当前位置: 仪器信息网 > 行业主题 > >

发酵成分

仪器信息网发酵成分专题为您整合发酵成分相关的最新文章,在发酵成分专题,您不仅可以免费浏览发酵成分的资讯, 同时您还可以浏览发酵成分的相关资料、解决方案,参与社区发酵成分话题讨论。

发酵成分相关的资讯

  • 发酵罐尾气怎么通过发酵尾气分析仪进行分析?
    随着以基因工程、细胞工程、酶工程、发酵工程为代表的现代生物技术迅猛发展,生物发酵制品已成为21世纪投资活跃发展又快的产业之一。因生物发酵药品具有疗效高,毒性低,副作用少等特点,而被广泛应用于临床,甚至将会逐步取代一些化学合成药,为人类健康作出越来越大的作用。同时因生物医药发酵空气用量大,大量未处理尾气排人大气,使部分发酵代谢产物随尾气带出,甚至有特殊难闻气味产生,即其药品成分或中间体浓度在空气中不断升高,反过来对人体及环境产生危害。因此,对其发酵尾气进行治理是很有必要的。那么发酵罐尾气的分析,您知道是通过什么原理怎么进行的吗?今天,小编给您介绍一款EZGAS6020型的发酵尾气分析仪,CO2和O2浓度反映了生物发酵状态和发酵阶段,是发酵过程中非常重要的参数。EZGAS6020型发酵尾气分析仪在线监测尾气中CO2和O2气体浓度,结合其它分析参数计算CER、OUR和RQ,用于优化发酵过程,提高发酵质量和产率。仪器可同时连接1至4个发酵罐,自动切换分析,并通过Modbus将数据传输至计算机,计算机软件显示和保存分析数据。工作原理CO2 NDIR不分光红外分析法光谱吸收法表明许多气体分子在红外波段存在特征吸收。根据朗伯-比尔定律,特征吸收强度与气体浓度成正比例关系。EZGAS6020型发酵尾气分析仪正是采用此原理,属于NDIR(不分光)红外线气体分析方式,可用于连续分析混合气体中某种待测气体组份的浓度。O2 电化学或顺磁氧方法气体介质处于磁场中被磁化,根据气体的不同也分别表现出顺磁性或逆磁性。如O2、NO、NO2等是顺磁性气体,H2、N2、CO2、CH4等是逆磁性气体。氧气的体积磁化率要比其他气体的体积磁化率大得多,因此可以采用氧气的顺磁特性来分析氧气浓度。技术参数工作环境温度: (5~45)℃气体流量:(18~42)L/h,即(0.3~0.7)L/min气体湿度:0~80%RH 无液态水输出: 4~20mA通信方式:RS232 Modbus RTU电源:(220±22)VAC,(50±0.5)Hz,功率约40W重量:约10kg仪器采用483mm(19”)嵌入式机箱技术特点一台仪器分析1-4个发酵罐,适合连续在线分析。具有自动标定功能,仪器长期稳定性好。内置流量可调的采样泵。彩色触摸屏显示,操作简单。计算机软件显示分析数据,并保存于文件,便于数据的分析。典型应用领域各类生物发酵罐生物制药科学实验室
  • 《精准发酵:现状与未来发展蓝皮书》发布,精准发酵技术创造非转基因产品
    6月18日,在上海举办的2024年首届CPHI生物制造创新发展大会上,华东理工大学与迪必尔生物工程(上海)有限公司联合起草的《精准发酵现状与未来发展蓝皮书》(以下简称“蓝皮书”)正式发布。中国科学院院士赵国屏、邓子新,上海合成生物产业协会会长董树沛与华东理工大学生物工程学院院长叶邦策共同启动《精准发酵现状与未来发展蓝皮书》发布仪式。《精准发酵现状与未来发展蓝皮书》的发布,不仅为行业提供了宝贵的参考和指导,也为学院在精准发酵技术的研究与推广上指明了方向。叶邦策指出,精准发酵技术的核心在于利用合成生物学技术,改造细菌、酵母、藻类或动植物细胞等,以生产特定的蛋白质、酶和天然化合物。值得注意的是,通过精准发酵技术生产的蛋白质、脂肪或成分并不是转基因产品(GMO)。精准发酵技术提供了一种生产高品质、安全和可持续天然产品的有力工具,它可以创造传统食品和农产品的可持续天然替代品。其次,精准发酵技术在产品安全和质量方面具有显著优势,在受控的发酵环境中,生产过程可以得到更为严格的监管。作为国内生物工程领域的领军机构,华东理工大学生物工程学院在精准发酵技术的研究与应用上取得了显著成果。6月28日,在即将召开的“微生物发酵与代谢工程前沿技术及应用”网络主题研讨会上,华东理工大学的庄英萍老师将出席本次会议并作报告分享。报名参会庄英萍报告题目:《生物反应器与智能生物制造》庄英萍,女,研究员,博导。现任华东理工大学国家生化工程技术研究中心(上海)主任、生物反应器工程国家重点实验室常务副主任,中国化工学会生物化工专委会副主任委员,上海市微生物学会副理事长;曾任华东理工大学生物工程学院院长,“863”生物医药领域工业生物技术主题专家。长期从事发酵过程优化与放大研究,曾承担“973”课题等项目,目前在研“绿色生物制造”重点研发“生物反应器与智能生物制造”项目,在智能生物制造方面,从过程传感、数据科学和智能决策等方面取得突破,并在20余个企业应用推广。报名参会 报名链接:https://www.instrument.com.cn/webinar/meetings/microbialfermentation240628 温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • 蠕动泵在生物发酵中的优势与应用!
    蠕动泵在生物发酵中的优势与应用! 什么是发酵发酵是指将复杂的有机物分解成简单的物质,以使介质产生特定的化学和/或物理变化。在发酵技术中,发酵罐至关重要。它为微生物营造了一个理想家园——确保了温度、pH值的稳定和营养物质的恒定供应,并对整个发酵过程进行严格的监测和控制。蠕动泵作为发酵罐的核心部件之一,通过精准控制流量和压力,确保营养物质及其它重要添加剂的准确供应,保障整个发酵过程的稳定性和最终产品的质量。 生物反应器的作用生物反应器是生物生产过程中的关键设备,所有微生物反应和生化反应都是在生物反应器中进行的,更具体地说,生物反应器是一个为酶或整个细胞将生化物质转化为产品提供有效环境的容器。就生物反应器而言,有效的环境是指确保充足的气体供应、保持适当的pH值和温度,并提供营养物、酸、碱、消泡剂或氧气,以维持有效培育。要实现所有这些性能,必须采用适当的泵技术。如何为发酵过程选择合适的蠕动泵01泵送流量:泵送的流量大小要与发酵罐需要的流量相匹配。02准确度和精确度:在发酵过程中,确保生物反应器中有机液体的准确和精准传输非常重要。泵技术在很大程度上决定了可实现的准确度和精准度。03液体对剪切力的敏感度:一些液体对施加于其上的剪切力敏感度很高,因此,选用的泵应确保温和的泵送运动,避免改变液体成分(即因剪切力太高,导致液体中的细胞受破坏)。04液体液体泵送路径的无菌需求:无菌环境是决定无菌发酵是否成功的关键因素,因此有机物与硬件组件的接触部分应满足最高的卫生标准要求。(PreFluid蠕动泵在生物发酵中的应用)生物反应器的关键——蠕动泵蠕动泵在发酵过程中起着一个重要作用——调节反应器中的许多重要成分。包括测量和控制Ph值,添加营养物,测量压力,以及防止泡沫形成。其优势有:● 高洁净流体管路,方便清洗及灭菌;● 管路可单次使用,也可重复使用;● 计量准确,重复精度好;● 管路内壁光滑,无死角,无阀门,低残留;● 灵活的扩展性;● 传输温和,低剪切力,保留物料的完整性。 鉴于生物反应器的要求,最理想的泵技术是蠕动泵。蠕动泵之所以性能突出,是因为它能准确、温和地泵送液体,同时保持每种液体的完整性。
  • 【国际前沿】能源草发酵产沼气最新研究进展
    本文针对当前世界能源的利用情况,从能源草的资源收集及培育、原料草种植及收获、原料预处理、微生物接种物类别、发酵条件控制以及气体成分分析等6个方面综述了国内外的研究进展。 随着常规能源的日益枯竭,开发利用新能源无疑是必经出路。能源植物是一种可再生的生物质资源,其中,能源草生物量大并且含有丰富的木质纤维素,通过厌氧发酵将木质纤维素材料转化为热值高的沼气是当前开发生物能源最有前景的方法之一。 1、能源草的资源收集及培育 寻找一种适合厌氧发酵生产沼气的草本能源植物,需要做大量的收集研究工作,还需利用育种和生物技术对目标植物进行改良,以提高生物质能的转化率和改善转化产品的质量。 20世纪80年代,美国和欧洲就已经将多年生草本植物作为能源植物进行系统筛选与研究,培育出了专用型能源草品种,实现了规模化种植和开发利用。1984年,美国启动“能源草研究计划”,集中对35种草本植物进行筛选,获得了18种具有开发利用潜力的能源草。欧洲对大约20种多年生草本植物进行研究,最终选择了芒草(miscanthus sinensis)、虉草(phalaris arundinacea)、柳枝稷(panicum virgatum)和芦竹(arundo donax)4种能源草做更深层次的研究。 我国地域广阔,植物丰富多样、分布广泛,草本能源植物种类繁多,在能源草种质资源收集筛选方面已经开展了大量的研究工作,并取得了重要的研究成果。 中国农业科学院兰州畜牧与兽药研究所自“八五”期间开始对国产狼尾草(pennisetum alopecuroicles)种质资源进行收集、鉴定和驯化栽培研究,总共收集到7种47份材料。近10年来,北京草业与环境研究发展中心收集包括柳枝稷、芒草、芦竹、芨芨草(achnatherum splendens)和杂交狼尾草(pennisetum hybrid)等各类能源草资源208份。鄢家俊等通过对四川境内岷江流域、青衣江流域和沱江流域野生斑茅(saccharum arundinaceum)的收集以及其生物学性状的观察,建议将斑茅作为能源植物进行开发利用。 如果能源植物细胞壁含有较高的木质素,将会影响其生物质能的转化效率。常瑞娜等克隆得到了五节芒(miscanthus floridulus)木质素合成的关键酶基因ccoaomt和4cl,这将有助于进一步改良能源植物。芒属能源草转化为生物质能是相对新型的产业,需要育种和生物技术的支撑。对于柳枝稷来说,未来要做的工作就是增加高产杂交种的品种数和使用转基因技术提高产量和纤维素含量。 2、原料草种植及收获 能源草原料是影响产业发展的一大因素,目前很多国家都已经开始大量种植能源草。在爱尔兰超过90%的供农业生产的土地都种上了能源草。美国计划到2030年,多年生能源植物所产生的生物质能将占所有生物可再生能源的35.2%。 能源植物在不同时期收获后,经厌氧发酵产沼气的量不同,主要原因是植物的化学组成随生长时间而变化。lehtomki等研究了收获时期对洋姜(helianthus tuberosus)、梯牧草(phleum pratense)-红三叶(trifolium pratense)混合以及草芦等多种能源植物沼气产量的影响,得出随着能源植物的成熟,大多数植物每吨湿重的沼气产量增加。而massé等研究了柳枝稷和草芦在中夏、晚夏和早秋三个时期收获,厌氧发酵后青贮草料所产生的沼气量变化,得出中夏时收获能源草发酵所产沼气量最高,延迟收获会降低沼气产量。在能源草的整个生长周期中哪些因素影响其沼气产量还需要更深入的研究。 3、原料预处理 由于木质纤维素原料具有较高的结晶度和聚合度,原料转化之前要进行预处理以提高产品的产出率。预处理的作用主要是改变天然纤维的结构,降低纤维素的聚合度和结晶度,破坏木质素、半纤维素的结合层,脱去木质素。预处理的方法主要有物理法、化学法及生物法等。 近年来,有关能源草发酵预处理的研究较多。邹星星等对互花米草(spartina alterniflora)在厌氧发酵前进行蒸汽爆破处理,发酵实验结果表明,随着汽爆压力的增加,累积产气率呈下降趋势。jackowiak等研究了微波预处理的温度与处理时间对柳枝稷厌氧发酵率的影响,发现只有温度对其有明显的影响。frigon等研究了冬夏两季收获的柳枝稷经过温度、声波降解、碱化、高压等预处理后发酵产沼气的情况,最终结论为温度、声波降解、高压对冬季收获的柳枝稷发酵产沼气无明显影响,但能提高夏季收获的柳枝稷发酵产沼气量。李连华等研究了蒸汽加热、超声波及冻融对华南地区多年生王草(pennisetum purpureum× p.americanum)厌氧发酵性能的影响,相比而言,蒸汽加热能够明显降低王草的结晶度,提高沼气产气率。li等采用热处理和微波对杂交狼尾草进行厌氧发酵预处理,结果表明热处理提高了其厌氧发酵的沼气产量,而微波处理却起到了相反的作用。肖正等利用沼液对巨菌草(pennisetum sinese roxb)进行堆沤处理,15天累积产气量为406 ml/ts。 4、微生物接种物类别 由于在厌氧发酵过程中微生物起到了至关重要的作用,而能源草本身所附着的微生物菌群数量较少,所以在进行能源草厌氧发酵产沼气时需要准备大量的接种物。 产甲烷菌在大自然中分布较广,如新鲜的动物粪便、污水处理厂的污泥以及腐败的河泥都能满足能源草发酵产沼气的要求。宋立等比较了羊粪、鸭粪和兔粪的厌氧发酵产沼气潜力,得出鸭粪最好,羊粪次之,兔粪最差。刘德江等设定了3个牛粪发酵浓度梯度(总固体物质含量为6%、8%和10%)来研究其对厌氧发酵产沼气中甲烷和硫化氢含量的影响,结果表明8%为发酵最佳浓度。xie等设定了1∶0、3∶1、 1∶1、1∶3 和0∶1五个猪粪与青贮草混合比,来研究粪草比对厌氧发酵产沼气的影响,结果表明1∶1时沼气中甲烷含量最高。 5、发酵条件控制 厌氧发酵系统的温度、初始ph值以及系统中原料的浓度等因素一直是厌氧发酵产沼气所研究的领域。一般情况下,厌氧发酵反应在较高温度下能够较快地进行,因为此时微生物新陈代谢较快,但高温时反应系统稳定性较差。 刘荣厚等以猪粪为发酵原料,研究了室温、中温(37℃)和高温(52℃)对其厌氧发酵产沼气的影响,结果表明,在发酵初、中期,室温和高温实验组微生物的活性受到影响进而抑制了甲烷化反应,发酵后期高温实验组的日产气量明显高于另两组。朱洪光等设置中温组(35±2)℃和室温组为15~33℃研究互花米草产沼气情况,发现互花米草适合作为生产沼气的原料,中温组日平均产气率为4.58 ml/(g?d),常温组日平均产气率为2.54 ml/(g?d),差别十分明显。赵洪等设定了7个ph值梯度(5.5、6.0、6.5、7.0、7.5、8.0、8.5),分析了ph值对新鲜猪粪厌氧发酵产气量和产气特性的影响,研究发现ph值6.5组启动最快,ph值7.0组和ph值6.5组的总产气量最高,ph值7.0组的甲烷含量最高,得出发酵体系的ph值为6.5~7.0时可促进厌氧发酵的启动,提高沼气的质量。王晓曼以早熟禾(poa annua l.)、佛手瓜(sechium edule)茎叶和番茄(solanum lycopersicum)茎叶为发酵原料,研究了3种原料的产气潜力,得出早熟禾累积产气量最高,影响产气量的主因素排序为接种量发酵浓度碳氮比,影响甲烷含量的主因素排序为接种量碳氮比发酵浓度。 6、气体成分分析 沼气中甲烷及二氧化碳的含量是反映厌氧发酵过程运行状况的重要参数。为使厌氧发酵过程获得最大的生产效率,整个生产过程必须处于最优化的运行参数和环境条件下。目前,沼气成分检测的主要方法有奥氏气体分析方法、气相色谱gc分析方法、热催化元件检测方法和红外检测方法等。 便携红外沼气分析仪 在测量甲烷量程上,热催化元件检测法为0~5%,其余3种的测量量程为0~100%;气体成分分析时,奥氏气体分析方法和气相色谱gc分析方法还可测定二氧化碳和氧气的含量,红外检测方法除了可以测定二氧化碳和氧气的含量外,还可测定硫化氢的含量,而热催化元件检测法则只能测定甲烷的含量;4种分析方法的气体分析时间分别为1 h、30 min、30 s、5 s;总体来看,红外检测方法在各方面优势明显。粗略估算时可以通过观察沼气燃烧的火焰颜色来确定气体中甲烷的含量。 世界能源问题日益突出,迫使各国开发和利用新能源以缓解国内能源的短缺。我国的能源草转化研究工作也在进行,但尚处于起步阶段,仍需研究工作者的继续努力,以及依靠国家政策推广种植能源草,实现能源草转化产业化,为国家能源问题做出贡献。来源:微信公众号@沼气工程及其测控技术,转载请务必注明出处。
  • 天津工业生物所|首次实现络塞维微生物发酵合成
    玫瑰红景天是我国传统藏药的瑰宝,在西方也有悠久的应用历史。玫瑰红景天提取物具有抗疲劳、抗抑郁、抗缺氧及保护心脑血管等疗效,广泛应用于中药制剂等领域。红景天苷和络塞维为玫瑰红景天的两大主要活性成分。其中红景天苷为红景天属植物共有活性成分,而络塞维是玫瑰红景天的特征成分,因而在玫瑰红景天药用价值中占重要地位。玫瑰红景天野生资源濒危,全球市场的需求不断增长,价格逐年攀升,且已供不应求。红景天(图片来源:网络)目前为止,国内外科研人员针对红景天苷的合成开展了大量工作,中国科学院天津工业生物技术研究所刘涛研究员团队先后在2014年和2018年发表了“Production of salidroside in metabolically engineered Escherichia coli”、“Metabolic engineering of Saccharomyces cerevisiae for high-level production of salidroside from glucose. J Agric Food Chem”的论文,为发酵法生产红景天苷技术工业化奠定了重要基础;2018年,天津大学的赵广荣教授和乔建军教授将红景天苷的生物合成途径分配在两个大肠杆菌株中,进行了深度代谢改造,实现了红景天苷高效人工合成,产量是以往单菌生产的20倍以上。近日,中国科学院天津工业生物技术研究所刘涛研究员团队再次通过元件发掘和筛选、人工通路设计构建及代谢调控,首次实现了微生物发酵合成络塞维。团队首先对络塞维前体络塞合成通路中的关键酶进行了优选,提高了大肠杆菌合成络塞的能力。随后,通过对糖链延伸糖基转移酶的筛选,鉴定得到四个来自UGT91R亚家族以UDP-阿拉伯糖为糖基供体的糖基转移酶,并将活性最高的SlUGT91R1和UDP-阿拉伯糖合成途径引入产络塞的大肠杆菌,实现络塞维的从头合成。进一步,在重组大肠杆菌中引入了UDP-阿拉伯糖补救合成通路,解耦了UDP-葡萄糖和UDP-阿拉伯糖的合成通路,提高了糖基供体UDP-阿拉伯糖的合成效率,以葡萄糖和阿拉伯糖为原料,5L发酵罐补料分批发酵络塞维产量超过7500 mg/L。该技术的生产成本远低于传统的植物提取,具备了商业化的潜力。本研究通过工程改造大肠杆菌实现了从简单的碳源中高效生产有价值的天然产物,这为开发其他药用植物活性成分的生产方法提供了新思路。重组大肠杆菌利用葡萄糖和阿拉伯糖合成玫瑰红景天特征活性成分络塞维
  • 从日本发酵工程史看未来发展前景
    从日本发酵工程史看未来发展前景2022年9月8日 (星期四) 13:00~14:30JASIS 2022主题研讨会幕张展览馆国际会议大厅B采访:东亚DKK (株) 徐天宇 1 “日本生物工程学会100年分析与测量的密切关系”讲师:广岛大学研究生院综合生命科学研究科教授 中岛田丰介绍发酵工程的历史概况。作为一个例子,介绍了控制作为味精成分之一的谷氨酸生产过程中产生的微生物技术的重要性。2“如何数字化杜氏的直觉和经验”讲师:(德国) 酒类综合研究所 岩下和裕日本酒酿造过程中工匠的“直觉和经验”是必不可少的,这是一项复杂的工作,新酒的开发是10年的反复试验。介绍了从麸菌的综合混合分析中对美味成分由来的验证和酿造工序的机理进行数字化的研究。 3“通过下一代生物分析有效利用各种微生物的生物工程学的未来” 讲师:神户大学先进生物工程研究中心主任 莲沼诚久教授介绍了生物和数字将引领第五次工业革命的可能性。在数据驱动的生物工程发展中,我们正在神户大学最先进的生物工程平台“生物代工厂”推广合成生物学,酶功能工程,高精度代谢组学等研究。
  • 影响沼气发酵的5大原因探析
    沼气是利用粪便、农作物秸秆等有机物在厌氧的条件下,经过微生物生理代谢产生主要成分为CH4和CO2,还有少量的H2、H2S、CO等可燃性气体,属生物质能源。开展沼气发酵的研究有着重大的意义和作用,本文就沼气发酵的影响因素进行了探讨。1.温度 沼气发酵可分为三个温度范围:50~65℃称高温发酵,20~45℃称中温发酵,20℃以下称低温发酵。此外,随自然温度变化的发酵方式称常温发酵。 沼气发酵受到温度和温度波动的影响。在同一温度类型条件下,由于沼气发酵微生物的代谢活动随着温度的上升而增加,在一定的温度范围内,温度越高,发酵产气速率越快;短时间内若温度波动幅度过大时,可能导致停止产气。 很多研究者对此进行了大量的研究,Harremoes等通过分析实验结果,得出了以下结论:中温厌氧消化的最佳温度为30~40℃。当温度在15℃以上时,厌氧发酵才能很好地进行。温度在10℃以下,无论产酸菌还是产甲烷菌都都受到严重抑制;温度在10℃以上,产酸菌首先开始活动,总挥发酸的产量直线上升;温度在15℃以上时,产甲烷菌的代谢活动才活跃起来,产气率明显提高,挥发酸含量迅速下降,在气温下降时必须考虑保温。2.酸碱度(PH值) 通常沼气池中的产甲烷细菌适宜的PH值范围为6.5~7.8,PH值的变化会直接影响产甲烷菌的生存和代谢。一般情况下,沼气池的PH值应维持在6.8~7.5之间,最好在7.2左右。 pH值在5.5以下,产甲烷菌的活动完全受到抑制,而pH值上升至8甚至8.5时,仍保持一定的产气率。产酸菌的pH值范围为4.0~7.0,在超过甲烷菌的最佳pH值范围,酸性发酵可能超过甲烷发酵,造成反应器内“酸化”现象的发生。 影响pH值变化的因素主要有以下几点:一是发酵原料的pH值;二是在厌氧发酵启动时,投料浓度过高,接种物中的产甲烷菌数量不足,以及在消化器运行阶段突然升高负荷,都会因产酸与产甲烷的速度失调而引起挥发酸的积累,导致pH值下降,这往往是造成厌氧发酵启动失败或终止的主要原因。 在厌氧发酵过程,如果pH值过高,可适当投入石灰水、Na2CO3溶液加以中和,也可靠停止进料产酸作用下降、产甲烷作用相对增强,使积累于发酵液内的有机酸逐渐分解,pH值则逐渐恢复正常。 如果pH值降至6.0以下,则应在调整pH值的同时,大量投入接种污泥,以加快pH值恢复。为防止沼气发酵酸化作用的发生,应加强对pH值的检测,如果所产气体中CO2比例突然升高或发酵中挥发酸含量突然上升,都是pH值要下降的预兆,这是应采取措施减少进料,降低消化器负荷,即可避免酸化现象,如果等到pH值下降后,再进行补救则难的多。 厌氧消化器3.氧气含量 沼气发酵启动和投料时带入的一部分氧气对沼气发酵危害不大,不会破坏沼气发酵的正常进行。这是因为沼气池中存在一部分好氧菌和兼性菌,带入的氧气很快会被不产甲烷细菌中的好氧菌或兼性菌消耗掉,使池内保持厌氧环境,同时这一部分氧气也使好氧菌、兼性菌与厌氧菌保持着动态的平衡关系,但为了保持好的厌氧环境,发酵过程中必须不漏气。4.沼气发酵原料的碳氮比 发酵原料的碳氮比(C/N),是指原料中有机碳含量和氮含量的比例关系。沼气发酵微生物需要的一定的碳、氮、磷等营养物质,才能正常生长和进行生命活动。碳元素为微生物生命活动提供能量,是形成甲烷的重要物质;氮元素也是构成微生物细胞的主要元素。这三种营养元素之间的比例,不论是好氧发酵还是沼气发酵,氮与磷的比例是确定值,为5:1。碳与氮的比值则范围较宽,以往的实践认为发酵原料的C/N以(13~30:1)为宜,大于30:1效果不佳,小于13:1还可正常发酵。但是,实际上以人粪便为主要原料(C/N=3.9:1)的沼气池也能很好的运行。所以,正常的沼气发酵要求合适的碳氮比,但不严格,要重视沼气池的启动和培养好相适应的菌种,提高沼气发酵细菌的适应能力。 在沼气发酵过程中,细菌不断将有机碳素转化为CH4和CO2,产生的沼气放出,同时将一部分碳素和氮素合成细胞物质,多余的氮素物质则被分解以NH4HCO3的形式溶于发酵液中。经过这样一轮的分解,C/N值下降一次,生成的细胞物质死亡后又被用作原料。要想消化器内的C/N值适宜,进料的C/N值则可更高些。因为厌氧细菌生长缓慢,同时死亡的老细胞又可作为氮素的来源,所以污泥在消化器内滞留期越长,对投入氮素的需求越少。5.沼气发酵接种物 沼气发酵细菌的多少和质量的高低直接影响沼气发酵、产气速率和沼气的质量。沼气发酵能否快速启动与高质量和大量的接种物有关。 如果沼气发酵启动时的接种物不够,可能会出现启动缓慢,经过很长时间,产气速率仍然较低的情况;接种物质量较差,产甲烷细菌数量较少,活性较低,此时水解性细菌和产氢产酸细菌很快繁殖,而产甲烷细菌繁殖较慢,导致不产甲烷作用较快,产甲烷与不产甲烷过程的平衡失调,就可能造成有机酸的缓慢积累,发酵液pH值下降,沼气池酸化,出现产气慢和沼气中甲烷含量低且质量差的情况。 近年来,随着监测技术朝着智能化和网络化的方向发展,物联网技术的应用不仅有效地推进了沼气工程监测信息化的进程,同时也为厌氧发酵的研究,沼气工程的高效运行提供了技术支撑。 沼气工程运行管理智能监控 沼气工程监测系统在预处理单元采集水量、温度和物料TS浓度等参数;在厌氧发酵单元采集温度、压力,PH值和物料TS浓度等参数并安装过载报警装置;在沼气输配气单元采集沼气成分、流量、贮气容积和压力等参数并安装沼气泄漏和过载报警装置;在污水处理单元安装COD,BOD,总P和总N等环保指标监测装置;在沼肥生产单元安装N,P,K和微量元素检测仪器;在沼气站采集现场温度、湿度和风速等环境条件。 系统将上述参数转化成数据信号,通过双绞线或无线路由节点传输至DTU(数据传输单元),DTU将串口数据转换为IP数据,再通过GPRS网络或者3G网络将IP数据传输到后台服务器,管理人员通过电脑或LED大屏在线监控、调取数据、统计分析等。 沼气工程物联网在提高沼气工程管控水平和生产效率上具有显而易见的积极作用。沼气工程物联网对沼气工程生产全程进行在线监测,通过数据库和专家咨询系统可及时发现并解决设备问题,排除运行故障,通过智能化管控系统,实现进出料、输配气、沼肥生产和污水处理等环节自动化控制,能提高产气量、提升沼肥生产质量和污水处理效果,实现沼气工程管理科学化、控制自动化、运行智能化,节约劳动成本,降低能耗,提高沼气工程生产效率。来源:微信公众号@沼气工程及其测控技术,转载请务必注明出处。
  • 日立高新HPLC在乳酸发酵监测中的应用
    糖质在厌氧状态下,通过乳酸菌加以分解,作为分解产物产生乳酸的反应被称之为乳酸发酵。乳酸饮料及酸奶、腌菜等在生产中利用了乳酸发酵,所以含有乳酸成分。此次,尝试使用通用性较高的UV检测系统,对乳酸发酵过程中乳酸的生成进行了监测。另外,在对乳酸的生成进行监测的同时,还对TCA循环中有无柠檬酸、苹果酸、琥珀酸的蓄积进行了确认。结果显示,初始培养基中所含的有机酸成分在乳酸发酵过程中并未增加。在有机酸分析中,通常使用有机酸分析专用柱(离子排除模式),而此次日立高新将介绍乳酸出峰时间更早、价格更低的反相色谱柱的测定例。本次使用的是适用于有机酸等极性较高的化合物测定的LaChrom C18-AQ色谱柱(低碳ODS)。首先对LaChrom C18-AQ色谱柱和乳酸发酵过程进行简单介绍: 接下来,我们对有机酸标准样品以及乳酸发酵过程中的样品进行检测。■有机酸标准样品测定例(反相模式)成分名称苹果酸乳酸醋酸柠檬酸琥珀酸浓度(mg/L)50 500 250 250 50 色谱条件:标准样品谱图:测定结果(标准曲线):乳酸在40 ~ 2000 mg/L的范围内,线性相关系数1.000,得到了良好的线性。 ■培养样品测定例(培养时间及乳酸监测)样品制备: 样品谱图:
  • 【瑞士步琦】近红外协助生物发酵制药过程
    近红外协助生物发酵制药过程近红外应用”1介绍抗生素是制药工业中最重要的产品之一,而生物发酵技术是抗生素的主要生产方法。生物发酵制药是利用微生物发酵对药物进行制备生产。目前可以利用发酵工程进行生产的药物原料主要是维生素、激素、抗生素和其他生物分子,根据不同发酵类型可分为微生物菌体发酵、维生素酶发酵、代谢产物发酵、生物工程菌发酵,主要生产的药物则是抗生素类药物、核苷酸药物、氨基酸类药物、激素类药物、维生素类药物等。作为有着悠久历史的中药,其资源异常丰富,在传统生产中也借助发酵这一技术。中药发酵将药食同源的中药材进行萃取提纯,再与优选的益生菌菌群进行厌氧发酵,在合适的条件下,对中药中的有效成分进行转化,将大分子中药经过微生物的作用转化为能够被人体肠道直接吸收的小分子成分,使其药效能更快速地作用于患者。尽管中药非常早期地利用了发酵方法,但其复杂的过程和较为主观的控制手段使得药物质量难以得到有效保证。随着现代生物发酵制药技术在国内逐步发展,传统中药的生产也渐渐迈开现代化的步伐。目前利用现代生物技术可以高效稳定地生产中药。不过无论是哪种生物发酵制药技术,都需要对反应过程进行监控,确保微生物在合适的环境中进行反应。这其中不乏对发酵过程中稳定、压力、湿度、酸碱等条件进行定期监测,还有一项重要指标能够反映当前发酵进行的程度,那就是效价。效价是微生物发酵生产的某种活性物质的含量或活性程度,通常随着发酵时间而增加。通过测定当前发酵液中的效价可以辅助判断发酵过程和其中主产物的浓度,因此需要定期频繁地测定发酵液中的效价。常规检测手段就是取样进行色谱分离,通过相关物质的峰面积等效得出当前效价,也可通过公式进一步换算成具体的活性浓度。虽然色谱检测的方法相对准确,但重复批量的检测依旧会带来不小的工作压力。近红外光谱分析通过无损快速扫描发酵的光谱信息,借助化学计量学方法,就能在数十秒内检测出样品的效价含量,由于近红外是检测样品分子中氢键的倍频和合频振动吸收信息,多数有机物含量以及水分和 pH 也可同时测定。下面介绍的一个案例就是测量发酵液中的效价含量,采用的是 BUCHI NIRFlex N-500 的标准固体测量池搭配透反射盖,实现对发酵液体的光谱扫描。所有检测样品在实验前只经过简单过滤去除杂质。2实验条件检测波长 4000-10000cm-1,分辨率 8cm-1,扫描次数 32 次,每个样品测量三次,共计 171 个样品,其近红外光谱图如下所示。▲ 发酵液近红外光谱图由于效价是根据色谱出峰的峰面积表示,而峰面积数值较大,建模时对其数据大小进行转换,所建模型的效果如下所示。▲ 发酵液效价参考值(横坐标)与预测值(纵坐标)分布散点图发酵液效价模型范围为 1.06 至 64.91,SEC 和 SEP 分别为 1.5 和 1.8,说明该模型能够对发酵液的效价进行快速准确的测定。3结论▲ 步琦傅里叶近红外光谱仪 NIRFlex N-500上述案例中使用的是步琦一款采用偏振干涉的傅立叶变换型的近红外光谱仪,相较经典的傅立叶光谱仪,具有更小巧的造型和更强大的抗震动能力。模块化的测量池可以随时随地方便更换,满足各种形态样品的检测需求。双灯构造及满足多国药典和审计追踪要求的配套软件,为工业生产分析提供便利的解决方案。如果有近红外检测需求,欢迎通过以下方式与我们取得联系。
  • 常见的几种钢结构发酵罐与软体沼气池汇总
    沼气发酵是整个沼气工程的核心,对沼气生产效率和工程经济具有决定性的影响。因此必须对沼气发酵过程进行有效的监测,一般可以选择一些沼气成分监测设备,如沼气分析仪Gasboard-3200,用户可根据沼气中甲烷、二氧化碳、硫化氢、氧气等成分对沼气发酵的工艺过程进行调控,可以有效提高沼气产气量。 除此之外,选择合适的沼气发酵装置也是十分必要的,根据建造材料,沼气发酵装置可分为钢筋混凝土结构、钢结构(包括钢板焊接结构、钢板卷制结构、钢板拼装结构)和软体沼气发酵装置。下面介绍几种钢结构发酵罐与软体沼气池,希望能帮助大家更全面系统的了解沼气工程常见的几种沼气发酵装置。 一、钢板焊接结构沼气发酵罐 钢板焊接结构沼气发酵罐最大的优点是技术成熟,可以现场制作,不需要专用的设备和工装,但防腐工艺相对复杂。其设计的一般规定为: 1)沼气发酵罐的设计压力通常取常压或接近常压,负压不应小于0.49kPa。 2)设计条件不应少于以下内容:发酵罐容积或直径、高度;地震设防烈度、风载荷、雪载荷、气温条件及地址条件;操作压力及操作温度(取罐体正常操作时,罐体金属可能达到的最高或最低温度。在寒冷地区,对无加热也无保温的罐体,设计温度建罐地区最低日平均温度加13℃);介质种类及密度。 3)厚度附加量应考虑钢板负偏差和腐蚀余量。 钢板焊接发酵罐多采用立式圆筒形,其结构设计最主要在于钢板的厚度和焊缝设计。从用材角度考虑,立式圆筒形罐体径高比为1:1时最节省材料。钢板越宽,在发酵罐制作过程中焊缝越少,相应地减少了焊缝渗漏的可能性,同时加快了制作速度,节约了焊接的人工费用。目前国内市场最容易买到的钢板宽度规格尺寸是250mm和1500mm。而发酵罐罐体尺寸的确定可以从三个方面同时考虑:径高比宜为1:(0.6~1.2);尽量采用宽度大的钢板;尽量采用同一规格尺寸的钢板。 对于钢板焊接发酵罐的腐蚀问题,我们一般可以按中等腐蚀强度来考虑。对钢材(不包括镀锌材料)表面焊缝进行除锈处理后,再在罐体表面刷一层防锈底漆,一般不超过6h。油漆防腐的施工方法:油漆稀释后用滚筒从上到下均匀涂刷,涂膜总厚度0.15~0.20mm,分两至三道完成,发酵罐外表面面漆应选用与底漆结合良好的配套使用,外壁有保温层时可不刷面漆,发酵罐内壁不刷面漆。 二、钢板卷制结构沼气发酵罐 钢板卷制结构沼气发酵罐也就是俗称的“利浦罐”。利浦罐应用金属塑性加工硬化和薄壳结构的原理,采用螺旋、双折边、咬合工艺和专用滚压、咬合、压紧成型设备来建造沼气发酵罐。采用该技术制作的罐体,施工周期短,节约钢材,罐体自重轻,使用寿命一般可达20年以上,具有相当大的环拉强度。但需要专门设备进行制作,其使用的钢板材料不是市面上的通用规格,且建造容积一般不宜过大,单池容积一般不超过5000m3。 利浦罐使用的材料通常为495mm宽,2~4mm厚的镀锌钢板或不锈钢-镀锌钢板复合板。从强度理论上讲,罐体的钢板厚度可以比2mm更小,但从结构稳定性角度考虑,选用材料一般不小于2mm,鉴于制罐机械咬合紧密度和压紧强度的限制,选用材料一般不大于4mm。 由于利浦罐体所用材料较少,因而利浦罐对底板基础的要求远远小于钢筋混凝土罐对底板基础的要求。在基础底板浇筑时,按所要制作的罐体直径在底板表面留一条宽150mm,深100mm的预留槽,槽内按直径均匀放置一定数量的锚形不锈钢预埋件,利浦罐制作完成后将被准确地放入预留槽内,用螺栓将罐体和预埋件固定,然后用膨胀混凝土和沥青、油毡等材料来密封此槽,最后覆细石混凝土保护层。 对于防腐问题,虽然使用镀锌钢板制作的利浦罐具有一定的防腐作用,但是钢板表面附着的镀锌层不足以抵抗料液和气体对其的腐蚀,特别是在开孔处和安装平台、栏杆、保温层固定件等焊接处,钢板表面镀锌层容易遭到破坏,所以在罐体制作完成、实验合格后仍然需要进行防腐处理。同样采用利浦制罐技术的沼气发酵罐也需要制作保温结构。其防腐处理方法与钢板焊接结构的发酵罐相同。 三、钢板拼装结构沼气发酵罐 钢板拼装罐是采用钢板搭结技术利用螺栓进行连接紧固安装而成,罐体及罐顶材料均采用符合国家标准的钢板,在工厂内将钢板机械加工处理后进行纵向、横向搭结,搭结处采用专业高分子密封材料聚硫胶将其密封拼装组合。按其表面材料不同又可细分为:搪瓷拼装罐、热喷涂拼装罐、电泳漆拼装罐等。 1.搪瓷拼装罐 搪瓷拼装罐是基于薄壳结构原理,采用预制柔性搪瓷钢板以螺栓连接方式及橡胶密封拼装制成的罐体,简称搪瓷钢板拼装罐或搪瓷拼装罐。搪瓷钢板基板为低碳钢冷轧板,屈服强度≤280MPa,抗拉强度270~410MPa,搪瓷瓷釉是多种无机化工原料共同高温烧制反应而成,搪瓷钢板通过钢板基材表面涂敷搪瓷浆料并进行焙烧而成。搪瓷钢板拼装罐具有耐腐蚀性好、施工周期短、节约钢材、罐体自重轻、易拆卸等优点,其缺点是螺栓连接的方式带来了渗漏的可能,不方便施工现成开孔方位的调整。 2.热喷涂拼装罐 热喷涂拼装罐是热喷涂技术和拼装罐结合的产物,热喷涂技术是指将两根带电的金属丝电弧熔融,并通过压缩空气喷吹、雾化,使金属喷涂至经处理的基体表面,形成结合良好、致密的金属涂层,然后用封闭剂对金属涂层表面进行封闭,最终形成长效防腐复合涂层。电弧喷涂锌、铝涂层外加有机封闭涂层的长效防腐蚀复合涂层能够实现30年内不维护的要求。电弧喷涂层与钢结构基体以机械镶嵌和微冶金的结合,提高了涂层结合力,在轻微碰撞或冲击下也能确保防腐涂层不起皮、不脱落,使得涂层质量 完全满足长效防腐蚀的要求,从而减少了钢板结构在服役期间的维护费用,减少了涂料施工带来的环境污染,延长了钢板结构的使用寿命。 3.电泳漆拼装罐 电泳漆拼装罐的钢板表面防腐运用了“阴极电泳处理”技术,阴极电泳处理是一种特殊的防腐方法,该方法以拼装钢板为阴极,即将钢板浸渍在装满水离子浓度比较低的电泳槽中作为阴极,在槽中另设置与其相对应的阳极,所采用的电泳涂料是阳离子型(带正电荷),在两极间通以直流电,在钢板上就会析出防腐膜,钢板经过酸洗、磷化、电泳等防腐处理后,再进行喷粉处理,就可使钢板具有双层防腐的功效,电泳层和钢板之间的结合力很强,电泳涂层作为保护层不仅能阻止罐体腐蚀,且具有抗强酸、强碱的功能和极强的抗磨损性。 电泳漆与传统防腐处理技术相比具有防腐效果好、耐高温、耐低温、耐磨、抗冲击等优点,在运输过程中可减少或避免罐体碰撞损坏。此外,还克服了搪瓷拼装罐运输及安装过程中因碰撞而造成掉瓷和大面积爆瓷的现象。 四、软体沼气发酵装置 软体沼气发酵装置,是一种新型沼气设备。主要包括:软体可折叠沼气发酵袋、沼气储气袋、沼气升压泵、脱硫器、分水器、沼气输送管及相关管件等。设备的主体是软体可折叠沼气发酵袋,采用高强度塑性材料制成,设有出气孔,进、出料口。其发酵原料来源广泛,可将大量的生活垃圾转化为价格极低的燃气。目前较为常用的软体沼气发酵装置主要有两种:黑膜软体沼气池和红泥软体沼气池。 1.黑膜软体沼气池 黑膜软体沼气池,学名“全封闭厌氧塘”,是养殖场沼气制取装置中的一个重要部分。黑膜软体沼气池是在开挖好的土方基础上,由底膜和顶膜密封形成的一种厌氧反应器。该沼气池集发酵、贮气于一体,采用防渗膜材料将整个厌氧塘进行全封闭,其粪污处理原理与其他厌氧生物处理过程一样,依靠厌氧菌的代谢功能,使有机底物得到降解并部分转化生成沼气。其特点如下: 1)建设成本低,施工方便 2)停留时间长,出水效果好 3)吸热性能好,增温保温效果好,产气量高 4)防渗膜材料抗拉强度高,抗老化、耐腐蚀 5)超大贮气容积,可实现一体化贮气 6)池底设自动排泥装置,能很好的实现排渣功能 从建设成本、维护管理,及产气、发电、污水处理等多方面来说,黑膜软体沼气池有着天然的优势,因而有着较好的经济效益、社会效益和生态效益。较适用于大型养殖场与“水泡粪”工艺养殖场的养殖排泄物的处理。但黑膜软体沼气池占地面积大,如果要进行沼气发电的话,还需增加一个防腐防爆的增压器。 2.红泥软体沼气池 红泥软体沼气池是指利用新技术新材料制作而成并且可折叠的沼气池,主要由沼气发酵池、沼气池储气袋组成。发酵池主要分为茶壶形和浮罩形;储气袋一般分为圆柱形和长方形。红泥软体沼气池比一般的PVC多了红泥成份,红泥胶皮是一种改性合金塑料,是一般塑料无法比拟的。虽然红泥软体沼气池容易受外界锐器,老鼠啃咬等损坏,造价较黑膜软体沼气池高,但具有如下优势: 1)使用条件不受季节、地域气候的限制 2)阻燃、抗老化、耐腐蚀、耐低温、防震,使用寿命长 3)制作简便,运输方便,对存放点基础无特别要求,施工方便 4)建设工期短,投资少,比低压湿式贮气柜减少投资40%以上 6)安装拆卸容易,维修、搬迁方便简单 7)可根据产气量、贮气量大小随时增减贮气袋数量 8)商品化程度高,可以实现专业化、规范化、工厂化生产(来源:沼气圈)
  • 如何有效评价酵母等微生物发酵能力及发酵特性?
    发酵指人们借助微生物在有氧或无氧条件下的生命活动来制备微生物菌体本身、或者直接代谢产物或次级代谢产物的过程。经发酵过程制造食品时所利用的。最常用的有酵母菌、曲霉以及细菌中的乳酸菌、醋酸菌、黄短杆菌、棒状杆菌等。通过这些微生物作用制成的食品通常有以下5类:1、酒精饮料:如蒸馏酒、黄酒、果酒、啤酒等;2、乳制品:如酸奶、酸性奶油、马奶酒、干酪等;3、豆制品:如豆腐乳、豆豉、纳豆等;4、发酵蔬菜:如泡菜、酸菜等;5、调味品:如醋、黄酱、酱油、甜味剂(如天冬甜味精)、增味剂(如5′-核苷酸)和味精等。 如何有效地评估酵母等微生物的发酵能力、培养基(面团、啤酒等)发酵特性及样品的发酵条件等?如何长时间监测面包面团、酒类酿造、生物乙醇相关的发酵过程以及BP(发酵粉=化学膨胀剂)等工艺过程? 产品推荐 日本WSF-2000MH系列发酵特性分析仪是一种通过自动持续测量并记录各种样品在微生物发酵过程中产生的气体总量和产气速度的变化曲线,分析样品的发酵条件、发酵特性等,可同时分析10到20个样品,每个样品独立控制、监测和分析。 产品应用微生物方面——菌株的育种、烘焙制品、酒类酿造、酱油、食品腐败、工业酒精以及甲烷氢气等领域,如小麦粉品质评价、酿造品质控制、微生物菌株筛选等。化学方面——食品膨胀剂、发泡剂、洗涤剂、入浴剂以及医药品等领域,如膨化剂、发泡剂等的新品开发和质量管控等。
  • 合辑:最全国内外干式厌氧发酵技术工艺都在这里!
    干式厌氧发酵是近年来发展非常迅速的一项新技术,在畜禽粪便处理、秸杆制气、餐厨垃圾处理等方面有很好的应用前景。具有原料预处理要求低、沼液产量少、能源少、管理方便等优点。 一、干式厌氧发酵 专门针对含固率大于15%成分比较复杂的有机废弃物的厌氧消化处理技术。 二、工艺类型 连续式工艺主要用于含固率15%~25%之间,比较粘稠的有机废弃物的处理;间歇式工艺主要用于含固率在25%以上,且物料粒径分布范围较大,通透性较好的有机废弃物的处理。 三、国内外干式厌氧发酵工艺 有机废弃物干式厌氧发酵技术最早起源于欧洲,目前比较成熟的工艺有比利时的Dranco,法国的Valorga,瑞士的Kompogas和德国的LARAN,而国内关于干式厌氧发酵的研究起步较晚,目前绝大部分工艺还处在实验研究阶段。 1.欧洲干式发酵工艺概况 从20实际40年代起,欧洲一些发达国家就开始尝试研究和使用干式厌氧消化技术,到20世纪80年代,干式厌氧消化技术在德国、荷兰、瑞士和比利时等欧洲国家开始市场化应用。 1)间歇式干式发酵处理工艺与连续干发酵工艺相比,间歇式干发酵工艺发展相对稍晚一些,从90年代初开始商业化应用。主要有德国的Bioferm、BEKON及Wehrlewerk公司的Bioferm,BEKON以及Biopercolat干发酵工艺等。Bioferm工艺 主要应用于含水率低于75%的有机固体废弃物的处理,属于单级车库式中温厌氧消化工艺。该工艺的主要特点是原料投加到反应器内再不需要搅拌或翻掀,也不需要增加额外的补充水,且原料在进入反应器内后不需要做任何预处理。BEKON工艺 BEKON工艺与Bioferm工艺基本上完全相同,也是车库式间歇干式发酵工艺。唯一不同的是BEKON工艺具有高温和中温两种,而Bioferm只有中温。GICON工艺 GICON工艺属于间歇式处理工艺,与上述BEKON与Bioferm间歇式厌氧干发酵工艺相比,主要不同点是GICON工艺是根据微生物的分解步骤将厌氧消化过程分成两个阶段来实现——水解阶段(干式发酵)和产甲烷阶段(湿式发酵)。 2)连续干式发酵处理工艺 从20世纪40年代起,欧洲一些发达国家就开始尝试研究和使用干式厌氧消化技术,到20世纪80年代,干式厌氧消化技术在德国、荷兰、瑞士和比利时等欧洲国家开始市场化应用。其中最具代表性的连续干发酵系统工艺为:比利时OWS公司的Dranco干发酵工艺、法国VALORGA INTERNATIONAL S.A.S 公司的Valorga干发酵工艺、瑞典的KOMPOGAS公司的KOMPOGAS BRV等。Dranco工艺 该工艺属于竖式推流发酵工艺,属于单级中温/高温干式(高固体)厌氧消化工艺。Dranco工艺又分为Dranco和Dranco-Farm,Dranco主要用于餐厨垃圾、城市固体废弃物的有机部分等,而Dranco-Farm主要用于能量作物和工业有机废弃物的处理。Valorga工艺 该工艺属于竖式气体搅拌干发酵工艺,主要应用于有机固体废弃物和城市生活垃圾处理方面,有高温和中温两种形式。是第一个用于对生活垃圾经机械分选后剩余有机部分处理方面的发酵工艺。Kompogas BRV工艺 Kompogas BRV工艺属于卧式推流发酵工艺,主要应用于有机固体废弃物和城市生活垃圾处理方面,属于单级高温干式(高固体)厌氧消化技术。Laran工艺 主要应用于含水率15~45%的有机固体废弃物的处理,属于单级干式卧式推流厌氧消化工艺,有高温和中温两种形式。该工艺与Kompoga相似,主要不同的搅拌方式,Laran工艺采用的是分段搅拌方式,比Kompogas工艺设备多且比较分散。 2.国内干式发酵工艺概况我国对厌氧消化技术的研究相对滞后,尤其是干发酵技术,目前国内致力于干发酵技术的研究和推广应用还比较有限。主要有以下几种工艺模式: 1)覆膜槽沼气干式发酵系统该工艺建设若干个发酵槽,间歇使用,实现好氧升温-厌氧产气-好氧制肥三段同槽发酵工艺,其中厌氧利用柔性膜密封,好氧升温及制肥时将柔性膜取下。 2)干式发酵反应器(立式/卧式两种) 该设备适用于各种有机废弃物和能源作物厌氧发酵工程。 3)多元废弃物车库式干式发酵工艺没有或者几乎没有自由流动水的沼气厌氧微生物发酵过程,是处理有机同体生物质的有效方法,耗水量比湿法发酵大大降低,无沼液消纳问题,适用于各种有机废弃物和能源作物厌氧发酵工程。 行业专家表示干发酵目前在国外是热点和趋势,“相对于我们传统的湿发酵来说,干发酵技术具有三大优点:原料适应性较广;容积产出率较高;整个发沼过程当中没有沼液外排,避免二次污染。”除农业秸秆、畜禽粪便以外,干发酵还可以针对有机垃圾、餐厨垃圾,以及其它农产品废弃物进行处理发酵。 厌氧发酵是沼气工程的基础,而厌氧发酵是一个复杂的过程,预处理、接种比例、总固体浓度、原料、温度和外源添加物等因素都会对厌氧发酵的产气率造成影响。因此,除了要根据发酵原料选择适宜的厌氧发酵工艺及系统结构,选择适宜的沼气成分监测设备,如沼气分析仪Gasboard-3200系列,通过对产出沼气中CH4、H2S、O2、CO2气体浓度的检测,判断发酵工艺状况,并对工艺过程进行适度调控,以降低各因素对产气率造成的负面影响,提高发酵系统的沼气发酵效果也是十分必要的。沼气分析仪(在线型)Gasboard-3200 我国现今能源短缺,发展低碳经济、循环经济已成为世界性潮流。厌氧干式发酵技术在各种固体有机废弃物资源化利用上具有一定的技术优势,由于我国对该技术的研发起步较晚,仍有巨大的研究空间,尤其是在干发酵接种量大、启动慢及易积累有机酸等方面,以求进一步提高干发酵系统的沼气发酵效果。来源:微信公众号@沼气工程及其测控技术,转载/修改转载请务必注明来源!
  • 运动发酵单胞菌运动亚种的特点与优势及培养方法!
    运动发酵单胞菌运动亚种的特点与优势及培养方法! 运动发酵单胞菌运动亚种是Zymomonas属的微生物,原产地为美国。G-,细胞具有圆端的短杆状,丛生鞭毛运动,单个或成对排列。主要用途为研究,具体用途为用于细菌发酵酒精的研究。 一、菌种简介平台编号:Bio-66722提供形式:冻干物拉丁属名:Zymomonas Mobilis Subsp. Mobilis中文名称:运动发酵单胞菌运动亚种属名:Zymomonas种名加词:mobilis subsp. mobilis其它中心编号:ATCC 31821来源历史:←北京工商大学化工学院(31821)收藏时间:2008.10.31原始编号:WAY资源归类编码:15131139101模式菌株:非模式菌株主要用途:研究具体用途:用于细菌发酵酒精的研究特征特性:G-,细胞具有圆端的短杆状,丛生鞭毛运动,单个或成对排列。利用葡萄糖、蔗糖或果糖产乙醇和CO2,利用山梨醇,不发酵麦芽糖、阿拉伯糖、鼠李糖、木糖。不还原硝酸盐,不液化明胶,接触酶阳性。 生物危害程度:四类致病对象:无培养基:葡萄糖 100.0g,酵母膏 5.0g,(NH4)2SO4 1.0g,KH2PO4 1.0g,MgSO4?7H2O 0.5g,琼脂 20.0g,蒸馏水 1.0L, pH7.0。培养温度:30℃资源保藏类型:培养物保存方法:真空冷冻干燥法实物状态:有实物共享方式:公益性共享;资源纯交易性共享;合作研究共享;资源交换性共享用途:研究;用于细菌发酵酒精的研究注意事项:仅用于科学研究或者工业应用等非医疗目的不可用于人类或动物的临床诊断或治疗,非药用,非食用(产品信息以出库为准) 二、产品特点1、菌种功能明确、品种稳定、应用 2、产品仅限用于科研本品芽孢含量高,稳定性好、耐高温和挤压 3、繁殖能力快、定植能力强、易存活、耐受低pH值环境 4、复活迅速,可在短期内成为优势种群 5、本品安全高效、无抗药性、不污染环境 6、对多数抗生素不敏感,可与低浓度抗革兰氏阴性菌抗生素同时使用。 三、产品优势1、产品质量稳定,是为科研和提供微生物菌种资源共享服务的专业平台。2、国内首创封闭管包装,冻干后的菌株使用时添加配套的复苏培养基后迅速而完全溶解。针对不同的菌株提供八种不同的培养方法,保证菌种的复苏质量。3、严格的质检程序,确保产品质量的稳定性。4、该类产品广泛使用到食品、药品、化妆品、水产品、化工等行业,疾控中心、质检局、出入境、药检局等等,得到广泛好评。 四、菌种的培养1、菌种是指食用菌菌丝体及其生长基质组成的繁殖材料。菌种分为母种(一级种)、原种(二级种)和栽培种(三级种)三级。工业发酵的有用菌种,其筛选步骤包括菌种分离、初筛和复筛。2、挑选具有某种能力的有用菌种,也称种子制备,是指菌种在一定条件下,经过扩大培养成为具有一定数量和质量的纯 菌种的制备过程。以作接入发酵罐中进一步扩大菌体量及合成产物之用。3、种子制备包括孢子制备和菌丝体制备菌种制备。4、保存在沙土管或冷冻管中的菌种,用无菌手续挑取少许,接入琼脂斜面培养基上,在25℃(或较高温度)下培养5~7天(或较长时间。所得孢子还需进一步用较大表面积的固体培养基以获得更多孢子(对于霉菌类孢子制备,多数采用大米、小米之类的天然培养基)。5、将培养成熟的斜面孢子制成悬浮液,接种到扁瓶固体培养基上,于25~28℃培养14天。将成熟的扁瓶孢子于真空中抽干,使水分降至10%以下,并放入 4℃冰箱中备用。一次制得的孢子瓶可在 上延续使用半年左右。6、如果有些菌种不产孢子,如赤霉素产生菌或产孢子不多的,则可采用摇瓶液体培养制得菌丝体,作种子罐的种子。种子罐的目的是使接入有限的孢子或菌丝体迅速发芽、生长、繁殖成大量菌体。其中的培养基组分应是易于被菌体利用的碳源(如葡萄糖)和氮源(如玉米浆),及无机盐(如磷酸盐)等。作为发酵罐的种子应生命力旺盛、染色深、菌丝粗壮,无杂菌及异常菌体。接种量一般在10%~20%。 五、保藏方法1、传代培养保藏法又有斜面培养、穿刺培养、疱肉培养基培养等(后者作保藏厌氧细菌用),培养后于4-6℃冰箱内保存。2、液体石蜡覆盖保藏法是传代培养的变相方法,能够适当延长保藏时间,它是在斜面培养物和穿刺培养物上面覆盖灭菌的液体石蜡,一方面可防止因培养基水分蒸发而引起菌种死亡,另一方面可阻止氧气进入,以减弱代谢作用。3、载体保藏法是将微生物吸附在适当的载体,如土壤、沙子、硅胶、滤纸上,而后进行干燥的保藏法,例如沙土保藏法和滤纸保藏法应用相当广泛。4、寄主保藏法用于目前尚不能在人工培养基上生长的微生物,如病毒、立克次氏体、螺旋体等,它们必须在生活的动物、昆虫、鸡胚内感染并传代,此法相当于一般微生物的传代培养保藏法。病毒等微生物亦可用其他方法如液氮保藏法与冷冻干燥保藏法进行保藏。5、冷冻保藏法可分低温冰箱(-20-30℃,-50-80℃)、干冰酒精快速冻结(约-70℃)和液氮(-196℃)等保藏法。6、冷冻干燥保藏法先使微生物在极低温度(-70℃左右)下快速冷冻,然后在减压下利用升华现象除去水分(真空干燥)。有些方法如滤纸保藏法、液氮保藏法和冷冻干燥保藏法等均需使用保护剂来制备细胞悬液,以防止因冷冻或水分不断升华对细胞的损害。保护性溶质可通过氢和离子键对水和细胞所产生的亲和力来稳定细胞成分的构型。保护剂有牛乳、血清、糖类、甘油、二甲亚砜等。 欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 山东农科院茶叶所董春旺团队在红茶发酵研究领域发表多篇高水平论文
    山东农科院茶叶所董春旺团队围绕红茶品质开展了一系列研究,其结果发表在LWT-Food Science and Technology、Food Bioscience、Sensors and Actuators: B. Chemical等期刊上。发酵是形成红茶特有品质风味的关键工序。当前国内外红茶生产均依靠人工经验“看茶制茶”,已成为制约红茶智能化加工的关键技术瓶颈。针对此问题,该研究课题基于多种算法,构建了红茶发酵中关键呈色呈味物质的量化感知模型。1.基于高光谱成像的红茶发酵过程中关键理化成分的量化感知与时空分布该研究课题之前已采用近红外光谱、机器视觉预测了红茶发酵在制品的主要内质成分含量。目前工作的新颖性在于:针对机器视觉、近红外光谱技术的局限性,采用高光谱成像技术获取发酵叶的VIS-NIR光谱和图像信息,即可从宏观层面检测叶面色泽变化,又从微观角度捕捉内质成分的衍变。再通过量化感知模型和计量学手段,首次可视化地揭示了发酵中关键呈色、呈味物质的多维时空分布规律,这在制茶学中是一种崭新的研究思路,为红茶智能加工和精准调控技术实现,提供了新的理论支撑和技术方法。发酵是形成红茶特有品质风味的关键工序。当前国内外红茶生产均依靠人工经验“看茶制茶”,已成为制约红茶智能化加工的关键技术瓶颈。针对此问题,该研究课题基于高光谱成像技术,结合不同预处理、变量筛选和智能算法等计量学手段,构建了红茶发酵中关键呈色呈味物质(茶黄素、茶红素、茶褐素、咖啡碱、酚氨比、儿茶素和可溶性糖)的量化感知模型,并探究了其在红茶发酵中的时空分布信息规律。研究结果表明,基于各敏感特征波长建立的茶红素、茶褐素、茶黄素、儿茶素、咖啡碱、酚氨比、可溶性糖构建的非线性模型的RPD值分别为2.21、3.40、3.78、5.71、1.46、2.91和2.89,除咖啡碱外的RPD值均大于2,表明模型具有良好的预测性能。原文链接:https://doi.org/10.1016/j.lwt.2021.1109752.基于电学特性的红茶发酵品质的快速无损感知该研究课题前期验证了机器视觉、高光谱成像技术快速感知红茶发酵内质成分的可行性。目前工作的新颖性在于:针对图像、光谱信息主要表征发酵叶表面信息缺陷,以堆积状发酵在制品为研究对象,采用电学特性数字表征发酵叶堆内部的整体信息,建立了电特性参数(电容、电阻、电抗、复阻抗、阻抗角和损耗因子)与内质成分的关联,实现对儿茶素含量的快速无损感知。发酵是红茶品质风味形成的关键工序,儿茶素是发酵生化反应的主体物质和品控指标。本研究探索了电特性检测红茶发酵质量信息的可行性,建立了红茶发酵中儿茶素成分的量化感知模型,比较了不同的预处理、变量筛选及智能算法对模型性能的影响。结果发现,发酵过程中损耗因子、电抗、阻抗和阻抗角值递增,电容和儿茶素含量呈线性降低。对儿茶素变化最敏感的电参数为0.05~0.1 kHz频段的Cp 、D和X;基于最优变量,建立VCPA-IRIV-RF非线性预测模型,其Rp、RMSEP和RPD值分别为0.988、0.269、5.474,模型性能优于光谱和机器视觉方法,为红茶发酵品质的在线快速检测提供了新途径。原文链接:https://doi.org/10.1016/j.fbio.2020.1008553.基于多维嗅觉信息评估红茶发酵过程中香气品质该研究团队前期探索了嗅觉可视化传感阵列基于在制品香气信息评估红茶发酵程度的可行性(DOI:10.1016/j.snb.2022.131994)。目前工作的新颖性在于:针对传统嗅觉可视化阵列传感器获取样品信息维度不足的问题,基于高光谱成像技术扩展获取信息的维度,并基于数据级、特征级以及决策级的数据融合策略建立红茶在制品香气信息与感官香气得分的关联,实现了红茶发酵香气品质的无损感知。本研究探索了多维嗅觉信息评估红茶发酵香气评分的可行性,基于高光谱成像技术扩展了获取香气信息的维度,采用不同水平的数据融合策略建立了红茶发酵多维香气信息与香气感官品质的感知模型。结果表明,基于多维嗅觉信息和数据融合策略建立的红茶发酵香气品质预测模型优于基于传统方法获取香气信息建立的模型。其中,基于自适应重加权采样的中水平融合策略表现出了最佳的性能,预测模型的Rp,RPD以及变量压缩率分别为0.969,4.091,96.83%。此研究为红茶香气品质的快速智能感知方法提供了新思路。比色传感阵列制备和发酵实验的流程图。原文链接:https://doi.org/10.1016/j.snb.2022.1325184.采用表面增强拉曼光谱对红茶发酵品质信息智能感知该研究团队前期探索了近红外光谱、机器视觉、嗅觉可视化和电特性传感信息结合机器学习方法评估红茶发酵品质及适度的可行性。该工作的新颖性在于:针对光谱分析红茶发酵过程机理不明确的问题,创新性的利用表面增强拉曼光谱对红茶发酵过程进行分析,深入研究了拉曼峰和发酵红茶品质指标的关联,并提出了一种无损检测发酵红茶多项品质指标,快速感知红茶的发酵品质适度的方法。为红茶数字化、智能化加工技术实现,提供了新的理论支撑和技术手段。该团队提出了一种基于表面增强拉曼光谱(SERS)技术和化学计量学的快速方法来确定红茶的最佳发酵阶段,并监测发酵过程中在制品的10种理化品质指标的变化。首先,不同发酵时序在制品聚类为5个发酵阶段。基于SERS数据对发酵阶段进行了识别,准确率为83.33%。此外,通过密度泛函分析和相关分析发现,在317.71、619.59、731.48、956.08和1326.70 cm-1处是监测红茶品质变化的重要拉曼峰。结合SERS和一维卷积神经网络(1D-CNN)对儿茶素(C)和表没食子儿茶素没食子酸酯(EGCG)的预测r2分别达到0.81和0.82。本研究揭示了与红茶发酵品质相关的关键化合物的拉曼指纹特征,为利用SERS数据量化茶叶在发酵过程中的品质变化提供了途径。原文链接:https://doi.org/10.1016/j.snb.2022.1326805.基于多源传感信息融合技术以及堆叠合并算法在决策层定量评估红茶品质本研究提出一种基于多源传感信息融合技术以及堆叠合并算法在决策层定量评估红茶品质的方法,提高了红茶发酵品质成分定量预测的精度,为红茶发酵的智能评估奠定了理论基础。针对人工感官经验评价红茶发酵品质缺陷,本研究提出一种利用多元融合信息以及堆叠合并策略在决策层定量预测红茶发酵过程中总儿茶素、可溶性糖和咖啡碱等主要与味觉相关的主要化学成分的新方法。该方法对总儿茶素、可溶性糖以及咖啡碱的预测集相关系数分别为0.9978,0.9973以及0.9560,模型精度明显优于经典的线性PLSR以及非线性SVR算法。该方法为红茶发酵品质的智能评估提供了新思路。原文链接:https://doi.org/10.1016/j.fochx.2023.100718————————————————————————————————“植物源性食品质量安全检测技术及应用新进展”主题网络研讨会全日程公布:https://www.instrument.com.cn/webinar/meetings/zhiwy230921/点击图片直达会议报名页面
  • 【行业应用】赛默飞发布蓝藻发酵液中的糖的检测方案
    赛默飞近日发布蓝藻发酵液中糖的检测方案。蓝藻可以进行光合作用,与高等植物叶绿素具有一定程度上的同源性,加上其研究体系简单,长期以来一直是研究光合作用的模式生物。除此之外,蓝藻还可以进行固氮作用,将大气中的氮气经固氮作用转化为可以利用的氮源,用于提高土壤的肥力。如果可以通过代谢工程改造蓝细菌生产蔗糖并提供给大肠杆菌等微生物发酵生产生物燃料,必将加速整个生物燃料的产业化进程,具有显著的意义。赛默飞发布的蓝藻发酵液中糖的检测方案,采用 Thermo ScientificTMDionexTM ICS-4000 毛细管 HPICTM系统和质谱联用法测定发酵液中的一些成分,分离测定7种糖,如蔗糖、乳糖、葡萄糖、海藻糖、葡萄糖甘油酯、甘露糖、果糖等。毛细管离子色谱常用色谱柱直径为0.4 mm,流速为10 μ L/min,其进样体积通常为0.4 μ L,与常规分析型离子色谱相比,其灵敏度是常规离子色谱的近百倍。毛细管离子色谱的流速是10 μ L/min,符合质谱对低流速的需求。本方法在柱后乙腈溶液中添加了少量乙酸钠,以提高糖在质谱中的重现性。此方法的建立有利于了解其基因改造效果,对于充分利用蓝藻意义重大。毛细管离子色谱质谱联用测定糖方法操作简便,重复性好,线性范围内相关性好,准确度高,进一步拓展了毛细管离子色谱的应用范围,具有较高的实用价值。应用文章下载链接:https://tools.thermofisher.com/content/sfs/brochures/Capillary-ion-chromatography-mass-spectrometry-method-determination-carbohydrate-blue-green-algae-fermentation-liquor.pdf---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮 助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高 实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网 站:www.thermofisher.com 赛默飞世尔科技中国赛默 飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国 市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • GERSTEL 携手艾威科技邀您参加2023第三届中国传统发酵食品产业发展大会,我们在3-10展位等
    我国传统发酵食品风味独特,不仅是满足人类基本食物需求的一种物质产品,更是中华文化的重要载体,有着深厚的文化传承。为推进传统发酵食品行业交流,促进传统发酵食品产业转型升级,实现高质量发展,由中国食品发酵工业研究院发起,联合贵州省工业和信息化厅等单位将于2023年7月28日-30日在贵州省国际会议中心(贵州饭店)举办“2023第三届中国传统发酵食品产业发展大会”。大会日期2023年7月28日-30日大会主题创新发酵新业态引领消费新时尚大会地点中国 贵州 贵阳大会地址贵州省贵阳市云岩区北京路66号贵州省国际会议中心(贵州饭店)今 日 C 位GERSTEL风味、香气和气味化合物对食品、香精香料以及日用消费品的质量和市场占有率起着至关重要的作用。通过分析这些重要的感官物质可以对产品的质量进行把关,对产品进行研发和改良,研究竞手信息以及进行基础性研究等工作。在分析过程中,从最开始的浓缩萃取挥发性化合物,到合理无歧视的进样技术,再到对重要风味化合物气味的定性定量研究,包括气味化合物的鉴定,这些步骤环环相扣,缺一不可。 当样品成分十分复杂,涉及的化合物种类极广,并且化合物浓度分布非常大时,我们就需要通过多种萃取技术及定量技术来进行全面准确的分析。GERSTEL 为您提供全面的解决方案!分析难点GERSTEL样品成分复杂是关键的分析难点,因为将汇涉及极广的化合物种类(包括酯类,醇类,醛类,酮类,酸类,芳香族化合物,酚类,呋喃类化合物,含氮化合物,含硫化合物,内酯,萜烯类等),并且这些化合物浓度分布非常大(从g/L到几个μg/L级的痕量化合物)。只有通过多种萃取技术及定量技术才能对此类样品进行全面准确的分析。解决方案GERSTELGERSTEL 为您提供全面的解决方案:从各种现代化无溶剂的萃取技术(SPME, SBSE, TF-SPME, DHS 等),到高效无歧视的进样技术(大体积冷进样口和热脱附进样),再到风味化合物的气味鉴定(嗅觉检测器 ODP,风味物质数据库 Aroma Office 2D),以及高阶的中心切割多维气相色谱技术以及全自动馏分收集。我们还为您提供多种自动化样品制备技术,如自动配标、蒸发浓缩、高效振荡混合、小型化液液萃取,在线衍生、孵育、超声波浴等。GERSTEL拥有50多年的技术及应用经验,我们的解决方案被应用在“分子感官科学”的研究中,客户遍布全球。愿我们的解决方案能为您的工作助一臂之力!日程安排7月27日全天报到- 贵州国际会议中心7月28日上午2023 中国传统发酵食品产业发展大会- 贵州厅7月28日下午高端对话——面向未来的传统发酵食品产业- 贵州厅7月28日下午2023传统发酵食品创新大赛颁奖典礼- 贵州厅7月29日2023 中国白酒技术创新论坛- 贵州厅A厅7月29日2023 中国调味品与预制菜产业创新技术高峰论坛-第四会议室7月29日2023 中国特色发酵食品资源与营养健康论坛- 第五会议室7月29日2023 中国发酵食品产业卓越青年学术论坛- 贵州厅C厅7月30日企业参观,返程大会信息28日日程安排29日日程安排参观线路30日参观考察路线安排线路1 黔南州线——老干妈昌明基地线路2 安顺市线——南山婆集团有限公司线路3 茅台镇线——茅台镇名酒工业园区
  • 技术探秘:厌氧发酵原位提纯直接制取生物天然气CH4浓度高达94%
    近日在湖南某沼气工程现场,工作人员惊奇地发现:仅通过厌氧发酵工艺,竟然直接制取出了CH4浓度高达94%的生物天然气!众所周知,一般沼气生产生物天然气要经过净化和提纯两个步骤,才可得到高甲烷浓度的生物天然气,以用作管道燃气、热电联供、生产压缩天然气和罐装燃气等。而该沼气工程项目并没有复杂的净化、提纯过程,就制出了CH4浓度高达94%的生物天然气,让人匪夷所思!发酵罐 据了解,该项目厌氧发酵罐规模为800m3 ,其发酵原料主要来源于种猪养殖场的粪便与尿液,项目数据监测则采用武汉四方光电子公司-四方仪器自控的沼气工程监测方案Gasboard-9230产品,用以对沼气流量,沼气成分,发酵罐温度和PH值等数据的监测与无线传输。对于直接通过厌氧发酵产出CH4浓度高达94%的沼气,所有人的第一反应是检测仪器出了故障。为了解决大家心里的困惑,公司派出检测人员,携带系列专业气体检测仪器,逐一对项目产出的沼气成分进行检测。大中型沼气工程监测现场 工作人员首先使用100%CH4和50%CO2的标准气体,对现场一体化沼气分析系统Gasboard-9060进行校准。对一体化沼气分析系统Gasboard-9060进行校准 首先,采用该在线检测设备对现场沼气成分进行检测,结果显示CH4浓度为94.39%!根据以往经验,在没有进行提纯前,沼气成分中的CH4一般在40-65%之间,很难超过70%。如今却是94.39%。一体化沼气分析系统Gasboard-9060的检测数据 随后,使用公司最新研发的沼气分析仪(智能便携型)Gasboard-3200Plus进行检测。该产品采用非分光红外气体分析技术,其分析仪器检测显示的结果依然达到了94.42%!与在线仪器无差别,仪器故障的可能性逐渐被排除。用最新沼气分析仪(智能便携型)Gasboard-3200plus再次检测Gasboard-3200Plus的检测数据 考虑到沼气中除含有甲烷外,可能还含有复杂的烷烃成分(乙烷等),在红外吸收光谱中,甲烷的中红外吸收特征波长易受乙烷影响,从而影响检测设备对甲烷浓度的测量。为了排除这种可能,检测人员提出采用公司的红外煤气分析仪Gasboard-3100再检测一次。煤气分析仪Gasboard-3100同样采用非分光红外气体分析技术,可同时测量煤气、生物燃气的热值,以及甲烷、乙烷等气体浓度,最重要的是可排除乙烷影响并准确检测甲烷浓度。然后,检测结果仍是惊人的96.08%的高浓度!自此,仪器故障、检测不准的原因被彻底排除了。用煤气分析仪(在线型)Gasboard-3100检测排除干扰可能Gasboard-3100的检测数据 排除了仪器故障问题,但疑云仍未拨开!为此,四方仪器总经理熊友辉博士携带相关气体成分检测仪器驱车300多公里,亲临项目现场对该沼气项目再次进行了深入调查研究与分析。熊博士在监测现场 现场在线监测系统显示仪器进气流量正常,这次Gasboard-9060监测系统显示CH4浓度为91.38%。Gasboard-9060的检测数据Gasboard-3200Plus的检测数据便携红外天然气热值分析仪Gasboard-3110P的检测数据 从这次现场的检测数据来看,厌氧发酵产出的沼气CH4含量确实在90%以上,检测数据可靠性没有问题。但是有一个现象引起了大家的重视,就是该项目安装的超声波沼气流量计BF-3000的瞬时流量接近是零,累计流量只有1500多立方米。也就是说,安装监测系统一个月以来,平均每日的产气量只有50m3左右,显然这个沼气工程没有达到设计的中温发酵1.0(800m3)的容积产气率,即使是常温发酵,容积产气率0.3(240m3)也没有达到。为了探其究竟,熊博士与业主进行了深入的交流。超声波沼气流量计BF-3000累计流量显示数据 由于发电机组噪音大,发电也不能上网,生产的沼气用途不大,因此实际发电没有正常进行,只是偶尔需要的时候发电。同时沼气发酵产生的沼液沼渣也需要处理,而附近没有可以完全消纳沼液沼渣的场所,因此厌氧发酵装置无法真正发挥作用。由于本项目位于一个大型的水库附近,粪污排放受到严格控制,为了彻底解决问题,业主将干清粪的粪便用于生产有机肥,清粪的粪水和尿液通过沉淀池后一部分进入发酵罐用于生产沼气,一部分通过自行设计的微曝气池再进入额外设计的好氧生化氧化池进行水处理,发酵罐产生的沼液沼渣也排入好氧生化氧化池进行污水处理后达标排放。微曝气池好氧生化池 由于大量废水进入厌氧发酵罐产生的沼气不被经常使用,更易溶于水的CO2被溶解(水洗沼气净化提纯就是利用这个原理),并随着大量低浓度的沼液一起排出,造成发酵罐中沼气CH4含量的不断升高。至此,沼气工程项目直接制取高浓度生物天然气的原因终于真相大白。通过持续脱除溶解在发酵液中的CO2,沼气中CH4含量持续升高,甚至达到接近天然气的水平。其实国外正在进行厌氧发酵沼气原位提纯的研究,通过改变厌氧发酵过程中CO2、H2等含量,脱除CO2或增加H2含量等都可以显著提高沼气中的CH4含量,达到直接制取生物天然气的目标。 通过本次调研我们也发现,限制我国大型养殖企业沼气工程发展的难点在于沼液沼渣的处理,沼液看似是一种有机肥,但是受有机肥覆盖面积、长期使用适应性以及需求季节性的影响,企业都很难妥善处理沼液的利用问题,沼渣以及基于干粪形成的有机肥倒是不存在销售出路问题。如果不能有效处理沼液问题,采用干湿分离,冲水粪尿采用污水处理工艺或许是一个更加正确的选择。 目前,大型畜禽粪便沼气工程或许需要一次整体系统性的技术提升,才能够从一个不健康的产业中走出来!(来源:微信公众号@沼气工程及其测控技术)
  • 新品上市 | 固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。国标中预处理技术存在的问题现行的《食品安全国家标准 食品中对羟基苯甲酸酯类的测定》(GB 5009.31-2016)中,针对气相色谱法检测的样品预处理技术主要是多次液液萃取+液液洗涤的技术,该方法操作繁琐、检测耗时长、有机溶剂消耗量大(其中包括消耗大量的易制毒化学试剂),且回收率较低、稳定性差,另外净化效果也不佳,往往存在着干扰检测的杂质成分。月旭科技针对固态发酵食醋这种复杂基质食品,开发出了固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理专用方法包,这个方法包所采用的双柱SPE法可实现高效、稳定可靠地从各种复杂基质的固态发酵食醋中提取、分离和净化4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、乙酯、丙酯和丁酯),大幅度减少对色谱柱及色谱管路污染、甚至堵塞情况,可以很好地保护色谱系统。提取液:从食醋样品中提取对羟基苯甲酸酯类;提取吸附剂:吸附食醋样品中的大颗粒杂质;萃取液:使对羟基苯甲酸酯类提取液中的杂质沉淀分离;萃取管:管中的吸附剂可吸附萃取时沉淀的杂质;净化专用SPE柱(双柱):吸附食醋中不同种类的色素;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来。主要操作流程1)食醋样品称量:准确称取5g食醋样品;2)分离提取:使用“提取液”和“提取吸附剂”,振荡分离提取;3)萃取:取试样提取上清液进行萃取,使用“萃取管”和“萃取液”,类似于QuEChERS的操作;4)净化:使用双柱串联的“净化专用SPE柱”,上样用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280 ℃;5)载气:氮气,纯度≥99.999 %,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 2022第九届生物发酵展“阳春三月,欢聚济南”发酵之约就等你来
    2022第九届生物发酵展三月让我们“齐聚济南”2022第九届生物发酵产品与技术装备展(济南)暨生物产业系列展于2022年3月30日-4月1日在山东国际会展中心(济南市日照路1号)盛大召开,BIO CHINA 2022打造全球生物发酵产业链,展会以“科技创新、智能制造”为主题,为生物技术产业智能制造提供一站式解决方案。生物发酵产业是山东重点发展的战略性新兴产业之一,为了更好地迎合行业发展,助力生物发酵相关企业把握市场机遇与挑战,本届展会将为生物发酵供应商提供线上线下国际性贸易洽谈空间,展示自身品牌的实力及经济效益,为生物技术产业创新发展助力,迎接生物产业蓝海。本次展会设六大特色展区:“生物发酵产品及原料”、“生物发酵技术装备”、“益生产品及发酵功能制品”、“生物工程装备与技术”、“生化仪器、实验室设备与耗材”、“生物医药先进技术装备”展会面积约20,000平方米,450余家行业企业参与,展会将共享超过36000名专业买家,为生物技术产业创新发展提供助力,为生物发酵产业与上下游产业搭建了一个技术交流、促进合作、扩大上下游贸易、提高品牌和企业知名度的平台。同期会议随着生物产业市场不断攀升,发酵装备作为生物技术产业生产过程中的重要环节,其市场规模持续扩大,技术工艺更是在不断升级,给发酵装备带来更多市场机遇的同时,也对装备性能有着更高的要求,为生物技术工程产业智能制造提供一站式解决方案。2022酶制剂创制新进展—洗涤酶开发应用交流论坛2022淀粉糖、多元醇技术与装备发展高峰论坛2022第六届国际发酵培养基应用与发展论坛2022第五届中国生物资源提取与应用创新论坛2022生物发酵产业节能环保科技创新论坛2022生物制药企业工艺开发与质量控制2022第三届发酵人社区先进技术论坛2022全国生物发酵行业重点项目推介会2022第六届生物发酵饲料技术创新与营养高峰论坛2022中国农业废弃物资源化发酵技术发展与应用研讨会BIO CHINA 2022(济南展)部分参展企业安琪酵母、法国乐斯福、百龙创园、溢多利、梅花集团、阜丰集团、龙力生物、保龄宝、西王集团、上海远安、新莱集团、江苏科海、上海本优、东方生工、上海保兴、保兴生物、巨能机械、汇森生物、威孚热能、金士顿、华东风机、楚天科技、蓝帕控制、南京磁谷、江苏苏青、鑫磊压缩机、东正科技、温州百级、宝帝流体、朝阳大力、中船绿洲、瑞登梅尔、济南上华科技、争光树脂、派莎克流体、青岛精锐、赛摩雄鹰、乐惠国际、科讯工业、鲍斯能源装备、安徽虎渡科达、上海数郜、深圳科姆森、本源环境、美泉环保、广东磁瑞磁悬浮、南口南机、方快锅炉、华青活性炭、长城搅拌、温州金鑫、苏州汉星、海申机电、天香苑、亿昇(天津)科技、天津鼎芯膜、奥米流体、德兰梅尔、三浦工业、苏尔寿、南京汇科、莱克勒、江北机械、一鸣过滤、颇尔公司等;VIP/买家群体生物制药、生物饲料、生化仪器、啤酒饮料、天然提取物、医药(抗生素、疫苗等)、生物制品、生物工程、发酵工程、细胞工程、蛋白质工程、生物技术、医药中间体、精细化工、生物农药、兽药、生物肥料、生物化工、微生物、食品添加剂、维生素、益生制品、科研机构、检测与服务机构等行业的研发技术部门、采购、公司负责人参观、参会!交通路线1.自驾车:请从济南西(G3 京台高速南向)出口下高速,导航至济南西部会展中心即可,约8公里。2.市内乘车:济南站步行至天桥南公交站乘 k7 路→张庄路二环西路公交站步行即可济南站步行至火车站公交站乘 k9 / k90 / k98 路→腊山立交桥公交站同站换乘→BRT7 路至二环西路日照路下车步行即可济南站 步行至火车站公交站乘 k156 路→经十路营市西街公交站同站换乘→BRT7 路至二环西路日照路下车步行即可济南站 步行至火车站公交站乘k83路→匡山小区公交站同站换乘→T17路至二环西路日照路下车步行即可3、高铁路线:济南西站距离山东国际会展中心3公里,打车 7 分钟。山东国际会展中心布局图参观预登记,好礼送不停,快来领取您的VIP专属礼品生物发酵展参观/参展联系2022济南生物发酵展 赵瑞 地 址:上海市九新公路2888号申新商务5楼E座手机:18217653398(同微信)QQ:1034855784邮箱:mailzhaorui@163.com
  • 生物发酵产业的进军方向
    我国拥有世界最大的发酵产业,生产了全球大部分的氨基酸、有机酸、抗生素和维他命等。近年来,我国的发酵产业也延伸到工业产品,包括能源、化工产品以及材料等。   由于发酵产业对能源、粮食和水的消耗巨大,该产业未来的发展方向应该向着原料到产品的高转化率、节能及节水的方向发展。对不同的产品,也应该设立不同的节能减排目标。   对于我国发酵产业的定位,除了应继续巩固发酵产品最大生产国地位之外,更应该向高端方向发展,实现部分代替石油,生产大宗材料、能源、化工产品等。   尽管,这个过程可能是漫长甚至是充满风险的。   合成生物学助力   我国发展发酵产业应该扩展到利用农业生物质,如纤维素、非粮淀粉、非粮脂肪酸等为原料,生产材料、能源、化工产品等,逐渐减少对石油的依赖。   要想发展生物发酵这一战略性新兴产业,就不得不在技术上作好储备。   目前,我国的发酵产业在硬件方面已经达到很高的水平,因此,解决节能减排的工作重点应该放在菌种的改良上。   合成生物学提出的方法,则是对现有生产菌种根本性的改造,包括代谢通路的重构、基因组的改造和全细胞的改造。   总的来说,发展发酵产业的目的就是要构建一个逐渐可以与化工过程相竞争的工业生物产业。   提高菌种效率是关键   如上所述,发酵产业需解决的关键科学问题是菌种的效率等。例如如何使微生物细胞更快地生长、如何实现跨种属染色体在一个细胞内共存、如何解除微生物总体调控等。(详见图表)   可以说,上述菌种的改造工作,事实上也是合成生物学正在研究的题目。其中,复合功能微生物的构建是重要方向。希望因此获得一个能快速生长、能进行多种基因整合、抗染菌、允许多个染色体在细胞中共存,从而获得多种性能,能生产多种产品的微生物制造平台菌株。   现阶段,菌种改造的工作更为急迫。近期和中期菌种改造研究的重要应用领域包括改造控制生长速度的微生物基因组,使微生物细胞更快地生长 限制细胞群体效应,使发酵能达到更高的密度等。   菌种改造研究的应用领域主要包括:   改造控制生长速度的微生物基因组,使微生物细胞更快地生长,利用快速生长的微生物菌株生产大宗化工产品,提高生物过程相对于化工过程的竞争性。   限制细胞群体效应,使发酵能达到更高的密度,提高生物产品单位时间和单位体积的生产效率。   实现跨种属染色体在一个细胞共存,使细胞具有多种功能(特别是利用纤维素快速生长获得目标产物)。   开发(发明)一种普适的构建最小基因组微生物底盘的技术,在此基础上整合获得功能性代谢路径,用于可控制造各种生物化工产品   大片段基因的获得和在染色体里的整合和表达技术的开发,解决复杂化合物的微生物发酵生产问题。   获得能使多个染色体在一个细胞中共存的机制,实现复合功能微生物的构建,特别是利用纤维素快速生长获得目标产物的复合功能微生物菌株。   实现低成本染色体的化学合成,可以低成本地合成优化的生物或化学产物合成途径来进行表达生产。   解除微生物总体调控的机制,最大程度地获得目标产物,如材料和能源等。   开发制动删除内显子的DNA删除技术,获得新的、快速生长的真核微生物。   总之,提高菌种的效率是提高我国发酵产业的关键。   开拓先进发酵工艺技术   此外,发酵工业具有高耗能、高耗水和不连续、易染菌的缺点,也导致发酵产业成本的增加,减少了其竞争性。   未来发酵产业应该向着无高温灭菌、低耗水和连续发酵方向发展,以最终达到节能减排的目的。   最近,我国在嗜盐发酵生产生物塑料聚羟基脂肪酸酯(PHA)方面,已经实现了至少两周的开放发酵,使PHA 成为有竞争性产业的步伐又向前迈进了一步。   未来,可以利用海水为介质、发掘嗜盐菌在高 pH值、高温和高盐浓度条件下的特点,建立一个能进行无高温灭菌、低耗水(利用海水)和连续发酵的、有竞争性的发酵产业。
  • 发酵工程:借菌种升级产业
    发酵工程是生物技术的重要组成部分,也是生物技术产业化的重要环节。现代发酵工程不仅包括菌体生产和代谢产物的发酵生产,还包括微生物机能的利用。其主要包括生产菌种的选育,发酵条件的优化与控制,反应器的设计及产物的分离、提取和精制等。   然而,能耗大却是发酵产业的致命弊端,因此,实现节能减排就成为该产业发展的重要目标。   清华大学生命科学学院教授陈国强告诉记者,由于我国的发酵产业在硬件方面已经达到很高的水平,因此,实现发酵产业节能减排目标的关键在于菌种的改造及提高菌种的效率。   例如,一个细胞要想具有多种功能,就需要实现跨种属染色体在一个细胞内共存 要想获得优化的发酵产品合成途径,就需要攻克低成本染色体的化学合成技术 要想解决复杂化合物的微生物发酵生产问题,就需要解决大片段基因的获得和在染色体里的整合与表达……   而菌种的改造工作,事实上也是合成生物学正在研究的题目。陈国强认为,合成生物学提出的方法将有利于对现有生产菌种的根本性改造。目前科学家们已经不局限于非常辛苦地进行基因剪接,而是开始构建遗传密码,以期利用合成的遗传因子构建新的生物体,因此,通过合成生物学改造菌种,有望推动生物发酵产业的不断升级。   目前,我国已经是全球第一的发酵产品生产国,陈国强表示,未来产业定位也应该向着更高端的方向发展。他认为,发酵产业应更加注重利用农业生物质为原料生产材料、能源、化工产品,替代部分石油资源 要向着无高温灭菌、低耗水和连续发酵的目标发展,以最终实现节能减排。
  • 知名猫粮质量风波持续发酵的背后:该如何保障宠物食品的安全?
    近日,办公室的小W同学一直处于焦虑状态,原因是她家毛孩子一直吃某品牌的猫粮。然而前段时间该品牌猫粮却在网上被爆出质量安全问题,且该事件一直持续发酵。这让她不禁对自家猫咪的吃食产生了选择焦虑。事实上,近期像小W这样对宠物食品产生选择焦虑的人不在少数。近年来,随着人们生活水平的不断提高,饲养宠物已经成为越来越多人生活的一部分。当今的宠物主人更是把他们视为家庭成员之一,也更加关注他们吃的好不好、健不健康。因此,宠物食品的安全问题受到越来越多人的关注。宠物食品指的是专门为宠物、小动物提供的食品,介于人类食品和传统畜禽饲料之间的高档动物食品,为宠物提供必需营养物质。据Frost & Sullivan数据显示,中国的宠物数量从2014年的1.896亿只增长到2019年的3.021亿只,预计到2024年将进一步增长到4.455亿只,2019年至2024年复合增长率约为8.1%。而根据亚洲宠物展联合狗民网发布的《2019年中国宠物行业白皮书》数据显示,目前我国宠物消费市场规模已经超过2000亿元。由此可见,随着饲养宠物数量以及居民购买力的提升,宠物食品行业已经成为千亿级蓝海市场。那么如此巨大的市场情况下,宠物食品的质量又如何呢?事实上,网购的宠物食品一直存在风险。网上经常有人反映自家猫因吃了购买的猫粮而导致腹泻、呕吐甚至瘫痪等,而这其中不乏很多知名品牌。此前,曾有狗粮专家将网上销售前列的狗粮送至检测机构质检,结果显示狗粮不少品牌均存在不同程度的质量问题。而2019年,上海市消费者权益保护委员会做的一次抽样检查中发现,抽检的48个品牌中有13个品牌存在问题:4个品牌被检出玉米赤霉烯酮含量超标,5个品牌被检出菌落总数超标,7个品牌被检出营养成分含量虚标,还有两个品牌涉嫌虚假宣传。可以看出,抽检出现的问题主要聚焦在毒素类和细菌等食品卫生污染以及营养成分方面。其中被检出的玉米赤霉烯酮就属于真菌毒素,一般存在于玉米、小麦、大米等谷物中。真菌毒素具有很高的毒性,对人和家畜能产生急性、慢性毒作用,甚至陈胜致癌、致畸等。若宠物食品被污染的话,不但会造成产品的口感,还会严重影响宠物的正常生长发育,甚至会导致宠物中毒。而细菌则是最常见的食品卫生污染,往往会引起宠物食品自身的腐败变质,从而影响宠物的健康。此外,宠物食品配方不合理也会造成严重后果,比如宠物会出现营养比例失调、糖尿病、肥胖症、犬营养性结石症等各种宠物营养代谢病。而使用劣质原料生产的宠物食品更是会让宠物出现腹泻、消化不良、呕吐等症状,长期食用还会出现慢性疾病甚至危及生命。这也不难理解为何小W会在猫粮选择上表现的如此焦虑。针对于这样的乱象,健全的监管制度和完善的标准体系显得尤为重要。早在2018年4月,国家农业农村部就发布过公告,出台了一系列宠物饲料管理规范,从营养搭配到生产销售等多个环节规范宠物食品市场。不过,国内宠物食品行业虽然有了相关文件,但规定的还不够详细,行业标准相较于欧美市场仍有一定的差距。因此,还需政府部门进一步规范宠物食品市场,保障小毛孩们“舌尖上的安全”,也让喜爱动物的小W们能够真正安心!
  • 舜宇恒平发酵尾气质谱分析仪在生产过程中的应用市场持续增长
    随着国内生物制药、食品等市场竞争的激烈,企业考虑不断地提高效益,减少消耗,以获得竞争优势。国内很多领先的生物制药、食品公司通过采用在线气体分析装置分析生物过程中生理代谢特征参数,优化发酵工艺,提升效价或产量。在许多气体分析装置中,质谱仪无疑是最佳选择,相比于传统的尾气分析仪,质谱分析仪具有快速、准确、稳定、通道多等优势。十年前,质谱仪作为高端精密的产品,只有国外的几家公司提供,并且价格非常昂贵,在生物行业应用寥寥无几。针对尾气质谱分析仪, 舜宇恒平做了很长时间的产品开发和市场开发,并于2009年推出国内首台商品化过程气体质谱仪,打破了国外过程质谱仪的垄断,2010年,舜宇恒平公司承担的 “国产四极杆质谱仪直接分析生物发酵尾气的方法研究”项目,顺利通过了上海市科委专家组的验收并得到高度的评价。自此,舜宇恒平的发酵尾气质谱仪逐步应用在生物制药行业发酵工艺过程中,并提供整体、专业的解决方案,而且得到了客户良好的反馈。近几年来,随着质谱仪在生物制药行业应用的普及及使用价值的充分体现,越来越多的客户从早期制药研发小试中试应用转向在发酵工业生产中采用质谱仪进行监控、分析,指导发酵过程的补料、供氧、代谢调控等,涉及的产品领域也很多,包括辅酶Q10,抗生素、酵母、酶制剂,阿维菌素等等,客户通过尾气质谱仪对发酵罐进行实时监测、精准控制,提升了产量,创造了经济效益。相比较在研发过程中的质谱应用,客户对工业生产过程中的质谱应用要求更高,除了要求仪器本身性能稳定、数据准确、维护简单,同时需要我们提供整体的解决方案,包括管路的设计、包括现场的软件对接等等。工业发酵过程中的尾气湿度大,并且含有泡沫颗粒等杂质,随着反应的进行,温度和压力也有较大的变动,这样的尾气直接进入质谱仪会造成仪器的损害并且测量误差也会很大,针对此情况,舜宇恒平结合大量的客户现场情况开发气体前处理系统,该系统目前已升级至三代产品。针对质谱仪数据与控制系统的通讯问题,我们也有完善的解决方案,我司质谱仪与工艺设备集散控制系统(DCS)之间通讯的方式是多样化的。既包括现代的数字传输方式(OPC、modbus等),也包括传统的模拟信号传输方式(4-20mA电流等)。目前已与市面上国内外绝大多数的主流DCS(PCS7、ifix、组态王等)实现通讯连接,能够非常方便地将气体分析数据与过程控制活动相结合。同时我们发现,在质谱仪应用过程中,光有仪器性能好是不够的,我们要把客户培训好,服务好,我们要让客户用好,真正的对生产起到一定的作用才是最主要的,为此我们建有专业的质谱技术团队,我们定期电话回访,我们快速反馈,及时服务,解决客户的疑难问题。 在线质谱仪是在线、快速、多组分气体成分高精度分析仪器,将在线质谱仪用于生物过程领域,实现不同类型生物过程尾气中O2、CO2、N2、H2、乙醇、CO、Ar等气体及其它可挥发分子组分的高精度、宽量程和长时间连续稳定测量,得到气体的种类(性质)和浓度变化等信息,并将数据输入软件或者DCS控制系统进行相关计算并实施连锁控制。 最后,在此也感谢所有客户对我们产品的信任和支持,感谢这么多年来各方合作伙伴的鼎力相助,我们将一如既往的提供优质的产品、良好的服务,为国产仪器的腾飞努力,为生物制药等行业的发展贡献一份绵薄之力。
  • 生物发酵产业迎来更大发展机遇
    中国发酵工业协会二十周年纪念活动、协会更名暨行业大会在京举行   仪器信息网讯 2011年12月8日,“中国发酵工业协会二十周年纪念活动、协会更名暨行业大会”在北京友谊宾馆友谊宫聚英厅隆重举行。本次大会由中国生物发酵产业协会主办,500余位相关部门领导、行业专家、协会会员单位人士出席了此次盛会。 会议现场   首先,由中国生物发酵产业协会理事长石维忱先生致开幕词,并同与会人士一起回顾了20年来我国发酵工业以及中国发酵工业协会的发展情况与未来前景。 中国生物发酵产业协会理事长石维忱先生致辞   石维忱先生介绍到,经过20年的发展,我国发酵工业实现了持续高速发展,产量、产值由1990年的68.3万吨、42亿元,提高到2010年的1800万吨、2000亿元 发酵工业主要产品出口稳定增长,2010年出口总量达163.9万吨,出口总额达28亿美元;产品种类不断增多,由当初约30个品种增长为现在的上百种个品种。与此同时,以企业为主体的技术创新体系初步形成,研发投入逐年递增,行业技术装备水平不断提高,多项成果国际领先。   中国发酵工业协会经民政部于1990年1月批准成立,发展至今已下设8个分支机构,拥有近400家会员单位,涵盖了应用生物技术的发酵工业生产企业、科研院校、设计安装、设备制造及与发酵行业相关的众多企业单位。20年来,中国发酵工业协会积极与世界各地相关行业组织、商会、生产和经营企业以及科研机构等开展经常性的交流和合作,促进了信息和技术的交流,创造贸易机会,并最终促进发酵工业的发展。 国家相关部委及中国轻工业联合会领导出席会议并讲话   发改委、工信部、环保部、国资委、民政部、国标委、中国轻工业联合会等方面的有关领导在致辞中表示,中国发酵工业协会20年的努力工作与突出贡献有目共睹,中国发酵工业协会更名为中国生物发酵产业协会,顺应了国家产业政策、行业发展情况和行业发展业态等多方因素;最后,各位与会领导纷纷预祝大会能够取得圆满成功。 中国生物发酵产业协会常务副理事长兼秘书长杜军先生   对于此次更名的背景及其意义,杜军先生介绍到,中国发酵工业协会成立时,我国生物技术的应用尚处于培育和发展阶段,其生物技术的分类及称呼缺乏规范 同时,工厂生产方式简单,产品单一、加工单纯,因此,协会名称选择为“发酵工业”。   而今天,根据《国务院关于加强培育和发展战略性新兴产业的决定》,生物产业位居七大战略性新兴产业之一,生物产业重点发展领域则分为生物医药、生物农业、生物能源、生物制造和生物环保5大领域,其中生物发酵是生物制造产业的主要组成部分;此外,生物发酵已由原来的简单产品的“工业”,发展成实现资源综合利用、多种高附加值产品并存的“产业”,因此,为了更好的适应这一发展,民政部于2011年3月30日正式批准更名。 揭牌仪式   随后,由中国轻工业联合会、民政部、国资委等有关方面的领导亲自为更名后的“中国生物发酵产业协会”揭牌。 中国轻工业联合会会长步正发会长为潘蓓蕾教授、尤新教授颁奖   会上,中国生物发酵产业协会对多年来为行业发展做出杰出贡献的先进个人和企业进行了表彰。潘蓓蕾教授、尤新教授现任中国生物发酵产业协会名誉理事长,长期积极致力于中国生物发酵的产业管理和技术创新,为推动产业的发展作了大量卓有成效的工作,因此被授予 “中国生物发酵产业协会终身成就奖”。 与会领导为31家获奖企业颁奖   中国轻工业联合会、国家有关部委及协会的领导为获得“中国生物发酵产业协会行业突出贡献奖”的11家企业、以及获得“中国生物发酵产业协会科技创新奖”的20家企业颁发了奖杯和《荣誉证书》。 与会者合影留念   除上述活动外,大会围绕“和谐发展,共创未来”的主题,还举办了庆祝中国发酵工业协会二十周年文艺汇演及招待晚宴活动,与会者欢聚一堂,共庆协会20周年盛典。同时,还将于12月9日举办“中国生物发酵产业高峰论坛”,届时将邀请国家发改委、环保部、中国疾控中心、华东理工大学、浙江大学的有关领导和专家学者就国家产业政策、行业污染物减排、食品添加剂管理以及最新科研成果进行演讲和交流。
  • 岛津应用:利用LCMS-8060 监控微生物发酵过程中上清液组分变化
    近年来,生物技术工业发展迅速,发酵技术也有了很大的发展,并且已经进入能够人为控制和改造微生物,使这些微生物为人类生产产品的现代发酵工程阶段。现代发酵工程作为现代生物技术的一个重要组成部分,具有广阔的应用前景。例如,用基因工程的方法有目的地改造原有的菌种并且提高其产量;利用微生物发酵生产药品,如人的胰岛素、干扰素和生长激素等。但是由于微生物发酵过程,机理十分复杂,影响因素错综复杂,为了对发酵过程进行优化控制,保持微生物生长按照一定的生长轨迹生长,需要确保微生物生长的环境条件为最优。传统的方式是通过控制微生物生长环境参数如温度、pH 值、溶氧度等来实现的。但是由于缺乏量化的依据,传统的方式难以准确的对发酵过程中各成份的变化进行监控,所以在从实验室到中试,从中试到大规模生产过程中会出现许多问题,因此开发一种能准确的对发酵过程中各组分进行量化监控的方法是十分必要的。岛津公司推出的“细胞培养上清液方法包”即为发酵过程中各组分的量化监控提供了有效的手段。 本文利用细胞培养基上清液分析方法包及超高效液相色谱三重四极杆质谱联用仪LCMS-8060 这种新型的方式为传统的发酵过程的监控提供了一种新的思路,即量化的方式精准地对发酵的过程进行监控。由此可以为发酵工程从实验室到中试,从中试到大规模生产过程提供有效的量化参考,可大大提高发酵生产的效率,降低生产成本。岛津超高效液相色谱三重四极杆质谱联用仪LCMS-8060 了解详情,敬请点击《利用LCMS-8060 监控微生物发酵过程中上清液组分变化》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 展会回顾|曼森生物超高通量发酵平台在第九届国际生物发酵展圆满落幕!
    2022BIO CHINA 第九届国际生物发酵展曼森生物助力企业建设超高通量发酵平台2022年7月14-16日,中国(济南)第九届国际生物发酵产品与技术装备展览会开幕式在济南市山东国际会展中心圆满落幕。本次展会以“发挥引擎作用,实现高质量发展”为主题,由中国生物发酵产业协会主办,山东省生物发酵产业协会及中国国际贸易促进会济南分会协办,展会现场同时还设有玉米深加工产业展区、精酿啤酒展区、生物工程展区、生化仪器展区。本届生物发酵展展会面积约40,000平方米,800余家行业企业参与,展会共享超过45000名专业买家,为生物发酵产业及上下游企业搭建一个交流合作的平台,推动上下游行业融合发展,促进产业链供应链的稳定。 本次展会是全国生物发酵产业的核心技术、人才团队、新兴业态、优质项目聚集展示的大会。曼森生物携自主研发的“平行生物反应器”、“四通道平板分装仪”、“分液机器人”惊艳亮相此次发酵展,展示公司高端前沿技术产品,获得众多客商的关注,现场达成多家意向客户。曼森展位现场直击展会期间,曼森展位热闹非凡,参观者络绎不绝。有慕名而来的意向客户,也有不少参观者被曼森高科技吸引驻足。曼森生物董事长郝玉有博士、销售经理、技术人员不断地与现场客户交流沟通, 解答生物发酵相关的工艺放大技术和产品优势等多个问题。通过此次展会,曼森生物收获颇丰,在扩大了曼森生物的品牌影响力的同时,也拉近了与客户之间的距离,为公司日后发展和自身产品创新升级提供了思路。曼森生物将加大研发力度,保持产品质量的稳步提升。同时,曼森生物科研工作者们也将继续奋勇登攀,助力我国实现科技自立自强的新征程上阔步前行。
  • 江苏大学陈全胜团队: 通过HS-SPME-GC/MS结合代谢组学分析鉴定超声波辅助康普茶发酵过程中的挥发性物质及其代谢途径
    Introduction茶菌等传统微生物发酵饮料使用富含蔗糖的茶水作为原料,经酵母和细菌共发酵而成。红茶作为茶菌发酵的主要原料,也被称为康普茶,具有促进胃肠道消化、抑制肠道有害微生物生长、抗氧化特性、促进血管舒缩、辅助预防心脑血管疾病的功能。发酵是康普茶香气产生的关键工序,可以产生大量的醛、酸、酮和其他化合物。目前,红外、微波、超声波等物理加工技术已成功应用于食品发酵,与传统加工技术相比更能促进风味的形成。其中,超声波处理的茶叶非常稳定,通过物理作用增强参与香气合成基因的表达,使得茶叶形成不同香气化合物。近年来,顶空固相微萃取(HS-SPME)样品前处理方法因其对样品需求量小、不需要有机溶剂、操作简单、灵敏度高、重现性好等特点,已成功应用于各种茶叶香气物质的提取。超声提取技术具有速度快、成本低、操作简单、环保、效率高等优点,是增强茶叶香气释放的一种特殊方式。因此,HS-SPME结合超声波技术可能适用于茶叶发酵过程的分析。代谢组学可以同时实现所有代谢物的全面定性和定量分析。现阶段,基于HS-SPME结合气相色谱-质谱(GC/MS)技术的组学方法已广泛应用于挥发性化合物的代谢组学分析。然而,结合HS-SPME-GC/MS与代谢组学方法,用于康普茶代谢产物变化与代谢途径之间的关系的研究鲜有报道。本文改进了康普茶的发酵工艺,并通过单因素和响应面分析进行优化。采用HS-SPME-GC/MS技术对康普茶发酵过程进行代谢组学分析,探究其代谢产物变化,并进一步分析代谢途径及其对挥发性化合物性质的影响(图1)。图1. 基于HS-SPME-GC/MS的代谢组学结合多元分析研究康普茶发酵过程中的特征挥发性物质和代谢途径。Results and Discussion发酵条件的确定不同超声频率下发酵液中总糖和茶多酚的消耗率如图2A和2B所示。结果表明,超声处理和非超声处理的样品其总糖和茶多酚的消耗率存在显著差异。优选发酵时间为3 d。根据采样时间记录发酵周期为S0~S7,其中发酵初期阶段记录为S0。此外,优选23 kHz的超声波频率为后续实验的最佳频率(图2C),优选pH 3.2为后续发酵的最佳条件(图2D),优选30 °C为最佳温度(图2E)。以发酵后总糖和酚的消耗率为响应值,进行Box-Behnken分析,建立高度拟合的茶提取物发酵条件的三元回归模型。图2. 探究超声处理对(A)茶多酚消耗率、(B)糖消耗率的影响,(C)五种超声频率对茶多酚和糖消耗率的影响,(D)五种pH值对茶多酚和糖消耗率的影响,(E)五种温度对茶多酚和糖消耗率的影响。采用扫描电子显微镜(SEM)表征23 kHz处理组和对照组茶菌的形态。结果表明,对照组表面光滑圆润,而超声后的细胞表面存在凹痕和皱纹(图3)。这可能与20~40 kHz频率下的急性气穴现象有关。超声波处理可以提高微生物中相关酶的活性,从而提高发酵效率。图3. SEM表征超声对茶菌形态的影响,(A和B)超声处理组,(C和D)对照组。代谢组组成分析GC-MS-TQ8040具有高通量和智能操作特性,配备高亮度离子源和高效碰撞池,可用于超灵敏分析。保留时间、已鉴定化合物列表、缩写、CAS号和分子式如表1所示。 表1. 基于HS-SPME-GC/MS鉴定康普茶发酵过程中的代谢物。132种气味活性化合物被分为10组(32种醇类、13种酮类、16种烯烃、18种酯类、14种烷烃、11种芳烃、9种酸类、7种醚类、4种氮挥发性化合物和1种硫化物)。康普茶发酵过程中挥发物的代谢谱表明,鉴定的化合物分离良好。采用单因素方差分析和Tukey图基事后检验法验证上述132种挥发性化合物在发酵过程中具有显著性。132种高贡献挥发物的方差分析统计如表2所示。表2. 康普茶发酵过程中挥发性成分的相对峰面积变化及其与发酵时间的相关性。标志性挥发性物质的分析采用主成分分析(PCA)将发酵样品分为不同类群,结果表明,发酵和未发酵的茶叶具有不同的挥发性物质成分(图4A)。发酵过程中茶叶的挥发性物质经历周期性的变化。进一步采用PCA的载荷图解释S0~S7代谢物变化差异的具体成分,结果如图4B所示。2-甲基丁酸、D-柠檬烯和苯乙醇等香气化合物有助于康普茶的整体花香、酸甜和柠檬味,并且远离零点,对PC1和PC2有显著贡献,从而影响发酵液的气味特征。PLS-DA得分图显示出更好的模型拟合(组间差异更显著),PC1和PC2分别占比59.1%和7.6%(图4C)。如图4D所示,选择了25种挥发性化合物。苯乙醇增强了“花香”风味,改善了整体的感官香气质量,并增强了康普茶的“甜”香气特征。其难闻气味可能是由2-甲基丁酸引起。挥发性成分的鉴别结果表明,发酵工艺对康普茶挥发性成分具有显著影响。此外,这些挥发性化合物被认为是康普茶发酵过程中的主要特征香气成分。图4. (A)康普茶样品的多元统计分析和质谱数据集的PCA得分图,基于PCA模型的(B)康普茶样品中变量的载荷图、(C)PLS-DA得分图、(D)PLS-DA评选的前25种挥发性化合物。特征代谢物的鉴定结合载荷图和VIP得分进一步筛选特征代谢物。结果如图5所示,部分差异代谢物与康普茶发酵过程呈线性相关。叶醇、二十烷、水杨酸异辛酯、2-甲基丁酸、邻伞花烃、甲基三十烷基醚、苯乙醇和棕榈酸异丙酯的含量与红茶发酵时间呈正相关。其余化合物(甲氧基苯肟、芳樟醇、雪松醇、二氯乙酸、癸酯)与储存时间呈负相关。图5. 12种代谢物的箱形图表明发酵中存在显著差异。代谢途径分析本文介绍了特征挥发物的产生途径、形成机制以及它们之间的转化关系。康普茶发酵过程中发现的特征代谢物的代谢途径如图6所示。图6. 康普茶发酵过程中发现的特征代谢物的代谢途径。Conclusion本文采用单因素优化实验和响应面分析确定康普茶的最佳发酵条件为30 °C、pH 3.2、23 kHz。通过代谢组学技术监测超声辅助处理过程中挥发性物质的综合变化。总而言之,鉴定了由132种成分组成的综合代谢组学图谱,并成功进行多元统计分析,筛选VIP>1的25种特征代谢物作为生物标志物。此外,详细研究了代谢途径以及各种挥发性物质的转化。结果表明,发酵后期存在挥发性物质转化的代谢途径。综上所述,在康普茶发酵过程中可以通过优化工艺加快和改进反应过程。本文为红茶菌发酵代谢产物的变化及影响机制的研究提供了重要的理论价值。
  • 百天倒计时,2021第九届上海生物发酵展,邀您共赴8月发酵盛会
    我国经济迅速“回血”强势复苏。在中国制造创新升级,提升自身创新能力继续推进高水准对外开放,加快构建以国内大循环为主体、国内国际双循环相互促进的新发展格局的背景下,生物与医药行业创新发展的良好时机,而生物发酵作为医药、生物制药、生物工程、细胞工程、实验室装备行业不可或缺的组成部分,势必也将迎来巨大的发展机遇。而立于生物制药行业发展的“风口”,2021第九届上海生物发酵展的召开,将为生物产业创新发展掀起一轮新的高潮。2021年8月25-27日,由中国生物发酵产业协会主办,上海信世展览服务有限公司承办的2021第九届上海生物发酵产品与技术装备展览会(以下简称“上海生物发酵展”)将在上海新国际博览中心召开,届时将有众多有识之士共聚一堂, 加速创新转型中的新机遇,为生物发酵产业链链的融合发展担当“加速器”,注入源源不断的新动力,共同挖掘新时代变革中的新商机。作为生物发酵产业一年一度的行业盛会,BIO CHINA 展位即将售罄,已有来自中国、德国、法国、意大利、瑞典、丹麦、日本、台湾地区等国内外800多家展商确定参展,包括本乐斯福发酵营养元、安琪酵母、百龙创园、杜邦工业、华康药业、本优机械、东方生工、上海沃迪、上海保兴、常州三高、上海百仑、诺华赛、上海远安、江苏科海、巨能机械、宜兴华鼎、南京日新、东正科技、重庆江北、奥米流体、赛德齐瑞、东富龙、西安蓝晓、迦南比逊、上海佳力士机械、河北金士顿、山东华东风机、鑫磊压缩机、等企业积极参展,纷纷扩大了展位面积,并表示将BIO CHIAN 2021作为其展示最新产品与技术的首选平台。2021年,是中国“十四五规划”的开局之年;站上这一新起点,创新不息,前进不止,你如约而至,我也踏步而来。展位即将售罄,再次诚挚邀请行业上下游企业参观、参展、参会,相聚2021上海生物发酵展,抓住黄金发展机遇,于变局中求新局,BIO CHINA 2021将继续以技术为主导,创新驱动行业发展新未来!参观预登记,福利送不停----18516018928汪成扫描下发二维码进行登记或登录www.biozl.net点击参观注册,凭登记成功二维码现场换取礼品券一张或会刊一本(电子版)。只限2021年7月10日前登记有效。
  • 新品上线丨发酵特性分析仪
    发酵特性分析仪品牌:日本 型号:AF-1101系列 发酵特性分析仪是一种通过自动持续测量并记录各种样品在微生物发酵过程中产生的气体总量和产气速度的变化曲线,来有效地评估酵母等微生物的发酵能力、培养基(面团、啤酒等)发酵特性及样品的发酵条件等,也可以长时间监测面包面团、酒类酿造、生物乙醇相关的发酵过程以及BP(发酵粉=化学膨胀剂)等工艺过程。 本设备雏形研发于1980年,后期不断进行更新优化,并获得2001年度日本科学技术促进功勋者奖(文部科学大臣奖)。目前已更新到第四代产品,广泛应用于样品发酵特性评估、发酵菌株培育和筛选、面包制作和酒类酿造的质量控制、培养基组成和发酵条件评估等。 测量原理 样品发酵过程中产生气体,气体通过气液置换水柱压力计,推动压力计中的水柱的变化,再通过压力传感器检测到的压力和装置内部温度传感器检测到的温度计算产生气体的体积总量及产气速率。 优势特点 1.多样品测量:最多可测20个样品; 2.每个样品瓶可以单独控制,单独测量,数据曲线单独记录,各样品瓶间检测相互不影响; 3.测量总气体发生量、气体发生速度、面包面团内藏气体量等,气体发生量可以切换体积(mL)及重量(g)表示; 4.固定时间间隔,长时间检测:时间间隔5-120s可设(5s为单位)、5-120min可设(5min为单位)。秒间隔:最长23小时59分;分间隔:最长可达90天; 应用领域 微生物方面——菌株的育种、烘焙制品、酒类酿造、酱油、食品fu败、工业酒精以及甲烷氢气等领域,如小麦粉品质评价、酿造品质控制、微生物菌株筛选等。 化学方面——食品膨胀剂、发泡剂、洗涤剂、入浴剂以及医药品等领域,如膨化剂、发泡剂等的新品开发和质量管控等。 案例分析 从图1和2中看出,通常测量(奇数通道)CO2吸收测定(偶数通道)中的气体排放量相同,但是从图3以后,面团发酵膨胀,因为内部的二氧化碳气体释放出来两者有差别。
  • 2024年上海生物发酵展参观攻略全知道!!!
    2024年上海生物发酵展参观攻略全知道!!!2024上海生物发酵系列展将于8月7-9日在上海新国际博览中心隆重召开,40000平方米展示面积,800余家参展企业,30多场高质量论坛活动,同期举办“合成生物与绿色制造展”、“生物化工展”、“生物医药与技术设备展”、“生物工程与生化仪器、实验室设备展”、“酵素展”、“益生产品展”,多展联动。展品覆盖、生物工程、发酵工程、细胞工程、蛋白工程、医药、生物医药(抗生素、疫苗等)、生物饲料、生物农药、生物肥料、生物化工、发酵产品(氨基酸及有机酸、淀粉及淀粉糖、酵母及衍生物、酶制剂、发酵功能制品)、食品饮料、酒等生产加工所需的各种新产品、新技术、新装备、新工艺,打造集“展示、商贸、学习、交流”为一体的全产业链,致力于生物技术产业智能制造一站式解决方案。展会信息展会时间:8月7日(星期三)09:00-17:008月8日(星期四)09:00-17:008月9日(星期五)09:00-15:00展会地点:展馆:上海新国际博览中心E7、E6、E5具体地址:上海市浦东新区花木路1750号,展馆7号门知名企业-全明星阵容上海生物发酵系列展是广受行业高度认可的行业盛宴,参展企业贯穿发酵行业全产业链,本届参展企业有安琪酵母、上海远安、乐斯福、本优机械、诺华赛、沃迪智能、浙江天联、金士顿、江苏佳能、丰泽生物、景亿环保、上海信品、江苏科海、德兰梅尔、无锡朗盼、上海萨震、康赛特、贝朗生物、尚鼎环境、东方生工、上海保兴、上海数郜、赛德齐瑞、汇川科技、西安蓝晓、齐力控股、天瑞重工、芬蓝环境、金鑫生化、钦丰科技、江苏华大、天俱时、南京磁谷、普朗膜、大明工业、江苏巨能等等,众多国内外知名品牌齐聚,展示全产业链最新产品、技术和设备。(展商具体目录参见参观指南或会刊)。行业论坛-聚焦前沿展会同期将举办30余场高质量论坛和活动,直击生物发酵科技大会、合成生物学、发酵培养基、生物医药、生物饲料、酶制剂、节能环保、海洋生物工程、食药物质、重点项目推介会等多个主题,分析市场热点、解读实践案例、前瞻产业趋势,打造行业交流分享的思想盛宴。2024年8月7日2024中国合成生物学与绿色生物制造创新发展论坛 会议时间:2024年8月7日 09:45-12:00 会议地点:上海新国际博览中心 E6馆现场1号会议室主办单位:中国生物发酵产业协会联合主办单位:上海合成生物学创新战略联盟上海市合成生物产业协会会议内容:9:45-10:00 开幕致辞于学军中国生物发酵产业协会理事10:00-10:30 院士报告邓子新 中国科学院院士10:30-11:00 院士报告 嘉宾待定11:00-11:30 合成生物学研发与产业发展:动态、效应与障碍滕堂伟院长 华东师范大学11:30-12:00 待定2024全国生物发酵产业节能环保与装备科技创新论坛会议时间:2024年8月7日 上午9:30-12:00会议地点:上海新国际博览中心E6馆2号现场会议室主办:中国生物发酵产业协会 北京工商大学承办:中国生物发酵产业协会装备与环保分会1、碳达峰碳中和与生物发酵发酵行业的发展2、陕鼓系统解决方案助力生物发酵行业绿色高质量发展3、发酵行业高浓度有机废水资源化和超低排放关键技术及应用4、生物发酵行业绿色智能制造技术5、生物发酵行业智能装备和控制系统6、成套低温干燥在发酵行业的应用7、…………2024上海医药化工创新技术发展论坛会议时间:2024年8月7日 会议地点:上海新国际博览中心E6馆M37二、组织方式1、主办单位: 灼识企业管理咨询(上海)有限公司 上海百日尧科技有限公司 国际生物发酵展组委会2、承办单位:上海百日尧科技有限公司 上海信世展览服务有限公司会议内容:09:30-10:00 化学和生物制药中的氧化还原反应张福利 教授 上海医药工业研究院10:00-10:20 面向生物医药制造过程强化的微流场反应技术开发何伟教授 南京工业大学10:20-10:40 磁悬浮空压机在发酵行业的高效应用与推广许孟龙 市场部总监 南京磁谷科技股份有限公司10:40-11:00 药用化学品绿色生物合成技术及应用邹树平 教授 浙江工业大学生物工程研究所11:00-11:20 膜分离技术在有机溶剂(含VOCs)安全低碳提纯和浓缩中的应用周志辉教授 武汉科技大学 武汉智宏思博环保科技有限公司11:20-11:40 生物发酵行业空压机使用6大痛点及萨震定制解决方案程红星总经理 萨震压缩机(上海)有限公司11:40-12:00 中国绿色生物制造行业的挑战与机会班文丽 咨询顾问 灼识企业管理咨询(上海)有限公司2024食药物质产业发展创新论坛(上海)一、组织机构指导单位:中国生物发酵产业协会主办单位:中国生物发酵产业协会食药物质专业委员会 中国生物发酵产业协会生物资源提取分会承办单位:浙江科技大学未名太研生物科技(绍兴)有限公司杭州环特生物科技股份有限公司上海众泽传媒有限公司支持企业:浙江大医德美生物科技有限公司杭州三摩羯品牌管理有限公司二、时间地点时间:2024年8月7日 10:00-16:30地点:上海新国际博览中心(E5馆2号现场会议室)会议内容:主持人:马涛 中国生物发酵产业协会食药物质专业委员会副秘书长 10:00-10:20 益生态中药的研究与应用谷瑞增-中国食品发酵工业研究院副院长/教授10:20-10:40 食药物质生物发酵加工新技术毛建卫-浙江科技大学教授10:40-11:00 本草糖库与功能糖产品应用解决方案王倬-中国科学院过程工程研究所副研究员11:00-11:20 赛美科-从产品卖点科学证据链到用户买点的美学呈现刘永利-环特生物总经理11:20-11:40 引领大健康产业快车道---食药物质发展现状与未来观察林峰-中国生物发酵产业协会食药物质专业委员会秘书长11:40-12:00 食药物质循证营养评价倡议活动启动仪式及沙龙交流破局增长2024大健康行业精准营销论坛暨大健康私域营销操盘手专题沙龙时间:2024年8月7日13:00-16:20地点:上海新国际博览中心E5馆现场2号会议室会议内容:主持人:郝为国 未名太研生物科技(绍兴)有限公司产品总监13:30-13:55 科技助力益生态中药 升级引领养生新国潮孙艺-大医德美健康研究院前沿科技创新中心主任13:55-14:20 食药物质新资源—(荒漠)肉苁蓉的功能简介及应用开发张天萌-华熙生物食品研发总监14:20-14:45 多维生物技术助力营养保健食品开发徐懿乔-环特生物大健康首席技术官14:45-15:10 大健康私域营销3.0时代 李军-久降堂品牌创始人15:10-15:35 大健康行业冲突营销方法论丁士安-叶茂中冲突商学院长/上海交通大学导师15:35-15:55 大健康私域营销团队业绩倍增实操策略徐守凯-上海赛鼎生物科技有限公司 培训总监15:55-16:20 新媒体环境下如何打造大健康行业超级营销力刘增军-上海众泽传媒有限公司联合创始人2024第三届生物发酵过程优化控制研究与应用论坛主办单位:中国生物发酵产业协会 华东理工大学承办单位:安琪酵母股份有限公司华东理工大学生物反应器工程国家重点实验室华东理工大学发酵工业分离提取技术研发中心会议时间:2023年8月7号 9:30-16:30会议地点:上海新国际博览中心E6馆二楼M36会议室会议内容:9:30-9:45 领导致辞9:45-10:15 染色体重构驱动马克斯克鲁维酵母重组蛋白高产进化吕红教授,复旦大学10:15-10:45 生物制造中的工业结晶技术 龚俊波教授 天津大学 10:45-11:15 多元化有机氮源开发与应用实践伍业旭博士,安琪酵母11:15-11:45 微生物多糖的生物合成、调控与应用韩培培教授 天津科技大学12:00-13:30 午休13:30-14:00 合成生物学技术赋能生物高分子的研究与应用李莎教授 南京工业大学14:00-14:30 倍半萜类植物天然产物的高效生物合成乔建军教授 天津大学14:30-15:00 分支链氨基酸及其衍生物的高效生物合成张成林教授,天津科技大学15:00-15:30 脂溶性天然产物的生物合成于洪巍教授,浙江大学化学工程与生物工程学院15:30-16:00 华东理工大学交流报告制药企业QC实验室合规与管理能力提升主办单位:蒲公英(苏州)医药服务平台 国际生物发酵展承办单位:苏州莱伯曼医药科技有限公司支持媒体:蒲公英支持单位:深圳长野一诺科技有限公司青岛富勒姆科技有限公司会议地点:会议地点:上海市新国际博览中心E7馆现场会议室会议时间:2024年8月7日 会议内容: 09:30-11:30 一、合规管理与提升。1. QC实验室管理元素,2. B证和C证企业的实验室管理差异,3. 管理、合规提升点和常见缺陷11:30-12:00 二、稳定性试验的中外法规要求13:30-14:30 三、分析方法验证一、分析方法学验证的概念法规要求与基础概念统计与计算验证方案与报告的撰写技巧验证启动的前置条件二、生物制品分析方法验证的应用实例理化方法学验证纯度方法学验证生物学活性方法学验证三、验证的广义理解与应用分析方法变更的验证分析方法转移的验证分析方法生命周期内的确认14:30-15:30 四、实验室合规及相关案例分析1、实验室数据完整性及相关案例分析2、QC实验室合规关注点①实验室人员、培训审计要点;②样品接收、分发、留样、稳定性考察审计要点;③设施、设备、计算机系统审计要点④物料、试剂、标准物质审计要点⑤文件、记录审计要点⑥OOS审计要点⑦委托检验审计要点⑧微生物实验室审计要点15:30-17:00 五、常见QC计算机化系统合规评估和合规保障1、访问控制:用户名的唯一性保障、合适的密码长度和复杂程度、密码有效期2、用户权限分配 避免利益冲突角色产生3、系统时钟控制:时钟锁定和时间同步4、自动同步记录5、检验结果对检验方法参数的追溯性6、对输入数据的准确性检查7、对记录更改的发现8、对输出型记录的保护9、审计追踪要素的齐全10、创建真实完整的记录复本11、电子签名的体现形式12、备份数据的完整性等2024上海干燥技术设备产业应用论坛会议时间:2024年8月7日 13:30-16:00会议地点:上海新国际博览中心E7M38主办单位:常州市天宁区干燥设备行业协会江苏康士捷机械设备有限公司国际生物发酵展组委会上海信世展览服务有限公司协办单位:中国通用机械工业协会干燥设备分会会议内容:13:30-14:55 10-15:35 待定15:35-16
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制