当前位置: 仪器信息网 > 行业主题 > >

多种植物样品

仪器信息网多种植物样品专题为您整合多种植物样品相关的最新文章,在多种植物样品专题,您不仅可以免费浏览多种植物样品的资讯, 同时您还可以浏览多种植物样品的相关资料、解决方案,参与社区多种植物样品话题讨论。

多种植物样品相关的仪器

  • PhenoTron-YZ植物表型与种质资源成像分析系统,是由易科泰生态技术公司最新推出的一款基于光谱成像与机器视觉技术的多功能、高通量实验室表型性状分析系统,采用国际先进的光谱成像传感器技术和易科泰光谱成像与无人机遥感研究中心设计研发的STP(Sensor-To-Plant)全自动作物表型XYZ扫描成像分析平台技术,可用于实验室高通量植物表型成像分析、作物种质资源检测鉴定、作物遗传育种、作物胁迫与抗性筛选、高通量考种等。系统采用STP技术,由主机系统和光谱成像系统组成,主机系统包括主机箱、控制单元、触摸显示屏、数据处理服务器等组成;光谱成像系统由光谱成像传感器、光源系统、自动扫描Y轴及Z轴同步升降双轴系统等组成。主要技术特点:1) 标配400-1000nm高光谱成像,或400-1000与900-1700nm双镜头高光谱成像,可选配1000-2500nm高光谱成像2) 选配Thermo-RGB红外热成像与RGB成像分析3) 选配叶绿素荧光成像分析4) 选配3D激光扫描5) 称重式360度旋转平台(选配),可实现植株顶部和侧面(Z轴)全方位成像分析6) 全自动样带式扫描(Y轴)成像,可同时对多盆植株成像分析,还可对样品盘内的根系、叶片、果实、种子进行高通量成像分析7) 模块式结构,主机系统采用5G通信技术,星型组网物联网模块,可任意扩展增加传感器和控制模块如光源、秤重、旋转平台、温湿度监测等8) 可远程控制、自动运行数据采集存储等功能9) 系统自动保护功能,发生短路、过载、欠压时自动紧急断电,避免设备损坏10) 系统平台具万向脚轮,方便移动主要技术指标:1) 控制单元为嵌入式操作系统,全中文触控屏,方便系统调试、试运行等2) 用户可通过PC端全中文GUI软件实现远程操控相机及平台3) 10英寸触摸显示屏,集移动扫描、同步升降、相机控制、光源开关、快门触发、一键秤重及显示于一体4) 支持组合命令:最高可设置10条命令,实现无人值守工作5) 模块式结构,5G无线通信技术,传感器及控制单元星型组网,具备强大的扩展功能6) Y轴自动移动扫描行程1.2m,Z轴同步升降行程60cm,安全负载高达40kg7) 移动速度与精度:1-40mm/s可调,移动及定位精度1mm8) 有效扫描成像范围:120cm×60cm9) VNIR高光谱成像:a) 波段范围:400-1000nmb) 波段数:224通道c) 光谱分辨率:FWHM 5.5nmd) 空间分辨率:不低于1024×1024e) 信噪比600:1f) 分析参数:可成像测量分析作物生化、生理指标如叶绿素含量、花青素含量、胡萝卜素含量、光利用效率、健康指数、覆盖度、胁迫等20多个参数10) SWIR近红外高光谱成像:a) 波段范围:900-1700nmb) 波段数:224通道c) 光谱分辨率:FWHM 8nmd) 空间分辨率:不低于640×640e) 信噪比:1000:1f) 分析参数:可成像测量分析NDNI归一化N指数、NDWI归一化水指数、MSI水分胁迫指数等 11) 红外热成像:a) 分辨率:640×512像素b) 测量温度范围:-25℃-150℃c) 灵敏度:0.03℃(30mK)@30℃d) 光谱范围:7.5-13.5μme) 传感器:非制冷红外焦平面感应器,已多点校准(具校准证书)f) 1-14倍数码变焦g) 软件具备调色板(自然、彩虹、灰度、梯度等14种颜色组合)、差值技术、温度范围设置(以改变颜色分布或突出选择范围等)、等温线模式、选区分析(点、线、多边形等)、温度扫描(显示所选线的温度分布曲线等)、剖面温度、时间图等;可显示图片信息;具备报告模式等;可进行控制设置12) RGB彩色成像:高分辨率 RGB 成像,分辨率达 18MPixels,10 倍光学变焦,可选配其它分辨率镜头,配备专业形态测量与颜色分析软件13) 叶绿素荧光成像单元(选配):a) 专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720x×560像素,像素大小8.6×8.3μmb) 光化学光最大1000μmol.m-2. s-1可调,饱和脉冲3900μmol.m-2. s-1c) 可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocolsd) 50多个叶绿素荧光自动测量分析参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图e) 自动同步显示叶绿素荧光参数及参数图、叶绿素荧光动态曲线、叶绿素荧光参数频率直方图14) 可选配ENVIS环境因子监测模块,如空气温湿度监测及CO监测等15) 系统平台规格:标配约190cm×170cm×60cm(长×宽×高)
    留言咨询
  • 本系统为植物样品研磨与称量系统。Labman Automation Ltd. 位于英国北约克郡,是定制实验室自动化系统和机器人的领军设计者和制造商。 其成立于1979年,凭借其专业的工程师团队设计和制造的优质产品享有盛誉,产品依据每个客户的具体要求量身定制。目前,Labman公司所制造的系统在全球40多个国家运行,行业覆盖化学、生物、医药、食品、材料科学、环境监测、水质检测等领域。Labman公司目前拥有近200名专业工程师,涵盖了机械领域、电气领域和软件领域。其在实验自动化行业已有40年的经验,在大量的工业的应用和实例中掌握了丰富的经验和技术,并将这些知识和技术应用到各个自动化系统的设计中,制造出客户真正想要的个性化产品。Labman自动化系统在许多行业中均有应用,如水处理、涂料、个人护理、农业、生命科学、生物技术和医疗、食品饮料、石油化工、科研、高通量制造等行业。产品概述LABMAN制作过很多将生物质研磨、用于后续分析的系统。这套系统采用了全新的室温研磨技术。系统振荡装有研磨球和植物样品的输入瓶,使样品粉碎。之后将输入瓶刺穿,将输出管放在输入瓶下方,震动使样品从输入瓶掉落到输出管中,质量通过万分之一天平获得。技术特点研磨(球磨方式)粉末给料(高达100mg,公差为±0.5mg)加去盖(对输出管操作)通量(576个输出管/24h,取决于植物材料)多种输入瓶(可使用20mL或2mL输入瓶)多种输出类型(用户可自定义称量次数和顺序)本系统为植物样品研磨与称量系统,用于植物样本自动研磨与自动分配、自动称量。可依据用户需要改进或定制。
    留言咨询
  • PlantScreen SC植物表型成像系统名称:植物表型成像系统 型号:PlantScreen SC 产地:捷克用途:PlantScreen SC植物表型成像系统适用于生长在可控生长因素的环境或温室内的植物,系统可以在时间和空间尺度上自动进行植物表型成像测量。系统配置多种测量植物生长和生理指标的传感器,专用的成像传感器安装在相对封闭的成像室内,保证了成像室内光环境与外界环境相互独立。 PlantScreen SC植物表型成像系统对研究拟南芥、草莓、大豆、马铃薯、玉米幼苗、小麦幼苗等高度小于50cm的中小型植物非常适合。研究对象可以是单株、多株或多孔盘种植的植物,测量时只需将样品放入成像室内,系统根据设定好的程序自动从顶部视角测量,每个样品采用ID编码,保证数据与样品之间正确匹配。 特点: 专业定制,根据用户实验需求量身定制;多重控制平台间相互协调;可选热成像、叶绿素荧光成像、高光谱成像单元;配有照明系统,满足测量需求;单株、多株、多孔盘种植的植物;独特的条形码设别,自动读取样品信息;可选配空气温度、湿度、辐射、光质等环境传感器,测量气象参数;适用于多种类型的研究对象,拟南芥、草莓、马铃薯、水稻、小麦、玉米幼苗等;软件包功能强大,具有系统控制、数据获取、图像分析和数据库功能;软件具备远程访问接入功能; 使用领域: 植物生长营养管理;植物光合性能研究;生物和非生物胁迫研究;突变体筛选;选育、育种; 技术规格:系统主体传送单元手动光适应室LED光源,光强达1000μmol/m2.s,无热效应,强度0-100 %可调,可通过实验程序预设光照周期变化条形码识别RFID读取器辨识,距离2-20cm,RS485通讯,可读取1维、2维和QR码,具LED光源便于弱光下辨识叶绿素荧光成像系统测量和计算的参数Fo, Fm, Fv, Fo’, Fm’, Fv’, Ft, Fv/Fm, Fv’/Fm’, Phi_PSII, NPQ, qN, qP, Rfd等几十个叶绿素荧光参数测量单元高分辨率CCD相机成像面积80cm x 80cm测量光橙色620nm光化学橙色和白色双色光,光强达到2000 μmol.m-2.s-1饱和光白色或蓝色,光强6000μmol.m-2 .s-1附加光远红光(735nm)用于Fo’测量,蓝光(450nm)用于GFP荧光蛋白激发滤波轮7位高光谱成像测量参数归一化指数、简单比值指数、改进的叶绿素吸收反射指数、较优化土壤调整植被指数、绿度指数、改进的叶绿素吸收反射指数、转换类胡萝卜素指数、三角植被指数、ZMI指数、简单比值色素指数、归一化脱镁作用指数、光化学植被反射指数、归一化叶绿素指数、Carter指数、Lichtenthaler指数、SIPI指数、Gitelson-Merzlyak指数波长范围400到2500nmVNIR镜头光谱范围380-1000nm,光圈F/0.2,缝隙宽度25μm,缝隙长度18mm,帧速12-236 fps;SWIR镜头波段900-2500nm,光圈F/0.2,缝隙宽度25μm,缝隙长度18mm,帧速60或100 fps,视野150x100cm成像视角顶视和侧视热成像分辨率640x480nm温度范围20-120°C灵敏度NETD0.05°C@30°C/50mK成像面积150x150cm成像视角顶视和侧视 产地:捷克点将科技-心系点滴,致力将来! : (上海) (北京) (昆明) (合肥) Email: (上海) (北京) (昆明) (合肥) 扫描点将科技官方微信,获取更多服务:
    留言咨询
  • 高光谱植物数字表型采集分析系统介绍:高光谱植物数字表型采集分析系统是利用高光谱成像技术对植物进行高光谱图像采集与表型解析的设备。本系统在顶部设置高光谱成像单元,结合自动升降台装置,以最佳采集距离获取植物的高光谱信息。该产品可对盆栽植株进行高光谱数据采集与分析,帮助用户快速、无损获取植物光谱图像、植被指数、组分含量等信息,可对突变体进行筛选与鉴定,同时也可以对高温、高盐、病害、虫害等逆境条件下植物的生长差异或组分含量变化进行研究。高光谱植物数字表型采集分析系统适用于遗传育种、分子生物学、植物生理学、植物病理学、生态学、环境科学、植物保护等研究领域。高光谱植物数字表型采集分析系统应用方向:具备光谱查看、图像显示、ROI选取与导出等功能,可生成连续(波长)光谱曲线图、植物组分含量分布图,自动计算植被指数,内置叶绿素含量、冠层氮含量等反演模型,可应用于植物营养状况分析(营养高效种质/突变体筛选、水肥利用率分析)、植物染病识别(感病处理下筛选抗病种质)、植物叶绿素含量分析(植物生长状态表征、抗性种质筛选)。1.光谱曲线交互分析:冠层光谱反射曲线自动生成,支持图上选区获取对应光谱曲线,进行不同区域曲线计算与对比等交互功能;2.植被指数与生物学参数分析:通过人工智能算法可计算NDVI、RVI、GVI等多个常用植被指数;内置农业生物学反演模型,自动对叶片含氮量、叶绿素含量等生物学参数进行分析;3.定制化建模:支持使用植被指数自定义快速建模,和定制化构建长势、病害等模型;4.植物营养分析:可适用于植物营养状况分析,筛选养分高效种质资源;5.差异可视化呈现:可适用于突变体长势、营养利用变化的识别与差异量化;6.多类型逆境实验:可适用于植物对高温、冷害、盐碱、干旱等各类型逆境试验,进行响应程度量化、组分含量变化可视化、抗性鉴定;7.病虫害分析:可适用于植物病虫害试验,进行病斑部分和健康部分光谱反射曲线进行对比,通过对变化趋势的研究可以对病害发生部分和严重程度进行分析;8.多类型植物测量:数据解析采用人工智能算法,适用于禾本科、茄科、十字花科、豆科等多种类型植物表型测量。高光谱植物数字表型采集分析系统产品特点:1.高光谱成像技术:主要基于高光谱成像与光谱数据解析技术,实现对苗期或盆栽植物进行高灵敏度高光谱图像采集和表型性状解析;2.高效采集与解析:采集时间30秒/株;解析时间30秒/株;3.顶视扫描成像:顶部配置高光谱成像单元,搭配自动化升降台,支持对盆栽植物进行高光谱顶视成像;4.可视化处理功能丰富:具备伪彩色/灰度显示、波段融合、光谱指数分析、光谱曲线绘制、光谱特征统计等功能;5.样品数据联动管理:支持通过扫描样品二维码实现实验样品与表型分析相关联,便于样品数据管理;6.软件一体化设计:界面简洁友好,一键执行数据采集、重构、解析全流程操作,最大程度提升分析速度、节约分析时间;7.全彩触控交互界面:用户能够直观、高效地控制设备,调节灯光亮度、转台位置等并能实时查看采集进程;8.可移动设计: 集成化箱体,支持室内任意位置摆放及移动。高光谱植物数字表型采集分析系统技术参数:高光谱成像参数:叶绿素含量分布成像、氮含量分布成像、NDVI成像、GVI成像、WBI成像、CCCI成像、NRI成像等光源:低频闪高光质卤素灯光源成像波长范围:400-1000nm光谱波段:≥1200个整机功率:1KW(约500W)箱体尺寸:1400mm×950mm×1840mm
    留言咨询
  • 在洁净环境内无土立体种植技术,实现种苗、叶类蔬菜、疗效、强化营养、植珍稀植物、反季节草莓等的种植,进行全年连续生产,不受气候条件制约,没有病虫害,不使用农药,节约大量用水和人力,可以有效控制蔬菜生产的质量。
    留言咨询
  • 植物生长节律在线自动观测系统(物候观测)介绍及实施方案 (物候观测)植物生长节律在线自动观测系统组成:植物生长节律在线自动观测系统(物候观测)是由高像素摄像机、大容量数据采集器、多光谱成像仪为核心部件组成的系统。采用达到500万像素的网络相机来获取高质量图像数据,系统配置的相机支持白平衡设置,相机支架采用高强度的野外专用固定支架来安装相机,专业设计通风降温防水装置,保证系统的稳固。系统数据传输:可自动获取、存储和传输植物多光谱和植物图像数据,自动入库管理,相机支持TCP协议。系统供电:整套系统通过野外太阳能供电,并保证在无太阳条件下能够连续工作10天以上,系统设置了防雷雨装置,保证整套系统在恶略条件下正常运行。根据设备安装地点,数据采集器使用了低温扩展型号,保证每套设备能否在高寒高海拔地区等均能正常运行。系统软件:系统软件可自动计算和在线显示多种植被指数,并通过软件监测设备的运行状态。特点■ 高清晰度移动录像■ 适用于安全、监视、员工监视、建筑物监视、旅游点、市场等■ 自动、机械变焦■ 可设置IP地址,内置网络服务器,可独立工作■ 可使用局域网、无线网、卫星等多种通讯方式■ 图像质量高(2048*1536)■ *高可达225帧每秒的测量速度■ 可使用任何网络浏览器查看,不需要任何插件■ 可自动将数据保存在远程服务器上■ 多种镜头和室外安装件可用■ 可与专用软件和第三方NVR软件联合使用图像:■ 曝光范围: 1/100,000 秒 - 1.3 秒■ 自动/手动曝光,自动/手动色平衡,美国海洋局在北极安装的照片(没有加热器) sharpening, auto/manual haze■ 增强对比,图像修正■ 客户可设置日期/时间/标题■ 图像格式:JPEG,adjustable quality / filesize■ 镜头:8mmC-Mount with manual iris and focus rings■ 镜头安装: 工业标准 CS-Mount,包括 C-Mount 适配器操作系统/处理器■ uClinux 操作系统■ Motorola Coldfire 处理器■ 内置web服务器, telnet 服务器和FTP客户端■ 协议: TCP/IP, HTTP, FTP, ARP, Telnet, Daytime, X/Y/Zmodem■ 32MB 内存, 4MB 缓存■ 安全性: 密码保护系统连接■ 1 x 10/100以太网接口, RJ-45■ 1 x 直流自动调焦接口■ 1 x 机械变焦接口■ 2 x RS-232 串口, DB9公, 可达115.2kbps■ 4 x 数字报警输入或者 4 x 5V 输出■ 1 x 隔离继电器 28VDC 2A 或者 125VDC 0.5A技术性能参数尺寸: 3.25英寸 宽 (82.5mm) x 2.20英寸 高 (55.9mm) x 6.56英寸 长 (166.6mm),包括镜头 长度增加 1.1英寸(27.9mm),包括可拆除的?英寸三角架 高度增加0.4英寸(10.1mm)重量: 553 克外壳: 铝合金安装: 一般使用 ?英寸三角架,安装在相机上方或者下方使用温度:-40—50℃功耗: 8VDC—15VDC,500mA @ 12VEMI 认证: FCC,Class A
    留言咨询
  • 植物生长节律在线自动观测系统(物候观测)介绍及实施方案 (物候观测)植物生长节律在线自动观测系统组成:植物生长节律在线自动观测系统(物候观测)是由高像素摄像机、大容量数据采集器、多光谱成像仪为核心部件组成的系统。采用达到500万像素的网络相机来获取高质量图像数据,系统配置的相机支持白平衡设置,相机支架采用高强度的野外专用固定支架来安装相机,专业设计通风降温防水装置,保证系统的稳固。系统数据传输:可自动获取、存储和传输植物多光谱和植物图像数据,自动入库管理,相机支持TCP协议。系统供电:整套系统通过野外太阳能供电,并保证在无太阳条件下能够连续工作10天以上,系统设置了防雷雨装置,保证整套系统在恶略条件下正常运行。根据设备安装地点,数据采集器使用了低温扩展型号,保证每套设备能否在高寒高海拔地区等均能正常运行。系统软件:系统软件可自动计算和在线显示多种植被指数,并通过软件监测设备的运行状态。特点■ 高清晰度移动录像■ 适用于安全、监视、员工监视、建筑物监视、旅游点、市场等■ 自动、机械变焦■ 可设置IP地址,内置网络服务器,可独立工作■ 可使用局域网、无线网、卫星等多种通讯方式■ 图像质量高(2048*1536)■ *高可达225帧每秒的测量速度■ 可使用任何网络浏览器查看,不需要任何插件■ 可自动将数据保存在远程服务器上■ 多种镜头和室外安装件可用■ 可与专用软件和第三方NVR软件联合使用图像:■ 曝光范围: 1/100,000 秒 - 1.3 秒■ 自动/手动曝光,自动/手动色平衡,美国海洋局在北极安装的照片(没有加热器) sharpening, auto/manual haze■ 增强对比,图像修正■ 客户可设置日期/时间/标题■ 图像格式:JPEG,adjustable quality / filesize■ 镜头:8mmC-Mount with manual iris and focus rings■ 镜头安装: 工业标准 CS-Mount,包括 C-Mount 适配器操作系统/处理器■ uClinux 操作系统■ Motorola Coldfire 处理器■ 内置web服务器, telnet 服务器和FTP客户端■ 协议: TCP/IP, HTTP, FTP, ARP, Telnet, Daytime, X/Y/Zmodem■ 32MB 内存, 4MB 缓存■ 安全性: 密码保护系统连接■ 1 x 10/100以太网接口, RJ-45■ 1 x 直流自动调焦接口■ 1 x 机械变焦接口■ 2 x RS-232 串口, DB9公, 可达115.2kbps■ 4 x 数字报警输入或者 4 x 5V 输出■ 1 x 隔离继电器 28VDC 2A 或者 125VDC 0.5A技术性能参数尺寸: 3.25英寸 宽 (82.5mm) x 2.20英寸 高 (55.9mm) x 6.56英寸 长 (166.6mm),包括镜头 长度增加 1.1英寸 (27.9mm),包括可拆除的?英寸三角架 高度增加0.4英寸(10.1mm)重量: 553 克外壳: 铝合金安装: 一般使用 ?英寸三角架,安装在相机上方或者下方使用温度:-40—50℃功耗: 8VDC—15VDC,500mA @ 12VEMI 认证: FCC,Class A
    留言咨询
  • 数据传输逆境模拟及植物生长监测平台介绍:逆境模拟及植物生长监测平台是一套高通量,以多维度传感器和人工智能算法为基础的高精度环境监测与表型鉴定系统,可以完成整个植物生长周期中不同环境下的植物生长关键表型因子的测量。连续获取环境监测数据。并基于人工智能算法对获取的多维度数据开展深度挖掘。逆境模拟及植物生长监测平台产品组成:智能化栽培单元+流水线自动化传送单元+多维传感融合图像成像单元+边缘计算与解析单元+数据管理单元逆境模拟及植物生长监测平台产品特点:(1)智能化栽培单元环境因子监测:利用土壤类、气象类传感器,连续监控土壤水份、土壤温度温度、土壤盐分、土壤PH、土壤氧气、空气温湿度、二氧化碳浓度等;智能化灌溉:可支持自定义设置周期性水肥计划,实现对灌溉、施肥的定时、定量控制,可实施水分、养分、盐分等因子的定向投放,模拟干旱、高盐碱等逆境环境。(2)流水线自动化传送单元:自动化传送:利用自动化控制系统,可自动将植株从智能化栽培区域传送至成像暗室;自动定位并识别:利用RFID射频标签对每一盆植株进行身份信息识别,植株移动到目标位置时自动进行关联,并自动记录对应设备的采集数据;选配称重模块:样品传送过程中高精度传感器实现对重量的测定。(3)多维传感融合图像成像单元:单箱体多成像单元一体化集成,成像暗室尺寸支持定制。可选配可见光二维、可见光三维、高光谱等独立成像模块。高效实现对作物植株的高通量、多维度、自动化实时采集。可见光二维成像单元:获取植株侧视可见光图像,并利用人工智能算法分析获取株高、叶顶点数、投影面积等形态参数,黄色投影面积、绿色投影面积等颜色参数,以及平滑度等纹理参数,用于植株株型与健康状态相关表型分析。可见光三维成像单元:基于算法重构高精度植物模型,基于模型获取植物冠层覆盖率、冠幅、生物量等参数,用于生物量变化与长势分析。成像传感器高分辨率RGB镜头分辨率5120×5120像元尺寸2.5μm×2.5μm成像平台360度旋转平台成像高度支持多段成像,自定义高度照明光源侧面LED均一光源数据传输万兆以太网二维单株分析时间<5s三维单株重构与解析时间<7min 高光谱成像单元:基于植物光谱反射信息,可实现植物各部分光谱特征曲线的计算,以及光谱指数如NDVI、GVI等三十个常用植被指数的获取,叶绿素含量、冠层氮含量等生物学参数的分析,用于解析植物组分含量变化、营养状况以及病害发生情况。成像波长范围400-1000nm照明光源低频闪高光质卤素灯光源像素大小5.86μm×5.86μm光谱分辨率2.5nm光谱带数(波段数)1200个波段图像分辨率1920×1920入射狭缝宽度25μm动态范围12bit成像高度支持自定义高度数据传输USB3.0/千兆以太网(可选)高光谱单株分析时间<5s (4)边缘计算与解析单元:系统采用全自研算法进行可见光图像与光谱图像解析,可重构植株高精度三维模型,对形态参数、颜色参数,生物量等进行测定,并生成光谱反射曲线,自动计算多种常见植被指数、叶绿素含量、氮含量等农学生物学指标。可根据客户需求,各模块支持设计定制关联模型,对特定类型胁迫响应程度或病害等级进行具体分析。(5)数据管理单元:系统配备专业分析软件,支持通过自建实验工程进行数据管理,可按不同成像单元进行数据查看、分析和导出,便于根据不同的实验课题进行整个实验周期数据管理。逆境模拟及植物生长监测平台-2维逆境模拟及植物生长监测平台-3维逆境模拟及植物生长监测平台-高光谱成像与指数分析结果动图-高光谱图_大豆冠层动图-高光谱图_水稻冠层逆境模拟及植物生长监测平台应用方向:集成可见光二维、三维、高光谱多类型成像单元,采用全自研算法进行可见光图像与光谱图像解析,可重构植株高精度三维模型,对形态参数、颜色参数,生物量等进行测定,并生成光谱反射曲线,自动计算多种常见植被指数、叶绿素含量、氮含量等农学生物学指标。可应用于植物形态分析(筛选突变株、逆境处理下筛选抗逆种质)、植物长势分析(分析突变体或特殊处理条件下植物生长状态变化)、植物营养状况分析(营养高效种质/突变体筛选、水肥利用率分析)、植物病害识别(感病处理下筛选抗病种质)、植物叶绿素含量分析(植物生长状态表征、抗性种质筛选);可根据客户需求,各模块支持设计定制关联模型,对特定类型胁迫响应程度或病害等级进行具体分析。
    留言咨询
  • 高精度,多功能性,穩定性和創新能力是台灣Hipoint的技術核心。對於保持穩定的環境,溫度,濕度,光照,二氧化碳或其他氣體在所需的程式設定數值都必須精確。一個穩定的實驗環境是科學家關注的細節和實驗精度的最重要條件。台灣Hipoint意識到這些需求,不斷致力於為您提供最完美的栽培解決方案。從植物生長箱到溫室環境控制,我們30年來在這一領域的經驗,使我們能夠為我們所有客戶帶來滿足,但我們還在尋找什麼?持續的創新技術解決方案和全方位的系統選擇,創造獨特性。台灣是高科技研究領域的領先國家,成功有一部分也歸功於我們所合作最負盛名的台灣研究機構。产品优势1、全进口材质材料,一级阻燃岩棉等;2、温湿度均一性好,浮动正负0.5℃/3-5%;3、自研专业级LED植物生长灯,高光强下仍可低产热,多种植物生长光谱可供选择;4、能耗低,性价比高;5、货期相对进口产品更短;6、有ISO、CE、UL电气质量安全认证
    留言咨询
  • 盆栽植物二维数字表型采集分析系统介绍:盆栽植物数字表型采集分析系统是适用于盆栽植物的表型测量与解析设备。本系统在顶部和侧面分别设置可见光成像单元,结合旋转台装置,能够多个角度获取盆栽植物的表型信息。产品可对盆栽植株进行表型采集与解析,可对突变体进行筛选与鉴定,同时也可以对高温、高盐、病害、虫害等逆境条件下植物的形态、颜色与纹理变化进行研究。盆栽植物二维数字表型采集分析系统适用于遗传育种、分子生物学、植物生理学、植物病理学、生态学、环境科学、植物保护等研究领域。盆栽植物二维数字表型采集分析系统应用方向:内置人工智能算法,自动进行图像预处理与分割计算,计算植物株型结构、颜色分布、纹理特征等表型性状并分析植物生长状况、健康状态等。主要用于植物形态分析(筛选突变株、逆境处理下筛选抗逆种质)、叶片病斑识别(感病处理下筛选抗病种质)。1.多性状分析:通过图像预处理技术和特征提取技术,可分析植物的多种性状包括高度、宽度、紧凑度、对称性等形态结构参数,以及植物颜色与纹理特征等;2.差异可视化呈现:可适用于突变体形态、颜色差异的识别与差异量化;3.多类型逆境实验:高精度快速成像,即时记录植物细微变化,适用于植物对高温、冷害、盐碱、干旱、病虫害试验等各类型逆境试验,进行响应程度量化与抗性鉴定;4.多类型植物测量:数据解析采用人工智能算法,适用于禾本科、茄科、十字花科、豆科等多种类型植物表型测量。盆栽植物二维数字表型采集分析系统产品特点:1.可见光二维技术:主要基于二维图像解析技术对盆栽类植物实现智能化、自动化、无损化表型鉴定;2.高效采集与解析:采集时间最快可达50秒/株;解析时间可达10秒/株;3.多角度成像:顶部和侧面配备高清工业摄像头,搭配360度旋转台,支持对盆栽植物进行可见光顶部及侧面成像;4.样品数据联动管理:支持通过扫描样品二维码实现实验样品与表型分析相关联,便于样品数据管理;5.软件一体化设计:界面简洁友好,一键执行数据采集、解析全流程操作,最大程度提升分析速度、节约分析时间;6.全彩触控交互界面:用户能够直观、高效地控制设备,调节灯光亮度、转台位置等并能实时查看采集进程;7.可移动设计: 集成化箱体,支持室内任意位置摆放及移动。盆栽植物二维数字表型采集分析系统技术参数:成像参数:轮廓面积(顶视、侧视)、凸包面积(顶视、侧视)、冠层高度、冠幅、卷叶程度、叶顶点数、持绿程度、衰老程度、紧实度、偏心率等成像单元分辨率:5120×5120光源:均匀漫散射LED面光源整机功率:1KW(约500W)箱体尺寸:1400mm(长)×950mm(宽)×1840mm(高)
    留言咨询
  • HiPoint 植物工厂HiPoint 利用精(分割线)准环控设备光照培养液系统为各地建构各式生产型植物、栽培工厂,适用于:生菜、中草药、菇菌、医学生药等种植使用,我们提供设备、养液供应、栽种技术辅导一站式服务。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray植物表型平台 400-860-5168转4713
    Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • AirPhen植物多光谱成像 400-860-5168转1895
    AIRPHEN 由法国HI-PHEN公司研制生产,可用于地面植物多光谱成像分析及EcoDrone无人机多光谱遥感成像分析,其主要技术特点:1) 可见光-近红外6波段多光谱成像2) 可分析多种植物光谱反射指数包括:a) 简单比值指数b) 植被归一化指数NDVIc) 光化学反射指数PRId) 叶绿素指数CIe) 修正的叶绿素吸收反射指数MCARI(反映叶绿素含量)f) 归一化红边指数NDRE等3) 可嵌合红外热成像组成多光谱+红外热成像系统4) 可通过地面支架进行植物冠层多光谱成像5) 可方便安装到易科泰自主研发的EcoDrone专业无人机遥感平台(UAV-4或UAV-8)进行无人机多光谱遥感或多光谱与红外热成像综合遥感 主要技术指标1) 拍摄:6个同步全球快门传感器2) 图片尺寸:1280×960(tif,12bit)3) 获取速度:2帧/ 秒4) 波段范围:450-900nm、6波段(450/530/570/675/710/730/750/850),FWHM=10nm(可选配其它滤波器)5) 标配8mm光学镜头,视野33°x 25°,飞行高度100m视野60x40m、4.7cm像素分辨率6) 内置GPS7) 红外热成像:640x512分辨率,19mm光学镜头(视野32°x26°),快门同步化8) 数据存储:SD卡存储,32GB9) 低功耗:7W/H10) 重量:200g
    留言咨询
  • 植物人工气候室 产品简介 植物人工气候室是智能人工气候室的一种,可用于研究环境条件(如日照长度、光质、光量、高温、低温、干旱等)对植物生命活动的影响,或特殊经济作物的栽培、驯化、育种等。有不受自然地理、季节等条件限制和缩短研究周期等优点。 技术参数 标配选配温控范围(开灯)18~35℃18~45℃温控范围 (关灯)18~35℃18~45℃温控误差±0.5℃-湿度控制范围60%~90%RH40%~90%RH湿控误差±3%RH-室内空间(四架子/六架子)15.5m3/22.6m3-占地面积(四架子/六架子)7.2m2/10.4m2-最大种植高度90cm-外部尺寸(四座架子)宽: 2.45m深: 2.95m高: 3.00m-外部尺寸(六座尺寸)宽: 2.45m深: 4.25m高: 3.00m-光照强度(光盘下10cm)300/500/1000/1600μmols-1m-2栽培架层数2-5-LED光源颜色单色白光单色/三色/四色CO2-环境浓度~2000PPM室内监控系统-配备室内监控系统手机APP远程控制系统-配备手机APP远程控制系统 Download 产品优势 自主研发了多种LED植物补光光源,光谱结构利于植物生长,波长稳定,光强足;精确控制人工气候室的温度、湿度、光照、二氧化碳等环境要素;解决了水稻、甘蔗、大豆、马铃薯、玉米、等需要高光强植物的补光难题;个性化定制满足于不同光实验的特征光谱;实现手机APP远程控制,方便科研工作的使用。 产品结构 ? 高空间利用率 ? 风道/新风循环系统 ? 智能/远程控制系统 ? 精确控制 ? 光照解决方案 ? 栽培架/维护结构 高空间利用率模块化设计,结构紧凑,按需规划,制冷和加湿系统顶置设计,极大地提高了空间利用率。风道循环系统+新风循环系统“双向送风,顶部回风”的风道循系统,保证室内温、湿度均匀分布;新风系统采用全热交换风系统,高效节能、安全可靠:高效节能:内置静止热交换器,热交换效率大于70%,冷热负荷(室温)不受新风影响,大幅度降低新风所需能量,实现高效节能;安全可靠:低噪声风机和内部降噪处理,防止了对现场的干扰,整机除风机外无运动部件,几乎无需维护,可确保长期稳定可靠工作。 智能/远程控制系统10英寸人机界面触摸控制,中(英)文操作界面,环境数据可用USB存储介质下载;配备有短路、漏电、过流等保护器件,高温高湿、低温低湿、系统故障等情况皆可主动报警。可选配配置光谱分析检测功能,检测的数据包括:光量子通量密度(PPFD)、色温(CCT)、流明值(LUX)、光源波长及光谱分布等数值和图形可以直接实时显示于触摸屏上;可选配手机app功能,实现远程设置操作,方便管理。可选配远程视频监控。 单片机精确控制系统整个箱体采用单片机控制系统,控制柜上的触摸屏直接连接到控制柜内的单片机控制板,箱体内的温湿度传感器、控制光照的驱动电路板、控湿系统、新风系统,采用方便快速接口,全部连接到单片机控制板上,集中智能控制,无需其他控制系统配合。 控温范围:0℃~45℃,温度允许误差:≤0.5℃(在任意条件的情况下);湿度控制范围:50~90%RH,湿度允许误差:≤±3%RH(在任意条件的情况下)CO2浓度控制范围: 环境浓度~2000PPM CO2允许误差:±100PPM LED光照解决方案自主研发了多种LED植物补光光源,光谱结构利于植物生长,波长稳定,光强足:主要有单色白光、三色、四色光盘等适合不同植物生长需求的补光解决方案;光盘中心的光照强度与四周间的光照强度之差小于5%。单色白光光谱为400-700nm可见光谱,且[600-700nm]红光光强:[500-600nm]绿光光强:[400-500nm]蓝光光强约为6:2:2。每座栽培架每层光照强度均独立控制,光照强度(%)0-100无极可调。1. 高照度LED光照解决方案,最大光强可达1600μmols-1m-2(大约62300LUX):适合水稻、玉米、小麦等高光强需求植物的室内补光培养;2. 普通照度LED光照解决方案,最大光强可达500μmols-1m-2(大约20100LUX):适合番茄、马铃薯、大豆等一般光强需求植物的室内补光培养;3. 低照度LED光照解决方案,最大光强可达300μmols-1m-2(大约12500LUX):适合拟南芥、水培植物、组织培养等低光强需求植物的室内补光培养。 栽培架304不锈钢栽培架,耐腐蚀,无焊点连接组装可任意拆卸,每一层高度自由可调。维护结构采用聚氨酯冷库板,良好的保温效果,热工性能好,防潮、防水、抗腐蚀性,成镶嵌连接结构,易于装配:厚度: 75mm 保温材料: 硬质聚氨酯泡沫保温材料密度: 42kg/m3 导热系数: 0.022W/(M*K)防火等级: B1 表面材质: 双面0.5mm烤漆镀锌钢板(彩钢板) 合作用户 应用案例 ? 建设案例 ? 特殊定制案例 ? 种植案例
    留言咨询
  • 石墨消解器一、产品介绍石墨消解器,是很有代表性的孔式消解装置,使用石墨块作为导热介质。它以环绕式的加热方式对样品进行加热处理,有效地增加了热能利用率,同时它以控温精度更高、孔间的差异性小、消解效率高、节能、环保的优势,占领着常规消解设备的前端。二、产品阐述用作消解时可称为:石墨消解器、石墨消解仪用作赶酸时可称作:石墨赶酸器、石墨赶酸仪三、石墨消解器参数型 号ZH控温范围室温-260℃控温精度±0.1℃,温度差3-5℃加热材质优质石墨+特氟龙防腐涂层样品孔数16、24、36、48、54、63、100孔等(可根据客户要求加工定制)控显方式PID控温数显电 源220v/50Hz优点1、孔间温差±1-1.5℃,板面低温度和高温度<3-5℃2、保证了消解、赶酸的均一性配套器皿消解管(31*100mm)、55ml微波(29*160-170mm),其他品牌微波,消解罐内杯,烧杯、坩埚等四、我司石墨消解器的优点优点1:耐高温耐酸碱及有机溶剂腐蚀,稳定性好;优点2:消解样品速度快,可批量处理样品;优点3:全封闭设计,很大程度防止热量散失的同时,还可有效避免避免酸雾入侵,对设备元件造成损害;优点4:清洁耐腐蚀:采用特别的喷涂工艺,涂层均匀、牢固、长期使用也不会脱落;优点5:采用先进的一体环绕加热方式,样品各部位受热均匀,消解快速;优点6:操作方便,环保节能,节省经济成本;优点7:PID温控系统,性能优良,控温精度高,可达±1℃。优点8:可调节加热速率,实现程序升温并控制加热保持时间,升温速率稳定;我们倡导安全、健康地做实验!应用领域环境监测:污水、饮用水、淤泥、矿泥、排污、土壤等食品农产品检验:奶粉、鱼类、蔬菜、植物、化肥、副食品等消费品质量控制:化妆品、工业制品等科学研究:实验分析、项目开发等消解应用标准 环境样品EPA方法:3010a、3010b、3050b、3060等(土壤、沉积物、淤泥、废气物) 土壤处理GB方法:GB/T17138-1997、GB/T22105.1-2008、GB/T22105.2-2008等 水处理EPA方法:200.2、200.7、200.8、200.9、245.1等 汞分析EPA方法:7470a、7471、245.1等 食品处理GB方法:GB/T5009.11-2003等 涂料涂层处理GB方法:GB/T22788-2006等 电子产品有毒有害物质处理方法:SJ/T1365-2006等 南京滨正红仪器有限公司
    留言咨询
  • 植物生理生态监测系统有三种主要功能: 标准报告功能:在栽培者日常工作中,系统能够产生一套定制的测量及其相关数据。意外报告功能(报警功能):系统可以侦测到植物的意外紊乱。此功能基于多种植物生理紊乱的监测指示。决策系统功能:可以调整环境和灌溉方案。高精度和快速响应的监测通道可排除作物的危险。栽培者在控制方案上做很小的变化,在1~2天内就可以在作物身上发现响应。这就可以在试验中有很高的机会保持单一的变化因素,并且可以防止许多因素对作物状态的影响。PM-11植物生理生态监测系统对植物改良或退化的动态指示造就了决策系统。功能: · 独立工作,测量的传感器不需要连接到电脑上;· 八个11位模拟输入通道;· 专用数字输入用于RTH传感器,RTH传感器内置了4个传感器,分别是空气温度、相对湿度、光合有效辐射和叶面湿度传感器;· 用户可自定义采样速率1秒到1小时;· 防雨接头用于接入各种传感器;· 大容量512KB内存;· 12V DC工作电压;· 可采用电缆或无线通讯连接到电脑中;· PM-11主机尺寸:18W x 14H x 11.5L cm3· 终端软件可用于W98/2000/ME/XP 可选传感器:型号名称规格测量范围说明SD-5M茎杆微变化传感器0-5000µ m用于5-25毫米直径茎杆SD-6M树干微变化传感器0-5000µ m用于2-7厘米直径树干DE-1树木测量传感器0-10mm安装在树木中FI-LM果实变化传感器30-160mm用于测量圆形果实FI-MM果实变化传感器15-90mm用于测量圆形果实FI-SM果实变化传感器7-45mm用于测量圆形果实LT-2M叶面温度传感器5-50℃内置2个传感器SF-4M茎流传感器约3ml/h max用于1-5毫米直径茎杆SF-5M茎流传感器约3ml/h max用于4-10毫米直径茎杆SA-20生长计0-2000mm10位分辨率(~2mm)TIR-4总辐射传感器0-1000W/m2光谱范围300-1100nmPAR-2光合有效辐射传感器0-2500µ mol/m2s光谱范围400-700nmATH-2空气温湿度传感器温度:0-50℃相对湿度:0-100%RH ST-21土壤温度传感器0-50℃探头长度11cmRTH空气温湿度、光合有效辐射、叶面湿度温度:0-50℃相对湿度:0-100%RH光合有效辐射:0-2000µ mol/m2s叶面湿度:Y/N整合数字传感器*每个传感器均自带4米电缆。可选电源供应:· 交流电:90-260V AC,50/60Hz· 电池供电:12V DC可充电电池· 太阳能供电套件:包括可充电电池、充电器、太阳能板、支架 可选通讯:· 短距离:1米长RS232电缆· 长距离:RS485电缆,最远距离可达1.2km· 无线电:无线调制解调器,传输距离从0.3km到64km
    留言咨询
  • 一、 仪器用途:  植物根系扫描仪用于洗根后专业根系分析,还可以用于根盒培养植物的根系表型分析,可以分析根系长度、直径、面积、体积、根尖记数等,功能强大,操作简单,软件可分析植物根系的形态分析及根系的整体结构分布等,广泛运用于根系形态和构造研究。  二、 仪器原理:  植物根系扫描仪利用高质量图形扫描仪获取高分辨率植物根系彩色图像或黑白图像,该扫描仪在扫描面板下方和上盖中安装有专门的双光源照明系统,并且在扫面板上预留了双光源校准区域。此外,还配备有不同尺寸的专用、高透明度根系放置盘。扫描时,扫面板下的光源和上盖板中的光源同时扫过高透明度根盘中的根系样品,这样可以避免根系扫描时容易产生的阴影和不均匀等现象的影响,有效地保证了获取的图像质量。  本软根系分析软件可以读取TIFF,JPEG标准格式的图像。针对获取的图像,利用插入加-密狗解密的软件,对扫描获得的高质量根系图像进行分析。采用非统计学方法测量计算出交叉重叠部分根系长度、直径、面积、体积、根尖等基本的形态学参数。从而满足研究者针对植物根系不同类别和层次的研究。  三、技术指标:  1、配光学分辨率4800×9600、A4加长的双光源彩色扫描仪。根系反射稿幅面为355.6mm×215.9mm,透扫幅面为320.0mm×203.2mm,最小像素尺寸0.005mm×0.0026 mm。  2、可分析测量:  (1)根总长   (2)分支频率   (3)根平均直径   (4)根直径中值   (5)最大直径   (6)根总面积   (7)总投影面积   (8)根总体积   (9)根尖计数   (10)分叉计数   (11)交叠计数   (12)根直径等级分布参数   (13)可不等间距地自定义分段直径,自动测量各直径段长度、投影面积、表面积、体积 等,及其分布参数。  (14)能进行根系的颜色分析,确定出根系存活数量,输出不同颜色根系的直径、长度、投影面积、表面积、体积。  (15)能进行根系的拓扑分析,自动确定根的连接数、关系角等,还能单独地自动分析主根或任意一支侧根的长度、面积、体积等,可单独显示标记根系的任意直径段相应各参数(可不等间距地自定义)。  (16)能进行根的分叉裁剪、合并、连接等修正,修正操作能回退,以快速获得100%正确的结果。  (17)能用盒维数法自动测根系分形维数。可分析根瘤菌体积在根系中的占比,以客观确定根瘤菌体贡献量。  (18)大批量的全自动根系分析,批量保存,对各分析结果图可编辑修正。  (19)能做根系生物量分布的大批量自动化估算。  (20)向地角分析、水平角分析、主根提取分析特性。  (21)各分析图像、分布图、结果数据可保存,并输出至Excel表,可输出分析标记图。  (22)仪器有云平台支持,可将分析数据保存到云端随时随地查看。  四、图像扑捉系统参数  扫描元件: 6线交替微透镜CCD  最大幅面: A4  接口类型: USB2.0  光学分辨率(dpi): 6400x9600dpi  最大分辨率12800×12800dpi  最小像素尺寸≥0.005mm×0.0026 mm  扫描光源白色冷阴极荧光灯CCFL、色彩位数48位  扫描范围216×297mm  扫描速度反射稿、A4、300dpi:单色11秒,彩色14秒  胶片扫描、35mm,2400dpi:正片:47秒,负片:44秒  五、标准配置  1、植物根系分析系统软件U盘及软件锁1套  2、光学分辨率4800×9600、A4加长的双光源彩色扫描仪1台  3、根系成像盘3个  六、其他  1、本产品需使用电脑,推荐选配:品牌电脑(酷睿i5九代以上CPU / 16G内存/ 21.5”彩显/无线网卡,4个以上USB2.0口,运行环境Windows 10完整专业版或旗舰版)。  2、可选配A3幅面双光源彩色扫描仪。反射稿扫描幅面305mm × 431.8mm,根系透扫幅面304.8mm × 406.4 mm。
    留言咨询
  • PlantScreen植物表型成像分析系统(植物自动传送版) PlantScreen植物表型成像系统由捷克PSI公司研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、自动条码识别管理、RGB真彩3D成像、自动称重与浇灌系统等多项先进技术,以最优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的全方位生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。作为全球第一家研制生产植物叶绿素荧光成像系统的厂家,PSI公司在植物表型成像分析领域处于全球的技术前列,大面积叶绿素荧光成像分析功能使PlantScreen成为植物表型分析与功能成像分析的最为先进的仪器设备,使植物生长、胁迫响应等测量参数达100多个。左图为整套PlantScreen系统,中图为成像室,右图为成像室中的玉米PlantScreen系统包括如下成像分析功能: 1. 叶绿素荧光成像分析:单幅成像面积35x35cm,成像测量参数包括Fo, Fm, Fv, Fo’, Fm’, Fv’, Ft, Fv/Fm, Fv’/Fm’, Phi_PSII, NPQ, qN, qP, Rfd等几十个叶绿素荧光参数2. RGB成像分析:成像测量参数包括:1) 叶面积(Leaf Area: Useful for monitoring growth rate)2) 植物紧实度/紧密度(Solidity/Compactness. Ratio between the area covered by the plant’s convex hull and the area covered by the actual plant)3) 叶片周长(Leaf Perimeter: Particularly useful for the basic leaf shape and width evaluation (combined with leaf area))4) 偏心率(Eccentricity: Plant shape estimation, scalar number, eccentricity of the ellipse with same second moments as the plant (0...circle, 1...line segment))5) 叶圆度(Roundness: Based on evaluating the ratio between leaf area and perimeter. Gives information about leaf roundness)6) 叶宽指数(Medium Leaf Width Index: Leaf area proportional to the plant skeleton (i.e. reduction of the leaf to line segment))7) 叶片细长度SOL (Slenderness of Leaves)8) 植物圆直径(Circle Diameter. Diameter of a circle with the same area as the plant)9) 凸包面积(Convex Hull Area. Useful for compactness evaluation)10) 植物质心(Centroid. Center of the plant mass position (particularly useful for the eccentricity evaluation))11) 节间距(Internodal Distances)12) 生长高度(Growth Height)13) 植物三维最大高度和宽度(Maximum Height and Width of Plant in 3 Dimensions)14) 相对生长速率(Relative growth rate)15) 叶倾角(Leaf Angle)16) 节叶片数量(Leaf Number at Nodes)17) 其它参数如用于植物适合度估算的颜色定量分级、绿度指数(Other parameters such as color segmentation for plant fitness evaluation, greening index and others)3. 高光谱成像分析(选配),可成像并分析如下参数:1) 归一化指数(Normalized Difference Vegetation Index (NDVI))2) 简单比值指数(Simple Ratio Index, Equation: SR = RNIR / RRED)3) 改进的叶绿素吸收反射指数(Modified Chlorophyll Absorption in Reflectance Index (MCARI1), ?Equation: MCARI1 = 1.2 * [2.5 * (R790- R670) - 1.3 * (R790- R550)])4) 最优化土壤调整植被指数(Optimized Soil-Adjusted Vegetation Index (OSAVI)?, Equation: OSAVI = (1 + 0.16) * (R790- R670) / (R790- R670 + 0.16))5) 绿度指数(Greenness Index (G), Equation: G = R554 / R677)6) 改进的叶绿素吸收反射指数(Modified Chlorophyll Absorption in Reflectance Index (MCARI), ?Equation: MCARI = [(R700- R670) - 0.2 * (R700- R550)] * (R700/ R670))7) 转换类胡罗卜素指数(Transformed CAR Index (TCARI)?, Equation: TSARI = 3 * [(R700- R670) - 0.2 * (R700- R550) * (R700/ R670)])8) 三角植被指数(Triangular Vegetation Index (TVI)?, ?Equation: TVI = 0.5 * [120 * (R750- R550) - 200 * (R670- R550)])9) ZMI指数(Zarco-Tejada & Miller Index (ZMI), Equation: ZMI = R750 / R710)10) 简单比值色素指数(Simple Ratio Pigment Index (SRPI), Equation: SRPI = R430 / R680)11) 归一化脱镁作用指数(Normalized Phaeophytinization Index (NPQI), Equation: NPQI = (R415- R435) / (R415+ R435))12) 光化学植被反射指数(Photochemical Reflectance Index (PRI), Equation: PRI = (R531- R570) / (R531+ R570))13) 归一化叶绿素指数(Normalized Pigment Chlorophyll Index (NPCI), NPCI = (R680- R430) / (R680+ R430))14) Carter指数(Carter Indices?, Equation: Ctr1 = R695 / R420 Ctr2 = R695 / R760)15) Lichtenthaler指数(Lichtenthaler Indices?, Equation: Lic1 = (R790 - R680) / (R790 + R680) Lic2 = R440 / R690)16) SIPI指数(Structure Intensive Pigment Index (SIPI), Equation: SIPI = (R790- R450) / (R790+ R650))17) Gitelson-Merzlyak指数(Gitelson and Merzlyak Indices?, ?Equation: GM1 = R750/ R550 GM2 = R750/ R700)4. 热成像分析(选配):用于成像分析植物在光辐射情况下的二维发热分布,良好的散热可以使植物耐受较长时间的高光辐射或低水条件(干旱)5. 近红外成像分析(选配):用于观测分析植物的水分状态及其在不同组织间的分布变异,处于良好浇灌状态的植物表现出对近红外光谱的高吸收性,而处于干旱状态的植物则表现出对近红外光谱的高反射性,通过分析软件可以监测分析从干旱胁迫到再浇灌过程中的整个过程动态及植物对干旱胁迫的响应和水分利用效率,并形成假彩图像,可以与植物的形态指数及叶绿素荧光指数进行相关分析研究。 系统配置与工作原理: 整套系统由自动化植物传送系统、光适应室、RGB成像、FluorCam叶绿素荧光成像、高光谱成像、植物热成像、植物近红外成像、自动浇灌施肥与称重系统、植物标识系统等组成,光适应室内的植物可由传送带传送到成像室进行成像分析等。 技术指标: 1. 自动装载与卸载植物样品,通过条形码或RFID标签识别跟踪样品2. 光适应室:用于光照适应或植物培养,LED光源光照强度达1000μmol/m2.s,无热效应,强度0-100%可调,可通过实验程序预设光照周期变化,可选配通用型或专用型如水稻生长观测室等,还可选配三维扫瞄成像分析功能(包括XYZ三维扫瞄成像系统和软件)3. 标配托盘架30x30cm,用于安放盆栽植物或可以盛放多个小花盆的托盘4. 自动传送系统由光适应室到成像室形成一个环形传送通道,传送带采用具变速器的三相异步马达,200-1000W,传送带宽320mm,负载力130kg,速度9m/min5. 移动控制系统中央处理单元:CJ2M-CPU33;数字I/O:最大2560点;PLC通讯:通过以太网100Mb/s高端PC;OMRON MECHATROLINK-II 最大16轴精确定位6. 植物成像测量室:150cm(长)x150cm(宽)x220cm(高),与环境光隔离(light-isolated),快速自动开启关闭门,开启关闭周期小于3秒,传送带入口具光幕传感系统、条码识别器和RFID读取器7. RFID读取器辨识距离:2-20cm;通讯:RS485;条码识别器可读取1维、2维和QR码,具LED光源便于弱光下辨识,RS485通讯8. F3EM2光幕系统,精确测量植物高度和宽度以便进入成像测量室后摄像头自动精确定位,测量范围150cm,分辨率5mm9. 叶绿素荧光成像:包括光隔离成像室、自动开启与关闭门、传送带、PLC控制自动上下移动聚焦系统、4个LED光源板、8位绿波轮等,单幅成像面积35x35cm,测量光橙色620nm,橙色和白色双波长光化学光,饱和光闪为白色或蓝色10. 自动灌溉与称重,可同时对5个植物种植盆进行浇灌和称重,精确度±1g;称重后精确浇灌,可通过实验程序(protocol)预设浇灌过程(regime)或干旱胁迫状态,还可选配营养供给系统随浇灌定量供给植物营养(如氮肥等);称重前自动零校准,还可通过已知重量(如砝码)物品自动进行再校准;防护级别:IP6611. 称重系统由4个称重单元组成,安全承载限:150% Ln;温度补偿:-10-40°C,标配测量范围7kg,可选配10kg、15kg或20kg12. RGB成像:顶部和侧面三维成像(3个摄像头),每个摄像头各自拥有独立的控制面盘以设置曝光时间、增益、白平衡等,通过控制面盘的快照键可即时拍照并显示分辨率等信息,还可通过自动模式自动成像并存储至数据库,每次扫瞄成像时间小于10秒13. RGB成像系统包括成像室(光隔离)、传送带及位置传感器、3个摄像头、光源及成像分析软件,标配成像范围150cm(长)x150cm(宽)x150cm(高),LED冷白光源(不对植物产生热效应)14. 标配USB以太网摄像头,有效像素4008x2672,像素大小9.0μm,比特分辨率12比特,光量子效率:蓝光峰值465nm,绿色峰值540nm,红色峰值610nm;28mm光学镜头,口径43.2mm,光圈范围2.8-F1615. NIR近红外成像单元:可成像采集1450-1600nm水吸收波段,以反映植物水分状况,在供水充沛情况下表现出高NIR吸收值,干旱胁迫情况下则表现出高NIR反射,NIR假彩色成像可以通过软件反映和分析植物水分状况16. 高光谱成像单元包括光隔离成像测量室、自动开启关闭门、传送带、PLC控制自动移动聚焦镜头包括SWIR和VNIR镜头、光源、成像分析系统等,VNIR镜头波段380nm-1000nm,光圈F/0.2,缝隙宽度25μm,缝隙长度18mm,帧速12-236 fps;SWIR镜头波段900-2500nm,光圈F/0.2,缝隙宽度25μm,缝隙长度18mm,帧速60或100 fps,视野150x100cm17. 用户可通过实验程序选择SWIR成像、VNIR成像或两个镜头全波段成像,每个镜头成像时间分别为15秒18. 热成像单元:分辨率640x480像素,温度范围20-120°C,灵敏度NETD0.05°C@30°C/50mK,成像面积可达150x150cm19. 可选配人工气候室,植物生长面积9.5m2,生长高度2.0m,温度稳定性±1°C,430nm-730nm白色和IR LED 光源,1000μmol/m2/s(距离植物100cm高度的光强),可预设自动光照周期动态,20. 系统控制与数据采集分析系统:? 用户友好的图形界面? 用户定义、可编辑自动测量程序(protocols)? MySQL数据库管理系统,可以处理拥有上千万条记录的大型数据库,支持多种存储引擎,相关数据自动存储于数据库中的不同表中? 植物编码注册功能:包括植物识别码、所在托盘的识别码等存储在数据库中,测量时自动提取自动读取条形码或RFID标签? 触摸屏操作界面,在线显示植物托盘数量、光线强度、分析测量状态及结果等,轻松通过软件完全控制所有的机械部件和成像工作站? 可用默认程序进行所有测量,也可通过开发工具创建自定义的工作过程,或者手动操作LED光源开启或关闭、RGB扫面成像、叶绿素荧光成像、称重及浇灌等? 实验程序(Protocols)具备起始键、终止键、暂停键? 可根据实验需求自动控制植物样品的移动和单一成像站的激活? 可提供3个相机视角的RGB数字生长分析,包含阈值分析和颜色分析? 对于叶绿素荧光成像图片,软件可批量进行淬灭参数分析,包含了在背景去除图像上用户感兴趣区域和像素值的平均。分析数据以原始图像和分析数据的形式存储在数据库中。? 对FIR热成像图,16位图可直接导出到MATLAB或通过软件生成温度分布的假彩图像。 部分用户: 1. 国际水稻研究所(菲律宾)The International Rice Research Institute, Los Banos Philippines 2. 澳大利亚联邦科学与工业研究组织植物表型组学中心The CSIRO Plant Phenomics Center, Canberra, Australia 3. 澳大利亚国立大学The Australian National University, Canberra. Australia 4. 孟山都公司(美国)Monsanto Corporation, St. Louis, USA. 5. 杜邦先锋国际良种公司Pioneer-Dupont, Des Moines, Iowa 6. 巴斯夫公司Metanomics(柏林)Metanomics (BASF), Berlin, GDR 7. 巴斯夫公司CropDesign(比利时)CropDesign (BASF), Nevele, Belgium 8. 美国合成基因公司Synthetic Genomics, La Jolla, USA 9. Palacky 大学Palacky University Olomouc, Czech Republic10. Masaryk 大学Masaryk University Brno, Czech Republic 产地:欧洲
    留言咨询
  • 植物的生长和繁殖是由波长在400-700nm之间的光合有效辐射(PAR)驱动的。这个波段主要被区分为3种颜色的光束,通过改变这3种红光、蓝光和绿光的强度,再加上近紫外(380-400nm)和远红光(700-780nm)的作用,可以控制植物的生长速度,以及表观性状、果实品质、抗病能力等。LI-180配备高精度线性图像传感器,只需一键即可捕获以上五个波段光在1纳米精度级的强度和成分。可以用于优化人工补光的波长组成,长期跟踪照明设备的光谱数据,验证光源和补光方案的效果,监控照光系统的老化,并根据季节变化调整方案或升级系统。工作原理 LI-180光谱仪配备高精度的CMOS线性图像传感器,可在380和780 nm之间以1纳米的增量)捕获光子通量密度。LI-180传感器以准确的余弦校正响应测量,以确保整个视野的准确度。主要优点● 一键获取数据,只需单击一下,LI-180就会获取多个参数,包括PAR(作为颜色特定的光合光子通量密度(PPFD)),光子通量密度(PFD),辐照度(W / m2)等● 手动灵活设定测量波段,计算任意波段比值● 内置12种植物色素吸收参考谱线● 瞬时取得结果,便于随时随地调整补光方案。● 图形图表输出,结果直观可靠。● 优越的便捷性,体型小巧重量轻,方便采用各种角度、各种距离测量。● 数据存储获取方便,数据保存在高容量SD卡,可通过移动应用程序的电子邮件传输数据文件。应用领域 通过准确测量和优化补充光成分,增强对所需的植物特征的控制。例如缩短种植时间、提高作物品质和产量、增强抗病能力等。可选软件LI-180具有多种软件可选,使用灵活。移动应用 适用于iOS和Android移动操作系统。使用智能手机或平板电脑进行即时测量,并用电子邮件传输LI-180光谱仪数据。电脑软件 配置连续或定时捕获,并从电脑软件中获得可视化的光谱仪数据。技术参数测量波段:380 - 780 nm波长增量:1 nm光谱带宽:约12 nm (半峰宽)测量范围:70-150,000 lx (lux) 0.5-1,000 W/m2 1-3,000 μmol m-2 s-1(PPFD)显示:3.5",320×420触摸液晶显示器显示语言:英语、西班牙语、法语、德语、汉语繁体、汉语简体、日语、意大利语、俄语存储量:68000 files(8GB SD卡)操作湿度:0% ~ 95%(无冷凝)电池:一般情况下连续工作5小时电源:适配器,2500 mAh (同时支持3.7V 可充电锂电池)数据输出接口:SD卡(包括SD 2.0,SDHC,直到32GB(含8GB卡)) WiFi SD卡(支持iOS和安卓系统) Mini USB 接口(USB 2.0)数据输出格式:.txt,.jpg检测器:CMOS线性图像传感器照度计等级:方向响应符合JIS C 1609-1:2006的一般AA级。方向响应符合DIN5032第7部分B级。波长重复性:±1nmPAR准确性:±5%照度准确性:±5%照度重复性:(2σ): 0.2%颜色准确性:x y ± 0.0025颜色重复性:(2σ): x y: 0.0005CCT(相关色温)准确性:± 2%CRI(显色指数)准确性@ Ra: ± 1.5%杂散光:-25 dB max.积分时间范围:2 – 2000ms数字分辨率: 16 bits捕获功能:1次或持续操作模式:独立模式或Wi-Fi模式USB模式:大容量存储控制器模式和WindowsPC连接集成模式:自动或手动测量模式:PPFD, PFD, Spectrum (图表), Logging, 和Grid测量能力: PAR波段的PPFD PFD 自定义波段,默认波段比率,和自定义波段比率 峰波长(λp)和峰波长强度(λpV) 辐照度(380nm~780nm)Wm2 积分时间(I-Time) 照度(LUX)/烛光尺(fc) 相关色温(CCT) CIE 1931/1976色度坐标 △x, △y, △u’, △v’, Delta uv (Duv) 主波长(λd) 激发纯度 显色指数(CRI, Ra)/R1 到 R15 频谱功率分布(SPD)mW/m2尺寸:20cm 长ⅹ7.7cm宽ⅹ2.6cm高重量:0.28 kg(0.62lbs)操作温度:0 ~ 35℃?供货厂家:美国LI-COR公司
    留言咨询
  • WIWAM植物表型成像系统由比利时SMO公司与Ghent大学VIB研究所研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、植物多光谱分析、植物CT断层扫描分析、自动条码识别管理、RGB真彩3D成像等多项先进技术,以优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的全方位生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。SMO机械设备制造与设计工程公司是一家将大规模自动化理念和工业级零件和设备整合入植物成像系统的厂家,在机械自动化以及机器视觉成像领域拥有丰富的设计和实践经验,为欧洲客户提供机械设计解决方案,SMO公司将机械领域的先进理念带入了植物表型机器人领域,所采用的配件均为工业界广泛认可的高品质配件,耐受苛刻环境,另外表型设备领域的诸多自动化配件,均由SMO公司自主设计,因公司拥有极为强大的工程师团队,基于工业领域的丰富经验,可针对不同客户需求,一般2-3周就可以提供极复杂表型成像系统的解决方案。目前WIWAM植物表型平台分为WIWAM XY,WIWAM Line以及WIWAM Conveyor3个系列,同时还提供WIWAM Boxing柜式成像系统,也提供野外表型成像系统设计方案。植物表型成像系统WIWAM XY产品介绍WIWAM XY是一款高通量可重复性表型机器人,用于对小型植物,如小玉米植物研究。该机器人可定期对多种植物参数进行自动化灌溉和并测量多种植物生长参数。WIWAM XY代替了很多手工处理、省时省钱、精度较高。WIWAM XY由花盆定位桌面,不同个体线路,底层端口机器人以及1或多个成像或称重/浇水站组成。全套系统可以安装在现有生长室,内置高品质工业部件。植物在各自花盆内生长,预设时间间隔,机器臂提取植物,将其带到成像和称重浇水工作站。机器人将桌面上的线路移到旁边,生成机械臂到定位花盆所需空间,并将其提升脱离桌面。RFID读取装置以及花盆底部的RFID标签,可作为额外花盆识别法,识别和校正桌面上因手工花盆安置造成的错误。通常旁边取景照相机从不同角度获得图像。成像站可安装一系列照相机系统。组合称重/浇水站集成在机器臂上。花盆中植物在浇水时旋转以获得较佳水分布。灌溉精度较高可达+/- 0.1mL。另外,灌溉可基于自动目标重量计算或固定量。在整个实验过程中,可有效控制土壤湿度水准。集成光、温度和湿度传感器可监控温度,详细记录实验生长条件。植物表型成像系统WIWAM XY产品特点1、浇水时花盆旋转以获得较佳水分布2、高精度灌溉(达0.1mL!).3、植物表型成像系统WIWAM XY 可配置环境传感器4、植物表型成像系统WIWAM XY 配有直观用户界面5、开放式数据库结构6、可提供全定制系统成像系统优势所有表型平台均为SMO工程部门自主设计、针对课题组的研究项目快速、准确提供技术方案,设备中诸多备件为自主生产和设计;公司软件设计团队针对具体项目提供有针对性的WIWAM定制软件;SMO和VIB自主开发PIPPA 数据管理、视觉成像和分析软件,系统高效处理整个实验设计的大数据;PIPPA 软件可安装在网络服务器上(包括专有用户管理系统),网络中每个计算机均可操作;在PIPPA软件内,可集成整合外来分析数据和文本;易于获取数据库和原始图像数据;与客户自有IT技术设施进行整合;针对客户对表型设备运行环境了解欠缺的事实,提供表型设备生长室、温室建设交钥匙设计方案,实现环境参数如照明、温度、湿度等控制,提供一站式表型研究解决方案;专门技术人员维护设备、定期指导维护硬件;官方代理密切沟通服务、提供支持反馈;自主电路设计、建筑内电柜设计、机械电缆布线以及PLC管理所有室内设施,将工业领域理念灌输到科研中;多篇利用WIWAM系统进行研究的文章发表在期刊如Nature Biotechnology等上面;迅速增长的用户群;采用开放式框架设计,可整合市面上的所以种类成像模块。应用领域遗传资源和序列数据快速积累,但将该信息与基因功能相关联的进程要缓慢的多,这表明植物表型是理解基因 编码过程以及应用该知识改善作物产量的主要瓶颈。众所周知表型工作是最耗劳力和具技术挑战性的部分,成本高且耗时。但该“表型瓶颈”已可通过集成新型图像获取技术、机器人技术、图像分析技术以及数据处理技术解决。WIWAM 植物表型成像系统集成了这些技术,替代了很多人工处理。该植物表型平台可应用到多个研究领域,包括植物生长调节、耐旱研究、植物生理、盐碱或重金属胁迫反应等。也可在不同光照条件,营养水平或土壤类型下,研究化学物影响.产品可选配模块可见光RGB成像模块可见光RGB成像是所有高通量植物表型平台的核心部分,它分辨率高、测量快速、科研中应用较多、发表文章较多,可以捕获与植物生长和发育相关的大量参数。此外,它们可以提供植物形态和结构的测量,并且包含颜色信息。参数如下:叶面积、植物紧实度/紧密度、叶片周长、偏心率、叶圆度、叶宽指数、植物圆直径、凸包面积、植物质心、节间距、生长高度、植物三维最大高度和宽度、相对生长速率、叶倾角、节叶片数量。叶绿素荧光成像模块叶绿素荧光成像属于定制化设计,成像面积范围是从30x30cm到200x200cm,是目前适合大型植物植株成像的荧光成像系统。它可以顶部成像,也可以侧面成像,甚至顶部和侧面都成像;集成到高通量植物表型平台中,进行高通量的光合表型测量。该模块技术参数如下:Fo, FI, Fm, Ft, Fm’, FI’, Fo’, Fv/Fm, φPSII, φRO, NPQ, qN, qP, Rfd, NDVI, RNIR, RChl, RAnth, RRed, RGreen, RBlue, Chl. Index, Ant. Index等。叶绿素荧光成像技术参数群体植物光合长期监测模块实时对植物进行多传感监控:PSII最大和有效效率,光强,辐射,ETR以及植物面积。群体植物光合长期监测传感器是一款自动多传感器,可测量PSII与最大效率(Fv/Fm)、有效效率相关的参数。通过镜像系统,通过内置计算机控制,激光束打到植物上。每5秒钟,激光束不断变化在植物上的位置,每次循环可生成数百个测量点。系统编程测量每个激光点的PSII效率,光强以及辐射。计算参数有PAR光,Fq’/Fm’以及ETR(电子传 递速率)。ETR与CO2吸收相关。植物面积可从含有叶绿素的测量位置数计算出来。传感器上面有2个内置Licor传感器,PAR传感器以及辐射传感器。传感器可集成在知名的LetsGrow系统中以及wiwam系统中。在系统中,可监测来自该传感器的所有数据并与其它环境数据进行对比。 激光点测量参数:最小(Fo或 Fs)以及最大(Fm或Fm)叶绿素荧光信号、CropObserver顶部光强、CropObserver顶部辐射、计算机24/7实时信息、实时Fv/Fm 和Fq /Fm平均值与分布、实时PAR平均值 μmol/s/ m2、实时辐射平均值 /s/ m2、实时ETR平均值与分布、植物面积近红外成像模块近红外成像主要用于观测分析植物的水分状态及其在不同组织间的分布变异,处于良好浇灌状态的植物表现出对近红外光谱的高吸收性,而处于干旱状态的植物则表现出对近红外光谱的高反射性,通过分析软件可以监测分析从干旱胁迫到再浇灌过程中的整个过程动态及植物对干旱胁迫的响应和水分利用效率,并形成假彩图像,可以与植物的形态指数及叶绿素荧光指数进行相关分析研究。近红外成像模块技术参数红外热成像模块红外热成像主要用于成像分析植物在光辐射情况下的二维发热分布,良好的散热可以使植物耐受较长时间的高光辐 射或低水条件(干旱)。红外热成像模块技术参数高光谱成像模块高光谱成像在估测植物各种生化组分的吸收光谱信息及植物生长情况的检测上表现出了强大的优势,主要用于植物 的营养状况、水分含量、长势情况、病虫害情况监测等。高光谱成像模块技术参数激光3D扫描多光谱成像模块激光3D扫描成像能够耐受全日照辐射而不影响测量,在高精度测量三维点云信息的同时,测量400-900 nm范围内4 个波段的多光谱成像,使得我们可以得到植物在X、Y和Z轴上所有坐标点的多光谱信息,通过点云的空间深度信息和角 度信息,可以对光谱信息进行完美的校准,从而获得更加精准的数据。 激光3D扫描多光谱成像模块技术参数根系CT成像模块根系CT成像是植物表型平台的重要组成部分,成功的实现了原位监测植株根系状态,并对直径20cm花盆内自然土 壤中的根系进行扫描和重建。根系CT成像模块技术参数IT解决方案和储存WIWAM软件在高端工业计算机上运行,触摸屏。该软件配有用户友好图形界面,用于控制机器人站行为以及以极高灵活度设计设计实验。可同时运行多组实验,可运行不同随机模式,可及时规划单个植株或一组植株的处理。在预设启动时间,PC机将向工业PLC发送指令,照管机器人移动。所有成像,称重/浇水以及环境数据均可存于SQL数据库,记录后可用于分析记录。系统采用了开放式数据库结构,可以直接获取图像。该平台可以与高性能计算相连,用于分析储存数据或者可与本地服务器设施整合。SMS邮件服务可以通知用户机器报警和错误,可尽快进行用户干涉。系统可于任一点暂停和停下,UPS(不间断电源)可防止数据丢失和确保在停电后全系统恢复。该软件也有平台管理员系统设置和维护行为通道。图像分析和数据可视化WIWAM Conveyor有VIB开发的图像分析和数据可视化软件支持,此软件包,称为PIPPA,是中央网络界面和数据库,一方面用来为不同类型的WIWAM植物表型平台提供管理的工具,另一方面用于分析图像和数据。PIPPA与该平台通讯,通过将PIPPA网络界面生成的实验结果传到平台。每个花盆的处理和基因型信息已在数据库限定以确保在整个实验中的数据一体性。实验期间PIPPA对来自平台的称重,灌溉测量,环境数据,错误记录以及图像信息进行处理分析。PIPPA支持这些图像后续处理(旋转/收获/等)。图像分析文本可以在PIPPA界面初始化,可设置于网络服务器运行(独立版本)或计算机群运行,以快速生成结果。随后,通过检查数据是否在特定阈值之内可在网络几面对输出文本进行验证,例如,是否生长相关性状,如植物枝条面积一段时间内是否增加。北京博普特科技有限公司是比利时WIWAM植物表型成像系统的中国区总代理,全面负责其系列产品在中国市场的推广、销售和售后服务。
    留言咨询
  • WIWAM植物表型成像系统由比利时SMO公司与Ghent大学VIB研究所研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、植物多光谱分析、植物CT断层扫描分析、自动条码识别管理、RGB真彩3D成像等多项先进技术,以优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的全方位生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。SMO机械设备制造与设计工程公司是一家将大规模自动化理念和工业级零件和设备整合入植物成像系统的厂家,在机械自动化以及机器视觉成像领域拥有丰富的设计和实践经验,为欧洲客户提供机械设计解决方案,SMO公司将机械领域的先进理念带入了植物表型机器人领域,所采用的配件均为工业界广泛认可的高品质配件,耐受苛刻环境,另外表型设备领域的诸多自动化配件,均由SMO公司自主设计,因公司拥有极为强大的工程师团队,基于工业领域的丰富经验,可针对不同客户需求,一般2-3周就可以提供极复杂表型成像系统的解决方案。目前WIWAM植物表型平台分为WIWAM XY,WIWAM Line以及WIWAM Conveyor3个系列,同时还提供WIWAM Boxing柜式成像系统,也提供野外表型成像系统设计方案。植物表型成像系统WIWAM Line产品说明WIWAM Line是一款高通量可重复性表型机器人,用于对小型植物,如小玉米植物研究。该机器人可定期对多种植物参数进行自动化灌溉和并测量多种植物生长参数。WIWAM line代替了很多手工处理,省时省钱,精度较高。WIWAM Line由花盆定位桌面,不同个体线路,底层端口机器人以及1或多个成像或称重/浇水站组成。全套系统可以安装在现有生长室,内置高品质工业部件。植物在各自花盆内生长,预设时间间隔,机器臂提取植物,将其带到成像和称重浇水工作站。机器人将桌面上的线路移到旁边,生成机械臂到定位花盆所需空间,并将其提升脱离桌面。RFID读取装置以及花盆底部的RFID标签,可作为额外花盆识别法,识别和校正桌面上因手工花盆安置造成的错误。通常旁边取景照相机从不同角度获得图像。成像站可安装一系列照相机系统。组合称重/浇水站集成在机器臂上。花盆中植物在浇水时旋转以获得较佳水分布。灌溉精度较高可达+/- 0.1 mL。另外,灌溉可基于自动目标重量计算或固定量。在整个实验过程中,可有效控制土壤湿度水准。集成光温度和湿度传感器可监控温度,详细记录实验生长条件。植物表型成像系统WIWAM Line产品特点1、浇水时花盆旋转以获得水分布2、高精度灌溉(达0.1mL !).3、WIWAM Line 可配置环境传感器4、WIWAM Line 配有直观用户界面5、开放式数据库结构6、可提供全定制系统成像系统优势所有表型平台均为SMO工程部门自主设计、针对课题组的研究项目快速、准确提供技术方案,设备中诸多备件为自主生产和设计;公司软件设计团队针对具体项目提供有针对性的WIWAM定制软件;SMO和VIB自主开发PIPPA 数据管理、视觉成像和分析软件,系统高效处理整个实验设计的大数据;PIPPA 软件可安装在网络服务器上(包括专有用户管理系统),网络中每个计算机均可操作;在PIPPA软件内,可集成整合外来分析数据和文本;易于获取数据库和原始图像数据;与客户自有IT技术设施进行整合;针对客户对表型设备运行环境了解欠缺的事实,提供表型设备生长室、温室建设交钥匙设计方案,实现环境参数如照明、温度、湿度等控制,提供一站式表型研究解决方案;专门技术人员维护设备、定期指导维护硬件;官方代理密切沟通服务、提供支持反馈;自主电路设计、建筑内电柜设计、机械电缆布线以及PLC管理所有室内设施,将工业领域理念灌输到科研中;多篇利用WIWAM系统进行研究的文章发表在期刊如Nature Biotechnology等上面;迅速增长的用户群;采用开放式框架设计,可整合市面上的所以种类成像模块。应用领域遗传资源和序列数据快速积累,但将该信息与基因功能相关联的进程要缓慢的多,这表明植物表型是理解基因 编码过程以及应用该知识改善作物产量的主要瓶颈。众所周知表型工作是最耗劳力和具技术挑战性的部分,成本高且耗时。但该“表型瓶颈”已可通过集成新型图像获取技术、机器人技术、图像分析技术以及数据处理技术解决。WIWAM 植物表型成像系统集成了这些技术,替代了很多人工处理。该植物表型平台可应用到多个研究领域,包括植物生长调节、耐旱研究、植物生理、盐碱或重金属胁迫反应等。也可在不同光照条件,营养水平或土壤类型下,研究化学物影响.产品可选配模块可见光RGB成像模块可见光RGB成像是所有高通量植物表型平台的核心部分,它分辨率高、测量快速、科研中应用较多、发表文章较多,可以捕获与植物生长和发育相关的大量参数。此外,它们可以提供植物形态和结构的测量,并且包含颜色信息。参数如下:叶面积、植物紧实度/紧密度、叶片周长、偏心率、叶圆度、叶宽指数、植物圆直径、凸包面积、植物质心、节间距、生长高度、植物三维最大高度和宽度、相对生长速率、叶倾角、节叶片数量。叶绿素荧光成像模块叶绿素荧光成像属于定制化设计,成像面积范围是从30x30cm到200x200cm,是目前适合大型植物植株成像的荧光成像系统。它可以顶部成像,也可以侧面成像,甚至顶部和侧面都成像;集成到高通量植物表型平台中,进行高通量的光合表型测量。该模块技术参数如下:Fo, FI, Fm, Ft, Fm’, FI’, Fo’, Fv/Fm, φPSII, φRO, NPQ, qN, qP, Rfd, NDVI, RNIR, RChl, RAnth, RRed, RGreen, RBlue, Chl. Index, Ant. Index等。叶绿素荧光成像技术参数群体植物光合长期监测模块实时对植物进行多传感监控:PSII最大和有效效率,光强,辐射,ETR以及植物面积。群体植物光合长期监测传感器是一款自动多传感器,可测量PSII与最大效率(Fv/Fm)、有效效率相关的参数。通过镜像系统,通过内置计算机控制,激光束打到植物上。每5秒钟,激光束不断变化在植物上的位置,每次循环可生成数百个测量点。系统编程测量每个激光点的PSII效率,光强以及辐射。计算参数有PAR光,Fq’/Fm’以及ETR(电子传 递速率)。ETR与CO2吸收相关。植物面积可从含有叶绿素的测量位置数计算出来。传感器上面有2个内置Licor传感器,PAR传感器以及辐射传感器。传感器可集成在知名的LetsGrow系统中以及wiwam系统中。在系统中,可监测来自该传感器的所有数据并与其它环境数据进行对比。 激光点测量参数:最小(Fo或 Fs)以及最大(Fm或Fm)叶绿素荧光信号、CropObserver顶部光强、CropObserver顶部辐射、计算机24/7实时信息、实时Fv/Fm 和Fq /Fm平均值与分布、实时PAR平均值 μmol/s/ m2、实时辐射平均值 /s/ m2、实时ETR平均值与分布、植物面积近红外成像模块近红外成像主要用于观测分析植物的水分状态及其在不同组织间的分布变异,处于良好浇灌状态的植物表现出对近红外光谱的高吸收性,而处于干旱状态的植物则表现出对近红外光谱的高反射性,通过分析软件可以监测分析从干旱胁迫到再浇灌过程中的整个过程动态及植物对干旱胁迫的响应和水分利用效率,并形成假彩图像,可以与植物的形态指数及叶绿素荧光指数进行相关分析研究。近红外成像模块技术参数红外热成像模块红外热成像主要用于成像分析植物在光辐射情况下的二维发热分布,良好的散热可以使植物耐受较长时间的高光辐 射或低水条件(干旱)。红外热成像模块技术参数高光谱成像模块高光谱成像在估测植物各种生化组分的吸收光谱信息及植物生长情况的检测上表现出了强大的优势,主要用于植物 的营养状况、水分含量、长势情况、病虫害情况监测等。高光谱成像模块技术参数激光3D扫描多光谱成像模块激光3D扫描成像能够耐受全日照辐射而不影响测量,在高精度测量三维点云信息的同时,测量400-900 nm范围内4 个波段的多光谱成像,使得我们可以得到植物在X、Y和Z轴上所有坐标点的多光谱信息,通过点云的空间深度信息和角 度信息,可以对光谱信息进行完美的校准,从而获得更加精准的数据。 激光3D扫描多光谱成像模块技术参数根系CT成像模块根系CT成像是植物表型平台的重要组成部分,成功的实现了原位监测植株根系状态,并对直径20cm花盆内自然土 壤中的根系进行扫描和重建。根系CT成像模块技术参数IT解决方案和储存WIWAM软件在高端工业计算机上运行,触摸屏。该软件配有用户友好图形界面,用于控制机器人站行为以及以极高灵活度设计设计实验。可同时运行多组实验,可运行不同随机模式,可及时规划单个植株或一组植株的处理。在预设启动时间,PC机将向工业PLC发送指令,照管机器人移动。所有成像,称重/浇水以及环境数据均可存于SQL数据库,记录后可用于分析记录。系统采用了开放式数据库结构,可以直接获取图像。该平台可以与高性能计算相连,用于分析储存数据或者可与本地服务器设施整合。SMS邮件服务可以通知用户机器报警和错误,可尽快进行用户干涉。系统可于任一点暂停和停下,UPS(不间断电源)可防止数据丢失和确保在停电后全系统恢复。该软件也有平台管理员系统设置和维护行为通道。图像分析和数据可视化WIWAM Conveyor有VIB开发的图像分析和数据可视化软件支持,此软件包,称为PIPPA,是中央网络界面和数据库,一方面用来为不同类型的WIWAM植物表型平台提供管理的工具,另一方面用于分析图像和数据。PIPPA与该平台通讯,通过将PIPPA网络界面生成的实验结果传到平台。每个花盆的处理和基因型信息已在数据库限定以确保在整个实验中的数据一体性。实验期间PIPPA对来自平台的称重,灌溉测量,环境数据,错误记录以及图像信息进行处理分析。PIPPA支持这些图像后续处理(旋转/收获/等)。图像分析文本可以在PIPPA界面初始化,可设置于网络服务器运行(独立版本)或计算机群运行,以快速生成结果。随后,通过检查数据是否在特定阈值之内可在网络几面对输出文本进行验证,例如,是否生长相关性状,如植物枝条面积一段时间内是否增加。北京博普特科技有限公司是比利时WIWAM植物表型成像系统的中国区总代理,全面负责其系列产品在中国市场的推广、销售和售后服务。
    留言咨询
  • FytoScope FS-SI步入式植物生长箱名称:步入式植物生长箱 型号:FytoScope FS-SI 产地:捷克 用途: FytoScope FS-SI植物生长箱全部采用智能LED灯作为光源,完美的光谱质量为植物生长提供充足光照条件,而且对温度调控没有影响。根据植物的生长特性,设定不同的光周期,每个光周期内可对环境温度、湿度和光强进行设置,进而模拟出植物生长的真实环境,除此之外,昼夜节律、黎明/黄昏以及多云天气都可以通过程序进行模拟。 生长箱内采用独特的气流分布设计,气流分布非常均匀,温度和相对湿度环境可以精确控制,而且还可以对气体如CO2浓度进行调控;除了满足植物生长环境控制之外,生长箱内安装的植物叶绿素荧光模块,可以监测生长箱内植物的实时光合参数,比如光合有效量子产量Fv/Fm,实时量子产量Ft,OJIP诱导曲线,NPQ和光响应曲线,真正实现培养---监测同步进行。同时,生长箱设计科学,满足从拟南芥到小麦、水稻、玉米等不同类型的植物研究需求。 特点: 光源:智能LED光源技术,可以独立调节光质、光强以及光照模式,模拟昼夜变化、黎明/黄昏,甚至多云天气;强度在0——100%范围内调节; LED光源技术,无光源给植物带来的热量影响; LED光源中补充FAR光源,促进植物生长; 温度:最大40 °C,最小10°C;可选最小温度为0°C; 相对湿度:40%——80%范围内可调(依赖于光强); 光强最大1000 μmol(photon).m-2.s-1(距离50cm时),可选更高光强; 整个气候室内光源均匀; 独特气流控制技术,保证温度、相对湿度控制均匀; 叶绿素荧光传感器监测叶绿素荧光参数,研究植物光合效率、胁迫状态; 隔板可根据实际需要调节。 应用领域: 实时、原位、多指标监测植物生长状况; 精确的控制不同光照下的植物生长; 大空间满足各种植物生长需求; 精确控制多种植物生长,拟南芥到小麦、玉米和水稻等。 软件控制: 实时数据采集; 随时可以数据上传、分析,即使实验仍在运行中; 数据图表或图形可视化; 10.5"超大LCD触摸屏; 可存储100条用户自编程序; 数据通过因特网或USB传输; 可通过LAN远程控制。 叶绿素荧光测量模块: 测量参数:FT, QY,Fv/Fm, OJIP, NPQ和光曲线; 防雨设计,长期生长箱内使用; 探头光纤设计,不影响测量部位的正常生长; 独立安装方式,根据测量对象3D调整姿态; 结果数据图形化。 技术规格:控制参数温度,光强,相对湿度,叶绿素荧光参数LED灯板80 x 108 cm,白色LED,补充FAR远红外LEDLED光强 0 % to 100 % 1,000 μmol(photon).m-2.s-1,50cm处温控范围+10 °C to +40 °C(与光强有关,室温+35°C以上);可选0 °C to +40 °C湿度范围40—80%,与光强有关叶绿素荧光FT, QY,Fv/Fm, OJIP, NPQ和光曲线;长期监测植物叶绿素荧光参数光化光在0-100%范围内可调,光强达 1000 μmol(photon).m-2.s-1饱和脉冲光在0-100%范围内可调,光强达3000 μmol(photon).m-2.s-1测量光0到0.3 μmol(photon).m-2.s-1传感器尺寸:120 mm x 57 mm x 30 mm光学探头尺寸:8mm外部尺寸FS-SI 3400:190 x 140 x 225 cm (W x D x H)FS-SI 4400:244 x 140 x 225 cm (W x D x H)内部尺寸FS-SI 3400:119 x 106 x 190 cm (W x D x H)FS-SI 4400:197 x 106 x 190 cm (W x D x H)照明面积FS-SI 3400:0.8m2FS-SI 4400:1.2 m2容积FS-SI 3400:3400LFS-SI 4400:4400L隔板可调显示屏10.5"彩色触摸屏重量650kg空气流通1200L/h功率6.5kW 产地:捷克点将科技-心系点滴,致力将来! : (上海) (北京) (昆明) (合肥) Email: (上海) (北京) (昆明) (合肥) 扫描点将科技官方微信,获取更多服务:
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Water Potential Measuring Instrument 植物水式检测仪ARIMAD 3000S ARIMAD3000s型植物压力仪用途:ARIMAD 3000S植物水势压力室用于测量肉质、草本、木本植物叶片或枝条的水势,通过测量植物对象的水势,可以推断植物抗旱指标,为植物生长研究提供必要的数据支持。主机自带液晶显示屏,可以在测量过程中直接看到压力数值,分辨率可以达到0.01bar。 原理:仪器叶片或枝条夹在样品室,通过气体加压,观察第一滴组织液渗出时的压力,此时的压力值即为植物样组织的水势值。 应用:植物水势能够反映出以下情况:土壤水份条件环境影响因素植物中的水份状态特点: 携带方便,操作简单;可以广泛地使用在不同气候条件的地区;快速反映出植物中的水势变化;ARIMAD的正确使用能够得出准确的水份分布;测出的结果可以快速,准确的指导农作物灌溉;能够在植物的水势和农作物的产量间建立一种动态关系; 使用步骤:选取样品叶片仪器装置的安装对气压室加压读取水势读数 技术规格:最大测量压力:35bar测量精度:±0.1 Bar电源:9V尺寸:57×46×22cm 组成及规格:含有手柄的仪器箱一个,便携式加压气罐一个,压力室,数字显示屏,流量阀,一个手动控制阀,9V电池一个,调零开关,安全阀,压力调节器,外部的气流口,两个气压显示表(一个显示气罐内的气压,一个显示输出的气压)
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制