当前位置: 仪器信息网 > 行业主题 > >

二甘醇掺杂

仪器信息网二甘醇掺杂专题为您整合二甘醇掺杂相关的最新文章,在二甘醇掺杂专题,您不仅可以免费浏览二甘醇掺杂的资讯, 同时您还可以浏览二甘醇掺杂的相关资料、解决方案,参与社区二甘醇掺杂话题讨论。

二甘醇掺杂相关的资讯

  • 国内首套千万方三甘醇脱水装置性能考核达标
    2月22日至2月27日,国内首套千万方三甘醇脱水装置——西南油气田公司相国寺储气库千万方三甘醇脱水装置分别以1000万立方米和1200万立方米日处理量运行72小时,各项运行指标达到设计要求,顺利通过性能考核。这套千万方三甘醇撬装脱水装置,是相国寺储气库扩压增量工程的关键设备。去年11月底,装置顺利投运,相国寺储气库日最大冲峰能力由原来的2800万立方米提升至3800万立方米,调峰能力再创新高。为保障装置考核期间安全平稳运行,自千万方三甘醇脱水装置投产以来,西南油气田公司与设计、施工、调试单位及设备厂家高效合作,开展设备调试,确保设备处于最佳状态。同时,组织相关技术人才开展技术研讨,结合装置特点和储气库生产运行条件,制定《相国寺集注站千万方脱水装置性能考核方案》,进一步明确考核内容和要求,并开展培训,确保相关人员熟悉掌握操作流程和考核参数要点,顺利推进考核工作。落实专人专岗负责全过程,完善人员组织、应急物资准备,切实加大巡检力度,细化巡检要求,明确吸收塔压差、闪蒸罐液位等关键点,密切监控各压力容器的压差、液位变化情况,全力保障设备运行安全平稳。严格检测考核指标,每日对干气水露点、贫富液浓度进行两次对比,确保产品气质量达标、装置溶液系统稳定。同时,按照装置性能考核方案要求,跟踪装置考核运行全过程,及时分析讨论异常数据,优化运行工况,针对循环泵发生喘振问题,立即联系相关单位整改,全力确保性能考核工作稳步推进。下步,西南油气田公司将在此次装置性能考核基础上总结经验,形成性能考核报告,为三甘醇优化运行和检修提供支撑。同时,进一步加强重点设备安全生产管理,全面落实设备全生命周期管理要求,做好后续技术改造,为三甘醇脱水装置高效、平稳、安全运行奠定坚实基础。
  • Hf 掺杂BiSbTe3 结构与热电性能研究
    Rietveld 分析的可靠性因子Rwp 在3% -5% 之间, 而且GOF 因子也在2 左右,这说明Rietveld 精修的 结果是可靠的.Rietveld 分析的可靠性因子Rwp 在3% -5% 之间, 而且GOF 因子也在2 左右,这说明Rietveld 精修的 结果是可靠的.2.2 电学性能 样品的Seebeck 系数(&alpha ) 测量结果如图2 ,从 图中可以看出,所有样品的Seebeck 系数均为负值, 具有电子导电的特征,这说明样品为n 型半导体. Hf 掺杂后,其绝对值有明显增加,特别是在300 -Hf 掺杂BiSbTe3 结构与热电性能研究 刘福生,敖伟琴,罗锐敏,冯学文,张文华,李均钦 (深圳大学材料学院,深圳市特种功能材料重点实验室,深圳518060) 摘要:以高纯町、Bi 、Sb 和Te 为原料,在1000ce 下,经10 h 氧气保护熔融状态下反应,冷却球磨 制粉,再在氮气保护下进行热压(450ce , 20 MPa) ,成功制备出一系列不同Hf 掺杂量的Hf2x ( Bi ,Sb) 2 -2xTe3 化合物.X 射线粉末衍射Rietveld 分析说明, Hf 在结构中占据6c 品位,以替代(Bi , Sb) 的形式进入品格. Hf 掺杂引起BiSbTe3 的Seebeck 系数增大,电导率降低.功率因子在375 K 时达最大值526&mu W/mK2 &bull 关键词:热电性能 给 Bi2Te3 Seebeck 系数 功率因子 中图分类号: TB 39 文献标识码:A Bi2Te 3 及其固溶体合金是研究最早,也是目前发展最为成熟的热电材料之一. 目前使用的大多数热电制冷元件均采用这类材料.研究表明Bi 2 Te 3 能分别与Bi2 Se 3 和Sb2 Te3 在整个组分范围内形成连 续固溶体,通过这种方式能使材料的热电优值得到明显提高[1J 另一种提高Bi2 Te 3 基热电性能的方式是对Bi 位原子进行掺杂,以提高声子散射,降低热导率.已有学者分别对Sn[2 J 、Pb[3 J 、Ga[4 J 和CU[5 J 等掺杂的Bi2 Te3 基化合物的性能与微结构进行研究,其热电性能有不同程度的提高. Hf 是稀土元素后的第一个元素,也是一种非常重要的热电元素,其原子量大,且其原子、离子及共价半径比稀土元素小,有利于掺杂提高声子散射,对Hf 掺杂 的Bil凶b3 结构与性能进行研究有重要意义. 1 实验方法 采用纯度为99.99 £ 3毛给( Hf) 、锦(Sb) 、铭( Bi) 及纯度为99.999 £ 3毛的暗(Te) 为原料,按Hi&mu Bi ,Sb ) 2 -2xTe3 (x =0 -- o. 05 )化学计算比进行称量,每个试样重6 g. 将配备好的试样装入石英 管并抽真空(真空度低于6 X 10 -3 Pa) 后,充入高纯氧气(约0.2 MPa) 封管,然后置入装有Si02 粉末的增塌中,得石英管竖立,置于箱式高温炉中,在1000ce下,经10 h 氧气保护熔融状态下反应,再经96 h 缓慢冷却至室温.理后的样品再经过球磨,热压烧结(450ce , 20 MPa). 样品结构分析采用Br此er - Axs D8 Advance 18kW 转靶X 线粉末衍射仪(CuK&alpha ) 进行.样品的Seebeck 系数与电导率的测量在ZEM -2 型热电性能测试仪上进行. 2 结果与讨论 2.1 X 射线粉未衍射分析 热压后样品的X 射线粉末衍射(XRD) 图谱 如图1 所示.从图中可以看出,不同掺杂量的样品 具有相同的衍射峰分布,为Bi2 Te3 型(空间群:R-3m) 结构的单相样品,未发现与Hf 有关的杂相 衍射峰,说明Hf 成功地掺入了BiSbTe 3 的结构中. 对样品的衍射图谱Rietveld 精修结果如表1 所示. Bi2 Te 3 基化合物晶体结构沿C 轴方向看,可视 为六方层状结构,同一层上具有相同的原子,按六方排列,各层按:&hellip Tel - Bi - Te2 - Bi - Tel · · · Tel - Bi - Te2 - Bi - Tel ...顺序排列,二个邻近的Tel原子层间以范德华力结合,层间距约为0.25 nm ,上下二层各3 个Tel 原子形成空的八面体空隙,可 为填充掺杂提供条件.其他层之间以共价键结合[6 J &bull Bi原子填充在由Tel 和Te2 二层原子组成的 八面体空隙中.根据该结构特征,掺杂原子在结构中的占位有两种方式:一是占据Tel 原子组成的八 面体空隙(3b 晶位) ,二是替代Bi 原子的位置(6c 晶位) .一般倾向于认为两种位置均可占有. 根据精修的晶体结构结果,若Hf 填充在3b 晶位,其与Tel 原子的间距约为0.284 nm , Hf 与Te 的原 子半径分别为0.216 nm 与0.146 nm ,且该位置的结合力为范德华力, Hf 在该位置的填充必将使晶体 结构发生明显畸变,随着Hf 掺杂量的增加, Hf2x( Bi ,Sb) 2 -2x Te3 的晶胞参数将会产生明显且急剧的 增加.但Rietveld 精修结果表明,晶胞参数随Hf 掺杂量的增加仅产生微小变化.由于Hf 与Bi、饨的 共价半径差别较小,本文认为Hf 在结构中主要替代(Bi , Sb) ,对晶胞参数的影响较小. 2.2 电学性能 样品的Seebeck 系数(&alpha ) 测量结果如图2 ,从图中可以看出,所有样品的Seebeck 系数均为负值, 具有电子导电的特征,这说明样品为n 型半导体.Hf 掺杂后,其绝对值有明显增加,特别是在300 -Rietveld 分析的可靠性因子Rwp 在3% -5% 之间,而且GOF 因子也在2 左右,这说明Rietveld 精修的结果是可靠的. 500 K 间, Seebeck 系数随温度的升高先升后降,这种变化关系与Bi2 Te3 基合金的常规变化规律一致: 在o -lOOce 范围内,随温度升高,载流子的浓度增加,但是载流子间的散射作用显著增强,并起主导 作用, &alpha 出现增大趋势 在温度大于100ce 后,进入本征激发范围,载流子浓度迅速增加,引起Seebeck 系数急剧降低.对于(Bi , Sb ) 2 Te 3 单晶,由于Te 的少量挥发,引起结构中Bi 或者Sb 占据Te 的 空位[6] ,产生空穴,因此( Bi ,Sb ) 2 Te3 单晶表现为P型半导体.对于热压合成的( Bi , Sb ) 2 Te3 多晶体, 由于在熔融制备及球磨及热压过程中的表面氧化,氧的溶入会在结构中产生施主能级[叫 而且在球 磨的形变作用下,将会产生更多的Te 空穴, Te 空穴也起施主的作用[8] ,因此热压制备的(Bi , Sb) 2 Te 3 多晶体比( Bi ,Sb ) 2 Te3 单晶有高浓度的施主,从而呈现n 型半导体的特征. Hf 是一种变价元素,可以为+2 、+3 及+4 价,在( Bi , Sb ) 2Te 3 中Hf 可能以低价形式存在,产生空穴,降低了电子浓度.可能由于氧及Te 空位浓度差异的共同影响,不同的掺杂量间不呈现规律性.电导率(&sigma ) 的测量结果如图3 所示,电导率的 变化规律与Seebeck 系数正好相反, Hf 掺杂降低了样品的电导率,电导率随着温度的升高而增加.这 也体现了电导率与Seebeck 系数之间的本质联系. 2.3功率因子 功率因子用&alpha 2&sigma ( 功率因子)衡量热电性能,其计算结果如图4. 结果表明, Hf2x ( Bi , Sb ) 2 -2x Te3 的功率因子在375 K 时有一个最大值,当x = 0.02 时,为526&mu W/mK2 ,是未掺杂BiSbTe3 功率因子(为316 &mu W/mK 2 ) 的1.66 倍.该数值略低于赵新兵等[9J 采用溶剂热方法制备的纳米Bi 2 Te 3 的功率因子(为620&mu W/mK 2 , 393 K).采用气氛熔炼加热压的方法,成功制备出纯相Hf认Bi , Sb) 2 -2x Te3 热电材料. Hf 在结构中占据6c晶位,即以替代(Bi , Sb) 的形式进入晶格.由于表面氧化及球磨效应的共同作用,Hf 掺杂的BiSbTe3为n 型半导体, Hf 掺杂引起BiSbTe3 的Seebeck系数增大,电导率略有降低.功率因子在375K 时有一个最大值为526&mu W/mK2 &bull
  • PerkinElmer推出首个奶粉中未知掺杂成分筛查仪器
    PerkinElmer今日推出了DairyGuard&trade 奶粉分析仪,它是一台专门为食品供应商和生产商所开发的近红外(NIR)光谱仪。DairyGuard是目前可用于检测未知掺杂成分和已知化合物(如蛋白质 、水分和脂肪含量)的唯一系统。DairyGuard结合更快的制备和采样时间,可获得实时结果,从供应链风险直至奶粉的安全和质量整个过程提供高度保护。   随着供应链复杂性及潜在次品收回可能性的增加,食品生产商需要一套现成解决方案,可准确且经济地筛查出奶粉中已知和未知污染物。DairyGuard分析仪所预先设定的奶粉具体分析谱数学模型类似于&ldquo 指纹&rdquo ,无需进行前期仪器配置。DairyGuard在不足1分钟的时间内即可准确地判断出某一批次产品是否可安全地用于后续生产,或是否仍需要进一步的分析。   PerkinElmer食品总监Sharon Palmer指出:&ldquo 许多机构已确认奶粉成分具有掺杂高风险性,因而所有食品生产商亟需采用一套可靠的筛查方法。为了避免食品安全问题,如2008年的三聚氰胺事件,食品生产商必须进行筛查,不仅要筛查已知污染物(如农药和药物残留成分),而且还要筛查可能会成为不安全替代成分的未知污染物。DairyGuard将使食品供应商对其产品成分更具信心,而且,它还有助于确保为消费者提供安全最终产品。&rdquo   Flora研究实验室主任James Neal-Kababick说:&ldquo 红外技术已成为我们工作中的一项重要工具,用以检测营养保健品中隐秘且低成本的掺杂成分。就我们所采用的诸多方法而言,红外分析速度是任何其他方法所无法比拟的,而且,在我们的植物取证工作中,特别是在可用样品极为有限的情况下,其进行非破坏性测试的能力至关重要。我认为,在实验室中配备红外系统就像天平一样,是基础工具。我很难想象实验室没有红外系统。PerkinElmer技术,如DairyGuard中的红外系统,帮助我们解决了所遇到的一些最复杂的食品及营养品污染实例。&rdquo   为食品杂货制造商协会(Grocery Manufacturers Association, GMA)进行的2010 A.T. Kearney研究表明,一件掺假事件的花费平均占到公司年收入的2%-5%。在人力及技术方面进行投资以确保简化筛查方法,这可使加工商和生产商避免污染物对客户及公司声誉所构成的威胁。
  • 蜂蜜造假花样百出:掺杂糖分 捏造蜜种
    “冠有阁”的6种蜂蜜因“果糖和葡萄糖”含量不足而被要求下架停售,我国香港消委会从55款蜂蜜样本中检出14款掺糖蜂蜜……近日曝光的蜂蜜掺假问题再度引发业界关注。记者在采访中进一步发现,由于蜂蜜市场供不应求,消费者鉴别能力低,以及市场存在监管空白等原因,蜂蜜掺假已经成为屡禁不止的老问题。勾兑蜂蜜、捏造蜜种,勾兑蜜充当“土蜂蜜”等乱象混迹于市场。而今,随着天气恶劣导致蜂蜜严重减产,原料价格飙升,蜂蜜造假的问题或将更加突出。   现象:蜂蜜掺假接连曝光   日前,北京市食品办责令11种不合格食品全市下架停售。其中6种是“冠有阁”蜂蜜,不合格原因是“果糖和葡萄糖”含量不足,也就是喝起来很甜,却没有蜂蜜特有的香醇味儿。   按照规定,蜂蜜中的果糖和葡萄糖含量应≥60%,但这6种不合格产品实测值最高35.6%,最低只有25.4%。对此专家表示,“果糖和葡萄糖”指标虽然不涉及食品安全,但却是蜂蜜的重要质量指标。果糖和葡萄糖含量过低,表明产品可能掺入了其他糖类物质,也会造成蜂蜜产品口感和营养价值的降低。   事实上,蜂蜜掺假现象长期存在,每年都有质量抽查曝光相关问题产品。日前,中国香港消委会的一项蜂蜜检测发现:55款蜂蜜样本中有14款掺杂了糖分。被检出掺杂糖分的产品中有12款竟然还声称是天然或纯正蜂蜜,当中7款甚至声称100%天然或100%纯正。   上个月,还有报道称,“市场上的蜂蜜六七成是假货”。不仅农贸市场出售有假蜂蜜,在许多大型超市也会出现假蜂蜜的身影。假蜂蜜多为糖浆勾兑而成。   趋势:今年减产严重或现更多假货   被曝光出来的蜂蜜问题已经如此之多,而今后,或许有更多蜂蜜质量问题被曝光。全国蜂产龙头企业广州宝生园公司相关负责人对记者透露,由于近年的气候不稳定,“靠天吃饭”的蜂蜜也出现了连连失收的情况。“今年一反常态的持续雨季对荔枝产量造成了严重影响,广东从化荔枝大幅减产,从化钱岗糯米糍减产近90%,几近绝收。果树歉收也严重影响了蜂农,而作为夏日主要保健饮品的荔枝蜂蜜和龙眼蜂蜜产量大幅减少,导致终端出现产品抢购热潮及零售价上涨等一连串的市场反应。今年北方大面积的洪涝灾害,更促成了蜂蜜产品价格的新一轮上涨。”   数据显示,今年蜂产品原料价格上浮不少。升幅最高的是冬蜜原料,比去年上浮幅度达到40%。荔枝蜜比去年上浮幅度达到25%。今年孕育花蕾期受冻,致使花期流蜜量不多,洋槐蜜比去年上浮幅度达到30%。   河南省养蜂业协会副会长何昕则分析,从目前情况看,今年蜂蜜产量比去年下降25%左右,这是今年蜂蜜收购价格一路上涨的主要因素。此外,蜂农老龄化严重,养蜂者逐年减少,也是造成蜂蜜价格走高的一个原因。在原料短缺加剧的背景下,蜂蜜消费却持续旺盛。中国养蜂历史悠久、养蜂数量众多、蜜源植物最丰富,紫云英、槐花、荆花、椴树、枣花、荔枝等植物都是较好的蜜源。据国家统计部门公布的数字,目前,中国养殖蜜蜂约850万群,全国每年的蜂蜜产量基本维持在约40万吨左右,占到全世界的四分之一,每年出口蜂蜜10万吨左右,主要出口到美国、欧洲、日本和韩国等。   供应与需求的此消彼长之间,巨大的供需缺口无疑会招来制假者觊觎,市面或出现更多假货。   成因:检测有难度 监管有空白   “利益的诱惑,是假蜂蜜出现的根本原因。而通过勾兑的假蜂蜜成本大概只是真蜂蜜的30%左右。”宝生园相关负责人称。 王长庚 摄   而蜂蜜造假屡禁不止,在业内人士看来,很大原因也是因为监管留下了空子。   据知情人士透露,目前对于蜂蜜的监管,暂时还无解,比如对于养蜂散户私自兜售假蜂蜜的行为,还没有明确的部门来管。其实工商部门以前对济南的蜂蜜市场都进行过检查,没有发现不合格产品。这是因为蜂蜜在流通环节的现行国家标准检测中,检测项目仅有几项,而在这几项检测项目,假蜂蜜的检测结果完全可以以假乱真。   而一家知名的内地蜂蜜企业负责人则表示,蜂蜜主要是由果糖和葡萄糖组成的。除此之外,内地的标准还允许有少量蔗糖,“国外一般强调无添加、无提取”。   根据蜂蜜的新国标《食品安全国家标准 蜂蜜GB14963-2011》的规定,蜂蜜只能是“蜜蜂采集植物的花蜜、分泌物或蜜露,与自身分泌物混合后,经充分酿造而成的天然甜物质”,其中,果糖和葡萄糖含量至少要达到60%,蔗糖含量不得超过10%。尽管量少,这一规定却无疑承认了加糖的合法性,形成了一种负面的效应。   ■乱象大揭秘   1.平的、贵的都可能有假   记者在某农产品商务平台上看到,山东槐花蜜和广西纯天然蜂蜜的批发价格为45元/kg,湖南衡阳的纯天然蜂蜜和贵州的有机蜂蜜批发价格为60元/kg,而广东江门的纯天然蜂蜜和山西临汾的原始森林土蜂蜜价格均为100元/kg。“加上运输费用、商品包装、中间渠道等,一瓶500克的纯蜂蜜到卖场销售,一般不太会低于30元。”一位业内人士表示。   “我在超市里看到一些便宜得根本不可能是真蜂蜜的产品,”一位蜂蜜产业资深从业者对记者说,“像那些20来块钱一罐的蜂蜜,我可以说,都已经低过了成本价,怎么可能是真的?”   据知情人透露,市场上假货确实不少,且同一品牌中也分真假,像三四十元一斤相对廉价的蜂蜜假货的可能性较多,五六十元一斤的蜂蜜品质相对就会好些。   上述负责人表示,大部分的消费者近年来消费更趋于理性,更加关注的是产品的质量,从价格引导型转向品质引导型消费,对优质优价接受度明显提高。   可是,不法分子也很快盯上高端蜂蜜,价格已不再是衡量蜂蜜真假的单一“硬指标”。前不久在香港被曝光的“麦芦卡”(新西兰独有的桃金娘科灌木)蜂蜜的身价就相当高昂。此前,在珠江新城的一家友谊商超,记者看到了至少3家新西兰公司生产的“麦芦卡”蜂蜜,售价最贵的一小瓶突破600元。据了解,这种蜂蜜在香港的售价约为每100克39.6港元至151.2港元不等,价格明显高于一般蜜种。   2.很多蜜种系捏造   另外,一些明目张胆的虚假宣传在市面欺骗消费者。一位不愿透露姓名的业内人士告诉记者,部分蜜种产量极少,根本不能支持网店和超市大量销售,市面上买到的多为假货 而有些蜜种压根就是不存在的,这些植物产花粉,但是不产蜂蜜,或者植物生长环境不在蜜蜂的采蜜活动范围 此外,还有一些蜜种事实上并不名贵,但经过稀奇古怪的产品名称包装,就摇身一变成为了高档货,其中不乏进口蜂蜜。   “选蜂蜜选常见的种类就行,比如百花蜜、洋槐蜜、荆条蜜、椴树蜜等等,枣花蜜容易有农药残留,最好别喝,别相信那些稀奇古怪的蜜种。每个人身体素质不一样,最好听下医生怎么说”,该业内人士提醒,很多消费者对蜂蜜生产的过程并不了解,造假者利用这种信息不对等,随便换个名称就把原本收购价很低的蜂蜜卖成个天价。因此,消费者买蜂蜜的时候要擦亮眼。   比如,金银花蜜,金银花的花冠又长又细,蜜蜂的嘴很短,很难深入到花蕊,只有在花倒挂时流出来的花蜜,蜜蜂才能采到 苹果花花蜜非常非常少,蜂蜜采的还喂不饱自己,蜂农很难收集到这类单品种蜂蜜 野菊花蜂蜜的产量极少,有时得天气极好的时候才采到,不可能稳定地供给商家 益母草是一种辅助蜜源,能形成蜜的量很少,不可能有纯的益母草蜜大量出售,市场上益母草蜜却因为标榜对女性健康有益很受追捧。   有些蜂蜜蜜种压根是不存在的,如桃花只有花粉,没有花蜜。天山雪莲蜂蜜也不可能成为现实中的产品,因为雪莲通常生长在高山雪峰之中,蜜蜂活动的温度要高于13℃左右,雪莲花和蜜蜂的采蜜活动压根就“不搭界”。此外,真正的玫瑰是没花有蜜的,只有一种叫野玫瑰的,这种花的花蜜也是极少的。“目前市场还流行一种叫雪莲脂蜜的,养蜂人都知道,其实就是一种俗称野豌豆的苕子的花蜜,品相还比紫云英蜜差点,换个名字就卖了个好价钱。”该业内人士称。   3.“土蜂蜜”未必真“土”   不少消费者还发现,通过网络渠道经常能购买到“土蜂蜜”,店家往往声称,“土蜂蜜”比普通蜂蜜营养价值更高、保健效果更好。   然而,专家指出,农家蜂蜜不等于“土蜂蜜”,将两者混淆等同是偷换概念的行为,“土蜂蜜”特指土蜂(即中华蜜蜂)产的蜜,而且因为中华蜜蜂的习性使然,擅长采集零散蜜源,很难产出单品种蜂蜜,往往以“百花蜜”居多 意大利蜂擅长出产单一花种的蜂蜜,市面上大部分的单一蜜种都是意蜂生产的,像槐花蜜、荆条蜜、荔枝蜜、龙眼蜜等等。蜂王浆和蜂胶也多是这种蜜蜂生产。凡是单品种蜂蜜还声称是“土蜂蜜”的,多半是用意大利蜂产的蜜来冒充“土蜂蜜”。   那么农家蜂蜜能不能买呢?“前段时间跟朋友去农村玩,看到国道边上有蜂农摆了几个蜂箱,在卖蜂蜜,说是农家土蜂蜜,绝对纯正新鲜,价格还不便宜”,广州市民周小姐说,出于好奇尝了一下蜂蜜,“看到有结晶,口感也还行,不过我的朋友提醒,怎么蜂箱里一个蜜蜂都没有呢”,她说,卖蜂蜜的蜂农解释,蜜蜂采蜜去了,所以蜂箱是空的,因为有所怀疑,周小姐最终也没有买蜂蜜。   对此,广州从化市一位多年养蜂的蜂农老齐告诉记者,蜜蜂采蜜不可能几个小时都不回巢一次,“很多路边卖蜂蜜的自己都不是养蜂的,只是收购来的而已,放个蜂箱只是招揽生意的,如果你要求看蜜蜂,多半会被吓唬蜜蜂蜇人。”他说,买蜂蜜也不是越新鲜越好,即使是新鲜摇下来的蜂蜜,立即吃的功效其实远不如放了一段时间的蜂蜜。专家提醒,蜂蜜被分离了以后,里面的蔗糖还要在酶的作用下继续分解成果糖和葡萄糖,到一个月左右,各种成分才能真正稳定下来。而且蜂蜜天然抗菌,所以不用担心放久了会有细菌。   4.造假方法网上随手可学   记者还发现,网络上流传着各种各样自制“蜂蜜”的方法,部分还图文并茂。例如有一种流传颇广的“10分钟熬出‘蜂蜜’”的方法,原料仅需白砂糖、明矾、酱油、清水。蜂蜜造假方法简单,一看就会,毫无技术门槛。而这种“蜂蜜”的成本已经直观可见。曾有人实践过这一系列实验,用白糖、明矾和水为原料,仅仅花了8元钱就制作出了一碗“蜂蜜”。   假蜂蜜的成本低廉,而在超市销售的、与用此方法调制的“蜂蜜”颜色接近的枣花蜜,最便宜的一瓶价格在31元左右(均是500g装,大约314ml),至于普通的蜂蜜,价格一般也在25元左右。   还有更狡猾的造假者。曾被曝光的慈溪怡康蜂业有限公司掺假更加隐蔽,他们在洋槐蜂蜜中至少掺油菜花蜂蜜60%,价格就下来了。公司负责人得意地说:“(这样的蜜)吃也吃不出来的,无论工商、质监也都检测不出来。”   广东省质监局一位内部人士透露,现在市场上蜂蜜的监管几乎是空白领域。“以前有蜂蜜掺假的判定方法,新的食品安全标准颁布后,删除了这个项目。之前的方法也在用,但是不能作为处罚的依据,只能作为案件的线索。监管上就要看商家的道德约束了”。   简单四招选蜂蜜   ■小贴士   1.看色泽。纯正的优质蜂蜜透光性强,颜色为白色、淡黄色至琥珀色,且均匀一致 而劣质蜂蜜颜色黑红或暗褐色、无光泽、蜜液混浊而有杂质。   2.晃气泡。如果蜂蜜发酵变质,会因含水量增多而导致表面产生大量气泡,而纯正的蜂蜜表面则无大量气泡。   3.闻香气。品质好的蜂蜜香味浓而持久,开瓶后便能嗅到,用手掌搓揉会有粘腻感,而劣质的蜂蜜往往因掺入香精而过于浓郁。   4.拉细丝。用筷子挑蜂蜜,优质的蜂蜜弹性佳,可拉成丝状,且不易拉断,而劣质的蜂蜜浓度较低,黏性小,难以拉成细丝。
  • 网爆羊肉串造假掺杂 DNA检测核实
    原标题:街头买来羊肉串,DNA验真身   有的压根没羊肉 有的掺杂猪鸭肉 图为:羊肉串让人吃得不放心 记者王永胜摄   楚天都市报讯 在武汉街头,经常可闻到羊肉串的诱人香味 而在寒冷的冬天,一些火锅店的涮羊肉销售也十分火爆。   近日,不少网友微博报料称,现在市面上卖的很多羊肉串、涮羊肉都不是真的羊肉做的,而是猫肉、老鼠肉做的。   对这种说法,多数市民并不相信:哪来这么多的猫肉、老鼠肉?   记者通过走访羊肉烧烤摊、美食城一条街以及羊肉串批发市场,并请专业机构鉴定求证发现,其实现在市面上的羊肉串、涮羊肉确实有猫腻。   网友报料   “羊肉串”是猫肉鼠肉   近日,武汉一名网友张先生报料:他在浏览微博时,发现不少网友称,街头诱人的羊肉串、火锅店里的涮羊肉,都不是真正的羊肉做的,而是猫肉、老鼠肉做的。   昨日,记者通过新浪、腾讯微博,以及百度搜索发现,网络上讨论羊肉是流浪猫、老鼠等做的帖子铺天盖地。   其中,网友“豆包kiroro小鱼钓猫”说:冬季多吃羊肉可御寒。可据说现在街上卖的羊肉串有些用的是猫肉。   网友“厦门人士”则表示:猫肉可能被制成“羊肉”,已经误入你的口中。   网友“不努力”奉劝大家:5元以下的羊肉串,尽量不要去吃,一般是猫肉、老鼠肉之类的。   此外,还有不少网友揭露,为让人们觉得吃的猫肉、老鼠肉有膻味,一些烧烤摊老板往往以很低的价格买回猫肉,放在盛有羊尿的盆里浸泡几个小时,再用嫩肉粉、各种调料腌制二三十分钟,加点羊油和羊肉香精,羊肉串就诞生了!   街头探访   烧烤摊老板闪烁其词   诱人的羊肉串,到底是不是羊肉?   近日,记者到武昌民主路户部巷、汉口吉庆街一带进行了走访。   在户部巷一家烧烤摊前,等着吃烧烤的市民排起六七米的长队。   “老板,你这个羊肉是真的吗?”记者问。“这都是刚刚串好的羊肉,当然是真的。”一名女店主称。   在另一家烧摊点前,店主则表示,他不仅卖的是真羊肉,还是产自新疆的羊肉。   不过,不少老板对记者的询问显得有些不耐烦。“你问这个干什么?”   此外,有几名老板则直白地说,一串羊肉卖一两元钱,若都是真羊肉,大家可能喝西北风去了。   冷冻市场   羊肉串仅带羊肉风味   有的烧烤摊老板说羊肉是真的,有的老板则说是假的,真相到底如何?   据了解,羊肉串大多来源于冷冻食品批发市场。昨日,记者来到一家市场调查了解到,现在的羊肉串每斤售价在19元至20元不等。批发商专门指出,这种羊肉串是有羊肉风味的。   只有羊肉风味,那有没有纯的羊肉呢?批发商表示,现在几乎不存在纯的羊肉。记者调查还发现,不少羊肉串的包装袋上的文字注明:烧烤肉串,羊肉风味。本产品精选鲁西南羊肉,配料为精选精鲜肉、白砂糖、味精等。一边号称鲁西南羊肉,一边配料却是精鲜肉,明显前后矛盾。   既然没有正宗羊肉串卖,有的都只是羊肉风味的烧烤肉串,那什么叫羊肉风味的烧烤肉串?经再三追问下,批发商这样解释:它说白了就不是羊肉,而是一种带有羊肉风味的肉。   实验求证   羊肉串掺有猪肉鸭肉   街头的羊肉串,只是一种带有羊肉风味的肉。那么,里面的肉,到底是不是老鼠肉和猫肉呢?   近日,记者从市场购买了6份羊肉样品,一号、二号来自冷冻食品批发市场 三号、四号来自美食街 五号、六号分别来自餐馆和流动烧烤摊。记者带着这些样品,找到武汉摩尔生物科技公司,并对6个样品的DNA成分进行检测。   检测发现,6份样品中,仅仅是一、二、四号样品检测出了羊肉成分,三、五、六号样品完全不是羊肉。此外,一、二、四号样品仅是含有羊肉,并不是纯羊肉。   经对一、二、四号样品的进一步检测,检测人员发现,3份样品中,除了有羊肉的成分,还有猪肉和鸭肉的成分。   一名肉制品经销商称,目前每斤羊肉的价格是20多元,而猪肉和鸭肉的价格则分别在10元和8元左右,为了省钱,一些商贩就在羊肉里掺一些别的肉。   那么三、五、六号样品完全不是羊肉,到底是什么肉?检测人员分别对它们猪肉和鸭肉的源性成分检测,结果都不是。这就奇怪了,不是羊肉,不是猪肉,也不是鸭肉,难道真的是传说中的猫肉、老鼠肉?检测人员表示,这还有待进一步的检测。   特别鸣谢:本次采访得到湖北卫视《生活帮》栏目(播出时间,每周三22:00-23:00 周六、周日11:50-13:00)大力支持。
  • PerkinElmer发布适用于食品掺杂快速检测的最新软件
    Adulterant Screen软件与PerkinElmer高端红外光谱仪的配合使用实现了食品掺杂掺伪筛查与营养成分检测的一步化操作 2014年2月24日,美国,马萨诸塞州,沃尔瑟姆 —— PerkinElmer,专注于提升人类健康和环境安全的全球领导企业,今日对外发布Adulterant Screen软件系统。这一自动化的解决方案能够协助食品从业人员辨别食品原料的真伪,以杜绝正在发生的、以及潜在的食品掺伪威胁。 Adulterant Screen软件与PerkinElmer傅利叶变换红外光谱仪(FT-IR)或近红外光谱仪(NIR)的配合使用创建了一个独特的、硬件与软件相互融合的系统,仅需通过一个步骤就能够实现确认食品真伪和进行营养成分分析的双重目标。 “食品质量专家们必须妥善应对不断上升的风险,持续检测食品原料,筛查可能成为不安全因素的、已知或未知的食品添加成分。”PerkinElmer环境事业部总裁 Jon DiVincenzo说,“我们的使命就是不断研发先进的检测解决方案,协助我们全球范围内的用户从容不迫地应对愈发复杂的、涉及食品供应链中质量控制和安全的行业监管法规。” 工作原理:Adulterant Screen软件能够同时对多种掺伪物质进行快速的、针对目标检测物和非目标检测物的筛查。个性化的设计,快速、有效,无需冗长的校正过程。简单直观的“红灯/绿灯”、“Pass/Pail”结果显示系统确保了简便的操作,使得各类知识背景的使用者都能轻而易举地使用。 了解更多:欲了解更多关于Adulterant Screen软件的信息,可访问此连接。 PerkinElmer同时提供Dairy Guard TM奶粉分析仪,一个基于近红外(NIR)平台的、面向食品供应商和生产商的光谱仪。Dairy Guard奶粉分析仪是目前唯一一款能够同时对已知和未知掺伪物质进行检测的系统。 关于PerkinElmer:珀金埃尔默是专注于人类和环境健康的全球领军企业。2013年,公司收入约为22亿美元,在150个国家拥有超过7700名员工。同时,珀金埃尔默也是标准普尔500指数公司,欲了解更多信息,可访问:www.perkinelmer.com.cn。 媒体联系: 薛萍:021-60645888
  • HORIBA海外用户简讯|太阳能电池元素掺杂研究,美国CSM大学用这招儿
    作者:小武老师编辑:Joanna关键词CdTe, As doping, Atom probe tomography, Scanning transmission electron microscopy, Molecular beam epitaxy, Single crystalline薄膜电池(图片来源于网络)近年来,太阳能电池因其高转换效率、低成本和高稳定性特点倍受关注。其中碲化镉(CdTe)薄膜太阳能电池被认为是太阳能电池中容易制造的,因而它向商品化进展快,许多国家碲化镉电池已开始走向规模工业化生产。如今碲化镉(CdTe)薄膜太阳能电池的转化效率已经高于20%,若要进一步提高效率,就面临着提高效率的同时保持开路电压不变的挑战。碲化镉薄膜太阳能电池结构示意图(图片转自网络)基于碲化镉(CdTe)薄膜太阳能电池的结构和工作原理,人们目前实现的途径是确保载流子寿命不损失的情况下,在其P-N结构中添加掺杂元素,即P型掺杂。在大规模生产中砷元素As更安全,扩散更慢,因而被选为新型掺杂元素。但掺杂砷元素又会引发新问题。基于此背景,美国科罗拉多矿业大学(CSM)冶金和材料工程系的研究人员,在P-N结构中掺杂砷元素As后,对P-N结构进行原子尺度的微观深度分析,重点观察砷元素的掺入限制、簇状构造、溶解限和活化,研究其掺杂影响,以期实现增加P型掺杂的同时不损失载流子寿命,进而改善开路电压稳定性,提高太阳能电池的性能。美国科罗拉多矿业大学(图片来源于网络)观察过程中,研究人员应用了多种表面分析技术。其中低温阴荧光光谱仪(H-CLUE)对缺陷、掺杂等变化非常灵敏,因此在观测材料发光能量变化的环节中,研究人员用其表征和验证砷元素的掺杂效果,这对实验起到了重要作用。该工作以《Understanding arsenic incorporation in cdte with atom probe tomography》为题,发表于《Solar Energy Materials and Solar Cells》2018年,Volume 182(扫描二维码可直达英文原文)。 扫描识别查看左方二维码阅读英文原文如需了解该研究中的测试方法,扫描下方二维码留言,我们的应用专家将乐于为您提供解答服务。 扫描识别查看左方二维码寻找技术支持免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。horiba科学仪器事业部结合旗下具有近 200 年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 兰州化物所开发出氮掺杂多孔石墨烯制备新方法并用于稀土分离
    近日,中国科学院兰州化学物理研究所手性分离与微纳分析课题组开发出一种多重限域的一步可控合成掺杂方法,制备出对稀土离子具有高分离选择性的氮掺杂纳孔石墨烯膜(专利申请号:CN 202010861481.0)。该研究在吸附了苯丙氨酸的氧化石墨烯膜的二维层间空间限域生长层状锌类水滑石,从而构建类水滑石/苯丙氨酸/氧化石墨烯三明治型复合材料。由于锌类水滑石层间夹层可作为密闭反应器,通过限域燃烧,可将苯丙氨酸中的氮原子掺杂到石墨烯晶格中。同时,形成的多孔锌类水滑石可作为模板,通过孔区域内限域燃烧在氧化石墨烯上蚀刻出孔径可控的纳米孔(图1)。  科研人员将获得的氮掺杂纳孔石墨烯(图2)制备成膜用于稀土元素的分离,获得了良好的分离选择性,最高膜分离因子达到3.7。理论模拟表明,氮掺杂纳孔石墨烯中的吡咯氮原子,在稀土离子的选择性分离过程中起到主要作用。该制备方法简单高效、膜分离稳定性优异。该研究不仅为杂原子掺杂纳孔石墨烯材料的制备开辟了新途径,而且为实现稀土离子的高选择性膜分离提供了新思路,具有潜在的工业应用前景。相关研究成果发表在Cell Press旗下综合类子刊iScience上,博士生谭洪鑫为论文第一作者,研究员李湛和邱洪灯为论文共同通讯作者。  此外,研究人员在自主研发的纳孔石墨烯/氧化锌纳米复合材料的基础上,利用固相合成策略,使均苯三甲酸与纳孔石墨烯表面的氧化锌纳米颗粒直接反应,原位绿色合成出纳孔石墨烯/MOF复合纳米材料,并发现该材料适合于水溶液中稀土离子的选择性固相吸附分离,该研究成果发表在Analytical Chemistry上。  研究工作得到国家重点研发计划、国家自然科学基金、中科院和甘肃省人才计划项目的支持。 图1.多重限域策略可控合成氮掺杂纳孔石墨烯示意图 图2.氮掺杂纳孔石墨烯表征图
  • 福建物构所等调控局域电子结构实现稀土掺杂双钙钛矿高效近红外发
    近年来,无铅金属卤化物双钙钛矿Cs2Na(Ag)InCl6材料因组份易调控、合成简便及毒性低等特性,而备受关注,在照明显示、光电探测及光伏等领域表现出广阔的应用潜力。目前,该材料的研究主要局限在可见光波段,近红外(NIR)波段存在发光效率低的瓶颈,制约进一步的应用开发。   针对此问题,中国科学院福建物质结构研究所和闽都创新实验室研究员陈学元课题组,通过在Cs2NaInCl6中引入稀土离子Yb3+和Er3+作为近红外发光中心,实现高效近红外发光(图1)。   Cs2NaInCl6:Yb3+的最佳量子产率为39.4%,相比Cs2AgInCl6:Yb3+ 材料提升了142.2倍。科研团队通过第一性原理计算和Bader电荷分析,对比研究了Cs2NaInCl6:Yb3+和Cs2AgInCl6:Yb3+两种材料的局域电子结构(图2)。Bader电荷分析是一种通过将材料的总电荷分解到原子电荷,得到原子周围电子数,进而计算出原子化合价的方法。该方法应用于材料的电荷特性分析,判断材料内电荷传输过程。研究表明,Cs2NaInCl6:Yb3+中Na+离子的强离子性使其几乎完全电离,导致相邻的[YbCl6]八面体电荷显著局域化,促进了Cl--Yb3+的荷移跃迁。而Cs2AgInCl6:Yb3+中的Ag+由于强共价性形成Ag-Cl共价键,使相邻的[YbCl6]八面体中Cl-的电子波函数向Ag+离域,导致Cl-与Yb3+波函数交叠减小,从而抑制了Cl--Yb3+荷移跃迁过程。   该研究利用温度依赖的稳态和瞬态荧光光谱等手段,观察到Cs2NaInCl6:Yb3+中Yb3+的激发峰相对于基质自限激子的激发峰存在明显偏移(图3)。在低温下,Cs2NaInCl6:Yb3+通过紫外激发,在近紫外-可见光区观察到两个发射峰,波数差约为9766 cm-1,对应于荷移跃迁带(CTB)→ 2F7/2和2F5/2跃迁。以上证据证实了在Cs2NaInCl6:Yb3+中的高效近红外发射来源于其独特的Cl--Yb3+荷移跃迁敏化过程。   科研团队通过共掺其他近红外发光离子如Er3+,实现了Cl--Yb3+荷移跃迁敏化的Er3+离子1540 nm处的近红外发射(图4)。相比于Cs2NaInCl6:Yb3+/Er3+中常规的自限激子敏化,其发射强度增强了1510.2倍,最佳量子产率为7.9%。   该研究为实现高效的稀土掺杂近红外发光无铅金属卤化物双钙钛矿开辟了新途径,有望应用于近红外光通讯、发光二极管和夜视成像等领域。相关研究成果发表在《先进科学》(Advanced Science)上。研究工作得到中科院创新团队国际合作伙伴计划和国家自然科学基金等的支持。图1.Cs2NaInCl6:Ln3+ (Ln = Yb和Er)双钙钛矿高效近红外发光及发光机理示意图。图2.(a)Cs2AgInCl6:Yb3+的Bader电荷分析,(b)电子局域密度和(c)结构示意图;(d) Cs2NaInCl6:Yb3+的Bader电荷分析,(e)电子局域密度和(f)结构示意图。图3.温度依赖的Cs2NaInCl6基质的(a)激发光谱和(b)发射光谱;温度依赖的Cs2NaInCl6:Yb3+的(c)激发光谱和(d)发射光谱;(e)10 K下,Cs2NaInCl6:Yb3+的发射光谱;(f)在Cs2NaInCl6材料中,Yb3+离子的电子跃迁示意图。图4.不同浓度Yb3+和Er3+掺杂的Cs2NaInCl6 的(a)激发谱和(b)发射谱;Cs2NaInCl6:6.9%Yb3+/Er3+在不同Er3+掺杂浓度下,(c)Yb3+和Er3+的积分发射强度,以及(d)994 nm和(e)1540 nm发射处的荧光寿命;(f)Cs2NaInCl6:Yb3+/Er3+中的能量传递示意图。
  • 阿胶被曝原料掺杂 检测仪器需创新
    寒意猛烈,也正是冬令进补的时节。阿胶是由驴的皮,经煎煮、浓缩制成的固体胶,原产自山东省东阿县,至今已有近三千年历史。阿胶是传统的滋补上品、补血圣药,因此,虽然“名贵”,却深受欢迎。可是,近日阿胶原料被爆混入骡皮马皮。    新闻报道称,这是一组耐人寻味却不耐推敲的数字:山东阿胶行业协会根据100多家阿胶生产企业的年生产量报表推算,阿胶年总产量至少在5000吨以上。来自阿胶行业龙头企业东阿阿胶股份有限公司的市场监测数据显示,目前按中国市场阿胶销售量估算,需要驴皮400万张左右,而国内供应总量不足180万张。据国家畜牧统计年鉴显示,我国驴存栏量已由上世纪90年代的1100万头,下滑到目前600万头,并且还在以每年约30万头的数量下降。阿胶行业专业人士董书光介绍,按照每年正常出栏120万头计算,再加上驴皮进口因素,全年可生产的阿胶总数量也就在3000多吨。全年可供制胶的驴皮,只够实现当前产量的六成左右。  这些数据意味着,可能有近四成假冒原料混入了生产环节,化身为形形色色的“阿胶”产品,堂而皇之地在市场售卖。  有人会说,食品检验检疫部门应该积极地选用相关检测仪器,对每一批上市阿胶进行抽检。  但是,业内人士指出,当前阿胶行业面临两个“鉴定难”,一是原料鉴定难,皮张混入骡子、马、牛、工业皮、屠宰场的下脚料皮等,传统鉴定方法受到挑战;二是产品鉴定难,掺假阿胶产品繁多,药典方法滞后,跟不上造假技术。  对此,也就要求强化食品检测仪器的研发创新能力,摆脱传统鉴定方法的束缚,争取可以更加详细具体地分辨食品的真伪。  技术创新一直是产业进步的核心。食品安全的重要性不断提高,满足社会要求,对于食品安全的检测仪器也在更新换代。不同食品、不同要求,都会有不同的分析仪。现在针对阿胶掺杂问题,希望可以尽快研发出对于检测仪器。
  • 理化所在氮掺杂非交替纳米带非线性光学材料方面获进展
    随着激光技术的发展,非线性光学材料在光限幅、全光开关、光通信等领域展现出广阔的应用前景。其中,有机π-共轭材料因具有高的非线性光学系数、低的非线性响应阈值、易于结构调控的非线性光学性能等优势而备受关注。线性并苯类稠环是一类经典的有机π-共轭材料,被广泛应用于有机光电器件中。而该类材料随着共轭长度的增加,化学稳定性变差,极易被氧化或发生Diels-Alder反应。同时,随着共轭体系的增大,分子间聚集程度增强,溶解性及其合成难度提高,因而限制了这类材料的开发及应用。   近日,中国科学院理化技术研究所特种影像材料与技术研究中心副研究员孙继斌、湘潭大学教授陈华杰课题组、英国剑桥大学博士曾维轩等合作,采用酮胺缩合策略,构建了一类化学性能稳定、溶解性好的氮掺杂非交替纳米带分子(图1),并将该类材料应用于非线性光学领域,揭示了氮掺杂非交替纳米带分子优异的反饱和吸收性能(图2)。其中,研究引入末端三蝶烯和侧基三异丙基硅乙炔,有效抑制了分子间的聚集,显著提升了材料的溶解性,是目前已报道的分子长度最长的可溶解氮杂非交替纳米带——含13元稠环分子。此外,多重五元环的植入有效阻断了线性并苯类稠环的全局芳香性,实现了基态与激发态兼具的局域芳香性,因而提高了π-共轭系统的稳定性,使得材料(NNNR-2)的三阶非线性吸收系数达到374cmGW–1,且在同等测试条件下,显著高于经典非线性光学材料C60(153cmGW–1)。   相关研究成果以N-Doped Nonalternant Nanoribbons with Excellent Nonlinear Optical Performance为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。研究工作得到国家自然科学基金委员会、湖南省教育基金会和玛丽居里研究计划的支持。图1. 氮杂非交替纳米带分子NNNR-1和NNNR-2的(a)化学结构和(b)理论结构模拟图2. 氮杂非交替纳米带分子NNNR-1和NNNR-2的非线性光学性能
  • Nature:突破障碍 - 何祝兵团队在甲胺掺杂的倒钙钛矿太阳能电池中达成25.86%的效率
    Nature:突破障碍 - 何祝兵团队在甲胺掺杂的倒钙钛矿太阳能电池中达成25.86%的效率分子掺杂工艺: 研究人员引入了一种使用二甲基胺基掺杂剂的分子掺杂工艺,该工艺能够创建一个与p-钙钛矿/ITO接触良好且能够完全钝化晶界的结构。这种创新工艺提高了钙钛矿太阳能电池的功率转换效率(PCE),实现了经认证的25.39%的PCE,这是对钙钛矿太阳能电池现有标准的改进。分子挤压技术: 该工艺采用了一种独特的“分子挤压”方法,在甲苯淬灭结晶过程中将分子从前驱体溶液排出到晶界和薄膜底部。这种独特的技术导致了钙钛矿薄膜的p-掺杂,有助于提高器件的效率。长寿命和高效率: 器件在逆向扫描时实现了25.86%的效率,并表现出卓越的稳定性,即使经过1000小时的光老化,仍能保持96.6%的初始效率。这表明钙钛矿太阳能电池在性能和可靠性方面取得了显著的进步。在不断发展的光伏领域中,更有效、可持续地利用太阳能的追求是一项不懈的努力。科学家已经探索了许多途径来提高太阳能电池的效率,其中钙钛矿太阳能电池因其性能潜力和经济制造能力的结合而一直脱颖而出。今天,我们将聚焦于一支南方科技大学何祝兵团队率领杰出的研究团队所取得的重大突破,他们实现了钙钛矿太阳能电池效率的深度提高,这标志着我们共同追求更可持续和能效的未来的重要一步。这项开创性的研究提出了一种与传统方法有着根本不同的新型分子掺杂工艺,使用了一种二甲基氨基基团的掺杂剂。这种掺杂剂巧妙地用于形成和谐的p-钙钛矿/ITO接触,并精确地去除晶界缺陷,推动了钙钛矿太阳能电池功率转换效率(PCE)的大幅提升。研究团队创造出了一个惊人的世界纪录,即25.39%的认证PCE,为该行业设定了新的标准和潜力。为了达到这个非凡的成就,研究人员提出了一种被称为“分子挤压”的巧妙技术。这种创新策略迫使前体溶液中的分子在甲苯淬火晶化过程中重新分布到晶界和薄膜底部。因此,这导致了钙钛矿薄膜的p型掺杂,这是实现设备效率显著提高的关键。这种独特的工艺因此标志着一种基础性的突破,从根本上改变了可再生能源范式。然而,这项研究的胜利不仅仅局限于效率领域。该团队的冠军设备不仅在反向扫描中展示了25.86%的PCE,超越了以往的阈值,而且表现出了卓越的稳定性,在经过1000小时的光老化后仍保持了96.6%的初始效率。这项成就解决了钙钛矿太阳能电池技术中的一个主要挑战——效率和稳定性之间的平衡,并为未来旨在优化这两个重要方面的研究提供了有价值的基础。在这项开创性研究的核心是Enlitech的QE-R精密测量设备的精确利用。这种先进的设备为团队提供了准确的读数,使他们能够仔细评估他们的新方法的结果。选择Enlitech的QE-R设备,这种以精度和可靠性闻名的设备,强调了顶级资源在实现突破性成果中的重要性。此外,研究人员深入探究了p-钙钛矿/ITO界面的复杂能带对齐。通过应用紫外光电子能谱(UPS),他们阐明了促进空穴提取的带弯曲现象,这是实现高性能太阳能电池的关键过程。实验揭示了二甲基氨基基团掺杂剂以及与铅离子形成的分子复合物修改ITO基板的功函数,从而获得了有利于高效空穴提取的能带对齐。除了提高效率和稳定性外,研究团队还解决了钙钛矿太阳能电池中常见的滞后效应挑战。通过采用分子挤压技术和精确的掺杂工程,他们显著降低了滞后效应,从而使设备性能更加可靠和可重复。这一突破为实际应用和商业化钙钛矿太阳能电池提供了巨大的潜力,因为它解决了阻碍其广泛应用的主要障碍之一。此外,研究团队对电荷载流子动力学的详尽研究揭示了他们的钙钛矿太阳能电池性能异常出色的机制。通过各种分析技术,包括电荷密度差和Bader电荷分析,他们揭示了钙钛矿薄膜内电荷的重新分布,这归功于有效的分子掺杂策略。这种重新分布导致了提高空穴提取效率和提高整体设备性能的效果。总之,这项开创性的研究代表了钙钛矿太阳能电池领域的重大进展,实现了25.39%的创纪录效率和卓越的稳定性。分子掺杂工艺结合创新的分子挤压技术为实现对设备性能和稳定性的前所未有的控制铺平了道路。Enlitech的QE-R精密测量设备的利用对于准确评估制造的设备的光电性质起到了至关重要的作用。这一非凡成就将我们更接近实现钙钛矿太阳能电池的全部潜力,推动我们迈向由清洁、可再生能源驱动的未来。分离ITO表面的Pb 4f(a),I 3d (b)和P 2p (c)的XPS光谱来自ITO/DMAcPA/钙钛矿(蓝色)和ITO/钙钛矿(DMAcPA)(红色)样品两种钙钛矿薄膜埋底面XPS图 S26.Pb 4f(a)、I 3d (b)和调查(c)的XPS光谱,在底部检测到原始(红色)和DMAcPA掺杂(蓝色)钙钛矿薄膜的表面,与正文中报导了制造过程。 Pb结合能的红移在钙钛矿的埋藏底面检测到(图。S26a)也可以表示O–Pb与键削弱了主流Pb-I共价键的结合能和这里解释了Pb的红移。 S26b),它可以是归因于P-O-H–I的氢键,这已经得到了很好的讨论和通过上述H NMR信号的下场化学位移进行检查(图3A)。
  • Adv. Funct. Mater. 北理工张加涛课题组:首次实现了近红外掺杂荧光的高效多模防伪和保密应用 | 前沿用户报道
    供稿:白冰成果简介2021年4月,北京理工大学张加涛教授课题组在国际顶级材料学期刊 Advanced Functional Materials (DOI: 10.1002/adfm.202100286,IF=16.836) 发表了题为Dopant Diffusion Equilibrium Overcoming Impurity Loss of Doped QDs for Multimode Anti-Counterfeiting and Encryption 的论文,利用杂质扩散平衡策略首次实现了近红外掺杂荧光的高效多模防伪和保密应用。半导体之所以能被广泛应用在光电产品世界中,凭借的就是在其晶格中植入杂质改变其电性,调控半导体纳米晶体的光、电、磁性质,实现高效率发光器件、太阳能电池、自旋电子器件等新型光电子器件的应用。Cu+作为一种通用的掺杂杂质,可以用来调控半导体纳米晶的光电性质。但是在掺杂纳米晶高温外延生长钝化层的过程中,Cu+杂质容易向外扩散,容易造成掺杂失效,阻碍了掺杂纳米晶的进一步应用。要实现半导体纳米晶的广泛应用,必须解决掺杂问题。北京理工大学张加涛教授课题组发展了一种新型的杂质扩散平衡策略,向Cu+掺杂CdSe纳米晶溶液中引入额外的Cu+,在纳米晶内外部杂质离子扩散平衡的条件下进行表面钝化层的高温外延生长。该策略成功制备出Cu 掺杂CdSe@CdS(CdSe:Cu@CdS)核壳纳米晶。只具有本征荧光的CdSe@CdS和同时具有微弱本征荧光和强近红外荧光的CdSe:Cu@CdS纳米晶分别记录了干扰信息和关键信息,且这两种信息在肉眼下无法被明显分辨;而关键信息的近红外荧光则可以通过普通商业手机摄像头和滤光片(截止边800 nm)的组合轻松获取,首次实现了近红外掺杂荧光的高效多模防伪和保密应用。图文导读通常直接在Cu+掺杂CdSe纳米晶表面外延生长钝化壳层容易造成杂质Cu+向外部扩散,导致掺杂失效,阻碍了掺杂纳米晶的进一步应用。北京理工大学张加涛课题组向溶液中引入额外的Cu+,溶液中的Cu+与纳米晶内部的杂质Cu+形成扩散平衡,该扩散平衡在高温下阻碍了纳米晶内部的Cu+向外扩散,最终在CdSe@CdS核壳纳米晶内部形成了有效的Cu+掺杂,保持了Cu+掺杂核壳纳米晶的近红外掺杂荧光。图1 杂质扩散平衡策略示意图和防伪/保密应用图2 CdSe:Cu和CdSe:Cu@CdS纳米晶的形貌、光学和结构表征图3 近红外荧光防伪和保密图案在多种商业手机中的成像效果Cu+掺杂CdSe纳米晶拥有一个较宽的掺杂荧光发射峰,该峰覆盖了可见光区和近红外光区(700 nm-1100 nm),在此范围内使用常规的荧光光谱仪无法获得连续且完整的荧光光谱数据。HORIBA Duetta 荧光光谱仪装备了CCD检测器,可以连续地获取从250 nm 到1100 nm 范围内的荧光光谱信息,为探索材料的新结构、新性能和新应用提供了有力的帮助。Duetta 荧光及吸收光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。总结展望现阶段基于可见荧光的防伪手段面临着易被破解的风险。基于不可见近红外荧光的防伪/保密应用明显地提高了破解的难度,拥有更高的信息安全性。常用的手机摄像头可以有效地捕获近红外荧光,降低了这种基于不可见近红外荧光防伪/保密应用的门槛,有望取代现有的可见荧光防伪/保密模式,实现大规模应用。文献信息Dopant Diffusion Equilibrium Overcoming Impurity Loss of Doped QDs for Multimode Anti-Counterfeiting and Encryption文章署名作者:Bing Bai, Meng Xu, Jianzhong Li, Shuping Zhang, Chen Qiao, Jiajia Liu, Jiatao Zhang扫码查看文献张加涛教授简介张加涛教授现任北京理工大学化学与化工学院院长、北京理工大学首位徐特立特聘教授,英国皇家化学会会士、国家自然科学基金委优秀青年基金获得者、国际纯粹与应用化学联合会(IUPAC)杰出奖 获得者。以第一作者或通讯作者在 Nature、Science、Nature Nanotech、Angew. Chem. Int. Ed、Adv. Mater. 等期刊发表 SCI 论文 50 余篇,他引 2800 余次。
  • 天美公司参加第八届全国掺杂纳米材料发光性质学术会议
    7月22-24日,由中国物理学会发光分会、中国稀土学会发光专业委员会主办,吉林大学电子科学与工程学院、集成光电子学国家重点实验室承办的“第八届全国掺杂纳米材料发光性质学术会议”在长春举办。开幕式于7月23日上午举行,大会主席、吉林大学电子科学与工程学院宋宏伟教授主持开幕式。 天美仪拓实验室设备(上海)有限公司(以下简称天美公司)应邀作为赞助商之一,全程参加了此次会议。会议期间,天美公司对于用户提出的需求进行相关的解答,也会进一步急用户之所急,进一步的开发出符合用户需求的产品。通过为期两天的会议,天美公司与客户进行了深入的交流,更加深了彼此的相互了解。天美公司作为知名供应商,将在掺杂纳米材料,作出进一步的技术升级,服务广大客户,让广大客户得到满意的科研结果,助力其科研发展。
  • 我国发现宏量合成多孔掺杂 碳纳米材料制备新途径
    p style=" text-indent: 2em " 记者从中国科学技术大学获悉,该校俞书宏教授和梁海伟教授研究团队找到了一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。 /p p style=" text-indent: 2em " 碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、催化、电子器件和聚合物等领域有着广泛的应用。特别是拥有高的比表面积、多孔结构、理想的杂原子掺杂等特征的碳纳米材料,更受青睐。但开发简单、廉价、可控的方法宏量制备碳纳米材料依然面临巨大挑战。 /p p style=" text-indent: 2em " 有机小分子因其广泛存在、种类多样、元素丰富,是一种理想的制备碳纳米材料的前驱体。但在高温下有机小分子的高挥发性使得其作为原料制备碳纳米材料必须使用复杂方法和设备,如化学气相沉积和高压密闭合成。 /p p style=" text-indent: 2em " 针对上述挑战,研究人员提出一种过渡金属辅助有机分子碳化的方法,通过使用过渡金属盐辅助热解有机小分子来制备碳纳米材料。在高温热解过程中,过渡金属盐不仅能提高小分子的热稳定,还能催化其聚合优先形成相应的聚合物中间体,避免有机小分子在高温热解中挥发,从而最终形成碳纳米材料。研究表明,运用这种方法制备的碳材料具有三种微观结构:竹节状的多壁纳米管、微米尺度的片和无规则的颗粒。该研究为高效制备碳纳米材料提供了一种普适的合成路线。 /p
  • 北京大学雷霆研究员Science:使用QSense E-QCMD技术研究半导体水凝胶电化学掺杂过程
    编者按:作者通过QSense E-QCMD技术研究了半导体水凝胶电化学掺杂过程中的质量变化和稳定性。相比于传统的有机混合离子电子导体,骨架为阳离子的半导体聚合物呈现出独特的质量下降的行为。这是由于还原过程中部分阴离子离去以维持体系电中性,剩余的阴离子保证交连体系的稳定性。体系去掺杂后,质量得以恢复。雷霆研究员出生于1987年,目前为北京大学工学院材料科学与工程系特聘研究员,为国家青年学科项目的带头人,长期致力于发展新型有机高分子电子材料和柔性电子器件。近年在Nat. Energy , Nat. Comm. , PNAS , Sci. Adv. , Acc. Chem. Res. , J. Am. Chem. Soc. , Adv. Mater.等顶级学术期刊发表论文超过60篇,总引用超过7000次。研究成果被国内外多家媒体报道,被多篇综述评论为该领域的重要进展。目前申请中国和国际专利10项,已获授权5项。部分专利成果已实现规模化生产,并与国内外多家公司开展了合作和产业化研究。最新Science:N型半导体水凝胶水凝胶由三维交联的亲水聚合物网络构成,具备保留大量水分的能力。相较于刚性无机材料和干燥聚合物,水凝胶的机械性能可以广泛调整,适用于模仿软骨、皮肤、肌肉及大脑等多种生物组织。其结构多样且易于改性,在生物功能工程中展现出杰出的多功能性,包括刺激响应性和优异的界面特性,应用广泛于传感器、致动器、涂层、声探测器、光学和电子学领域。尽管具有这些优点,但由于缺乏半导体特性,它们在电子学中的应用一直受到限制,传统上只能用作绝缘体或导体。在此,北京大学雷霆研究员团队开发了基于水溶性 n 型半导体聚合物的单网络和多网络水凝胶,赋予传统水凝胶以半导体功能。这些水凝胶显示出良好的电子迁移率和高导通/关断比,可用于制造低功耗、高增益的互补逻辑电路和信号放大器。作者证明,具有良好生物粘附性和生物相容性界面的水凝胶电子器件可以感应和放大电生理信号,并提高信噪比。相关成果以“N-type semiconducting hydrogel”为题发表在《Science》上,第一作者为李佩雲,Wenxi Sun为共同一作。单网络半导体水凝胶的设计与制备作者设计了一种 n 型水溶性半导体聚合物 P(PyV),它的阳离子骨架含有氯化物反离子,没有任何侧链(图 1B)。作者认为,无侧链聚合物设计可实现较高的电子性能,而离子骨架则为静电交联提供了可能性。通过密度泛函理论计算,发现苯磺酸离子与聚合物骨架的结合能优于氯离子,使热力学交换过程更为有利。作者选用1,3-苯二磺酸钠(DBS)作为体积小且对电子特性影响最小的交联剂。将P(PyV)和DBS混合后,形成不溶于水的亲水网络,显示出通过双离子静电交联形成的水凝胶结构。(图 1C,F)。利用旋涂和正交溶剂处理方法制备P(PyV)水凝胶薄膜,X射线光电子能谱(XPS)和紫外-可见-近红外光谱(UV-vis-NIR)结果证实了阴离子的完全交换和水凝胶的稳定性(图 1D )。掠入射广角X射线散射(GIWAXS)和扫描电子显微镜(SEM)分析显示,交联后的P(PyV)-H形成了稳定的三维多孔网络结构,适于储水及离子和分子的高效运输(图1E)。通过喷涂和水洗的方法实现了P(PyV)-H的图案化,此技术分辨率约200微米,简化了大尺寸水凝胶基器件的制造。这种半导体水凝胶的开发为构建与传统半导体类似的电路提供了新的可能性,并与生物组织保持良好的界面兼容性。图1.基于P(PyV)的单网络半导体水凝胶P(PyV)-H的半导体特性为探索水凝胶的电化学特性,作者进行了光谱电化学研究。在电化学还原过程中,阴离子离开P(PyV)-H,形成n掺杂水凝胶,其吸收带发生显著变化,得到DFT计算和化学掺杂实验的验证。作者利用有机电化学晶体管(OECTs)评估P(PyV)-H的半导体特性(图 2),发现其电子迁移率和体积电容的乘积μC*值非常高,表明其优异的离子存储和传输能力。通过电化学阻抗谱测量了电容,进一步证实了水凝胶的高电容性能。作者还利用P(PyV)-H制作了互补逆变器和逻辑电路(图2A),展示了其在低电压下的高增益和低功耗性能,验证了其构建集成电路的潜力(图2F-H)。此外,该水凝胶逆变器可用于生物电信号的有效放大,显示出在可穿戴式监测设备中的应用前景。这些结果突显了半导体水凝胶在高性能电子设备中的应用潜力(图2J,K)。图2. P(PyV)-H的半导体特性多网络半导体水凝胶的制备及性能P(PyV)-H可以与其他开发成熟水凝胶混合,形成多网络水凝胶(MNH),这些MNH展示了增强的机械性能和良好的生物粘附性(图 3A,B)。这些MNH包括三种聚合物网络:长链聚合物(如聚丙烯酰胺或聚丙烯酸)、生物聚合物(如聚乙烯醇或明胶)和半导体聚合物(P(PyV))。例如,MNH-1包含聚丙烯酰胺和聚乙烯醇,具有高拉伸强度和吸湿性;而MNH-2则包含聚丙烯酸和明胶,展现出良好的生物粘附性。MNH的含水量高达60%至70%,拉伸试验表明,MNHs 具有很高的拉伸性,断裂应变大于 100%。添加少量 P(PyV) 后,断裂应力急剧增加,因为 P(PyV) 比传统水凝胶更硬。随着 P(PyV) 的进一步增加,断裂应力基本保持不变,但断裂应变逐渐减小(图 3,C 和 D)。实验还表明,MNH在猪皮肤上显示出优异的界面韧性和剪切强度(图3E)。这些MNH在保持半导体性能的同时,能够与各种生物组织展示出更好的粘附(图3G,H),适合于制造电化学晶体管和逆变器,显示出稳定的电子性能和良好的信号放大功能,即使在受到物理应力的环境中也能保持性能稳定(图 3I,J)。图3.多重网络水凝胶的制备和性能用于生物信号扩增的半导体水凝胶半导体水凝胶的出色半导体性能促使作者探索其生物电子学应用。使用人类角质细胞进行的细胞活力测试表明,与传统聚合物相比,此水凝胶显示出较低的细胞毒性和出色的生物相容性(图4A),这可能得益于其高含水量和水可加工性。因此,这些水凝胶适合体内应用。利用P(PyV)-H的高容积容量,我们能够有效降低金电极的阻抗。作者还使用基于P(PyV)-H和MNH-2的放大器放大眼电图和心电图信号(图4B),与商用凝胶电极相比,基于水凝胶的放大器产生的信号强度高出40倍,显示出优异的信噪比。此外,此放大器在现场记录低电平生物信号如脑电图时(图4C),受到的噪声干扰极小,信噪比高。这些放大器被用于记录体内的皮层电图信号,展示了其在测量低频生物信号方面的巨大潜力,而P(PyV)-H则在测量较高频信号方面表现更佳(图4E-G)。研究表明,半导体水凝胶能够有效放大生物电子学中的各种电生理信号,具备优异的半导体特性、生物相容性、机械性能和生物粘附性,可用于构建逻辑电路和放大器。图 4. 半导体水凝胶放大器的应用原文链接: https://www.science.org/doi/10.1126/science.adj4397更多QSense E-QCMD技术详情请点击链接登录百欧林官网 查看。
  • 从“牛奶检出丙二醇”事件,来看看丙二醇检测都用哪些仪器及方法
    近日,麦趣尔纯牛奶检测出丙二醇问题引起社会广泛关注。据了解,浙江省庆元县市场监督管理局公示了2022年第4期食品抽检情况,结果显示,麦趣尔集团生产的2批次纯牛奶抽检不合格,被检出丙二醇,该项目标准值为“不得使用”。序号样品名称被抽样单位名称生产单位名称抽样时间检测结果不合格项目检验结果标准值1纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.318g/kg不得使用2麦趣尔纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.321g/kg不得使用数据来源于网络那么,丙二醇到底为何物,对人体危害性如何? 丙二醇可分为两种稳定的同分异构体:1,2-丙二醇和1,3-丙二醇。基本特征是无色、无味和无臭,易燃烧,吸水性很强,能够与水、乙醇以及其他多种有机溶剂任意混溶。 根据GB 2760-2014《食品安全国家标准 食品添加剂使用标准》、GB30616-2020《食品安全国家标准 食品用香精》的规定,丙二醇是批准使用的食品添加剂,也是允许使用的食品用合成香料和食品用香精中允许使用的溶剂。食品添加剂丙二醇在生湿面制品、糕点中的最大使用量分别为1.5g/kg、3.0g/kg。但是,丙二醇不得在纯牛奶中使用。 有专家表示,长期过量食用丙二醇可能引起肾脏障碍。然而,笼统的说“长期大量”是没有意义的。世卫专家给出丙二醇的ADI值是25mg/kg,按一个成年人60公斤计算,每天喝5升检出丙二醇含量为0.32g/kg的奶,才达到这个每日容许摄入量,所以即使喝过含丙二醇牛奶的朋友们也不用太过焦虑。那么,丙二醇为什么会出现在牛奶中? 我们先来介绍下丙二醇的作用,丙二醇常用作稳定剂和凝固剂、抗结剂、增稠剂等,在塑料、服装、合成树脂、化妆品、食品等众多领域有着广泛的应用。 对于麦趣尔牛奶中检测出丙二醇,有专家提出了以下可能性:第一,在挤牛奶时一般会对牛的乳房进行消杀,杀菌剂中会添加丙二醇起到溶解的作用;第二,乳制品生产过程中会清洗管道,管道中会添加大量清洗剂,而清洗剂中会添加丙二醇;第三,该牛奶与其他使用丙二醇的产品共用生产设备,切换产品时没有清洗;第四,有可能是饲料中添加了丙二醇,进而转移到了牛奶中。根据以上内容,丙二醇在日常生活中几乎无处不在,那么丙二醇检测都用什么仪器及方法呢?GB 5009.251-2016《食品安全国家标准 食品中1,2-丙二醇的测定》中规定了,用气相色谱和气相色谱-质谱法测定食品中1,2-丙二醇。此外,小编这儿还为大家整理了几种常见样品中丙二醇的检测方法,一起来学习一下吧~~1、GC/GCMS法测定进出口食用动物、饲料中的丙二醇含量使用仪器:气质联用仪气质联用仪方法简介:本文建立了进出口食用动物、饲料中丙二醇含量的气相色谱分析方法,并采用气相色谱-质谱联用法进行确证,本方法操作简单、灵敏度高,可为进出口食用动物、饲料中丙二醇含量测定提供参考。2、电子雾化液中丙二醇、丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:采用岛津公司气相色谱仪GC-2010 Pro建立了电子雾化液中1,2-丙二醇和丙三醇含量的检测方法。在100-2000 mg/L浓度范围内,1,2-丙二醇和丙三醇标准曲线的线性相关系数均在0.999以上。取浓度100 mg/L标准溶液6次平行测定,峰面积的相对标准偏差(RSD%)小于2%,重复性良好。加标试验中,丙二醇和丙三醇的平均加标回收率分别为100.8%和99.4%,回收率良好。该方法可为电子雾化液中1,2-丙二醇和丙三醇含量的测定提供参考。3、气相色谱酒中风味物质—— 1,2-丙二醇使用仪器:气相色谱仪气相色谱系统方法简介:采用配备自动进样器和FID的8860GC进行分析,系统对醇、醛、有机酸和酯类物质均实现了优异的分离度和峰形,为白酒中风味物质的研究提供了可靠的参考依据。4、烟草中1,2-丙二醇和丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:本文采用 Thermo Scientific 模块化气相色谱 Trace1310 配置 FID 检测器,以含1,4-丁二醇做内标的甲醇溶剂对烟丝中的 1,2-丙二醇和丙三醇进行震荡提取,并测定。该方法的操作步骤简单,对 1,2-丙二醇和丙三醇的检出限分别为 88.25 ug/g 和 288.25 ug/g,定量限均为1.25mg/g, 体现了其较高的检测灵敏度;同时以3种不同浓度水平对烟丝样品进行加标回收试验,其回收率对1,2-丙二醇为105~110%、对丙三醇为96.0~112%,能够很好地符合对烟丝样品中1,2-丙二醇和丙三醇的日常检测要求。5、牙膏中丙二醇、二甘醇、甘油等二醇类化合物检测方案(毛细管柱)使用仪器:气质联用仪气质联用仪方法简介:通过GC/MSD分析牙膏样品中的二醇类物质,采用超高惰性气相色谱柱,按照US FDA方法进行,样品中的待测物均表现出良好的峰形。以上就是小编为大家整理的部分样品中丙二醇的检测方案,更多内容,请查看【行业应用】栏目。同时,也欢迎广大厂商积极上传相应的解决方案,为更多用户提供参考,更能展示公司技术实力! 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案5万+篇。 选靠谱仪器,就上仪器信息网【仪器优选】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类,收录数十万台优质仪器。
  • 清华大学环境学院李淼副教授团队开发磷掺杂单原子钴催化剂实现水中硝酸盐污染高效还原去除与能源利用
    全球活性氮增加引起的氮循环失衡使硝酸盐成为水中最普遍的污染物之一。硝酸盐污染威胁着生态安全和人类健康。通过硝酸盐还原方式合成氨,不仅有助于水中硝态氮污染物的去除,而且有助于缓解社会对氨能源的需求,减少污染,降低能耗。电化学反应过程对条件要求适中,易于运行并且高效,可将硝酸盐直接转化为氨。但通常,在硝酸盐的电化学还原过程中,在纳米及更大尺寸电极的活性位点上易于发生氮-氮偶联反应生成氮气,制约氨的高效生成。因此,开发具有高活性、低成本和高选择性优势的电极材料是该领域研究的核心之一。李淼团队针对钴(Co)金属电极活性差、易钝化导致难以实用的瓶颈,通过缺陷碳的稳定固化作用,开发了一种磷(P)掺杂的单原子钴催化剂材料(如图1所示),可有效避免偶联反应发生,使最终产物具有更高的氨选择性和还原活性。这种磷掺杂单原子钴催化剂具有更高的硝酸盐还原去除性能,以其作为催化剂的最高氨生成法拉第效率为92.0%、最高氨产率为433.3μgNH4+h−1cm−2。图1 单原子催化剂结构形貌分析结果研究团队采用自然界极少的15NO3−作为氮源,以同位素标记法进一步证明了氨生成的唯一氮来源为硝酸盐。利用1H核磁共振(NMR)仪对产生的氨进行检测,14NH4+和15NH4+的核磁谱图分别具有典型的三峰和双峰结构。研究采用多种实验分析手段对载体结构进行了分析。结果表明,磷的掺杂进一步提高了碳氮载体的缺陷程度,提供了更多的固定位点负载单原子钴,并且缺陷位点会对相邻金属钴活性位点的电子结构和性能产生影响,提高了电极导电性。图2 电极性能结果研究团队根据密度泛函理论计算,创新强化污染物净化的单原子尺度结构调控理论与方法,从分子水平上对硝酸根在模型单原子钴催化剂活性位点的转化反应机理进行了探究,分析反应路径和能量变化。结果表明,硝酸根在单原子位点上逐步发生脱氧加氢的基元反应,N*物种可以在外部提供能量时进一步偶联形成氮气,也可以自发与氢逐步反应形成铵盐。磷掺杂后形成的缺陷位点可以促进临近CoP1N3位点对硝酸盐的催化转化,硝酸盐还原过程发生8电子数转移生成铵盐。此外,研究还发现,金属活性位点临近的缺陷结构有助于进一步提高单原子催化剂活性,在理论上为设计高活性位点的催化剂提供指导并揭示硝酸反应转化和产物分布规律。图3 反应机理示意图该研究成果于7月12日以《高法拉第效率钴单原子催化剂显著促进氨生成》(Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies)为题在线发表在《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America)上。论文第一作者为清华大学环境学院博士后李佳澄,论文通讯作者为清华大学环境学院李淼副教授,环境学院刘翔教授等人对实验提供了重要指导和帮助。研究项目得到国家自然科学基金面上项目和重点研发计划的资助。
  • 天美(中国)科学仪器有限公司赞助参加第七届全国掺杂纳米材料发光性质学术会议
    2018年7月21日至24日,在美丽的滨城大连,天美(中国)科学仪器有限公司应邀参加并赞助了第七届全国掺杂纳米材料发光性质学术会议。此次会议由中国物理学会发光分会、中国稀土学会发光专业委员会主办,大连民族大学承办。会议旨在通过大会报道、专题研讨等活动,总结和交流近年来在掺杂纳米发光材料,能源材料及相关应用领域所取得的研究成果,凝练科学目标,共同探讨和谋划未来学科发展方向,推动我国发光科技和应用的发展,提升我国在掺杂发光材料及相关领域的国际竞争力。   会议期间,天美(中国)科学仪器公司还受邀进行了会议报告。天美分子光谱工程师刘冉进行了题为“爱丁堡光谱仪在先进发光材料检测中的应用”的报告,介绍了爱丁堡公司最新推出FLS1000光谱仪的主要特点及其在发光材料中的重要应用。本次报告,不但加深了新老用户对仪器的了解与应用,同时了也吸引了很多感兴趣的参会老师前来咨询讨论。关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 粘度测定仪用毛细管法测定PET(聚对苯二甲酸乙二醇酯)树脂稀溶液的特性黏度
    PET又名聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate)是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽,是生活中常见的一种树脂。PET分为纤维级聚酯切片和非纤维级聚酯切片。①纤维级聚酯用于制造涤纶短纤维和涤纶长丝,是供给涤纶纤维企业加工纤维及相关产品的原料。涤纶作为化纤中产量最大的品种。②非纤维级聚酯还有瓶类、薄膜等用途,广泛应用于包装业、电子电器、医疗卫生、建筑、汽车等领域,其中包装是聚酯最大的非纤应用市场,同时也是PET增长最快的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,特别是热灌级聚酯产品生产过程中,由于该品种粘度指标范围窄,一旦受原料、生产过程控制等因素影响,未及时判断出原因进行调整,基础切片粘度无论是下降还是升高,若未及时将该部分切片进行有效隔离,直接进入到后续系统,将对后续固相增粘造成极大影响,致使调整困难,导致产品质量降等。聚酯生产过程中影响聚酯产品质量的因素很多,从纺丝的角度出发,主要有色相、端羧基、二甘醇含量及黏度等,其中以黏度对可纺性的影响最为显著。目前,绝大多数聚合装置都与直接纺长丝或短纤维的装置街接,并且越来越多的纺丝装置采用高速纺和细旦的品种,这就对熔体的质量特别是熔体的特性黏度稳定提出了更高的要求。 乌氏毛细管法是PET(聚对苯二甲酸乙二醇酯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性粘度也是PET(聚对苯二甲酸乙二醇酯)材料的核心指标之一。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:根据PET材料分类所选溶剂配比不同,纤维级聚酯切片可选择苯酚/1,1.2,2-四氯乙烷(质量比3:2)亦可选苯酚/1,1.2,2-四氯乙烷(质量比1:1),瓶级聚酯切片选择苯酚/1,1.2,2-四氯乙烷(质量比3:2); 2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PET树脂稀溶液样品的制备:在万分之一天平上精准称量精确到0.0001g,通过ZPQ-50自动配液器将溶液浓度精准配制到0.005g/ml,再将样品瓶放置到MSB-15多位溶样器中(纤维级90~100℃,瓶级110℃~120℃),待半小时内溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。苯酚/1.1.2.2—四氯乙烷(质量比50:50)作溶剂的试验,按公式(1)、(2)、(3)计算相对黏度(ηr)、增比黏度(ηsp)和特性黏度([η]):式中:ηr——相对黏度;t1——溶液流经时间,单位为秒(s);to——溶剂流经时间,单位为秒(s);ηsp——增比黏度;[η]——特性黏度;c——溶液浓度,单位为克每百毫升(g/100mL)苯酚/1.1.2.2一四氯乙烷(质量比60:40)作溶剂的试验,其结果按公式(4)计算:本文章为原创作品,无原作者授权同意,不得随便转载拷贝,侵权必究!
  • 药用辅料公示稿应对专题|药用辅料应用合集第二期
    辅料更新?岛津搞定!ICH协调背景下,辅料品种的标准更新频率非常高,今年药典委网站公示的标准草案中,聚山梨酯类修订了5个品种,淀粉类也更新了4个品种。本期辅料系列单页主要针对公示稿更新品种,岛津在重现公示稿方法过程中,明确了公示稿没有规定的参数,粉丝们直接Ctrl+C&Ctrl+V就可以啦!由于篇幅有限,今天只分享聚山梨酯系列,更多公示稿方案大家可以文末直接下载应用方案!聚山梨酯系列 今年药典委网站更新了一系列聚山梨酯公示稿,包括聚山梨酯20、40、60、80及80(Ⅱ),主要更新内容为新增甲醛和乙醛标示项以及将乙二醇、二甘醇放至标示项 。除更新内容外,聚山梨酯系列还涉及环氧乙烷和二氧六环、脂肪酸组成等检查项的理化测定。环氧乙烷和二氧六环岛津方案重现过程中,对于环氧乙烷和二氧六环,峰型容易拖尾,经过条件参数的调整, 采用SH-1 (30mx0.32mmx1μm;P/N:227-75725-30)色谱柱可以达到峰型对称效果。灵敏度溶液中环氧乙烷和二氧六环信噪比大于10,乙醛峰和环氧乙烷峰的分离度大于2.0,对照溶液和供试品溶液重现性良好,满足检测要求。脂肪酸组成对于脂肪酸组成检查项,采用色谱柱SH-PolarWax分析聚山梨酯60的脂肪酸组成,各脂肪酸甲酯峰形对称,重现性好,理论塔板数按硬脂酸甲酯峰计算远高于10000,满足检测要求。乙二醇和二甘醇对于标示项乙二醇和二甘醇分析,方案中乙二醇和二甘醇无杂质干扰,峰形和重现性良好,满足检测要求。此方法可为聚山梨酯60中乙二醇和二甘醇的测定提供参考。完整方案请查看“岛津实验器材”微信公众号或直接访问:https://mp.weixin.qq.com/s/D2MElGgMrNkEmlsXo8HhsQ 方案下载点击查看“药用辅料应用系列第二期”点击或扫码下载“完整辅料应对方案PDF”点击立即查看最新药斯卡排行榜
  • 仪器情报,科学家利用LTSTM等先进设备分析了吡啶氮掺杂石墨烯膜在高效CO₂捕获中的机理!
    【科学背景】随着全球气候变化问题日益突显,碳捕集技术成为减缓气候变化的重要手段之一。因此,研究人员一直致力于寻找能够高效、低成本地分离CO2的技术,以减少温室气体排放并促进碳中和。传统的CO2分离技术通常依赖于热力学过程,如化学吸收和物理吸附,但这些方法往往需要大量的能源消耗,成本高昂。因此,开发基于膜的CO2分离技术成为一种备受关注的方向,因为这种技术不依赖于热能,有望降低捕集成本。传统的膜材料如聚合物薄膜和金属有机框架等已经显示出潜在的应用前景,但它们的CO2渗透率受到选择层厚度的限制,难以进一步提高。此外,实现高CO2/N2分离因子的挑战在于难以兼顾高选择性和高渗透率。因此,本研究针对这些问题提出了一种创新的解决方案。瑞士洛桑联邦理工学院Kuang-Jung Hsu,Kumar Varoon Agrawal等研究团队利用二维孔隙结构,通过控制孔边缘的异原子掺杂来增强CO2与孔的结合亲和力。他们选择了石墨烯作为研究对象,通过将吡啶氮引入孔边缘,促进了CO2与孔之间的竞争性吸附。这种方法提高了CO2的装载量,使得即使在稀薄的CO2气流中也能实现高CO2渗透率和高CO2/N2分离因子。此外,他们采用了可扩展的化学方法,成功制备了厘米级的高性能膜,为实际应用奠定了基础。【科学亮点】(1)在本研究中,首次利用氨在室温下处理氧化的单层石墨烯,成功地在孔边缘引入了吡啶氮。这一方法使得孔边缘的吡啶氮取代成为可能。(2)实验结果表明,吡啶氮的引入导致了CO2与孔之间的高度竞争性但定量可逆的结合,这与理论预测一致。通过高分辨率X射线光电子能谱(XPS)确认了吡啶氮的引入。同时,低温扫描隧道显微镜(LTSTM)观察到了CO2的吸附和解吸过程,验证了吡啶氮引发的高亲和力。(3)此外,实验还显示了即使在稀薄的CO2气流中,也能实现高装载量,进而实现了高CO2渗透率和高CO2/N2选择性。由于化学反应的可扩展性,实验在厘米级膜上展示了高性能。【科学图文】图1:在吡啶-N-取代的石墨烯上,吸附CO2。图2. 在吡啶-N-取代的石墨烯上,吸收CO2。图3. 在吡啶-N-取代的石墨烯上,定量可逆的CO2吸附。图4:过能量色散光谱(EDS)和拉曼光谱确认吡啶氮取代石墨烯中的氮官能团。图5:吡啶氮取代石墨烯的CO2吸附和气体传输特性。图6: 竞争性CO2吸附,吡啶-N-取代石墨烯具有极好的碳捕获性能。【科学结论】这项研究为开发高效的碳捕集技术提供了科学价值。通过在石墨烯孔边缘引入功能异原子,特别是吡啶N,作者成功地改善了CO2在孔中的吸附性能,从而实现了高渗透率和高选择性的分离效果。这一发现不仅为膜科学提供了新的思路和方法,还将激发分子模拟和实验来进一步探索竞争性吸附的机制,为膜技术的进一步发展提供了重要的指导。此外,研究中采用的化学反应是基于气态反应物的,这使得相关技术具有了高度可扩展性,并且可适用于大面积样品的制备。因此,这项研究的成果不仅将对膜领域有所贡献,还将为其他领域,如高性能吸附剂、传感器和催化剂的开发提供有价值的参考。原文详情:Hsu, KJ., Li, S., Micari, M. et al. Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01556-0
  • 山东大学冯金奎教授AEM:一锅法蚀刻策略制备具有可调配位化学的分级多孔N掺杂碳包覆无氟MXene
    二维过渡金属碳化物和氮化物(MXenes)在层间距扩展、表面终止改性和成分结构构建方面的持续和大量探索引起了储能领域的极大兴趣。然而,由于对MXenes的配位化学缺乏基本的理解,它们的使用仍然受到严重阻碍。近日,山东大学冯金奎教授通过一种新的单点蚀刻策略,制备了具有可调控配位化学的分级多孔N-掺杂碳包覆的无氟Ti3C2Tx。通过高角度环形暗场扫描透射电子显微镜和X射线光电子能谱,作者确定了通过相位重建操纵的与N配位的Ti。此外,此外,明显观察到分级多孔氮掺杂碳(HPNC),其导致材料表面积的成倍增加,这源于微孔和中孔的显著增加。结果,Ti与N配合的结构协同效应和HPNC提高了结合能,减少了加速氧化还原动力学的能量障碍,并促进了多硫化锂的物理固定化。上述MXenes改性的隔膜赋予锂硫电池0.5 A g-1下889.5 mA h g-1的可逆容量,循环100次后容量保持率为79.5%。总的来说,这项工作提供了一种新的和通用的蚀刻策略,即直接合成具有可调谐配位化学的无氟MXene,以探索结构和电化学特性之间的相关性。文章要点:1. 这项工作通过基于新型室温熔融盐(1-Butyl-3-methyl-1H-imidazol-3-ium tetrachloroferrate (III), RTMS)的一锅蚀刻策略,操纵了具有可调谐配位化学的分级多孔N型碳包覆的Ti3C2TxMXene(Ti-N-Ti3C2Cl-C)。2. 通过粉末X射线衍射(PXRD)、高角度环形暗场扫描透射电子显微镜(HAADF-STEM)和X射线光电子能谱(XPS)鉴定了这种通过相位重构实现的Ti和N之间的独特协调结构。同时,在其表面明显观察到层次分明的多孔氮掺杂碳(HPNC),由于微孔和中孔的大量增加,使材料表面积增加了数倍。3. 通过实验和密度泛函理论(DFT)验证,Ti与N的配位结构提高了结合能并降低了能垒,加速了多硫化锂(LiPSs)的氧化还原动力学,而HPNC以及柔性屏蔽不仅缓解了Ti3C2TxMXene层的重新堆积,还提高了LiPSs的物理固定性。4. 此外,Ti-N-Ti3C2Cl-C修饰的隔膜使锂硫电池(LSBs)实现了优异的电化学性能,这确保了这种有前景的材料在能源转换和存储领域的应用。图1 材料制备示意图2 材料表征图3 对多硫化物的吸附与催化图4 锂硫电池性能
  • "齐二药"案主犯之一判无期 因犯危害公共安全等三重罪
    昨天(3日),泰州市中级人民法院传出消息,“齐二药”假药案主犯之一王桂平,因犯有危害公共安全、销售伪劣产品、虚报注册资本等三重罪,5月23日被该院一审判处无期徒刑,剥夺政治权利终身。 2006年4月,广州市中山大学附属第三医院,因使用齐齐哈尔第二制药厂生产的“亮菌甲素注射液”,导致十多名病人死亡,从而引发了震惊全国的“齐二药”假药事件。泰兴籍犯罪嫌疑人王桂平,因涉嫌向齐齐哈尔第二制药厂销售假冒的药用材料“丙二醇”被公安部通缉。 泰兴警方迅速成立专案组,很快将犯罪嫌疑人王桂平捉拿归案,并辗转广东、黑龙江、重庆、浙江、山东等10多个省(市、区)调查取证,最后查明王桂平伪造“中国地质矿业总公司泰兴化工总厂”营业执照、药品生产许可证、药品注册证,用“二甘醇”冒充药用“丙二醇”销售给齐齐哈尔第二制药厂,致使该公司生产出来的“亮菌甲素”不合格,最终导致14名患者死亡。此外,王桂平还虚报注册资本,成立江苏美奇精细化工公司,以“二甘醇”假冒“乙二醇”销售给重庆市某化工有限公司,以“二甘醇”假冒“二聚丙二醇”销售给浙江省宁波市某日用品有限公司,累计销售金额30多万元。法院审理认为,王桂平的行为已触犯刑律,以危险方法危害公共安全,社会危害性极大,依法应予严惩,遂判处其无期徒刑,剥夺政治权利终身,并处罚金人民币40万元,没收违法所得29万余元。 “齐二药”重大责任事故案一审宣判 曝光 "齐二药"被告爆惊人内幕 法庭数度哗然 齐二药案主犯一审获刑7年续:被质疑量刑太轻
  • 味精里掺杂盐和硫酸镁 谷氨酸钠严重不达标
    味精颗粒   杂味的味精   小王是个挺较真的人。最近他和朋友到一家饭馆吃饭,觉得菜比往常咸了很多。服务员解释说可能是味精放多了。服务员的这番解释让小王感到非常奇怪,菜炒咸了,跟味精有什么关系呢?较真的小王回到家就上网查了起来。   小王:在网上了解会往里边掺加一些盐、糖或者是淀粉其它一些东西。   小王在网上查询后了解到,味精,学名“谷氨酸钠”,成品为白色柱状晶体,可以增加食物的鲜度,不应该有咸味。同时,小王还发现,有很多网友爆料说,味精里其实并不全是“谷氨酸钠”。真得是这样吗?为了了解更多,小王又到市场走了一圈,发现了一些他以前不知道的事。   小王:我到市场以后,通过跟商户交谈,商户就跟我说这味精里边,它的谷氨酸钠的含量都不够,里边它本身就是,往里边掺很多东西。   “炒菜不用放盐了”   小王打听到,这些大包装的袋装味精虽然都标注了谷氨酸钠大于等于99%,但是里面却并非都是纯粹的谷氨酸钠,那都加了什么呢?按照小王提供的信息,记者走访了青岛市的两个批发市场。   在青岛市抚顺路蔬菜副食品批发市场里有数十个批发调味料的摊位,每家都有几种牌子的味精在卖。记者在市场里看到,这里销售的味精有三种,无盐味精、加盐味精和增鲜味精,三种味精当中的谷氨酸钠含量也各不相同。摊主告诉记者,这种2.5公斤装的“无盐味精”,谷氨酸钠含量能达到99%以上,销量最好。   记者:这种一般你一个月能走多少?(好了能走200袋,不好能走150袋。)   商户:这一个月我光在这个地方就十几吨吧。   商户告诉记者,这种2.5公斤装的味精,普通家庭并不常用,主要供应酒店、饭馆等一些餐饮机构。   商户:这个货就可以呀,一般酒店用都用这种。   商户:基本都是川菜馆。   商户:饭店都吃。   商户:反正就是周边这几个饭店,还有学校,那些大学,大学那一要就一大包。   记者在市场上发现,虽然都是2.5公斤装的无盐味精,可是价格却不同,从十八九元到二十八九元不等,一袋味精的价格竟然能相差近十元钱,这是为什么呢?   商户:你去检验去吧,里边全是盐,你不用看,都是一个厂家的,你不信拿着上工商吧,你这两袋都拿着,你去检验去吧,我给你出钱不要紧。   味精里加盐?这不是无盐味精吗?怎么会加盐呢?怕记者不信,商铺老板还认真地指给记者看,袋子里一粒粒的细碎的小颗粒,老板说那就是盐了。   商户:看见没有?这都是盐,你看盐的晶体,炒菜不用放盐了呗,这个绝对不用放盐。   果然,这种售价为22元标称为谷氨酸钠含量99%以上的无盐味精里除了针状的结晶外,还有一些圆形的小颗粒,跟味精的的形状完全不同,尝起来咸咸的。   这位经营者说,加盐是为了降低生产成本,盐掺得越多,自然厂家赚得也就越多。   商户:这个五斤味精里边掺上半斤盐,(半斤盐差多少钱?)它那五元多钱一斤一下子成了多少?一下减了三四元,你掺上一斤呢,好味精的话五斤掺上一斤盐没问题的,绝对没问题。   包装是一回事实际含量是另一回事   记者走访发现,其实,往无盐味精里掺盐在市场上已经是个公开的秘密了。在青岛市城阳蔬菜调味品交易批发市场,一些经营者告诉记者,因为味精里掺了大量的盐,所以,一些饭馆里的厨师炒菜根本不再放盐,只放味精就行了。而且,很多杂牌味精都是买了别家的纯谷氨酸钠味精自己再勾兑包装后出售的。   商户:等于就是说这些味精,全是买它家的味精作原料,然后勾兑的,再做成的味精,就它家是原料。   商户:(一般都加啥呀?)加盐加糖和淀粉,(那不能看出来吗?)你要是亮度不好的话,发黑的话里边就加了,盐它根本就不像味精那么亮,加上盐它没那么亮。   虽然在外包装上标注的,都是谷氨酸钠含量达99%以上的无盐味精,但商户们心里很清楚,包装上标的是一回事,里面实际含量又是另一回事。关键还要看价格。   商户:我说要是便宜的你就算呗,肯定是加盐加的就多,越便宜加盐越多,没听懂啊?盐便宜,盐才一元来钱一斤。   商户:6.5元一斤,盐才几角钱一斤,这不就钱出来了。   记者在市场上还了解到,由于近一段时间市场加强了管理,工商部门要求产品都要由厂家提供检验合格证书才能销售,所以许多味精厂把过去的产品包装换掉了,本来是标称99%的谷氨酸钠味精,现在都标成了80%。   发苦的味精   其实味精掺假,不仅仅局限在加盐上,还有其它的东西!因为味精颗粒有大小之分,而盐和淀粉的颗粒比较细,所以厂家一般会掺到小颗粒的味精里。那么大颗粒的味精里又会掺些什么东西呢?   记者购买了一些元味苑牌的无盐味精,它标称谷氨酸钠达到99%以上。但记者打开包装后发现,里有一些形状与味精相似的结晶体,个头要比味精的颗粒大些,尝起来有一点苦涩的味道。随后,记者在青岛建航牌的无盐味精中也发现了这种味道发苦的大个晶体。   小王:有的味精颗粒比较小,里边会掺加一些盐、糖,这都能看出来,还有一些颗粒比较大的,长粒的跟味精很相似的一种味精,但是颜色上不一样,用嘴一尝呢,它略微有种发苦的味道,跟味精的味道是不一样的,所以我就怀疑我说这种是什么东西。   这个形状跟味精相似,味道却大不一样的晶体到底是什么呢?除了盐、糖以外,味精里还加了其它的东西吗?   这袋名为元味苑的味精,是由青岛知味居味精有限公司生产的,记者按照包装上的厂址找了过去。但到了村口打听了很久,也没人听说过有家味精厂,几经周折,记者终于在一个深深的胡同当中,发现了一栋有厂房的大院,但院门口却没有挂任何的名牌和标志。村民们告诉记者,这里就是知味居味精厂。   村民:它家一直就是味精厂。   这个神秘的知味居味精厂位置并不显眼,也不挂任何厂牌,工作人员也很是神秘,不知道它们生产的东西到底加了什么。   添加物不止是盐、淀粉、石膏   记者又来到了一家生产“六合香”味精的厂家,这里的销售人员给记者讲述了一些业内的秘密。   销售人员:因为假的比较多,以次充好的比较多,非常乱,(味精能假到哪去?)加东西嘛,主要是盐,也有加其它的东西,包括最厉害的是在市场上出现的,加乱七八糟不能吃的东西,包括食品添加剂里边的东西。   这位销售员对味精里添加的不能吃的东西欲言又止,接着,他又给我们拿出了一盒他们自己从市场上搜集来的其它厂的掺假味精,并告诉我们,这些产品不论标称谷氨酸钠含量是99%,还是80%,基本上都没有达标。   销售员:(谷氨酸钠百分之八十这个能达到多少?)达到七十四点几吧,百分之七十五吧。   销售员说,别看只比标准低几个点,利润就是这样省出来的。   销售员:它的含量低五个点,每低一个点的味精,它加上盐之后,就得省八十元钱一吨,一个点,你说它差这五个点,它说八十的,给你的是七十五的,那五个点就等于说是四百元钱,这个它还是合算的,一样的钱它多赚四百元钱。   这位销售人员告诉我们,除非他们这些专业人士,不然一般人是看不出来味精里到底有没有掺假。   销售人员:这个里边道道很多,小商贩它越小,猫腻越多,往里边加了很多东西,(都加什么呀?)不好说,有一些业内的一些东西呀,不太想透露,就是对这个行业不好。   在记者的一再追问下,销售员打开了电脑,给记者查起了网页。我们看到了盐、淀粉、石膏等这些添加物。   销售人员:还有厉害的。   除了盐、淀粉、石膏外,还有更厉害的添加物,到底是什么呢?销售人员给记者打开了一个名为味精状硫酸镁的图片。   销售人员:这个就是味精状硫酸镁,一模一样啊,所以说你刚才看那个晶体或怎么样,你根本看不出来是吧,(你发现过有人加了吗?)我发现过。   据这位销售员说,某些小企业,会往味精中添加一种名为味精状硫酸镁的东西。那么,记者和小王在味精中发现的这些针状晶体就是味精状硫酸镁吗?   打破砂锅问到底,小王把自己买到的这种元味苑味精,拿到了当地的通标标准技术服务有限公司进行了检测。国家标准中,没有关于“硫酸镁“的检验方法。因此,检测单位对硫酸根和镁分别进行了检测,结果是,样品中谷氨酸钠的含量只有69.2%,与标称的99%相差30%,每100克味精中,镁的含量达到了2.3毫克。   五、六百元的硫酸镁不可能是食品级的   这些镁是怎么进入味精的呢,记者在网上搜索了一些生产味精状硫酸镁的厂家,它们大都宣称这是味精专用添加剂,记者给其中一些厂打了电话。   记者:味精状的,(你要要,最便宜495一吨),有没有味精厂用过你这个东西?(有,有用过的,他们回去还得掺别的东西。)   记者:你那有硫酸镁吗?(有,550元每吨),供没供过味精厂?(味精厂,多,差不多味精厂都用这个,有的味精厂大点的,一个月差不多七八十吨。)   记者共打了近十个厂家的电话,其中有五六家说自己给味精厂提供过硫酸镁,但一位生产食品级硫酸镁的厂家销售员却说,五、六百元的硫酸镁不可能是食品级的,是不能食用的。   销售员:我觉得500元不可能是食品级的,一到食品级它就不一样了,就比较差的食品级,也得一两千元了,应该就差在,它的卫生各个方面不达标,就是重金属,还有各个细菌,大肠杆菌之类的,还有重金属类的都会超标。   味精的国家标准中要求,谷氨酸钠味精中,谷氨酸钠的含量要达到99%,那么,记者发现的那两种有杂质的味精是否能达到这个标准呢?它里面到底添加了什么呢?   记者在批发市场上购买了两个品牌的无盐味精,分别是青岛市知味居有限公司生产的元味苑牌味精,和青岛建航味精有限公司生产的建航牌味精。两袋味精都标称自己的谷氨酸钠含量为99%,记者把这两袋味精送到了北京市理化分析测试中心进行了检测。   结果显示,元味苑牌味精的谷氨酸钠含量只有70.9%,与99%的要求相差近30%,味精中硫酸盐的含量超出了国家标准,大于0.05%,而且,镁的含量达到了每公斤102毫克。   建航牌味精的谷氨酸钠含量只有63.8%与标准要求相差35%左右,同样,它的硫酸盐含量也大于0.05%,镁含量甚至达到了每公斤143毫克。
  • 国家化妆品质检中心:牙膏中限用物质检测方法研究立项
    牙膏中限用物质检测方法研究立项   新方法将能检测出牙膏等口腔护理产品中是否含有超量的过氧化物等限用物质   继三氯生、二甘醇等限用物质在牙膏中无处遁形之后,过氧化物、氯酸盐、乙二醇等限用物质也将在牙膏中无处藏身了。记者近日从国家化妆品质量监督检验中心(北京)了解到,由该中心负责的2012年度公益科研专项标准化项目——《口腔护理产品中重要禁用和功效性成分检测方法研究》已正式立项。这意味着最迟到明年,我国将有方法检测出牙膏等口腔护理产品中是否含有超量的过氧化物、氯酸盐、乙二醇等限用物质。   近两年曝光的牙膏中三氯生、二甘醇等事件,使口腔护理用品的质量安全问题成为老百姓关注的热点。国家化妆品质量监督检验中心(北京)专家告诉记者,广义上的口腔护理用品是指具有清洁美化作用,并能辅助预防或减轻口腔问题的产品,主要包括牙膏、牙刷、含漱液、菌斑显示剂、牙齿漂白剂、口香糖、牙线、牙签和假牙清洁剂等。目前在口腔护理产品中常见的质量安全问题主要有超量使用限用物质,使用或带入禁用物质以及虚假宣传使用功效性成分等问题。   据悉,过氧化物作为氧化剂在一些口腔护理产品中被广泛使用,如果其含量过高,被人体不慎吞服后,会对口腔黏膜、食道及胃造成伤害。《化妆品卫生规范》中明确规定其在口腔卫生产品中的最大使用限量为0.1%。   碱金属氯酸盐除发泡、清洁作用外,还能防止口腔酶类发酵、减少酸的产生,有一定的防龋效应,但过量使用会对消化道黏膜有刺激作用,易引起肾小管肿胀、变性、坏死。《化妆品卫生规范》规定其在牙膏中的最大使用限量5%。   乙二醇具有一定的保湿作用,对动物有毒性,人类致死剂量约为1.6g/kg。由于乙二醇极易随其他原料作为杂质被带入牙膏成品中,因此国标《牙膏用原料规范》(GB 22115-2008)规定禁止其作为牙膏原料,随原料带入的二甘醇和乙二醇之和应为≤0.1%。目前我国已有《牙膏中二甘醇的测定》(GB/T 21842-2008)国家标准,尚无牙膏中乙二醇的国家标准检测方法。   据该中心专家介绍,现有的国家标准仅能对牙膏中是否含有二甘醇和超量三氯生进行检测,而对于过氧化物、氯酸盐、乙二醇等在牙膏中经常使用的限用物质尚无检测方法。《口腔护理产品中重要禁用和功效性成分检测方法研究》将有效填补这方面的空白。
  • 我国将实施新的牙膏强制性国家标准
    新国标将出台 成人牙膏含氟量规定为0.05%至0.15% 牙膏新国标限氟量   据记者调查目前市场上的牙膏含氟量已达到新国标   本报讯(记者汪红)从明年2月1日起,我国将实施新的牙膏强制性国家标准,对功效性牙膏进行了规范,规定成人含氟牙膏的氟含量为0.05%到0.15%。   记者今天上午从国家标准委公布的标准实施公告中获悉,与2001年版的牙膏标准相比,新国标在许多方面都作了增加和调整:首次将“二甘醇”和“三氯生”等物质列入到原料规范中并明确限量值,明确了含氟儿童牙膏中氟的指标限量值。   另外,新标准还首次明确了标准的适用范围:将适用于清洁及护理口腔的各种牙膏。   对于新国标,记者采访了牙膏新标准的主要起草专家、国家轻工业牙膏蜡制品质检中心常务副主任孙东方和中国口腔清洁护理用品工业协会相关负责人,进行解读。   牙膏国标专家解读   新国标适用功效型牙膏   新国标:这几年来备受消费者关注的功效型牙膏也被明确列入新国标的适用范围。   专家解读:以往,生产企业虽有功效型牙膏质检标准,但缺乏整个行业统一的规范。   目前,我国已出台首部功效型牙膏国标。下一步,相关协会和部门将加紧制定有关的评价方法以及成分检测、广告宣传等标准,以促进对功效牙膏的管理更加完善。   氟含量为0.05%到0.15%   新国标:新国标将成人含氟牙膏的氟含量底线由0.04%提高至0.05%,并规定儿童含氟牙膏中氟含量应在0.05%到0.11%之间。   专家解读:氟对预防龋齿的作用在国际上是公认的,但氟加多了也会对人体产生副作用。牙膏中氟含量在0.04%至0.15%间较为合适。   但是,有效氟在牙膏膏体中含量会随时间递减,所以新标准将成年人含氟牙膏的氟含量底线提高了。特别小的儿童应在大人监督下刷牙,一次牙膏使用量最好为豌豆粒大小。   限量添加二甘醇成分   新国标:禁止牙膏添加的成分有近1500种,包括消费者关注的二甘醇等。对二甘醇的规定是:不许人为在原料中添加,如作为杂质带入,在牙膏中的含量不得超过0.1%。   同样受消费者关注的三氯生则被列入到允许添加的防腐剂中,但明确不得超过0.3%。   专家解读:去年5月美国报道我国出口的两款牙膏被查出含二甘醇,我国质检总局证明:长期使用二甘醇含量低于15.6%的牙膏不会对人体产生不良影响;2006年“三氯生可能致癌”的消息传开,高露洁处于漩涡中心,后经证实用少量是不会对人体造成危害的。   对以上成分限值进行规定,既可让其起到抑制微生物生长的作用,又不会对人体产生危害。   pH 值与国际标准接轨   新国标:牙膏产品的pH值由5.0至10.0调整为5.5至10.0。   专家解读:pH值代表牙膏的酸碱性,pH值低于7.0时呈酸性,高于7.0时呈碱性,pH值过高或过低对牙齿及口腔黏膜都有损伤。为更好地保护牙齿,与国际标准接轨,新国标对此作了微调。   牙膏市场   记者调查   消费者只看功效不关注成分   从昨天下午到今天上午,记者在牙膏柜台前询问了10余名买牙膏的消费者,他们表示均未关注过牙膏的成分,只是看功效。   通州区家乐福超市牙膏柜台的销售人员告诉记者,“美白、消炎的卖得最好,没人问成分”,牙膏的功效是最大的卖点。   有的消费者说含氟不好,听过媒体报道称氟可致癌,有的说含氟有好处,但不知道有含量限制。听过记者的介绍,很多消费者表示,为了健康,以后他们会留意牙膏的成分。   目前牙膏含氟量已达到新国标   从昨天下午到今天上午,记者走访了物美、家乐福、美廉美等多家超市,发现几乎每款牙膏都是把功效写在外包装最醒目的位置。而对于成分,只有少数牙膏标注了成分,大部分牙膏只注明了含氟成分。   记者看到,一款今年8月份生产的黑人牌成人牙膏,外包装上注有“含氟量0.10%”。高露洁等品牌的成人牙膏包装上,一般注有“含氟量0.10%到0.14%之间”,“二甘醇”、“三氯生”等成分在包装成分介绍里并未发现。   而新国标将成人含氟牙膏的氟含量规定为0.05%到0.15%,可见目前市场上的牙膏含氟量符合新国标。 文/记者周超   ▲贴士:含氟牙膏具有增强牙齿抗龋功能的作用,大部分人都可使用。   牙膏国标协会说法   牙膏合格率上升消费者可放心用   今天上午,中国口腔清洁护理用品工业协会相关负责人告诉记者,我国牙膏产品的总体质量是稳定的,而且近年来抽查合格率也呈上升趋势。去年,行业产品抽查合格率达到100%。目前,正规厂家生产的牙膏产品质量是有保证的。   新标准实施后,多数的企业产品完全可以达到要求,消费者可以放心使用。但一些私人小作坊的产品则还需相关部门加大监管力度。
  • 高纯试剂中杂质检测专题——工业甲醇中铵离子的测定
    01 引言 离子色谱法测定甲醇中铵离子 监测甲醇中铵离子含量在煤基合成甲醇工艺中具有重要作用。在煤基合成甲醇过程中,会产生一系列杂质气体 ,如 CO 、NH3 以及有机硫化物、氮的氧化物、煤焦油等,而铵离子会引起合成过程中的催化剂中毒失效,致催化剂效率严重下降;同时铵离子含量较高时会降低低温甲醇洗脱硫效率、对工艺设备有严重影响。因此,通过控制甲醇中铵离子的含量 ,可以防止催化剂中毒,提高转化率,降低成本。工艺控制中工业用甲醇中铵离子含量不得大于0.05mg/L.制定工业用甲醇中铵离子测定方法,是为工业甲醇的杂质检测提供一个试验方法,对指导甲醇为原料的相关生产过程的检测具有重要意义。目前甲醇中NH4+的测定都是采用离子色谱法,2022年3月1日开始实施国标《工业用甲醇中铵离子的测定离子色谱法》,下面小编分享下甲醇中NH4测定的离子色谱法。02 相关标准 GB/T 40395-2021《工业用甲醇中铵离子的测定离子色谱法》03 皖仪科技应对方案 皖仪仪器设备 试剂耗材 甲醇:色谱纯;铵根离子:ρ=1000mg/L;一次性注射器(0.5-2mL);有机系针式过滤器(0.22μm) 测试结果 标曲线性测试NH4+标曲重叠谱图NH4+线性说明:由于所有胺类物质一次线性范围均较窄,本次按照标准要求配置的标准曲线系列梯度范围较宽,因此,标准曲线采用二次曲线拟合,本次测试铵离子线性相关系数为R2=0.99996,线性良好。------ 重复性测试 ------ NH4+0.05mg/L连续3针测试谱图NH4+0.2mg/L连续3针测试谱图NH4+2.0mg/L连续3针测试谱图 ------ 重复性结果 ------ 说明:根据谱图及测试结果可见,所有组分定量重复性均小于1%,定性重复性均小于0.2%,测试重复性良好。------ 检出限 ------ 注:标准中规定,在进样体积为50μL下,测定下限为0.01mg/L,本测试以NH4+0.05mg/L进样,考察其峰高,取测试最大噪声,以3倍信噪比对应峰高为检出限。------ 测试结果 ------ 经计算,本次测试 NH4+检出限为 0.434μg/L,小于标准要求的 0.01mg/L。04 总结 结果表明 本文采用离子色谱法,对甲醇中 NH4+进行测定,准确度高,灵敏性好,精密度好,该法可用于甲醇中 NH4+的测定。05 注意事项 — END —扫描二维码 |
  • 肝素钠与其类似物杂质的高效分析
    由于肝素钠在分子量分布和电荷差异上的异质性,对其进行有效分析一直是一个挑战。而且,这些杂质通常具有与肝素钠相类似的特性,使得在使用分析方法时很难区分肝素钠与其杂质。为了有效将肝素钠从杂质中(包括生产过程产生的杂质如硫酸皮肤素和非法添加的杂质如多硫酸软骨素)分离出来,美国药典(USP)颁布了一种采用离子交换色谱鉴定肝素钠及其杂质的色谱方法(注:中国药典对肝素钠的检测方法和USP相同)。然而,目前市面上的离子交换色谱柱很少能够满足USP的分离度标准,因此,迫切需要有一种新型填料来对其进行改善。赛分科技近日开发了一种离子交换色谱柱&mdash &mdash Glycomix&trade SAX,可对如肝素钠这样的带多电荷聚糖样品实现高效分离。 图1肝素钠、硫酸皮肤素和多硫酸软骨素在Glycomix&trade SAX上的分离色谱图 色谱条件 Column: Glycomix&trade SAX, 4.6 x 250 mm Guard column: Glycomix, 4.6 x 50 mm Mobile phase: A: 0.04% NaH2PO4, pH 3.0 B: 0.04% NaH2PO4+14% NaClO4, pH 3.0 Flow rate: 0.22 mL/min Gradient: 20% - 90% B in 60 minutes Wavelength: 202 nm Column temp: 25 ℃Injection volume: 10 mL Pressures: 9.5 bar Sample: 20 mg/mL Heparin sodium 1 mg/mL Dermatan sulfate (DS) 1mg/mL Oversulfated chondroitin sulfate (OSCS) in H2O 在Glycomix&trade SAX柱上,肝素钠和硫酸皮肤素的分离度为3.8,肝素钠和多硫酸软骨素之间的分离度为5.8,远远超过USP所要求的1.0和1.5。 图2 肝素钠、硫酸皮肤素和多硫酸软骨素的标准曲线 图3 Glycomix&trade SAX的批次重现性 更多信息:http://www.sepax-tech.com.cn/products/tjpz1/lzjh/Glycomix/13.html 《Glycomix&trade SAX产品手册》 点击下载 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站:www.sepax-tech.com.cn www.sepax-tech.com
  • 达标蜂蜜未必纯正 新国标未涉及大米糖浆检测
    将不同的蜂蜜样本进行取样萃取。   实验室检测人员在电脑上分析大米糖浆检测数据。   通过酶标仪检测氯霉素残留。   ■ 送检说明   ●组织送检单位:   “绿篮子”食品安全科普组织,由英国大使馆文化教育处指导创建,指定中国土畜进出口商会检验支持。通过媒体公开安全食品标准、解读标准,引导公众作出正确的选择。鼓励企业为食品安全履行更多承诺。   ●送检样本:   慈生堂结晶蜂蜜400g:抽检产品在北京沃尔玛超市随机购买。   同仁堂荆条蜂蜜:从同仁堂北四环华堂商场专柜购买。   百花牌枣花蜂蜜454g:在北京大润发超市购买。   百花调制儿童蜂蜜膏450g:从华堂超市购买。   冠生园纯天然蜂蜜580g:从北京大润发超市民族园店购买。   中粮悦活枸杞蜂蜜454g:在北京北四环华堂超市购买。   福明洋槐蜂蜜500g:厂家送交绿篮子团队,委托检测。(非市场领导品牌,在北京购买不到)   感蜂堂洋槐蜂蜜:厂家送交绿篮子团队,委托检测。(非市场领导品牌,在北京购买不到)   ●检测方法:在蜂蜜制造业业内人士的指导下,对比了欧盟、日本等国家蜂蜜标准后,共检测8项内容,按排除法一一检测。   ●检测内容:(按检测步骤先后顺序):SM-R大米糖浆检测、β-呋喃果糖苷酶检测、碳六项检测、TLC检测四项真实性检测 氯霉素、甲硝唑、硝基呋喃、四环素族四项安全性检测。   ●检测机构   秦皇岛出入境检验检疫局:拥有针对蜂蜜类产品最严格的实验室检测方法,是欧盟、日韩等多个发达国家认可的蜂蜜出口检验单位。   ●检测结果   三送检样品掺有大米糖浆   在此次送检的八个样品中,其中有三个样本在SM-R检测中结果呈阳性,证明其中掺入大米糖浆,并非纯正蜂蜜,其中包括北京和上海的某知名品牌的蜂蜜。   其他5个蜂蜜产品在本轮抽检批次中顺利通过了真实性与安全性检测。   【真实性检测】   SM-R大米糖浆检测   将已经萃取提纯的蜂蜜液态样品,送入液相色谱串联质谱仪中。实验人员解释说,如果将色谱柱当作跑道的话,各种不同的物质,通过液相极性分离出不同的糖,由于分子量、分子结构极性不同,在相同助力的推动下,却会先后到达终点。通过色谱图观察,不同物质达到峰值的时间预算,可确定是否是大米糖浆,而通过达到的峰的面积可以确定含有的大米糖浆的含量。   SM-R是大米糖浆里特有的物质,也是判断蜂蜜是否纯正最重要、最基本的检测项目之一,为我国蜂蜜出口欧盟的必检项目之一。如果产品被检测出SM-R呈阳性,则涉嫌在蜂蜜中掺入大米糖浆。大米糖浆虽然也是糖,但却廉价,其保健功效是完全不一样的。   β-呋喃果糖苷酶检测   β-呋喃果糖苷酶检测是在液相色谱仪上进行的,同样的送样、极性分离后的与标准色谱卡的对照,来判断是否含有β-呋喃果糖苷酶。   β-呋喃果糖苷酶,可将蔗糖直接转化成葡萄糖和果糖。作为蜂蜜掺假手段之一,其作用机理是将普通蔗糖的葡萄糖基与果糖基的s-(1,4)糖苷键断裂,生成果糖与葡萄糖。如果在加入二糖蔗糖的同时又加入了β-呋喃果糖苷酶,就可将蔗糖直接转化成葡萄糖和果糖,而天然蜂蜜中90%的成分为葡萄糖和果糖这两种单糖,但这种化学方式生产的“蜂蜜”其营养价值与天然蜂蜜完全不同。   “在这种情况下掺杂糖浆和白砂糖的蜂蜜有可能借助于HPLC也检验不出来。”实验室人员解释说,现在针对β-呋喃果糖苷酶建立了相应的检测方法,针对甜菜糖来源的果葡糖浆掺假进行检测,能够控制一部分的造假行为。   碳六项检测   通过“碳同位素质谱分析仪”检测,这项检测专业的说法叫液相串联同位素质谱检测,来判断蜂蜜中各种糖同位素值的测定方法。液相分离不同的糖,不同糖的同位素比值不一样,来判断糖的种类。   “大米、玉米、马铃薯等植物的糖是碳四植物糖,碳四植物糖通过光合作用产生,不是蜜蜂酿造的,蜂蜜中碳四植物糖含量越高,说明造假越严重。”据业内人士透露,碳同位素检测,主要是通过碳13蛋白和蜂蜜的碳同位素阈值来判断蜂蜜是否掺假,但阈值在-23~--23.5之间的为灰色地带,即不能判断它是否掺假。   TLC检测   又称高果糖浆检测,高果糖浆是一种多糖,淀粉类植物如马铃薯、甜菜糖等都属于高果糖浆,味道和颜色与蜂蜜相似,但是价格比蜂蜜便宜很多。TLC检测使用的是薄层色谱检测法,检测方法看似很老土———通过将样品滴在硅胶板上的“履迹”和颜色深浅,来判断其中是否含有高果糖浆。   【安全性检测】   氯霉素等四项抗生素残留检测   真实性检测均过关的蜂蜜产品,统一通过酶标仪检测氯霉素、硝基呋喃、硝基咪唑类、四环素族,这四项均为蜂蜜中的抗生素残留成分。比如便宜效果好的氯霉素是用来防治蜂病的,但如果蜂蜜中的氯霉素残留,被人体摄取后,会增加致癌的可能性 而甲硝唑可造成恶心、呕吐、腹痛、头晕、站立不稳、精神错乱等症状 硝基呋喃是合成药物,有抑菌作用,但同时也能致癌 四环素残留可能会导致儿童牙齿损害,成人造成肝脏损害。   ■ 检测方声音   对比色谱-质谱发现SM-R   蜂蜜的主要成分是葡萄糖和果糖,掺入糖和糖浆是最简单的方法。针对蜂蜜的掺杂造假的检测方法也一直在发展。常见的掺假方法是通过大米糖浆和甜菜糖浆加入蜂蜜掺假,与甜菜糖浆相比,大米糖浆价格便宜,所以目前最为严重的就是通过大米糖浆掺杂在蜂蜜中造假,又由于检测方法跟不上,市场上有人公然兜售能满足所有蜂蜜检测要求的大米糖浆。   我们今年开始使用通过对比大米糖浆和蜂蜜的色谱-质谱的差别,发现了一种糖浆中特有的物质(SM-R),通过检测该物质能有效地鉴别蜂蜜中是否掺杂了大米糖浆。方法对于掺杂了5%大米糖浆的蜂蜜都能有效的鉴别,方法快速,准确率高。   ■ 行业发言 假蜂蜜形成规模会破坏生态系统   ●周磊,绿篮子食品安全科普团队蜂蜜选题负责人   现行蜂蜜的国家标准为中国蜂产品协会主导,而蜂产品协会的主要成员基本由上海冠生园、北京百花、江西汪氏等国内几大蜂蜜厂家的负责人组成,蜂蜜国家标准虽然规定了“不得添加或混入任何蜂蜜以外的物质”,但没有对检测项目和具体指标做限定,导致检测项目无法鉴别蜂蜜的真假。   尽管新标准仍只使用碳4检测项目来鉴别蜂蜜,但是中国蜂产品协会还是致函卫生部,对新标准提出异议,主要内容是“对不涉及食品安全的感官指标、理化指标等写入食品安全标准提出了行业意见”,并提出暂停执行新标准的建议,力求“放宽”,而非“打假”。   蔗糖蜂蜜、高果糖浆蜂蜜是近年来除了普遍存在的大米糖浆掺假蜂蜜后的另几种高科技蜂蜜造假手段,它们可以欺骗传统的检测仪器,而掺假技术还在发展,很多检测项目结果已不能断定真假蜂蜜,被逐步弱化为“参考指标”。   假蜂蜜虽然吃了无害,但形成规模后,少数蜂农也被动掺假、蜜源无法被控制。人类高依赖性生态圈的花朵授粉已少有野生蜂采蜜,人工蜂业萎缩会导致生态系统连锁受损。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制