当前位置: 仪器信息网 > 行业主题 > >

额叶皮层白质

仪器信息网额叶皮层白质专题为您整合额叶皮层白质相关的最新文章,在额叶皮层白质专题,您不仅可以免费浏览额叶皮层白质的资讯, 同时您还可以浏览额叶皮层白质的相关资料、解决方案,参与社区额叶皮层白质话题讨论。

额叶皮层白质相关的资讯

  • 单细胞测序绘制人类大脑皮层图谱,揭示神经发育中分子动态特征
    从解剖学角度来看,大脑可以被细分为多个特定区域,包括新皮层(neocortex)。大脑皮层是高级认知的中枢,是人类进化过程中大脑中扩张和多样化最多的区域。早期的大脑分区和皮层分区是由形态发生梯度(morphogenetic gradient)引导建立的【1-2】,但随着发育进程的展开,这些早期模式如何产生更加精细更加离散的空间差异目前还不是很清楚【3】。大脑皮层的发育过程已被研究了一个多世纪,历史上科学家通过每次只观察一种细胞类型,研究少量的基因,随后逐步拼接整个发育事件来进行探索。但我们必须意识到,大脑在同一时间并不是只产生一种细胞类型,而是数百种细胞类型一起发生发展,就像交响乐一样美妙且复杂。随着单细胞和空间转录组学的出现和发展,结合大数据分析,我们已经能够去探究神经发育这支交响乐中所隐藏的规律。2021年10月6日,来自美国加州大学的Arnold R. Kriegstein团队在Nature杂志上在线发表了题为An atlas of cortical arealization identifies dynamic molecular signatures的研究论文。该研究利用单细胞测序研究了神经发育和早期胶质生成阶段10个主要的脑区和6个新皮层区域,揭示了不同皮层区域不同细胞纵向发育的分子图谱。绘制人类大脑发育图谱 为了描绘大脑发育过程中不同脑区及皮质区域的细胞多样性,作者收集了妊娠中期(怀孕3-6个月,神经发育高峰期)的大脑组织,随后进行为分割(大脑细分后的区域称为“regions”,皮层细分后的区域称为“areas”)和单细胞转录测序(图1)。作者从13个个体中拿到了10个脑区(主要是前脑、中脑和后脑)样本及6个新皮层区域样本(prefrontal cortex(PFC), motor, somatosensory, parietal, temporal 和primary visual(V1)皮层),最终获得了698,820个高质量的单细胞数据。通过UMPA(uniform manifold approximation and projection,新的降维技术,用于数据可视化和探索)分析,作者发现了预期的细胞类群(包括excitatory neurons,intermediate progenitor cells(IPCs),radial glia等)。数据表明,在整个大脑中,细胞类型是产生区域分化隔离的主要因素。区域特定基因分析显示,一些区域特异性基因存在于同一区域中的多个细胞类型中,说明某些区域性表达基因特征在细胞类型中具有高度渗透性。图1. 测序样本收集示意图新皮质中的细胞类型 已有研究表明新皮质包括几十个专门从事认知过程的功能区【4】。V1和PFC中的神经元在出生后就完全不同【5】,而其他的细胞类型并没有展示出明显的区域特异性差异。为了进一步扩展已有的研究,作者对来自于特定皮层区域的单细胞进行测序分析,获得了387,141个高质量的单细胞数据。通过分析,作者发现了预期的细胞类型,包括Cajal-Retzius neurons, dividing cells, excitatory neurons等。随后,按细胞类型进行分层聚类得到了138个新皮质细胞群,其中104个细胞群是由来自多个皮层区域的细胞组成的。动态区域性基因特征 为了探究新皮质发育过程中的细胞区域性差异,作者在皮质不同区域的兴奋性谱系中(radial glial (RG), IPCs和excitatory neurons)寻找每个细胞类型中的差异表达基因,同时通过检测已知的区域特异性基因的表达来评估皮质区域划分的可靠性。作者构建了星座图来探索不同皮质区域细胞类型之间的关系:RG节点主要在同细胞类型之间相互连接;IPC与兴奋神经元之间存在相互连接;PFC 和 V1 细胞类型节点之间没有连接,说明这两个基因表达模式之间相互排斥。在每一组区域标记基因中,作者鉴定了编码转录因子的基因,这些转录因子在特定区域的细胞中大量富集。其中包括一些在区域化过程中功能已知的转录因子,例如NR2F1和BCL11A,这两个基因都与神经发育疾病相关【6】。作者还发现一些与皮层区域化不相关的转录因子:在V1中,包括NF1A, NF1B和NF1X,它们是大脑发育的重要调节因子,与大头症和认知障碍有关【7】;ZBTB18, 大脑扩张驱动因子,与神经元分化和皮层迁移有关;在PFC中,包括HMGB2和HMGB3,它们在发育的不同阶段在神经干细胞中差异性表达,是神经分化的关键性调节因子,但它们在皮层区域化的过程中的功能未被研究和报道。原位杂交验证候选标志物 上述单细胞数据揭示了人类大脑发育过程中皮层的6个不同区域内细胞类型的多样性和转录谱。接下来,作者选择了兴奋神经元簇的候选标记基因进行验证,采用单分子荧光原位杂交(single-molecule fluorescent in situ hybridization, (smFISH))量化了20个样本中(来自4个皮质区域)31个RNA转录本的表达情况(图2)。与之前的报道一致,神经基因SATB2和BCL11B呈现区域动态性表达:他们在frontal区域共表达,但在occipital区域相互排斥。通过分析所有的区域,作者找到了新的亚细胞群标志物候选基因:NEFL, SERPINI1和NR4A1。这三个基因在PFC, somatosensory, temporal和V1皮层细胞中的表达量基本相等,但是它们相对的空间位置发生巨大改变:NEFL, SERPINI1和NR4A1在PFC中共表达,但在其他区域中相互排斥;在somatosensory皮层中,这些标记基因主要表达在上层分子层中。图2. 自动化空间RNA转录检测流程综上所述,该研究对新皮质区域不同细胞类型的基因表达特征提供了细致的理解。作者发现:(1) 在主要的大脑结构中,区域特征在不同的细胞类型中非常普遍;(2) 新皮质中的区域特征非常特殊,受限于单个细胞类型;(3) 除了细胞类型特征外,细胞的发育阶段(即妊娠周)是基因表达特征组合的有力决定因素。这些发现表明,区域特异性基因表达特征的动态变化速度非常快,而且是细胞类型特异性的(图3),这与之前的理论似乎不太一致,在以前认知中,基因表达模式通常被认为是一旦建立就会持续存在。通过绘制大脑发育过程中的基因表达图谱,研究人员对大脑皮层是如何形成有了更好的理解,有助于探索大脑皮层是如何在神经发育疾病中受到影响的。图3. 发育过程中皮层区域化模式图原文链接:https://doi.org/10.1038/s41586-021-03910-8
  • Nature:中心体调控大脑皮层发育的崭新机制
    放射状胶质细胞是大脑发育最为关键的一种神经前体细胞,分裂产生大脑皮层几乎所有的神经元和胶质细胞。所有动物细胞都有中心体,通常位于细胞核附近的细胞质中。然而中心体在放射状胶质细胞内的定位十分独特,位于远离细胞核的顶端细胞膜上,即脑室腔的表面上。这种独特的亚细胞特征已被发现数十年,但其成因及功能一直令人困惑。清华大学生命科学学院、IDG-麦戈文脑科学研究院时松海教授和结构生物学高精尖创新中心史航研究员课题组线发表了题为“中心体的锚定调控神经前体细胞特性和大脑皮层的形成”(Centrosome anchoring regulates progenitor properties and cortical formation)的研究论文,首次揭示了中心体调控哺乳动物大脑皮层神经前体细胞机械特性和分裂能力,进而影响大脑皮层的大小和折叠的崭新机制。这一发现公布在Nature杂志上。时松海教授和史航研究员课题组采用基于透射电镜成像的连续超薄切片技术,首次观察到了放射状胶质细胞内的中心体是通过附着在母体中心粒上的远端附属物(distal appendages)锚定在顶端细胞膜上的(图1)。为了探索其分子调控机制和生理功能,研究人员在大脑皮层放射状胶质细胞内特异性地去除了远端附属物的重要构成蛋白CEP83,使得远端附属物无法形成,从而阻止中心体与细胞膜的连接。结果发现,去除CEP83蛋白后,母体中心粒上不再形成远端附属物,中心体和顶端膜发生了微小的错位,不再锚定在顶端膜上。进一步研究表明,中心体这一不足1微米的位移,不是通过影响初级纤毛的形成,而是破坏了顶端膜上特有的环状微管结构,导致顶端膜被拉伸、变硬。这一物理特性的改变引起了放射状胶质细胞内机械敏感信号通路相关的YAP蛋白(Yes-associated protein)的过度激活,从而导致了放射状胶质细胞前期的过度扩增以及之后中间前体细胞的增多,最终使得大脑皮层神经细胞显著增加,体积扩大,并引发异常折叠。该研究解决了长期以来关于放射状胶质细胞内中心体特殊定位原因和作用的谜题,为研究神经前体细胞行为和皮层发育调控提供了全新的角度。另外,中心体相关的许多突变都和小头症(microcephaly)紧密相关,然而该研究首次揭示了中心体蛋白突变导致大头症的机制。更重要的是,人类CEP83双等位基因突变会导致脑室体积增大,智力障碍和小儿肾消耗症,该研究为揭示人皮层形态和智力异常提供了重要线索。
  • Cell子刊:杨扬/韩华团队开发听觉皮层亚细胞结构三维电镜重构算法
    生命科学  Life science  2022年8月2日,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。  中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。  大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。  为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。  为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。  综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。  图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。  该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。  作者专访  Cell Press细胞出版社公众号特别邀请杨扬研究员、刘静博士和韩华研究员代表研究团队接受了专访,请他们为大家进一步详细解读。  CellPress:  过去也有基于电镜图像重构来探究突触和线粒体的研究报道,有的还完成了更大规模的密集重构。本文的方法和思路与过去的研究有何不同?  杨扬研究员:  电镜图像的密集重构对运算量的要求很高,工作量极大。而本文所使用的方法可以在不做密集重构的前提下,选择性识别和分割出研究者感兴趣的亚细胞结构,如本文关注的突触、线粒体,也可以推广到其他有特殊结构的细胞器。已有的突触或线粒体的自动重构算法多是像素或体素分割模型,也就是将图像中的像素或体素分类成前景或者背景。本文所使用的region-based卷积神经网络是一种实例分割网络,可端到端的完成目标实例的检测和分割。另外,针对强各向异性的序列电镜数据,本文提出一种2D到3D的重构方法,首先在2D上识别和分割亚细胞结构,随后应用3D连接算法完成3D的重构。这种方式可有效避免直接应用3D卷积神经网络带来的目标尺度在特征空间和图像空间不一致的问题。  CellPress:  多位点突触是一个新的概念吗?本文对此类突触的研究有何特别之处?  杨扬研究员:  一个突触前轴突小结与多个突触后树突棘形成的1-N多位点突触,和多个突触前轴突小结与一个突触后树突棘形成的N-1多位点突触,在过去的文献中都有过报道。但限于电镜图像人工识别的效率,过去的工作未能对这种特殊突触进行大规模的定量研究。本文通过基于机器学习的自动识别与重构算法实现了这一突破。此外,连接同一个多位点突触中的多个树突棘是来自同一根树突还是不同树突,代表了两种不同的神经元连接方式:前者仍是1对1的神经元连接,后者则是1个神经元对多个神经元的信息广播。本文通过密集重构,首次对这两类多位点突触进行了区分和定量,并发现后者在大脑皮层中,特别是学习之后占据了绝大多数,提示这种连接可能表征了大脑中突触层面的记忆痕迹。  CellPress:  人工智能算法在这个研究中发挥着怎样的作用?  刘静博士、韩华研究员:  近年来,人工智能算法已经深入应用到生命科学领域,加速甚至革新了生物学的研究进程。在连接组(Connectomics)领域,面对海量的高分辨电镜数据,借助人工智能算法绘制神经元的线路图是一个必不可少的环节。在本文中,我们设计了一套深度学习算法工具集,可以自动识别序列电镜图像中神经元、突触以及线粒体并恢复其三维形态。深度学习算法的应用大大提高了识别效率,将人从大量冗余复杂的标注工作中解放出来,加速了研究进程。  CellPress:  可否用简要的语言解释文中所提及的突触连接静态网络和动态网络,两者最核心的区别是什么?具有何种生物学意义?  刘静博士、韩华研究员:  突触连接网络是指根据神经元的几何拓扑特征来模拟突触连接模式的一种建模方式。其中,静态模型中仅考虑稳定的突触连接,假设没有新突触的形成或旧突触的消亡,本文使用信息熵定义静态网络的信息存储容量。而动态模型则将突触可塑性引入到网络中,允许新突触的形成,本文使用信息熵的增益表示新突触形成带来的信息存储容量的增加。动态模型通过模拟突触可塑性,与真实的大脑神经网络更为相似。  CellPress:  您认为该项研究对类脑计算有什么启发吗?  刘静博士、韩华研究员:  类脑智能(Brain-inspired Intelligence)本身就是通过模仿和借鉴人类神经系统的工作原理以构建新型的计算结构和智能形态。然而,目前人对大脑的生理机制还知之甚少。类脑研究的第一步就是要理解大脑,突触作为神经元连接的桥梁,是大脑中最重要的结构之一。突触的可塑性(synaptic plasticity)被认为与长时程记忆(long-term memory)有关。本文通过恐惧学习实验范式和电镜成像技术,发现了恐惧记忆能促进小鼠听觉皮层中一种特殊的1-N突触连接模式的形成,且这种连接模式大大增强了局部环路的信息编码能力。本研究中发现的这种局部神经环路信息传递模式或许能够作为一种记忆存储模块启发新型的类脑计算模型。  作者介绍  谢启伟   教授  谢启伟,北京工业大学现代制造业基地教授  研究兴趣、领域:数据挖掘、图像处理和复杂系统智能;应用图像处理、机器学习和深度学习等方法研究基于电镜数据的神经元重建,集中于神经元电镜图像的前处理、超体素分割、图融合后处理等方法的研究,为神经科学提供有力工具,期待从脑的结构中挖掘出智能的本源。  韩华   研究员  韩华,中国科学院自动化所研究员  研究兴趣、领域:高通量显微成像技术产生海量影像数据,如何重构数据、分析数据、可视数据等已成为脑科学与类脑研究领域的重大挑战。我们致力于建立我国微观脑图谱的高通量技术体系和自主可控技术平台,持续突破大体块神经组织样品制备、长时程超薄切片连续收集、高通量扫描电镜三维成像、高精度神经结构三维重建等关键技术,开展多个百TB规模的微观脑图谱绘制工程,为构建类脑计算仿真提供生物真实网络和仿生建模依据。  杨扬   研究员  杨扬,上海科技大学生命科学与技术学院助理教授、研究员  研究兴趣、领域:以条件恐惧学习和增强式学习为行为范式,使用在体双光子成像、双光子全息光遗传、电镜、电生理等技术,研究与学习记忆相关的神经环路活动性和可塑性,及神经调制系统在其中所起的作用。  相关论文信息  ▌论文标题:  Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data
  • 杨扬/韩华团队成功开发小鼠听觉皮层亚细胞结构的三维电镜重构算法
    2022年8月,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。作者专访Cell Press细胞出版社公众号特别邀请杨扬研究员、刘静博士和韩华研究员代表研究团队接受了专访,请他们为大家进一步详细解读。CellPress:过去也有基于电镜图像重构来探究突触和线粒体的研究报道,有的还完成了更大规模的密集重构。本文的方法和思路与过去的研究有何不同?杨扬研究员:电镜图像的密集重构对运算量的要求很高,工作量极大。而本文所使用的方法可以在不做密集重构的前提下,选择性识别和分割出研究者感兴趣的亚细胞结构,如本文关注的突触、线粒体,也可以推广到其他有特殊结构的细胞器。已有的突触或线粒体的自动重构算法多是像素或体素分割模型,也就是将图像中的像素或体素分类成前景或者背景。本文所使用的region-based卷积神经网络是一种实例分割网络,可端到端的完成目标实例的检测和分割。另外,针对强各向异性的序列电镜数据,本文提出一种2D到3D的重构方法,首先在2D上识别和分割亚细胞结构,随后应用3D连接算法完成3D的重构。这种方式可有效避免直接应用3D卷积神经网络带来的目标尺度在特征空间和图像空间不一致的问题。CellPress:多位点突触是一个新的概念吗?本文对此类突触的研究有何特别之处?杨扬研究员:一个突触前轴突小结与多个突触后树突棘形成的1-N多位点突触,和多个突触前轴突小结与一个突触后树突棘形成的N-1多位点突触,在过去的文献中都有过报道。但限于电镜图像人工识别的效率,过去的工作未能对这种特殊突触进行大规模的定量研究。本文通过基于机器学习的自动识别与重构算法实现了这一突破。此外,连接同一个多位点突触中的多个树突棘是来自同一根树突还是不同树突,代表了两种不同的神经元连接方式:前者仍是1对1的神经元连接,后者则是1个神经元对多个神经元的信息广播。本文通过密集重构,首次对这两类多位点突触进行了区分和定量,并发现后者在大脑皮层中,特别是学习之后占据了绝大多数,提示这种连接可能表征了大脑中突触层面的记忆痕迹。CellPress:人工智能算法在这个研究中发挥着怎样的作用?刘静博士、韩华研究员:近年来,人工智能算法已经深入应用到生命科学领域,加速甚至革新了生物学的研究进程。在连接组(Connectomics)领域,面对海量的高分辨电镜数据,借助人工智能算法绘制神经元的线路图是一个必不可少的环节。在本文中,我们设计了一套深度学习算法工具集,可以自动识别序列电镜图像中神经元、突触以及线粒体并恢复其三维形态。深度学习算法的应用大大提高了识别效率,将人从大量冗余复杂的标注工作中解放出来,加速了研究进程。CellPress:可否用简要的语言解释文中所提及的突触连接静态网络和动态网络,两者最核心的区别是什么?具有何种生物学意义?刘静博士、韩华研究员:突触连接网络是指根据神经元的几何拓扑特征来模拟突触连接模式的一种建模方式。其中,静态模型中仅考虑稳定的突触连接,假设没有新突触的形成或旧突触的消亡,本文使用信息熵定义静态网络的信息存储容量。而动态模型则将突触可塑性引入到网络中,允许新突触的形成,本文使用信息熵的增益表示新突触形成带来的信息存储容量的增加。动态模型通过模拟突触可塑性,与真实的大脑神经网络更为相似。CellPress:您认为该项研究对类脑计算有什么启发吗?刘静博士、韩华研究员:类脑智能(Brain-inspired Intelligence)本身就是通过模仿和借鉴人类神经系统的工作原理以构建新型的计算结构和智能形态。然而,目前人对大脑的生理机制还知之甚少。类脑研究的第一步就是要理解大脑,突触作为神经元连接的桥梁,是大脑中最重要的结构之一。突触的可塑性(synaptic plasticity)被认为与长时程记忆(long-term memory)有关。本文通过恐惧学习实验范式和电镜成像技术,发现了恐惧记忆能促进小鼠听觉皮层中一种特殊的1-N突触连接模式的形成,且这种连接模式大大增强了局部环路的信息编码能力。本研究中发现的这种局部神经环路信息传递模式或许能够作为一种记忆存储模块启发新型的类脑计算模型。作者介绍谢启伟教授谢启伟,北京工业大学现代制造业基地教授研究兴趣、领域:数据挖掘、图像处理和复杂系统智能;应用图像处理、机器学习和深度学习等方法研究基于电镜数据的神经元重建,集中于神经元电镜图像的前处理、超体素分割、图融合后处理等方法的研究,为神经科学提供有力工具,期待从脑的结构中挖掘出智能的本源。韩华研究员韩华,中国科学院自动化所研究员研究兴趣、领域:高通量显微成像技术产生海量影像数据,如何重构数据、分析数据、可视数据等已成为脑科学与类脑研究领域的重大挑战。我们致力于建立我国微观脑图谱的高通量技术体系和自主可控技术平台,持续突破大体块神经组织样品制备、长时程超薄切片连续收集、高通量扫描电镜三维成像、高精度神经结构三维重建等关键技术,开展多个百TB规模的微观脑图谱绘制工程,为构建类脑计算仿真提供生物真实网络和仿生建模依据。杨扬研究员杨扬,上海科技大学生命科学与技术学院助理教授、研究员研究兴趣、领域:以条件恐惧学习和增强式学习为行为范式,使用在体双光子成像、双光子全息光遗传、电镜、电生理等技术,研究与学习记忆相关的神经环路活动性和可塑性,及神经调制系统在其中所起的作用。
  • 科学家绘制出哺乳动物大脑运动皮层细胞图谱
    美国BRAIN计划于2017年设立了“大脑细胞普查网络”项目(BICCN),旨在对人类、猴和小鼠大脑中的不同细胞进行识别和分类。目前该项目第一部分已经完成,在分子水平上对哺乳动物初级运动皮层细胞类型进行了全面的定位和图谱绘制。近期,该研究成果在《Nature》期刊上同时发表了16篇文章,并以合集的形式呈现。  该系列论文介绍了项目方法、工具、研究结果和产生的数据集。该项目绘制了哺乳动物初始运动皮层多层次、多模式的细胞图谱,具体包括:(1)利用转录组、染色质可及性、DNA甲基化图谱等多组学描绘了运动皮层细胞中的分子遗传景观;(2)跨物种分析揭示了从小鼠到狨猴到人的细胞类型的保守性;(3)原位单细胞转录组学揭示了运动皮层空间图谱;(4)交叉模式分析揭示了神经元类型的生理与解剖特性和基因调控基础。该项目构建的大脑皮层初级运动神经元图谱中,涵盖了小鼠、非人灵长类动物以及人类大脑中神经元的分子、功能以及与其物理状态相关的数据,并向公众开放(https://biccn.org);同时构建了可以直接应用的软件,确保这些数据能够对神经元多样性的性质和起源的研究有帮助。  该研究形成的数据库对于理解运动神经环路是如何工作的提供了研究数据库和操作平台,同时这些研究成果对于制定特定细胞类型的大脑疾病治疗方案至关重要,最终将有助于临床医疗手段和药物研发,实现个性化医疗。   论文链接:  https://www.nature.com/collections/cicghheddj
  • Nat Neurosci:清华大学时松海团队揭示乳酸代谢调控大脑新皮层发育的关键机制
    2022年6月20日,清华大学时松海课题组在 Nature Neuroscience 期刊在线发表了题为:Metabolic lactate production coordinates vasculature development and progenitor behavior in the developing mouse neocortex(乳酸代谢调控小鼠大脑新皮层血管生长和神经前体细胞行为)的研究论文。该研究揭示了大脑新皮层发育过程中的早期增殖型放射状胶质前体细胞(Radial glia progenitor,RGP)具有更强的糖酵解代谢能力并大量合成和分泌乳酸,进而调节血管生长及其自身增殖分裂特性。大脑新皮层是神经系统的最高级中枢,理解大脑新皮层的发育组装及工作机制是脑科学乃至整个自然科学的终极目标之一。研究大脑新皮层的发育及其调控机制有助于更好地理解其细胞组成和结构特性,进而推动生理功能和运行工作机制的认知,同时对相关疾病的诊断治疗有着至关重要的意义。大脑新皮层是进化的末期产物,其发育是一个高度复杂且受到多种因素的共同调节的生物学过程,这也为系统性研究其内在机制带来了诸多挑战。为此该研究从细胞最为基本特征—细胞代谢的角度出发,揭示了细胞代谢方式及相关产物在调控大脑新皮层发育过程中的关键作用和机制,为更好的理解大脑皮层发育机制提供了重要的理论补充。放射状胶质前体细胞(RGP)是大脑发育最为关键的一种神经前体细胞,其分裂产生大脑皮层几乎所有的神经元和胶质细胞。在小鼠发育早期(E10.5-E11.5),大脑新皮层中几乎没有血管生长,此时 RGP 以对称分裂进行增殖。伴随着血管的生长,RGP 也随之改变其分裂方式,以不对称分裂进行神经细胞产生。基于单细胞代谢状态分析,该研究首先发现大脑新皮层发育过程中,随着 RGP 谱系发生过程的进行,RGP 及其子代细胞具有不同的代谢状态,并呈现出不同的代谢特征。在此基础上,结合基因表达分析、细胞代谢类型分析以及碳代谢流分析多方面研究,进一步发现进行对称分裂的增殖型 RGP 具有更强的糖酵解代谢能力,并大量合成和分泌乳酸,而进行不对称分裂的分化型 RGP 具有更强的氧化磷酸化代谢能力,并积累高浓度的乙酰辅酶A。图1: 单细胞代谢状态分析揭示神经细胞代谢特征为深入探讨细胞代谢方式与大脑新皮层发育的相互关系,研究团队考察了具有强糖酵解代谢能力的增殖型 RGP 对早期大脑新皮层发育的影响,发现当抑制增殖型 RGP 的乳酸合成或分泌,导致大脑新皮层中乳酸浓度降低,血管生长出现缺陷。进一步分析发现,乳酸可以通过调节趋化因子配体 CXCL1 的表达来调节血管内皮细胞的迁移和增殖。此外,研究团队发现抑制增殖型 RGP 的乳酸合成代谢会系统性改变其基因表达谱并重塑细胞代谢方式,导致 RGP 过早分化。为探讨这一内在机制,研究者发现与分化型 RGP 相比,增殖型 RGP 呈现出更长的线粒体形态,抑制或阻断乳酸合成或分泌都会导致线粒体长度大幅度缩短,进而导致 RGP 分化。该结果表明增殖型 RGP 通过加强乳酸合成来影响线粒体形态,进而保持其对称分裂增殖特性。图2: 乳酸合成代谢调控早期大脑新皮层发育清华大学生命科学学院时松海教授为本文通讯作者,清华大学生命科学学院2017级博士董晓翔为本文第一作者。清华大学生命科学学院张强强博士和马健博士、清华大学生命科学学院博士研究生于翔宇和王玎,以及美国达特茅斯学院本科生马嘉明为本文共同作者。该研究得到了清华大学实验动物中心和生物医学测试中心的大力协助和支持。该研究获得了国家自然科学基金委创新群体基金、国家科技部脑科学与类脑研究基金、北京市教育委员会卓越青年科学家计划、北京市科技委员会科技计划、北京生物结构前沿研究中心、生命科学联合中心和北京脑科学与类脑研究中心的资助。
  • 全蛋白质组关联研究发现阿尔茨海默症发病新机制
    全球有3500万人深受阿尔茨海默症(AD)的困扰,但目前尚无临床有效的治疗手段。为了促进AD治疗手段的发展,研究者进行了大量的遗传学研究。已有研究者通过 GWAS鉴定出许多阿尔茨海默症风险基因,但这些风险基因是如何导致阿尔茨海默症的尚不十分清楚。全蛋白质组关联研究(Proteome-Wide Association Study, PWAS)通过蛋白质的功能变化将基因和表型联系起来,是一种新型的以蛋白质为中心的遗传关联研究方法,在人类遗传学研究领域具有广泛的应用前景。  2021年1月28日,国际学术期刊Nature Genetics(IF=27.603)上报道了来自埃默里大学医学院题为“Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis”的研究文章。该团队运用全蛋白质组关联研究(proteome-wide association study,PWAS),将阿尔茨海默症(AD)队列 GWAS结果与人脑蛋白质组进行了整合,旨在鉴定通过影响脑蛋白丰度而导致AD风险的基因,深入了解这些基因座如何影响AD的发病机制。  研究结果  1.PWAS鉴定出AD相关重要基因  在发现阶段,作者收集到375例捐献者死后大脑的背外侧前额叶皮层(dPFC)样本,使用TMT质谱策略获得人脑蛋白质组数据。整合已有的AD GWAS结果与蛋白质组学结果,通过全蛋白质组关联研究(PWAS)鉴定出13个顺式调节脑蛋白水平的基因(图1,表1)。接下来,作者使用相同的AD GWAS数据与另一组独立的152例人脑蛋白质组数据整合分析,与前面发现的13个蛋白相比较,其中10个在PWAS阶段得到验证(表1)。  图1 发现集AD PWAS曼哈顿图  表1 AD PWAS鉴定13个重要基因  2.重要风险基因COLOC和SMR分析  为了研究调控脑蛋白的重要基因与AD是否存在因果关系,作者进行了贝叶斯共定位(COLOC)和孟德尔随机化(SMR)分析。首先,使用贝叶斯共定位(COLOC)检验发现13个基因中有9个符合因果关系。然后通过孟德尔随机化(SMR)分析,结果表明顺式调控蛋白丰度介导了这13个基因的遗传变异与AD的关联。总的来说,作者发现7个基因在COLOC和SMR / HEIDI分析的因果关系上具有一致的结果(CTSH,DOC2A,ICA1L,LACTB,PLEKHA1,SNX32和STX4),另外有4个基因的因果关系在这两种分析中结果不一致( ACE,CARHSP1,RTFDC1和STX6),EPHX2和PVR的结果不具备因果关系(表2)。  表2 发现阶段AD PWAS中13个重要基因的 COLOC和 SMR分析3.确定11个AD PWAS重要基因  通过验证队列重复和因果关系测试的结果,作者在13个通过PWAS发现的重要基因中,确定了11个与AD有因果关系的风险基因(CTSH,DOC2A,ICA1L,LACTB,SNX32,ACE,CARHSP1,RTFDC1,STX6,STX4和PLEKHA1),其中9个重要基因在PWAS阶段得到验证(表3)。  表3 总结11个AD PWAS重要基因,并证明与AD中的因果作用一致  4.PWAS结果不受APOE e4影响  载脂蛋白APOE e4等位基因与阿尔茨海默症密切相关,因此作者为了探究APOE e4是否影响了PWAS结果,从蛋白质组中去除掉APOE e4的作用,使用去除后的蛋白质组图谱进行了AD PWAS。分析发现了13个与发现阶段PWAS结果一致的重要基因和6个其他基因,且所有13个基因都具有与发现阶段PWAS中相同的关联方向。此外,COLOC和SMR / HEIDI测试的结果发现了与原始发现相同的因果关系证据,这些结果均表明本实验发现不受APOE e4的影响。  5.TWAS锁定与PWAS相关基因  众所周知,分子生物学的中心法则是遗传信息从DNA转录传递给RNA,再从RNA翻译传递给蛋白质。因此,作者收集到888个欧洲个体的大脑转录组数据,将AD GWAS结果与其整合,进行了AD的全转录组关联研究(TWAS)。AD TWAS鉴定了40个基因,其FDR为p0.05时,其基因调控的mRNA表达水平与AD相关(图2)。与蛋白质水平上鉴定出的11个潜在风险基因相比,ACE,CARHSP1,SNX32,STX4和STX6这5个基因与PWAS结果相似,与AD具有关联性。(表3)。  图2 AD TWAS Q-Q图  6.单细胞测序发现细胞类型特异性  最后,作者使用背外侧前额叶皮层样本(dPFC)单细胞RNA测序数据进行分析,发现在先前确定的11个重要风险基因中,有6个基因呈现细胞类型特异性富集。DOC2A,ICA1L,PLEKHA1和SNX32富含兴奋性神经元,而CARHSP1在少突胶质细胞中富集,CTSH在星形胶质细胞和小胶质细胞中富集(图3)。  图3 单细胞类型表达总结  本文作者通过收集阿尔茨海默症(AD)患者队列,开展多中心、大样本的基因组学和蛋白质组学研究。运用全蛋白质组关联研究(PWAS)挖掘了十多个重要风险基因,这些风险基因可以通过改变大脑中蛋白质丰度进而影响阿尔茨海默症的发生,为AD的发病机制提供了新的见解,并为进一步治疗提供了潜在的靶标。
  • JAI推出"Flex-Eye" 定义自己独有的Fusion系列多光谱棱镜相机
    p style=" text-indent: 2em text-align: justify " JAI向广大机器视觉用户隆重推出Flex-Eye:一种创新的相机概念,使视觉系统工程师能够自定义基于JAI的Fusion系列2-CMOS或3-CMOS棱镜的多光谱相机中波长的起始范围。 /p p style=" text-indent: 2em text-align: justify " 通过对Flex-Eye进行定制,可以和JAI现有的Fusion系列棱镜相机相结合,便客户能够参与设计多光谱相机。该相机可以查看特定的可见光和近红外光波段,切实地满足用户视觉应用要求。 br/ img style=" max-width:100% max-height:100% " src=" https://www.jai.com/uploads/images/Partner-Section/Hi-Res-Images-and-Thumbnails/Flex-Eye-Launch-Image.jpg" / /p p style=" text-indent: 2em text-align: justify " 这种新方法可以使视觉检测任务或其他多光谱成像应用程序更加高效,因为通过针对目标波段(面向特定应用程序设计)进行微调后的2-CMOS或3-CMOS棱镜相机,可以更精确地显示所需的成像信息,完美屏蔽不需要的波段。 /p p style=" text-indent: 2em text-align: justify " 如果JAI的Fusion系列中现有标准型号的默认波段组合无法完全满足相机用户的特定需求,通过Flex-Eye的定制服务,便可以解决这一问题。 /p p style=" text-indent: 2em text-align: justify " 由于Flex-Eye概念最初是应用于JAI的Fusion系列多光谱模型的,因此,客户可以配置具有2或3传感器棱镜配置的模型,目前其配置为Sony Pregius& #8482 CMOS传感器中160万像素(IMX273)或320万像素(IMX252)两种。在确定传感器之后,再为相机中的每个传感器定义特定的波段位置和区间。 /p p style=" text-indent: 2em text-align: justify " 根据用户的要求,用户所指定的波段可以都位于可见光谱(405-680nm)内,或者也可以放置在整个可见光和近红外光谱的多个位置上,最高可达1000nm。波段的宽度最短可以是25nm,以5nm的增量进行递增。 br/ /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/e5c016d8-84d5-4431-aee5-56abc4c1bf9e.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " span style=" font-size: 14px " 上图为定制一个3传感器相机的波长示例,其中指定了一个可见光波段(波段1)和两个NIR波段(波段2和波段3)。 每个波段最短可达25nm宽,以5nm的增量递增。 /span /p h3 style=" text-align: justify " Flex-Eye目标用户 /h3 p style=" text-indent: 2em text-align: justify " Fusion系列Flex-Eye相机适用于几种不同应用场景下的用户,多光谱成像技术在这些市场目前已经得到了应用,但是新的波段组合可以带来新的功能效果。这些最常见的应用场景可细分为: /p ul class=" list-paddingleft-2" style=" list-style-type: square " li p style=" text-align: justify " 荧光引导手术,病理学或其他生命科学应用 /p /li li p style=" text-align: justify " 水果,蔬菜,果仁等食品的分选/检查 /p /li li p style=" text-align: justify " & nbsp 农业和植被分析或除草系统 /p /li li p style=" text-align: justify " & nbsp 包装检查,尤其是塑料包装物的印刷 /p /li li p style=" text-align: justify " 多层电子线路板检查 /p /li /ul p style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% float: right " src=" https://www.jai.com/uploads/images/Products/Flex-Eye-Concept/surgical.png" / 例如,越来越多的外科手术系统正在利用注入到血管或周围组织中并由激光激发的荧光化合物来辅助进行。荧光显示通过覆盖在外科医生的可见彩色图像上的区域来对病变处进行突出显示,从而起到指导手术的作用。系统是设计成突出显示周围的恶性组织还是血管内血液流动,可能需要使用具有不同波长的不同荧光团进行激发和反射。设计者通过对特定的波段的选择,使其系统在性能上区别于常见的多光谱配置。 /p p style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% float: right " src=" https://www.jai.com/uploads/images/Products/Flex-Eye-Concept/farming.png" / 同样,现代科技农业中,通过对NDVI(归一化植被指数)或NDRE(归一化差异红边)公式建立起来的算法,来进行杂草驱除或作物健康分析的系统,需要农业机械提供可见光波段和NIR波段的数据组合。这需要农业机械能从幼苗中识别杂草,或者从作物中标记需要额外灌溉水或肥料的作物。目前在基于标准波段的标准算法,仍需要不断开发定制新的算法以提高特定作物和环境条件的性能,来适应多种多样的作物生产方面的需求。此时,这些现代农业科技公司,就向JAI寻求特定多光谱波段方面的支持,可以通过定制,以使这些系统更准确,有效地获得所需的结果。 /p p style=" text-align: justify text-indent: 2em " 类似的概念也可以应用于当前许多其他使用多光谱成像的应用程序,包括食品检查,药品,包装,电子产品等。 /p h3 style=" text-align: justify " Fusion Flex-Eye的在线配置器 /h3 p style=" text-indent: 2em text-align: justify " span style=" text-indent: 2em " 作为可定制的产品,产品的制作和销售过程与JAI的标准Fusion系列型号或其他相机是不同的。首先客户需要定义自己需要Fusion系列Flex-Eye相机的技术要求,并将其提交给JAI,以从技术角度来确认是否可以完成制作。 /span & nbsp /p p style=" text-indent: 2em text-align: justify " 于是JAI开发了一款 strong Flex-Eye在线配置器 /strong ,可以让客户轻松定义自己的技术要求,它把自定义选择所需波段过程可视化了。通过鼠标逐步点选完成对传感器分辨率,个数,黑白彩色等参数进行选择。直观的GUI界面可以帮助用户在简单的频谱图上进行拉伸或收缩,来完成对波段范围的选择。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f577a45e-37c1-467f-b8a6-0ddf9da4f98d.jpg" title=" 1.png" alt=" 1.png" / /p h3 style=" text-align: justify " 有关Fusion Flex-Eye相机性能的更多信息 /h3 p style=" text-indent: 2em text-align: justify " Fusion系列的Flex-Eye系统订制出的棱镜相机具有与JAI的Fusion系列的标准型号相同的高性能。配备三个320万像素传感器的相机在全分辨率下能高达107fps运行,而两个320万像素传感器的双通道棱镜相机能以123fps的速度运行。对于具有三个160万像素传感器的棱镜相机,全分辨率下的最大速率为212fps,而对于两个160万像素传感器,更是达到了226fps的速度。 /p p style=" text-align: justify text-indent: 2em " 配备集成的自适应技术的10GBASE-T(10GigE)接口支持相机数据的大数据量要求,提供对NBASE-T(5Gbps和2.5Gbps)和传统1000BASE-T(1Gbps)的自动向下兼容低速以太网标准。除了8位输出之外,相机还可以提供10位和12位输出,并在多个传感器上既支持同步又支持非同步的操作模式。 /p
  • 【学术前沿】随机光学重建显微镜 STORM 揭示了人脑中病理聚集体的纳米级组织
    【学术前沿】随机光学重建显微镜 STORM 揭示了人脑中病理聚集体的纳米级组织(文末预约试拍)01—研究介绍脑组织样本的组织学分析给我们提供了有关导致常见神经退行性疾病的病理过程的宝贵信息。在这种情况下,开发新的高分辨率成像方法是神经科学当前面临的挑战。为此,我们使用了一种被称为随机光学重建显微镜 (STORM) 的超分辨率成像技术来分析人脑切片。作者将 STORM 细胞成像方案与神经病理学技术相结合,对患有神经退行性疾病的患者和对照受试者的脑样本进行了成像。02—研究结果(节选)作者在新皮质、白质和脑干样本中执行了 2D、3D 和双色STORM成像 。STORM 被证明在可视化致密蛋白质包涵体的组织方面特别有效,作者对阿尔茨海默病、帕金森病、路易体痴呆和额颞叶变性患者的中枢神经系统内的病理聚集体进行了 图1、使用 STORM 对人脑样本进行超分辨率成像。(A) 用于 STORM 成像的光学设置示意图。I.B.,入射光束;E.F,渐逝场;R.B.,反射光束。(B) STORM 采集人脑切片中的皮层轴突,对神经丝 (NF) 进行免疫染色:首先采集传统的宽视场荧光显微镜图像。(B1),然后强烈增加激发功率以诱导荧光团闪烁,并获得数千帧记录(B2-B5)。以亚像素精度(B6-B9)在每帧的基础上检测到激活的荧光分子的定位。然后使用来自所有帧的累积定位来重建超分辨率图像(B10)。IF,成像帧。(C) 使用常规宽视场荧光显微镜、STORM 和透射电子显微镜 (TEM) 获得的纵向和横向切片前额叶皮层轴突的代表性图像。(D 和 E)使用常规荧光显微镜、STORM 和 TEM 在人脑中测量的轴突直径(纵向切片)和面积(横向切片)。误差线表示具有标准偏差的平均值。*P 2、AD 患者脑样本中老年斑和神经原纤维缠结的STORM图像图2、AD患者大脑样本中老年斑和神经原纤维缠结的STORM图像。(A1) AD 患者新皮质中老年斑的代表性图像(Ab 的免疫组织化学检测)。(A2) 同一患者的新皮质切片中整个老年斑块的常规荧光显微镜图像对 Ab 进行免疫染色。(A3) 同一区域的风暴图像。插图(1 和 2)显示了聚合 Ab 分支的分布和大小的特写细节。(A4) 老年斑中 Ab 纤维(黑色箭头)的比较 TEM 图像。(B1) AD 患者新皮质中神经原纤维缠结的代表性图像(p.Tau 的免疫组织化学检测)。(B2) 在同一患者的新皮质切片中,整个退化神经元的胞体内神经原纤维缠结的常规荧光显微镜图像被 Ab 沉积包围。(B3) 通过结合传统荧光显微镜 (Ab) 和 STORM (p.Tau) 对同一神经元进行成像。插图(3 和 4)显示了胞体中 p.Tau 聚集体的蜂窝结构和轴突中的丝状组织的特写细节。(B4) 神经原纤维缠结中 Tau 丝(白色箭头)的比较 TEM 图像。03—研究总结本文中,作者结合了超分辨率显微镜和神经病理学技术来分析人脑切片。迄今为止,组织中纳米结构的成像主要依赖于透射电子显微镜,这是一项耗时的技术,需要超薄组织切片 (50-70 nm) 进行严格的样品制备,并限制了免疫靶向多样性和3D采集。相反,STORM在样品制备,广阔的观察领域,多分子标记和3D采集方面具有光学荧光显微镜的优势,而图像采集和重建仅需几分钟。人脑样本的 STORM 成像进一步打开了全面了解常见神经系统疾病的大门。这种技术的便利性应该会直接扩展其在人脑超分辨率成像方面的应用,为当前神经科学面临的挑战提供更好解决方案。04—超高分辨率显微成像系统 iSTORM前文中提及的随机光学重构显微镜(STORM)技术,目前已成功实现商用,有需要STORM技术进行实验研究的专家老师们,请文末填写问卷,即可预约获得 iSTORM 超高分辨率显微成像系统试拍服务哦~超高分辨率显微成像系统 iSTORM,成功实现了光学显微镜对衍射极限的突破,使得在 20 nm的分辨率尺度上从事生物大分子的单分子定位与计数、亚细胞及超分子结构解析、生物大分子生物动力学等的研究成为现实,从而给生命科学、医学等领域带来重大性突破。图3、超高分辨率显微成像系统iSTORM。超高分辨率显微成像系统 iSTORM 具有 20 nm超高分辨率、3通道同时成像、3D同步拍摄、实时重构、2小时新手掌握等特点,已实现活细胞单分子定位与计数,并提供荧光染料选择、样本制备、成像服务与实验方案整体解决方案,以纳米级观测精度、高稳定性、广泛环境适用、快速成像、简易操作等优异特性,获得了超过50家科研小组和100多位科研人员的高度认可。参考文献:P. Codron, F. Letournel, S. Marty, L. Renaud, A. Bodin, M. Duchesne, C. Verny, G. Lenaers, C. Duyckaerts, J.-P. Julien, J. Cassereau and A. Chevrollier (2021) Neuropathology and Applied Neurobiology 47, 127–142 STochastic Optical Reconstruction Microscopy (STORM) reveals the nanoscale organization of pathological aggregates in human brain
  • 首次发现:你的大脑“指纹”,全球独一份
    近日,来自瑞士洛桑联邦理工学院医学图像处理实验室和神经假体研究中心的 Enrico Amico 教授及其团队,发表了一项新的研究,表明人类大脑同样具有独一无二的活动特征,即“大脑指纹”。同指纹识别一样,通过大脑“指纹”也能精准识别不同个体。  同时,研究人员还证实,大脑独一无二的活动特征最先出现在眼球运动、视觉感知相关的感觉区域,随后出现在与复杂认知功能相关的额叶皮层区域。而阿尔兹海默病等神经退行性疾病患者随着疾病进展,大脑“指纹”特征似乎会逐渐消失。  对此 Amico 教授表示,“我们的研究表明,只需要 1 分 41 秒就能获得人类大脑活动的“指纹”信息,这一信息最先出现在大脑视觉相关的感知区域,随着时间的推移,也会出现在复杂认知相关的额叶皮层区域。未来,我们或许可以通过大脑‘指纹’监测来筛查潜在神经退行性疾病患者、自闭症患者、中风患者、甚至成瘾的患者。”  相关研究以“When makes you unique: Temporality of the human brain fingerprint ”为题发表在最新一期的 Science Advances 杂志上。  每个人都有一个与众不同的大脑  17 世纪中期,意大利著名组织学家兼医生马塞洛马尔皮吉(Marcello Malpighi),首次观察到人体指尖上有明显的纹路和汗腺。这一观察结果为后续的指纹与个体识别技术奠定了基础。  如今,我们已经知道,每个人都有独一无二的指纹,指纹信息已经成为了人类身份认证的重要依据,在人类生活中被广泛应用。例如手机指纹解锁、指纹门禁打卡、刑事案件侦破等等。显然,指纹识别技术的出现让我们的生活变得更加快捷、更方便。  (来源:Pixabay)  然而,经常看电影的小伙伴们可能会发现,指纹是可以被盗取的。因此,近年来,人们也研发出了一系列诸如视网膜识别、人脸识别等技术,用于指纹识别的补充。  2015 年的时候,Finn 等人首次提出人类大脑存在特异性这一理念,并通过功能核磁共振成像技术(fMRI)证明,仅计算人类大脑功能连接,就能找到大脑“指纹”。  简单地来说,fMRI 是通过测量神经细胞活动时所引起的血液氧气含量变化,来观察大脑不同区域的活动情况,可以像照相机一样记录大脑的活动状态。  通过扫描出来的 fMRI 图像可以得到每个人的连接矩阵,由于不同的生活经历和后天环境,每个人大脑内部连接的方式都不一样,所以可以根据连接矩阵来判断是否为同一人。  2016 年的时候,来自卡耐基梅隆大学的科学人员采用了五个数据库的数据,通过使用功能性核磁共振成像分析了 699 个人脑的连接图谱。  (来源:scitechdaily)  随后,该团队共开展了 17000 多次实验,最终证明,通过大脑功能核磁共振扫描,的确可以找到每个人独特的大脑“指纹”,并且再次扫描仍旧能够完美复现,确认身份。研究人员还发现,就连同卵双胞胎的大脑之间也存在这种区别。扫描结果显示,同卵双胞胎的大脑结构连接模式只有 12% 是相同的。  对此,卡耐基梅隆大学的心理学助理教授提摩西威尔斯迪南(Timothy Verstynen)表示,“研究结果证实了神经科学领域的一项假设,即每个人大脑中的连接模式都是独一无二的。这说明你的生活经历可以在大脑的连接模式中有所体现。”  大脑“指纹”获取仅需 1 分 40 秒  近年来,随着大脑“指纹”的概念得到证实,从人类大脑功能连接数据中提取“指纹”已成为神经科学的一个前沿方向。  此前的研究虽然通过对大脑神经功能连接数据进行分析,证实了大脑“指纹”的存在,且只需两次 fMRI 扫描就可以准确匹配受试者。但是,到目前为止,绝大多数科学家都是通过长时间的 MRI 扫描来获取大脑“指纹”。  这些研究没有解释清楚,大脑指纹究竟是如何产生的?又是何时产生的?  为了找到答案,Amico 教授带领的研究团队利用人脑连接的时间动力学,使用动态大脑功能连接技术,来探索大脑“指纹”产生的时间问题,即大脑指纹是何时产生的,在多长时间内产生,哪些大脑区域对此负责。  研究结果显示,人类大脑最佳的指纹出现在测试开始的200秒左右。不过,最快仅需 1 分 40 秒,就能成功获取人类大脑的“指纹”,且大脑指纹最先出现在大脑中的感觉区域,也就是与眼球运动、视觉感知和视觉注意力相关的区域。随着时间的推移,与认知功能相关的额叶皮层区域也可以揭示人类大脑的独特信息。  (图 | 大脑“指纹”(来源:Enrico Amico))  此外,根据初步研究结果,某些神经退行性疾病,例如阿尔兹海默病等,随着疾病的进展,大脑的“指纹”特征会逐渐消失,通过大脑功能连接来识别个体身份会变的越来越困难。  最后,通过元分析调查,研究人员证实,大脑指纹的产生与人类行为密切相关,不同行为会在不同的时间,激发不同大脑区域的“指纹”特征,二者之间存在复杂的梯度关系。也就是说,大脑“指纹”具有随时间波动的特征。  对此,Amico 教授表示,“我们的研究证明,大脑‘指纹’特征具有明显的波动性,疾病等各种因素均会影响大脑‘指纹’的出现。据此我们可能通过大脑‘指纹’监测中枢神经系统疾病或其他诸如中风等可能影响中枢神经系统的疾病。”
  • 借助定制化基础研究设施 人类脑科学计划取得新进展
    人类的大脑是非常复杂的,大约有1000亿个神经元,估计有100万亿个连接。即使你知道大脑的主要区域,如大脑皮层、小脑、下丘脑、丘脑、额叶、枕叶、颞叶、顶叶、杏仁核、海马体和延髓,你仍然远远不能理解大脑是如何在包括细胞、分子和基因表达模式和关系的更深层次上组织的。人类大脑计划(HBP)项目的科学家们正在努力了解人脑的深层复杂性。凭借其定制的研究基础设施,他们正在将神经科学推进到新的水平。HBP是一个由来自123个机构的500多名研究人员组成的大型研究项目。大脑区域的特定细胞、分子和基因表达模式与功能有关,但它们之间的确切关系在很大程度上仍然未知。HBP项目的科学家们的新发现阐明了这些关系,并使人们能够更全面地了解人脑组织。HBP项目的研究人员进行了一项针对皮层组织三个层面的研究:细胞结构、神经递质受体结构和神经递质受体基因表达。该研究阐明了人类大脑组织在视觉、听觉、体感和运动功能系统方面的原则,超越了形成新皮质的“马赛克”区域的简化观点。该结果发表在《神经影像学》杂志上。为了揭示功能系统的不同属性,以及一个功能系统内的脑区在处理层次方面的不同--从初级到高级联想,该团队分析了Julich Brain Atlas图谱--人类大脑的三维多模态图谱--的细胞结构和受体结构数据,并将这些数据与艾伦人脑图谱的转录组数据进行了比较。“弥合不同层次的大脑组织之间的差距是当今神经科学的最大挑战之一。在Julich Brain Atlas图谱中,我们可以系统地做到这一点。它整合了数据,是一个宝贵的工具,”该研究的第一作者Daniel Zachlod说。研究人员在视觉、听觉、体感和运动系统的15个细胞结构区调查了神经递质受体密度与其相应基因的关系。他们分析了这些功能系统中每个脑区内的差异性基因表达。“我们发现,一个功能系统内的受体结构和基因表达模式以一种系统的方式发生变化,与信息处理的复杂性增加相对应,”HBP项目科学主任Katrin Amunts解释说。该研究展示了一种方法,通过使用多层次的Julich-Brain Atlas来揭示结构与功能之间的关系,以连接不同规模的大脑组织。以前的研究已经表明受体基因的表达与啮齿类动物的大脑功能分化有关,但关于人脑的数据要稀少得多,也更零散。本研究的作者认为,必须将这种研究扩展到人脑,以便更好地了解健康的大脑,以及神经递质系统改变的大脑疾病的发病机制。
  • “经颅近红外激光刺激提升人类工作记忆”研究成果在国际期刊发表
    据《Science Advances》报道,北京师范大学认知神经科学与学习国家重点实验室宋艳教授课题组,研究首次论证了经颅光刺激技术对人类视觉工作记忆容量改善的有效性以及特异性。工作记忆,即在几秒钟内主动“记住”有用信息的能力,在许多高级认知活动中起着至关重要的作用。由于工作记忆能力的个体差异可以预测流体智力和广泛的认知功能,这使得提高工作记忆能力成为干预和增强的有吸引力的目标。此前,美国食品和药品管理局声称,经颅近红外激光刺激(Transcranial photobiomodulation, tPBM)是一种非常有前途、经济且安全的改善人类认知功能的替代方案。其干预机制是利用近红外光非侵入式地穿过颅骨进入大脑皮层,颅内神经元中的细胞色素c氧化酶通过吸收光子提升了自身在氧化磷酸化反应中的催化效率,在细胞层面表现为线粒体呼吸链反应中合成三磷酸腺苷(adenosine triphosphate, ATP)的效率提升,最终实现对神经元内线粒体的呼吸作用的调节。最近,上海交通大学研究者发表在著名光学期刊上的研究指出,1070 nm的激光照射可以改善阿尔茨海默症小鼠的认知障碍并减少β淀粉样蛋白的沉积。而在国内还没有tPBM应用于改善人的认知能力的研究报道。12月2日,北京师范大学认知神经科学与学习国家重点实验室宋艳教授课题组在《Science Advances》杂志上在线发表题为“Transcranial photobiomodulation enhances visual working memory capacity in humans”(经颅光生物调节增强人类的视觉工作记忆的容量)的研究论文。该研究通过四个双盲对照实验,被试接受光刺激和安慰剂照射之后,采集了90名正常成年人进行视觉工作记忆任务时的脑电和行为数据,研究首次论证了经颅光刺激技术对人类视觉工作记忆容量改善的有效性以及特异性。研究者发现,1064 nm光刺激作用于右侧前额叶可以显著提高个体在视觉工作记忆任务中的行为表现。研究者进一步观察到刺激后与工作记忆容量相关的脑电对侧延迟活动(Contralateral Delay Activity, CDA)的增加。这些结果分别从行为层面和脑神经层面提供了1064 nm的光刺激可以提升工作记忆容量的证据。重要的是,CDA的负载效应是光生物调节和工作记忆行为增强的中介。1064nm光生物调节刺激右侧前额叶可以增大工作记忆容量相关的脑电指标,并预测行为的增益。同时,研究者还发现,光生物调节技术对工作记忆的行为改善具有波长和脑区特异性。实验三发现只有1064 nm的光刺激可以改善个体的工作记忆容量,而产生热量一致的852 nm的光生物调节刺激则不会产生行为以及电生理上的显著变化。另外,实验四通过变更刺激脑区,发现1064nm的光刺激对个体的工作记忆的提升效应消失。
  • 从基础研究到临床应用:单细胞质谱成像技术发展趋势
    随着单细胞研究的持续深入,单细胞质谱成像技术正日益成为辅助解锁生物复杂性的重要工具。这项技术能够在单细胞水平上进行分子的空间定位和分析,为揭示细胞异质性及其在疾病发生和发展中的机制提供了强有力的检测手段。回顾自2022年以来的研究成果可以发现,科研人员愈加专注于质谱成像空间多组学的研究以及多模态分析上,为生命科学研究带来了新的突破。空间多组学是一个新兴的全息研究领域,它能够定位组织和细胞中的小分子。质谱成像(MSI)以其无标记、非靶向、高灵敏度、高质量分辨率和高空间分辨率等特点,被公认为是分析复杂样品中元素和分子位置的强大工具。 当MSI 与空间多组学相结合,能够产生大量可视化信息,将多个生物学组学数据从点扩展到面,从而更全面地揭示生命活动。新方法的开发进一步揭示细胞异质性中国医学科学院药物研究所贺玖明研究员等人提出了基于质谱成像的空间代谢组学和脂质组学与基于微阵列的空间转录组学的整合,以分层方式可视化同一胃癌样本中肿瘤内代谢异质性和细胞代谢相互作用,在系统水平上改变了对癌症代谢的理解,该成果于2023年已发表在Nature Communications上。另外,还有多个研究团队提出了新的单细胞质谱成像方法,如13C-SpaceM方法用于对葡萄糖依赖性新生脂肪生成进行空间单细胞同位素追踪;针对CD19+淋巴细胞的单细胞MALDI TOF MSI方法等为研究细胞代谢途径提供了更加多样化和精确的技术。此外,美国伊利诺伊大学芝加哥分校的Ruixuan Gao团队开发的凝胶辅助质谱成像(GAMSI)将现有MALDI-MSI的空间分辨率提高3-6倍,达到亚微米级,为探测单个细胞内微量元素、代谢物、蛋白质等关键分子提供了新方法。多模态成像与纳米材料的突破多模态成像技术的融合成为单细胞质谱成像研究的一大亮点。通过将质谱成像与荧光成像、电子显微镜等技术结合,科研人员能够从多个维度获取单细胞的详细信息,增强了对细胞内部复杂环境的理解。例如,威斯康星大学麦迪逊分校李灵军教授团队在2023年发表了利用离子迁移率分离与双极性电离质谱成像(MSI)这种集成的多模态技术对单细胞脂质体进行高通量原位分析。还有研究结合MALDI-MSI和荧光原位杂交的相关成像方法,以识别和定位微生物细胞。而将拉曼光谱(RSI )成像和MALDI-MSI结合起来,能有效整合从同一样本的 RSI 和 MALDI MSI 中获取的分子信息,这将推动细胞生物学、生物医学和病理学的发现,并推进组织学的发展。还有解吸电喷雾电离质谱成像(DESI-MSI)与传统组织学染色相结合等等,这些新技术的开发整合显著提升了空间分辨率和单细胞水平的分析能力,为单细胞研究提供了更强大的工具。另外,纳米材料所具有的特殊物理和化学性质,在生物医学和治疗学领域也显示出巨大的潜力。中国科学技术大学潘洋教授团队利用自行研发的解吸电喷雾电离/二次光电离(DESI/PI)质谱成像平台结合多孔聚四氟乙烯印迹技术,实现对多种植物叶片中代谢物的空间成像。杭纬教授团队则基于纳米激光探针(NLP)的MSI技术来观察单细胞内的二氧化钛纳米粒子。从技术到临床疾病方面的研究MSI技术不仅在基础研究中取得了进展,还在疾病研究领域展现了其广阔的应用前景。特别是在癌症等复杂疾病(如慢性淋巴细胞白血病、乳腺癌等)的研究中,MSI提供了新的思路和方法。例如,MALDI-MSI技术已被用于衰老成纤维细胞的脂质和蛋白质单细胞分析,帮助科学家深入理解细胞衰老过程。而在乳腺癌研究中,MSI技术揭示了不同细胞系在单细胞和亚细胞水平上分子特征的差异,为癌症的早期诊断和个性化治疗提供了新方向。中国科学院深圳先进技术研究院赵超老师所在团队基于质谱流式和空间多组学的研究手段进行了肿瘤演进分析。另外,除临床疾病的研究外,中药材的代谢途径分析研究也是不可或缺的一部分。中国药科大学李彬老师就长期致力于质谱成像新技术和新方法的开发与应用,以此研究活性次生代谢产物在各类生物组织中的空间分布特征,旨在去发现中药药效物质以及作用机制。高通量与高分辨率技术的崛起MSI技术的发展不仅体现在分析深度的提升,还体现在分析效率的提高上。高通量与高空间分辨率的质谱成像方法,如傅立叶变换质谱成像(MSI)与单细胞分析结合可以绘制和分析生物样本和单细胞中成百上千个分子的图谱;还有研究通过研磨光纤制成的微光导纤维实现对亚细胞空间分辨率的 MSI,该技术可适用于大多数基于激光的质谱分析方法中。香港浸会大学王佳宁老师的团队同样致力于对亚细胞分辨MALDI质谱成像方面的研究。那么高通量分析所获得的数据应该如何有效的处理,使研究成果得到充分的体现?深度学习技术的兴起就为处理和解析大规模质谱数据提供了新的可能性。例如,Nature Methods上发表的一项研究开发了一种创新的实验与计算相结合的方法,旨在通过深度学习技术加速高质量质谱成像数据的处理和分析。该框架可将高分辨率质谱加速15倍、可创建三维分子分布以及可将细胞特异性质谱拟合到三维数据集从而更全面的对数据进行分析,对研究结果进行呈现。多种仪器方案助力研究推进随着技术的不断发展,越来越多的厂商提供了关于质谱成像的相关仪器和解决方案。例如,布鲁克、沃特世、岛津、科瑞恩特等公司提供了多种类型的质谱成像仪和行业应用方案,以满足不同研究领域的需求。以下是收录在仪器信息网行业应用中关于质谱成像的行业应用方案部分清单:方案标题厂商名称超高分辨率质谱成像系统TransMIT AP-SMALDI 10及其在生物学研究中的应用科瑞恩特(北京)科技有限公司德国TransMIT 1.4μm超高分辨率MALDI质谱成像技术诞生TransMIT AP-SMALDI质谱成像技术在贯叶金丝桃Xanthone生物合成部位研究中的应用运用解吸电喷雾电离质谱成像技术分析人参中人参皂苷的空间分布沃特世科技(上海)有限公司(Waters)利用解吸电喷雾电离质谱成像技术分析指纹质谱成像进行草莓中花青素分布分析布鲁克道尔顿(Bruker Daltonics)MALDI质谱成像揭示老鼠肺部内独特的空间分子磷脂分布激光剥蚀-电感耦合等离子质谱成像阿尔茨海默病额叶皮层白质和灰质铁分布(英文原文)上海凯来仪器有限公司无需基质的鼠脑质谱成像方案滨松光子学商贸(中国)有限公司无需基质的草莓质谱成像利用质谱成像实现米曲中磷脂质及葡萄糖的可视化岛津企业管理(中国)有限公司摄入药物的毛发的纵横两截面的高空间分辨率质谱成像基于质谱成像技术进行不同营养状态下小鼠肾脏脂质组学分析基于质谱成像技术对人肝癌及癌旁组织进行原位脂质组分析基于多重衍生化策略的质谱成像技术助力临床空间代谢组学研究利用质谱成像实现米曲中磷脂及葡萄糖的可视化利用质谱成像研究酶组织化学单细胞质谱成像技术在过去三年中的诸多令人瞩目的成就不仅在技术上取得了突破,也在应用层面上展现出巨大的潜力。我们有理由相信,单细胞质谱成像将在未来的生物医学领域中扮演更加重要的角色,为人类健康和生命科学研究提供更加精准和有效的工具。更多精彩内容↓关于单细胞质谱成像研究最新进展内容,欢迎大家报名参加2024年9月19日由仪器信息网召开的“第四届质谱成像技术与进展”主题网络研讨会,届时将有国内外多名单细胞质谱成像研究专家围绕质谱成像技术的最新进展与应用进行深入探讨,赶紧点击下方的图片报名吧。
  • 原生环境质谱直接从组织中分析高达145kDa的完整内源性蛋白质组装体
    大家好,本周为大家分享一篇发表在Anal Chem上的文章,Native Ambient Mass Spectrometry Enables Analysis of Intact Endogenous Protein Assemblies up to 145 kDa Directly from Tissue [1]。该文章的通讯作者是来自英国伯明翰大学的Helen J. Cooper教授。非变性原位质谱(native ambient mass spectrometry, NAMS)是一种新型的自上而下质谱分析方法。它结合非变性质谱和原位质谱的优势,可直接在蛋白质及其复合物的生理环境中进行对其进行无标记表征。NAMS可提供蛋白质结构、空间及瞬时相互作用的信息,具有直接从组织中分析内源性蛋白质组装体的巨大潜力。但是,目前,NAMS仅成功应用于直接检测低分子量 (图 1. 离子图像和 HCD MS2光谱表明大鼠脑中蛋白质复合物的亚基解离。(a) H&E染色的连续组织切片的光学图像。标签:Ce,小脑;C,大脑皮层;CC,胼胝体;F,穹窿;V,侧脑室区;Mb,中脑;Me,髓质和脑桥;H,海马;Th,丘脑;Ht,下丘脑;BG,基底神经节;OR,嗅觉区域。(b) Nano-DESI 全扫描质谱,代表光学图像中标记为“(b)”的像素。(c,d)巨噬细胞抑制因子同源三聚体显示均匀分布。(e,f)PGAM1同型二聚体分布。(g,h)MDH2同型二聚体分布。此外,作者在大鼠肾脏中鉴定了四种同源二聚体蛋白组件(61.2-94.2kDa),包括ω-酰胺酶 (61.2kDa)、MDH2 (66.4kDa)、苹果酸脱氢酶1 (MDH1, 72.8kDa) 和α-烯醇化酶 (94.2kDa),并将其成像(图2)。其中观察到的α-烯醇化酶为金属结合形式,每个亚基上结合了2个Mg 2+离子。图 2. (a)大鼠肾脏的H&E染色连续切片显示皮质(C)和髓质(M)组织。(b)在MSI期间获得的大鼠肾皮质组织中单个nano-DESI 像素的示例全扫描质谱。(c, d)α-烯醇化酶同型二聚体。(e, f)苹果酸脱氢酶1。(g, h) MDH2同型二聚体。(i, j) ω-酰胺酶。研究还从大鼠肝组织中鉴定出同型三聚体鸟氨酸转氨甲酰酶(OTC,108.8kDa)和同型四聚体乳酸脱氢酶A(LDHA,145.4kDa)(图3)。其中,在全扫描模式下,nano-DESI可以检测到145.4kDa的LDHA的较弱信号。通过nano-DESI-PTCR MS2的进一步确认,检测到的物质确实为LDHA。图3. (a) 直接来自大鼠肝组织的完整OTC同源三聚体的nano-DESI-PTCR MS 2。(b) 完整OTC同源三聚体的nano-DESI-HCD MS2显示亚基质量为36.2kDa。(c)完整LDHA同源四聚体 (145.4kDa)的nanoESI-PTCR MS2。(d)完整LDHA 同源四聚体的nanoESI-HCDMS2。在此研究中,作者成功利用NAMS质谱分析方法,直接从组织中检测并鉴定出内源性蛋白质组装体,分子范围为37.0-145.4kDa,包括二聚体、三聚体以及四聚体。其中检测到的上限(145.4kDa)超出LESA MS报道的质量上限的两倍,比nano-DESI 报道过的质量上限高出100kDa。通过调整离子光学和高m /z的气体压力,或者后续仪器和方法的开发,NAMS有可能进一步突破145.4kDa的上限,检测到分子量更大的蛋白组装体。[1]Hale OJ, Hughes JW, Sisley EK, Cooper HJ. Native Ambient Mass Spectrometry Enables Analysis of Intact Endogenous Protein Assemblies up to 145 kDa Directly from Tissue. Anal Chem. 2022 Apr 12 94(14):5608-5614.[2]Hale OJ, Cooper HJ. Native Mass Spectrometry Imaging and In Situ Top-Down Identification of Intact Proteins Directly from Tissue. J Am Soc Mass Spectrom. 2020 Dec 2 31(12):2531-2537.
  • 最新研究:微塑料在人胎盘中的发现率高达100%,这一种含量尤其高!心脏、大脑等多器官均存在
    随着塑料品的消费量逐年增加,塑料污染已然成为全球面临的最紧迫的环境威胁之一。而这些塑料制品释放出的塑料碎片,又会在物理、化学和生物的进一步降解后分解成为“更微小但更严重”的威胁,即「微塑料」或「纳米塑料」。 微塑料(Microplastic),是指直径在1μm至5mm之间的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。事实上,越来越多的实验表明,塑料聚合物的碎裂并未止步于“微米级”,而是进一步形成了纳米塑料,数量上更是比预期高出了好几个量级。 纳米塑料(Nanoplastics),则是目前已知最小的微塑料,尺寸在1μm以下。与微塑料相比,纳米塑料更易进入人体,其体积小到可以穿过生物屏障(比如细胞膜)并进入生物系统,包括血液、淋巴系统,甚至全身。 胎盘中微塑料检出率高达100% 微/纳米塑料可能会遍布全身并产生损害? 这并非空穴来风,Toxicological Sciences上最新刊登的研究,采用了一种新的分析工具测量了人类胎盘中存在的微塑料,得到的结果令人震惊!在接受测量的62个胎盘样本中100%地检测出了微塑料,浓度为每克组织中6.5-790微克。 微克,听起来不多?但正如毒理学中的基本原理“剂量决定毒性”所述,积少成多聚沙成塔,如果剂量不断增加,很可能带来一定的健康危害。“如果连胎盘中都存在微塑料,那么地球上所有哺乳动物的生命均可能受到影响,说明事态很严峻了!”美国新墨西哥大学的Matthew Campen博士强调。 图源:https://hsc.unm.edu/news/2024/02/hsc-newsroom-post-microplastics.html 人类胎盘由贝勒医学院数据库提供,收集时间为2011-2015年,最终有62个符合条件的胎盘被用于Py-GC-MS分析。 为了能更精准地确定和量化纳米和微塑料(NMPs)在人体组织中的累积程度,研究者开发了一种新方法:通过皂化反应和超速离心从人体组织样本中提取出固体材料,从而可以采用热裂解-气质联用(Py-GC-MS)来对塑料进行高度特异性和定量分析。 具体来说,研究者首先对样本进行化学处理,使得脂肪、蛋白质进一步水解和皂化成小分子。接着,将样品放入超速离心机中,最终在试管底部观察到一小块塑料。 再然后,研究者采用Py-GC-MS对收集到的塑料块儿进行处理,将其加热到600℃后,从而捕捉不同类型的塑料在特定温度下燃烧时释放出的气体。“很酷的是,气体进入质谱仪后,会留下属于自己的印迹。”Campen解释道。 实验流程 Py-GC-MS分析显示,纳入分析的62个胎盘样本中均存在微塑料,每克胎盘组织中的NMPs浓度从6.5µg到685µg不等,均值为126.8±147.5µg/g。 其中,胎盘组织中最常见的聚合物是聚乙烯(PE),几乎所有样本中都存在。按重量计算,PE占NMPs总量的54%,平均浓度为68.8±93.2µg/g。事实上,生活中聚乙烯的使用率非常高,主要用于食品包装和塑料瓶,比如水果、蔬菜、超市采购回来的半成品都是用PE保鲜膜。 聚氯乙烯(PVC)和尼龙紧随其后,各占总量的10%左右。而剩余的26%,由其他9种聚合物组成。 胎盘中的NMPs含量 研究者表示,在胎盘中发现如此高浓度的微塑料,是一件非常令人担忧的事儿!胎盘是孕期母体和胎儿循环系统之间的接口,约在怀孕后一个月开始形成。时间跨度上来说,胎盘组织仅有8个月左右的生长期,就能囤积如此之高浓度的NMPs;那么,这些微塑料也会在人体内其他器官进行更长期的积累。 警惕!微塑料已入侵人类心脏及全身 而这绝不是杞人忧天。去年,来自中国首都医科大学的研究学者们竟然在与外部环境没有接触的器官——心脏及其周围组织中发现了微塑料的存在! 研究者从心脏收集来的5种不同类型的组织中,包括心包、心外膜脂肪组织(EAT)、心包脂肪组织(PAT)、心肌和左心耳(LAA),检测到直径20-469μm不等的微塑料颗粒。 doi: 10.1021/acs.est.2c07179. 为了获得人体内器官存在微塑料的“直接证据”,研究者招募了15名正在经历心脏手术的参与者,最终收集到6个心包样本、6个EAT样本、11个PAT样本、3个心肌样本和5个LAA样本。最终,在所有的5类样本中均检测到了微塑料的存在,直径从20到469μm不等。 其中,最常见的微塑料类型是聚对苯二甲酸乙二醇酯(PET),约占总数的77%,在心包、EAT、PAT和心肌中的具体占比分别高达96%、83%、49%和43%;其次为占12%的聚氨酯(PU),主要存在于LAA样本中。 值得注意的是,虽然PE只占到微塑料颗粒总数的1%,但在所有的组织样本中均检测到。同时,在9号患者的心肌样本中也能找到PE,说明微塑料的污染已达到了人体最深的解剖结构! 微塑料在人体中的分布情况 由于此次样本是接受心脏手术的患者,研究者还发现了另一个微塑料的来源途径——没错,就是心脏手术本身。 在手术过程中,患者会接触到各种带有塑料成分的医疗器械,这也使得手术前后患者血液样本中的微塑料类型以及直径分布出现了改变。举例来说,手术前血液中检测到的最常见的微塑料类型为PET,占67%;而聚酰胺(PA)则是手术后血液样本的含量最高的微塑料颗粒类型。 因此,研究者强调,侵入性医疗程序很有可能成为被忽视的微塑料暴露途径,值得重视! 心脏中的各种微塑料类型分布 先前,加拿大的Kieran D. Cox教授和他的团队以美国人饮食为基础,根据食物消费种类以及不同种类食物所含有的微塑料数量,估算出每人每年会吃掉5万个微塑料颗粒,如果算上漂浮在空气中、被呼吸吸入的微塑料,那么每人每年吃掉的微塑料颗粒数量在7.4万-12.1万之间。 按照重量计算的话,每人每周大约吃掉5g微塑料,相当于一张银行卡的重量!还真是活到老,吃微塑料到老呢。 微/纳米塑料的“温水煮青蛙”式健康危害 不夸张地说,NMPs对人的影响往往是“温水煮青蛙式”的——很容易被忽视,但对健康的危害或是积年累月的。 去年,维也纳医科大学等多院校联合开展的研究,揭示了一个令人惊讶的现象:仅摄入后2小时,纳米塑料便会穿过血脑屏障(BBB)抵达大脑,而这可能会增加炎症、神经系统疾病以及神经退行性疾病的风险。 本研究中,研究者选择了聚苯乙烯(PS)来模拟塑料微粒通过血脑屏障后的转移。PS属于热塑性塑料,经常被用来制作各种需要承受开水温度的塑料杯、一次性泡沫饭盒;因其使用广泛,污染环境的程度较高,而被纳入了本次的重点研究对象。 令研究学者意想不到的事情发生了!在灌胃的仅仅2小时后,小鼠脑组织中便出现了特定的纳米级绿色荧光信号。这表明,0.293µm的PS微粒能在很短的时间内被胃肠道吸收,并穿透BBB进入脑组织中。 有意思的是,脑组织中只检测到了绿色荧光颗粒(即0.293µm的纳米塑料),而没有更大颗粒的信号。也就是说,塑料微粒的大小或是影响其穿透BBB能力的关键因素。 给药的2小时后,小鼠脑内检测到纳米级PS塑料微粒 此外,Science Advances上最新刊登的研究揭露了微塑料的另一大新罪证——纳米塑料能够进入大脑,与神经元中的蛋白纤维发生作用,从而加剧帕金森病的风险。 这些“狡猾”的塑料微粒不仅仅是进入大脑这么简单,还诱导了严重的神经毒性,成为某些疾病的“铺路石”。 DOI: 10.1126/sciadv.adi8716 帕金森病(PD)的病理特征是α-突触核蛋白在脆弱的脑神经元中病理性积聚,可以说α-突触核蛋白是PD发病中的中心环节。 为了探明塑料微粒与帕金森病之间的关系,第一步,研究者先在体外将高浓度的野生型人类α-突触核蛋白单体蛋白(~1 mg/ml)与聚苯乙烯纳米塑料(平均直径~39.5±0.7nm的1nM)进行混合。 结果显示,在阴离子纳米塑料污染物的催化下,α-突触核蛋白发生了聚集。具体来说,在α-突触核蛋白与纳米塑料污染物持续混合的6天后,产生了浑浊的白色泡沫界面,整体也出现了浑浊。使用负染色透射电镜(TEM)观察溶液中的产物发现,早在第3天就有多条α-突触核蛋白纤维从单个微塑料中发出。纳米塑料污染物与α-突触核蛋白的混合过程 第二步便是探究“how”——具体来说,阴离子纳米塑料是如何加速α-突触核蛋白的聚集的呢? 分子动力学(MD)模拟表明,α-突触核蛋白与阴离子纳米塑料形成了相当稳定的复合物,其特点是在两亲结构域和邻接非淀粉样成分(NAC)结构域中具有很强的静电吸引和压实作用。然而,如果使用中性或阳离子纳米塑料来取代阴离子纳米塑料时,则未能形成类似的复合物。 仔细观察发现,阴离子纳米塑料能够置换水,插入α-突触核蛋白的两亲结构域和NAC结构域,并与之形成强烈的相互作用。正是两亲结构域和NAC结构域的存在,促成了阴离子纳米塑料与α-突触核蛋白的特异性结合,从而促进α-突触核蛋白成核。 与此同时,阴离子纳米塑料还会导致神经元的轻度溶酶体损伤,减缓α-突触核蛋白聚集体的降解。生成的增多,降解的减少,自然会导致“不平衡”的发生。 阴离子纳米塑料与α-突触核蛋白共同形成了稳定的复合物 第三步便是追踪真实的脑内链路,研究者构建了小鼠模型,将不同浓度的人类α-突触核蛋白纤维滴定在小鼠的初级神经元上。光片显微镜和共聚焦分析表明,α-突触核蛋白纤维很容易扩散开来,在大脑皮层、丘脑和杏仁核的神经元以及黑质紧密区(SNpc)的多巴胺能神经元中积聚。 当共同注射纳米塑料与α-突触核蛋白纤维时则出现了更令人惊讶的情况——注射3天后,SNpc中大约20%的多巴胺能神经元的α-突触核蛋白纤维和纳米塑料均呈阳性,且有75%的α-突触核蛋白纤维信号与纳米塑料共定位。 事实上,当给小鼠同时注射纳米塑料和α-突触核蛋白纤维时,会在多巴胺能神经元中观察到成熟的胞质磷酸化Ser129-α-突触核蛋白包涵体,同时在整个皮质幔、杏仁核和SNpc中均出现了pS129-α-突触核蛋白病理变化的大幅增加。 总结而言,在较高的纳米塑料浓度下,这些大脑中的阴离子纳米塑料污染物会与α-突触核蛋白纤维发生协同作用,上调pS129-α-突触核蛋白包涵体在相互连通的大脑区域中的传播,进而增加了小鼠大脑皮层、杏仁核和SNpc中的病理沉积。 纳米塑料在小鼠脑内聚集并形成包涵体 最后一步,也是与人类关联性最强的一步——研究者采用裂解气相色谱-质谱法在人脑中检测到清晰的苯乙烯纳米塑料。 聚苯乙烯并非止步于血液中,其纳米塑料颗粒可穿透哺乳动物的血脑屏障。在先前的研究中,研究者在路易体痴呆症患者的额叶皮层脑组织中观察到很强的α-突触核蛋白种子活性,同时也发现了强烈的苯乙烯离子痕迹。 这些数据首次测量了纳米塑料可能作为污染物进入人脑组织中,但其浓度与作用还需要更进一步的人体试验进行探究。 神经元α-突触核蛋白和纳米塑料污染物之间的病理相互作用 综上,纳米塑料污染能够促进帕金森病以及痴呆症相关的α-突触核蛋白的聚集。具体来说,阴离子纳米塑料污染物能够进入大脑组织,通过与α-突触核蛋白的两亲和NAC结合域的高亲和相互作用,导致α-突触核蛋白病理学的传播和积聚,进而诱导帕金森等神经性疾病的发生。 众所周知,塑料降解速度很慢,通常会持续数百年甚至数千年,这也增加了微塑料被摄入并累积在许多生物体和组织中的可能性。 为了避免人类的五脏六腑变成“塑料制品”,最简单的办法就是——尽量在生活中减少塑料制品的使用并及时治理塑料污染,别让地球被塑料“攻陷”之后再追悔莫及。
  • 借助双光子显微成像技术 北京大学陈良怡团队合作揭示小鼠社交行为神经编码机制
    陈良怡团队合作揭示小鼠偏好“喜新厌旧”的神经元集合和孤独症小鼠的缺陷社交行为是个人和人类社会生存和发展的基础。有关大脑通过何种方式编码社交行为信息这一科学问题,目前尚无确切答案。此外,孤独症、抑郁症、精神分裂症、社交恐惧症或创伤后应激障碍(PTSD)等患者,均存在显著社交识别或互动障碍,给家庭、社会和国家带来诸多问题和负担,当前仍缺乏行之有效的干预手段或治疗方法,原因之一在于对大脑处理和编码社交行为信息的神经机制知之甚少。既往研究表明,大脑内侧前额叶皮层(mPFC)在社交探索、社交恐惧和社会竞争等方面均发挥重要调控功能[1-4]。当小鼠进行社交探索行为时,mPFC脑区前边缘皮质(PrL)内部分兴奋性锥体神经元活动会显著增强[5, 6],mPFC神经元集群在处理不同社交对象信息时,其活动表现出较强的异质性[7, 8],而且mPFC脑区内抑制性GABA能中间神经元也同社交行为密切相关[1, 4, 9],然而,由于缺乏在体单细胞分辨率水平、实时动态可视化的神经编码研究方法,这些不同亚型神经元集群是如何编码特定社交对象信息的尚不明了。北京大学未来技术学院分子医学研究所、IDG麦戈文脑科学研究所、北大-清华生命科学联合中心、生物膜国家重点实验室陈良怡实验室,联合军事医学研究院吴海涛实验室以及北京大学工学院张珏实验室,在Science Advances杂志发表了题为“Encoding of social novelty by sparse GABAergic neural ensembles in the prelimbic cortex”的研究论文,解析了孤独症小鼠“喜新不厌旧”社交缺陷下的神经编码机制。在陈良怡实验室和程和平院士团队联合开发两代高时空分辨率的微型化双光子显微成像系统基础上[10, 11],通过建立改进型小鼠两箱社交行为学研究范式,利用MeCP2转基因孤独症小鼠模型和细胞亚型特异性Cre小鼠,借助微型化双光子显微镜钙成像技术,结合基于Tet-off系统的细胞特异性化学遗传学操控技术、CRISPR-Cas9介导的基因编辑和功能挽救等前沿技术,系统探讨了正常和孤独症小鼠模型不同社交行为过程中,PrL脑区内不同亚型神经元集群编码特定社交信息的模式差异。首先,借助微型化双光子钙成像技术,研究人员发现在小鼠自由社交活动过程中,PrL脑区内抑制性中间神经元较之于兴奋性锥体神经元具有更强的相关性。数学分析揭示其中存在稀疏分布的“社交特异”神经元,与之前研究的“社交相关”神经元不同,它们特异性地参与了同“陌生”或“熟悉”老鼠的社交行为。通过化学遗传学技术,特异性抑制社交行为过程中被激活的这些抑制性中间神经元亚群,能够显著破坏小鼠社交偏好及社交新颖性行为。提示PrL脑区内这群稀疏分布的中间神经元集群在调控小鼠社交偏好性以及“喜新厌旧”行为模式中,扮演着极为关键的角色。进一步,研究人员在进行小鼠两箱社交行为学观察时发现,MeCP2转基因孤独症小鼠社交偏好性并无显著缺陷,但会丧失典型的“喜新厌旧”样社交新颖性行为。利用CRISPR-Cas9基因编辑技术,在MeCP2转基因孤独症小鼠PrL脑区中间神经元内特异性剔除外源性MeCP2转基因后,可显著挽救孤独症小鼠“喜新厌旧”样社交缺陷表型。表明PrL脑区抑制性中间神经元内过表达MeCP2转基因可能是诱发孤独症小鼠产生社交新颖性行为缺陷的罪魁祸首。最后,通过系统分析野生型和MeCP2转基因孤独症小鼠模型PrL皮层内编码“陌生”和“熟悉”社交对象信息、且稀疏分布的抑制性中间神经元钙信号动力学特征,研究人员发现,当野生型小鼠分别与“陌生”或“熟悉“小鼠发生社交时,其PrL皮层中编码相关社交对象特异性神经元的发放概率、钙信号变化幅度以及达峰时间均存在显著差别。这两群细胞通过“跷跷板”式的协同增强效应,帮助小鼠确定面对不同类型对象采取不同的社交策略。而孤独症小鼠PrL脑区内相关神经元集群均明显异常,总体表现为“陌生”或“熟悉”社交对象引起社交特异神经元间反应差异消失,从而无法区分“陌生”和“熟悉”不同社交对象之间的差别,最终导致社交新颖性行为缺陷。综上,该研究工作发现在小鼠前额叶皮层内存在一群稀疏分布的中间神经元集群,分别负责编码社交行为中的“熟悉”和“陌生”社交对象信息,这些稀疏分布的神经集群在调控小鼠社交行为,尤其是社交新颖性行为中发挥着重要作用,揭示了个体在面对不同类型对象进行社交行为时的神经编码机制。该研究为深入理解孤独症等神经精神疾病患者社交行为缺陷的神经机制,探索精准靶向诊疗新策略提供了新的证据和线索。PI简历陈良怡北京大学未来技术学院学院教授北大-清华生命科学联合中心PI邮箱:lychen@pku.edu.cn实验室主页:http://www.cls.edu.cn/PrincipalInvestigator/pi/index5489.shtml研究领域:我们发展自驱动的活细胞智能超分辨率成像技术,并应用这些技术来研究生物医学重要问题。目前一方面的工作主要集中在引入物理光学中新成像原理、数学和信息学科中的图像重建新方法等,致力于发展可以在活细胞中实现两种以上模态光学信号探测的三维超分辨率成像的通用工具,实现同一活细胞样本上长时间、超分辨率、三维成像特定生物分子(荧光)和主要细胞器(无标记)。建立基于深度学习等手段Petabyte级的图像数据的高速处理以及分割手段,自动化、定量化描述活细胞内不同蛋白等分子以及细胞器的形状、位置以及相互作用等参数,找到新的细胞器并定义它们生化特性,最终目标是建立单细胞细胞器互作组学以及活细胞超分辨率病理学的概念,利用成像来揭示细胞内的异质性动态变化以及如代谢类疾病的发生发展机制。另一方面,我们也应用发展的高时空分辨率生物医学成像的可视化手段,系统研究血糖调控紊乱激素分泌在活体组织、细胞水平以及分子代谢水平的关系。参考文献:1.Xu, H., et al., A Disinhibitory Microcircuit Mediates Conditioned Social Fear in the Prefrontal Cortex. Neuron, 2019. 102(3): p. 668-682 e5.2.Kingsbury, L., et al., Cortical Representations of Conspecific Sex Shape Social Behavior. Neuron, 2020.3.Báez-Mendoza, R., et al., Social agent identity cells in the prefrontal cortex of interacting groups of primates. Science, 2021. 374(6566): p. eabb4149.4.Zhang, C., et al., Dynamics of a disinhibitory prefrontal microcircuit in controlling social competition. Neuron, 2021.5.Murugan, M., et al., Combined Social and Spatial Coding in a Descending Projection from the Prefrontal Cortex. Cell, 2017. 171(7): p. 1663-1677 e16.6.Liang, B., et al., Distinct and Dynamic ON and OFF Neural Ensembles in the Prefrontal Cortex Code Social Exploration. Neuron, 2018. 100(3): p. 700-714 e9.7.Pinto, L. and Y. Dan, Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior. Neuron, 2015. 87(2): p. 437-50.8.Rigotti, M., et al., The importance of mixed selectivity in complex cognitive tasks. Nature, 2013. 497(7451): p. 585-90.9.Cao, W., et al., Gamma Oscillation Dysfunction in mPFC Leads to Social Deficits in Neuroligin 3 R451C Knockin Mice. Neuron, 2018. 97(6): p. 1253-1260.e7.10.Zong, W., et al., Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat Methods, 2021. 18(1): p. 46-49.11.Zong, W., et al., Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods, 2017. 14(7): p. 713-719.
  • 文献解读 | 《J Tissue Eng.》皮肤芯片用于化妆品刺激性和美白功效检测
    皮肤是人体最大的器官,具有屏障功能,可以保护身体免受外来物质和病原体的侵害。尽管皮肤表面覆盖着角质层,但仍然会受到刺激、药物/病原体渗透以及过敏原、老化以及各种皮肤疾病的影响。目前,新药的临床前研究和化妆品配方的优化依赖于各种体外模型的应用。然而,动物模型存在道德问题以及高昂的时间和劳动力成本的问题。自2009开始,欧盟提出禁止将动物实验用于测试化妆品毒理学研究,这使得基于细胞和Transwell的皮肤模型变得流行,并且模型的复杂程度一直在增加。然而,这些模型及其培养过程仍然缺乏完全模拟皮肤微环境的能力。来自东南大学的顾忠泽教授团队、中国航天员科研训练中心团队和艾玮得生物器官芯片团队共同合作,于2023年4月在《Journal of Tissue Engineering》(IF:8.2)杂志上以“Epidermis-on-a-chip system to develop skin barrier and melanin mimicking model”为题发表了文章,本文使用了艾玮得开发的三孔膜式芯片制备了表皮芯片(EoC)。芯片内微流体环境提高了模型的仿真度。而三连续单元和可开盖的芯片设计,满足了在芯片中对模型进行固体和半固体物质测试的需求。1、在EoC中构建表皮如图所示,提取的原代角质细胞胶蛋白表达量丰富,纯度高。将原代角质细胞接种到芯片内增殖2天后,更换培养基为分化培养基,在气液培养条件下分化培养。14天后,角质形成细胞分化成基底层、棘层、颗粒层和角质层。并且细胞间连接紧密、细胞活性高。2、表皮的分化与静态皮肤相比,EoC皮肤分化更为明显。特别是基底层的细胞排列得更紧密,厚度约为50μm以上。这表明在皮肤重建过程中,微流体系统增强了分化的过程。除了提供持续的营养供应和去除代谢废物外,微流体灌注还可能增加剪切应力,从而推动表皮成熟并调节其生物屏障功能。3、EoC的屏障功能皮肤最重要的功能是在生物体和环境之间形成有效的屏障,防止病原体入侵并抵御化学和物理攻击。作者通过不同荧光分子溶液的渗透性,评估了EoC对外部物质的抵抗力。结果表明,EoC可以显著防止级联蓝(607 Da)和德克萨斯红(70 kDa)的渗透,阻断了99.83%的小分子荧光染料。此外,依据静态体外皮肤模型测试标准OECD439,我们表征了EoC表皮SDS暴露后的皮肤屏障功能。如图所示,超过一半的组织细胞在暴露于18 mg / mL SDS(2.0% m / v)2小时后仍然存活。也就是说,EoC皮肤模型具有良好的屏障功能,可以用于进一步应用(例如刺激或光毒性评估)。4、醋酸泼尼松的渗透糖皮质激素是类固醇激素,根据昼夜节律从肾上腺皮层排泄。它们不仅在调节糖、脂肪和蛋白质的生物合成和代谢方面很重要,而且在防止压力、休克、炎症等方面也很重要。醋酸泼尼松(PA)是一种重要的糖皮质激素药物,可以口服、涂抹在皮肤上、局部注射或放入结膜囊。在这项工作中,作者发现PA药物的皮肤渗透能力有限。尽管透皮给药是一种吸引人的方法,但受角质层(皮肤最外层)调节,并非所有糖皮质激素药物都适合透皮给药途径。5、试剂刺激性评估与这些静态皮肤模型不同,大多数此类芯片是密封的,不适合糊状或半固体样品上样。通常,这类样本会堵塞微流控管道,难以精确控制样品加载量。同时,添加样品后需要大量的液体和时间进行清洗,影响了芯片的检测效率。我们检测了四种化学物质,如图所示:两种非刺激性化学物质,异丙醇(液体)和甘油(粘性)以及两种刺激性化学物质,1-溴己烷(液体)和仙客来醛(粘性)。甘油和仙客来醛是糊状的,通过本文中的 EoC,我们可以打开芯片加样,同时在蠕动泵的帮助下将它们冲走。结果显示,检测测试准确地预测了样品的刺激性和非刺激性。6、化妆品的美白效果功效由于美容和健康问题,美白化妆品对公众的吸引力越来越大。作者在芯片中构建了含黑色素细胞的黑素皮肤模型。用中国某化妆品公司的化妆品处理后,实验组的表观色度降低。L*值和黑色素含量与Control组间存在显著差异,且样品的标准偏差小于3%,重复性较好。而基于图像分析统计的黑色素颗粒分布与Control组间并无显著差异。这些结果表明,被测化妆品具有美白效果。但是机制还尚不明确,化妆品可能抑制了黑色素的转运,但并没有阻断黑色素的产生。总而言之,作者设计了一种简单、实用且可重复的 EoC。结果表明,该芯片制备的皮肤模型具有良好的屏障功能,适用于刺激性评价和初步渗透检测。尤其是可拆卸的盖子便于装载固体或半固体样品。EoC 也可被视为评估化妆品在腐蚀性、光毒性和美白等方面有效性的合理选择。同时,EoC可以很容易地扩展到多单元芯片,是实现高通量测试的一种潜在策略。这对于有效测量皮肤刺激性、渗透性或其他皮肤评价指标是迫切需要的,可以有效地促进制药和化妆品行业的发展。文献索引:https://doi.org/10.1177/20417314231168529
  • 复旦大学郑平团队等发现“戒断”毒瘾新靶点
    p style=" text-align: left text-indent: 2em " 据悉,药物成瘾是危害严重的社会问题。目前虽已有多种方法可以对成瘾者进行有效脱毒,解除成瘾症状,但即使脱毒很久,当脱毒者遇到环境因素,仍很容易激活已被“深埋”的成瘾记忆,导致毒品复吸。环境因素是如何重新激活成瘾记忆?这一直是全球脑科学研究者关注的重要问题。 /p p style=" text-indent: 2em " 郑平团队的研究表明,环境因素“双重激活”脑内前额叶皮层投向杏仁核的神经环路,或是环境因素重新激活药物戒断记忆的重要神经机制。这意味着,未来,通过干预此过程或成为减少环境因素导致药物复吸的新策略。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/images/201802/uepic/a4f14cec-3c30-4cf3-931c-32432e382748.jpg" / /p p style=" text-indent: 2em " 据介绍,为解开成瘾记忆之谜,5年前,郑平团队开始进行科研攻关。研究人员将吗啡成瘾鼠放在两个环境不同的盒子中:有“成瘾”环境的盒子是黑色的,无“成瘾”环境的盒子是白色的。科研团队在黑色(环境)盒子里,给成瘾鼠注射催瘾针后突然“戒断”吗啡。此时,成瘾鼠会产生痛苦的“戒断”症状,形成“戒断”记忆,并会将该记忆与其所处的黑色环境联系到一起。 /p p style=" text-indent: 2em " 研究人员发现,原来,环境因素可以在成瘾鼠“细胞体”和“神经末梢”双重激活相关神经环路。进一步的研究表明,上调该神经环路的相关基因表达调控“分子”,可显著抑制环境因素对成瘾记忆的重新激活。据透露,相关研究成果已发表在最新一期的国际权威期刊《BMC-生物学》(《BMC Biology》)上。 /p
  • 了解大脑的巨大挑战:采用功能性近红外光谱法进行神经成像
    耶鲁医学院神经生物学和精神病学教授Joy Hirsch博士 在生命科学的所有挑战中,对大脑的了解是难中之最。大脑是人体最复杂的器官,拥有超过1千亿个神经元和其他细胞,形成了超过100兆个连接。这些连接由多种神经化学因子调节,这些因子跨越空间维度,从分子开始并发育到细胞、循环、系统、并最终导致包括认知过程、情绪、感知、记忆和目标导向行为。从出生到生命终结的人类发育所有阶段的大脑疾病在世界范围内的流行,导致了严重的医学、政治、经济、法律和生活质量问题。无论如何,在健康和疾病领域,大脑仍是一项科学前沿问题。 不过,这种广泛而未被满足的医疗需求的紧迫性再加上神经系统科学领域的近期进展已经激发了这样一个充满希望的愿景:对于大脑的全面理解是一个可以实现的目标。在美国,这一愿景最近已经集中到了一项被称为BRAIN(通过推进创新神经科学技术来进行大脑研究)倡议的行动计划上。此项倡议于2013年4月2日由美国总统巴拉克奥巴马(Barack Obama)公布,他宣布“加速对能够让研究人员生成显示设想速度下个体脑细胞与复杂神经回路间互相作用的大脑动态图片的新技术的开发和应用”是一项巨大挑战(The White House,2013年)。随后,国立卫生研究院(NIH)制定了一项10年计划,用以实现加速技术开发以便获得关于神经系统在健康和疾病中所起到功能的基础见解这一主要目标。一开始,BRAIN倡议的终点是大脑中的神经回路,包括组成细胞的表征、突触连接、以及行为相关活动的动态集合。这一总体目标横跨多个研究领域,从管理短程细胞回路的分子和细胞过程到由人类神经成像观察到的管理复杂行为的远程流程。行动过程人类大脑成像 针对这一倡议的一个主要目标包括现有技术的改善以及用于大脑机制及行为之间关系探索和建模的全新技术的开发。主要采用核磁共振成像(MRI)和诸如脑磁图描记术(MEG)及脑电图描记术(EEG)等电磁技术的现有脑成像技术,是正常及病理条件下人类大脑研究的基础。这些技术对一个重点为功能性脑活动与认知及行为之间相关性的神经系统科学主要分支做出了大量贡献。尤其是大脑成像技术的爆发式成长,实现了对于人类语言、记忆、决策制定、视觉和听觉过程、情绪、学习及社交互动等复杂认知行为相关的专门神经过程的操作性了解。 总之,这些系统的神经学和生理学组成部分1) 局限于特定的大脑区域和接收及传输信息的短程神经回路,并且2) 通过涉及的大脑区域之间的远程途径相互连接。因此,出现了两大大脑组织原则。首先是隔离原则,大脑特定区域专门用于特定的任务和处理;第二是互动原理,在特定任务需求下大脑中共同有效区是相互连接的。例如,在人类语言系统中,位于左颞上回的一个通常被称为威尔尼克语言区(Wernicke’s area)的区域,专门用于语言接收功能(理解并解读说出的语句)。此外,位于左额下回的一个通常被称为布鲁卡语言区(Broca’s Area)的区域专门用于产生语言功能(产生语音)。 这两种专用大脑区域的复合体通过广为人知的途径相互连接,包括弓状纤维束和用于传输了解语言并用于说话的过程相关当地信息的弓形钩突。其他被广泛认可为和记忆及情绪有关的大脑区域,在特定任务过程中和语言系统功能性连接。语言相关操作过程中这些互动区域之间的动态关系,已经采用当代神经成像技术进行了广泛研究。技术进步 主要由于采用磁共振成像(MRI)技术研究大脑过程的限制,主流神经成像技术被局限于单个个体的研究。在扫描仪环境下,两个个体之间的自然人际互动是不可能的。不过,实时交流涉及语言和非言语交流,包括目光接触,动态面部表情和反应手势。虽然涉及两个个体之间动态交流的互动社会行为是人类社会化的一个基本方面,但这些隐含的沟通线索不会出现在仅包含一个个体的扫描环境中。主要是由于这些技术的局限性,导致人类对调节和调制自然人际互动和交流的潜在神经回路知之甚少。因此,具有社交互动相关潜在深刻缺陷的神经病(例如孤独症谱系障碍、精神分裂症、焦虑症和抑郁症)的神经生理学机制仍无法确定。用于生态学上有效的条件下两个个体间交流过程中大脑成像的新技术的开发,为在传统神经成像中收集的信息不足的大型临床全体的需求的解决提供了一个特别有影响力的机会。近红外光谱法(NIRS)的基础性新角色 一种新兴的神经成像技术——功能性近红外光谱法(fNIRS)采用了固定在头戴帽上的光极,并且适合在自然情况下用于多位受试者而且不受头部移动影响。和MRI一样,NIRS能够在无离子化造成的毒性的情况下,实现对个体受试者运作中神经系统的观察。此项技术利用了活跃神经组织回路氧合的血液比例比非活跃神经组织更大这一生理学原理的优势。在这一过程中局部微脉管系统内脱氧血红蛋白(deOxyHb)的顺磁性作用降低。被称为血氧水平依赖性(BOLD)信号(Ogawa等人,1990年)的MRI中信号放大是由于deOxyHb比例降低以及由此导致的顺磁性作用减少。BOLD信号也是利用光谱吸收(J?bsis,1977年)通过NIRS测定的,这种方法能够区分氧合血红蛋白、OxyHb和deOxyHb信号。脉冲激光(采用岛津NIRS系统)发射三种波长的光,而检测器则测量氧合血红蛋白(OxyHb)和脱氧血红蛋白(deOxyHb)浓度的变化。对于每个通道,测量在780nm、805nm和830nm下的近红外光吸光度,并根据改良朗伯-比尔定律(Beer-Lambert Law)分别换算为相应的deOxyHb、总Hb(HbT)和OxyHb(Matcher & Cooper,1994年)(图1)。 图1. 脱氧血红蛋白与氧合血红蛋白吸收光谱这些函数显示了OxyHb和deOxyHb在780nm及830nm波长处的最大吸光度差异。大脑血液中的氧浓度影响着反射的光波长。改良朗伯-比尔定律被用于换算对应于deOxyHb(780nm)、总血红蛋白(805nm)和OxyHb(830nm)浓度变化的三个波长下的光衰减直接测量结果。 Shimadzu Corporation(日本东京)是一家fNIRS系统的领先制造商。图2显示了专门用于超高扫描的岛津LABNIRS配置,可为参与互动任务的两个个体同时获取信号。这种特殊系统可利用配备场景及瞳孔摄像头的SMI镜片实现实时NIRS信号的获取及眼球追踪采集。在此示例中,每顶帽子都包含42个通道,并为每位受试者分为两个半球。帽子配置是灵活性的,可以根据实验目的修改。NIRS信号的获取速率范围为10至33毫秒,空间分辨率为约3厘米。这种时间分辨率非常适合大脑内和大脑间活跃区域连接性的测量,不过和fMRI相比空间分辨率方面相对有所损失。 fMRI和fNIRS信号都反映出了大脑血流和大脑血氧饱和度的变化,而这些和潜在神经活动关联。后者已经由Eggebrecht及其同事(Eggebrecht等,2012年)最近在健康志愿者的视觉刺激过程中得到证实。fMRI BOLD和deOxyHb及OxyHb之间高度的正相关性目前已经得到很好证实(Sato等人,2013年;Scholkmann等人,2014年)。 在单个受试者、单次运行和单个光极的大拇指敲击任务中获得的“原始”fNIRS信号显示,同时获得了对任务相关时间系列作出响应的OxyHb和deOxyHb信号(图3)。注意OxyHb和deOxyHb信号之间的反相关性,和理论预期一致。由于和神经(而非心血管)事件的已知相关性,deOxyHb信号预期将是和fMRI BOLD信号最紧密相关的信号(Franceschini等人,2006年) 图2. 耶鲁大学医学院大脑功能实验室的fNIRS系统(LABNIRS,ShimadzuCorp.)。采用LABNIRS系统的参与者以SMI(ETG-2)眼部追踪镜片显示。单个受试者/单个通道/单个位置 图3显示了在不采用岛津LABNIRS系统(白色箭头)进行滤波的单次运行、单个受试者、单个通道手指大拇指敲击任务中,OxyHb(红色)和deOxyHb(蓝色)信号之间的反相关性。大脑覆盖最优的帽子设计 两位受试者相应大脑半球上的光极放置如图4所示。表1中包含了每个通道解剖学位置的示例(单个受试者),采用现行蒙特利尔神经学研究所系统(Montreal Neurological Institute)以标准解剖学坐标表示(ICBM152,Mazziota等人,2001年)。由于NIRS不会和MRI一样提供结构信息,使用标准脑图谱将通道位置与已知解剖结构相关联。 在两位受试者身上,光极被放置在相似的头部位置上,以便获得来自几乎相应脑区的皮质信号。探针被放置在每位受试者的头部,和被定义为从鼻根通过Cz到枕骨隆突的中线对齐。探针的位置以10-20国际坐标系统(Jasper,1958年)为基础,可提供与皮质解剖结构之间的准确关系(Koessler等人,2009年)。诸如PATRIOT Polhemus(Colchester,VT)等3D磁数字化仪通常被用于识别光极位置从而识别每位受试者的通道位置,根据受试者头骨的形状和尺寸进行标准化(Singh等人,2003年)。除了个体光极的位置之外,还记录了头部解剖学标志的三维坐标(Okamoto等人,2004年)。这些坐标被用于估计每个通道的位置,由发射器-检测器光极对采用比如NIRS-SPM (http://www.fil.ion.ucl.ac.uk/spm/)(一种基于MATLAB的应用)等标准软件包进行定义。继续所有渠道。表1 通道为止MNI坐标示例通道几何中心位置:MNI坐标 图4两个脑半球的通道分布 两个或以上个体的新神经系统科学 两人或以上个体间互动的近期研究已经证实了NIRS技术的功效,目前正引领着一种个体间自然交流的新神经系统科学之路(Babiloni和Astolfi,2014年;Scholkmann等人,2013年)。技术、计算算法和实验范式的突破,为社会大脑理论框架开发、以及通常社交功能受损的多种精神疾病和神经疾病的治疗的未来进展保证了一个质的飞跃。一种新的神经系统科学的新型基础,源于用以观察特定功能相关大脑间同步的高级计算方法。例如,已经采用小波分析测量了某项计算机任务合作过程中额叶皮质信号的一致性,并且显示了在同一个任务上进行竞争的受试者之间的一致性更高,表明了一种对合作特定的人际关系敏感的神经生理学底物(Cui等人,2013年)。在一项采用四个受试者群组同步记录的方法进行的合作性文字游戏中报告了相似的额极结果(Nozawa等人,2016年)。采用左前额和顶叶脑区同步NIRS记录的方法,对群组中领导者和追随者的出现进行了研究。研究发现揭露了团队领导者的出现,与领导者和追随者之间神经同步相对于追随者之间同步的增加相关(Jiang等人,2015年)。这些发现表明,未来可采用超高扫描方法和NIRS来了解领导能力的神经学机制。面对面交流中观察到的大脑间左半球神经同步相对于背对背交流中同步的增加表明面部表情为人际交流提供了特殊的神经信号,并且为将生动面部表情作为自然个体间交流的基础组成部分的研究指明了道路(Jiang等人,2012年)。参与某项手指敲击模仿人物的两个大脑的运动前区的同步,大于以自身步调进行的控制任务中的同步(Holper等人,2012年)。目光接触也可以增加大脑之间的一致性(Hirsch等人,2017年)。其他示例包括合作性按按钮(Funane等人,2011年)和正回任务(Dommer等人,2012年)。这些研究发现都为关于大脑间作用特定于某些神经区域、以及在不同人际交流条件下一致性出现增加提供了证据。这些基础性发现是记录基于NIRS的新型超高扫描技术潜在重要性的早期切入点,并且前进的轨迹正在以非常快的速度移动。当两人互相对话时两个大脑会发生什么? 在我们对健康成人配对组之间面对面交流过程中进行的大脑间同步互动早期研究中,在15秒的回合内关于对话和倾听对象的画面交替出现。这些回合是结构化的,并且决定了讲话和倾听的顺序。对受试者配对组在独白/对话和面对面/阻挡条件下获得的信号的神经活动进行了比较。三分钟的运行时间被分为十二个15秒长的回合。此处假设与独白相比,在对话过程中讲话及倾听相关的脑区中大脑内和大脑间同步将增加。对于每个回合,监视器上将显示某个对象的单独照片并由每位受试者查看。任务在面对面交流条件下以及面部被阻隔的条件下(即受试者无法看到他们的搭档)进行。结构化独白任务:在第一个示例中,受试者1识别了图片对象并提供了和对象相关的口头叙述。受试者2进行了倾听但并未回应。第二个回合采用了一个新的图片。受试者2说出了对象的名字并进行了口头叙述,而受试者1则进行了倾听。这种讲话和倾听的交换持续了3分钟,如图5所示。结构化对话任务:除了讲话的人对先前讲话人叙述进行了回应之外,结构化对话任务和结构化独白任务是相同的。预期是对话条件将揭露面对面条件下由于动态互动强度变化而到导致的语言系统的上调。 图5. 独白和对话范式 图6. 单独通道的fNIRS信号:通道12背外侧前额叶皮层(DLPFC,顶行)和通道18额极皮质(底行)显示了讲话和倾听过程中来自两位互动受试者的同源位置S1和S2的反相关信号。图片显示了OxyHb(中列)和deOxyHb(右列)的信号平均值并证实了配对受试者之间对应于角色变换(倾听和说话)的预期反相关性、以及OxyHb和deOxyHb信号之间的反相关性。 图6展示了两位受试者源自对讲话和倾听敏感的脑区S1和S2的信号之间的反相关性。和fNIRS信号的预期相同,每位受试者每个通道内的deOxyHb和OxyHb信号反相关(详见上文吸收光谱和示例)。对话过程中大脑内功能连接性大于独白期间:采用常规线性模型和心理生理互动(PPI)分析技术。 旨在了解传统人物相关、单个大脑功能连接性作用的分析,证实了面对面互动中对话的神经显著性。大脑偏远区域间功能连接性的测量表明,和独白相比在对话过程中同步会增加。尤其是在一项面部敏感性大脑区域梭状回(Kanwisher等人,1997年)被选定为重点区域的心理生理学互动(PPI)(Friston等人,1997年)的分析中,证实了面对面目光下对话可以增强威尔尼克语言区和布鲁卡语言区之间神经共变的强度(图7)。研究发现证实了对面对面过程中布鲁卡语言区和威尔尼克语言区间互动性增加的规范性语言系统的预期。对话过程中大脑间一致性大于独白过程:旨在研究大脑间互动的大脑间一致性(采用小波比较)。 根据内部(大脑内)功能连接性研究发现预计,这些区域在面对面条件下也会产生大脑间的共鸣。根据在每个通道获得的分级信号的小波核心,为对话(红色)和独白(蓝色)条件下的大脑间一致性(图8A)进行了绘图。对于两个大脑间大脑区域所有可行配对都以不偏不倚的方式进行了考虑。仅在对话和独白条件下发现了布鲁卡-威尔尼克语言区配对的核心范围内约6.34秒的大脑间一致性的显著差异(x轴)。语言产生区域(布鲁卡语言区)和语言接收区域(威尔尼克语言区)推定功能之间的大脑间一致性和这些研究发现一致,并且和以当前对这些区域的了解为基础的预期结果一致(图8B)(Jiang等人,2012年)。 图7. 在双方面对面目光下,对话条件下的大脑内功能连接性(PPI)大于独白条件下。依据是梭状区(绿色),连接区域(p ≤ 0.05)为布鲁卡区(-55, 20, 16)和威尔尼克区(-48, -36, 40)deOxyHb信号。(Hirsch, J., Noah, A., Zhang, X., Yahil, S., Lapborisuth, P., & Biriotti, M.(2014年10月)。背外侧前额叶皮层内专用于人际交流的神经专区:一项NIRS研究。神经系统科学协会年度会议上的演讲,美国伊利诺斯州芝加哥。) 这些研究表明了采用fNIRS和超高扫描技术研究互动人脑间动态关系的潜在未来方向。此外,语言超高扫描研究记录了诸如语言系统组分等广为人知的功能性神经解剖结构是可以采用fNIRS观察到的,而且两个个体间大脑一致性和同步的其他特征可以被作为新型探索方向进行研究,以便对作为社交互动神经事件基础的未知问题进行表征。这些研究还证实了光极覆盖范围可涵盖整个头部表面的技术的优势(Zhang等人,2016;Zhang等人,2017年;Dravida等人,2017年)。由于神经系统依赖于多个区域之间的信号合作(整体性原则),最成功的NIRS技术将取决于整个大脑的大脑功能采样。潜在获益包括可实现人际交往和相互交往过程中涉及的神经组织原则的方法及技术的标志性突破。进一步的研究可采用这些新的技术来进一步了解交流障碍的神经学基础,以及发育障碍中的社交能力障碍的神经学基础是如何偏离正常发育基础的。 之后我们应该怎么做? 功能性NIRS是一种正在快速成长的神经成像技术,在过去的20年间每3.5年相关著作数量就会翻一倍(Boas等人,2014年),且目前的增长轨迹呈指数型。主要开发领域包括神经发育、感知和认知、运动控制、以及精神疾病及神经疾病和治疗等传统神经系统科学主流领域中应用的仪器、分析方法、以及实验程序优化。神经反馈(Lapborisuth等人,2017年)和成人冲突认知神经系统科学(Noah等人,2017年)的近期应用展现了这些新的目录。不过,fNIRS的主要优势和自然环境中信号获取相关,而不受到高磁场以及限制头部运动及交流的不适成像条件带来的局限性的限制。这些优势让fNIRS成为了神经系统科学领域一种新前沿的潜力领先技术;这一前沿旨在了解社会行为和大脑间人际互动的神经相关性(Pinti等人,2015年;Noah等人,2015年;Hirsch等人,2017年)。旨在实现这一主要进展的各方各面基本已就绪。这一特定最终目标的关键开发优先事项 包括:1) 专注于代表和系统及其他非神经组分区分的信号的神经贡献的信号组分的计算算法(Kirilina等人,2012年; Zhang 等人,2016年);2) 光极完全覆盖头部以便获取潜在远程神经回路的动态活动;3) 同步EEG、fNIRS、以及眼部追踪综合测量(例如)用于远程大脑机制综合性报告的多模式系统。BRAIN倡议和fNIRS作为主流神经技术兴起的共同发生,催动了专门针对两个或以上个体之间人际互动的未开发神经系统的有效潜力。 图8. 大脑间同步的一致性分析。A. 为独白(蓝线)和对话(红线)条件下威尔尼克及布鲁卡语言区(WA和BA)的deOxyHb fNIRS信号绘制了一致性,表明了和独白相比对话条件下同步性显著更高(p 0.005),并且仅在面对面条件下观察到。研究发现在成对受试者中具有双边意义,并且在目标区域方面无偏倚。B. 这些一致性研究结果仅限于布鲁卡和威尔尼克语言区(群组数据)。(Hirsch, J., Noah, A., Zhang, X., Yahil, S., Lapborisuth, P., & Biriotti, M.(2014年10月)。背外侧前额叶皮层内专用于人际交流的神经专区:一项NIRS研究。神经系统科学协会年度会议上的演讲,美国伊利诺斯州芝加哥。)参考文献Babiloni, F., & Astolfi, L. (2014).Social neuroscience and hyperscanning techniques: past, present and future.Neuroscience & Biobehavioral Reviews, 44, 76-93.Boas, D. A., Elwell, C. E., Ferrari, M., & Taga, G. (2014).Twenty years of functional near-infrared spectroscopy: Introduction for the special issue.Neuroimage, 85, 1-5.Cui, X., Bryant, D. M., & Reiss, A. L. (2012).NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex durintion and methodology.Neuroimage, 85, 6-27.Singh, M., Kim, S., & Kim, T. S. (2003).Correlation between BOLD‐fMRI and EEG signal changes in response to visual stimulus frequency in humans.Magnetic Resonance in Medicine, 49(1), 108-114.The White House, Office of the Press Secretary.(2013).Remarks by the President on the BRAIN Initiative and American Innovation [Press release].Retrieved fromhttps://www.whitehouse.gov/the-press-office/2013/04/02/remarks-pr esident-brain-initiative-and-american-innovationZhang, X., Noah, J. A., & Hirsch, J. (2016).Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering.Neurophotonics,3(1), 015004-015004.Zhang, X., Noah, J. A., Dravida, S., & Hirsch, J. (2017).Signal processing of functional NIRS data acquired during overt speaking.Neurophotonics, 4(4), 041409. doi: doi:10.1117/1.NPh.4.4.041409
  • “鸟枪法(shotgun)”定量蛋白质组学技术介绍
    p   简介: /p p   1999年,Yates研究组提出“鸟枪法”(shotgun),其基本技术路线是针对液体或SDS-PAGE条带的复杂混合物用酶(Trypsin)酶解成肽段混合物,然后对肽混合物进行多维毛细管液相色谱分离和串联质谱分析以及数据库检索,从而确定蛋白质的种类,可同时鉴定成百上千种蛋白质。他们把这种思路称为多维蛋白质鉴定技术,即Mud PIT(multidi-mensional protein identification technology)。与传统的双向电泳技术相比具有灵敏度更高,动态检测范围更广等特点。 /p p   鸟枪法(shotgun)可以分析全细胞裂解样品和组织抽提物,也可以分析亚细胞分级组分、分离的细胞器等其他亚蛋白质组。如果样品已经过稳定同位素标记。根据不同标记的信号强度比例就可以精确确定化学上具有均一性的蛋白在不同样品中的相对丰度,这种多重分析可以利用在谱图上产生前后次序的质量标记得以完成。质谱分析以前在样品中加入同位素标记的某种质量校准肽,通过对此肽的相对定量就可以获得绝对定量的信息。实现目的肽段的绝对定量,而这一性质可以被充分应用以提供临床诊断的标准值或阈值。 /p p   差异蛋白质的定量研究是基于肽段水平而非完整的蛋白质,成为该技术最大的技术特色,该技术实现了样品分离与鉴定直接联合,完全自动化操作,可以用于各种蛋白质混合物的蛋白质组学分析,如血清、组织、各种体液以及尿液等。 /p p   技术路线: /p p   鸟枪法为基因组测序,是先将基因组打断,分段测序, 然后利用计算机重组在一起。从而确定一段的基因序列。 /p p   鸟枪法在蛋白质组研究中的应用方式与此相类似,首先将蛋白质混合物酶解成肽段的混合物, 利用质谱进行分析确定该肽段的氨基酸序列,然后计算机根据设定好的运算法则根据肽段的信息在理论蛋白质数据库中检索出这些蛋白质,从而确定该混合物中的蛋白质成分。 /p p style=" text-align: center " img title=" 1.gif" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/insimg/130ae366-baaa-4006-9cf4-2c70b8441925.jpg" / /p p style=" text-align: center " img title=" 2.gif" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/insimg/fe437d70-d969-4f29-a6c9-4e8e1d3e7b65.jpg" / /p p   分析目标: /p p   寻找差异表达蛋白,并分析蛋白功能。 /p p   Gene ontology分析 /p p   GO数据库包含了基因参与的生物过程,所处的细胞位置,发挥的分子功能三方面功能信息,并将概念粗细不同的功能概念组织成DAG(有向无环图)的结构。Gene Ontology是一个使用有控制的词汇表和严格定义的概念关系,以有向无环图的形式统一表示各物种的基因功能分类体系,从而较全面地概括了基因的功能信息,纠正了传统功能分类体系中常见的维度混淆问题。在基因表达谱分析中,GO常用于提供基因功能分类标签和基因功能研究的背景知识。利用GO的知识体系和结构特点,旨在发掘与基因差异表达现象关联的单个特征基因功能类或多个特征功能类的组合。 /p p   对于每一种表达趋势的基因,选择性的进gene ontology功能分析。对差异表达的所有基因向gene ontology数据库的各节点映射。计算每个节点的基因数目,并结合整个数据库的基因作为背景分部,对于每个节点,得到一个2x2的表格,使用超几何分布检验基因在每个GO节点的富集或贫乏程度。 /p p   Pathway enrichment分析 /p p   找出差异表达基因在生物学通路中的位置,以阐明其生物学功能以及不同基因之间的相互作用。 /p p   1)把差异表达基因定位在生物学通路(Pathway)上。 /p p   2)统计分析,确定差异基因可否可以代表某些生物学通路 /p p   优点:信息量大,样本量低,检测低丰度蛋白更多,相对定量 /p p   应用领域: /p p   1)差异蛋白组分析(疾病早期诊断、疗效监测) /p p   2)细胞差异性分析(如正义转染vs空载、目标基因RNAi vs空载) /p p   3)疾病标志检测(肿瘤标志物,如无血清培养后的分泌蛋白质组) /p p   4)治疗检测(术前vs术后) /p p   5)药物开发(给药vs对照) /p p   6)癌症研究(原位肿瘤细胞系vs转移) /p p   Shotgun法可以检测动态范围10000:1内的低丰度肽段,是目前蛋白质组学研究最主要的技术路线。 现已成功应用于中大规模蛋白质的分离鉴定,不再依赖于双向凝胶电泳。 /p p   因大部分蛋白质在酶解后总有部分肽段是可用质谱鉴定的,因此,多维蛋白质鉴定技术弥补了碱性、疏水蛋白质、相对分子量极大和极小蛋白质在分离和鉴定方法上的不足。 /p p   该方法可达到对低丰度蛋白、极端等电点、分子量、完整膜蛋白具有与其他蛋白有相同的灵敏度。 如鸟枪法可鉴定出10个跨膜域以上的膜蛋白,而2DE仅能检测出2~4个跨膜域的。 /p p   Shotgun法可实现自动化、快速、高通量的蛋白组学分析。 /p p   但Shotgun法数据冗余复杂,需要专业人员进行分析。 /p p   在医学领域,Shotgun技术可用于以下方面: /p p   除血清血浆外,还可用于研究体液及组织的蛋白组 /p p   分泌蛋白组 /p p   大脑皮层神经元细胞蛋白组 /p p   新生物标记物的发现 /p p   疫苗研究,分析感染源的表面蛋白质,从而发现潜在的抗原。如,在分析人类疟疾致病源plasmodium falciparum时,发现了大量潜在的抗原, 目前这些抗原的特性巳经被评估出来。 /p p   发现新的药靶。如,研究发现甲硫氨酸氨基肤酶是肿瘤生长抑制因子bengmide的分子作用靶点。 /p p   部分参考文献: /p p   1)A proteomics approach to discovering natural products and their biosynthetic pathways, Stefanie B Bumpus, Bradley S Evans, Paul M Thomas, Ioanna Ntai1, Neil L Kelleher, Nature Biotechnology,27,951-956,2009 /p p   2)High-throughput generation of selected reaction-monitoring assays for proteins and proteomes, Paola Picotti, Oliver Rinner, Robert Stallmach, Franziska Dautel, Terry Farrah, Bruno Domon, Holger Wenschuh, Ruedi Aebersold, Nature Methods 7, 43-46 (6 December 2009) /p p   3)Large-scale analysis of the yeast proteome by means of multidimensional protein identification technology, M.P. Washburn, D. Wolters and J. R. YatesNature Biotechnology, 19, 242-247, 2001 /p p   4)Comparison of alternativeanalyticaltechniques for the characterisationof thehuman serumproteomein HUPO Plasma ProteomeProject, XiaohaiLi, Xiaohong Qian etc. Proteomics, 5, 3423–3441,2005 /p p   5)An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics, Dirk A. Wolters, Michael P. Washburn, and John R. Yates, Anal. Chem., 73 (23), 5683-5690, 2001 /p p & nbsp /p
  • 近红外光谱技术有效帮助自闭症儿童
    近日,青岛星空智程康复中心进行了自闭症体医融合试点项目——脑科学相关研究,该项研究对自闭症儿童进行了全面的评估测试。本次研究就是由山东体育学院脑科学研究团队硕士研究生,参与儿童运动干预的研究。调查影响运动干预改善自闭症儿童问题行为因素的研究,进而快速帮助自闭症儿童改善问题行为。功能近红外光谱(functional Near-Infrared Spectroscopy,fNIRS)技术的是一项成熟的无损检测技术,可对组织血氧进行非侵入的检测,是从前额叶和运动皮层获取脑氧信号的一种常用的、有效的方法;近红外光谱设备经光源不断发出700-900nm的近红外光线进入人体组织,并通过探测器检测被氧合血红蛋白(Oxygenated Hemoglobin,HbO2)和还原血红蛋白(Deoxygenated Hemoglobin,Hb)吸收的近红外光谱,以此持续监测人脑活动。此外,便携式近红外光谱设备可以在运动状态下监测儿童的大脑功能。与其他非侵入性脑功能磁共振成像、脑电图检测技术和计算机断层成像相比,近红外光谱在儿童脑功能研究中具有以下优势:1、适中的时间和空间分辨率,这不仅可以检测大脑组织微循环中氧合血红蛋白和脱氧血红蛋白的浓度变化,还能够有效避免心率及呼吸对血氧信号的干扰。2、便携方便,且测试过程中对被测试者的限制较小。3、可进行运动状态下的实时监测,更适合检测运动对脑功能的影响。目前,近红外光谱技术已广泛应用于脑功能研究和神经影像学研究当中,此外近红外光谱仪因其易于穿戴并具有良好的空间分辨率等特性,在脑机接口(brain-computer interfacing,BCI)领域也获得了长足的发展。最关键的是,该台仪器无辐射!研究团队介绍山东体育学院脑科学研究团队现有教授1人,副教授1人,在读研究生13人,其中在读博士研究生1人,在读硕士研究生12人。董贵俊,博士,教授,博士生导师,山东体育学院运动与健康学院副院长,主要研究领域为运动生理学及运动医学,研究方向为运动损伤修复分子机制。已在国内外《Food Chemistry》、《JCIT》、《体育科学》、《中国运动医学杂志》等权威杂志发表论文20余篇,其中SCI5篇,EI3篇,CSSCI检索及中文核心期刊15篇。李可峰,博士,副教授,硕士生导师,主要研究方向为科学健身与健康促进。已在国内外《Environmental Microbiology》、《微生物学通报》、《中国运动医学杂志》等权威杂志论文数篇,主持完成山东省自然科学基金山东省高等学校科技计划项目、山东省研究生教育创新计划项目等多项省部级课题。团队成员主要从事运动康复、运动人体科学、运动训练、体育教育训练学等工作,团队组成多元化,涉及到儿童脑功能测试和康复训练也有科学的理论支撑。研究团队成员通过量表调查的方式对自闭症儿童进行了表达/语言沟通、社交能力、感知/运动能力、健康/生理/行为等方面进行了科学具体的测试及评分。团队拥有三台国内先进的便携式近红外光谱仪器设备,光源为两波长LED,通道最高可达63通道,时间分辨率最高可达100Hz,该设备已在国内五十余家顶级单位形成示范应用。通过脑近红外功能成像仪器(f-NIRS)对孤独症儿童静息状态下脑功能连接以及任务状态下脑功能激活进行了测试与评估。
  • Neuron︱利用微型化双光子技术揭示“摆烂躺平”背后的神经环路机制
    世上无难事,只要肯放弃。你是否也遇到连绵不断花样百出的工作挑战曾经想要摆烂躺平?社会竞争压力越来越大,打工人是“扶我起来,我还能肝”,还是“大胆躺平,妥妥摆烂”,这成为当下社会讨论的焦点。科学家们试图从科学的角度帮助阐述这个问题。既往研究表明,在充满挑战的情况下,个体可能会锲而不舍以实现期望的结果,甚至每次尝试后会更加努力。但是经过多次重复失败后通常会导致个体放弃或者躺平。哺乳动物的大脑如何在挑战性经历中做出从主动出击到摆烂躺平的决定,仍然是一个未解决的问题。目前的人类影像学资料表明,前额内皮质、扣带皮质、背外侧和腹外侧前额皮质、眶皮质、颞-顶区和前扣带回可能会参与放弃的决策过程。但是,支持这种适应性决策的确切神经解剖学和神经化学基础尚未阐明。2023年6月23日,复旦大学脑科学研究院Nashat Abumaria(那德)老师和顾宇老师团队合作于国际著名期刊Neuron发表题为“A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice”的研究论文。在本研究中,作者发现投射到眶额叶皮层(OFC)内GABA能神经元的去甲肾上腺素能神经元是关键的调节因素。利用微型化双光子成像技术(FHIRM-TPM)和其他在体记录手段,作者发现自由行为小鼠OFC中去甲肾上腺素的减少和α1受体的下调,减少了驱动动作行为所必需的GABA能神经元的数量和活性,从而导致行为转变,促使个体在反复结果不可控的状态中做出从行动模式切换到放弃行动模式的决定。作者首先构建了两种从行动模式到放弃行动模式的小鼠模型。在第一个模型中,将小鼠暴露于3天的足底电击。从第1天到第3天,小鼠行为从跳跃和转圈等行动模式为主逐渐转变为放弃行动模式。在另外一个模型中,将小鼠暴露于3天不可逃脱游泳中,从第1天到第3天,小鼠行为从攀爬和转圈等行动模式为主逐渐转变为放弃行动模式。图1:两种动物模型中小鼠从行动模式到放弃行为模式转换过程作者随后通过药物操作手段排除了血清素、多巴胺等对于该行为模式的调控,并发现去甲肾上腺素能神经元的激活和抑制调节了这种行为转变。作者进一步通过顺行示踪和逆行示踪的手段鉴定发现OFC神经元和蓝斑核去甲肾上腺素能神经元的投射。OFC神经元接受蓝斑核去甲肾上腺素能输入;蓝斑核去甲肾上腺素能神经元逆行投射到OFC,主要与抑制性神经元形成连接。光激活OFC去甲肾上腺素能神经元后可增加行动模式,抑制该神经元导致放弃行动模式的发生增多。图2:示踪手段鉴定发现OFC神经元和蓝斑核去甲肾上腺素能神经元的投射为了在活体动物细胞水平上提供进一步的探究,作者使用微型化双光子成像技术(FHIRM-TPM)对模式动物自由行为下OFC GABA能神经元的实时活动进行了成像。在实验时间过程中跟踪同一群细胞,发现这群细胞整体钙信号逐渐下降,与从行动模式到放弃行动模式的行为转变一致。GABA能神经元活性的降低不是由于光漂白或其他成像伪影,因为在行为训练的3天内基线荧光信号保持相似(没有下降)。作者通过对细胞水平的详细分析发现,并非所有OFC GABA能神经元都对实验有反应。除了降低细胞的总体活性外,作者观察到在实验时间过程中响应的GABA能神经元百分比逐渐降低。图3:微型化双光子成像揭示行为转变期间OFC中的GABA能神经元活动作者随后利用多通道电极,光遗传学刺激,药物刺激等实验手段进一步验证了该发现,OFC GABA能神经元(接受去甲肾上腺素能输入)通过促进行动模式和防止向放弃行动模式的转变来调节行为转换。长时间接触无法控制的结果会导致去甲肾上腺素浓度逐渐降低和OFC中α1受体的下调,两种因素共同导致维持行动模式所必需的OFC GABA能神经元的数量和活性减少,最终使得行为模式转变为放弃行动模式。在这项研究中,作者建立了两种小鼠在长时间经历不可控结局时的行为转变模型。使用这些模型来定义OFC中去甲肾上腺素、α-1a肾上腺素受体和GABA能神经元活动的释放如何调节这种行为。结合微型化双光子显微镜在细胞水平进一步探究这种适应性决策的确切神经解剖学和神经活动基础机制。这些发现为面对反复失败的个人行为(例如戒烟机制)提供了见解,并为该领域的进一步研究提供了易于操作的模型。希望随着该领域的进一步深入研究,对“躺平摆烂”神经机制的更多认识,或许将帮助我们更科学地设立奋斗目标,更积极有效地应对无法掌控的困难,在更多的挑战中都能百折不挠兵来将挡水来土掩。【参考文献】Li, C., T. Sun, Y. Zhang, Y. Gao, Z. Sun, W. Li, H. Cheng, Y. Gu and N. Abumaria (2023). "A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice." Neuron.
  • Cell |清华大学研究团队开发新型双光子显微成像术,实现深层活体时空跨尺度观测
    双光子显微镜是对深层散射组织进行活体观测不可或缺的仪器,以其远超单光子显微成像的穿透深度而受到生命科学和医学研究的广泛关注。然而,传统双光子显微成像的点扫描成像模式从根本上限制了其成像通量与三维感知速度,极易受复杂活体成像环境干扰,同时激发点巨大的瞬时光强会对活体生物样本造成持续性的非线性光损伤,导致高速三维成像时长严重受限,极大地制约了病理学、免疫学和脑科学的发展。2023年5月12日,清华大学戴琼海、吴嘉敏、祁海作为共同通讯作者在 Cell 期刊发表了题为:Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue 的研究论文。该研究首次提出了基于空间约束的多角度衍射编码,实现非相干光孔径合成;建立了双光子合成孔径显微术(Two-photon synthetic aperture microscopy,2pSAM),“化点为针”,通过多角度针状光束的扫描在实现高速三维感知的同时,将双光子成像光毒性降低了1000倍以上;融合了戴琼海院士团队2021年同样在 Cell 上所提出的数字自适应光学架构,具备高速多区域像差矫正能力,即使在恶劣复杂活体环境下依然保持近衍射极限的空间分辨率,并进一步提升了传统双光子成像的穿透深度。基于此,2pSAM能够在哺乳动物深层散射组织中非侵入式地观测大范围亚细胞级动态变化,将毫秒级三维连续观测时长从数分钟提高到数十小时,为系统性地研究大规模细胞在不同生理与病理状态下的交互作用打开了大门。交叉研究团队利用2pSAM在小鼠活体观测到了一系列新现象,包括急性脑损伤后脑组织内周的多细胞互作,神经元在超长时程连续观测下展现出对视觉刺激的表征稳定性与功能多样性,以及首次完整高速记录下了小鼠免疫反应过程中淋巴结生发中心的形成过程,为病理学、脑科学和免疫学的研究打开了新窗口。传统双光子显微镜使用“点扫描”的方案对三维样本进行扫描,类似于共聚焦荧光显微镜,由于双光子成像的非线性效应使其能够获得数倍于单光子成像的穿透深度。例如,双光子显微镜在小鼠大脑皮层的最大穿透深度可以达到1 mm。然而,这种点扫描方式严重限制了双光子显微镜的三维成像速度与数据通量,并且由于在聚焦点位置极大的瞬时光强带来了非常严重的非线性光损伤隐患。2pSAM采用了轴向景深拓展的“针扫描”方案,通过改变针状光束的不同倾角实现样本三维信息的多角度投影,类似CT一样实现快速三维成像;同时,受到雷达成像中合成孔径方法的启发,通过在像面处引入针孔所带来的空间衍射编码约束,实现了非相干光的孔径合成,将多角度信息融合为大数值孔径对应的高空间分辨率;进一步利用样本的时空连续性先验,有效避免了视角扫描带来的时间分辨率损失。这样一种全新的计算双光子成像架构,在保留双光子本身深层组织穿透能力的同时,将有效成像通量提升了三个数量级以上。图1. 双光子合成孔径显微术(2pSAM)系统图除此之外,样本引起的光学像差给显微成像带来的分辨率与信噪比损失十分严重,随着成像深度的增加这种降质尤为明显。目前双光子成像中的硬件自适应光学技术主要面临着以下一些问题:1、成像系统复杂、成本高昂;2、有效校正视场有限,大视场多区域校正速度缓慢。2pSAM通过激发光编码获得了超精细的四维空间角度光场数据,能够使用数字自适应光学架构(DAO),无需在光学系统中增加额外的波前传感器或者空间调制器,就能实现信号采集与自适应像差校正的解耦,在后处理端完成大范围多区域自适应光学,显著提升在复杂成像环境中的空间分辨率与信噪比。图2. 双光子合成孔径显微术(2pSAM)结合数字自适应光学(DAO)与传统双光子显微镜(TPM)面对复杂成像条件下的结果对比。从左至右依次为:正常条件下拍摄,物镜校正环不匹配情况下拍摄,物镜为水镜且缺乏浸润水的情况下拍摄,物镜与样本之间增加散射胶带后进行拍摄长时间的激光照射会对活体样本产生严重的光毒性。研究团队发现,传统双光子显微成像由于使用飞秒激光激发与高NA会聚,在样本局部会产生巨大的瞬时光强,由此所产生的非线性光毒性在以往被极大地低估了,而一旦在长时程成像过程中,就会不断积累损伤从而影响细胞正常状态。与之对比,2pSAM化点为针,通过轴向景深拓展,在保持同样荧光激发效率的前提下,将瞬时峰值功率降低了1000倍,从而有效解决了非线性光损伤的问题。一方面能显著减少荧光探针的光漂白,对于同一类易淬灭染料,在同样激发光强下,传统双光子仅能拍摄几十个三维体,而2pSAM能够连续拍摄几十万个三维体而没有明显的信号衰减。除此之外,团队还对小鼠脑皮层中的小胶质细胞与脑损伤过程中的中性粒细胞进行了连续成像测试,发现即使使用较弱的光强,传统双光子显微成像在连续拍摄半小时以上时仍会导致大量细胞凋亡,而在2pSAM成像过程中细胞保持了正常的表型,并且相比于对照组结果无明显差异。团队通过一系列在体与离体实验充分证明了2pSAM能够将传统双光子成像的光毒性下降三个数量级以上,为长时程高速活体组织成像打开了新窗口。图3. 小鼠大脑急性开窗损伤后的皮层免疫细胞成像,TPM(左)与2pSAM(右)光漂白对比(GIF图)图4. 离体B细胞(GFP,蓝色通道)连续拍摄实验:使用PI标记细胞凋亡(红色通道),对比TPM(左)与2pSAM(右)的光毒性(GIF图)生发中心(Germinal center,GC)是次级淋巴器官中的动态组织区域,是被抗原激活后的B细胞在趋化作用引导下聚集形成的结构,也是产生高亲和力抗体及形成长期免疫记忆关键场所。但是由于GC形成的随机性和免疫细胞本身对光损伤的敏感性,完整的GC形成过程从未被高速长时间的清晰记录过。借助2pSAM,得以首次完整清晰地观测到了免疫反应下GC形成的全部过程。研究人员将带有荧光标记的抗原特异性B细胞回输到小鼠体内,随后将抗原接种到腹股沟附近以诱导引流淋巴结中生发中心的形成,并于免疫后90到110个小时内(生发中心未形成期),在大视场下持续地对淋巴结中抗原特异性B细胞的动态行为进行追踪,成功揭示了GC形成过程中B细胞的分裂增殖是GC形成的主因,辅助以周围活化B细胞的聚集。由于拍摄时长达十余小时,淋巴结本身会产生剧烈的形变,2pSAM通过多视角信息能够进行实时轴向聚焦位置反馈,实现自动对焦,有效避免了长时程拍摄过程中的样本漂移。 图5. 小鼠腹股沟淋巴结免疫反应后生发中心形成过程的完整观测和记录(GIF图)研究人员进一步借助2pSAM在患有创伤性大脑损伤(Traumatic brain injury,TBI)的小鼠和正在接受视觉条纹刺激的GCaMP转基因小鼠进行脑皮层组织的细胞动态观测。在TBI小鼠受伤区域磨薄颅骨后观测到了外周免疫细胞中性粒细胞在浸润后与内周星形胶质细胞的相互作用,如通过直接接触定向产生迁移体(migrasome)来传递物质和信息。对GCaMP转基因小鼠开颅恢复2周后进行视觉上的条纹刺激,进一步证实了长达数小时内小鼠视觉皮层神经元钙信号对不同方向条纹选择性表达的持续性和稳定性,同时也通过长时程功能数据挖掘出了多种单细胞水平的神经响应类型,体现了神经元的功能多样性。这些现象对于传统双光子显微镜而言都极具挑战,特别是会由于光毒性本身导致会导致细胞异常表现,比如会导致神经元在长时程拍摄过程中响应强度不断下降。
  • 2020年蛋白质冷冻电子断层扫描三维重构技术应用研讨会成功召开
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " 12月16日,由国家蛋白质科学研究(北京)北大分中心、北京大学生命科学学院和赛默飞世尔公司共同主办,中国生物物理学会冷冻电子显微学分会承办的2020年蛋白质冷冻电子断层扫描三维重构技术应用研讨会在北京大学中关新园成功举办。研讨会主席由北京大学郭强研究员、高宁教授、伊成器教授和赛默飞电镜生命科学亚太区市场拓展总监Eric Fung Chen共同担任,主题是“蛋白质冷冻电子断层扫描-桥连细胞生物学和分子生物学时代”,围绕三维冷冻电子断层扫描重构技术(Cryo-ET)样品制备、算法数据处理、应用以及交联质谱、FCS技术等方面进行了广泛研讨。本次研讨会共组织安排了11场精彩报告,其中来自德国马普生化所冷冻电子断层扫描技术的先驱Wolfgang Baumeister教授应邀作了主旨报告。作为冷冻电子断层扫描三维重构技术盛会,会议吸引了来自全国高等院校、科研院所、企事业单位的知名专家学者等共240余人。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202012/uepic/7f9c68cf-1c1c-4fad-a95f-f2a154a2a686.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 全体合影 /span /p p style=" text-indent: 2em " strong 北京大学生命学院副院长高宁教授 /strong 和 strong 赛默飞材料与结构分析业务高级商务总监陈厅行 /strong 分别为大会致开幕辞。高宁教授指出在过去几年内,冷冻电镜技术的革命性发展非常深刻的改变了生命科学很多领域的研究范式。冷冻电镜技术未来的一个重要突破将是冷冻电子断层扫描三维重构技术(Cryo-ET),这些技术发展离不开国家层面鼓励的多学科交叉的方向。将来除了生物学、电子显微学还有材料、化学、大数据技术、人工智能等各学科的深度融合,我们坚信在5 ~ 10年内各项基于冷冻电镜的技术,特别是冷冻电子断层扫描三维重构技术将迎来新的突破,这将是一个新的革命性的时代,在座学生可以做好迎接新时代的准备。陈厅行在致辞中表示赛默飞在结构生物学领域和北大以及国家蛋白质中心都一直有着非常密切的合作,从仪器、服务到技术的普及和相关的学术活动。他希望凭借赛默飞仪器技术的升级能帮助科学家们攻克一个又一个的生物学问题,探究更多的人类的未解之谜,让我们的世界更健康,更清洁,更安全。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 199px " src=" https://img1.17img.cn/17img/images/202012/uepic/93502dfe-279d-4ace-a365-a45683d57aab.jpg" title=" 2.png" alt=" 2.png" width=" 600" height=" 199" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 高宁教授(左)和陈厅行先生(右) /span /p p style=" text-indent: 2em " 随后在上午的学术报告中, strong 清华大学欧光朔教授 /strong 报告了利用Cryo-ET技术研究线虫肠道内纤毛和微绒毛的最新研究成果。报告中,欧教授详细报告了如何从使用常温FIB-SEM研究线虫的大尺度三维重构的过程到使用Cryo-ET技术过程。在使用Cryo-ET技术过程,经历了很多艰辛,由于定位问题,很难获得高质量理想样品。最后在研究线虫肠道上皮内有大量的微绒毛过程中,非常意外的发现在小肠微绒毛膜的外面有成百上千的杆状结构。由于该茸毛存在于微米级细胞器Microvilli上,其直径5nm,长度35nm长,因此命名为Nanovilli,报告中将Microvilli和Nanovilli组成的结构形象的称之为狼牙棒(Rod with wolf teeth)结构。通过大量的数据分析并结合文献中微绒毛再生过程的研究结论,提出了微绒毛复制模型。欧教授幽默风趣的报告,赢得了阵阵掌声。 /p p style=" text-indent: 2em " strong 中国科学院生物物理研究所章新政研究员 /strong 报告了新的高通量原位结构解析技术,该技术的定位效率与蛋白质大小和样品厚度密切相关,在低于120 nm的非切片数据里,可定位400 kD以上的蛋白并实现高分辨率解析。蛋白质的丰度和蛋白质分子量降低都会影响定位效率,但前者远小于后者的影响。经估算,在丰度极地的情况下,若切片厚度在100 nm左右,可解析约1 MD的蛋白高分辨率结构。由于相对较低的定位效率,算法无法确定原位环境中的蛋白复合物,因此如果目标蛋白的分布未知,可先收集Tomographic数据,通过Sub-Tomogram averaging技术研究蛋白在原位环境中的分布,然后使用该方法进一步提升分辨率。 /p p style=" text-indent: 2em " strong 赛默飞电镜生命科学亚太高级业务拓展总监Eric Fung Chen /strong 在会议上介绍了赛默飞多年以来持续在产品技术研发上做的大量投入,以及冷冻电镜在生命科学领域的技术新进展。赛默飞每年在持续在产品研发投入超过10亿美金,这使得赛默飞的技术创新一直走在科技的前沿:新推出的Selectris能量过滤器将冷冻电镜提升到了新的水平,分辨率可达1.2埃,实现了以真正的原子级分辨率观察蛋白;Aquilos 2 cryo FIB在样品制备方面进行了自动化改进和提供了细胞组织水平的冷冻薄片提取技术,从而大大简化了研究人员的制样步骤,提高了成功率;亲民新品Tundra(100kv CryoEM)也使得更多的客户有能力用冷冻电镜研究蛋白结构,最新数据是分辨率达到3.0埃(Apoferritin)等,所有的这些创新都是希望帮助科学家们解决更多的科学难题,实现科研往前推动重要的一步。 /p p style=" text-indent: 2em " strong 北京生命科学研究所/清华大学生物医学交叉研究院董梦秋研究员 /strong 报告了利用化学交联及质谱分析辅助蛋白质结构分析,其团队开发了一种新可以在具有挑战条件下工作的交联剂DOPA2,该交联剂具有氨基特异性,可以在10 s内快速反应完成交联,远远快于目前常用交联剂的反应时间20 ~ 30min,而且不水解。该交联剂不仅可以使化学交联质谱分析用于分析未折叠或部分折叠的蛋白质,还可以捕捉蛋白质展开过程中的结构变化,最后她也希望在蛋白构象变化研究的路上,未来能研究出反应更快的交联剂,甚至是微秒级的交联剂,以更好研究跟踪更快的蛋白构想变化。 /p p style=" text-indent: 2em " strong 北京大学生命学院郭强研究员 /strong 报告了利用冷冻电子断层扫描技术分析神经退行性疾病的细胞毒性分子机制。报告中列举了通过冷冻光电联用技术,电子断层扫描技术实现对多种神经退行性疾病模型中的蛋白聚集物的原位观察,展示了蛋白聚集物多样性的特征,并指出泛素化降解途径功能阻滞可能是ALS发病过程中的重要特征。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/202012/uepic/f5144e7b-680e-48c0-8a89-823a6a1f418b.jpg" title=" 3.png" alt=" 3.png" width=" 500" height=" 375" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 上午报告人 /span /p p style=" text-indent: 2em " 下午学术报告中, strong 北京大学生命学院王世强教授 /strong 首先带来了精彩的报告。王老师虽然自己以前不是做结构相关的,但是王老师实验室使用电镜方面,有非常长的历史。一旦电镜有些新的技术,他都会让学生在第一时间尝试。在之前北大硬件相对比较差的时候,他就找各种的合作,试图用相对比较有限的条件应用最新的技术。王教授报告了使用常规Tomography技术获得的心肌细胞内钙信号转导大分子复合物signosome的三维结构并详细介绍了钙火花工作机制。 /p p style=" text-indent: 2em " strong 清华大学李雪明副教授 /strong 报告了细胞原位冷冻电镜结构解析的技术挑战与研究进展,报告中指出,Cryo-ET的优势是可以研究真正的生理态状态、大尺度范围内的物质相互作用、涵盖了关键的生物学过程、分辨率可以从原子尺度到微纳尺度。同时从样品制备技术、数据采集、数据预处理、三维重构、图像识别(深度学习)系统介绍了冷冻电子断层扫描三维重构技术。特别是样品制备方面是Cryo-ET面临的瓶颈问题,决定了实验的成败。李教授详细汇报了课题组切割样品的过程,切割必须保持样品高质量的结构、定位问题、表面辐照损伤、切割的厚度、形变等等都会影响样品质量。未来高效智能的Cryo-ET技术依然是其努力方向。 /p p style=" text-indent: 2em " strong 中科院计算技术研究所张法 /strong 研究汇报了电子断层三维重构中的计算方法,详细列举了研究组开发的数据对中(Markerauto)、弥补数据缺失重构(FIRT/ICON和Curvilinear projection Model)、三维体降噪和三维数据分类等软件的原理、优势及应用。生物物理所黄韶辉研究员报告了基于最大熵值法的荧光寿命相关光谱技术(FCS)用于分析生物分子亚毫秒级别的动态结构变化,其应用最大熵值法(MEM)可实现对均相溶液样品中三个荧光组份(三个FRET构象)的荧光寿命分布分析;而且应用荧光寿命相关光谱(FLCS)技术实现对以上三个FRET构象相互转换在亚毫秒时间尺度的动力学研究。同时他还希望能对溶液样品中更多(& gt 3)FRET构象及其相互转换的动力学研究、数个毫秒级别的构象转换动力学研究以及解决更有意义的生物学问题。其自主研制的FCS CorTectorTM SX100国内外用户有美国国立卫生研究院、加州大学旧金山分校、清华大学、中科院生物物理研究所,他也期待和大家有更多的合作。 /p p style=" text-indent: 2em " 仪器行业新锐 strong 荷兰Delmic公司的CEO Sander den Hoedt和冷冻电镜产品部主管Katherine Lau /strong 在中国区总代理超微动力公司总经理葛鹏的协助下详细介绍了一款有巨大潜在应用价值的新产品Meteor。这是一款集成于cryo-FIB/SEM上的荧光显微镜实时观察系统,该系统可以减少样品转移环节,显著提高制样成功率和良品率,将宝贵的冷冻电镜机时用于真正有价值的样品。在报告中还提及了Delmic公司的另一项新产品——全自动高速电镜系统FastEM。这也是一款革命性的新产品,使电镜观察实现完全自动化,可将电镜的观察效率提高数十倍。这些产品的潜在应用价值得到主旨报告人Baumeister教授的充分肯定。 /p p style=" text-indent: 2em " strong 马普生化所Baumeister教授 /strong 首先介绍了原位结构生物学的重要意义,接下来回顾了过去几十年冷冻电子断层扫描技术相关上下游仪器设备的发展历程。紧接着,介绍了研究组近期利用电子断层扫描技术解决的生物学问题,涵盖了神经生物学、光合成、相分离、细胞自噬、蛋白稳态等多个方面。最后,展望未来,Baumeister教授讲述了原位结构生物学未来需要解决的方法学难题及发展方向。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/a5f3d902-6910-42e2-b146-33b8f7418ffa.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 下午报告人 /span /p p style=" text-indent: 2em " 本次研讨会为国内学者提供了冷冻电子断层扫描三维重构技术的高水平交流平台,有效推动了蛋白质结构与功能研究的进步和发展。一天的交流,与会代表积极参与讨论,大家感受到了Cryo-ET技术的魅力与发展。郭强研究员最后期待在更大的会场和更多的学者可以进行更多的学术交流。本次研讨会得到了北京大学冷冻电镜平台的大力支持。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 265px " src=" https://img1.17img.cn/17img/images/202012/uepic/93f7b2bb-cc72-4afc-b575-9eb5afb165e8.jpg" title=" 5.png" alt=" 5.png" width=" 600" height=" 265" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 会议掠影 /span /p
  • 抗断裂且可拉伸,仿生蛋白质创造二维分层复合材料
    科技日报北京7月25日电 据最新一期《美国国家科学院院刊》报道,美国宾夕法尼亚州立大学研究人员利用鱿鱼环齿上的仿生蛋白质创造了一种复合的层状二维材料,这种材料具有抗断裂和很强的弹性。大自然创造出像骨头、贝壳这样的分层材料,正是这种多级结构才确保了骨头具有极高的抗断裂强度,得以支撑庞大的身体。骨头中含有无数空隙,然而,随着生长发育,它对缺陷的敏感度会降低。这意味着即使骨头已经含有诸多“缺陷”,也依然具有较高的强度。宾夕法尼亚州立大学高级纤维技术中心主任、劳埃德和多罗夕福尔哈克仿生材料主席梅利克德米雷尔和多萝西福尔哈克表示:“研究人员很少报告骨头和贝壳的这种界面特性,因为它很难通过实验进行测量。”以此为灵感,新开发的复合二维材料是由像石墨烯或MXene(通常是过渡金属碳化物、氮化物或碳氮化物)这样的原子层厚的硬材料组成的,这些材料之间被一层东西黏合并隔开。虽然大块石墨烯或MXene具有块体性能,但二维复合材料的强度来自界面性质。德米雷尔介绍说,他们使用的是一种界面材料,可通过重复序列加以修改,从而能够微调性质,让它变得灵活而强大。此外,这种材料还具有独特的热传导性质。“这种材料很适合做跑鞋的鞋垫。”德米雷尔说,“它可以给脚部降温,反复弯曲也不会把鞋垫弄坏。”这些二维复合材料还可用于柔性电路板、可穿戴设备和其他需要强度和灵活性的设备。根据德米雷尔的说法,传统的连续介质理论无法解释为什么这些材料既坚固又灵活,但模拟表明,界面很重要。当组成界面的材料比例较高时,当材料受到压力时,界面会发生局部断裂,但作为整体的材料不会断裂。【总编辑圈点】搜索“鱿鱼环齿”,会发现科研人员早已对它摩拳擦掌,开展过多项研究,并尝试在不同领域应用。鱿鱼环齿蛋白质可被加工制成纤维和薄膜,可以替代塑料制品,提升织物的耐磨性,制作可穿戴设备… … 当然,要大规模应用这种仿生材料,需要先制造出仿生蛋白质,毕竟也不能一只只抓住鱿鱼扒拉蛋白质。本文中,科研人员用仿生蛋白质制造出复合层状材料,可以让它又坚固又灵活。从大自然的神奇生物身上,人类获得了很多“外挂”,改造后为自己服务。
  • Science Advances:南方医科大学曹雄团队揭示星形胶质细胞调控大脑抑郁网络的作用机制
    带你看文献,只做纯干货文献精读第43期重度抑郁症(Major depressive disorder, MDD)是导致自杀和致残的主要原因,其终生患病率高达17%。识别抑郁症患者大脑的功能连接异常,有助于抑郁症病理生理机制的阐明和疾病的诊断。静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rsfMRI)是一种功能强大的非侵入性的功能连接研究技术,能够对全脑尺度的脑区静息态功能连接(resting-state functional connectivity, rsFC)进行量化。已有研究证实,抑郁症患者情绪相关脑区存在rsFC异常,如前额叶皮层(medial prefrontal cortex, mPFC)、前扣带回(anterior cingulate, ACC)、杏仁核(amygdala, AMY)、纹状体(striatum, Str)等,因此,rsfMRI在抑郁症的诊断中具有重要价值,然而对于抑郁症相关rsFC异常的机制,目前的研究尚未阐明。2022年11月16日,南方医科大学曹雄教授、冯衍秋教授联合香港大学吴学奎教授在Science Advances杂志上发表题为“Astrocyte dysfunction drives abnormal resting-state functional connectivity in depression”的文章。该研究基于星形胶质细胞钙信号缺失兼具抑郁样表型的Itpr2&minus /&minus 小鼠,通过整合全脑rsfMRI和细胞特异性的光遗传技术,并结合抑郁症患者的rsfMRI分析,作者观察到MDD患者的rsFC变化和Itpr2&minus /&minus 小鼠高度一致,特别是与mPFC相关的环路连接。此外,光遗传激活mPFC神经元或mPFC-Str环路拯救了Itpr2&minus /&minus 小鼠的rsFC紊乱和抑郁样表型。这些结果揭示了星形胶质细胞功能障碍驱动抑郁相关的大脑功能连接异常的神经环路机制。星形胶质细胞是哺乳动物大脑中最丰富的一类胶质细胞,与抑郁症关系密切。星形胶质细胞的激活表现为细胞内钙信号的升高,主要由肌醇1,4,5-三磷酸(IP3)途径介导,而其中的IP32型受体(IP3R2)是星形胶质细胞中的主要功能亚型。小鼠在敲除IP3R2(Itpr2&minus /&minus 小鼠)后,星形胶质细胞表现出明显的钙信号减弱,但在神经元中并没有,并且小鼠在强迫游泳测试和蔗糖偏好测试中表现出明显的抑郁样行为。为了探讨星形胶质细胞功能障碍对于rsfMRI功能连接的影响以及在抑郁症中的作用,作者对Itpr2&minus /&minus 小鼠全脑rsFC进行了检测,结果显示星形胶质细胞钙信号降低导致全脑范围内多个脑区的rsFC发生改变,并且其中6个环路连接的rsFC的变化与动物的抑郁样表型呈现显著负相关,表明星形胶质细胞功能障碍可导致全脑rsfMRI连接异常,并可预测抑郁表型。随后,作者对1080名MDD患者和931名健康对照的rsfMRI数据进行了分析,发现MDD患者大脑rsFC的变化与Itpr2&minus /&minus 小鼠存在高度一致性,尤其是与mPFC相关的环路。图1.星形胶质细胞功能障碍导致全脑多个脑区rsFC改变为了进一步揭示星形胶质细胞对抑郁相关网络中rsFC的作用,作者利用光遗传直接激活了mPFC中的星形胶质细胞,结果显示51%的抑郁症相关的功能连接的rsFC发生了反转,表明光遗传激活mPFC星形细胞可以缓解IP3R2敲除引起的rsFC改变。进一步的锰离子增强磁共振成像结果表明IP3R2缺失主要导致mPFC-Str环路的功能连接显著受损,而通过光遗传特异性激活mPFC神经元或mPFC-Str环路,均可拯救Itpr2&minus /&minus 小鼠的绝大部分rsFC异常,并逆转小鼠的抑郁样行为。图2.光遗传激活mPFC-Str环路拯救了Itpr2&minus /&minus 小鼠大部分的rsFC异常综上,该研究揭示了星形胶质细胞功能障碍导致抑郁症相关rsFC异常的作用机制,实现了对微观的星形胶质细胞功能障碍和宏观的抑郁症功能连接网络异常这两个概念的统一,这些结果可为rsfMRI作为抑郁症的诊断和治疗工具提供更为具体的解释。研究方法亮点这项工作揭示了星形胶质细胞功能障碍驱动抑郁相关的大脑功能连接异常的神经环路机制。研究用到了脑立体定位手术、光遗传学、免疫组化以及行为学评估等实验技术。瑞沃德深耕生命科学研究领域20年,一直致力于为客户提供可信赖的解决方案和服务。在该研究中,研究人员采用了瑞沃德公司生产的脑立体定位注射系统,为实验的顺利开展提供了支持。此外,瑞沃德还可提供该研究所涉及的光遗传学、免疫组化以及行为学评估等实验的完整解决方案。截至目前,瑞沃德产品及服务覆盖海内外100多个国家和地区,客户涵盖全球700+医院,1000+科研院所,6000+高等院校,已助力全球科研人员发表SCI文章14500+,获得行业广泛认可。论文原文连接:https://www.science.org/doi/10.1126/sciadv.abo2098
  • 多柱组合层析高通量蛋白质分离设备仪器研制项目通过验收
    4月24日,中科院过程工程所苏志国研究员主持完成的“多柱组合层析高通量蛋白质分离设备”重大科研装备研制项目通过中科院计划局组织的专家验收。   验收专家组成员认真听取设备研制工作报告、经费收支检查报告、设备使用报告、测试报告,并现场考察了研制的4柱和12柱组合层析分离装置。专家组充分讨论后认为:承担单位研制的多柱组合层析高通量蛋白质分离设备拥有自主知识产权,具有创新性和实用性,在蛋白质分离设备的国产化方面取得了突破 研制的4柱和12柱组合层析分离装置运行正常,各项技术指标均达到了任务书规定的要求,部分技术指标优于任务书原定的指标 研制的设备采用多柱组合的创新设计思路,实现了计算机自动控制和高通量、高效率、多模式层析,在同时分离纯化多种蛋白产物和蛋白质的分离纯化效率方面优于当前国际知名品牌的同类仪器。   自2007年以来,苏志国课题组开始进行多柱组合层析高通量蛋白质分离设备的研制工作,经过两年多的努力,取得了一系列创新性成果,实现了关键部件的自主设计加工,完成了一套通用性强、自动化高、操作简便快捷的蛋白质层析工作站。   蛋白质的高通量层析分离纯化是蛋白质组学研究和蛋白质产品生产过程中的关键技术之一。本项目的成功,一方面解决了生化工程国家重点实验室分离纯化各种蛋白质药物和天然产物药物的装备所需,另一方面也可以为我国生物技术同行提供有自主知识产权的蛋白质分离纯化装备,满足国家和中科院蛋白质工程研究所需,提供一种高通量大规模制备蛋白质的平台。      12柱组合层析系统     4柱组合层析系统
  • 北京大学程和平院士等开发深脑成像的利器—微型化三光子显微镜
    2023年2月23日,北京大学程和平/王爱民团队在Nature Methods在线发表题为“Miniature three-photon microscopy maximized for scattered fluorescence collection”的文章。文中报道了重量仅为2.17克的微型化三光子显微镜(图1),首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构中的神经机制开启了新的研究范式。图1 小鼠佩戴微型化三光子显微镜实景图解析脑连接图谱和功能动态图谱是我国和世界多国脑计划的一个重点研究方向,为此需要打造自由运动动物佩戴式显微成像类研究工具。2017年,北京大学程和平院士团队成功研制第一代2.2克微型化双光子显微镜,获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像。2021年,该团队的第二代微型化双光子显微镜将成像视野扩大了7.8倍,同时具备获取大脑皮层上千个神经元功能信号的三维成像能力。此次,北京大学最新的微型化三光子显微镜一举突破了此前微型化多光子显微镜的成像深度极限:显微镜激发光路可以穿透整个小鼠大脑皮层和胼胝体,实现对小鼠海马CA1亚区的直接观测记录(图2,Video 1-2),神经元钙信号最大成像深度可达1.2 mm,血管成像深度可达1.4 mm。另外,在光毒性方面,全皮层钙信号成像仅需要几个毫瓦,海马钙信号成像仅需要20至50毫瓦,大大低于组织损伤的安全阈值。因此,该款微型三光子显微镜可以长时间不间断连续观测神经元功能活动,而不产生明显的光漂白与光损伤。图2 微型三光子显微成像记录小鼠大脑皮层L1-L6和海马CA1的结构和功能动态。CC:胼胝体。绿色代表GCaMP6s标记的神经元荧光钙信号,洋红色代表硬脑膜、微血管和脑白质界面的三次谐波信号。Video1 这是使用北大微型化三光子显微镜拍摄的小鼠大脑从大脑皮层到胼胝体再到海马CA1亚区的三维重建图。绿色代表GCaMP6s标记的神经元荧光信号,洋红色代表硬脑膜、微血管和脑白质界面的三次谐波信号。左上角显示成像深度,可以看到,激光进入大脑,以硬脑膜作为0点,向下移动z轴位移台,我们一次看到了皮层L1至L6分层的神经元胞体和微血管,之后我们看到了胼胝体致密的纤维结构。在穿过胼胝体后,我们继续向下,我们终于看到了位于海马CA1亚区的神经元胞体。Video2 左下图是小鼠佩戴着微型化三光子探头,在鼠笼(长29厘米× 17.5厘米宽× 15厘米高)中自由探索。左上图是此时小鼠佩戴的微型化三光子探头正在对深度为978 μm的海马CA1亚区神经元荧光钙信号进行成像(帧率8.35Hz,物镜后的光功率为35.9 mW)。右图展示了左上图中10个神经元的钙活动轨迹,尖峰代表钙信号发放。钙活动轨迹上移动的蓝线与小鼠自由行为视频同步。海马体位于皮层和胼胝体下面,在短期记忆到长期记忆的巩固、空间记忆和情绪编码等方面起重要作用。在啮齿类动物研究模型中,海马距离脑表面深度大于一个毫米。由于大脑组织,特别是胼胝体,具有对光的高散射光学特性,所以突破成像深度极限是长期以来困扰神经科学家的一个极大的挑战。此前的微型单光子及微型多光子显微镜均无法实现穿透全皮层直接对海马区进行无损成像。北京大学微型化三光子显微镜成像深度的突破得益于全新的光学构型设计(图3)。作者通过对皮层、白质和海马体建立分层散射模型进行仿真,发现荧光信号从深层组织到达脑表面时已经处于随机散射的状态,使得显微物镜荧光收集效率降低,从而极大限制了成像深度。针对这一问题,经典阿贝聚光镜结构被引入构型设计中:微型阿贝聚光镜与简化的无限远物镜密接可以提高散射光的通透效率;阿贝聚光镜与激发光路中的微型管镜部分复用,可以进一步简化结构,降低损耗。总体上,新微型化显微镜的散射荧光收集效率实现了成倍的提升。图3 微型化三光子显微镜光学构型同时,利用微型三光子显微镜,作者研究了小鼠顶叶皮层第六层神经元在抓取糖豆这一感觉运动过程中的编码机制:发现大约37%的神经元在抓取动作之前就开始活跃且在抓取时最活跃,大约5.6%的神经元在抓取动作之后开始活跃,说明不同神经元参与了不同阶段的编码(图4,Video 3)。这一结果初步展示了微型化三光子显微镜在脑科学研究中的应用潜力。图4 小鼠顶叶皮层第六层神经元在抓取糖豆任务中的不同反应类型Video3 左图是佩戴着微型化三光子显微镜的小鼠在0.5厘米狭缝中用手抓取糖豆吃。中间图是此时微型化三光子显微镜探头拍摄的PPC脑区皮层第6层神经元(位于650微米深度)荧光钙信号(GCaMP6s标记的神经元,帧率15.93 Hz)。右图是选取中间图中5个神经元的钙活动轨迹,其中每条绿线表示一次小鼠的抓取动作。移动的蓝色线与左图的小鼠行为视频以及中间图中的神经元活动同步。视频以正常(×1)、慢速(×0.5)和快速(×10)的速度播放,以便于查看抓取行为。北京大学未来技术学院博士后赵春竹、北京大学前沿交叉学科研究院博士研究生陈诗源、北京大学分子医学南京转化研究院研究员张立风为该论文的共同第一作者,北京大学程和平、王爱民、赵春竹为论文的共同通讯作者。原文链接:https://doi.org/10.1038/s41592-023-01777-3这是程和平院士领衔发表的又一重大微型化显微成像成果。更早之前,由程和平院士牵头研发的微型化双光子活体成像技术,被Nature Methods评为“2018年度方法”,被国家科技部评为“2017度中国十大科学进展”。该技术将传统双光子显微镜中的核心探头,都缩减在一个仅有2.2克重的微小部件中。这项自主研发的核心技术已经成功商业化生产,产品为配戴式双光子显微镜,目前已经在世界多地实现销售,被国内外科学家应用于神经科学研究的多个领域,并获得了业内知名专家学者的高度认可。
  • 深脑成像的利器:超维景助力北京大学微型化三光子显微镜问世
    2023年2月23日,北京大学程和平-王爱民团队在 Nature Methods 在线发表题为 Miniature three-photon microscopy maximized for scattered fluorescence collection 的文章。 文中报道了重量仅为2.17克的微型化三光子显微镜(图1),首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构中的神经机制开启了新的研究范式。 图1 小鼠佩戴微型化三光子显微镜实景图 解析脑连接图谱和功能动态图谱是我国和世界多国脑计划的一个重点研究方向,为此需要打造自由运动动物佩戴式显微成像类研究工具。2017年,北京大学程和平院士团队成功研制第一代 2.2 克微型化双光子显微镜,获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像。2021年,该团队的第二代微型化双光子显微镜将成像视野扩大了 7.8 倍,同时具备获取大脑皮层上千个神经元功能信号的三维成像能力。 微型化三光子显微镜突破成像深度极限 海马体位于皮层和胼胝体下面,在短期记忆到长期记忆的巩固、空间记忆和情绪编码等方面起重要作用。在啮齿类动物研究模型中,海马距离脑表面深度大于一个毫米。由于大脑组织,特别是胼胝体,具有对光的高散射光学特性,所以突破成像深度极限是长期以来困扰神经科学家的一个极大的挑战。此前的微型化单光子及微型化多光子显微镜均无法实现穿透全皮层直接对海马区进行无损成像。此次,北京大学最新研发的微型化三光子显微镜一举突破了此前微型化多光子显微镜的成像深度极限:1、显微镜激发光路可以穿透整个小鼠大脑皮层和胼胝体,实现对小鼠海马CA1亚区的直接观测记录(图2)。神经元钙信号最大成像深度可达1.2 mm,血管成像深度可达1.4 mm。2、在光毒性方面,全皮层钙信号成像仅需要几个毫瓦,海马钙信号成像仅需要20至50毫瓦,大大低于组织损伤的安全阈值。因此,该款微型化三光子显微镜可以长时间、不间断连续观测神经元功能活动,且不产生明显的光漂白与光损伤。图2 微型三光子显微成像记录小鼠大脑皮层L1-L6和海马CA1的结构和功能动态。CC:胼胝体。绿色代表GCaMP6s标记的神经元荧光钙信号,洋红色代表硬脑膜、微血管和脑白质界面的三次谐波信号。 全新的光学构型设计 北京大学微型化三光子显微镜成像深度的突破得益于全新的光学构型设计。(图3)图3 微型化三光子显微镜光学构型 通过对皮层、白质和海马体建立分层散射模型进行仿真,发现荧光信号从深层组织到达脑表面时已经处于随机散射的状态,使得显微物镜荧光收集效率降低,从而极大限制了成像深度。针对这一问题,经典阿贝聚光镜结构被引入构型设计中:微型阿贝聚光镜与简化的无限远物镜密接可以提高散射光的通透效率;阿贝聚光镜与激发光路中的微型管镜部分复用,可以进一步简化结构,降低损耗。总体上,新微型化显微镜的散射荧光收集效率实现了成倍的提升。 生物应用 同时,利用微型化三光子显微镜,作者研究了小鼠顶叶皮层第六层神经元在抓取糖豆这一感觉运动过程中的编码机制:发现大约37%的神经元在抓取动作之前就开始活跃且在抓取时最活跃,大约5.6%的神经元在抓取动作之后开始活跃,说明不同神经元参与了不同阶段的编码。(图4)这一结果初步展示了微型化三光子显微镜在脑科学研究中的应用潜力。 图4 小鼠顶叶皮层第六层神经元在抓取糖豆任务中的不同反应类型北京大学未来技术学院博士后赵春竹、北京大学前沿交叉学科研究院博士研究生陈诗源、北京大学分子医学南京转化研究院研究员张立风为该论文的共同第一作者,北京大学程和平、王爱民、赵春竹为论文的共同通讯作者,北京超维景生物科技有限公司胡炎辉、李谊军、陈燕川、付强、高玉倩、江文茂、张颖也参与了此项工作的开发。该项目得到科技创新2030-“脑科学与类脑研究”重大项目、中国医学科学院医学与健康科技创新工程—脑疾病的线粒体机制研究创新单元、国家自然科学基金委、国家重大科研仪器研制专项、科技部重点研发计划等经费支持。超维景一直致力于前沿生物医学成像技术的产业转化,为推动生命科学的研究与发展提供优质的、系统化的解决方案。 经过多年的沉淀 我们即将推出自主研发的最新一代微型化三光子显微成像系统敬 请 期 待 !Nature Methods 原文链接:https://doi.org/10.1038/s41592-023-01777-3
  • 祝贺!6名华人当选2018年美国科学院院士
    p   2018年5月2日,美国科学院公布了最新一期院士名单,有6位华人学者入围新一届的美国科学院院士。值得一提的是,这也是张锋教授和林海帆教授在不久前入选美国文理科学院院士后,斩获的又一殊荣。 /p p   美国国家科学院是全世界最富盛名的科学院之一,由大量杰出的学者组成。至今,近500名美国科学院院士先后获得了诺贝尔奖。能够成为其中的一员,是对科学家学术能力极高的肯定。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/b8ab4bf3-7d52-4e27-897c-98e565d97848.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 张锋院士 /strong /span /p p   大家对麻省理工学院(MIT)的张锋教授想必不会感到陌生。这位知名华人学者是CRISPR领域的先驱之一。他与多名科学家一道,推动了基因组编辑工具的迅猛发展,对于全世界生物医学的研究有着极为重要的应用价值。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/92f2cf51-194a-468b-bbcc-5d28e4f45686.jpg" title=" 2_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 林海帆院士 /strong /span /p p   耶鲁大学医学院的林海帆教授长期致力于干细胞自我更新的机制研究,对干细胞不对称分裂、Argonuate/PIWI基因家族的发现、及其在干细胞自我更新和胚系发育中的关键功能阐明做出了重要贡献。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/7db8e799-191d-47eb-8cb3-8cb29e5e438b.jpg" title=" 3_副本.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 丹扬院士 /span /strong /p p   丹扬博士是加州大学伯克利分校的神经生物学教授,也是霍华德休斯医学研究所(HHMI)的研究员。她的研究旨在阐明哺乳动物大脑控制睡眠的通路,以及额叶皮层施加自上而下的执行控制的机制。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/3a2e0346-81b9-45a3-9658-ac7da99f4572.jpg" title=" 4_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 傅嫈惠院士 /strong /span /p p   傅嫈惠博士是加州大学旧金山分校神经学系教授,她的研究利用人类遗传学与多种模型生物结合来研究人类疾病的分子机制。她的实验室一直专注于两个领域:一个是髓磷脂生物学,另一个是昼夜节律和睡眠行为。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/8d34f0b3-a48f-4b52-86b3-0fed4dd0069b.jpg" title=" 5_副本.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 高华健院士 /span /strong /p p   高华健博士是美国布朗大学工程系Walter H. Annenberg冠名教授兼材料科学工程研究中心(MRSEC)主任、美国国家工程院院士、是固体力学领域的顶尖专家。他的研究领域涉及工程及生物系统中的纳米力学、纳米晶体材料及薄膜力学、多层次材料力学、微纳米力学尺度效应、细胞粘附及其吞噬中的力学、以及金属玻璃的力学性能研究。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/07d358c2-a8eb-4da0-91bc-e0e91245580b.jpg" title=" 6_副本.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 文小刚院士 /span /strong /p p   文小刚博士是MIT物理系教授,曾任加拿大滑铁卢圆周物理研究所牛顿讲席教授。文小刚博士在他的主要研究方向——凝聚态物理理论居于领先地位。2016年,他凭借出色的研究荣获凝聚态物理最高荣誉Oliver E.Buckley奖。 /p p   我们再次祝贺这6名新晋院士,也期待更多华人学者能够涌现出来,为世界带来积极的改变。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制