当前位置: 仪器信息网 > 行业主题 > >

多种植物样品

仪器信息网多种植物样品专题为您整合多种植物样品相关的最新文章,在多种植物样品专题,您不仅可以免费浏览多种植物样品的资讯, 同时您还可以浏览多种植物样品的相关资料、解决方案,参与社区多种植物样品话题讨论。

多种植物样品相关的论坛

  • 样品前处理 两个不同居群(同种植物)的次生代谢产物

    我是要测 两个不同居群(同种植物)的次生代谢产物,仪器是[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url],但是我从来没有接触过这类实验,请问是否可以跟我说说大致的实验步骤呢,另外我也不知道如何实现样品前处理。主要看酚类,类黄酮 在 不同居群间的差异谢谢~~

  • 适宜室内种植的植物

    适于室内种植的植物 1)月季、玫瑰吸收二氧化硫。2)桂花有吸尘作用。3)薄荷有杀菌作用。4)长青藤和铁树吸收苯。5)万年青和雏菊清除三氯乙稀。6)银苞芋吊兰、芦荟、虎尾兰吸收甲醛。

  • [下载]不适于室内种植植物与适于室内种植的植物

    不适于室内种植植物1) 兰花:它的香气会令人过度兴奋而引起失眠。2) 紫荆花:它所散发出来的花粉如与人接触过久,会诱发哮喘症或使咳嗽症状加重。3) 含羞草:它体内的含羞草碱是一种毒性很强的有机物,人体过多接触后会使毛发脱落。4) 月季花:它所散发的浓郁香味,会使一些人产生胸闷不适、憋气与呼吸困难。5) 百合花:它的香味也会使人的中枢神经过度兴奋而引失眠。6) 夜来香(包括丁香类):它在晚上会散发出大量刺激嗅觉的微粒,闻之过久,会使高血压和心脏病患者感到头晕目眩、郁闷不适,甚至病情加重。7) 夹竹桃:它可以分泌出一种乳白色液体,接触时间一长,会使人中毒,引起昏昏欲睡、智力下降等症状。8) 松柏(包括玉丁香、接骨木等):松柏类花木的芳香气味对人体的肠胃有刺激作用,不仅影响食欲,而且会使孕妇感到心烦意乱,恶心呕吐,头晕目眩。9) 洋绣球花(包括五色梅、天竺葵等):它所散发的微粒,如与人接触,会使人的皮肤过敏而引发瘙痒症。10)、郁金香:它的花朵含有一种毒碱,接触过久,会加快毛发脱落。11)、黄花杜鹃:它的花朵含有一种毒素,一旦误食,轻者会引起中毒,重者会引起休克,严重危害身体健康。适于室内种植的植物1)月季、玫瑰吸收二氧化硫。2)桂花有吸尘作用。3)薄荷有杀菌作用。4)长青藤和铁树吸收苯。5)万年青和雏菊清除三氯乙稀。6)银苞芋吊兰、芦荟、虎尾兰吸收甲醛。

  • 植物中多种元素的测定

    本人新手,现因实验要求,要对一批植物样品进行多种微量元素的检测,包括铁、铜、锰、锌、钙、钠、钾、镁、氮、磷。现在已经确定方案:铁、铜、锰、锌、钙、钠、钾、镁这8种元素使用火焰原子吸收方法检测。对于磷,用采用钼黄显色光度法。现在最麻烦的是氮的测定,查阅了很多方法,貌似都不适合大批量的样品操作,而且有些仪器条件并不具备现在请教各位老师,有没有一种测定氮的方法,比较节约时间的,适宜于大批量的样品测定,最好能用滴定,或分光光度计的。备注:目前样品状态,已经烘干并研磨成粉

  • 【转帖】【环保知识讲座】哪种植物吸甲醛最快? 米兰!

    很多市民家里装修好之后,都喜欢买一些吸毒植物回家,究竟哪些植物吸毒能力强呢?挑选八种家庭绿化常用植物的代表,给它们吸甲醛的能力排了个座次,结果发现,原来大家印象当中很“厉害”的仙人球,竟然对甲醛的吸收作用微乎其微,倒是不起眼的米兰,一“进屋”就夺了个头名。  除毒先锋:米兰  八种植物是仙人球、多肉植物芦荟、龙舌兰科的太阳神、一二年生草花类的金鱼草、乔木类的橡皮树、灌木类的米兰、常绿草本类的白掌、棕榈类的棕竹。这些都是家庭常见的,并且代表不同类型的植物。  为了有可比性,所挑选的植物个头都是一样大的,将它们分别放在含有一定量甲醛的玻璃罩内,里面再加个蒸发皿,盛同样体积的水,并保证罩内空气流通,让空气中与蒸发皿中水溶液的甲醛含量相同,然后定期抽取溶液,测量甲醛含量,并与不放植物的玻璃罩里的含量作对比。  结果让研究人员有些意外:每隔三天,他们会测一次数据。头几天,不起眼的米兰吸收甲醛最快,前三天就达了6.29mg/L,而玻璃罩里的甲醛释放量也不过6.8mg/L,绝大多数都被“吃”掉了。这个阶段,它对甲醛的吸收能力,是太阳神的近两倍、芦荟的2.3倍、仙人球的13倍!  后起之秀:太阳神  一直到13天后,情况悄悄发生了变化。随着玻璃罩里的甲醛释放量越来越大,各种植物也逐渐适应了这种环境,在大家吸收甲醛的能力都有所上升的情况下,第16天,太阳神和金鱼草以微弱的优势超过了米兰:太阳神的吸收量达到了9mg/L,金鱼草达到9.13mg/L,而米兰则是8.96mg/L。  “显然,家里养一盆米兰,效果还是不错的,花很香,短时间内很快就能吸走大量甲醛。从持久效果来看,则是太阳神和金鱼草最好。”专家说,金鱼草、白掌和橡皮树的初期表现也挺好,而太阳神和芦荟虽然初期不佳,但13天之后,奋起直追,原本排在倒数第二、与其它植物差一大截的芦荟,到了第16天,吸收量也达到了7.61mg/L,比最初排在第二位的橡皮树还高出一些;到了第21天,芦荟已经超过了米兰,仅次于太阳神和金鱼草。  吸毒最差:仙人球  最让人意外的是,印象中净化能力很强的仙人球,其实对甲醛清除作用并不强,专家给它定性为“难吸收甲醛植物”。  实验刚开始,出现了问题:由于放入甲醛浓度太高,三天后,除了芦荟和仙人球活了下来,其它植物全部“壮烈牺牲”。“这倒不是说它俩的抗污染能力强,后来我们研究发现,其实是这两种植物开始所吸收的甲醛量非常少,其它则吸毒太多致死。”后来,研究人员将甲醛浓度降低到0.0015mg/L,保证植物正常生长。  3天过去了,仙人球的甲醛吸收量仅为0.48mg/L;13天后,芦荟排名不断前进,而仙人球的吸收量仍然只有太阳神、米兰等植物的1/3左右。从头到尾,它始终都排在最末。  虽然对甲醛不“敏感”,但仙人球也有它的优势,与其它植物相反,它是白天释放二氧化碳,晚上释放氧气,夜间相当于室内小“制氧器”,此外对电脑辐射也有一定作用。

  • 凯氏定氮法和杜马斯法测定植物样品中的全氮方法比较

    1 引 言氮是植物需求量最大的矿物质营养元素,同时也是植物个体乃至自然生态系统和人工生态系统(包括农业系统)生长最常见的限制因子。在植物体中含有的氮,大部分是作为蛋白质、氨基酸、酰胺及其它与蛋白质有关的物质的组成而存在的,此外少部分作为硝酸态存在。全氮是植物成分分析中非常重要的项目之一。全氮的测定方法有很多种,最经典的方法为凯氏定氮法,但是普通的凯氏法不便定量硝态氮,而其含量可能相当高。此外,对-N=N-,http://www.dsddy.cn/Upload/UploadPic/201042612017583.jpg,-N=O, -NO2等的定量也是困难的。对于大量含有这些形态氮的样品,应采用各自的定量方法进行检测。但通常用能定量植物样品中大部分氮素的凯氏法所定量的氮作为全氮。若样品中含有较多硝态氮时,可用水杨酸硫酸分解法还原硝酸,这种方法比较烦琐。目前在欧美等发达国家广泛采用杜马斯燃烧法取代凯氏法。这种方法是使样品在高温纯氧环境中燃烧后,分离出氮气,并被热导检测器检测,检测出的结果包含了硝态氮。此法也因其快速,精确,无污染等优点而得到了广泛的认可。对两种定氮方法做一比较是非常必要的。以下简介杜马斯燃烧定氮法,并对两种方法测定几种植物样品中的全氮进行了对比。2 杜马斯燃烧定氮法早在1833年,Jean Baptiste Dumas就开发出燃烧定氮法,后人定名为杜马斯(Dumas)法。该方法的发明比凯氏法还早50年,但是由于早期的杜马斯法只能检测几个毫克的样品,使它的实际应用受到了极大的限制,在随后的岁月里这种方法没有被广泛的应用开来。近十年来,随着可以检测克级样品的杜马斯法快速定氮仪问世,才拉开了其在食品、饲料、肥料、植物、土壤及临床等领域上广泛应用的序幕。目前,在西方国家的很多实验室都已用杜马斯法代替凯氏法检测全氮。 http://www.dsddy.cn/Upload/UploadPic/201042612051639.jpg

  • 植物源性食品中多种农药残留量的测定

    [align=right][b]SGLC-GC/MS-001[/b][/align][b]摘要:[/b]建立了植物源性食品中多种农药残留量同时测定的方法。采用岛津 SHIMSEN QuEChERS 产品对5类植物源性食品样品进行快速净化,同时采用岛津[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]串联质谱 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8040,岛津 SH-1701 色谱柱进行分析,回收率及重现性良好。该方法前处理速度快,重现性好,适用于黄瓜、葡萄、韭菜、茶叶和大米等基质中多种农药残留的同时检测。[b]关键词:[/b]QuEChERS 多农残 植物源性食品 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS[b]1. 实验部分1.1 实验仪器及耗材[/b]岛津[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8040 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-串联质谱联用仪;色谱柱SH -1701(30 m×0.25 mm×0.25 μm;P/N:221-75777-30);SHIMSEN QuEChERS萃取盐包Ⅰ(P/N:380-00148);SHIMSEN QuEChERS萃取盐包Ⅱ(P/N:380-00151);SHIMSEN QuEChERS净化管Ⅰ(P/N:380-00123);SHIMSEN QuEChERS净化管Ⅱ(P/N:380-00124);SHIMSEN QuEChERS净化管Ⅲ(P/N:380-00129);SHIMSEN QuEChERS净化管Ⅳ(P/N:380-00145);陶瓷均质子(P/N:380-00171);SHIMSEN Arc Disc HPTFE针式过滤器(P/N:380-00341-05);[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]认证样品瓶LabTotal Vial(P/N:227-34002-01);SHIMSEN Pipet[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]:SHIMSEN Pipet PMII-10(P/N:380-00751-02);SHIMSEN Pipet PMII-100(P/N:380-00751-04);SHIMSEN Pipet PMII-1000(P/N:380-00751-06)。[b]1.2 分析条件1.2.1 色谱条件:[/b]毛细管柱:SH- 1701毛细管柱(30 m×0.25 mm×0.25 μm;P/N:221-75777-30)程序升温:初始温度40℃保持1 min, 以40℃/min升温到120℃,再以5℃/min升温到240℃,以12℃/min升温到300℃,保持6 min;载气:He流速:1.0 mL/min进样量:1 μL进样方式:不分流进样[b]1.2.2 质谱条件:[/b]电离模式:电子轰击电离(EI);电子轰击能量:70 eV离子源温度:280℃传输线温度:280℃溶剂延迟:3 min数据采集模式:MRM;各化合物MRM参数如下:[img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_1.png[/img][img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_2.png[/img][img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_3.png[/img][font=arial, &][size=12px][/size][/font][b]1.3 样品前处理1.3.1 普通蔬菜(黄瓜)、水果(葡萄)[/b]称取10 g样品(精确到0.01 g),于50 mL离心管中,加入10 mL乙腈,充分摇匀后,加入QuEChERS萃取盐包Ⅰ(P/N:380-00148,4 g MgSO4、1 g氯化钠、0.5 g柠檬酸氢二钠、1 g柠檬酸钠,50根离心管 & 50包试剂包/p),盖上离心管盖,手动快速摇匀后,涡旋30 s。4200 r/min下离心5 min,取上清液6 mL置于净化管Ⅰ中(P/N:380-00123,SHIMSEN QuEChERS SPE 15 mL PSA净化管 150 mg PSA、900 mg MgSO4,50/p),涡旋混匀1 min。4200 r/min离心5 min,取上清液4 mL于10 mL离心管中,加入100 μL内标,40℃氮吹至干,用乙酸乙脂2 mL进行复溶,过微孔滤膜,用于GC/MS检测。[img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_4.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]图1 普通蔬菜和水果提取、净化流程图[/b][/align][font=arial, &][size=12px] [/size][/font][b]1.3.2 有色蔬菜(韭菜)[/b]称取10 g样品(精确到0.01g),于50 mL离心管中,加入10 mL乙腈,充分摇匀后,加入QuEChERS萃取盐包Ⅰ(P/N:380-00148,4 g MgSO4、1 g氯化钠、0.5 g柠檬酸氢二钠、1 g柠檬酸钠,50根离心管 & 50包试剂包/p),盖上离心管盖,手动快速摇匀后,涡旋30 s。4200 r/min下离心5 min,取上清液6 mL置于净化管Ⅱ中(P/N:380-00124,SHIMSEN QuEChERS SPE 15 mL PSA/GCB净化管 885 mg MgSO4、150 mg PSA、15 mg GCB,50/p),涡旋混匀1 min。4200 r/min离心5 min,取上清液4 mL于10 mL离心管中,加入100 μL内标,40℃氮吹至干,用乙酸乙脂2 mL进行复溶,过微孔滤膜,用于GC/MS检测。[img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_5.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]图2 有色蔬菜提取、净化流程图[/b][/align][font=arial, &][size=12px] [/size][/font][b]1.3.3 谷物(大米)[/b]称取5 g样品(精确到0.01g),于50 mL离心管中,加入10 mL水,涡旋混匀,静置水化30 min。加入含有1%乙酸的乙腈溶液15 mL,盖上离心管盖,充分摇匀,加入QuEChERS萃取盐包Ⅱ(P/N:380-00151,6 g MgSO4、1.5 g醋酸钠,50根离心管 & 50包试剂包/p),盖上离心管盖,手动快速摇匀1 min。4200 r/min下离心5 min,取上清液8 mL置于净化管Ⅲ中(P/N:380-00129,SHIMSEN QuEChERS SPE 15 mL PSA/C18净化管 1200 mg MgSO4、400 mg PSA、400 mg C18,50/p),涡旋混匀1 min。4200 r/min离心5 min,取上清液4 mL于10 mL离心管中,加入100 μL内标,40℃氮吹至干,用乙酸乙脂2 mL进行复溶,过微孔滤膜,用于GC/MS检测。[img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_6.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]图3 谷物提取、净化流程图[/b][/align][font=arial, &][size=12px] [/size][/font][b]1.3.4 茶叶[/b]称取2 g样品(精确到0.01 g),于50 mL离心管中,加入10 mL水,涡旋混匀,静置水化60 min。加入含有1%乙酸的乙腈溶液15 mL,盖上离心管盖,充分摇匀,加入QuEChERS萃取盐包Ⅱ(P/N:380-00151,6 g MgSO4、1.5 g醋酸钠,50根离心管 & 50包试剂包/p),盖上离心管盖,手动快速摇匀1 min。4200 r/min下离心5 min,取上清液8 mL置于净化管Ⅳ中(P/N:380-00131,SHIMSEN QuEChERS SPE 15 mL PSA/C18/GCB净化管 1200 mg MgSO4、400 mg PSA、400 mg C18、400 mg GCB,50/p),涡旋混匀1 min。4200 r/min离心5min,取上清液4 mL于10 mL离心管中,加入100 μL内标,40℃氮吹至干,用乙酸乙脂2 mL进行复溶,过微孔滤膜,用于[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS检测。流程图见图4。[img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_7.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]图4 茶叶提取、净化流程图[/b][/align][font=arial, &][size=12px] [/size][/font][b]2. 结果及讨论2.1 标准样品的MRM谱图[/b][img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_8.png[/img][font=arial, &][size=12px][/size][/font][b]2.2 植物源性食品中68种农药的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS检测添加回收结果[/b]将黄瓜、韭菜、茶叶和大米空白样品进行100.0 μg/L浓度加标;葡萄空白样品进行10.0 μg/L和50.0 μg/L浓度加标后,按照上述前处理方法处理后上机,平行6份样品考察回收率和RSD,具体结果如下(葡萄样品加标结果见文章:田菲菲,张曦,马金凤,杨晓春,范军,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-串联质谱法同时分析葡萄基质中196 种农药残留,食品安全质量检测学报,2016:7(3)1069-1081):黄瓜样品加标回收率为86.04%-119.97%,RSD为0.68%-8.36%;韭菜样品加标回收率为81.74%-119.64%,RSD为2.92%-9.20%;茶叶样品加标回收率为83.13%-121.16%,RSD为0.29%-9.02%;大米样品加标回收率为88.98%-106.33%,RSD为0.80%-8.96%。[img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_9.png[/img][img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_10.png[/img][font=arial, &][size=12px][/size][/font][b]3. 结论[/b]综上,采用岛津的SHIMSEN QuEChERS产品对黄瓜、葡萄、韭菜、茶叶、大米等植物源性食品样品进行净化,同时采用岛津[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]串联质谱 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8040,岛津SH- 1701(30 m×0.25 mm×0.25 μm) 色谱柱进行分析,对普通蔬菜、水果、有色蔬菜、茶叶和谷物等5类植物源性食品中68种农药残留的检测方法进行了验证,结果表明,该方法操作简单、分析速度快、重现性好、准确度高,可以应对植物源性食品中农药残留量的测定要求。

  • 【分享】种植物可致癌 警惕花草成家居“杀手”

    新居装修完之后,在家里摆上几盆花草当做“空气过滤器”,已成为不少市民的消费习惯。可是,中国预防医科院病毒所专家近日指出,目前已发现52种植物含有致癌病毒,“清理门户”事不宜迟。日前,中国预防医科院病毒所专家对植物所含物质的促癌作用进行了研究,从1693种中草药与植物中共检出18个科中的52种植物含有促癌物质。这些植物多属大戟科与瑞香科,其中铁海棠(俗称刺儿梅)、变叶木、乌桕、红背桂花、油桐、金果榄等一些观赏性花木均含有促癌物质,而它们常常出现在市民家中及公园里面。 实验表明,这些致癌植物中所含有的“Epsteln-Barr病毒早期抗原诱导物”,可以诱导EB病毒对淋巴细胞的转化,并能促进由肿瘤病毒或化学致癌物质引起的肿瘤生长。目前,致癌植物诱发鼻咽癌与食管癌的实验已得到证实,它们不仅浑身上下都带“毒”,而且种过此类植物的土壤中都被检测出含有致癌病毒与化学致癌物的激活物质。 专家表示,如果居室中种有此类植物,人们有可能由于长期吸入花粉、尘土颗粒等原因引发癌症。因此,建议爱养花草的市民应及早“清理门户”,尽量不要在家中种植致癌植物。 52种致癌植物一览 石粟、变叶木、细叶变叶木、蜂腰榕、石山巴豆、毛果巴豆、巴豆、麒麟冠、猫眼草、泽漆、甘遂、续随子、高山积雪、铁海棠、千根草、红背桂花、鸡尾木、多裂麻疯树、红雀珊瑚、山乌桕、乌桕、圆叶乌桕、油桐、木油桐、火殃勒、芫花、结香、狼毒、黄芫花、了哥王、土沈香、细轴芫花、苏木、广金钱草、红芽大戟、猪殃殃、黄毛豆付柴、假连翘、射干、鸢尾、银粉背蕨、黄花铁线莲、金果榄、曼陀罗、三梭、红凤仙花、剪刀股、坚荚树、阔叶猕猴桃、海南蒌、苦杏仁、怀牛膝。 绿色“家庭氧吧”君子兰 君子兰不仅具有极高的观赏价值,还具有独特的净化价值。君子兰叶片宽厚,叶面气孔大,光合作用释放出的氧气是一般植物的35倍。一株成龄的君子兰,一昼夜能吸收1立升空气,呼出80%氧气来,在极微弱的光线下也能起光合作用。更适人意的是,它在夜里也不吐出二氧化碳。在十几平方米的室内,有二三盆君子兰,会把室内的烟雾吸收掉。特别是在北方寒冷的冬天,尽管门窗紧闭,君子兰也能起到很好的调节空气作用,保持室内空气清新。所以,称君子兰为绿色“家庭氧吧”当之无愧。

  • 【求助】请教植物样品做ICP MS

    各位高手我最近要做ICPMS,1 植物样品做ICP MS之前的消化用酸(硝酸,) 必须用什么纯度的。2 内标是在测之前加入吗?一般用什么做内标?3 icp ms是不是可以同时测多种元素?4 测试样品是怎样收费的,测一个要多少大洋?

  • 植物样品元素分析前处理方法

    植物样品元素分析前处理方法多种多样,每个实验室具体的操作方法方式均有可能不一样,大家讨论并分享下各自日常检测过程中的前处理方法和流程,以便互相学习提高。

  • 农民在草莓种植过程中到底用不用植物激素?市场上销售的草莓检测结果如何?使用植物激素安全吗?会造成儿童早熟吗?

    在一线从事生产研究指导已经15年的中国园艺学会草莓分会常务理事齐长红表示,理论上讲,施用了“膨大剂”氯吡脲确实会生产出个体肥大的草莓,但是稍有常识和经验的种植户基本不会使用,因为这样做会“损人又害己”。试验表明,施用了氯吡脲的草莓不仅颜色和正常草莓不一样,而且很软,果皮变薄,手轻轻触碰就会落上指纹印,很难摘下来。如果超量使用,不但不能促进生长,反而会抑制作物生长甚至出现药害。  根据农业部农产品质量安全环境因子风险评估实验室(北京)2014、2015连续两年草莓监测结果,采自生产基地和市场的253个草莓样本中氯吡脲检出率均为零。农业部农产品质量安全风险评估实验室(杭州)2012-2015年对浙江部分产区草莓进行监测结果显示,2015年仅检出芸苔素内酯,氯吡脲等其他6种植物外源激素均未检出。2012-2014年均未检出氯吡脲等4种植物外源激素,检出的多效唑等3种植物外源激素其平均残留量仅在0.0016-0.0055mg/kg范围内,最高0.08mg/kg,膳食风险也仅在0.001-0.287%范围内,远远小于100%。可见,草莓种植者基本不使用植物激素,即使使用也不会危害消费者健康,完全不必担心,国内外从来没有发生过因为吃了使用植物外源激素的农产品而引起食物中毒的事例。  2015年“乙草胺草莓”的乌龙事件刚刚过去,“空心激素草莓”又以各种版本出现在网络媒体,在各类信息纷繁复杂、充斥网络的今天,每个消费者面对流言时要多一些辨别力,多一些谨慎的求证,相信科学终将拨开迷雾,还原事件真相。

  • 【资料】熊猫快报--天津市实验成功水生植物治理污水方法

    发布时间:2008年8月21日 河道中不但可以长出美丽的花草,还能利用它们吸收水中的富营养成分,治理水体污染。日前,水生植物治理污水方法在津实验成功。今后,本市将利用水生植物来恢复水质恶化河道的生态功能,对水质富营养化的河道、湖泊和水库进行生物治理。 昨天下午,记者在外环线“城市水环境改善与水源保护示范工程”基地看到,河道中已经试种了十多种水生植物,这些植物将河道装扮得分外美丽:用浮球撑起的黑三菱草坪已经长得郁郁葱葱;芦苇秆编织成的人工浮床上,早已生成了芦苇丛;水浮花钵中,美人蕉红黄相间的花朵格外炫目。 正在进行数据统计的技术人员告诉记者,在水中生长的植物可以有效吸收水中过量的营养成分,特别能吸收氮、磷等元素,有效抑制蓝藻的产生,并有利于清淤治污。同时,生物治污方式成本很低,方便推广。比如,通过人工浮床种植的芦苇,因苇秆不易腐烂,不会造成二次污染。芦苇根是宿根,能够越冬,来年不用重复种植,芦苇叶可用来养鱼,到秋天可收割芦苇,还能编成工艺品。 ——信息来源:新华网

  • 【分享】欧盟开始实施传统植物药指令

    法媒4月30日报道,欧盟《传统植物药指令》自当日开始正式实施,未经注册许可的各类天然草药及传统植物成药将不得在欧盟市场销售或使用。 报道称,欧盟于2004年4月30日通过该指令,旨在规范包括中药、印度草药等在内的各类传统植物草药和成药的质量,保障消费者的安全。指令要求传统植物药必须向成员国的主管部门申请注册,审批通过后方可在欧盟市场上销售。截止2011年3月31日,在指令规定的7年过渡期内,大约有350多种植物药通过了注册审批,但尚未有任何一剂中药名列其中。 报道称,根据指令规定,传统植物药企业需至少提供15年的欧洲市场销售证明。此外,根据市场规则,每个产品的注册费用约为15万欧元。这些可能成为传统植物药企业在欧盟注册的障碍。 报道称,欧盟是全球第一大植物药市场,占市场总份额的40%以上。

  • 便携式光合测定仪适用于什么植物

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]  便携式光合测定仪适用于什么植物,便携式光合测定仪是一种现代化的科研工具,因其小巧轻便、易于携带、智能化程度高以及稳定性强等特点,在植物生理生态学研究中有着广泛的应用。以下是关于便携式光合测定仪适用的植物类型及相关信息:  适用植物类型:  便携式光合测定仪可广泛应用于各种植物,包括但不限于大田作物、果蔬、蔬菜、牧草、观赏植物等。该仪器主要用于测量不同植物的叶片光合速率、蒸腾速率、气孔导度等关键参数。  具体应用场景:  农林业:科研人员可利用该仪器对农作物叶片的光合速率、气孔导度、胞间二氧化碳浓度等参数进行精确测量,评估不同品种的适应性、抗逆性以及产量潜力。同时,通过测定不同生长环境下的光合参数,为优化农作物的种植管理提供科学依据。  生态学:生态学家可利用该仪器研究不同生态系统中植物的光合作用特性,了解生态系统对气候变化的响应机制。例如,通过测定不同海拔、纬度或土壤类型下的植物叶片光合参数,揭示生态系统结构、功能以及生物多样性的变化规律。  园艺和草地科学:该仪器可用于研究观赏植物和牧草的光合作用特性,为品种改良和种植管理提供理论依据。  测量参数:  便携式光合测定仪能够测量的参数非常丰富,包括但不限于CO2浓度、H2O浓度、空气温度、叶片温度、相对湿度、蒸汽压亏缺、露点温度、大气压、内置光强、外置光强、净光合速率、蒸腾速率、胞间CO2浓度、气孔导度等。这些参数能够全面反映植物的光合作用状况,为科研工作者提供宝贵的数据支持。  特点:  该仪器具有便携性、智能化程度高、稳定性强等特点,适用于野外试验、现场监测等多种环境。同时,它支持活体、离体测量,并且室内外两用,满足了科研工作的多样化需求。  综上所述,便携式光合测定仪适用于多种类型的植物,包括但不限于大田作物、果蔬、蔬菜、牧草等,能够为科研人员提供全面、准确的光合作用相关参数数据,对于植物生理生态学研究具有重要意义。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406131145594548_7165_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 【转帖】凯氏定氮法和杜马斯法测定植物样品中的全氮方法比较

    【转帖】凯氏定氮法和杜马斯法测定植物样品中的全氮方法比较

    1 引 言 氮是植物需求量最大的矿物质营养元素,同时也是植物个体乃至自然生态系统和人工生态系统(包括农业系统)生长最常见的限制因子。在植物体中含有的氮,大部分是作为蛋白质、氨基酸、酰胺及其它与蛋白质有关的物质的组成而存在的,此外少部分作为硝酸态存在。 全氮是植物成分分析中非常重要的项目之一。全氮的测定方法有很多种,最经典的方法为凯氏定氮法,但是普通的凯氏法不便定量硝态氮,而其含量可能相当高。 此外,对-N=N-,http://www.dsddy.cn/Upload/UploadPic/201042612017583.jpg,-N=O, -NO2等的定量也是困难的。对于大量含有这些形态氮的样品,应采用各自的定量方法进行检测。但通常用能定量植物样品中大部分氮素的凯氏法所定量的氮作为全氮。若样品中含有较多硝态氮时,可用水杨酸硫酸分解法还原硝酸,这种方法比较烦琐。目前在欧美等发达国家广泛采用杜马斯燃烧法取代凯氏法。这种方法是使样品在高温纯氧环境中燃烧后,分离出氮气,并被热导检测器检测,检测出的结果包含了硝态氮。此法也因其快速,精确,无污染等优点而得到了广泛的认可。对两种定氮方法做一比较是非常必要的。以下简介杜马斯燃烧定氮法,并对两种方法测定几种植物样品中的全氮进行了对比。2 杜马斯燃烧定氮法 早在1833年,Jean Baptiste Dumas就开发出燃烧定氮法,后人定名为杜马斯(Dumas)法。该方法的发明比凯氏法还早50年,但是由于早期的杜马斯法只能检测几个毫克的样品,使它的实际应用受到了极大的限制,在随后的岁月里这种方法没有被广泛的应用开来。近十年来,随着可以检测克级样品的杜马斯法快速定氮仪问世,才拉开了其在食品、饲料、肥料、植物、土壤及临床等领域上广泛应用的序幕。目前,在西方国家的很多实验室都已用杜马斯法代替凯氏法检测全氮。http://ng1.17img.cn/bbsfiles/images/2010/12/201012032157_264274_1641058_3.jpg 凯氏定氮法需要较大的劳动强度和分析时间,且操作过程较为危险,产生化学废物污染环境。相比之下,杜马斯法有很大的优势:它不需要对样品做复杂的前处理,只要适当的粉碎;单个样品分析只要3-5分钟,可用自动进样器连续进样,不需要人看守;它不用有害试剂,不产生污染物质,对操作人员和环境都是安全的。表1归纳了两种方法的特点。3 实验部分3.1凯氏定氮法3.1.1原理利用浓酸溶液将有机物中的氮分解出来。均匀的样品在沸腾的浓硫酸中作用,形成硫酸铵。加入过量的碱于硫酸消解液中,将NH4+ 转变成NH3,然后蒸馏出NH3,用接受液吸收。通过测定接受液中氨离子的量来计算样品中氮的含量。3.1.2仪器全自动凯氏定氮仪。3.2杜马斯燃烧定氮法3.2.1原理样品在900℃~1200℃高温下燃烧,燃烧过程中产生混合气体,其中的干扰成分被一系列适当的吸收剂所吸收,混合气体中的氮氧化物被全部还原成分子氮,随后氮的含量被热导检测器检测。3.2.2仪器蛋白质测定仪 。3.2.3反应过程(基于ZDDN-II氮/蛋白质分析仪)样品在高温下燃烧,燃烧生成的气体被载气 CO2携带直接通过氧化铜(作为催化剂)而被完全氧化。此外,化合物中一定量的难氧化部分会被载气携带通过作为催化剂的氧化铜和铂混合物进一步氧化。燃烧生成的氮氧化物在钨上还原为分子氮,同时过量的氧被结合。用传感器控制最佳燃烧所需的氧气量,以保证氧气和钨的消耗量最少。用一系列的吸收剂将干扰成分如H2O、SO2、HX从被检测气流中除去。用TCD热导检测器来检测 CO2 载气流中的氮。用标准物质独立校正,被测样品中含氮量自动计算、打印和存储。4 结果与讨论凯氏法一个公认的局限性是它不能定量NO3-N (植物样品全氮的重要组成部分)( Silvertooth和Westerman,1988)。Sader等人(2004)发现NO3-N的存在会影响全氮含量。Simonne et al.(1995)和Etheridge et al.(1998)也证实,在分析植物样品时,杜马斯法得到的全氮值总是略微高于凯氏法的测定值。本实验也得到了同样的结果。http://ng1.17img.cn/bbsfiles/images/2010/12/201012032158_264275_1641058_3.jpg由表2可以看出,凯氏氮总是低于杜马斯氮,D/K的值均大于1。Sader等(2004)认为,凯氏氮与杜马斯氮在同类样品中呈线性相关,通过校正因子对硝态氮进行校正后,两种结果差异不显著。对于草类样品,凯氏氮低于杜马斯氮的程度是否与样品中硝态氮的含量有关及其相关性如何尚需进一步研究。此外,植物的不同部位以及生长的不同阶段其硝态氮的含量和分布会有所不同,用凯氏法及杜马斯法测得的总氮结果会有何等差异,在本文中未曾涉及,有待进一步探讨。5 结 论由于植物样品中多含有硝态氮,某些样品硝态氮的含量占全氮的10%以上,所以杜马斯法测定结果往往高于凯氏法的结果。可见杜马斯定氮法所得到的全氮结果更接近真值。而且,杜马斯法不需要消煮,大大缩短了工作时间,减少了实验的危险性,对环境没有任何污染。作者认为可以用杜马斯燃烧法进行植物样品中全氮的测定。

  • 植物分类系统与化学成分的关系

    现代植物分类是按照植物形态的异同、习性的差别以及亲缘关系的远近系统排列的。因此,一般说来,在植物分类系统中位置愈接近的植物,它们的亲缘关系就愈接近。植物分类系统与化学成分的关系,实际上是指植物亲缘关系与化学成分的关系。    各种植物由于新陈代谢类型的不同,产生了各种不同的化学物质——生物碱类、甙类、萜类等等。这些化学成分在植物中的遗传和变异,是与植物系统位置、植物的环境条件(气候、土壤与生物等)密切有关的。植物分类系统与化学成分的关系可大致归纳为下述几个方面:  1.每一种植物在恒定的环境条件下、具有制造一定的化学成分的特性,而这个特性是这种植物的生理生化特征。如颠茄产生莨菪烷衍生物类生物碱,人参产生三萜类皂甙,薄荷产生萜类等等。  2.亲缘关系相近的植物种类由于有相近的遗传关系,往往具有相似的生理生化特征。亲缘关系愈近,共同性愈多;亲缘关系愈远,共同性愈少。如异喹啉类生物碱主要分布于多心皮类及其近缘类植物的一些科中,如木兰科、睡莲科、马兜铃科、防已科、毛莨科、小檗科、罂栗科、芸香科等。这些科中的生物碱的化学结构也显示相互之间有紧密的亲缘关系,与产生它们的植物科之间的亲缘关系一致。吲哚类生物碱中最大的一族为鸡蛋花烃(Plumerane)型吲哚生物碱,这族生物碱仅存在于夹竹桃科中的鸡蛋花亚科植物中。同属植物的亲缘关系很相近,因而往往含有近似的化学成分。如小檗属(Berberis)植物含小檗碱,大黄属(Rheum)植物含羟基蒽醌衍生物等等。  3.一般说来与广泛存在于植物界的代谢产物有更近似化学结构的简单化学成分(如黄嘌吟与咖啡碱化学结构很近似),在植物界的分布较广,分布的规律性不明显。有些化学成分在系统发育过程中,经过一系列的突变,因而结构也较复杂,如马钱子碱、奎宁等。这类物质的分布往往只限于某一狭小范围的分类群中。但某些起源古老的成分,虽经一系列突变,结构亦较复杂,但它们在植物界中的分布,还是有一定范围的,而且这种类型成分与植物亲缘之间的联系表现得更为明显和突出,例如上述异喹啉类生物碱的分布。  植物分类系统与化学成分间存在着联系性这一概念,已广泛应用于药用植物的研究、野生资源植物的寻找等方面。如具有降压与安定作用的蛇根碱(Reserpine)自印度的夹竹桃科萝芙木属植物蛇根木Rauvolfia serpenitina (L.)Benth ex Kurz中发现后,从该属的其他约20种植物中亦发现了利血平,并根据植物的亲缘关系在萝芙木属的两个近缘属中找到了同类生物碱。为了发掘具抗菌作用的小檗碱的资源植物,经植物分类学与植物化学综合研究,发现小檗碱在中国主要分布在5个科(小檗科、防已科、毛莨科、罂粟科、芸香科)16个属的多种植物中,而以小檗科小檗属较理想。又据研究,莨菪烷类生物碱主要集中分布于茄科茄族(So1aneae)中的天仙子亚族(Hyoscyaminae)、茄参亚族(Mandragorinae)及曼陀罗族(Datureae)植物中,并发现了含碱量较高,有生产价值的新原料植物——矮莨菪(Przewalskia shebbearei(C.E.C.Fischer) Kuang, ined)及马尿泡(P. tangutica Maxim.)。再如生产可的松等激素药物的原料——甾体皂甙,不仅在薯蓣属(Dioscorea)的几十种植物中有发现,而且在亲缘关系相近的一些科中也有发现。必须注意的是,植物的系统发育与其所含化学成分的关系是十分复杂的。由于植物界系统发育的历史很长,发掘出来的古生物学资料不够齐全,加上多数植物的化学成分尚未明了,有些成分的分布规律还未被揭示及认识,所以,有关植物的系统发育与化学成分的关系的研究尚未成熟,有待于进一步研究。在应用植物分类系统与化学成分间的联系性时,必须具体问题具体分析。  近年来,在植物分类学与植物化学这二门学科间出现了一门新的边缘学科——植物化学分类学(P1ant chemotaxonomy)。它的主要研究任务是:  (1)探索各级分类群(如科、属、种等)所含化学成分(包括主要成分、特有成分和次要成分)及其合成途径。   (2)探索各种化学成分在植物系统中的分布规律。  (3)在以往研究的基础上,配合传统分类学及各有关学科,从植物化学成分的角度,共同探索植物的系统发育。  显然,这一新兴学科在认识植物系统发育方面有重大的理论意义,并可为有目的地开发、利用植物的资源、寻找工业原料等提供理论依据。例如通过对毛莨科与单子叶植物的百合目植物所含生物碱、甾体化台物、三萜化合物、氰醇甙和脂肪酸等五类化学成分的比较分析,发现二者具有很多类似的化学成分,有的成分甚至仅仅为它们所共有。联系到百合目与毛莨科的一些原始类群在形态和组织解剖上的某些相似性,从而认为二者有着十分密切的亲缘关系,即单子叶植物通过百合目起源于原始的毛莨科植物。这一研究结果在了解客观存在的植物系统发育的真实情况方面,具有一定的理论意义。  又如根据国内外在药用植物研究工作方面的大量实践、目前从中国药用植物中大致归纳出一些具重要生物活性的成分(生物碱、黄酮类、萜类、香豆精等)及药理作用的植物类群。由此可见,植物化学分类学是一门富有活力的新学科,它的研究成果值得药用植物学与药用植物化学工作者重视与运用。

  • 【转帖】广西野生植物有“保护伞” 违规最高罚5万

    《广西壮族自治区野生植物保护办法》于2009年2月1日起施行,这是广西制定发布的一部专门规范野生植物保护管理、合理开发利用的重要政府规章,对广西境内的野生植物保护区的建立以及野生植物的培育、种植、加工、出售、收购、运输等方面进行了严格的规定。广西野生植物8000多种 缺乏地方性保护法规广西现有野生植物达8000多种,占全国已知种类总量的26.6%,其中被列为国家一级重点保护野生植物的25种,国家二级重点保护野生植63种,占全国重点保护野生植物种类总量的31%。其中很多在科学研究和应用上具有重要的作用和很高的价值:如作为花卉资源的多种金花茶,作物种资源的野大豆、野生稻、野荔枝等,特有、稀有植物如元宝山冷杉、资源冷杉、广西青梅、银杉,热带珍贵特种用材如蚬木、金丝李、望天树等。国务院于1996年9月颁布了《中华人民共和国野生植物保护条例》(以下简称《条例》),由于广西一直没有制定与该《条例》相配套的地方性法规,也没有制定地方政府规章,极大地制约着广西野生植物保护工作的依法开展,全区野生植物保护面临着严峻的挑战。区内外一些单位和个人受利益驱动,致使非法经营、人为毁坏野生植物的行为频频发生。有些不法分子以人工培育、种植、加工野生植物为名,行乱收购、乱采挖之实,直接导致许多珍稀野生植物数量急剧下降,甚至濒临灭绝;一些边远山区群众在日常生产活动中,常常把未发现其经济价值的珍稀野生植物任意砍掉。《办法》出台对保护和合理利用广西野生植物资源,保护生物多样性,维护生态平衡有重要意义,标志着广西野生植物保护和合理开发利用进入了有章可依、规范管理的新阶段。保护野生植物经费纳入财政预算据介绍,《办法》规定每年9月为自治区保护野生植物宣传月。自治区重点保护野生植物名录由自治区野生植物行政主管部门按照各自职责制定,报自治区人民政府批准并公布。   《办法》规定县级以上人民政府应当将保护野生植物资源所需经费纳入本级财政预算,在国家和自治区重点保护野生植物物种的天然集中分布区,县级以上人民政府可以依照有关法律法规的规定建立自然保护区;在其他区域,县级以上野生植物行政主管部门可以根据实际情况,建立野生植物保护小区、保护点;县级以上野生植物行政主管部门应当按照各自职责开展野生植物监测,设置固定监测点,定期开展资源调查,掌握其动态变化,并针对不利因素采取相应措施,加强对野生植物的保护管理。破坏野生植物最高可罚5万元《办法》鼓励科研机构对重点保护野生植物进行科学研究,保护和合理利用野生植物。以商业经营、科学研究为目的的人工培育、种植、加工等利用自治区重点保护野生植物的单位和个人,应当到县级以上野生植物行政主管部门备案。对自治区重点保护野生植物的采集,《办法》规定参照国家二级重点保护野生植物管理。采集珍贵野生树木,应当同时遵守森林法律法规的规定。违反《办法》规定采集或者破坏、毁损自治区重点保护野生植物的,由县级以上具有相应管理职责的野生植物行政主管部门处2000元以下罚款;情节严重的,处2000元以上50000元以下罚款。外国人不得擅自考察重点保护野生植物《办法》规定,出售、收购、运输国家或者自治区重点保护野生植物的,应当持有所在地县级以上野生植物行政主管部门出具的备案证明或者采集证。野生植物行政主管部门可以依法对采集、出售、加工、利用、运输、贮藏重点保护野生植物的场所或者工具进行检查,有权暂扣来源不明的重点保护野生植物。对外国人在广西境内采集、收购国家和自治区重点保护野生植物,《办法》也做了相关规定。外国人进行野外考察前,必须向重点保护野生植物所在地设区的市野生植物行政主管部门申请备案。外国人采集、收购重点保护野生植物或者擅自对重点保护野生植物进行野外考察的,县级以上具有相应管理职责的野生植物行政主管部门有权依照《条例》的规定,没收所采集、收购的野生植物和考察资料,可以并处50000元以下的罚款。

  • 植物样品测定

    麻烦大家,想请教一下,我最近需要测植物中重金属,需要采用微波消解法对植物进行预处理,我有很多疑问:首先,我看到很多文献中都提到了要同时做试剂空白实验,这里我不太理解,试剂空白指的是在消解管中加入与样品质量相同的去离子水,并加入相同的试剂,随后与样品在同样的条件下消解,赶酸,定容么?其次,有的文献中还同时做了质量控制样品的消解,想问这个一定要做么,如果必须做的话,质量控制样品怎么选择呢?最后,有的文献中还计算了加标回收率什么的,我就是仅仅想要得到植物中重金属浓度,那这些还必须要计算么?希望大家能帮我解答一下,谢谢了

  • 求助:植物样品前处理

    我要测植物中的氮磷,还有Cu,Pb,Zn,Cd,As等重金属 在40度烘箱内烘,会不会对氮磷有影响? 植物样品烘干后 研磨碎怎么这么难 一般是不是还要过40目尼龙筛? 尼龙筛哪里能买到?一般的仪器店怎么都没有尼龙筛,都是不锈钢的 有谁有关于植物样品前处理的资料, 请各位多多指教,多谢!

  • 【求助】这种植物叫什么?

    【求助】这种植物叫什么?

    http://ng1.17img.cn/bbsfiles/images/2011/01/201101200917_275179_2229122_3.jpg偶尔在网上看到这张图片,看上面的植物很熟悉,可是却又想不起叫什么??

  • 你見到过这种植物吗?

    这是不是多肉类植物?[img]https://ng1.17img.cn/bbsfiles/images/2020/11/202011012243480586_8673_1636655_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/11/202011012243479880_2883_1636655_3.png[/img]

  • 【原创大赛】利用GC-MS检测两种植物叶片脂肪酸种类及含量

    【原创大赛】利用GC-MS检测两种植物叶片脂肪酸种类及含量

    摘要: 本小论文利用GC-MS测定了两种含有特殊脂肪酸植物(琉璃苣和报春)叶片的脂肪酸含量和种类,提供了提取植物叶片脂肪酸的方法,并对实验结果进行了简单的分析和讨论。前言: 多不饱和脂肪酸是重要的生物营养物质,指含有两个或两个以上双键并且碳链长度为18~22个碳原子的直链脂肪酸。它们在机体内发挥着重要的生理功能和生物学效应。其中,亚油酸(LA)及亚麻酸(ALA)被公认为人体必需脂肪酸,可进一步衍生为具有不同功能的高度不饱和脂肪酸,如花生四烯酸(AA)、二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)等。 人体自身不能合成亚油酸和亚麻酸(所以这两种脂肪酸被称为必需脂肪酸),但是却含有进一步合成更长链多不饱和脂肪酸的酶。而高等植物体内都能合成亚油酸和亚麻酸,但却不能合成进一步合成更长链脂肪酸的酶,也就不能不能合成多不饱和脂肪酸。仅有少数高等植物如月见草,琉璃苣,报春等能合成利用亚油酸和亚麻酸的Δ6-脂肪酸脱氢酶,因而可以进一步合成γ-亚麻酸(GLA)和十八碳四烯酸(OTA)。二者在人体内都具有重要的生理功能。GLA是重要的前体物质,可合成AA、前列腺素等,同时GLA还有降血脂、减肥、抗血栓性心血管疾病等生物学功能。OTA是EPA和DHA的前体,可以有效缓解与EPA和DHA缺乏有关的生理疾病。 琉璃苣,为紫草科琉璃苣属植物,1年生草本,果实为小坚果,主要分布在欧洲与非洲地区。报春,为报春花科报春花属植物,一年生草本,果实为小坚果,主要分布于北温带,少产于南半球,是一种重要的观赏植物。这两种植物种子都含有丰富的GLA和OTA,但对于其叶片脂肪酸种类却鲜有报道,这里利用GC-MS检测了两种植物叶片的脂肪酸组成及含量。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271753_407677_1306303_3.bmp 图1:琉璃苣植株及花器官(图片来源于网络)http://ng1.17img.cn/bbsfiles/images/2012/11/201211271754_407678_1306303_3.jpg图2:报春植株及花器官(图片来自网络) 气相色谱-质谱联用仪(GC-MS)是油脂研究中的常用仪器之一。组成油脂的脂肪酸部分大多容易气化,在试验中,常利用GC-MS检测油脂中脂肪酸的组成及含量。这里用GC-MS检测报春及琉璃苣叶片中脂肪酸组成及含量。实验材料及采用仪器:1 实验材料: 自己栽培的琉璃苣及报春。2实验主要仪器: 恒温水浴锅,氮气吹干仪,PerkinElmer GC-MShttp://ng1.17img.cn/bbsfiles/images/2012/11/201211271756_407680_1306303_3.png图3 恒温水浴锅http://ng1.17img.cn/bbsfiles/images/2012/11/201211271756_407681_1306303_3.jpg图4 氮气吹干仪http://ng1.17img.cn/bbsfiles/images/2012/11/20121127

  • 改善室内空气质量的几种植物

    随着生活水平的提高,人们利用绿色植物进行居室绿化及装饰已成为一种时尚。最近,美国航空航天局的科学家们发现,常青的观叶植物以及绿色开花植物中,很多都有消除建筑物内有毒化学物质的作用。此次研究还发现,植物不光是靠叶子吸取物质,植物的根以及土壤里的细菌在清除有害物方面都功不可没。中国装饰协会室内环境监测中心专家认为,在居室内最适合放置以下两种类型的植物。

  • 【求助】由植物样品压片时想到的

    有个项目做 采集了部分植物样品,要求做Cu,Pb,Zn等多元素,我本着快速方便的思路,想到了用压片法做做试试,随即遇到两个问题1,这种方法是否可行,植物样品采用压片法做2,在压片过程中,发现,由于以前的都是地质样品,用植物样品时,由于样品轻,称取同样重的植物样品时,植物样品显得多,在压片时,容易裂,要解决这个问题,有什么方法?

  • 【原创大赛】样品前处理技术在植物样品茶叶元素分析中的应用

    【原创大赛】样品前处理技术在植物样品茶叶元素分析中的应用

    样品前处理技术在植物样品茶叶元素分析中的应用 茶是风行世界的三大饮料之一,茶叶中的矿物质含量高低与人体健康息息相关,对茶叶中所含有的元素进行分析有一定的意义。本文主要讲述前处理的方法,样液则用电感耦合等离子体质谱仪进行准确测定其元素含量。样品前处理:采用干法灰化、湿法消化、碱熔融法(加入偏硼酸锂)干法灰化:称取一定量的样品于室温下缓慢升温至500度,并再此温度下灰化完全无炭粒。经常会发现有颗粒残留物存在,其会造成许多元素含量测定结果偏低,而这仅靠进行回收率试验很难察觉,然而,用平行分析生物标准参考物质的方法(茶叶)来进行验证却非常行之有效。受颗粒物残留影响的元素大致可分为两大类,一类是构成颗粒物本身的金属元素,如Al、K、Fe、Ti等;另一类是存在于植物样品中的痕量元素,如稀土、Th、U等,由于其含量低,被颗粒物包裹或吸附而造成的损失相对不容忽视。从下表1可以看出,由于使用的灰化温度仅为500℃(灰化温度过高会导致许多元素挥发损失),残留的颗粒物表面多孔,干灰化法导致植物样品茶叶元素含量测定结果偏低的程度远较湿法消化严重,故从某种意义上来说,干灰化法处理植物样品不如湿法消化。为了降低颗粒物残留带来的种种不利影响,有文献报道说可在处理植物样品时加入适量的氢氟酸,但Al含量的测定值仍会偏低,因此在进行植物样品分析时,Al含量最好和As采用NAA等无损分析技术来进行测定。或采用干灰化结合偏硼酸锂碱熔法。另外,氢氟酸的加入也会产生一些负面效果,如造成一些能与氟离子形成金属离子的含量测定结果偏低,以Pb2+尤为明显。湿法消化处理:称取一定量的样品,加入一定量的硝酸,双氧水或高氯酸,消化至样液澄清。碱熔融法(加入偏硼酸锂):方法同干法灰化,只不过样品中加入了偏硼酸锂,混匀后灰化。表1:不同前处理方法测定茶叶中的部分元素含量结果(测定次数为3次)单位:mg/kghttp://ng1.17img.cn/bbsfiles/images/2011/12/201112041611_335392_1601435_3.jpg结论:(1)与干灰化法相比较,湿消化法更适宜作为植物样品的前处理方法;(2)植物样品消解后残留的颗粒物中除含有主体成分硅与铝外,还含有钙、铁、钾、钛等多种元素,并且大多数元素主要是以残渣态形式存在,若将颗粒物随意滤去,会导致许多元素含量的分析结果偏离真实值。(3)在进行茶叶样品中铅含量的测定时,可采用硝酸-高氯酸法作为前处理方法,而在进行样品铝含量测定时,最好采用NAA等无损分析技术或采用干法灰化结合偏硼酸锂碱熔法进行处理后测定。参考文献 Hoenig M,Baeten H,Vanhentenrijk S,et al. Analytica Chimica Acta, 1998,358:85~94 孙德忠,何红蓼,温宏利等. 光谱学与光谱学分析,2008,28(1):195~199

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制