参考信息来源:[1]. http://www.iop.cas.cn/xwzx/kydt/201507/t20150720_4395729.html[2]. Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe, H. Hodovanets, C. J. Eckberg, P. Y. Zavalij, H. Kim, W.-C. Lin, M. Zic, D. J. Campbell, J. S. Higgins, and J. PaglionePhys.Rev. B 98, 245132 (2018).[3]. Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce), Pascal Puphal, Charles Mielke, Neeraj Kumar, Y. Soh, Tian Shang, Marisa Medarde,Jonathan S. White, and Ekaterina Pomjakushina, Phys. Rev. Materials 3, 0242044. 高温高压光学浮区法单晶炉在准一维伊辛自旋链材料领域应用进展 低维磁性材料具有非常丰富和奇特的物理性质,且与多铁性和高温超导电性等材料密切相关。对低维磁性材料的物理性质进行研究有助于探索相关奇异现象的根本机制,从而对寻求新的功能材料提供帮助。因此,近年来关于低维磁性材料的研究吸引了科学家们的广泛关注。近日,德国马普固体化学物理研究所的学者A. C. Komarek等人[1,2]在准一维伊辛自旋链材料CoGeO3中发现了非常明显的1/3磁化平台,并通过中子衍射手段详细探究了其微观自旋结构。研究表明,初的零场反铁磁自旋结构的变化,类似于反铁磁“畴壁边界”的形成,从而产生一种具有1/3整数传播矢量的调制磁结构。净磁矩出现在这些“畴壁”上,而所有反铁磁链排列的三分之二仍然可以保留。同时A. C. Komarek等人也提出了一个基于各向异性受挫方形晶格的微观模型来解释其实验结果。更为详细的报道可参考文献相关文献[1,2]。A. C. Komarek等人所用的CoGeO3单晶样品由高压光学浮区法单晶炉(型号:HKZ, 制造商:德国ScIDre公司)制备获得[2],文章中报道的CoGeO3单晶生长参数为:Ar/O2混合气(比例98:2),压力80 bar,生长速度3.6 mm/hour。CoGeO3单晶实物图片 引自[2] 参考信息来源:[1]. Emergent 1/3 magnetization plateaus in pyroxeneCoGeO3, H. Guo, L. Zhao, M. Baenitz, X. Fabrèges, A. Gukasov, A. Melendez Sans, D. I. Khomskii, L. H. Tjeng, and A. C. Komarek, Phys. Rev. Research 3, L032037[2]. Single Crystal Growthand Physical Properties of Pyroxene CoGeO3,Zhao, L. Hu, Z. Guo, H. Geibel, C. Lin, H.-J. Chen, C.-T. Khomskii, D. Tjeng, L.H. Komarek, A.C. Crystals 2021, 11, 378.5. 高温高压光学浮区法单晶炉在锂离子电池领域新应用进展 锂离子电池由于具有能量密度高、寿命长、充电快、安全可靠、绿色环保等诸多优异性能,其与当今人民的日常生活已密不可分,在手机、电脑、电动车、电动汽车、航空航天等领域均有广泛的应用。 其中,Li2FeSiO4作为新一代锂离子电池阴材料,由于具有价格低廉、环境友好、安全性好等技术优势,因此在大型动力锂离子电池应用方面具有良好的前景。然而,Li2FeSiO4材料在不同温度具有不同的结构相(∼ 400 °C :Pmn21, , ∼ 700 °C :P121/n1, and ∼ 900 °C :Pmnb),研究其不同结构的电化学性质对于进一步对其进行改性研究尤为重要。 Waldemar Hergetta等人[1]采用高压光学浮区法获得了高温相(Pmnb)Li2FeSiO4单晶,并研究了晶体生长工艺参数对杂相的影响,相关结果已发表在Journal ofCrystal Growth。作者所采用的高压光学浮区炉为德国ScIDre公司的HKZ高压光学浮区法单晶炉,文章报道的晶体生长参数为:生长速度10 mm/h,保护气氛Ar(30 bar)。温度梯度分布 引自[1]XRD图谱及晶体实物图片 引自[1]参考信息来源: [1]Waldemar Hergett, Christoph Neef, Hans-Peter Meyer, Rüdiger Klingeler, Challenges in the crystal growth of Li2FeSiO4, Journal of Crystal Growth, Volume 556,2021,125995,ISSN 0022-0248, https://doi.org/10.1016/j.jcrysgro.2020.125995.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制